Entity linking (EL) is the task of linking a textual mention to its corresponding entry in a knowledge base, and is critical for many knowledge-intensive NLP applications. When applied to tables in scientific papers, EL is a step toward large-scale scientific knowledge bases that could enable advanced scientific question answering and analytics. We present the first dataset for EL in scientific tables. EL for scientific tables is especially challenging because scientific knowledge bases can be very incomplete, and disambiguating table mentions typically requires understanding the paper’s text in addition to the table. Our dataset, Scientific Table Entity Linking (S2abEL), focuses on EL in machine learning results tables and includes hand-labeled cell types, attributed sources, and entity links from the PaperswithCode taxonomy for 8,429 cells from 732 tables. We introduce a neural baseline method designed for EL on scientific tables containing many out-of-knowledge-base mentions, and show that it significantly outperforms a state-of-the-art generic table EL method. The best baselines fall below human performance, and our analysis highlights avenues for improvement.
Natural language understanding (NLU) has made massive progress driven by large benchmarks, but benchmarks often leave a long tail of infrequent phenomena underrepresented. We reflect on the question: Have transfer learning methods sufficiently addressed the poor performance of benchmark-trained models on the long tail? We conceptualize the long tail using macro-level dimensions (underrepresented genres, topics, etc.), and perform a qualitative meta-analysis of 100 representative papers on transfer learning research for NLU. Our analysis asks three questions: (i) Which long tail dimensions do transfer learning studies target? (ii) Which properties of adaptation methods help improve performance on the long tail? (iii) Which methodological gaps have greatest negative impact on long tail performance? Our answers highlight major avenues for future research in transfer learning for the long tail. Lastly, using our meta-analysis framework, we perform a case study comparing the performance of various adaptation methods on clinical narratives, which provides interesting insights that may enable us to make progress along these future avenues.
We present BEEP (Biomedical Evidence-Enhanced Predictions), a novel approach for clinical outcome prediction that retrieves patient-specific medical literature and incorporates it into predictive models. Based on each individual patient’s clinical notes, we train language models (LMs) to find relevant papers and fuse them with information from notes to predict outcomes such as in-hospital mortality. We develop methods to retrieve literature based on noisy, information-dense patient notes, and to augment existing outcome prediction models with retrieved papers in a manner that maximizes predictive accuracy. Our approach boosts predictive performance on three important clinical tasks in comparison to strong recent LM baselines, increasing F1 by up to 5 points and precision@Top-K by a large margin of over 25%.
Fanfiction presents an opportunity as a data source for research in NLP, education, and social science. However, answering specific research questions with this data is difficult, since fanfiction contains more diverse writing styles than formal fiction. We present a text processing pipeline for fanfiction, with a focus on identifying text associated with characters. The pipeline includes modules for character identification and coreference, as well as the attribution of quotes and narration to those characters. Additionally, the pipeline contains a novel approach to character coreference that uses knowledge from quote attribution to resolve pronouns within quotes. For each module, we evaluate the effectiveness of various approaches on 10 annotated fanfiction stories. This pipeline outperforms tools developed for formal fiction on the tasks of character coreference and quote attribution
We tackle the task of adapting event extractors to new domains without labeled data, by aligning the marginal distributions of source and target domains. As a testbed, we create two new event extraction datasets using English texts from two medical domains: (i) clinical notes, and (ii) doctor-patient conversations. We test the efficacy of three marginal alignment techniques: (i) adversarial domain adaptation (ADA), (ii) domain adaptive fine-tuning (DAFT), and (iii) a new instance weighting technique based on language model likelihood scores (LIW). LIW and DAFT improve over a no-transfer BERT baseline on both domains, but ADA only improves on notes. Deeper analysis of performance under different types of shifts (e.g., lexical shift, semantic shift) explains some of the variations among models. Our best-performing models reach F1 scores of 70.0 and 72.9 on notes and conversations respectively, using no labeled target data.
We tackle the task of building supervised event trigger identification models which can generalize better across domains. Our work leverages the adversarial domain adaptation (ADA) framework to introduce domain-invariance. ADA uses adversarial training to construct representations that are predictive for trigger identification, but not predictive of the example’s domain. It requires no labeled data from the target domain, making it completely unsupervised. Experiments with two domains (English literature and news) show that ADA leads to an average F1 score improvement of 3.9 on out-of-domain data. Our best performing model (BERT-A) reaches 44-49 F1 across both domains, using no labeled target data. Preliminary experiments reveal that finetuning on 1% labeled data, followed by self-training leads to substantial improvement, reaching 51.5 and 67.2 F1 on literature and news respectively.
