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Preface

Research focusing on natural language processing (NLP) applications for education has continued to
progress using innovative statistical and rule-based NLP methods, or most commonly, a combination
of the two. NLP-based educational applications continue to develop in order to serve the learning and
assessment needs of students, teachers, schools, and testing organizations, often guided by educational
policy and learner needs.

The practical need for language-analysis capabilities has been further motivated by increased
requirements for state and national assessments, and a growing population of foreign and second
language learners. In the United States, the need for applications for language analysis is
emphasized by the Common Core State Standards Initiative (Standards), now adopted by 46 States:
(http://www.corestandards.org/). The Standards describe what K-12 students should be learning with
regard to Reading, Writing, Speaking, Listening, Language, and Media and Technology, and have
clear alignments with NLP research and potential applications. Motivated by the Common Core State
Standards Initiative, the use of NLP in educational contexts took two major steps forward. First, outside
of the computational linguistics community, the Hewlett Foundation reached out to both the public
and private sectors and sponsored two competitions: one on automated essay scoring (Automated
Student Assessment Prize: ASAP, Phase 1), and a second on short-answer scoring (Phase 2). The
motivation driving these competitions was to engage the larger scientific community to harness the
collective knowledge toward the development of new ideas and methods. In April 2013, a New
York Times article by John Markoff discussed automated essay scoring use by EdX, one of the
two competing Massive Online Educational Course (MOOC) companies. Within the computational
linguistics community, a breakthrough for educational applications is a new Shared Task co-located
with the BEA workshop, NLI-2013, in which the task involves identifying the native language (L.1) of
a writer based solely on a sample of their writing. Independent of the BEA workshop, there were two
additional shared task competitions: the CoNLL Shared Task on Grammatical Error Correction, and a
SemEval Shared Task on Student Response Analysis. NAACL and ACL each hosted other education-
centered workshops, including the Workshop on Using NLP to Improve Text Accessibility at NAACL,
and the 2nd Workshop on Predicting and Improving Text Readability for Target Reader Populations at
ACL. Further, a new book, The Handbook of Automated Essay Evaluation (2013) (Eds., Mark Shermis
and Jill Burstein) reports on the state-of-the-art in the field, and a Special Issue of the International
Journal of Applied Linguistics, Current research in readability and text simplification (forthcoming)
(Eds. Thomas Frangois and Delphine Bernhard) calls for new work. The competitions, the recent
deployment of automated essay grading in MOOC:s, the education-related workshops, and are evidence
of the high visibility of Educational Applications in NLP.

As a community, we continue to improve existing capabilities and to identify and generate innovative
ways to use NLP in applications for writing, reading, speaking, critical thinking, curriculum
development, and assessment. Steady growth in the development of NLP-based applications for
education has prompted an increased number of workshops, typically focusing on one specific subfield.
In this workshop, we present papers from these subfields: tools for automated scoring of text and speech,
dialogue and intelligent tutoring, use of corpora, grammatical error detection, and native language
identification. Consistent with 2012, the workshop made an attempt to focus on contributions that could
be described in core educational problem spaces, including: development of curriculum and assessment
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(e.g., applications that help teachers develop reading materials), delivery of curriculum and assessments
(e.g., applications where the student receives instruction and interacts with the system), and reporting
of assessment outcomes (e.g., automated essay scoring). This workshop is the eighth in a series,
specifically related to “Building NLP Applications for Education”, that began at NAACL/HLT 2003
(Edmonton), and continued at ACL 2005 (Ann Arbor), ACL/HLT 2008 (Columbus), NAACL/HLT
2009 (Boulder), NAACL/HLT 2010 (Los Angeles), ACL/HLT 2011 (Portland), NAACL/HLT 2012
(Montreal), and now, NAACL/HLT 2013 (Atlanta). This year, the workshop is co-located with the NLI-
2013 (Native Language Identification Shared Task) — another indication of how this field is developing.

We received 25 submissions and accepted nine papers as oral presentations and six as poster
presentation plus an oral presentation of the summary report for the NLI Shared Task. All of the papers
appear in these proceedings. Each paper was reviewed by three members of the Program Committee
who were most appropriate for each paper. We continue to have a very strong policy to deal with
conflicts of interest. First, we made a concerted effort to not assign papers to reviewers to evaluate
if the paper had an author from their institution. Second, with respect to the organizing committee,
authors of papers where there was a conflict of interest recused themselves from the discussion.

This workshop offers an opportunity to present and publish work that is highly relevant to NAACL/HLT,
but is also highly specialized, and so this workshop is often a more appropriate venue for such work.
The Poster session offers more breadth in terms of topics related to NLP and education, and maintains
the original concept of a workshop. We believe that the workshop framework designed to introduce
work in progress and new ideas needs to be revived, and we hope that we have achieved this with the
breadth and variety of research accepted for this workshop. The total number of acceptances represents
a 60% acceptance rate across oral and poster presentations.

While the field is growing, we do recognize that there is a core group of institutions and researchers
who work in this area. With a higher acceptance rate, we were able to include papers from a wider
variety of topics and institutions. The papers accepted to this workshop were selected on the basis of
several factors, including the relevance to a core educational problem space, the novelty of the approach
or domain, and the strength of the research. The accepted papers fall under several main themes:

Automatic Writing Assessment Measures: Four papers focus on writing assessment and feedback.
Ostling et al. describe work into automatic scoring of Swedish essays and Andersen et al. describe
a system which provides automatic on English learners’ writing. Vajjala and Loo describe work
into proficiency classification of Estonian language learners, and Madnani et al. describe work into
the automatic scoring of a summarization task designed to measure reading comphrension in young
students.

Assessing Speech: Four papers focus on different methods of assessing spoken the language of different
populations of non-native speakers of English (Xie and Chen; Evanini et al.; Zechner and Wang; Chen).

Grammatical Error Correction: Two papers describe work into the creation of an error-annotated
corpus of learner English (Dahlmeier et al.) and the automatic detection of hyphens in learner English
(Cahill et al.).

Other Learning Assistance Research: Finally, we have several papers on other topics which use NLP
to develop educational applications. Topics include intelligent tutoring (Dzikovska et al.), use of
machine translation metrics to rate student translations (Michaud and McCoy), semantic analysis of
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interactive learner sentences (Levi and Dickinson), dependency annotation in learner writing (Ragheb
and Dickinson) and the use of linguistic error codes for identifying neurodevelopmental disorders
(Morley et al.).

This year, we are excited to host the first Shared Task in Native Language Identification
(http://www.nlisharedtask2013.org/). The task involves automatically predicting the native language
of a English language learner based solely on their essay. 29 teams competed and 24 teams submitted
descriptions of their submitted systems. These papers are found in these proceedings and are presented
as posters in conjunction with the BEA7 poster session. A summary report of the shared task (Tetreault
et al.) is also found in the proceedings.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
attended this workshop. The eighth edition of the BEA workshop is notable one as this is the first
year that the workshop has sponsors. We would like to thank our four sponsors: Appen Butler-Hill,
CTB/McGraw-Hill, Educational Testing Service, and PacificMetrics, whose contributions allowed us
to subsidize students at the workshop dinner, and make workshop t-shirts! In addition, we would like
to thank Joya Tetreault for creating the t-shirt design.

Joel Tetreault, Nuance Communications, Inc.
Jill Burstein, Educational Testing Service
Claudia Leacock, CTB/McGraw-Hill
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The Utility of Manual and Automatic Linguistic Error Codes
for Identifying Neurodevelopmental Disorders*

Eric Morley, Brian Roark and Jan van Santen
Center for Spoken Language Understanding, Oregon Health & Science University

morleye@gmail.com,

Abstract

We investigate the utility of linguistic features
for automatically differentiating between chil-
dren with varying combinations of two po-
tentially comorbid neurodevelopmental disor-
ders: autism spectrum disorder and specific
language impairment. We find that certain
manual codes for linguistic errors are useful
for distinguishing between diagnostic groups.
We investigate the relationship between cod-
ing detail and diagnostic classification perfor-
mance, and find that a simple coding scheme
is of high diagnostic utility. We propose a sim-
ple method to automate the pared down coding
scheme, and find that these automatic codes
are of diagnostic utility.

1 Introduction

In Autism Spectrum Disorders (ASD), language im-
pairments are common, but not universal (American
Psychiatric Association, 2000). Whether these lan-
guage impairments are distinct from those in Spe-
cific Language Impairment (SLI) is an unresolved
issue (Williams et al., 2008; Kjelgaard and Tager-
Flusberg, 2001). Accurate and detailed characteri-
zation of these impairments is important not only for
resolving this issue, but also for diagnostic practice
and remediation.

Language ability is typically assessed with struc-
tured instruments (“tests”) that elicit brief, easy to

"This research was supported in part by NIH NIDCD award
R01DCO012033 and NSF award #0826654. Any opinions, find-
ings, conclusions or recommendations expressed in this publi-
cation are those of the authors and do not reflect the views of
the NIH or NSF. Thanks to Emily Prud’hommeaux for useful
discussion on this topic and help with the data.

roarkbr@gmail.com,

vansant j@ohsu.edu

score, responses to a sequence of items. For exam-
ple, the CELF-4 includes nineteen multi-item sub-
tests with tasks such as object naming, word defini-
tion, reciting the days of the week, or repeating sen-
tences (Semel et al., 2003). Researchers are begin-
ning to discuss the limits of structured instruments in
terms of which language impairments they tap into
and how well they do so, and are advocating the po-
tential benefits of language sample analysis — an-
alyzing natural language samples — to complement
structured assessment, specifically for language as-
sessment in ASD where pragmatic and social com-
munication issues are paramount yet are hard to
assess in a conventional test format (e.g. Tager-
Flusberg et al. 2009). However, language sample
analysis faces two labor-intensive steps: transcrip-
tion and detailed coding of the transcripts.

To illustrate the latter, consider the Systematic
Analysis of Language Transcripts (SALT) (Miller
and Chapman, 1985; Miller et al., 2011), which is
the de-facto standard choice by clinicians looking
to code elicited language samples. SALT comprises
a scheme for coding transcripts of recorded speech,
together with software that tallies these codes, com-
putes scores describing utterance length and error
counts, and compares these scores with normative
samples. SALT codes indicate bound morphemes,
edits (which are referred to in the clinical literature
as ‘mazes’), and several types of errors in transcripts
of natural language, e.g., omitted or inappropriate
words.

Although this has not been formally documented,
our experience with SALT coding has shown that the
codes vary in terms of: 1) difficulty of manual cod-
ing — e.g., relatively subtle pragmatic errors versus
overgeneralization or marking bound morphemes;

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 1-10,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



2) utility for identifying particular disorders; and 3)
difficulty of automating the code. This raises an im-
portant question: Is there a combination of codes
that jointly discriminate well between relevant diag-
nostic groups, and at the same time are either easy
to code manually or can in principle be automated?
This paper explores, first, how well the various man-
ual SALT codes classify certain diagnostic groups;
and, second, whether we can automate manual codes
that are of diagnostic utility. Our goal is limited: it
is not the automation of all SALT codes, but the au-
tomation of those that in combination are of high di-
agnostic utility. Automating all SALT codes is sub-
stantially more challenging; yet, we note that even
when some of these codes do not aid in classify-
ing groups, they nevertheless may be of importance
for developing remediation strategies for individual
children. We are particularly interested in the im-
pact of Autism in addition to language impairments
for the utility of particular SALT codes.

The diagnostic groups are carefully chosen to
be pairwise matched either on language abilities or
on autism symptomatology, thus enabling a pre-
cise, “surgical” determination of the degrees to
which SALT codes reflect language-specific vs.
autism-specific factors. Specifically, the groups in-
clude children with ASD with language impairment
(ALI); ASD with no language impairment (ALN);
SLI alone; and typically developing (TD), which is
strictly defined to exclude any neurodevelopmental
disorder. The TD and ALN groups, as well as the
ALI and SLI groups, are matched on language and
overall cognitive abilities, while the ALN and ALI
groups are matched on autism symptomatology but
not on language and overall cognitive abilities; all
groups are matched on chronological age.

Regarding our algorithmic approach, we note that
automatic detection of relatively subtle errors may
be exceedingly difficult, but perhaps such subtle er-
rors are less critical for diagnosis than more obvi-
ous ones. Most prior work in grammaticality de-
tection in spoken language has focused on special-
ized detectors (e.g., Caines and Buttery 2010; Has-
sanali and Liu 2011), such as mis-use of particular
verb constructions rather than coarser detectors for
the presence of diverse classes of errors. We demon-
strate that these specialized error detectors can break
down when confronted with real world dialogue, and
that in general, the features in these detectors re-
stricts their utility in detecting other sorts of errors.

We implement a detector to automatically extract
coarse SALT codes from an uncoded transcript. This
detector only depends upon part of speech tags, as
opposed to the parse features that are often used in
grammaticality detectors. In most cases, these au-
tomatically extracted codes enable us to distinguish
between diagnostic groups more effectively than do
features that can be extracted trivially from an un-
coded transcript.

As far as we know, researchers have not pre-
viously considered the utility of grammatical er-
ror codes to identify ASD or SLI. Prudhommeaux
and Rouhizadeh (2012), however, found that au-
tomatically extracted pragmatic features are useful
for identifying children with ASD, among children
both with and without SLI. Gabani et al. (2009)
found that features derived from language models
are useful for distinguishing between children with
and without a language impairment, both in mono-
lingual English speakers, and in children who are
bilingual in English and Spanish.

Improving the characterization of a child’s lan-
guage impairments is a prerequisite to developing a
sound plan for language training and education for
that child. This paper presents a step in the direction
of effective automated analysis of linguistic samples
that can provide useful information even in the face
of comorbid disorders such as ASD and SLIL

2 Systematic Analysis of Language
Transcripts

Here we give an overview of what SALT requires of
transcriptions, and of SALT coding. The approach
has been in wide use for nearly 30 years (Miller and
Chapman, 1985), and now also exists as a software
package' providing transcription and coding support
along with tools for aggregating statistics for man-
ual codes over the annotated corpora and comparing
with age norms. The SALT software is not the focus
of this investigation, so we do not discuss it further.

2.1 Basic Transcription

We apply the automated methods to what will be
called basic transcripts. Key for this concept is that,
first, these transcripts do not require linguistic ex-
pertise and thus can be performed by standard tran-
scription services; and, second, that — as we shall

1http ://www.saltsoftware.com/



see — useful features can be automatically computed
from them.

Following the SALT guidelines, a basic transcript
should indicate: the speaker of each utterance, par-
tial words (or stuttering), overlapping speech, unin-
telligible words, and non-speech sounds. It should
be verbatim, regardless of whether a child’s utter-
ance contains neologisms (novel words) or gram-
matical errors (for example ‘I goed’ should be writ-
ten as such).

A somewhat subtle issue is that SALT prescribes
that the basic transcript be broken into communi-
cation units (which in this paper will be synony-
mous with utterance). Communication units are
defined as “a main clause with all its dependent
clauses” (Miller et al., 2011). One reason for defin-
ing utterance boundaries with communication units,
rather than turns or sentences, is that in addition to
this being standard practice in language sample anal-
ysis, doing so does not reward children for making
long, but rather simple statements, nor does it penal-
ize children for being interrupted. To illustrate the
first point, the utterance “I like apples, and bananas,
and pears, and oranges, and grapes.” is one sen-
tence long, but has five communication units (one at
each comma). If the sentence were used as the ba-
sic unit, the utterance would indicate the same level
complexity as the obviously more intricate “for the
past three years we have lived in an apartment”. In
the basic transcript, each communication unit should
be terminated by one of the following punctuation
marks: ‘?” if it is a question, ‘’ if the speaker was
interrupted, ‘>’ if the speaker abandoned the utter-
ance, and ‘. in all other cases. Thus, the above
example would be transcribed as “C: I like apples.
...C: and grapes.”

2.2 Markup

There are three broad categories of SALT codes: in-
dicators of 1) certain bound morphemes, 2) edits
(discussed below), and 3) errors.

Morphology The following inflectional suffixes
must be coded according to the SALT guidelines:
plural -s (/S), possessive -’s (/Z), possessive plural
-s’ (/S/Z), past tense -ed (/ED), 3rd person singular
-s (/3S), progressive -ing (/ING). The following cl-
itics must also be delimited with a ’/’, provided the
resulting root is unmodified in the surface form: n’t,
’t,’d, ’re, ’s, *ve. Since these morphemes are only in-
dicated if the root is unmodified in the surface form,
“won’t” will remain unsegmented because ‘wo’ is
not the root; “can’t” will be segmented “can/’T” and
“don’t” will be segmented “do/N’T”, so as to pre-
serve their respective roots. Nominal or verbal forms
with any of the preceding suffixes or clitics are writ-
ten as the base form with the code appended, for ex-
ample hitting — hit/ING, bases — base/S.

Edits Edits consist of filler words such as ‘like’,
‘um’ and ‘uh’, false starts, and revisions. There may
be multiple edits in a single utterance, as well as
multiple adjacent edits. Edits are indicated by paren-
theses, for example: “(And they like) and she (like)
faint/3S.” Note that in the SALT manual, and the lan-
guage sample analysis literature, edits are referred to
as mazes. We use the term edit here because this is
the more widely used term for this phenomenon in
natural language processing.

Error codes The exact set of error codes used de-
pends upon the clinician’s needs and the errors of
interest. Here we consider several key errors out-
lined in the SALT manual. These error codes and
examples are shown in Table 1. Some of these codes
describe precise classes of errors, for example [EO]
or [OW], but others do not. For example, [EW]
can describe using the wrong verb, tense, preposi-
tion or pronoun (in terms of case, person or gender),
as well as other errors. Note that [EU] (and [EC]) er-
ror codes can occur in grammatical utterances. The
[EU] code marks utterances that are ungrammatical
for reasons not captured by the other error codes, for
example severe problems with word order, or utter-

Table 1: SALT error codes and examples

Code Meaning Example Count in Corpus
[EC]  Inappropriate response  Did you help yourself stop? Mom[EC]. 9

[EO]  Overgeneralization Yeah, cuz I almost saw/ED[EO] one. 229

[EW]  Error word I play/ED of[EW] the cat. 1,456

[EU]  Utterance-level error You can see it very hard because it/’S under my hair[EU]. 532

[EX]  Extraneous word Would you like to be[EX] fall down? 322

[OM]  Omitted morpheme The cat eat{OM] fish. 881

[OW]  Omitted word He [OW] going now. 770



ances which are simply nonsensical, as in Table 1.

3 Evaluation of Manual Codes

In this section we use features extracted from SALT-
coded transcripts for classification. We consider two
different types of features: baseline features, which
are easily derived from a basic transcript; and fea-
tures derived from SALT codes. We investigate
these features to determine which SALT codes are
most worth automating for classification.

3.1 Data

Our data is a collection of 144 transcripts of the
Autism Diagnostic Observation Schedule (ADOS),
which is a semi-structured task that includes an
examiner and a child (Lord et al., 2002). Semi-
structured means that the examiner carries out a
sequence of rigorously specified activities, but her
prompts and questions are not scripted verbatim for
all of them. Detailed guidelines exist for scoring
the ADOS, but these are not considered in the cur-
rent paper. All transcripts have been manually coded
with SALT codes, described in Table 1.

Subjects ranged in age between 4 and 8 years and
were required to be intelligible, to have a full-scale
IQ of greater than 70, and to have a mean length of
utterance (MLU) of at least 3. Diagnoses of ASD
and of SLI followed standard procedures, and were
based on clinical consensus in accordance to diag-
nostic criteria outlined in the DSM-IV (American
Psychiatric Association, 2000). Furthermore, ASD
diagnosis required ADOS and Social Communica-
tion Questionnaire scores (SCQ) (Berument et al.,
1999) to meet conventional thresholds. Diagnosis
of SLI required a CELF Core Language Score of at
least 1 standard deviation below the mean, in addi-
tion to exclusion of ASD.

Children were partitioned into pairs of groups
matched on certain key measures. Table 2 shows
these pairs and what they were matched on. The
individuals were selected from the initial pool of
all participants using the algorithm proposed by van
Santen et al. (2010), in which, for a given pair of
groups, children are iteratively removed from each
group until there is no significant difference (at p <
0.02) on any measure on which we want the pair to
be matched. We combined some groups into com-
posite groups: ASD (ALI and ALN), nASD (SLI
and TD), LN (‘language normal’: ALN and TD),
and LI (‘language impaired’: ALI and SLI).

Group 1 Group 2
Group N | Group N | Matched on

ALl 25| ALN 21 | Age, ADOS, SCQ
ALl 24| SLI 19 | Age, NVIQ, VIQ
ALN 25 TD 27 | Age, NVIQ, VIQ
ASD 48 | nASD 61 | Age

LN 61 LI 39 | Age

SLI 15 TD 38 | Age

Table 2: Matched measures for paired groups (ADOS =
ADOS score, NVIQ = non-verbal 1Q, VIQ = verbal IQ)

3.2 Features

The term “feature” will be used to refer to instances
of various classes of SALT codes as well as to in-
stances of other events that can be trivially extracted
from the basic transcripts but do not involve SALT
codes (e.g, the ratio of ‘uh’ to ‘um’). We distinguish
between five levels of features, enumerated in Table
3, that vary in the number and complexity of codes
required. This ranges from the baseline features that
require no manual codes to SALT-5 features that re-
quire full SALT coding. We consider two normal-
ized variants of each feature: one normalized by the
number of utterances spoken by the child, and the
other normalized by the number of words spoken
by the child (except for TKCT). The ratios OCRAT
and UMUHRAT are never normalized. Each feature
level includes all features on lower levels. Finally,
to make our investigation into feature combinations
more tractable, we do not consider combining two
different normalizations of the same feature.

3.3 Classification

We perform six classification tasks in our investi-
gation, according to the paired groups in Table 2:
ALI/ALN; ALI/SLI; ALN/TD; ASD/nASD; LN/LI;
and SLI/TD. We extract various features from the
ADOS transcripts, and then classify the children in
a leave-pair-out (LPO) schema (Cortes et al., 2007)
using the scikit logistic regression classifier with de-
fault parameters (Pedregosa et al., 2011). For LPO
analysis, we iterate over all possible pairs that con-
tain one positive and one negative instance (i.e. chil-
dren with different diagnoses), training on all other
instances, and testing on that pair. We count a trial
as a success if the classifier assigns a higher proba-
bility of being positive to the positive instance than
to the negative instance. We then divide the num-
ber of successes by the number of pairs to get an
unbiased estimate of the area under the receiver op-
erating curve (AUC) (Airola et al., 2011). AUC is



Group Feature Description
Baseline CEOLP # of times examiner speaks while child is talking
ECOLP # of times child speaks while examiner is talking
INcCT Incomplete word count
OCRAT Ratio of open- to closed-class words
TkCT Token count
TpCT Type count
UMUHRAT Ratio of ‘uh’ to ‘um’
UINTCT Unintelligible word count
SALT-1  All baseline features +
MpCT Morpheme count
EDpITCT Edit count
SALT-2  All SALT-1 features +
NERRUTT Number of utterances with any SALT error codes
SALT-3  All SALT-2 features +
ERRCT Count of SALT error codes
SALT-4  All SALT-3 features +
UTLERRCT  Count of utterance level errors (EC / EU)
WDLERRCT Count of word level errors (all other error codes)
SALT-5  All SALT-4 features +
XCT Count of individual error codes (X=EC, EO, ...; see Table 1)

Table 3: Features by Level

the probability that the classifier will assign a higher
score to a randomly chosen positive example than to
a randomly chosen negative example.

