TAN-NTM: Topic Attention Networks for Neural Topic Modeling
Supplementary

Madhur Panwar?*, Shashank Shailabh®*, Milan Aggarwal'*, Balaji Krishnamurthy'
Media and Data Science Research Labs, Adobe’
Birla Institute of Technology and Science, Pilani (BITS Pilani), India?
Indian Institute of Technology Kanpur (IIT Kanpur), India®

mdrpanwar@gmail.com, shailabhshashank@gmail.com

1 Further Implementation Details

1.1 Preprocessing

For 20NG dataset, we used its preprocessed
version downloaded from ProdLDA’s (Srivastava
and Sutton, 2017) repository!, whereas AGNews
and YRP datasets were downloaded from this? link.
These two datasets contain train.csv and test.csv
files. The csv files of YRP contain a document
body only, whereas the csv files for AGNews
contain a document title as well as a document
body. For uniformity, we concatenate the title
and body in the csv files of AGNews and keep it
as a single field. The documents from train.csv
and test.csv are then read into train and test
lists which are passed to PREPROCESS function of
Algorithm 1 for preprocessing.

Stepwise working of Algorithm 1 is expained in
the following points:

* Before invoking the PREPROCESS function,
we initialize the data sampler by a fixed seed
so that preprocessing yields the same result
when run multiple times.

* For each dataset, we randomly sample
tr_size documents (as mentioned in Table
1) from the train list in step 2. These val-
ues of tr_size are taken from Table 1 of
W-LDA paper (Nan et al., 2019). Note that
Train in Table 1 of the main paper repre-
sents the number of training documents after
preprocessing. Of the tr_size documents,
some documents may be removed during pre-
processing, therefore # Train may be less than
tr_size.

*equal contribution
fwork done during summer internship at Adobe

'Data link for 20NG dataset
Data link for AGNews and YRP datasets

* In steps 3 through 8, we prune the train
and test documents by invoking the
PRUNE_DOC function from Algorithm 2. First,
we remove the control characters from the doc-
uments viz. ‘\n’, ‘\t’, and ‘\r’ (For YRP, we
additionally remove ‘\\t’, ‘\\n’, and ‘\\r’).
Next, we remove the numeric tokens> from
the documents, convert them to lowercase
and lemmatize each of their tokens using the
NLTK’s (Bird et al., 2009) WordNetLemma-
tizer. Finally, we remove punctuations* and
tokens containing any non-ASCII character.

* In steps 9 through 15, we construct the vocab-
ulary vocab, which is a mapping of each to-
ken to its occurrence count among the pruned
training documents tr_pruned. We only
count a token if it is not an English stopword’
and its length is between 3 and 15 (inclusive).

* Steps 16 through 19 filter the vocab by re-
moving tokens whose total occurrences are
less than num_below or whose occurrence
count per training document is greater than
fr_abv, where the values of num_below
and fr_abv are taken from Table 1. For
YRP, we follow the W-LDA paper (Nan et al.,
2019) and restrict its vocab to only contain
top 20, 000 most occurring tokens.

* Steps 20 through 24 construct the token-to-
index map w2 idx by mapping each token in
vocab to an index starting from 1. Next, we
map the padding token to index O (Step 25).

‘1487, ‘1947, etc. are
‘G47,

3Fully numeric tokens e.g.
removed, whereas partially numeric tokens e.g.
‘DE1080’, etc. are retained.

*Any of the following 32 characters is regarded as a punc-
tuation "#$% &)*+,-./;<=>1@[\]"_" {|} ~

Gensim’s (Rehiifek and Sojka, 2010) list of English stop-
words is used.

mailto:mdrpanwar@gmail.com
mailto:shailabhshashank@gmail.com
https://github.com/akashgit/autoencoding_vi_for_topic_models/tree/master/data/20news_clean
https://drive.google.com/drive/u/0/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M

* The final step in the preprocessing is to en-
code the train and test documents by mapping
each of their tokens to corresponding indices
according to w2 idx. This is done by the EN-
CODE function of Algorithm 2 which is in-
voked in steps 26 and 27.