We propose a novel take on understanding narratives in social media, focusing on learning ”functional story schemas”, which consist of sets of stereotypical functional structures. We develop an unsupervised pipeline to extract schemas and apply our method to Reddit posts to detect schematic structures that are characteristic of different subreddits. We validate our schemas through human interpretation and evaluate their utility via a text classification task. Our experiments show that extracted schemas capture distinctive structural patterns in different subreddits, improving classification performance of several models by 2.4% on average. We also observe that these schemas serve as lenses that reveal community norms.
Prior work on temporal relation classification has focused extensively on event pairs in the same or adjacent sentences (local), paying scant attention to discourse-level (global) pairs. This restricts the ability of systems to learn temporal links between global pairs, since reliance on local syntactic features suffices to achieve reasonable performance on existing datasets. However, systems should be capable of incorporating cues from document-level structure to assign temporal relations. In this work, we take a first step towards discourse-level temporal ordering by creating TDDiscourse, the first dataset focusing specifically on temporal links between event pairs which are more than one sentence apart. We create TDDiscourse by augmenting TimeBank-Dense, a corpus of English news articles, manually annotating global pairs that cannot be inferred automatically from existing annotations. Our annotations double the number of temporal links in TimeBank-Dense, while possessing several desirable properties such as focusing on long-distance pairs and not being automatically inferable. We adapt and benchmark the performance of three state-of-the-art models on TDDiscourse and observe that existing systems indeed find discourse-level temporal ordering harder.
Word embeddings are now pervasive across NLP subfields as the de-facto method of forming text representataions. In this work, we show that existing embedding models are inadequate at constructing representations that capture salient aspects of mathematical meaning for numbers, which is important for language understanding. Numbers are ubiquitous and frequently appear in text. Inspired by cognitive studies on how humans perceive numbers, we develop an analysis framework to test how well word embeddings capture two essential properties of numbers: magnitude (e.g. 3<4) and numeration (e.g. 3=three). Our experiments reveal that most models capture an approximate notion of magnitude, but are inadequate at capturing numeration. We hope that our observations provide a starting point for the development of methods which better capture numeracy in NLP systems.
Quantitative reasoning is a higher-order reasoning skill that any intelligent natural language understanding system can reasonably be expected to handle. We present EQUATE (Evaluating Quantitative Understanding Aptitude in Textual Entailment), a new framework for quantitative reasoning in textual entailment. We benchmark the performance of 9 published NLI models on EQUATE, and find that on average, state-of-the-art methods do not achieve an absolute improvement over a majority-class baseline, suggesting that they do not implicitly learn to reason with quantities. We establish a new baseline Q-REAS that manipulates quantities symbolically. In comparison to the best performing NLI model, it achieves success on numerical reasoning tests (+24.2 %), but has limited verbal reasoning capabilities (-8.1 %). We hope our evaluation framework will support the development of models of quantitative reasoning in language understanding.
Natural language inference (NLI) is the task of determining if a natural language hypothesis can be inferred from a given premise in a justifiable manner. NLI was proposed as a benchmark task for natural language understanding. Existing models perform well at standard datasets for NLI, achieving impressive results across different genres of text. However, the extent to which these models understand the semantic content of sentences is unclear. In this work, we propose an evaluation methodology consisting of automatically constructed “stress tests” that allow us to examine whether systems have the ability to make real inferential decisions. Our evaluation of six sentence-encoder models on these stress tests reveals strengths and weaknesses of these models with respect to challenging linguistic phenomena, and suggests important directions for future work in this area.
In this paper, we describe our participation in phase B of task 5b of the fifth edition of the annual BioASQ challenge, which includes answering factoid, list, yes-no and summary questions from biomedical data. We describe our techniques with an emphasis on ideal answer generation, where the goal is to produce a relevant, precise, non-redundant, query-oriented summary from multiple relevant documents. We make use of extractive summarization techniques to address this task and experiment with different biomedical ontologies and various algorithms including agglomerative clustering, Maximum Marginal Relevance (MMR) and sentence compression. We propose a novel word embedding based tf-idf similarity metric and a soft positional constraint which improve our system performance. We evaluate our techniques on test batch 4 from the fourth edition of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score of 0.6536.
In this paper, we describe a system for automatic construction of user disease progression timelines from their posts in online support groups using minimal supervision. In recent years, several online support groups have been established which has led to a huge increase in the amount of patient-authored text available. Creating systems which can automatically extract important medical events and create disease progression timelines for users from such text can help in patient health monitoring as well as studying links between medical events and users’ participation in support groups. Prior work in this domain has used manually constructed keyword sets to detect medical events. In this work, our aim is to perform medical event detection using minimal supervision in order to develop a more general timeline construction system. Our system achieves an accuracy of 55.17%, which is 92% of the performance achieved by a supervised baseline system.