3.4 Determining Relevant Features

We use a t-test based criterion as a simple way to de-
termine which features to investigate for each clas-
sification task. For a given classification task, we
perform a t-test for independent samples on each
feature under both normalization schemes (if ap-
propriate). We retain a feature for investigation if
that feature is significantly different between the two
groups at the o = 0.10 level. If a particular feature
varies significantly between groups under both nor-
malization schemes, we retain the version that has
the larger T-statistic. For the sake of brevity, we
do not report all of the features that varied between
groups here, but this data is available upon request
from the authors.

3.5 [Initial Feature Ablation

We perform feature ablation to see which features
are most useful for performing each classification
task. Figure 1 shows the maximum performance (in
terms of AUC) over all subsets of features at each
feature level (on the x-axis) on each of the six di-
agnostic classification tasks. Missing values for a
particular level of features for any comparison indi-
cate that no features in that level that passed the t-test
based criterion for the two groups being compared.

Figure 1 illustrates two important points. First,
classification difficulty depends heavily on the pair
that is being compared. For example, the AUC
for ALI/SLI is at most 0.723 (SALT-5), while the
AUC for SLI/TD reaches 0.982 (SALT-5). This is
not surprising, as some pairs, most notably SLI/TD,
differ widely in coarse measures of language abil-
ity (such as non-verbal 1Q), while other pairs, in-
cluding ALI/SLI, do not. Second, in many of the
tasks, SALT-derived features are of high utility, but
the biggest gain in classification performance comes
with SALT-2, which is a count of the number of
sentences containing any SALT error code. In fact,
for all but one classification task (ASD/nASD), the
AUC achieved with SALT-2 is at least 96% of the
maximum AUC. Furthermore, the best feature set
using SALT-2 features for most of these tasks is ei-
ther the NERRUTT feature alone, or in the case of
ALI/SLI, NERRUTT and TPCT. These results lead
us to conclude that the most important SALT-derived
feature to code is NERRUTT.

Perhaps surprisingly, Figure 1 also shows that for
ALN/TD and SLI/TD, performance at SALT-1 is
lower than the baseline. There are two reasons for
this, which we explain in turn: 1) the SALT-1 fea-
ture set must include a feature that is less useful than
those in the optimal baseline feature set, and 2) the
classifier will not ignore this feature. MPCT must be
included in SALT-1 for both pairs, because the only
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Figure 1: Maximum classification performance (AUC) at different feature levels (BIn=Baseline, S-N=SALT-N)

other SALT-1 feature, EDITCT, does not vary signif-
icantly between either ALN/TD or SLI/TD. Further-
more, MPCT is highly correlated with TKCT, yet
TKCT is not in the best baseline feature set for ei-
ther of these pairs. Therefore, the SALT-1 feature
set is required to include a feature that is less useful
than the most useful ones in the baseline set, which
results in lower performance. Once MPCT is in-
cluded in the SALT-1 feature set, the logistic regres-
sion classifier will not ignore it by assigning it a zero
coefficient. This is because MPCT distinguishes be-
tween groups, and because the classifier is trained
at each round of LPO classification to maximize the
likelihood of the training data, rather than the AUC
estimate provided by LPO classification.

3.6 Counting Specific Error Codes

The single feature in SALT-2, NERRUTT, counts
how many utterances spoken by the child contain at
least one SALT error code. Some of these heteroge-
nous errors, for example overgeneralization errors
([EQ]), should be straightforward to identify auto-
matically. Automatically identifying others, for ex-
ample utterances that are inappropriate in context
([EC]), would be more difficult. Therefore, before
automating the extraction of NERRUTT, we should
see which errors most need to be identified, and
which can safely be ignored. To do this, we repeat
our LPO classification procedure on various tasks
using SALT-2 features.

We perform the following procedure to identify
the most diagnostically informative errors: for each
subset s of SALT error codes, 1) compute the fea-
ture NERRUTTSUBSET by counting the number of
utterances that contain any of the errors in s; then 2)
perform the LPO diagnostic classification task using

NERRUTTSUBSET as the only feature. The results
of this experiment are in Table 4. The ‘% Max’ col-
umn shows classification performance when a par-
ticular subset of error codes were counted, relative
to the maximum performance yielded by any subset
of error codes for that particular task. We exclude
the ALN/TD and ASD/nASD tasks from this exper-
iment because NERRUTT does not improve perfor-
mance on these tasks. This is perhaps unsurprising,
because SALT codes were designed to be diagnostic
of SLI, not ASD.

We find that in all tasks, ignoring certain error
codes raises performance. These results also show
that it is not necessary, and indeed not ideal, to iden-
tify utterances containing any SALT code. Identi-
fying utterances that contain any of the following
three codes is sufficient to achieve at least 97% of
the maximum AUC enabled by counting any sub-
set of SALT codes: [EW], [OM], [OW]. For clarity,
NERRUTTMOD is the count of utterances that con-
tain any of those three SALT codes.

Table 4: AUC from Counting Subsets of Errors

Classification  Errors Counted AUC % Max
ALI/ALN EW, OM 0.762 100
EW, OM, OW  0.739 97
all 0.724 93
ALI/SLI EW, OM 0.715 100
EW, OM, OW  0.704 98
all 0.676 95
LN/LI EW,OM, OW  0.901 100
all 0.881 98
SLI/TD OM, OW 0.984 100
EW, OM, OW  0.970 99
all 0.951 97



3.7 Robustness of NERRUTTMOD feature to
noise: a simulation experiment

We will consider two general ways of automatically
extractingNERRUTTMOD. The first way is to build
a detector to identify utterances that contain at least
one relevant error. The second way is to make de-
tectors for the each relevant error, then combine the
output of these detectors. It is unlikely that any error
detector will perform perfectly. Prior to investiga-
tion of automation strategies, we would like to get an
idea of how much such errors will affect diagnostic
classification performance. To this end, we investi-
gate how well we can perform the diagnostic classi-
fication tasks when noise is deliberately introduced
into the NERRUTTMOD values via simulation.

We consider two scenarios. In the first, we as-
sume a single error detector will be used to extract
NERRUTTMOD. We take each manually coded ut-
terance, then randomly change whether or not that
sentence is counted as having an error to simulate
different precision and recall levels of the automated
NERRUTTMOD extractor. We repeat this procedure
100 times for each classification task, and then ex-
amine the mean AUC over all trials. In the sec-
ond scenario, we assume a detector for each error
code that counts a sentence as having an error any
time one of the detectors fires. We randomly cor-
rupt the detection of each error code considered in
NERRUTTMOD in turn to simulate different preci-
sion and recall levels of each individual error detec-
tor. We assume perfect detection of all errors not
being randomly corrupted. Again, we repeat this
procedure 100 times for each classification task, and
consider the mean AUC over all trials.

In both experiments, and in all classification tasks,
we find that the NERRUTTMOD feature is ex-
tremely robust to noise. For example, finding the
NERRUTTMOD feature with a single detector with
a precision/recall of 0.1/0.3 enables SLI/TD clas-
sification with an average AUC of 0.975, as com-
pared to the maximum AUC of 0.984, enabled by
a perfect detector. When we use a cascaded de-
tector to corrupt each of the two errors counted in
NERRUTTMOD for classifying SLI/TD, so long as
one error is detected perfectly, the other error only
needs to be detected with precision and recall of 0.1
to enable a classification AUC within 0.02 of the
maximum.

The extreme robustness of this feature may appear

surprising, but it is easily explained by the data. The
mean value of NERRUTTMOD for the SLI group
is 7.8 times the mean value of this feature for the
TD group. So long as there is a correlation between
the true value of NERRUTTMOD and the estimated
value, as we have assumed in this experiment, then
the estimated value is bound to be of utility in clas-
sification. This bodes well for the utility of automa-
tion, even for a difficult task of discovering some of
the relatively subtle errors coded in SALT.

4 Automatic Feature Extraction
4.1 Evaluating Hassanali and Liu’s System

Hassanali and Liu developed two grammaticality de-
tectors that they used to identify ungrammatical ut-
terances in transcriptions of speech from children
both with and without language impairments (Has-
sanali and Liu, 2011). They tested their grammati-
cality detectors on the Paradise corpus, which con-
sists of conversations with children elicited during
an investigation of ofitis media, a hearing disor-
der. They present both a rule-based and a statis-
tical grammaticality detector. Both detectors con-
sist of sub-detectors for the errors shown in Table
5. The rule-based and statistical detectors perform
well, with the statistical detector outperforming the
rule-based one (F1=0.967 vs. 0.929). The statistical
detector, however, requires each error identified by
any of the sub-detectors to be manually identified in
the training data.

We reimplement both the rule based and statis-
tical detectors proposed by Hassanali and Liu, and
apply it to our data, with three modifications. The
first two are minor: 1) we substitute the Charniak-
Johnson reranking parser (2005) for Charniak’s
original parser (Charniak, 2000), and 2) we use the
scikit multinomial naive bayes classifier (Pedregosa
et al., 2011) instead of the one in WEKA (Hall et al.,
2009). The third difference is that we use these de-
tectors to identify SALT error codes rather than the
errors these classifiers were originally built to detect.
The mapping of the original errors to SALT error
codes is given in Table 5. To clarify, if we are train-
ing the ‘Missing Verb’ detector, then any utterance
with an [OW] code is taken to be a positive exam-
ple. This issue does not present itself with the rule-
based detector because it is not trained. Note that the
two verb agreement features may correspond to ei-
ther [EW] or [OM] SALT codes. For example, ‘you
does’ would be [EW] because of the otiose 3"¢ per-



Error SALT code
Misuse of -ing participle [EW]
Missing copulae [OW]
Missing verb [OW]
Subject-auxilliary agreement [EW]
Subject-verb agreement [EW]/[OM]
Missing infinitive ‘to’ [OW]

Table 5: Error detectors proposed by Hassanali and Liu

son singular suffix, while ‘he do’ would be an [OM]
because it is missing that same suffix.

Hassanali and Liu’s error detectors perform
poorly on our data. Table 6 reports the performance
of their detectors detecting utterances with various
error codes. Five of the six statistical error detec-
tors that Hassanali and Liu proposed are unable to
identify any of the errors in our data. The‘misuse
of -ing participle’ detector, however, is an excep-
tion, and its performance detecting the analogous
error code [EW], using 10-fold cross validation is,
shown in Table 6. To detect the two pairs of er-
ror codes, [EW][OM] and [OM][OW], and all three
relevant error codes ([EW][OM][OW]), we use the
appropriate rule based detectors. For example, to
detect utterances with either [EW] or [OM] errors,
we pool the detectors for the analogous error codes:
‘misuse of -ing participle’, ‘subject-auxilliary agree-
ment’, and ‘subject-verb agreement’.

There are three factors that may explain the poor
performance observed with most of Hassanali and
Liu’s error detectors when used with our data. The
first is that the three SALT codes we try to detect
([EW], [OM], and [OW]) capture a wider variety of
errors than the six in Hassanali and Liu’s system.
This could account for the low recall. Second, there
are many utterances in our data that Hassanali and
Liu’s system would label an error, but which are not
marked with any SALT error codes. For example, if
the examiner asks the child what she is doing, ‘eat-
ing spaghetti’ is a faultless response, even though it
is missing both the subject and auxiliary verb. Such
utterances may account for the low precision. Fi-
nally, most of Hassanali and Liu’s sub-detectors de-
pend upon features describing the presence or ab-
sence of specific structures in the parses of the input.
The exception to this is the statistical ‘misuse of -ing
participle’ detector, which uses part of speech (POS)
tag bigrams and skip bigrams as features. It should
come as no surprise then that the ‘misuse of -ing par-
ticiple’ is the most robust of these detectors. Indeed,

Codes
System Detected P R F1
Hassanali | [EW]T 0.074 0.218 0.110
& Liu [EW][OM]* 0.049 0.277 0.083
[OM][OW]* 0.028 0.191 0.049
All three* 0.066 0.354 0.111
POS-tag | [EW] 0.074 0.218 0.110
feature- [OM] 0.070 0.191 0.103
based [OW] 0.064 0.210 0.099
classifier | [EW][OM] 0.102  0.269 0.148
[OM][OW]  0.102 0.269 0.148
All three 0.127 0.308 0.180

Table 6: Performance on automatic detection of utter-
ances with certain error codes using Hassanali and Liu’s
detectors, and general POS-tag-feature-based classifier.

t = ‘misuse of -ing participle’, statistical; * = rule-based

in what follows, we make use of general POS-tag
features (tag n-gram and skip n-grams) as they do in
this detector, for a general purpose detector not tar-
geted specifically at this particular construction, but
rather to detect the presence of arbitrary given sets
of error tags.

4.2 Automatic SALT error code detection

We compare three types of automatic error code de-
tectors: 1) individual error code detectors; 2) pair
detectors, each of which detects a pair of error codes
included in NERRUTTMOD, following Table 4; and
3) a generic detector that identifies any utterance
containing any of the following SALT codes: [EW],
[OM], or [OW]. We investigate four different fea-
tures, all of which are easily derived from the basic
transcript: bigrams and skip bigrams of words, and
POS tags. We use POS tags extracted from the out-
put of the Charniak-Johnson reranking parser (2005)
(also used in our reimplementation of Hassanali and
Liu’s detectors) for simplicity. We use the Bernoulli
Naive Bayes classifier in scikit with the default set-
tings (Pedregosa et al., 2011).

We find that the word features do not aid clas-
sification in any condition, and that using both bi-
grams and skip bigrams of POS tags improves on
using either alone. We report the performance of
the three types of error detectors in Table 6. These
results are from 10-fold cross-validation using POS
tag bigrams and skip bigrams as features. Note that
the general POS-tag-feature-based classifier uses the
same features as Hassanali and Liu’s statistical ‘mis-
use of -ing participle’ detector, which is why the
performance for detecting [EW] error codes alone



Manual features Automatic extraction
Baseline | SALT-2 SALT-2 features

Baseline # | Optimized 0
Diagnoses | AUC AUC 6 | AUC 0 AUC
ALI/ALN 0.6197 0.723 | 0.5 ] 0.611 | 0.94 | 0.676
ALI/SLI 0.562 0.686 | 0.5 | 0.632 | 0.99 | 0.671
LN/LI 0.755 0.881 0.5 | 0.801 | 0.50 | 0.801
SLI/TD 0.840 0.951 0.5 | 0.805 | 0.99 | 0.840

T SALT-1; no significantly different baseline features

Table 7: Diagnostic classification AUC using automatically extracted NERRUTTMOD

is identical between the two systems.

The generic error detector yields higher perfor-
mance than either the individual or pair error detec-
tors. Coding training data for the generic detector is
simpler than doing so for the others because it only
involves a single round of binary coding.

4.3 Diagnostic Classification

We repeat the LPO diagnostic classification tasks
using the automatically extracted NERRUTTMOD
feature. We recompute NERRUTTMOD for each
speaker at each iteration, training on all data except
for the two speakers in the test pair, and the speaker
whose NERRUTTMOD feature we are predicting.
The results from this task are shown in Table 7.

As can be seen in Table 7, diagnostic classifica-
tion performance using the automatically extracted
the NERRUTTMOD feature is markedly lower than
when we extracted this feature from manual codes.
However, raising the probability threshold 6 at
which utterances are counted as containing an er-
ror from its default value of 0.5, improves diagnos-
tic classification performance for all but one pair
(LN/LI). This is because increasing the probability
threshold at which we count an utterance as hav-
ing an error improves in NERRUTTMOD detection.
For example, in the ALI/SLI group, using the de-
fault & = 0.5, and a leave-one-out scenario, we can
automatically extract NERRUTTMOD with a preci-
sion/recall score of 0.19/0.47. When we increase 6
to 0.99, the precision and recall become 0.23/0.24.
Even though there is a massive drop in recall, the
improvement in precision is able to boost diagnostic
classification performance.

In all but one pair (SLI/TD), the automati-
cally extracted NERRUTTMOD feature improves
classification over the baseline, even though the
NERRUTTMOD extractor performs poorly in terms
of intrinsic evaluation, with an F1 score of 0.180.
These results are in line with the experiments per-

forming diagnostic classification with an artificially
noisy NERRUTTMOD feature (see Section 3.7).
These results also demonstrate that the automati-
cally extracted values of NERRUTTMOD are suffi-
ciently correlated with the true values of this feature
to be of some diagnostic utility.

5 Conclusions

We have found that the SALT codes provide use-
ful information for distinguishing between certain
diagnostic groups, but not all of them. Specifi-
cally, and not surprisingly given SALT’s focus on
language disorders and not generally on atypical
language use characteristic of ASD, adding SALT-
derived features to baseline features added little
to ASD/nASD, ALI/SLI, or ALN/TD classifica-
tion accuracy, but added substantially to SLI/TD,
ALI/ALN, and LN/LI classification accuracy. Fur-
thermore, we found that a simplified coding schema
is almost as useful as the complete one for differ-
entiating between these groups. Finally, we have
proposed a simple method to automatically extract
a variant of the most useful SALT-derived feature,
NERRUTTMOD, which is a count of sentences that
contain any of three types of errors (omitted mor-
phemes or words, and generic word-level errors).
Although this feature’s utility degrades when ex-
tracted automatically, it still has considerable dis-
criminative value.

In future work, we will investigate the util-
ity of more sophisticated features for extracting
NERRUTTMOD and other SALT-derived features.
We will also investigate the utility of other linguistic
features, for example parse structure, for the diag-
nostic classification task. Finally, we will also con-
sider whether we can perform the diagnostic classi-
fication task more effectively using cascaded binary
classifiers (for example language impaired vs. lan-
guage normal), as opposed to having a classifier for
every diagnostic pair.



References

Antti  Airola, Tapio Pahikkala, Willem Waegeman,
Bernard De Baets, and Tapio Salakoski. 2011. An ex-
perimental comparison of cross-validation techniques
for estimating the area under the roc curve. Computa-
tional Statistics & Data Analysis, 55(4):1828—-1844.

American Psychiatric Association. 2000. DSM-IV-TR:
Diagnostic and Statistical Manual of Mental Disor-
ders. American Psychiatric Publishing, Washington,
DC, 4th edition.

Sibel Kazak Berument, Michael Rutter, Catherine Lord,
Andrew Pickles, and Anthony Bailey. 1999. Autism
screening questionnaire: diagnostic validity.  The
British Journal of Psychiatry, 175(5):444—-451.

Andrew Caines and Paula Buttery. 2010. You talking to
me?: A predictive model for zero auxiliary construc-
tions. In Proceedings of the 2010 Workshop on NLP
and Linguistics: Finding the Common Ground, pages
43-51. Association for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, pages 173—
180. Association for Computational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the Ist North American
chapter of the Association for Computational Linguis-
tics conference, pages 132—-139. Morgan Kaufmann
Publishers Inc.

Corinna Cortes, Mehryar Mohri, and Ashish Rastogi.
2007. An alternative ranking problem for search en-
gines. In Proceedings of WEA-2007, LNCS 4525,
pages 1-21. Springer-Verlag.

Keyur Gabani, Melissa Sherman, Thamar Solorio, Yang
Liu, Lisa M Bedore, and Elizabeth D Pena. 2009.
A corpus-based approach for the prediction of lan-
guage impairment in monolingual english and spanish-
english bilingual children. In Proceedings of Human
Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 46-55. Association
for Computational Linguistics.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and L.H. Witten. 2009. The weka data min-
ing software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10-18.

K. Hassanali and Y. Liu. 2011. Measuring language de-
velopment in early childhood education: a case study
of grammar checking in child language transcripts. In
Proceedings of the 6th Workshop on Innovative Use
of NLP for Building Educational Applications, pages
87-95. Association for Computational Linguistics.

10

Margaret M Kjelgaard and Helen Tager-Flusberg. 2001.
An investigation of language impairment in autism:
Implications for genetic subgroups. Language and
cognitive processes, 16(2-3):287-308.

Catherine Lord, Michael Rutter, PC DilLavore, and Susan
Risi. 2002. Autism diagnostic observation schedule:
ADOS. Western Psychological Services.

J. Miller and R. Chapman. 1985. Systematic analysis of
language transcripts. Madison, WI: Language Analy-
sis Laboratory.

Jon F. Miller, Karen Andriacchi, and Ann Nockerts.
2011. Assessing language production using SALT soft-
ware: A Clinician’s Guide to Language Sample Anal-
ysis. SALT Software, LLC.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-—
2830.

Emily Prudhommeaux and Masoud Rouhizadeh. 2012.
Automatic detection of pragmatic deficits in children
with autism. In Proceedings of the 3rd Workshop on
Child, Computer and Interaction (WOCCI 2012).

Eleanor Messing Semel, Elisabeth Hemmersam Wiig,
and Wayne Secord. 2003. Clinical evaluation of lan-
guage fundamentals. The Psychological Corporation,
A Harcourt Assessment Company, Toronto, Canada,
fourth edition.

Helen Tager-Flusberg, Sally Rogers, Judith Cooper, Re-
becca Landa, Catherine Lord, Rhea Paul, Mabel Rice,
Carol Stoel-Gammon, Amy Wetherby, and Paul Yoder.
2009. Defining spoken language benchmarks and se-
lecting measures of expressive language development
for young children with autism spectrum disorders.
Journal of Speech, Language and Hearing Research,
52(3):643.

Jan PH van Santen, Emily T Prud’hommeaux, Lois M
Black, and Margaret Mitchell. 2010. Computational
prosodic markers for autism. Autism, 14(3):215-236.

David Williams, Nicola Botting, and Jill Boucher. 2008.
Language in autism and specific language impair-
ment: Where are the links? Psychological Bulletin,
134(6):944.



Shallow Semantic Analysis of Interactive Learner Sentences

Levi King
Indiana University

Bloomington, IN USA
leviking@indiana.edu

Abstract

Focusing on applications for analyzing learner
language which evaluate semantic appropri-
ateness and accuracy, we collect data from a
task which models some aspects of interac-
tion, namely a picture description task (PDT).
We parse responses to the PDT into depen-
dency graphs with an an off-the-shelf parser,
then use a decision tree to classify sentences
into syntactic types and extract the logical sub-
ject, verb, and object, finding 92% accuracy in
such extraction. The specific goal in this paper
is to examine the challenges involved in ex-
tracting these simple semantic representations
from interactive learner sentences.