Algorithm 1 Pseudocode for preprocessing AG-
News and YRP datasets.
1: function PREPROCESS(train, test)
2: train ¢« train.sample(tr_size)
3: tr_pruned < [] > empty list
4: te_pruned ¢ [] > empty list

for document d in train do
tr_pruned.append(PRUNE_DOC(d))

7 for document d in test do
te_pruned.append(PRUNE_DOC(d))

9: vocab < mapping of each token to 0
10: num_doc « len(tr_pruned)
11: for document d in tr_pruned do
12: for token ¢ in d do
13: if t ¢ stopwords and
14: len(t) € [3,15] then
15: vocab[t]+ vocab[t] +1
16: for token ¢t in vocab do
17: if vocab[t] < num_below or
18: vocab[t]/num_doc > fr_abv then
19: vocabl[t].remove(t)
20: 11
21: w2idx < empty map
22: for token t in vocab do
23: w2idx[t]=1
24: i1+—i+1

25: w21dx[0]« PAD

26: trD < ENCODE(tr_pruned, w2idx)
27: teD < ENCODE(te_pruned, w2idx)
28: return trD, teD, w2idx

1.2 Learning Rate Scheduler

As mentioned in section 5.2 of the main paper, we

use a learning rate scheduler while training T-TAN.

Algorithm 2 Pseudocode for pruning the document
and encoding it given a token-to-index mapping.

1: function PRUNE_DOC(doc)

2 doc < rm_control(doc)

3 doc < rm_numeric(doc)

4 doc < lowercase(doc)

5: doc < lemmatize(doc)

6 doc < rm_punctuations(doc)
7 doc < rm_non_ASCII(doc)
8 return doc

9: function ENCODE(doc_list, w2idx)

10: encDocList <[]

11: for document d in doc_1ist do
12: ecDhoc <[]

13: for token t in d do

14: ecDoc.append(w21idx[t])
15: encDocList.append(ecDoc)
16: return encDocList

The rate decay follows the following equation:

\\ train_step J
lrate = init_rate * decay_ratel decoy-steps

This is an exponential staircase function which
enables decrease in learning rate every epoch dur-
ing training. We initialize the learning rate by
init_rate = 0.002 & use decay_rate = 0.96.
train_step is a global counter of training steps &
decay_steps = % is the number of train-
ing steps taken per epoch. Therefore, effectively,
the rate remains constant for all training steps in an
epoch and decreases exponentially as per the above

equation once the epoch completes.

Dataset | tr_size | num.below | fr_abv
AGNews 96000 3 0.7
YRP 448000 20 0.7

Table 1: Parameters used for preprocessing the AG-
News and YRP datasets.

1.3 Regularization

We employ two types of regularization during train-
ing:

* Dropout: We apply dropout (Srivastava et al.,
2014) to z with the rate of Py, = 0.6 before
it is processed by the decoder for reconstruc-
tion.

* Batch Normalization (BN): We apply a BN
(Ioffe and Szegedy, 2015) to the inputs of de-
coder layer and to the inputs of layers being
trained for z;, & 244 52, With € = 0.001 and
decay = 0.999.

2 Evaluation Metrics

Topic models have been evaluated using various
metrics namely perplexity, topic coherence, topic
uniqueness etc. However, due to the absence of
a gold standard for the unsupervised task of topic
modeling, all of that metrics have received criti-
cism by the community. Therefore, a consensus on
the best metric has not been reached so far. Perplex-
ity has been found to be negatively correlated to
topic quality and human judgements (Chang et al.,
2009). This work presents experimental results
which show that in some cases models with higher
perplexity were preferred by human subjects.
Topic Uniqueness (Nan et al., 2019) quantifies
the intersection among topic words globally. How-
ever, it also suffers from drawbacks and often pe-
nalizes a model incorrectly (Hoyle et al., 2020).
Firstly, it does not account for ranking of inter-
sected words in the topics. Secondly, it fails to
distinguish between the following two scenarios:
1) When the intersected words in one topic are all
present in a second topic (signifying strong simi-
larity i.e. these two topics are essentially identical)
and, 2) When the intersected words of one topic are
spread across all the other topics (signifying weak
similarity i.e. the topics are diffused). The first is a
problem related to uniqueness among topics while
second is a problem related to word intrusion in
topics. (Chang et al., 2009) conducted experiments
with human subjects on two tasks: word intrusion
and topic intrusion. Word intrusion measures the
presence of those words (called intruder words)
which disagree with the semantics of the topic.
Topic intrusion measures the presence of those
topics (called intruder topics) which do not rep-
resent the document corpus appropriately. These
are better estimates of human judgement of topic
models in comparison to perplexity and unique-
ness. However, since these metrics rely on human
feedback, they cannot be widely used for unsuper-
vised evaluation. Further, topic uniqueness unfairly
penalizes cases when some words are common be-
tween topics, however other uncommon words in
those topics change the context as well as topic
semantics as also discussed in (Hoyle et al., 2020).

Would a pilot know that one of their crew
is armed?

The Federal Flight Deck Officer page on
Wikipedia says this:

Under the FFDO program, flight crew mem-
bers are authorized to use firearms. A flight
crew member may be a pilot, flight engineer
or navigator assigned to the flight.