1 Motivation

While there is much current work on analyzing
learner language, it usually focuses on grammati-
cal error detection and correction (e.g., Dale et al.,
2012) and less on semantic analysis. At the
same time, Intelligent Computer-Assisted Language
Learning (ICALL) and Intelligent Language Tutor-
ing (ILT) systems (e.g., Heift and Schulze, 2007;
Meurers, 2012) also tend to focus more on gram-
matical feedback. An exception to this rule is Herr
Komissar, an ILT for German learners that includes
rather robust content analysis and sentence genera-
tion (DeSmedt, 1995), but this involves a great deal
of hand-built tools and does not connect to modern
NLP. Some work addresses content assessment for
short answer tasks (Meurers et al., 2011), but this is
still far from naturalistic, more conversational inter-
actions (though, see Petersen, 2010).
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Our overarching goal is to facilitate ILTs and lan-
guage assessment tools that maximize free interac-
tion, building as much as possible from existing
NLP resources. While that goal is in the distant
future, the more immediate goal in this paper is
to pinpoint the precise challenges which interactive
learner sentences present to constructing semantic
analyses, even when greatly constrained. We ap-
proximate this by collecting data from a task which
models some aspects of interaction, namely a picture
description task (PDT), parsing it with an off-the-
shelf parser, extracting semantic forms, and noting
the challenges throughout.

The focus towards interaction is in accord with
contemporary theory and research in Second Lan-
guage Acquisition (SLA) and best practices in sec-
ond language instruction, which emphasize the lim-
iting of explicit grammar instruction and feedback in
favor of an approach that subtly integrates the teach-
ing of form with conversation and task-based learn-
ing (Celce-Murcia, 1991, 2002; Larsen-Freeman,
2002). Indeed, Ellis (2006) states, “a traditional ap-
proach to teaching grammar based on explicit expla-
nations and drill-like practice is unlikely to result in
the acquisition of the implicit knowledge needed for
fluent and accurate communication.” For our pur-
poses, this means shifting the primary task of an
ICALL application from analyzing grammar to eval-
uating semantic appropriateness and accuracy.

The data for error detection work is ideal for de-
veloping systems which provide feedback on essays,
but not necessarily for more interactive communica-
tion. Thus, our first step is to collect data similar to
what we envision processing in something like an

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 11-21,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



ILT game, data which—as far as we know—does
not exist. While we desire relatively free produc-
tion, there are still constraints; for games, for exam-
ple, this comes in the form of contextual knowledge
(pictures, rules, previous interactions). To get a han-
dle on variability under a set of known constraints
and to systematically monitor deviations from tar-
get meanings, we select a PDT as a constrained task
that still promotes interactive communication. Col-
lecting and analyzing this data is our first major con-
tribution, as described in section 3.

Once we have the data, we can begin to extract se-
mantic forms, and our second major contribution is
to outline successes and pitfalls in obtaining shal-
low semantic forms in interactive learner data, as
described in section 4, working from existing tools.
Although we observe a lot of grammatical variation,
we will demonstrate in section 5 how careful se-
lection of output representations (e.g., the treatment
of prepositions) from an off-the-shelf parser and a
handful of syntax-to-semantics rules allow us to de-
rive accurate semantic forms for most types of tran-
sitive verb constructions in our data. At the same
time, we will discuss the difficulties in defining a
true gold standard of meanings for such a task. This
work paves the way for increasing the range of con-
structions and further exploring the space between
free and constrained productions (see also the dis-
cussion in Amaral and Meurers, 2011).

2 Related Work

In terms of our overarching goals of developing
an interactive ILT, a number of systems exist (e.g.,
TAGARELA (Amaral et al., 2011), e-Tutor (Heift
and Nicholson, 2001)), but few focus on matching
semantic forms. Herr Komissar (DeSmedt (1995))
is one counter-example; in this game, learners take
on the role of a detective tasked with interviewing
suspects and witnesses. The system relies largely on
a custom-built database of verb classes and related
lexical items. Likewise, Petersen (2010) designed
a system to provide feedback on questions in En-
glish, extracting meanings from the Collins parser
(Collins, 1999). Our work is is in the spirit of his,
though our starting point is to collect data of the type
of task we aim to analyze, thereby pinpointing how
one should begin to build a system.
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The basic semantic analysis in this paper paral-
lels work on content assessment (e.g., ETS’s c-rater
system (Leacock and Chodorow, 2003)). Different
from our task, these systems are mostly focused on
essay and short answer scoring, though many fo-
cus on semantic analysis under restricted conditions.
As one example, Meurers et al. (2011) evaluate En-
glish language learners’ short answers to reading
comprehension questions, constrained by the topic
at hand. Their approach performs multiple levels of
annotation on the reading prompt, including depen-
dency parsing and lexical analysis from WordNet
(Fellbaum, 1998), then attempts to align elements of
the sentence with those of the (similarly annotated)
reading prompt, the question, and target answers to
determine whether a response is adequate or what it
might be missing. Our scenario is based on images,
not text, but our future processing will most likely
need to include similar elements, e.g., determining
lexical relations from WordNet.

3 Data Collection

The data involved in this study shares much in com-
mon with other investigations into semantic anal-
ysis of descriptions of images and video, such
as the Microsoft Research Video Description Cor-
pus (MSRvid; Chen and Dolan (2011)) and the
SemEval-2012 Semantic Textual Similarity (STS)
task utilizing MSRvid as training data for assigning
similarity scores to pairs of sentences (Agirre et al.,
2012). However, because our approach requires
both native speaker (NS) and non-native speaker
(NNS) responses and necessitates constraining both
the form and content of responses, we assembled
our own small corpus of NS and NNS responses to
a PDT. Research in SLA often relies on the ability
of task design to induce particular linguistic behav-
ior (Skehan et al., 1998), and the PDT should in-
duce more interactive behavior. Moreover, the use
of the PDT as a reliable language research tool is
well-established in areas of study ranging from SLA
to Alzheimer’s disease (Ellis, 2000; Forbes-McKay
and Venneri, 2005).

The NNSs were intermediate and upper-level
adult English learners in an intensive English as
a Second Language program at Indiana University.
We rely on visual stimuli here for a number of rea-



sons. Firstly, computer games tend to be highly
visual, so collecting responses to visual prompts is
in keeping with the nature of our desired ILT. Sec-
ondly, by using images, the information the response
should contain is limited to the information con-
tained in the image. Relatedly, particularly simple
images should restrict elicited responses to a tight
range of expected contents. For this initial experi-
ment, we chose or developed each of the visual stim-
uli because it presents an event that we believe to be
transitive in nature and likely to elicit responses with
an unambiguous subject, verb and object, thereby re-
stricting form in addition to content. Finally, this
format allows us to investigate pure interlanguage
without the influence of verbal prompts and shows
learner language in a functional context, modeling
real language use.

Response (L1)

He is droning his wife pitcher. (Arabic)

The artist is drawing a pretty women. (Chinese)

The artist is painting a portrait of a lady. (English)

The painter is painting a woman’s paint. (Spanish)

Figure 1: Example item and responses

The PDT consists of 10 items (8 line drawings
and 2 photographs) intended to elicit a single sen-
tence each; an example is given in Figure 1. Par-
ticipants were asked to view the image and describe
the action, and care was taken to explain to partici-
pants that either past or present tense (and simple or
progressive aspect) was acceptable. Responses were
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typed by the participants themselves (without auto-
matic spell checking). To date, we have collected
responses from 53 informants (14 NSs, 39 NNSs),
for a total of 530 sentences. The distribution of first
languages (L1s) is as follows: 14 English, 16 Ara-
bic, 7 Chinese, 2 Japanese, 4 Korean, 1 Kurdish, 1
Polish, 2 Portuguese, and 6 Spanish.

4 Method

We parse a sentence into a dependency representa-
tion (section 4.1) and then extract a simple seman-
tic form from this parse (section 4.2), to compare to
gold standard semantic forms.

4.1 Obtaining a syntactic form

We start analysis with a dependency parse. Because
dependency parsing focuses on labeling dependency
relations, rather than constituents or phrase struc-
ture, it easily finds the subject, verb and object of
a sentence, which can then map to a semantic form
(Kiibler et al., 2009). Our approach must eventually
account for other relations, such as negation and ad-
verbial modification, but at this point, since we fo-
cus on transitive verbs, we take an naive approach in
which subject, verb and object are considered suffi-
cient for deciding whether or not a response accu-
rately describes the visual prompt.

We use the Stanford Parser for this task, trained on
the Penn Treebank (de Marneffe et al., 2006; Klein
and Manning, 2003).! Using the parser’s options,
we set the output to be Stanford typed dependencies,
a set of labels for dependency relations. The Stan-
ford parser has a variety of options to choose from
for the specific parser ouput, e.g., how one wishes to
treat prepositions (de Marneffe and Manning, 2012).
We use the CCPropagatedDependencies /
CCprocessed option to accomplish two things:?
1) omit prepositions and conjunctions from the sen-
tence text and instead add the word to the depen-
dency label between content words; and 2) propa-
gate relations across any conjunctions. These deci-
sions are important to consider for any semantically-
informed processing of learner language.

"http://nlp.stanford.edu/software/
lex—-parser.shtml

http://nlp.stanford.edu/software/
dependencies_manual.pdf



To see the impetus for removing prepositions,
consider the learner response (1), where the prepo-
sition with is relatively unimportant to collecting the
meaning. Additionally, learners often omit, insert,
or otherwise use the wrong preposition (Chodorow
et al., 2007). The default parser would present a
prep relation between played and with, obscuring
what the object is; with the options set as above,
however, the dependency representation folds the
preposition into the label (prep_with), instead of
keeping it in the parsed string, as shown in Figure 2.

(1) The boy played with a ball.

root

prep-with

nsubj
. det

vroot The Boy played with :; ‘Ball

Figure 2: The dependency parse of (1)

This is a very lenient approach to prepositions,
as prepositions certainly carry semantic meaning—
e.g., the boy played in a ball means something quite
different than what (1) means. However, because
we ultimately compare the meaning to an expected
semantic form (e.g., play(boy,ball)), it is easier to
give the benefit of the doubt. In the future, one may
want to consider using a semantic role labeler (e.g.,
SENNA (Collobert et al., 2011)).

As for propagating relations across conjunctions,
this ensures that each main verb connects to its argu-
ments, as needed for a semantic form. For example,
in (2), the default parser returns the relation between
the first verb of the conjunction structure, setting and
its subject, man, but not between reading and man.
The options we select, however, return an nsub j
relation between setting and man and also between
reading and man (similarly for the object, paper).

(2) The man is setting and reading the paper.

In addition to these options, many dependency re-
lations are irrelevant for the next step of obtaining
a semantic form. For example, we can essentially
ignore determiner (det) relations between a noun
and its determiner, allowing for variability in how a
learner produces or does not produce determiners.
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4.2 Obtaining a semantic form
4.2.1 Sentence types

We categorized the sentences in the corpus into
12 types, shown in Table 1. We established these
types because each type corresponds to a basic sen-
tence structure and thus has consistent syntactic fea-
tures, leading to predictable patterns in the depen-
dency parses. We discuss the distribution of sen-
tence types in section 5.1.

4.2.2 Rules for sentence types

A sentence type indicates that the logical (i.e., se-
mantic) subject, verb, and object can be found in a
particular place in the parse, e.g., under a particular
dependency label. For example, for simple transi-
tive sentences of type A, the words labeled nsub 7,
root, and dobj exactly pinpoint the information
we require. Thus, the patterns for extracting se-
mantic information—in the form of verb(subj,obj)
triples—reference particular Stanford typed depen-
dency labels, part-of-speech (POS) tags, and inter-
actions with word indices.

More complicated sentences or those containing
common learner errors (e.g., omission of the cop-
ula be) require slightly more complicated extraction
rules, but, since we examine only transitive verbs at
this juncture, these still boil down to identifying the
sentence type and extracting the appropriate triple.
We do this by arranging a small set of binary fea-
tures into a decision tree to determine the sentence
type, as shown in Figure 3.

To illustrate this process, consider (3). We pass
this sentence through the parser to obtain the depen-
dency parse shown in Figure 4. The parsed sentence
then moves to the decision tree shown in Figure 3.
At the top of the tree, the sentence is checked for an
expl (expletive) label; having none, it moves right-
ward to the nsubjpass (noun subject, passive)
node. Because we find an nsub jpass label, the
sentence moves leftward to the agent node. This
label is also found, thereby reaching a terminal node
and being labeled as a type F2 sentence.

(3) A bird is shot by a man.

With the sentence now typed as F2, we apply
specific F2 extraction rules. The logical subject is
taken from under the agent label, the verb from



Type | Description Example NS | NNS
A Simple declarative transitive The boy is kicking the ball. 117 | 286
B Simple + preposition The boy played with a ball. 5 23
C Missing tensed verb Girl driving bicycle. 10 44
D Missing tensed verb + preposition | Boy playing with a ball. 0 1
E Intransitive (No object) A woman is cycling. 2 21
F1 | Passive An apple is being cut. 4 2
F2 | Passive with agent A bird is shot by a man. 0 6
Ax | Existential version of A or C There is a boy kicking a ball. 0 0
Bx | Existential version of B or D There was a boy playing with a ball. 0 0
Ex | Existential version of E There is a woman cycling. 0 0
F1x | Existential version of F1 There is an apple being cut. 0 1
F2x | Existential version of F2 There is a bird being shot by a man. 0 0

Z All other forms The man is trying to hunt a bird. 2 6

Table 1: Sentence type examples, with distributions of types for native speakers (NS) and non-native speakers (NNS)

expl?

T T

auxpass?

i

agent? dob3j?

F2x Flx Ax prep_x?

W

Bx Ex

nsubjpass?
2N
agent? dob3j?
F2 Fl1 nsubj? nsubj?
TEA
A C prepsx? D
YAN
B E

Figure 3: Decision tree for determining sentence type and extracting semantic information

root

nsubjpass

agent

det auxpass det

vroot A bird is shot by a man

Figure 4: The dependency parse of (3)

process: the parser is pre-built; the decision tree is
small; and the extraction rules are minimal.

We are able to use little effort in part due to the
constraints in the pictures. For figure 1, for exam-
ple, the artist, the man in the beret, and the man are
all acceptable subjects, whereas if there were multi-
ple men in the picture, the man would not be specific
enough. In future work, we expect to relax such con-

root, and the logical object from nsubjpass,
to obtain shot(man,bird), which can be lemmatized
to shoot(man,bird). Very little effort goes into this
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straints on image contents by including rules to han-
dle relative clauses, adjectives and other modifiers
in order to distinguish between references to simi-



lar elements, e.g., a man shooting a bird vs. a man
reading the newspaper.

5 Evaluation

To evaluate this work, we need to address two major
questions. First, how accurately do we extract se-
mantic information from potentially innovative sen-
tences (section 5.2)? Due to the simple structures
of the sentences (section 5.1), we find high accu-
racy with our simple system. Secondly, how many
semantic forms does one need in order to capture
the variability in meaning in learner sentences (sec-
tion 5.3)? We operationalize this second question
by asking how well the set of native speaker seman-
tic forms models a gold standard, with the intuition
that a language is defined by native speaker usage,
so their answers can serve as targets. As we will
see, this is a naive view.

5.1 Basic distribution of sentences

Before a more thorough analysis, we look at the dis-
tribution of sentence types, shown in Table 1, broken
down between native speakers (NSs) and non-native
speakers (NNSs). A few sentence types clearly dom-
inate here: if one looks only at simple declaratives,
with or without a main verb (types A and C), one
accounts for 90.7% of the NS forms and 84.6% of
the NNS ones, slightly less. Adding prepositional
forms (types B and D) brings the total to 94.3% and
90.8%, respectively. Although there will always be
variability and novel forms (cf. type Z), this shows
that, for situations with basic transitive actions, de-
veloping a system (by hand) for a few sentence types
is manageable. More broadly, we see that clear and
simple images nicely constrain the task to the point
where shallow processing is feasible.

5.2 Semantic extraction

For the purpose of evaluating our extraction system,
we define two major classes of errors. The first are
triple errors, responses for which our system fails to
extract one or more of the desired subject, verb, or
object, based on the sentence at hand and without re-
gard to the target content. Second are content errors,
responses for which our system extracts the desired
subject, verb and object, but the resulting triple does
not accurately describe the image (i.e., is an error of
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the participant’s). We are of course concerned with
reducing the triple errors. Examples are in Table 2.

Triple errors are subcategorized as speaker,
parser, or extraction errors, based on the earliest
part of the process that led to the error. Speaker
errors typically involve misspellings in the original
sentence, leading to an incorrect POS tag and parse.
Parser errors involve a correct sentence parsed in-
correctly or in such a way as to indicate a different
meaning from the one intended; an example is given
in Figure 5. Extraction errors involve a failure of the
extraction script to find one or more of the desired
subject, verb or object in a correct sentence. These
typically involve more complex sentence structures
such as conjoined or embedded clauses.

root
num dep
RN
Two boys boat
CD NNS NN

vroot

NONE(boys,NONE)

root

num nsubj
v NN
Two boys boat
CD NNS VBP

vroot

boat(boys,NONE)

Figure 5: A parser error leading to a triple error (top), and
the desired parse and triple (bottom).

As shown in table 2, we obtain 92.3% accuracy on
extraction for NNS data and roughly the same for
NS data, 92.9%. However, many of the errors for
NNSs involve misspellings, while for NSs a higher
percentage of the extraction errors stem only from
our hand-written extractor, due to native speakers
using more complex structures. For a system inter-
acting with learners, spelling errors are thus more of
a priority (cf. Hovermale, 2008).

Content errors are subcategorized as spelling or
meaning errors. Spelling errors involve one or more
of the extracted subject, verb or object being mis-
spelled severely enough that the intended spelling
cannot be discerned. A spelling error here is un-
like those included in speaker errors above in that it
does not result in downstream errors and is a well-



Error Example

type Sentence Triple Count (%)
Speaker A man swipped leaves. leaves(swipped,man) 16 (4.1%)
% Parser Two boys boat. NONE(boys,NONE) 5 (1.3%)
g Z. | Extraction A man is gathering lots of leafs. gathering(man,lots) 9 (2.3%)
o Total (390) 30 (7.7%)
= Speaker (None) 0 (0%)
&= | v | Parser An old man raking leaves on a path. leaves(man,path) 2 (1.4%)
z Extraction | A man has shot a bird that is falling from the sky. shot(bird,sky) 8 (5.7%)
Total (140) 10 (7.1%)
. % Spellipg The artiest.is drawing a portret. dra\fving(artiest,portret) 36 (9.2%)
E = Meaning The woman is making her laundry. making(woman,laundry) | 23 (5.9%)
2 Total (390) 59 (15.1%)
g " Spelling (None) 0 (0%)
8 7| Meaning A picture is being taken of a girl on a bike. taken(NONE,picture) 3(2.1%)
Total (140) 3(2.1%)

Table 2: Triple errors and content errors by subcategory, with error rates reported (e.g., 7.7% error = 92.3% accuracy)

formed triple except for a misspelled target word.
Meaning errors involve an inaccurate word within
the triple. This includes misspellings that result in a
real but unintended word (e.g., shout(man,bird) in-
stead of shoot(man,bird)).

The goal of a system is to identify the 15.1% of
NNS sentences which are content errors, in order
to provide feedback. Currently, the 7.7% triple er-
rors would also be grouped into this set, showing
the need for further extraction improvements. Also
notable is that three content errors were encountered
among the NS responses. All three were meaning
errors involving some meta-description of the image
prompt rather than a direct description of the image
contents, e.g., A picture is being taken of a girl on a
bike vs. A girl is riding a bike.

5.3 Semantic coverage

Given a fairly accurate extraction system, as re-
ported above, we now turn to evaluating how well
a gold standard represents unseen data, in terms of
semantic matching. To measure coverage, we take
the intuition that a language is defined by native
speaker usage, so their answers can serve as targets,
and use NS triples as our gold standard. The set
of NS responses was manually arbitrated to remove
any unacceptable triples (both triple and content er-
rors), and the remaining set of lemmatized triples
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was taken as a gold standard set for each item.

Similarly, with the focus on coverage, the NNS
triples were amended to remove any triple errors.
From the remaining NNS triples, we call an appro-
priate NNS triple found in the gold standard set a
true positive (TP) (i.e., a correct match), and an
appropriate NNS triple not found in the gold stan-
dard set a false negative (FN) (i.e., an incorrect non-
match), as shown in Table 4. We adopt standard ter-
minology here (TP, FN), but note that we are inves-
tigating what should be in the gold standard, mak-
ing these false negatives and not false positives. To
address the question of how many (NS) sentences
we need to obtain good coverage, we define cover-
age (=recall) as TP/(TP+FN), and report, in Table 3,
23.5% coverage for unique triple types and 50.8%
coverage for triple tokens.

NNS

+ —

Y | TP | FP
NS N | FN | TN

Table 4: Contingency table comparing presence of NS
forms (Y/N) with correctness (4+/—) of NNS forms

We define an inappropriate NNS triple (i.e., a con-
tent error) not found in the gold standard set as a true



Coverage Accuracy
Item || NS | NNS || TP | TN | FN Ty. Tok. Ty. Tok.
1 5 14 3 2 9 3/12 23/38 5/14 25/39
2 6 14 3 5 6 3/9 15/28 8/14 20/32
3 6 19 5 7 7 512 23/30 12/19 30/36
4 4 8 2 2 4 2/6 32/37 4/8 34/39
5 4 24 1 8 15 1/16 3/25 9/24 11/33
6 8 22 3 5 14 3/17 16/31 8/22 21/36
7 7 23 5 4 14 5/19 14/35 9/23 18/39
8 6 23 5 6 11 5/16 10/30 11/22 17/36
9 7 33 3|12 | 18 3/21 3/23 15/33 15/35
10 5 21 2 13| 6 2/8 14/24 15/21 27/35
Total || 58 | 201 | 32 | 64 | 104 || 32/136 153/301 | 96/200 218/360
23.5% 50.8% | 48.0%  60.6%

Table 3: Matching of semantic triples: NS/NNS: number of unique triples for NSs/NNSs. Comparing NNS types to NS
triples, TP: number of true positives (types); TN: number of true negatives; FN: number of false negatives. Coverage

for Types and Tokens = %; Accuracy for Types and Tokens = %
negative (TN) (i.e., a correct non-match). Accu- ’ Type \ NNS \ NS \ Coverage ‘
racy based on this gold standard—assuming perfect cut(woman,apple) 5 0 (5)
extraction—is defined as (TP+TN)/(TP+TN+FN). cut(someone,apple) 4 2 4
We report 48.0% accuracy for types and 60.6% ac- cut(somebody,apple) 3 0
curacy for tokens. cut(she,apple) 3 0
The immediate lesson here is: NS data alone may slice(someone,apple) 2 3 2
not make a sufficient gold standard, in that many cor- cut(person,apple) D) 1 2
rect NNS answers are not counted as correct. How- cut(NONE,apple) 2 0 2)
ever, there are a couple of issues to consider here. slice(woman,apple) 1 1 1
First, we require exact matching of triples. If slice(person,apple) 1 1 1
maximizing coverage is desired, extracting indi- slice(man,apple) 1 0
vidual subjects, verbs and objects from NS triples cut(person, fruit) 1 0
and recombining them into the various possible cut(people,apple) 1 0
verb(subj,obj) combinations would lead to a sizable cut(man,apple) 1 0
improvement. An example of triples distribution and cut(knife,apple) 1 0
coverage for a single item, along with this recombi- chop(woman,apple) 1 0
nation approach is presented in Table 5. chop(person,apple) I 0
It should be noted, however, that automat- slice(NONE, apple) 0 >
ing this recombination without lexical knowledge Total 30 2 10(17)

could lead to the presence of unwanted triples
in the gold standard set. Consider, for exam-
ple, do(woman,shirt)—an incorrect triple derived
from the correct NS triples, wash(woman,shirt) and
do(woman,laundry). In addition to handling pro-

3 Accuracy is typically defined as
(TP+TN)/(TP+TN+FN+FP), but false positives (FPs) are
cases where an incorrect learner response was in the gold
standard, and we have already removed such cases (i.e., FP=0).

18

Table 5: Distribution of valid tokens across types for a
single PDT item. Types in italics do not occur in the NS
sample, but could be inferred to expand coverage by re-
combining elements of NS types that do occur.

nouns (e.g., cut(she,apple)) and lexical relations
(e.g., apple as a type of fruit), one approach might be



to prompt NSs to give multiple alternative descrip-
tions of each PDT item.

A second issue to consider is that, even when only
examining cases where the meaning is literally cor-
rect, NNSs produce a wider range of forms to de-
scribe the prompts than NSs. For example, for a pic-
ture showing what NSs overwhelmingly described
as a raking action, many NNSs referred to a man
cleaning an area. Literally, this may be true, but it is
not native-like. This behavior is somewhat expected,
given that learners are encouraged to use words they
know to compensate for gaps in their vocabularies
(Agustin Llach, 2010). This also parallels the obser-
vation in SLA research that while second language
learners may attain native-like grammar, their abil-
ity to use pragmatically native-like language is often
much lower (Bardovi-Harlig and Dornyei, 1998).
The answer to what counts as a correct meaning
will most likely lie in the purpose of an application,
reflecting whether one is developing native-ness or
whether the facts of a situation are expressed cor-
rectly. In other words, rather than rejecting all non-
native-like responses, an ILT may need to consider
whether a sentence is native-like or non-native-like
as well as whether it is semantically appropriate.

6 Summary and Outlook

We have begun the process of examining appro-
priate ways to analyze the semantics of language
learner constructions for interactive situations by
describing data collected for a picture description
task. We parsed this data using an off-the-shelf
parser with settings geared towards obtaining appro-
priate semantic forms, wrote a small set of seman-
tic extraction rules, and obtained 92-93% extrac-
tion accuracy. This shows promise at using images
to constrain the syntactic form of a “free” learner
text and thus be able to use pre-built software. At
the same time, we discussed how learners give re-
sponses which are literally correct, but are non-
native-like. These results can help guide the de-
velopment of ILTs which aim to process the mean-
ing of interactive statements: there is much to be
gained with a small amount of computational effort,
but much work needs to go into delineating a proper
set of gold standard forms.

There are several ways to take this work. First,
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given the preponderance of spelling errors in NNS
data and its effect on downstream processing, the ef-
fect of automatic spelling correction must be taken
into account. Secondly, we only investigated tran-
sitive verbs, and much needs to be done to investi-
gate interactions with other types of constructions,
including the definition of more elaborate semantic
forms (Hahn and Meurers, 2012). Finally, to bet-
ter model ILTs and the interactions found in activ-
ities and games, one can begin by modeling more
complex visual prompts. By using video description
tasks or story retell tasks, we can elicit more com-
plex narrative responses. This would allow us to
investigate the possibility of extending our current
approach to tasks that involve greater learner inter-
action.
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Abstract

We describe the NUS Corpus of Learner En-
glish (NUCLE), a large, fully annotated cor-
pus of learner English that is freely available
for research purposes. The goal of the cor-
pus is to provide a large data resource for the
development and evaluation of grammatical
error correction systems. Although NUCLE
has been available for almost two years, there
has been no reference paper that describes the
corpus in detail. In this paper, we address
this need. We describe the annotation schema
and the data collection and annotation process
of NUCLE. Most importantly, we report on
an unpublished study of annotator agreement
for grammatical error correction. Finally, we
present statistics on the distribution of gram-
matical errors in the NUCLE corpus.

1 Introduction

Grammatical error correction for language learners
has recently attracted increasing interest in the natu-
ral language processing (NLP) community. Gram-
matical error correction has the potential to cre-
ate commercially viable software tools for the large
number of students around the world who are
studying a foreign language, in particular the large
number of students of English as a Foreign Lan-
guage (EFL).

The success of statistical methods in NLP over
the last two decades can largely be attributed to
advances in machine learning and the availability
of large, annotated corpora that can be used to
train and evaluate statistical models for various NLP
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tasks. The biggest obstacle for grammatical error
correction has been that until recently, there was no
large, annotated corpus of learner text that could
have served as a standard resource for empirical ap-
proaches to grammatical error correction (Leacock
et al., 2010). The existing annotated learner corpora
were all either too small or proprietary and not avail-
able to the research community. That is why we
decided to create the NUS Corpus of Learner En-
glish (NUCLE), a large, annotated corpus of learner
texts that is freely available for research purposes.
The corpus was built in collaboration with the Cen-
tre for English Language Communication (CELC)
at NUS. NUCLE consists of about 1,400 student es-
says from undergraduate university students at NUS
with a total of over one million words which are
completely annotated with error tags and correc-
tions. All annotations and corrections have been per-
formed by professional English instructors. To the
best of our knowledge, NUCLE is the first annotated
learner corpus of this size that is freely available for
research purposes. However, although the NUCLE
corpus has been available for almost two years now,
there has been no reference paper that describes the
details of the corpus. That makes it harder for other
researchers to start working with the NUCLE cor-
pus. In this paper, we address this need by giving a
detailed description of the NUCLE corpus, includ-
ing a description of the annotation schema, the data
collection and annotation process, and various statis-
tics on the distribution of grammatical errors in the
corpus. Most importantly, we report on an unpub-
lished study of annotator agreement for grammatical
error correction that was conducted prior to creating

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 22-31,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



(8) Essay ID38 ()

Your Annotation

3ump to: [(8) Essay 1D 38 () |~ << << 3> > Corrected Essay

Bad £ssay ) Needs Editing

Assignment Prompt:
EG1471 Assignment

Southeast Asia has the oldest and most consistent rainforests on the earth because it is in the equator zone. These forests are very

Arcoret Arcovet Arcoret
necessary for national economies and for the Living of local population in the Southeast Asia. And they are also globally essential

ArtOrDet (Article or Determiner)
the local

requirements n terms of blodiversity and carbon stora &' early as a result of global demand and

oc
expanding economies. These direct causes of deforestation and forest degrading are mostly human causes.

e

One of the serfous causes of rainforest destruction in South East Asfa is commercial logging. Timber producing countries such as
@ wep

Myanmar and Indonesia log the trees for their countries' income. For example, in Myanmar, instead of cutting the trees in

sustainability level, it is determined based on the foreign currency earning goals. So, this is just the short-term aim of the

Figure 1: The WAMP annotation interface

the NUCLE corpus. The study gives some insights
regarding the difficulty of the annotation task.

The remainder of this paper is organized as fol-
lows. The next section explains the annotation
schema that was used for labeling grammatical er-
rors. Section 3 reports the results of the inter-
annotator agreement study. Section 4 describes the
data collection and annotation process. Section 5
contains the error statistics. Section 6 gives the re-
lated work, and Section 7 concludes the paper.

2 Annotation Schema

Before starting the corpus creation, we had to de-
velop a set of annotation guidelines. This was done
in a pilot study before the actual corpus was cre-
ated. Three instructors from CELC participated in
the pilot study. The instructors annotated a small set
of student essays that had been collected by CELC
previously. The annotation was performed using an
in-house, online annotation tool, called Writing, An-
notation, and Marking Platform (WAMP), that was
developed by the NUS NLP group specially for cre-
ating the NUCLE corpus. The annotation tool al-
lows the annotators to work over the Internet using
a web browser. Figure 1 shows a screen shot of the
WAMP interface. Annotators can browse through a
batch of essays that has been assigned to them and
perform the following tasks:

e Select arbitrary, contiguous text spans using the
cursor to identify grammatical errors.

e Classify errors by choosing an error tag from a
drop-down menu.

e Correct errors by typing the correction into a
text box.
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e Comment to give additional explanations if
necessary.

We wanted to impose as few constraints as possi-
ble on the annotators and to give them an experience
that would closely resemble their usual marking us-
ing pen and paper. Therefore, the WAMP annotation
tool allows annotators to select arbitrary text spans,
including overlapping text spans.

After some annotation trials, we decided to use
a tag set which had been developed by CELC in
a previous study. Some minor modifications were
made to the original tag set based on the feedback
of the annotators. The result of the pilot study was
a tag set of 27 error categories which are grouped
into 13 categories. The tag set is listed in Table 1.
It is important to note that our annotation schema
not only labels each grammatical error with an error
category, but also requires an annotator to provide a
suitable correction for the error as well. The anno-
tators were asked to provide a correction that would
fix the grammatical error if the selected text span
containing the grammatical error is replaced with the
correction. If multiple alternative text spans could be
selected, the annotators were asked to select the min-
imal text span so that minimal changes were made to
arrive at the corrected text.

We chose to use the tag set in Table 1 since this
tag set was developed and used in a previous study
at CELC and was found to be a suitable tag set. Fur-
thermore, the tag set offers a reasonable compro-
mise in terms of its complexity. With 27 error cate-
gories, it is sufficiently fine-grained to enable mean-
ingful statistics for different error categories, yet not
as complex as other tag sets that are much larger in
size.

3 Annotator Agreement

How reliably can human annotators agree on
whether a word or sentence is grammatically cor-
rect? The pilot annotation project gave us the op-
portunity to investigate this question in a quantita-
tive analysis. Annotator agreement is also a mea-
sure for how difficult a task is and serves as a test of
whether humans can reliable perform the annotation
task with the given tag set. During the pilot study,
we randomly sampled 100 essays for measuring an-
notator agreement. These essays are part of the pilot



Error Tag | Error Category

| Description / Example

Verbs

Vit Verb Tense A university [had conducted — conducted] the survey
last year.

Vm Verb modal No one [will — would] bother to consider a natural bal-
ance.

Vo Missing verb This [may — may be] due to a traditional notion that
boys would be the main labor force in a farm family.

Vform Verb form Will the child blame the parents after he [growing —
grows] up?

Subject-verb agreement

SVA \ Subject-verb-agreement \ The boy [play — plays] soccer.

Articles/determiners

ArtOrDet | Article or Determiner From the ethical aspect, sex selection technology should
not be used in [non-medical — a non-medical] situa-
tion.

Nouns

Nn Noun Number Sex selection should therefore be used for medical [rea-
son — reasons] and nothing else.

Npos Noun possessive The education of [mother’s — mothers] is a significant
factor in reducing son preference.

Pronouns

Pform Pronoun form 90% of couples seek treatment for family balancing rea-
sons and 80% of [those — them] want girls.

Pref Pronoun reference Moreover, children may find it hard to communicate with
[his/her — their] parents.

Word choic

Wcip Wrong colloca- | Singapore, for example, has invested heavily [on — in]

tion/idiom/preposition the establishment of Biopolis

Wa Acronyms Using acronyms without explaining what they stand for.

Wform Word form Sex-selection may also result in [addition — additional]
stress for the family.

Wtone Tone [Isn’t it — Is it not] what you always dreamed for?

Sentence Structure

Srun Runons, comma splice [Do spare some thought and time, we can make a dif-
ference! — Do spare some thought and time. We can
make a difference!] (Should be split into two sentences)

Smod Dangling modifier [Faced — When we are faced ] with the unprecedented
energy crisis, finding an alternative energy resource has
naturally become the top priority issue.

Spar Parallelism The use of sex selection would prevent rather than [con-
tributing — contribute] to a distorted sex ratio.

Strag Fragment Although he is a student from the Arts faculty.

Ssub Subordinate clause It is the wrong mindset of people that boys are more su-
perior than girls [should — that should] be corrected.

Table 1: NUCLE error categories. Grammatical errors in the examples are printed in bold face in the form
[<mistake>— <correction>].
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Error Tag | Error Category

Description / Example

Word Order

WOinc Incorrect sentence form Why can [not we — we not] choose more intelligent and
beautiful babies?

WOadv Adverb/adjective position It is similar to the murder of many valuable lives [only
based — based only] on the couple’s own wish.

Transitions

Trans Link words/phrases In the process of selecting the gender of the child, ethical
problems arise [wWhere — because] many innocent lives
of unborn fetuses are taken away.

Mechanics

Mec Punctuation, capitalization, | The [affect — effect] of that policy has yet to be felt.

spelling, typos

Redundancy

Rloc Local redundancy Currently, abortion is available to end a life only [because
of — because] the fetus or embryo has the wrong sex.

Citation

Cit Citation Poor citation practice.

Others

Others Other errors Any error that does not fit into any other category, but can
still be corrected.

Um Unclear meaning The quality of the passage is so poor that it cannot be
corrected.

Table 1: NUCLE error categories (continued)

data set and are not included in the official NUCLE
corpus. The essays were then annotated by our three
annotators in a way that each essay was annotated
independently by two annotators. Four essays had to
be discarded as they were of very poor quality and
did not allow for any meaningful correction. This
left us with 96 essays with double annotation.

Comparing two sets of annotation is complicated
by the fact that the set of annotations that corrects
an input text to a corrected output text is ambigu-
ous (Dahlmeier and Ng, 2012). In other words, it is
possible that two different sets of annotations pro-
duce the same correction. For example, one anno-
tator could choose to select a whole phrase as one
error, while the other annotator selects each word
individually. Our annotation guidelines ask annota-
tors to select the minimum span that is necessary to
correct the error, but we do not enforce any hard con-
straints and different annotators can have a different
perception of where an error starts or ends.

An especially difficult case is the annotation of
omission errors, for example missing articles. Se-
lecting a range of whitespace characters is difficult
for annotators, especially if the annotation tool is
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web-based (as whitespace is variable in web pages).
We asked annotators to select the previous or next
word and include them into the suggested correc-
tion. To change conduct survey to conduct a sur-
vey, the annotator could change conduct to conduct
a, or change survey to a survey. If we only com-
pare the exact text spans selected by the annotators
when measuring agreement, these different ways to
select the context could easily cause us to conclude
that the annotators disagree when they in fact agree
on the corrected phrase. This would lead to an un-
derestimation of annotator agreement. To address
this problem, we perform a simple text span nor-
malization. First, we “grow” the selected context
to align with whitespace boundaries. For example,
if an annotator just selected the last character e of
the word use and provided ed as a correction, we
grow this annotation so that the whole word use is
selected and used is the correction. Second, we to-
kenize the text and “trim” the context by removing
tokens at the start and end that are identical in the
original and the correction. Finally, the annotations
are “projected” onto the individual tokens they span,
i.e., an annotation that spans a phrase of multiple to-



Source

This phenomenon opposes the real .

Annotator A

This phenomenon opposes (the — € (ArtOrDet)) (real — reality (Wform)) .

Annotator B

This phenomenon opposes the (real — reality (Wform)) .

Table 2: Example of a sentence from the annotator agreement study with annotations from two different annotators.

kens is broken up into multiple token-level annota-
tions. We align the tokens in the original text span
and the tokenized correction string using minimum
edit distance. Now, we can compare two annotations
in a more meaningful way at the token level. Table 2
shows a tokenized example sentence from the anno-
tator agreement study with annotations from two dif-
ferent annotators. Annotator A and B agree that the
first three words This, phenomenon, and opposes and
the final period are correct and do not need any cor-
rection. The annotators also agree that the word real
is part of a word form (Wform) error and should be
replaced with reality. However, they disagree with
respect to the article the: annotator A believes there
is an article error (ArtOrDet) and that the article has
to be deleted while annotator B believes that the ar-
ticle is acceptable in this position.

The example shows that annotator agreement can
be measured with respect to three different criteria:
whether there is an error, what type of error it is,
and how the error should be corrected. Accordingly,
we analyze annotator agreement under three differ-
ent conditions:

o Identification Agreement of tagged tokens re-
gardless of error category or correction.

e Classification Agreement of error category,
given identification.

o Exact Agreement of error category and correc-
tion, given identification.

In the identification task, we are interested to see
how well annotators agree on whether something is
a grammatical error or not. In the example above,
annotators A and B agree on 5 out of 6 tokens and
disagree on one token (the). That results in an identi-
fication agreement of 5/6 = 83%. In the classifica-
tion task, we investigate how well annotators agree
on the type of error, given that both have tagged the
token as an error. In the example, the classification
agreement is 100% as both annotator A and B tagged
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the word real as a word form (Wform) error. Finally,
for the exact task, annotators are considered to agree
if they agree on the error category and the correction
given that they both have tagged the token as an er-
ror. In the example, the exact agreement is 100% as
both annotators give the same error category Wform
and the same correction reality for the word real. We
use the popular Cohen’s Kappa coefficient (Cohen,
1960) to measure annotator agreement between an-
notators. Cohen’s Kappa is defined as

_ Pr(a) — Pr(e)

1 — Pr(e) M

where Pr(a) is the probability of agreement and
Pr(e) is the probability of chance agreement. We
can estimate Pr(a) and Pr(e) from the double an-
notated essays through maximum likelihood estima-
tion. For two annotators A and B, the probability of
agreement is
#agreed tokens

Pr(a) = #total tokens @)
where the number of agreed tokens is counted as de-
scribed above, and the total number of tokens is the
total token count of the subset of jointly annotated
documents. The probability of chance agreement is
computed as

Pr(e) = Pr(A=1,B=1)+Pr(A=0,B=
= Pr(A=1)xPr(B=1)
+Pr(A=0) x Pr(B=0)

0)

where Pr(A = 1) and Pr(A = 0) symbolize the
events of annotator A tagging a token as “error” or
“no error” respectively. We make use of the fact
that both annotators perform the task independently.
Pr(A = 1) and Pr(A = 0) can be computed
through maximum likelihood estimation.

# annotated tokens of annotator A
# total tokens

Pr(A=1) =

# unannotated tokens of annotator A

# total tokens



Annotators | Kappa-iden | Kappa-class | Kappa-exact
A-B 0.4775 0.6206 0.5313
A-C 0.3627 0.5352 0.4956
B-C 0.3230 0.4894 0.4246

Average 0.3877 0.5484 0.4838

Table 3: Cohen’s Kappa for annotator agreement.

The probabilities Pr(B = 1) and Pr(B = 0) are
computed analogously. The chance agreement for
this task is quite high, as the number of un-annotated
tokens is much higher than the number of annotated
tokens. Cohen’s Kappa coefficients for the three an-
notators and the average Kappa coefficient are listed
in Table 3. We observe that the Kappa scores are
relatively low and that there is a substantial amount
of variability in the Kappa coefficients; annotator A
and B show a higher agreement with each other than
they do with annotator C. According to Landis and
Koch (1977), Kappa scores between 0.21 and 0.40
are considered fair, and scores between 0.41 and
0.60 are considered moderate. The average Kappa
score for identification can therefore only be consid-
ered fair and the Kappa scores for classification and
exact agreement are moderate. Thus, an interesting
result of the pilot study was that annotators find it
harder to agree on whether a word is grammatically
correct than agreeing on the type of error or how it
should be corrected. The annotator agreement study
shows that grammatical error correction, especially
grammatical error identification, is a difficult prob-
lem.

Our findings support previous research on an-
notator agreement that has shown that grammati-
cal error correction is a challenging task (Tetreault
and Chodorow, 2008; Lee et al., 2009). Tetreault
and Chodorow (2008) report a Kappa score of 0.63
which in their words “shows the difficulty of this
task and also show how two highly trained raters
can produce very different judgments.” An interest-
ing related work is (Lee et al., 2009) which investi-
gates the annotation of article and noun number er-
rors. The annotation is performed with either a sin-
gle sentence context only or the five preceding sen-
tences. The agreement between annotators increases
when more context is given, from a Kappa score of
0.55 to a Kappa score of 0.60. Madnani ef al. (2011)
and Tetreault et al. (2010) propose crowdsourcing to
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overcome the problem of annotator variability.

4 Data Collection and Annotation

The main data collection for the NUCLE corpus
took place between August and December 2009. We
collected a total of 2,249 student essays from 6 En-
glish courses at CELC. The courses are designed for
students who need language support for their aca-
demic studies. The essays were written as course
assignments on a wide range of topics, like technol-
ogy innovation or health care. Some example ques-
tion prompts are shown in Table 4. All students are
at a similar academic level, as they are all undergrad-
uate students at NUS. Students would typically have
to write two essay assignments during a course. The
length of each essay was supposed to be around 500
words, although most essays were longer than the re-
quired length. From this data set, a team of 10 CELC
English instructors annotated 1,414 essays with over
1.2 million words between October 2009 and April
2010. Due to budget constraints, we were unfortu-
nately not able to perform double annotations for the
main corpus. Annotators were allowed to label an
error multiple times if the error could be assigned
to more than one error tag, although we observed
that annotators did not make much use of this option.
Minimal post-processing was done after the annota-
tion process. Annotators were asked to review some
corrections that appeared to contain annotation mis-
takes, for example redundancy errors that did not re-
move the annotated word. The final results of the
annotation exercise were a total of 46,597 error tags.
The essays and the annotations were released as the
NUCLE corpus through the NUS Enterprise R2M
portal in June 2011. The link to the corpus can be
found on the NUS NLP group’s website!.

5 NUCLE Corpus Statistics

This section provides basic statistics about the NU-
CLE corpus and the collected annotations. These
statistics already reveal some interesting insights
about the nature of grammatical errors in learner
text. In particular, we are interested in the follow-
ing questions: how frequent are errors in the NU-
CLE corpus and what are the most frequent error

lwww.comp.nus.edu.sg/~nlp/corpora.html



“Public spending on the aged should be limited so that money can be diverted to other areas of the country’s develop-
ment.” Do you agree?

Surveillance technology such as RFID (radio-frequency identification) should not be used to track people (e.g., human
implants and RFID tags on people or products). Do you agree? Support your argument with concrete examples.

Choose a concept or prototype currently in research and development and not widely available in the market. Present
an argument on how the design can be improved to enhance safety. Remember to consider influential factors such as
cost or performance when you summarize and rebut opposing views. You will need to include very recently published
sources in your references.