To me, it seems like this would be crucial in-
formation for the PIC to know, if their flight
engineer (for example) was armed; but on the
flip-side of this, the engineer might want to
keep that to himself if he’s with a crew he
hasn’t flown with before.

Is there a guideline on whether an FFDO
should inform the crew that he’s armed?

GT: security, crew, ffdo

TAKG: faa regulations, ffdo, flight training,
firearms, far

TAKG + W-TAN: ffdo, crew, flight controls,
crewed spaceflight, security

Do the poisons in “Ode on Melancholy”
have deeper meaning?

In ”Ode on Melancholy”, Keats uses the im-
ages of three poisons in the first stanza: Wolf’s
bane, nightshade, and yew-berries. Are these
poisons simply meant to connote death/suicide,
or might they have a deeper purpose?

GT: poetry, meaning, john keats

TAKG: the keats, meaning, poetry, ode,
melancholy keats

TAKG + W-TAN: poetry, meaning, the keats,
Jjohn keats, greek literature

Table 2: Two randomly selected posts (title in bold)
from StackExchange dataset with ground truth (GT)
and top 5 keyphrases predicted by TAKG with and
without W-TAN, denoted as TAKG + W-TAN &
TAKG respectively. Keyphrases generated with W-
TAN are closer to the ground truth in terms of both
prediction and ranking.

According to the work of (Lau et al., 2014), measur-
ing the normalized pointwise mutual information
(NPMI) between all the word pairs in a set of topics
agrees with human judgements most closely. This
is called the NPMI Topic Coherence in the litera-

ture and is widely used for the evaluation of topic
models. We therefore adopt this metric in our work.
Since the effectiveness of a topic model actually
depends on the topic representations that it extracts
from the documents, we report the performance
of our model on two downstream tasks: document
classification and keyphrase generation (which use
these topic representations) for a better and holistic
evaluation and comparison.

3 Qualitative Analysis
3.1 Key Phrase Predictions

We saw the quantitative improvement in results in
Table 5 of the main paper when we used W-TAN
as the topic model with TAKG. In Table 2, we
display some posts from StackExchange dataset
with ground truth keyphrases and top 5 predictions
by TAKG with and without W-TAN. We observe
that using W-TAN improves keyphrase generation
qualitatively.

The first post in Table 2 inquires if a flight of-
ficer should inform the pilot in command (PIC)
about him being armed or not. For this post, TAKG
alone only predicts one ground truth keyphrase cor-
rectly and misses ‘security’ and ‘crew’. However,
when TAKG is used with W-TAN, it gets all three
ground truth keyphrases, two of which are its top 2
predictions as well.

The second post is inquiring about a possible
deeper meaning of three poisons in a poem by John
Keats. TAKG alone predicts two of the ground
truth keyphrases correctly but assigns them larger
ranks and it misses ‘john keats’. When TAKG is
used with W-TAN, it gets all three ground truth
keyphrases and its top 2 keyphrases are assigned
the exact same rank as they have in the ground truth.
This hints that using W-TAN with TAKG improves
the prediction as well as ranking of the generated
keyphrases compared to using TAKG alone.

References

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan
Boyd-graber, and David Blei. 2009. Reading tea
leaves: How humans interpret topic models. In Ad-
vances in Neural Information Processing Systems,
volume 22, pages 288-296. Curran Associates, Inc.

Alexander Miserlis Hoyle, Pranav Goel, and Philip
Resnik. 2020. Improving Neural Topic Models us-

ing Knowledge Distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1752-1771,
Online. Association for Computational Linguistics.

S. Ioffe and Christian Szegedy. 2015. Batch normaliza-
tion: Accelerating deep network training by reduc-
ing internal covariate shift. ArXiv, abs/1502.03167.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 530-539, Gothenburg, Sweden.
Association for Computational Linguistics.

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xi-
ang. 2019. Topic modeling with Wasserstein autoen-
coders. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 6345-6381, Florence, Italy. Association
for Computational Linguistics.

Radim Rehiifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45-50, Val-
letta, Malta. ELRA.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. arXiv
preprint arXiv:1703.01488.

Nitish Srivastava, Geoffrey E. Hinton, A. Krizhevsky,
Ilya Sutskever, and R. Salakhutdinov. 2014.
Dropout: a simple way to prevent neural net-
works from overfitting. J. Mach. Learn. Res.,
15:1929-1958.

https://proceedings.neurips.cc/paper/2009/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.137
https://doi.org/10.18653/v1/2020.emnlp-main.137
https://doi.org/10.3115/v1/E14-1056
https://doi.org/10.3115/v1/E14-1056
https://doi.org/10.18653/v1/P19-1640
https://doi.org/10.18653/v1/P19-1640