Table 4: Example question prompts from the NUCLE corpus.

NUS Corpus of Learner English

Documents 1,414
Sentences 59,871
Word tokens 1,220,257
Word types 30,492
Error annotations 46,597
# of sentences per document 42.34
# of word tokens per document 862.98
# of word tokens per sentence 20.38
# of error annotations per document 32.95
# of error annotations per 100 word tokens 3.82

Table 5: Overview of the NUCLE corpus

categories? The basic statistics of the NUCLE cor-
pus are shown in Table 5. In these statistics, we
treat multiple alternative annotations for the same
error as separate errors, although it could be argued
that these should be merged into a single error with
multiple alternative corrections. Fortunately, only
about 1% of the errors are labeled with more than
one annotation. We can see that grammatical errors
are very sparse, even in learner text. In the NU-
CLE corpus, there are 46,597 annotated errors for
1,220,257 word tokens. That makes an error density
of 3.82 errors per hundred words. In other words,
most of the word tokens in the corpus are grammat-
ically correct. This shows that the students whose
essays were used for the corpus already have a rel-
ative high proficiency of English. When we look
at the distribution of errors across documents, we
can make another interesting observation. Figure 2
shows a histogram of the number of error annota-
tions per document. The distribution appears non-
Gaussian and is heavily skewed to the left with most
documents having less than 30 errors while some
documents have significantly more errors than the
average document. That means that although gram-
matical errors are rare in general, there are also doc-
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Figure 2: Histogram of error annotations per document
in NUCLE.

uments with many error annotations. 32 documents
have more than 100 error annotations and the highest
number of error annotations in a document is 194.
The mode, i.e., the most frequent value in the his-
togram, is 15 which is to the left of the average of
32.95. A similar pattern can be observed when we
look at the distribution of errors per sentence. Fig-
ure 3 shows a histogram of the number of error anno-
tations per sentence in the NUCLE corpus. For this
histogram, only the error annotations which start and
end within sentence boundaries are considered (this
accounts for 98.6% of all error annotations). Sen-
tence boundaries are determined automatically using
the NLTK Punkt sentence splitter>. The histogram
shows that 57.64% of all sentences have zero errors,
20.48% have exactly one error, and 10.66% have ex-
actly two errors, and 11.21% of all sentences have
more than two errors. Although the frequency de-
creases quickly for higher error counts, the highest
observed number of error annotations for a sentence
is 28.

2nltk.org
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Figure 3: Histogram of error annotations per sentence in
NUCLE.

The skewed distribution of errors in the NUCLE
corpus is an interesting observation. A possible ex-
planation for the long tail of the distribution could be
a “rich-get-richer” type of dynamics: if a learner has
made a lot of mistakes in her essay so far, the chance
of her making more errors in the remainder of the
essay increases, for example because she makes sys-
tematic errors which are likely to be repeated. Ex-
plaining the cognitive processes that produce the ob-
served error distribution is beyond the scope of this
paper, but it would certainly be an interesting ques-
tion to investigate.

So far, we have only been concerned with how
many errors learners make overall. But it is also
important to understand what types of errors lan-
guage learners make. Error categories that appear
more frequently should be addressed with higher
priority when creating an automatic error correction
system. Figure 4 shows a histogram of error cate-
gories. Again, we can observe a skewed distribu-
tion with a few error categories being very frequent
and many error categories being comparatively in-
frequent. The top five error categories are wrong
collocation/idiom/preposition (Wcip) with 7,312 in-
stances or 15.69% of all annotations, local redun-
dancies (Rloc) (6,390 instances, 13.71%), article or
determiner (ArtOrDet) (6,004 instances, 12.88%),
noun number (Nn) (3,955 instances, 8.49%), and
mechanics (Mec) (3,290 instances, 7.06%). These
top five error categories account for 57.83% of all er-
ror annotations. The next 5 categories are verb tense
(Vt) (3,288 instances, 7.06%) word form (Wform)
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Figure 4: Error categories histogram for the NUCLE cor-
pus.

(2,241 instances, 4.81%), subject-verb agreement
(SVA) (1,578 instances, 3.38%), other errors that
could not be grouped into any of the error categories
(1,532 instances, 3.29%), and Verb form (Vform)
(1,531, 3.29%). Together, the top 10 error cate-
gories account for 79.66% of all annotated errors.
A manual inspection showed that a large percentage
of the local redundancy errors involve articles that
are deemed redundant by the annotator and should
be deleted. These errors could also be considered
article or determiner errors. For the Wcip errors,
we observed that most Wcip errors are preposition
errors. This confirms that articles and prepositions
are the two most frequent error categories for EFL
learners (Leacock et al., 2010).

6 Related Work

In this section, we compare NUCLE with other
learner corpora. While there were almost no an-
notated learner corpora available for research pur-
poses until recently, non-annotated learner corpora
have been available for a while. Two examples are
the International Corpus of Learner English (ICLE)
(Granger et al., 2002) and the Chinese Learner En-
glish Corpus (Gui and Yang., 2003)3. Rozovskaya
and Roth (2010) annotated a portion of each of these
two learner corpora with error categories and correc-
tions. However, with 63,000 words, the annotated
data is small compared to NUCLE.

3The Chinese Learner English Corpus contains annotations
for error types but does not include corrections for the errors.



The Cambridge Learner Corpus (CLC) (Nicholls,
2003) is possibly the largest annotated English
learner corpus. Unfortunately, to our knowledge,
the corpus is not freely available for research pur-
poses. A subset of the CLC was released in 2011
by Yannakoudakis er al. (2011). The released data
set contains short essays written by students taking
the First Certificate in English (FCE) examination.
The data set was also used in the recent HOO 2012
shared task on preposition and determiner correction
(Dale et al., 2012). Comparing the essays in the FCE
data set and NUCLE, we observe that the essays in
the FCE data set are shorter than the essays in NU-
CLE and show a higher density of grammatical er-
rors. One reason for the higher number of errors (in
particular spelling errors) is most likely that the FCE
data was not collected from take-home assignments
where students have the chance to spell check their
writing before submission. But it could also mean
that the essays in FCE are from students with a lower
proficiency in English compared to NUCLE. With
regards to the annotation schema, the CLC annota-
tions include both the type of error (missing, unnec-
essary, replacement, form) and the part of speech.
As a result, the CLC tag set is large with 88 differ-
ent error categories, far more than the 27 error cate-
gories in NUCLE.

Finally, the HOO 2011 shared task (Dale and Kil-
garriff, 2011) released an annotated corpus of frag-
ments from academic papers written by non-native
speakers and published in a conference or work-
shop of the Association for Computational Linguis-
tics. The corpus uses the annotation schema from
the CLC. Comparing the data set with NUCLE, the
HOO 2011 data set is much smaller (about 20,000
words for training and testing, respectively) and rep-
resents a specific writing genre (NLP papers). The
NUCLE corpus is much larger and covers a broader
range of topics.

7 Conclusion

We have presented the NUS Corpus of Learner En-
glish (NUCLE), a large, annotated corpus of learner
English. The corpus contains over one million
words which are completely annotated with gram-
matical errors and corrections. The NUCLE corpus
is freely available for research purposes. We have
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also reported an inter-annotator agreement study for
grammatical error correction. The study shows that
grammatical error correction is a difficult task, even
for humans. The error statistics from the NUCLE
corpus show that learner errors are generally sparse
and have a long-tail distribution.
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Abstract

Automated feedback on writing may be a use-
ful complement to teacher comments in the
process of learning a foreign language. This
paper presents a self-assessment and tutoring
system which combines an holistic score with
detection and correction of frequent errors and
furthermore provides a qualitative assessment
of each individual sentence, thus making the
language learner aware of potentially prob-
lematic areas rather than providing a panacea.
The system has been tested by learners in
a range of educational institutions, and their
feedback has guided its development.

1 Introduction

Learning to write a foreign language well requires
a considerable amount of practice and appropriate
feedback. Good teachers are essential, but their time
is limited. As recently shown in a study by Wang et
al. (in press) conducted amongst first-year students
of English at a Taiwanese university, automated
writing evaluation can lead to increased learner au-
tonomy and higher writing accuracy. In this pa-
per, we investigate the merits of a self-assessment
and tutoring (SAT) system specifically aimed at in-
termediate learners of English, at around B2 level
in the Common European Framework of Reference
for Languages (CEFR) (Council of Europe, 2001).
There are a large number of students at this level,
and they should have sufficient knowledge of the
language to benefit from the system whilst at the
same time committing errors which can be identified
reliably.
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The system provides automated feedback on
learners’ writing at three different levels of gran-
ularity: an overall assessment of their proficiency,
a score for each individual sentence, highlighting
well-written passages as well as ones requiring more
work, and specific comments on local issues includ-
ing spelling and word choice.

Computer-based writing tools have been around
for a long time, with Criterion (Burstein et al., 2003,
which also provides a number of features for teach-
ers) and ESL Assistant (Gamon et al., 2009, not
currently available) aimed specifically at second-
language learners, but the idea of indicating the rel-
ative quality of different parts of a text (sentences in
our case) has, to the best of our knowledge, not been
implemented previously. This kind of non-specific
feedback does not provide a precise diagnosis or im-
mediate cure, but might have the advantage of fos-
tering learning.

In addition to describing the SAT system itself, we
present a series of three trials in which learners of
English in a number of educational contexts used the
system as a tool to work on written responses to spe-
cific tasks and improve their writing skills.

2 System

The SAT system is made available to students learn-
ing English as a Web service to which they can
sign up with a code (‘class key’) provided by their
teacher. Once they have filled in a short demo-
graphic questionnaire, the users can respond to one,
two, three or more writing tasks. The students can
save their work at any time and ask the system to
assess the current version of their text, which will

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 32—41,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



800 SAT System
ta)
Home Signed in as [...]. Sign out
Edit task
Home of the future
You see a competition in a magazine: We invite you to write about: [...] The writer of the best article will win a prize! Write your article.

Assessed answer

Overall score

) An overall score is assigned on a scale from red for a text that looks like it may be at intermediate level or below to
green for a text that shows some evidence of being at upper-intermediate level or above.

4

Detailed feedback (Help)

Score feedback ‘ Error feedback Combined

and can be viewed by hovering over the relevant word.

J This view combines the information contained in the score feedback and error feedback views. A red box indicates that explanations/corrections are available

Some people learn a foreign language in order to widen their horizons Others go sailing on the open sea. A maritime |holyday| abroad combines the two.

Perhaps you prefer to stay on dry land. Can @ from where you live?

Change answer

Some people learn a foreign language in order to widen their horizons and etc. Others go sailing on the open sea. A maritime holyday abroad combines the too.

Perhaps you prefer to stay en dry land. Can u sea the see from were you live?

Word count: 45

(_Save

Figure 1: SAT system screen where students can see the automated feedback and revise their piece of writing. The
‘score feedback’ and ‘error feedback’ views are shown in Figures 2 and 3.

give feedback as shown in Figure 1 and described
in more detail in the following subsections. Assess-
ment times are currently around 15sec, which facil-
itates incremental and exploratory editing of a text
to improve it, giving the students the ability to try
out different ways of correcting a problematic turn
of phrase. The teacher can see which students have
signed up and look at the last saved version of their
responses. Finally, the students are asked to answer
a few questions about their experience with the sys-
tem.

2.1 Text assessment

The SAT system provides an overall assessment of
someone’s proficiency by automatically analysing
and scoring the text as a whole. There is a large
body of literature with regard to automated text scor-
ing systems (Page, 1968; Rudner and Liang, 2002;
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Attali and Burstein, 2006; Briscoe et al., 2010). Ex-
isting systems, overviews of which have been pub-
lished in various studies (Dikli, 2006; Williamson,
2009; Shermis and Hamner, 2012), involve a large
range of techniques, such as discriminative and gen-
erative machine learning, clustering algorithms and
vectorial semantics, as well as syntactic parsers.

We approach automated text assessment as a su-
pervised machine learning problem, which enables
us to take advantage of existing annotated data. We
use the publically-available First Certificate in En-
glish (FCE) dataset of upper-intermediate learner En-
glish (Yannakoudakis et al., 2011) and focus on as-
sessing general linguistic competence. Systems that
measure English competence directly are easier and
faster to deploy, since they are more likely to be re-
usable and generalise better across different genres
than topic-specific ones, which are not immediately



usable when new tasks are added, since the model
cannot be applied until a substantial amount of man-
ually annotated responses have been collected for a
specific prompt.

Following previous research, we employ discrim-
inative ranking, which has been shown to achieve
state-of-the-art results on the task of assessing
free-text writing competence (Yannakoudakis et al.,
2011). The underlying idea is that high-scoring texts
(or ‘scripts’) should receive a higher rank than low-
scoring ones. We train a linear ranking perceptron
(Bos and Opper, 1998) on features derived from pre-
vious work (namely, lexical and grammatical prop-
erties of text) and compare it to our previous model
(Yannakoudakis et al., 2011), which is trained using
ranking Support Vector Machines (Joachims, 2002).
Our new perceptron model achieves 0.740 and 0.765
Pearson product-moment (r) and Spearman’s rank
correlation coefficient (p) respectively between the
gold and predicted scores; this is comparable to
our previous SVM model, which achieves 0.741 and
0.773, and the differences are not significant.

In order to provide scoring feedback! based on
the predictions of our model, we use visual presen-
tations. Visualisation techniques allow us to go be-
yond the mere display of a number, can stimulate the
learners’ visual perceptions, and, when used appro-
priately, information can be displayed in an intuitive
and easily interpretable way. Furthermore, aesthet-
ics in computer-based interfaces have been shown to
have an effect on the users. For example, Ben-Bassat
et al. (2006) have found an interdependence between
perceived aesthetics and usability in questionnaire-
based assessments, and have shown that users’ pref-
erences are not necessarily based only upon perfor-
mance; aesthetics also play a role.

More specifically, we assign an overall score on
a scale from red for a text that looks like it may be
at intermediate level or below to green for a text that
shows some evidence of being at upper-intermediate
level (the level assessed by the FCE exam) or above
(i.e., advanced). This is illustrated in Figure 1 below
the Overall score section, where an arrow is used to
indicate the level of text quality on a colour gradient
defined by the two extreme points, red and green.

'Note that ranks can be transformed to scores through linear
regression, while correlation remains unaltered as it is invariant
to linear transformations.
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A text with the highest score possible would indi-
cate that the learner has potentially shown evidence
of being at a level higher than that assessed by FCE,
the latter, of course, being dependent on the extent
to which higher-order linguistic skills are elicited by
the prompts. On the contrary, a very low score in-
dicates poor linguistic abilities corresponding to a
lower level.

Although exams that encompass the full range of
language proficiency exhibited at different stages of
learning are hard to design, the FCE exam, bench-
marked at the B2 level and reserving some of its
score range for performances beneath and beyond,
allows us to roughly estimate someone’s proficiency
as being far below, just below, around or above an
upper intermediate level. The task of predicting at-
tainment levels has recently started to receive atten-
tion (Dickinson et al., 2012; Hawkins and Filipovi¢,
2012).

2.2 Sentence evaluation

The second component of the SAT system automat-
ically assesses and scores the quality of individual
sentences, independently of their context. The chal-
lenge of assessing intra-sentential quality lies in the
limited linguistic evidence that can be extracted au-
tomatically from relatively short sentences for them
to be assessed reliably, in addition to the difficulty
in acquiring annotated data, since rating a response
sentence by sentence is not something examiners
typically do and would therefore require an addi-
tional and expensive manual annotation effort.
Previous work has primarily focused on automatic
content scoring of short answers, ranging from a few
words to a few sentences (Pulman and Sukkarieh,
2005; Attali et al., 2008; Mohler et al., 2011; Ziai
et al., 2012). On the other hand, scoring of individ-
ual sentences with respect to their linguistic quality,
specifically in learner texts, has received consider-
ably less attention. Higgins et al. (2004) devised
guidelines for the manual annotation of sentences in
learner texts, and evaluated a rule-based approach
that classifies sentences with respect to clarity of ex-
pression based on grammar, mechanics and word us-
age errors; however, their system performs binary
classification, whereas we are focusing on scoring
sentences. Writing instruction tools, such as Crite-
rion (Burstein et al., 2003), give advice on stylistic



and organisational issues and automatically detect a
variety of errors in the text, though they do not ex-
plicitly allow for an overall evaluation of sentences
with respect to various writing aspects. The latter,
used in combination with an error feedback compo-
nent (see Section 2.3), can be a useful instrument
informing learners about the severity of their mis-
takes; for example, although sentences may contain
some errors, they may still maintain a certain level
of acceptability that does not impede communica-
tion. Moreover, indicating problematic regions may
be better from a pedagogic point of view than detect-
ing and correcting all errors identified in the text.
To date, there is no publically available annotated
dataset consisting of sentences marked with a score
representing their linguistic quality. Manual annota-
tion is typically expensive and time-consuming, and
a certain amount of annotator training is generally
required. Instead, we exploit already available an-
notated data — scores and error annotation in the FCE
dataset — and evaluate various approaches, two of
which are: a) to use the script-level model (see Sec-
tion 2.1) to predict sentence quality scores, and b) to
use the script-level score divided by the total num-
ber of (manually annotated) errors in a sentence as
pseudo-gold labels to train a sentence-level model.
As the models above are expected to contain a cer-
tain amount of noise, it is imperative that we iden-
tify evaluation measures that are indicative of our
application — that is, assign higher scores to high-
quality sentences compared to low-quality ones —
and not only depend on the labels they have been
trained on. More specifically, we use correlation
with pseudo-gold scores (7y and pg; not applicable
to the script-level model), correlation with the script-
level scores by first averaging predicted sentence-
level scores (75 and ps), correlation with error counts
(re and pe), average precision (AP) and pairwise ac-
curacy. AP is a measure used in information retrieval
to evaluate systems that return a ranked list of doc-
uments. Herein, sentences are ranked by their pre-
dicted scores, precision is calculated at each correct
sentence (that is, containing no errors), and aver-
aged over all correct sentences (in other words, we
treat sentences with no errors as the ‘relevant doc-
uments’). Pairwise accuracy is calculated based on
the number of times the corrected sentence (avail-
able through the error annotation in the FCE dataset)
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is ranked higher than the original one written by the
candidate, ignoring sentences without errors. Corre-
lation with error counts, average precision and pair-
wise accuracy are particularly important as they re-
flect more directly the extent to which good and bad
sentences are discriminated. Again, in both cases,
we employ a linear ranking perceptron.

We conducted a series of experiments on a sep-
arate development set to evaluate the performance
of features beyond the ones used in the script-level
model. The final results, reported in Table 1, are
calculated on the FCE test set (Yannakoudakis et al.,
2011).

Our best configuration is model b, which achieves
the highest results according to most evaluation
measures with a feature space consisting of 1) er-
ror counts identified through the absence of word
trigrams in a large background corpus, 2) phrase-
structure rules, 3) presence of frequent errors, as
well as the number of words defining an error, as
described in Section 2.3, 4) the presence of main
verbs, nouns, adjectives, subordinating conjuctions
and adverbs, 5) affixes and 6) the presence of clausal
subjects and modifiers. The texts were parsed using
RASP (Briscoe et al., 2006).

Model a, the script-level model, does not work as
well at the sentence level. However, it does perform
better when evaluated against script-level scores (7
and ps), and this is expected given that it is trained
directly on gold script-level scores. On the other
hand, this evaluation measure is not as indicative of
good performance in our application as the others,
as it does not take into account the varying quality
of individual sentences within a script.

Training the script-level model with different fea-
ture sets (including those utilised in the sentence-
level model) did not yield an improvement in per-
formance (the results are omitted due to space re-
strictions). Additional experiments were conducted
to investigate the effect of training the sentence-level
model with different pseudo-gold labels (e.g., addi-
tive/subtractive pseudo-gold scores rather than divi-
sive/multiplicative), but the results are not reported
here as the difference in performance was not sub-
stantial.

Table 1 shows that better performance can be
achieved with our pseudo-gold labels, used to train
a model at the sentence level, rather than gold la-



Model a | Model b
Ty — 0.550
Pg — 0.646
T 0.572 0.385
Os 0.578 0.301
Te -0.111 -0.750
Pe -0.078 | -0.702
AP 0.393 0.747
Pairwise
Correct 0.608 0.703
Incorrect 0.359 0.204

Table 1: Results on the FCE test set for the script-level
model (a) and our model (b).

bels at the script level. To evaluate this further,
we trained a sentence-level model using the script-
level scores as labels (that is, sentences within the
same script are all assigned the same label/score).
However, this did not improve performance (again,
the results are omitted due to space restrictions).
We also point out that the best-performing feature
space (described above) is based on text properties
that are more likely to be present in relatively short
sentences (e.g., the presence of main verbs), com-
pared to those used for script-level models in previ-
ous work (Yannakoudakis et al., 2011), such as word
and part-of-speech bigrams and trigrams, which may
be too sparse for a sentence-level model.

Analogously to what we did to present the over-
all score, we developed a sentence score feedback
view to indicate the general quality of the sentences,
as given by our best model, by highlighting each of
them with a background colour ranging from green
for a well-written sentence, via yellow and orange
for a sentence which the system thinks is accept-
able, to dark orange and red for a sentence which
may have a few problems. Figure 2 shows how the
SAT system evaluates and colour-codes a few au-
thentic student-written sentences containing errors,
as well as their corrected counterparts based on the
error-coding in the FCE test set. Overall, the system
correctly identifies correct and incorrect versions of
each sentence, attributing a higher score (greener
colour) to the corrected sentence in each pair.
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2.3 Word-level feedback

Basic spelling checkers have been around since the
1970s and grammar checkers since the 1980s (Ku-
kich, 1992), but misleading ‘corrections’ may be be-
wildering (Galletta et al., 2005), and the systems do
not always focus on the kinds of error frequently
committed, even less so in the case of learners as
was pointed out early on by Liou (1992), who tested
commercial grammar checkers on and developed a
system for detecting common errors in Taiwanese
learners’ writing.

For word-level feedback within the SAT system,
we have implemented a method similar to one we
have used earlier in the context of pre-annotation of
learner corpora (Andersen, 2011). To ensure high
precision and good coverage of local errors typi-
cally committed by learners, error rules are gen-
erated from the Cambridge Learner Corpus (CLC)
(Nicholls, 2003) to detect word unigrams, bigrams
and trigrams which have been annotated as incorrect
at least five times and at least ninety per cent of the
times they occur. This way, rules can be extracted
from the existing error annotation in the corpus,
obviating the need for manually constructed mal-
rules, although the rules obtained by the two differ-
ent methods may to some extent be complementary.
In addition to corpus-derived rules, many classes of
incorrect but plausible derivational and inflectional
morphology are detected by means of rules derived
from a machine-readable dictionary. Many mistakes
are still not detected, but precision has been found to
be more important in terms of learning effect (Na-
gata and Nakatani, 2010), and errors missed by this
module will often give lower sentence scores.

Figure 3 illustrates some types of error detected
by the system. The feedback text is generated from
a small number of templates corresponding to differ-
ent categories of error marked up in the CLC.

We are currently working on extending this part
of the system with more general rules in addition to
word n-grams, e.g., part-of-speech tags and gram-
matical relations, in order to detect more errors with-
out loss in precision.

3 Trials

After the SAT system had been developed, a series
of trials were set up in order to test the online sys-



Score feedback Error feedback Combined

You can enjoy watching a film if you have some free time.

d This view indicates the general quality of each sentence using a colour ranging from green for a well-written sentence via yellow and orange for a sentence
which the system thinks is acceptable, to red for a sentence which may have a few problems.

In the past people didn't have electricity and if they wanted, for example, to read or to cook something they used to light a fire.
You must have a TV because you can learn about what is happening in the world and you can see some places that you haven't been to.

In our daily life, however, we seldom notice how easy a life we've got or, what is more, how difficult our grandparents found it.

Score feedback Error feedback Combined

You can enjoy you time to watch a film if you have free time.

€D This view indicates the general quality of each sentence using a colour ranging from green for a well-written sentence via yellow and orange for a sentence
which the system thinks is acceptable, to red for a sentence which may have a few problems.

In the past the people didn't have electiity and if they wanted for example to read or to cook something they used to do in the fire.
You must have TV because you can liten what it happend in the world and you can watch some places that you didn't go.

In our daily life, however, we seldom notice how much convinient life we've got, what is more, how much inconvinient our grandparents had got.

Figure 2: Examples of correct sentences (top) and incorrect ones (bottom) colour-coded by the SAT system.

Combined |

Score feedback Error feedback |

over a red box highlights the associated word/error.
Response text

Some people learn a foreign language in order to widen their horizons
Others go sailing on the open sea.

A maritime abroad combines the two.

Perhaps you prefer to stay on dry land.

Can El from where you live?

() This view identifies specific words that may have been used incorrectly. Explanations and suggested corrections are provided in a separate column. Hovering

Possible errors
Insertion: This word may not actually be needed.
Substitution: A different word might work better here. Have you
contemplated using 'so on'?

holyday | Spelling: This looks like a misspelling. People often write this instead of
‘holiday'.

Register: The word you have chosen might be inappropriate for this writing
task. If so, 'you' would be a more conventional choice.

Confusion: You may have cenfused this with a similar-looking word. 'see’
seems more likely in this context.

Insertion: This word may not actually be needed.

Confusion: You may have confused this with a similar-looking word. 'sea’
seems more likely in this context.

Figure 3: The error feedback view identifies specific words that may have been used incorrectly. Explanations and
suggested corrections are provided in a separate column. The system actually proposes two different corrections for
and etc., namely efc. and and so on; the user will have to choose one or the other. The confusion between the verb see
and the noun sea is identified, but the he is not actually unnecessary; in this case, the system has been led astray by

the surrounding errors.

tem and to collect feedback from language learners
and their teachers in a variety of contexts. Three tri-
als were undertaken in November 2012, December
2012 and in March 2013, with changes made to the
system between each pair of trials.

English Profile Network member institutions
were contacted who had access to language learners
and who had previously participated in data collec-
tion for the English Profile Programme?. Teachers at
universities, secondary schools and private language
schools signed up for two or more trials so that their
learners could use and provide feedback on several
iterations of the SAT system. Certificates of partici-

2See www.englishprofile.org
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pation were offered to encourage involvement in the
trials.

Ten institutions were involved from nine coun-
tries, namely Belgium, the Czech Republic, France,
Lithuania, Poland, Romania, Russia, Slovakia and
Spain. Eight universities, one secondary school and
one private language school were represented, in-
cluding specialist and generalist institutions of ed-
ucational sciences, agricultural science, veterinary
medicine and foreign languages. Each trial had be-
tween 4 and 8 institutions taking part, and each in-
stitution participated in two or three trials with many
students undertaking more than one trial.

All students who took part in the trials, over 450



in total, were expected to be at or above the upper-
intermediate (CEFR B2) level as this was the level at
which the SAT system was designed to function.

Three initial sets of tasks were developed for the
planned system trials, each set consisting of three
short written prompts which asked the users to write
on a specified topic for a particular purpose, for ex-
ample:

Daily life

Your English class is going to make a
short video about daily life in your town.
Write a report for your teacher, suggest-
ing which activities should be filmed, and
why.

Tasks were based on retired questions from an in-
ternational proficiency test at B2 level of the CEFR.
Each task was given a short name which was shown
in the SAT system in order for the users to select the
most interesting or relevant task for themselves.

A short set of instructions was produced for both
teachers and students which was emailed to the main
contact in each institution and passed on to their col-
leagues, teachers and students who were interested
in taking part in the trial.

The trials operated as follows:

e The main institutional contact receives an invi-
tation to participate in the trials.

e Interested institutions receive instructions and
confirm the number of class keys required
(sign-up codes for the system).

e Main contact and teachers at each institution
log in and work through the system as if they
are a language learner, by completing a demo-
graphic questionnaire, writing 1-3 tasks which
are assessed by the system, and finally complet-
ing a short user satisfaction questionnaire.

e Students work through the SAT system either
with the support of their teacher in class or re-
motely.

3.1 SAT system usage

During Trial 1, on the busiest day there were 155
submissions and the highest number of users on
a single day was 32. These figures indicate that
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Revisions | Count
1 292
2 272
3 142
4 78
5 50
6 28
7 15
8 25
9 11

10 14

11-15 21

1620 6

20— 5

Table 2: Number of revisions per task response.

all users were submitting their work for assessment
more than once, which suggests that the system is
being used in an iterative fashion as envisaged. Dur-
ing Trial 2, the busiest day saw more than twice as
many submissions as during the first trial (442), and
the most people online on any one day almost dou-
bled to 62. Across both trials we collected around
3000 submissions in total, including revisions; the
average number of revisions for a submitted piece
of writing is 3.2 with the highest figure being 54
revisions (see Table 2 for details). This suggests
that some users write their first response, then make
changes to one word or phrase at a time, resulting in
such a large number of revisions. When more than
one revision has been submitted, the score given by
the system to the last revision is higher than that
given to the initial revision in over 80% of the cases.
Current changes to the system allowing system ad-
ministrators to check on intermediate versions of
submitted texts are underway.

3.2 Feedback

In addition to looking at the writing submitted by
users of the system, there was both numerical and
written feedback available to the system developers.
This was used to suggest changes to the system at
subsequent trials.

As can be seen from Table 3, user satisfaction
scores were generally high and increased from Trial
1 to Trial 2. In the first pilot, the written feed-
back from instructors was generally positive whilst



Trial 1 | Trial 2
Using the SAT system helps me to write better in English. 3.80 3.92
I find the SAT system useful for understanding my mistakes. 3.74 3.96
I think the sentence colouring is useful. 3.74 4.15
I think the word-level information [error feedback] is useful. 3.86 4.12
The SAT system is easy to use. 4.45 4.49
The feedback on my writing is clear. 3.80 3.93
If you have used the SAT system before, has it improved since the last time? 3.86

Table 3: Average feedback scores on a scale from 1 (strongly disagree) to 5 (strongly agree).

the learner feedback was mixed, especially when it
comes to sentence evaluation:

In summary, I liked this system, because
the sentence colouring suggests me to
think about my writing style, mistakes,
what I should improve, change. This sys-
tem is not like a teacher, who checks all
our errors, but makes us develop our crit-
ical thinking, which is the most important
for writing especially. [...]

It’s okay the way of colouring system, the
problem is that it doesn’t tell you specifi-
cally what’s wrong with constructions so
you have think what you failed.

The fact that the system provides almost immediate
feedback has been appreciated:

I like that the paragraphs which I wrote
assesed so quickly. ... Secondly, I really
like that student can correct his text till it
gets ideal.

Users have also made suggestions for improve-
ments, which have been essential for deciding which
parts of the system should be developed further.

3.3 System changes

As aresult of feedback and the team’s extensive use
of the system, after each trial changes were made
both to the on-screen experience and behind the
scenes. After Trial 1, the system was amended to
enable users to see paragraph breaks in the corrected
version (which before had not been shown in the as-
sessed view of the text). There was also a new error
view with permanently visible explanations and ex-
amples and an additional question on the feedback
questionnaire which asked whether users felt the
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Words | Count

0- 99 540
100-199 | 1,294
200-299 928
300-399 201
400-499 67
500-999 26
1,000- 36

Table 4: Number of words per submission.

system had improved since the previous time they
used it. Behind the scenes, the server was upgraded
to cope with anticipated demand and code was writ-
ten so that administrators could review statistics on
usage.

At the time of writing the third SAT system trial
was underway. In the first two trials the total number
of words collected was over 600,000 with an average
response length of around 1100 characters or 200
words. Encouragingly, there were many longer re-
sponses including twelve over 1080 words in length
and the longest written to date is 1773 words. These
figures indicate that the system is not restrictive, but
encourages and inspires students to write. Table 4
gives an overview of the script length distribution.

Following two successful trials, the third trial
aimed to involve new and existing users and to pro-
vide more detailed teacher feedback.

4 Conclusions

In this paper, we described a tool that provides feed-
back to learners of English at three different levels
of granularity: an overall assessment of their profi-
ciency, assessment of individual sentences, and di-
agnostic feedback on local issues including spelling
and word choice. We argued that the use of visual-



isation techniques is important, as they allow us to
go beyond the mere display of a number, can stimu-
late the learners’ visual perceptions, and can display
information in an intuitive and easily interpretable
way. The usefulness and usability of the tool as a
whole, as well as of its components, was confirmed
through questionnaire-based evaluations, where, for
example, the perceived usefulness of the sentence
colouring received an average of 4.15 on a 5-point
scale.

The first component of the SAT system, script-
level assessment, uses a machine learner to predict
a score for a text and roughly estimate someone’s
proficiency level based on lexical and grammatical
features. The second component allows for an auto-
matic evaluation of the linguistic quality of individ-
ual sentences. We proposed a method for generat-
ing sentence-level scores, which we use for training
our model. Using this method, we were able to learn
what features can be used to evaluate linguistic qual-
ity of (relatively short) sentences. Indicating prob-
lematic regions via highlighting of sentences may be
better from a pedagogic point of view than detecting
and correcting all errors identified in the text. The
third component automatically provides diagnostic
feedback on local errors with high precision on the
basis of a few templates, without relying on manu-
ally crafted rules.

The trials undertaken so far have improved the
functionality of the system in regard to what is on
offer to teachers and their students, but they have
also provided the basis for further research and de-
velopment to enhance the system’s functionality and
design and move towards wider deployment. We
plan to continue improving the methodologies used
for providing feedback to learners, as well as adding
further functionality, such as L1-specific feedback.
Another logical next step would be to continue to-
wards lower levels of granularity, moving from the
sentence as the unit of assessment to clauses and
phrases, which may be particularly beneficial for
more advanced language users who write longer and
more complex sentences.
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Abstract

We present the first system developed for auto-
mated grading of high school essays written in
Swedish. The system uses standard text qual-
ity indicators and is able to compare vocabu-
lary and grammar to large reference corpora of
blog posts and newspaper articles. The system
is evaluated on a corpus of 1 702 essays, each
graded independently by the student’s own
teacher and also in a blind re-grading process
by another teacher. We show that our system’s
performance is fair, given the low agreement
between the two human graders, and further-
more show how it could improve efficiency in
a practical setting where one seeks to identify
incorrectly graded essays.

1 Introduction

Automated Essay Scoring (AES) is the field of auto-
matically assigning grades to student essays (Sher-
mis and Burstein, 2003; Dikli, 2006).

Previous work on AES has primarily focused on
English texts, and to the best of our knowledge no
AES system for Swedish essays has been published.
We exploit some peculiarities of the Swedish lan-
guage, such as its compounding nature, to design
new features for classification. We also use con-
structions in the shape of hybrid n-grams (Tsao and
Wible, 2009) extracted from large corpora in the
classification.

Earlier results from this work have been presented
in the B.A. thesis of Smolentzov (2013), where fur-
ther details can be found. Source code, a trained
model as well as an on-line version of our tool are
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available from the website of the Department of Lin-
guistics.! Due to legal restrictions, we are currently
unable to publish the corpus of essays used for train-
ing the model and in our evaluation. While this is
very regrettable, there are so far no suitable training
corpora available for Swedish that are publicly avail-
able. We hope in the future to be able to produce an
anonymized version of the corpus, to be shared with
other researchers.

2 Data

We use a corpus of essays from the essay writing
part of the Swedish high school national exams in
Swedish.? These were collected using random sam-
pling by Hinnerich et al. (2011), who had them dig-
itized, anonymized, and re-graded by high school
teachers experienced with grading the national ex-
ams. The essays were originally graded by the stu-
dent’s own teacher. In total, 1 702 essays have all the
information we require: digitized text and the two
grades. The size of the corpus is 1 116 819 tokens,
or an average of 656 per essay. The essays have
been automatically annotated with lemma and part
of speech (PoS) information using Stagger (Ostling,
2012).

There are four grades: 1G (fail), G (pass), VG
(pass with distinction) and MVG (excellent). Hin-
nerich et al. (2011) found that the agreement be-
tween the two human graders is rather low, and in
the set of essays used in this study only 780 (45.8%)
of the 1 702 essays received the same grade by both

"http://www.ling.su.se/aes
Course Svenska B, fall 2005/spring 2006.
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Teacher

1G G VG MVG | Sum

g 1G 74 147 50 5| 276
£ G 68 437 293 55| 853
2 VG 12 136 223 75 | 446
= MVG 1 25 55 46 | 127
Sum 155 745 621 181 | 1702

Table 1: Confusion matrix for the grades assigned by the
students’ own teachers, and during the blind re-grading
process. In total, 780 essays (45.8%) are assigned the
same grade. Linear weighted x = 0.276

graders. In 148 cases (8.7%), the grade difference
was more than one step.

In Table 1, we can clearly see that the blind
graders’ grades are generally lower. The disagree-
ment is also more severe for the grades at the ex-
tremes of the scale.

It is important to note that the grading guide-
lines for the national exams do not focus exclu-
sively on the quality of the language used, but rather
on the ability of the student to produce a coher-
ent and convincing argument, understanding and re-
lating to other texts, or describing personal experi-
ences. Some work has been carried out using high-
level features in automated essay scoring. Milt-
sakaki and Kukich (2004) use some manual anno-
tation to explore the role of coherence, and Attali
and Burstein (2005) automatically analyze the over-
all structure of essays. Others take the contents of
essays into account (Landauer et al., 2003), which
is suitable for essay questions in non-language sub-
jects.

We will, however, focus on form rather than con-
tent. One important reason for this is that our cor-
pus of essays is spread out over 19 different topics
(in several cases with as few as 20-30 essays each),
where the type of text expected can vary consider-
ably between topics.

3 Methods

We use a supervised machine learning approach,
based on a Linear Discriminant Analysis classifier in
the implementation of Pedregosa et al. (2011). Each
essay is represented by a feature vector, whose con-
tents we will describe in some detail in the following
sections.
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It is important to note that we are using corre-
lations between grade and different features of the
text, but the relationship between these features and
the qualities of the essay on which the grade should
be based may be complex. As a cautionary tale, we
could mention that vocabulary related to cell phones
was found to correlate strongly with essay grade. It
turned out that poor students showed a strong pref-
erence for one of the given essay topics, which hap-
pened to center around cell phones. In the field of
AES, it is particularly important to keep in mind that
correlation does not imply causation.

3.1 Simple features

We use a number of features that may be directly
measured from the text. These are presented be-
low, roughly in decreasing order of correlation with
essay grade. Most of the features have been dis-
cussed in previous literature on AES (Attali and
Burstein, 2005), and specifically in the context of
Swedish high school essays by Hultman and West-
man (1977). Some further features that did not con-
tribute much to grading accuracy were tried, but will
be omitted from this discussion.

Text length Since the essays are composed in a
classroom setting with a fixed amount of time allot-
ted (five hours), a student’s fluency in writing is di-
rectly mirrored in the length of an essay, which be-
comes the feature that most strongly correlates with
grade. While one might want to exclude the length
from consideration in the grading process, it is im-
portant to keep this correlation in mind since other
measures may correlate with length, and therefore
indirectly correlate with essay grade without con-
tributing any new information.

Average word length The average number of let-
ters per word also correlates with grade but only
weakly with the length (in words). It does however
correlate strongly with the distribution of parts of
speech, primarily pronouns (which tend to be short)
and nouns (which tend to be long, particularly since
Swedish is a compounding language).

OVIX lexical diversity measure OVIX (Hult-
man, 1994) was in fact developed for the very
purpose of analyzing lexical diversity in Swedish
high school essays, and has been found to correlate



strongly with grade in this setting. At the same time,
the measure is mostly independent of text length.
log nyy
OVIX = log nt()kens/ <2 - gt)pes)
log Ntokens

Part of speech distribution The relative frequen-
cies of different parts of speech also correlate with
essay grade, although more weakly so than the re-
lated measure of average word length.

3.2 Corpus-induced features

While the size our corpus of graded student essays
is in the order of one million words, much larger
amounts of Swedish text are available from differ-
ent sources, such as opinion pieces, news articles,
and blog posts. Due to the large amounts of text
available, from tens of millions to several billions of
words depending on the source, we can extract re-
liable statistics even about relatively rare language
phenomena.

By comparing student essays to statistics gathered
from different text types, we obtain new variables
that often correlate strongly with essay grades.

PoS tag cross-entropy The average cross-entropy
per token from a PoS trigram model (with simple
additive smoothing) is used to model the similarity
on a syntactic level. This includes both elements of
style (e.g. frequent use of passive constructions) and
mechanics (e.g. agreement errors). We use a corpus
of news texts? to train the model.

Vocabulary cross-entropy With word frequency
statistics from two different text sources, we com-
pute the average cross-entropy per token given a un-
igram model, and use the difference between these
values for the two models to indicate which type of
text the present essay is most similar to. In our ex-
periments, the two text sources are of equal size and
consist of the news texts mentioned above, and a cor-
pus of blog posts.

Hybrid n-gram cross-entropy We can general-
ize the vocabulary cross-entropy measure described
above by using hybrid n-grams (Tsao and Wible,
2009) rather than single words. This allows for some

3The corpus consists of ca 200 million words, crawled from
the WWW editions of Dagens Nyheter and Svenska Dagbladet.
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patterns that are neither entirely grammatical nor en-
tirely lexical to be used, complementing the two pre-
vious approaches. The same news and blog corpora
as above are used.

3.3 Language error features

Spelling errors We implemented a simple spell
checker, using the SALDO lexicon (Borin and Fors-
berg, 2009) and statistics from a corpus of news text.
On average, a misspelling was detected in 0.63% of
all word tokens, or about four misspellings per essay.
Manual inspection showed that the spell checker
made some errors, So it is reasonable to assume that
results could be improved somewhat using a more
accurate tool.

Split compound errors Swedish is a compound-
ing language, with noun compounding particularly
frequent. It is a fairly common error among inexpe-
rienced writers to separate the segments of a com-
pound word. We use word uni- and bigram statistics
from a corpus of news texts to find instances of these
errors in the essays. Only 0.10% of word tokens
are found to be incorrectly split, or less than one
instance per essay on average. As expected, there
is a (weak) negative correlation between split com-
pound frequency and grade, which seems to be due
to a small number of poor essays with many such
errors.

3.4 Evaluation measures

The simplest measure of overlap between two
graders (either among humans, or between human(s)
and machine) is the percentage of essays on which
they agree about the grade. However, in our set-
ting this is not so informative because there is a
high chance of graders assigning the same grade by
chance, and this probability varies between different
pairs of graders.

This makes comparisons difficult, so we instead
use Cohen’s kappa value (Cohen, 1968), linearly
weighted according to the numeric values of grades
used by the Swedish school system: IG corresponds
to 0 points, G to 10, VG to 15, and MVG to 20.
A kappa value of 1 would indicate perfect agree-
ment, while 0 would mean random agreement. The



Feature Correlation
ntokenso'25 0.535
Ntokens 0.502
hybrid n-gram cross-entropy ~ 0.363
vocabulary cross-entropy 0.361
average word length 0.307
OVIX 0.304
nlong/ntokens 0.284
spelling errors -0.257
PoS cross-entropy 0.216
split compound errors -0.208

Table 2: Correlation between grade (average of two
graders) and features. Interactions between features are
not taken into account. Only features with Pearson coef-
ficient p > 0.2 are included, all are highly significant.

weighted kappa value is computed as:
2y wii O

25 wijEij
where O;; is the number of times annotator 1 as-
signed grade ¢ and annotator 2 assigned grade j,
while FEj; is the expected number of times for the
same event, given that both annotators randomly as-
sign grades according to a multinomial distribution.

wj; is the difference in score between grades 7 and
7, according to the above.

k=1

4 Results

4.1 Feature-grade correlations

First, we look at the correlations between the
human-assigned grades and individual features.
Since a linear machine learning algorithm is used,
we use the Pearson coefficient to measure linear de-
pendence. Spearman’s rank correlation coefficient
gives similar results.

From Table 2 we can see that only ten of the
features show a correlation above 0.2. There were
statistically significant (but weak) correlations be-
low this threshold, e.g. the ratios of different parts
of speech, where the strongest correlations were
p = —0.192 (pronouns) and p = 0.177 (preposi-
tions).

4.2 Automated grading

Table 3 shows the performance of our system, using
the leave-one-out evaluation method on all 1 702 es-
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Computer
1G G VG MVG | Sum
o IG 107 176 6 0| 289
5= G 61 752 110 11| 934
£ VG 2 225 189 17 | 433
2 MVG 0 9 27 10| 46
Sum 170 1162 332 38 | 1702

Table 3: Confusion matrix for the grades assigned by the
system, and the average (rounded down) of the two hu-
man graders. In total, 1 058 essays (62.2%) are assigned
the same grade, x = 0.399.

says, i.e. evaluating each essay using a model trained
on all the other 1 701 essays. We see that the com-
puter’s grades are biased towards the most com-
mon grade (G, pass), but that overall accuracy is
quite high (62.2%, k = 0.399) compared to 58.4%
(k = 0.249) when using only the strongest feature
(4th root of essay length), 54.9% when assigning
the most common grade to all essays, or the 45.8%
(k = 0.276) agreement between the two human
graders.

It is also encouraging to see that only 28 essays
(1.6%) receive a grade by the computer that differs
more than one step from the human-assigned grade.
The corresponding figure is 148 essays (8.7%) be-
tween the two humans.

When training and evaluating using only the
grades of the blind grader, the agreement between
computer and human was 57.6% (x = 0.369), and
only 53.6% (k = 0.345) using the grades of the
student’s teacher. Both these figures are below the
62.2% (x = 0.399) obtained when using the aver-
age grade, and the explanation closest at hand is that
the features we model (partially) represent or corre-
late with the actual grading criteria of the exam.

Since the teachers are affected by various sources
of bias (Hinnerich et al., 2011), a weaker correla-
tion (mirrored by a lower ) to any kind of “objec-
tive” measure would be expected. Similarly, using
the average of two graders should decrease the large
individual variance due to the difficult and partially
subjective nature of the task, leading to a stronger
correlation with relevant features of the text.



4.3 Re-grading

In 148 cases (8.7%) of our 1 702 essays, the grade
assigned in the blind re-grading process differs by
more than one step from the original grade, and we
performed an experiment to see how efficiently these
highly deviant grades could be identified. This sce-
nario could arise within an organization responsi-
ble for evaluating the consistency in grading a na-
tional exam, where resources are insufficient for re-
grading all essays manually. Given a training corpus
of graded essays, our system could then be used to
select candidates among the larger set of essays for
further manual re-grading.

In other to evaluate the usefulness of this method,
we let the system re-grade all essays based on the
blind grades of all other essays (leave-one-out). In
the cases where the system’s grade differs by more
than one step from the teacher’s grade, we check
whether the difference between the system’s grade
and that of the blind grader is less than between the
two human graders. It turns out that we can correctly
identify 43 (29.1%) of the 148 cases in this way, with
only 91 essays (5.3% of the total) considered.

In a scenario where we have a large amount of
essays but only the resources to manually re-grade
a fraction of them, we can thus increase the ratio of
highly deviant grades found from 8.7% (148/1702,
by randomly choosing essays to re-grade) to 47%
(43/91, by only re-grading those identified by our
system).

5 Conclusions and future work

We have presented a system for automatic grading
of Swedish high school essays. While its accu-
racy is not high enough to be used in grading high-
stakes exams, we have demonstrated its usefulness
in a practical setting of finding instances of incorrect
grading (as identified by humans). Novel aspects in-
clude features based on constructions induced using
unsupervised methods, and on (language-specific)
compounding errors.

It would be interesting to apply some of our meth-
ods to other languages and other data sets, for in-
stance of second language learners. Since our sys-
tem is quite general, all that would be needed to
adapt it to another domain is a training corpus of
graded essays. Adapting to another language would
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in addition require a PoS tagger and suitable unla-
beled text corpora.
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Abstract

Native Language Identification, or NLI, is the
task of automatically classifying the L1 of a
writer based solely on his or her essay writ-
ten in another language. This problem area
has seen a spike in interest in recent years
as it can have an impact on educational ap-
plications tailored towards non-native speak-
ers of a language, as well as authorship pro-
filing. While there has been a growing body
of work in NLI, it has been difficult to com-
pare methodologies because of the different
approaches to pre-processing the data, differ-
ent sets of languages identified, and different
splits of the data used. In this shared task, the
first ever for Native Language Identification,
we sought to address the above issues by pro-
viding a large corpus designed specifically for
NLI, in addition to providing an environment
for systems to be directly compared. In this
paper, we report the results of the shared task.
A total of 29 teams from around the world
competed across three different sub-tasks.

1 Introduction

One quickly growing subfield in NLP is the task
of identifying the native language (L1) of a writer
based solely on a sample of their writing in an-
other language. The task is framed as a classifica-
tion problem where the set of L1s is known a priori.
Most work has focused on identifying the native lan-
guage of writers learning English as a second lan-
guage. To date this topic has motivated several pa-
pers and research projects.

Native Language Identification (NLI) can be use-
ful for a number of applications. NLI can be used in
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educational settings to provide more targeted feed-
back to language learners about their errors. It
is well known that speakers of different languages
make different kinds of errors when learning a lan-
guage (Swan and Smith, 2001). A writing tutor
system which can detect the native language of the
learner will be able to tailor the feedback about the
error and contrast it with common properties of the
learner’s language. In addition, native language is
often used as a feature that goes into authorship pro-
filing (Estival et al., 2007), which is frequently used
in forensic linguistics.

Despite the growing interest in this field, devel-
opment has been encumbered by two issues. First
is the issue of data. Evaluating an NLI system re-
quires a corpus containing texts in a language other
than the native language of the writer. Because of
a scarcity of such corpora, most work has used the
International Corpus of Learner English (ICLEv2)
(Granger et al., 2009) for training and evaluation
since it contains several hundred essays written by
college-level English language learners. However,
this corpus is quite small for training and testing
statistical systems which makes it difficult to tell
whether the systems that are developed can scale
well to larger data sets or to different domains.

Since the ICLE corpus was not designed with the
task of NLI in mind, the usability of the corpus for
this task is further compromised by idiosyncrasies
in the data such as topic bias (as shown by Brooke
and Hirst (2011)) and the occurrence of characters
which only appear in essays written by speakers of
certain languages (Tetreault et al., 2012). As aresult,
it is hard to draw conclusions about which features

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 48-57,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



actually perform best. The second issue is that there
has been little consistency in the field in the use of
cross-validation, the number of L1s, and which L1s
are used. As a result, comparing one approach to
another has been extremely difficult.

The first Shared Task in Native Language Identifi-
cation is intended to better unify this community and
help the field progress. The Shared Task addresses
the two deficiencies above by first using a new cor-
pus (TOEF11, discussed in Section 3) that is larger
than the ICLE and designed specifically for the task
of NLI and second, by providing a common set of
L1s and evaluation standards that everyone will use
for this competition, thus facilitating direct compar-
ison of approaches. In this report we describe the
methods most participants used, the data they eval-
uated their systems on, the three sub-tasks involved,
the results achieved by the different teams, and some
suggestions and ideas about what we can do for the
next iteration of the NLI shared task.

In the following section, we provide a summary
of the prior work in Native Language Identification.
Next, in Section 3 we describe the TOEFL11 cor-
pus used for training, development and testing in this
shared task. Section 4 describes the three sub-tasks
of the NLI Shared Task as well as a review of the
timeline. Section 5 lists the 29 teams that partici-
pated in the shared task, and introduce abbreviations
that will be used throughout this paper. Sections 6
and 7 describe the results of the shared task and a
separate post shared task evaluation where we asked
teams to evaluate their system using cross-validation
on a combination of the training and development
data. In Section 8 we provide a high-level view of
the common features and machine learning methods
teams tended to use. Finally, we offer conclusions
and ideas for future instantiations of the shared task
in Section 9.

2 Related Work

In this section, we provide an overview of some of
the common approaches used for NLI prior to this
shared task. While a comprehensive review is out-
side the scope of this paper, we have compiled a
bibliography of related work in the field. It can be
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downloaded from the NLI Shared Task website. !

To date, nearly all approaches have treated the
task of NLI as a supervised classification problem
where statistical models are trained on data from the
different L1s. The work of Koppel et al. (2005) was
the first in the field and they explored a multitude
of features, many of which are employed in several
of the systems in the shared tasks. These features
included character and POS n-grams, content and
function words, as well as spelling and grammati-
cal errors (since language learners have tendencies
to make certain errors based on their L1 (Swan and
Smith, 2001)). An SVM model was trained on these
features extracted from a subsection of the ICLE
corpus consisting of 5 L1s.

N-gram features (word, character and POS) have
figured prominently in prior work. Not only are they
easy to compute, but they can be quite predictive.
However, there are many variations on the features.
Past reseach efforts have explored different n-gram
windows (though most tend to focus on unigrams
and bigrams), different thresholds for how many n-
grams to include as well as whether to encode the
feature as binary (presence or absence of the partic-
ular n-gram) or as a normalized count.

The inclusion of syntactic features has been a fo-
cus in recent work. Wong and Dras (2011) explored
the use of production rules from two parsers and
Swanson and Charniak (2012) explored the use of
Tree Substitution Grammars (TSGs). Tetreault et
al. (2012) also investigated the use of TSGs as well
as dependency features extracted from the Stanford
parser.

Other approaches to NLI have included the use of
Latent Dirichlet Analysis to cluster features (Wong
et al., 2011), adaptor grammars (Wong et al., 2012),
and language models (Tetreault et al., 2012). Ad-
ditionally, there has been research into the effects of
training and testing on different corpora (Brooke and
Hirst, 2011).

Much of the aforementioned work takes the per-
spective of optimizing for the task of Native Lan-
guage Identification, that is, what is the best way of
modeling the problem to get the highest system ac-
curacy? The problem of Native Language Identifica-

"http://nlisharedtask2013.org/bibliography-of-related-
work-in-nli



tion is also of interest to researchers in Second Lan-
guage Acquisition where they seek to explain syn-
tactic transfer in learner language (Jarvis and Cross-
ley, 2012).

3 Data

The dataset for the task was the new TOEFLI11
corpus (Blanchard et al., 2013). TOEFL11 con-
sists of essays written during a high-stakes college-
entrance test, the Test of English as a Foreign Lan-
guage (TOEFL®). The corpus contains 1,100 es-
says per language sampled as evenly as possible
from 8 prompts (i.e., topics) along with score lev-
els (low/medium/high) for each essay. The 11 na-
tive languages covered by our corpus are: Ara-
bic (ARA), Chinese (CHI), French (FRE), German
(GER), Hindi (HIN), Italian (ITA), Japanese (JAP),
Korean (KOR), Spanish (SPA), Telugu (TEL), and
Turkish (TUR).

The TOEFL11 corpus was designed specifically
to support the task of native language identifica-
tion. Because all of the essays were collected
through ETS’s operational test delivery system for
the TOEFL® test, the encoding and storage of all
texts in the corpus is consistent. Furthermore, the
sampling of essays was designed to ensure approx-
imately equal representation of native languages
across topics, insofar as this was possible.

For the shared task, the corpus was split into
three sets: training (TOEFL11-TRAIN), development
(TOEFL11-DEV), and test (TOEFL11-TEST). The
train corpus consisted of 900 essays per L1, the de-
velopment set consisted of 100 essays per L1, and
the test set consisted of another 100 essays per L1.
Although the overall TOEFL11 corpus was sampled
as evenly as possible with regard to language and
prompts, the distribution for each language is not ex-
actly the same in the training, development and test
sets (see Tables 1a, 1b, and 1c). In fact, the distri-
bution is much closer between the training and test
sets, as there are several languages for which there
are no essays for a given prompt in the development
set, whereas there are none in the training set, and
only one, Italian, for the test set.

It should be noted that in the first instantiation of
the corpus, presented in Tetreault et al. (2012), we
used TOEFL11 to denote the body of data consisting
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of TOEFL11-TRAIN and TOEFL11-DEV. However,
in this shared task, we added 1,100 sentences for a
test set and thus use the term TOEFL11 to now de-
note the corpus consisting of the TRAIN, DEV and
TEST sets. We expect the corpus to be released
through the the Linguistic Data Consortium in 2013.

4 NLI Shared Task Description

The shared task consisted of three sub-tasks. For
each task, the test set was TOEFL11-TEST and only
the type of training data varied from task to task.

e Closed-Training: The first and main task
was the 11-way classification task using only
the TOEFL11-TRAIN and optionally TOEFL11-
DEV for training.

e Open-Training-1: The second task allowed
the use of any amount or type of training data
(as is done by Brooke and Hirst (2011)) exclud-
ing any data from the TOEFL11, but still evalu-
ated on TOEFL11-TEST.

e Open-Training-2: The third task allowed the
use of TOEFLI1I1-TRAIN and TOEFL11-DEV
combined with any other additional data. This
most closely reflects a real-world scenario.

Additionally, each team could submit up to 5 dif-
ferent systems per task. This allowed a team to ex-
periment with different variations of their core sys-
tem.

The training data was released on January 14,
with the development data and evaluation script re-
leased almost one month later on February 12. The
train and dev data contained an index file with the L1
for each essay in those sets. The previously unseen
and unlabeled test data was released on March 11
and teams had 8 days to submit their system predic-
tions. The predictions for each system were encoded
in a CSV file, where each line contained the file ID
of a file in TOEFL11-TEST and the corresponding
L1 prediction made by the system. Each CSV file
was emailed to the NLI organizers and then evalu-
ated against the gold standard.

5 Teams

In total, 29 teams competed in the shared task com-
petition, with 24 teams electing to write papers de-
scribing their system(s). The list of participating



Lang. P1 P2 P3 P4 PS5 Po P7 P8
ARA 113 113 113 112 112 113 112 112
CHI 113 113 113 112 112 113 112 112
FRE 128 128 76 127 127 60 127 127
GER 125 125 125 125 125 26 125 124
HIN 132 132 132 71 132 38 132 131
ITA 142 70 122 141 141 12 141 131
JAP 108 114 113 113 113 113 113 113
KOR 113 113 113 112 112 113 112 112
SPA 124 120 38 124 123 124 124 123
TEL 139 139 139 41 139 26 139 138
TUR 132 132 72 132 132 37 132 131

Total 1369 1299 1156 1210 1368 775 1369 1354
(a) Training Set

Lang. P1 P2 P3 P4 PS5 Po P7 P8
ARA 12 13 13 13 14 7 14 14
CHI 14 14 0 15 15 14 13 15
FRE 17 18 0 14 19 0 13 19
GER 15 15 16 10 13 0 15 16
HIN 16 17 17 0o 17 0 16 17
ITA 18 0 0 30 31 0 21 0

JAP 0 14 15 14 15 14 14 14
KOR 15 8 15 2 13 15 16 16
SPA 7 0 0 21 7 21 21 23

TEL 16 17 17 0 17 0 16 17
TUR 22 4 0o 22 7 0 22 23

Total 152 120 93 141 168 71 181 174
(b) Dev Set

Lang. P1 P2 P3 P4 PS5 P6 P7 P8
ARA 13 11 12 14 10 13 12 15
CHI 13 14 13 13 7 14 14 12
FRE 13 14 11 15 14 8 11 14
GER 15 14 16 16 12 2 12 13
HIN 13 13 14 15 7 15 10 13
ITA 13 19 16 16 15 0 11 10
JAP 8 14 12 11 10 15 14 16
KOR 12 12 8 14 12 14 13 15
SPA 10 13 16 14 4 12 15 16
TEL 10 10 11 14 13 15 11 16
TUR 15 9 18 16 8 6 13 15

Total 135 143 147 158 112 114 136 155
(c) Test Set

Table 1: Number of essays per language per prompt in each data set

teams, along with their abbreviations, can be found 6 Shared Task Results

in Table 2. . . .
1 lable This section summarizes the results of the shared

task. For each sub-task, we have tables listing the
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Team Name Abbreviation
Bobicev BOB
Chonger CHO
CMU-Haifa HAI
Cologne-Nijmegen CN
CoRAL Lab @ UAB COR
CUNI (Charles University) CUN
cywu CYW
dartmouth DAR
eurac EUR
HAUTCS HAU
ItaliaNLP ITA
Jarvis JAR
kyle, crossley, dai, mcnamara | KYL
LIMSI LIM
LTRC IIT Hyderabad HYD
Michigan MIC
MITRE “Carnie” CAR
MQ MQ
NAIST NAI
NRC NRC
Oslo NLI OSL
Toronto TOR
Tuebingen TUE
Ualberta UAB
UKP UKP
Unibuc BUC
UNT UNT
UTD UTD
VTEX VTX

Table 2: Participating Teams and Team Abbrevia-
tions

top submission for each team and its performance
by overall accuracy and by L1.2

Table 3 shows results for the Closed sub-task
where teams developed systems that were trained
solely on TOEFL11-TRAIN and TOEFL11-DEV. This
was the most popular sub-task with 29 teams com-
peting and 116 submissions in total for the sub-task.
Most teams opted to submit 4 or 5 runs.

The Open sub-tasks had far fewer submissions.
Table 4 shows results for the Open-1 sub-task where
teams could train systems using any training data ex-
cluding TOEFL11-TRAIN and TOEFL11-DEV. Three
teams competed in this sub-task for a total of 13 sub-

2For those interested in the results of all submissions, please
contact the authors.
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missions. Table 5 shows the results for the third sub-
task “Open-2”. Four teams competed in this task for
a total of 15 submissions.

The challenge for those competing in the Open
tasks was finding enough non-TOEFL11 data for
each L1 to train a classifier. External corpora com-
monly used in the competition included the:

e ICLE: which covered all L1s except for Ara-
bic, Hindi and Telugu;

e FCE: First Certificate in English Corpus
(Yannakoudakis et al., 2011): a collection of
essay written for an English assessment exam,
which covered all L1s except for Arabic, Hindi
and Telugu

e ICNALE: International Corpus Network of
Asian Learners of English (Ishikawa, 2011):
a collection of essays written by Chinese,
Japanese and Korean learners of English along
with 7 other L1s with Asian backgrounds.

e Lang8: http://www.lang8.com: a social net-
working service where users write in the lan-
guage they are learning, and get corrections
from users who are native speakers of that lan-
guage. Shared Task participants such as NAI
and TOR scraped the website for all writng
samples from English language learners. All
of the L1s in the shared task are represented on
the site, though the Asian L1s dominate.

The most challenging L1s to find data for seemed
to be Hindi and Telugu. TUE used essays written
by Pakastani students in the ICNALE corpus to sub-
stitute for Hindi. For Telugu, they scraped mate-
rial from bilingual blogs (English-Telugu) as well
as other material for the web. TOR created cor-
pora for Telugu and Hindi by scraping news articles,
tweets which were geolocated in the Hindi and Tel-
ugu speaking areas, and translations of Hindi and
Telugu blogs using Google Translate.

We caution directly comparing the results of the
Closed sub-task to the Open ones. In the Open-1
sub-task most teams had smaller training sets than
used in the Closed competition which automatically
puts them at a disadvantage, and in some cases there



L1 F-Score

Team Run | Overall | ARA CHI FRE | GER HIN ITA JPN | KOR SPA TEL | TUR
Name Acc.

JAR 2 0.836 0.785 | 0.856 | 0.860 | 0.893 | 0.775 | 0.905 | 0.854 | 0.813 | 0.798 | 0.802 | 0.854
OSL 2 0.834 0.816 | 0.850 | 0.874 | 0912 | 0.792 | 0.873 | 0.828 | 0.806 | 0.783 | 0.792 | 0.840
BUC 5 0.827 0.840 | 0.866 | 0.853 | 0931 | 0.736 | 0.873 | 0.851 | 0.812 | 0.779 | 0.760 | 0.796
CAR 2 0.826 0.859 | 0.847 | 0.810 | 0.921 | 0.762 | 0.877 | 0.825 | 0.827 | 0.768 | 0.802 | 0.790
TUE 1 0.822 0.810 | 0.853 | 0.806 | 0.897 | 0.768 | 0.883 | 0.842 | 0.776 | 0.772 | 0.824 | 0.812
NRC 4 0.818 0.804 | 0.845 | 0.848 | 0916 | 0.745 | 0.903 | 0.818 | 0.790 | 0.788 | 0.755 | 0.790
HAI 1 0.815 0.804 | 0.842 | 0.835 | 0903 | 0.759 | 0.845 | 0.825 | 0.806 | 0.776 | 0.789 | 0.784
CN 2 0.814 0.778 | 0.845 | 0.848 | 0.882 | 0.744 | 0.857 | 0.812 | 0.779 | 0.787 | 0.784 | 0.827
NAI 1 0.811 0.814 | 0.829 | 0.828 | 0.876 | 0.755 | 0.864 | 0.806 | 0.789 | 0.757 | 0.793 | 0.802
UTD 2 0.809 0.778 | 0.846 | 0.832 | 0.892 | 0.731 | 0.866 | 0.846 | 0.819 | 0.715 | 0.784 | 0.784
UAB 3 0.803 0.820 | 0.804 | 0.822 | 0905 | 0.724 | 0.850 | 0.811 | 0.736 | 0.777 | 0.792 | 0.786
TOR 1 0.802 0.754 | 0.827 | 0.827 | 0.878 | 0.722 | 0.850 | 0.820 | 0.808 | 0.747 | 0.784 | 0.798
MQ 4 0.801 0.800 | 0.828 | 0.789 | 0.885 | 0.738 | 0.863 | 0.826 | 0.780 | 0.703 | 0.782 | 0.802
CYW 1 0.797 0.769 | 0.839 | 0.782 | 0.833 | 0.755 | 0.842 | 0.815 | 0.770 | 0.741 | 0.828 | 0.788
DAR 2 0.781 0.761 | 0.806 | 0.812 | 0.870 | 0.706 | 0.846 | 0.788 | 0.776 | 0.730 | 0.723 | 0.767
ITA 1 0.779 0.738 | 0.775 | 0.832 | 0.873 | 0.711 | 0.860 | 0.788 | 0.742 | 0.708 | 0.762 | 0.780
CHO 1 0.775 0.764 | 0.835 | 0.798 | 0.888 | 0.721 | 0.816 | 0.783 | 0.670 | 0.688 | 0.786 | 0.758
HAU 1 0.773 0.731 | 0.820 | 0.806 | 0.897 | 0.686 | 0.830 | 0.832 | 0.763 | 0.703 | 0.702 | 0.736
LIM 4 0.756 0.737 | 0.760 | 0.788 | 0.886 | 0.654 | 0.808 | 0.775 | 0.756 | 0.712 | 0.701 | 0.745
COR 5 0.748 0.704 | 0.806 | 0.783 | 0.898 | 0.670 | 0.738 | 0.794 | 0.739 | 0.616 | 0.730 | 0.741
HYD 1 0.744 0.680 | 0.778 | 0.748 | 0.839 | 0.693 | 0.788 | 0.781 | 0.735 | 0.613 | 0.770 | 0.754
CUN 1 0.725 0.696 | 0.743 | 0.737 | 0.830 | 0.714 | 0.838 | 0.676 | 0.670 | 0.680 | 0.697 | 0.684
UNT 3 0.645 0.667 | 0.682 | 0.635 | 0.746 | 0.558 | 0.687 | 0.676 | 0.620 | 0.539 | 0.667 | 0.609
BOB 4 0.625 0.513 | 0.684 | 0.638 | 0.751 | 0.612 | 0.706 | 0.647 | 0.549 | 0.495 | 0.621 | 0.608
KYL 1 0.590 0.589 | 0.603 | 0.643 | 0.634 | 0.554 | 0.663 | 0.627 | 0.569 | 0.450 | 0.649 | 0.507
UKP 2 0.583 0.592 | 0.560 | 0.624 | 0.653 | 0.558 | 0.616 | 0.631 | 0.565 | 0.456 | 0.656 | 0.489
MIC 3 0.430 0.419 | 0.386 | 0.411 | 0.519 | 0.407 | 0.488 | 0.422 | 0.384 | 0.400 | 0.500 | 0.396
EUR 1 0.386 0.500 | 0.390 | 0.277 | 0.379 | 0.487 | 0.522 | 0.441 | 0.352 | 0.281 | 0.438 | 0.261
VTX 5 0.319 0.367 | 0.298 | 0.179 | 0.297 | 0.159 | 0.435 | 0.340 | 0.370 | 0.201 | 0.410 | 0.230

Table 3: Results for closed task
L1 F-Score

Team Run | Overall | ARA CHI FRE | GER HIN ITA JPN | KOR SPA TEL | TUR
Name Acc.

TOR 5 0.565 0.410 | 0.776 | 0.692 | 0.754 | 0.277 | 0.680 | 0.660 | 0.650 | 0.653 | 0.190 | 0.468
TUE 2 0.385 0.114 | 0.502 | 0.420 | 0.430 | 0.167 | 0.611 | 0.485 | 0.348 | 0.385 | 0.236 | 0.314
NAI 2 0.356 0.329 | 0.450 | 0.331 | 0.423 | 0.066 | 0.511 | 0.426 | 0.481 | 0.314 | 0.000 | 0.207

Table 4: Results for open-1 task
L1 F-Score

Team Run | Overall | ARA CHI FRE | GER HIN ITA JPN | KOR SPA TEL | TUR
Name Acc.

TUE 1 0.835 0.798 | 0.876 | 0.844 | 0.883 | 0.777 | 0.883 | 0.836 | 0.794 | 0.846 | 0.826 | 0.818
TOR 4 0.816 0.770 | 0.861 | 0.840 | 0.900 | 0.704 | 0.860 | 0.834 | 0.800 | 0.816 | 0.804 | 0.790
HYD 1 0.741 0.677 | 0.782 | 0.755 | 0.829 | 0.693 | 0.784 | 0.777 | 0.728 | 0.613 | 0.766 | 0.744
NAI 3 0.703 0.676 | 0.695 | 0.708 | 0.846 | 0.618 | 0.830 | 0.677 | 0.610 | 0.663 | 0.726 | 0.688

Table 5: Results for open-2 task
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was a mismatch in the genre of corpora (for exam-
ple, tweets by Telugu speakers are different in com-
position than essays written by Telugu speakers).
TUE and TOR were the only two teams to partic-
ipate in all three sub-tasks, and their Open-2 sys-
tems outperformed their respective best systems in
the Closed and Open-1 sub-tasks. This suggests, un-
surprisingly, that adding more data can benefit NLI,
though quality and genre of data are also important
factors.

7 Cross Validation Results

Upon completion of the competition, we asked the
participants to perform 10-fold cross-validation on a
data set consisting of the union of TOEFL11-TRAIN
and TOEFL11-DEV. This was the same set of data
used in the first work to use any of the TOEFL11
data (Tetreault et al., 2012), and would allow another
point of comparison for future NLI work. For direct
comparison with Tetreault et al. (2012), we provided
the exact folds used in that work.

The results of the 10-fold cross-validation are
shown in Table 6. Two teams had systems that per-
formed at 84.5 or better, which is just slightly higher
than the best team performance on the TOEFL11-
TEST data. In general, systems that performed well
in the main competition also performed similarly
(in terms of performance and ranking) in the cross-
validation experiment. Please note that we report
results as they are reported in the respective papers,
rounding to just one decimal place where possible.

8 Discussion of Approaches

With so many teams competing in the shared task
competition, we investigated whether there were any
commonalities in learning methods or features be-
tween the teams. In this section, we provide a coarse
grained summary of the common machine learning
methods teams employed as well as some of the
common features. Our summary is based on the in-
formation provided in the 24 team reports.

While there are many machine learning algo-
rithms to choose from, the overwhelming majority
of teams used Support Vector Machines. This may
not be surprising given that most prior work has also
used SVMs. Tetreault et al. (2012) showed that one
could achieve even higher performance on the NLI
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Team Accuracy
CN 84.6
JAR 84.5
OSL 83.9
BUC 82.6
MQ 82.5
TUE 82.4
CAR 82.2
NAI 82.1
Tetreault et al. (2012) 80.9
HAU 79.9
LIM 75.9
CUN 74.2
UNT 63.8
MIC 63

Table 6: Results for 10-fold cross-validation on
TOEFL11-TRAIN + TOEFL11-DEV

task using ensemble methods for combining classi-
fiers. Four teams also experimented with different
ways of using ensemble methods. Three teams used
Maximum Entropy methods for their modeling. Fi-
nally, there were a few other teams that tried differ-
ent methods such as Discriminant Function Analysis
and K-Nearest Neighbors. Possibly the most distinct
method employed was that of string kernels by the
BUC team (who placed third in the closed compe-
tition). This method only used character level fea-
tures. A summary of the machine learning methods
is shown in Table 7.

A summary of the common features used across
teams is shown in Table 8. It should be noted that
the table does not detail the nuanced differences in
how the features are realized. For example, in the
case of n-grams, some teams used only the top k
most frequently n-grams while others used all of the
n-grams available. If interested in more information
about the particulars of a system and its feature, we
recommend reading the team’s summary report.

The most common features were word, character
and POS n-gram features. Most teams used n-grams
ranging from unigrams to trigrams, in line with prior
literature. However several teams used higher-order
n-grams. In fact, four of the top five teams (JAR,
OSL, CAR, TUE) generally used at least 4-grams,



Machine Learning Teams

SVM CN, UNT, MQ, JAR, TOR, ITA, CUN, TUE, COR, NRC, HAU, MIC, CAR
MaxEnt / logistic regression LIM, HAI, CAR

Ensemble MQ, ITA, NRC, CAR

Discriminant Function Analysis | KYL

String Kernels / LRD BUC

PPM BOB

k-NN VTX

Table 7: Machine Learning algorithms used in Shared Task

and some, such as OSL and JAR, went as high 7 and
9 respectively in terms of character n-grams.

Syntactic features, which were first evaluated in
Wong and Dras (2011) and Swanson and Char-
niak (2012) were used by six teams in the competi-
tion, with most using dependency parses in different
ways. Interestingly, while Wong and Dras (2011)
showed some of the highest performance scores on
the ICLE corpus using parse features, only two of
the six teams which used them placed in the top ten
in the Closed sub-task.

Spelling features were championed by Koppel et
al. (2005) and in subsequent NLI work, however
only three teams in the competition used them.

There were several novel features that teams tried.
For example, several teams tried skip n-grams, as
well as length of words, sentences and documents;
LIM experimented with machine translation; CUN
had different features based on the relative frequen-
cies of the POS and lemma of a word; HAI tried
several new features based on passives and context
function; and the TUE team tried a battery of syn-
tactic features as well as text complexity measures.

9 Summary

We consider the first edition of the shared task a
success as we had 29 teams competing, which we
consider a large number for any shared task. Also
of note is that the task brought together researchers
not only from the Computational Linguistics com-
munity, but also those from other linguistics fields
such as Second Language Acquisition.

We were also delighted to see many teams build
on prior work but also try novel approaches. It is
our hope that finally having an evaluation on a com-
mon data set will allow researchers to learn from
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each other on what works well and what does not,
and thus the field can progress more rapidly. The
evaluation scripts are publicly available and we ex-
pect that the data will become available through the
Linguistic Data Consortium in 2013.

For future editions of the NLI shared task, we
think it would be interesting to expand the scope of
NLI from identifying the L1 of student essays to be
able to identify the L1 of any piece of writing. The
ICLE and TOEFL11 corpora are both collections of
academic writing and thus it may be the case that
certain features or methodologies generalize better
to other writing genres and domains. For those in-
terested in robust NLI approaches, please refer to the
TOR team shared task report as well as Brooke and
Hirst (2012).

In addition, since the TOEFL11 data contains pro-
ficiency level one could include an evaluation by
proficiency level as language learners make differ-
ent types of errors and may even have stylistic differ-
ences in their writing as their proficiency progresses.

Finally, while this may be in the periphery of the
scope of an NLI shared task, one interesting evalua-
tion is to see how well human raters can fare on this
task. This would of course involve knowledgeable
language instructors who have years of experience
in teaching students from different L1s. Our think-
ing is that NLI might be one task where computers
would outperform human annotators.
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Feature Type Teams
Word N-Grams 1 CN, UNT, JAR, TOR, KYL, ITA, CUN, BOB, OSL, TUE, UAB,
CYW, NAI NRC, MIC, CAR
2 CN, UNT, JAR, TOR, KYL, ITA, CUN, BOB, OSL, TUE, COR,
UAB, CYW, NAI, NRC, HAU, MIC, CAR
3 UNT, MQ, JAR, KYL, CUN, COR, HAU, MIC, CAR
4 JAR, KYL, CAR
5 CAR
POS N-grams 1 CN, UNT, JAR, TOR, ITA, LIM, CUN, BOB, TUE, HAI, CAR
2 CN, UNT, JAR, TOR, ITA, LIM, CUN, BOB, TUE, COR, HAI,
NAI, NRC, MIC, CAR
3 CN, UNT, JAR, TOR, LIM, CUN, TUE, COR, HAI, NAI, NRC,
CAR
4 CN, JAR, TUE, HAI, NRC, CAR
5 TUE, CAR
Character N-Grams | 1 CN, UNT, MQ, JAR, TOR, LIM, BOB, OSL, HAI, CAR
2 CN, UNT, MQ, JAR, TOR, ITA, LIM, BOB, OSL, COR, HAI, NAI,
HAU, MIC, CAR
3 CN, UNT, MQ, JAR, TOR, LIM, BOB, OSL, VTX, COR, HAI,
NAI, NRC, HAU, MIC, CAR
4 CN, JAR, LIM, BOB, OSL, HAI, HAU, MIC, CAR
5 CN, JAR, BOB, OSL, HAU, CAR
6 CN, JAR, OSL,
7 JAR, OSL
8-9 JAR
Function N-Grams MQ, UAB
Syntactic Features Dependencies MQ, TOR, ITA, TUE, NAI, NRC
TSG MQ, TOR, NAI,
CF Productions TOR,
Adaptor Grammars | MQ
Spelling Features LIM,CN, HAI

Table 8: Common Features used in Shared Task
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Abstract

Vector Space Models (VSM) have been
widely used in the language assessment field
to provide measurements of students’ vocab-
ulary choices and content relevancy. How-
ever, training reference vectors (RV) ina VSM
requires a time-consuming and costly human
scoring process. To address this limitation, we
applied unsupervised learning methods to re-
duce or even eliminate the human scoring step
required for training RVs. Our experiments
conducted on data from a non-native English
speaking test suggest that the unsupervised
topic clustering is better at selecting responses
to train RVs than random selection. In addi-
tion, we conducted an experiment to totally
eliminate the need of human scoring. Instead
of using human rated scores to train RVs, we
used used the machine-predicted scores from
an automated speaking assessment system for
training RVs. We obtained VSM-derived fea-
tures that show promisingly high correlations
to human-holistic scores, indicating that the
costly human scoring process can be elimi-
nated.

Index Terms: Vector Space Model (VSM), speech
assessment, unsupervised learning, document clus-
tering

1 Introduction

A Vector Space Model (VSM) is a simple, yet effec-
tive, method to measure similarities between doc-
uments or utterances, which has been utilized in
the educational testing field. For example, VSM
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has been applied to detect students’ off-topic es-
says (Higgins et al., 2006) and to automatically
score essays (Attali and Burstein, 2004).

The following three steps are required to use
VSM for automated assessment: (1) a collection
of responses are selected from each score category
to construct reference vectors (RV); (2) for an in-
put response under scoring, the same vectorization
method used for constructing RV is applied to com-
pute an input vector (IV); (3) similarities between
this IV and the RVs for all score categories are com-
puted as features reflecting vocabulary usage and
content relevancy, including a widely used feature,
the cosine similarity between the IV and the RV for
the highest score category.

Clearly, the quality of VSM-derived features de-
pends on the proper training of RVs. In language
assessment, we tend to use a large number of man-
ually scored responses to build RVs for each testing
question (called item in the assessment field). How-
ever, this raises an issue: the requirement of manual
scoring of these responses by human raters. Also,
for large-scale assessments administrated globally,
a high number of items are typically administered
to both ensure the assessment security and support
the large volume of test-takers. To address this chal-
lenge of application of VSM, we will describe our
solutions based on applying unsupervised learning
methods in this paper.

The rest of the paper is organized as follows: Sec-
tion 2 reviews the related previous research; Sec-
tion 3 describes the English assessment, the data
used in our experiments, and the Automatic Speech
Recognition (ASR) system used; Section 4 reports
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the three experiments we conducted; and Section 5
discusses our findings and plans for future research.

2 Previous Work

Attali and Burstein (2004) used the VSM method
to measure non-native English writers’ vocabulary
choices when scoring their essays by comparing
the words contained in an student’s response to the
words found in a sample of essays from each score
category. One belief behind this methodology is that
good essays will resemble each other in terms of the
word choice. In particular, two VSM-derived fea-
tures were used, including the maximum cosine sim-
ilarity and cosine similarity to the top score category.
Higgins et al. (2006) applied the VSM technology to
detect students’ off-topic essays whereby the word-
based IV from a student’s essay was compared to an
RV built from a collection of on-topic essays. When
the difference was larger than a pre-defined thresh-
old, the essay was marked as off-topic. Zechner and
Xi (2008) applied VSM as a content relevancy mea-
surement to score non-native English speaking re-
sponses. Recently, Xie et al. (2012) explored the
VSM technology on automated speech scoring. Us-
ing a superior ASR to the one used in (Zechner and
Xi, 2008), they found that the VSM-derived features
had moderately high correlations with human profi-
ciency scores.

Dimension reduction, a critical step in apply-
ing VSM, removes the noises and minor details in
word-based vectors and keeps a concise semantic
structure. Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990) and Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) are two widely used
dimension-reduction methods. Kakkonen et al.
(2005) systematically investigated the dimension re-
duction methods used in the VSM methods for es-
say grading. Their experiments showed that LSA
slightly out-performs LDA.

Compared to supervised learning, unsupervised
learning can skip the time-consuming and costly
manual labeling process and has been widely used
in many machine-learning tasks. Both LSA and
LDA have been utilized in unsupervised document
clustering (Hofmann, 2001) to automatically sep-
arate a collection of documents into several sets
without any human intervention. Co-training is a
type of semi-supervised learning method (Blum and
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Mitchell, 1998), consisting of two classifiers trained
from independent sets of features to predict the same
labels. It uses automatically predicted labels from
one classifier to train the other classifier.

3 Data

The data used in our experiments were collected
from the speaking section of Test Of English as a
Foreign Language (TOEFL®), an English speak-
ing test used to evaluate students’ basic English-
speaking skills for use in academic institutions that
use English as their primary teaching language. Our
data contains the speech responses for a total of 24
test items. For each item, both the stimulus mate-
rial and question were presented to test-takers fol-
lowed by a short amount of preparation time. The
test-takers were then given up to 60 seconds to pro-
vide their spoken responses. These responses were
scored by using carefully developed rating rubrics
by a group of experienced human raters. The scor-
ing rubrics covered a comprehensive list of differ-
ent aspects of speaking ability, such as pronuncia-
tion, prosody, vocabulary, content organization, etc.
A 4-point holistic scoring scale was used where the
score of 4 marks the most advanced English speak-
ers in the TOEFL® test. Table 1 summarizes the re-
sponses across these 24 items, including mean, sd,
and sample size (n) of the total number of responses
and the number of responses per each score level.

Overall | SC1 SC2 SC3 SC4
mean | 1969.63 | 81.88 701.96 963.46 222.33
sd 12,92 130.02 62.36 67.24 37.79
n 47271 11965 16847 23123 5336

Table 1: Summary statistics of the number of total re-
sponses and the number of responses per each score level
measured in mean, sd, and sample size n across 24 items

The transcriptions of these spoken responses were
obtained by running a state-of-the-art non-native
ASR system. This ASR system uses a cross-word
tri-phone acoustic model (AM) and n-gram lan-
guage models (LMs) that were trained on approx-
imately 800 hours of spoken data and the corre-
sponding transcriptions. When being evaluated on
an held-out data set transcribed by humans from the
same test, a 33.0% word error rate was obtained.



4 Experiments

The three experiments described below shared the
same procedure: (1) for each item, available re-
sponses were divided into two sets - a set for train-
ing RVs and a set for evaluating the VSM-derived
features; (2) RVs were trained by using different re-
sponse selection methods investigated in this paper;
(3) the trained RVs were used to compute the VSM-
derived features; and (4) Pearson correlation coeffi-
cients (rs) between the VSM-derived features and
human-holistic scores were computed to measure
these features’ predictive abilities in speech scoring.
This experimental procedure was conducted on all
24 items and was repeated in 10 iterations by using
varied training/evaluation-splitting plans and the av-
erages of these results across the items and iterations
are reported. Note that we removed some common
function words, such as a, the, etc., and some noise
words from ASR outputs, such as uh and um, when
applying the VSM method and always used LSA di-
mension reduction. We used the Gensim (Rehﬁfck
and Sojka, 2010) Python package to implement the
VSM-related computations in this paper. Also, in
this paper, we focused on one VSM-derived fea-
ture cos4, the cosine distance between an IV to the
RV representing the highest-score category (4) for
TOEFL® test.

4.1 Data size for training RVs

In previous studies, researchers typically used a
large number of responses to construct RVs. For ex-
ample, Zechner and Xi (2008) used 1, 000 responses
while Xie et al. (2012) increased the RV training
data to 2,000 responses for each item. We ask, is
it possible to use fewer responses so that we would
not be forced to manually score so many responses?
To answer this question, we have investigated the re-
lationship between the size of the RV training data
and cos4’s predictive ability.

For each item, we first randomly selected 1, 800
responses as the RV training data and used the re-
maining responses as the evaluation set. We then
gradually reduced the RV training set to 1, 000, 500,
200, and even 50 responses and trained a series of
RVs. On the evaluation set, using these trained RVs,
we extracted cos4 VSM feature and calculated the
Teos4 for human-holistic scores. Table 2 reports the
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average 7c0s4, which will de denoted as 7,54 there-
after, for the different-sized RV training sets. Table 2
shows that 7,554 continuously increases with the in-
crease of the dataset size for training RVs. However,
it is worth noting that using just 50 responses to train
RVs still provides a reasonably high 7¢554 (0.383).
Between the two sizegy conditions: 200 vs. 1800,
Teosa did not show a statistically significant increase
based on a t-test (p = 0.314).

stzegy 50 200 500 1000 1800
0.383 0.428 0.435 0.439 0.440

Tcos4

Table 2: 7.,54, a measurement of VSM features’ scoring
performance, from different RV training data sizes

4.2 Using document clustering for training RVs

In the experiment described in section 4.1, we found
that using even a limited number of human-scored
responses can provide useful VSM features with a
reasonably high r to human-holistic scores. If we
can intelligently select such a small-sized dataset,
we think that the VSM-derived features will show
further improved predicting power. Armed with
this idea, we proposed a solution to use unsuper-
vised document clustering technology to find the re-
sponses for training RVs.

In particular, for each item, of the 1,800 re-
sponses used for training the RVs, we run an LDA
document-clustering process to split all of responses
into K clusters. Then, for each cluster, we ran-
domly selected M responses. Therefore, we se-
lected K x M responses for human scoring and for
training the RVs. Note that X' x M can be much
smaller than the original dataset size (n = 1800).
We believed that comprehensive coverage of all of
the latent topics would produce a better VSM that,
in turn, would provide more effective VSM-derived
features for scoring.

In our experiment, based upon a pilot study, we
decided to use K = 10 and M = 5 to control
the total scoring demand to be 50 responses per
item. Compared to the 7,54 value obtained from
randomly selecting 50 responses for training RVs
(0.383 in Table 2), the response selection based on
the document clustering improved the 7¢,54 to be
0.411. Furthermore, a t-test showed that such an in-
crease in T'eos4 18 statistically significant (p < 0.05).



4.3 Using machine predicted scores for
training RVs

Many of the previous automated speaking scoring
systems focused on the features measuring fluency,
pronunciation, and prosody (Witt, 1999; Franco et
al., 2010; Bernstein et al., 2010; Chen et al., 2009).
The scores predicted by these systems show promis-
ingly high correlations with human rated scores. In
order to eliminate the time-consuming and costly
human scoring step required by applications of
VSM, we considered using the scores automatically
scored by algorithms (AS) instead of the scores rated
by humans (HS).

In our experiment, we used a set of speech fea-
tures following (Chen et al., 2009) for automated
speech scoring. To estimate AS, a five-fold cross-
validation was applied on the entire dataset. For
each fold, a linear regression model was trained
from 80% of responses by using their HS and was
used to predict regression results on the remaining
20% of responses. The continuous scores produced
by the regression model were rounded to the four
discrete score levels (1 to 4) to serve as AS. Between
the obtained AS and HS, a Pearson r 0.56 was ob-
served.

Using the predicted scores, we re-ran our VSM
feature experiment by using the 1, 800 responses to
train the RVs. When the dataset sizes for training the
RVs was at 1, 800, we found that the 7;,54 was 0.410
when using machine-predicted scores. Although it
was lower than the 7,54 value obtained by using
human-rated scores (0.440), a feature with such cor-
relational magnitude is still useful for building an
automatic scoring model.

4.4 A summary of experiments

HS1800 HS50 HSciusterso AS1800
Teosa 0.440 0.383 0.411 0.410

Table 3: A summary of 7,54 using different RV training
sizes, unsupervised-response clustering, and automated-
predicted scores

Table 3 summarizes the three experiments de-
scribed above. HSiggg refers to using 1,800 re-
sponses with human scores (HS) to train RVs for
each item. H Ssg refers to using only 50 responses
with human rated scores. H S.jysterso refers to us-
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ing 50 responses that were selected to cover 10 la-
tent topics detected by using an LDA unsupervised
topic clustering method. Compared to H Syg, we
find that the unsupervised topic clustering method
helped to improve T.os1. ASigep refers to using
1, 800 responses with automatically predicted scores
(AS) to train RVs for each item. Compared to
H S1500, AS1800 that avoids using a time-consuming
and costly human scoring process, shows a reason-
ably high 7¢554.

S Conclusions and Future Work

Vector Space Models (VSMs) have been widely
used in essay and speech assessment tasks to provide
vocabulary usage and content relevance measure-
ments. However, applying VSM on the assessments
with many items requires a lot of work by human
raters. To make the application of VSM in assess-
ments more economical and efficient, we propose
the use of unsupervised learning methods to reduce
and even eliminate the time-consuming and costly
human-scoring process. First, we found that it was
possible to just use hundreds rather than thousands
of responses to train RVs when applying VSM. In
our experiments with TOEFL® data, we found that
using a minimum 200 responses to train RVs for
each item, was not statistically significantly different
from using 1, 800 responses. Next, we used an LDA
document-clustering method to identify latent top-
ics from all of the items and used the topic informa-
tion to select responses for training RVs. Our exper-
iments clearly suggest that such a method of selec-
tion provides more effective VSM features than ran-
dom selection. Finally, we used the scores predicted
by an automated speech scoring system that mostly
uses fluency and pronunciation features to replace
human-rated scores in building the VSM. Our exper-
iments suggest that the features derived from such a
VSM that can be constructed without the need of hu-
man scoring show promisingly high correlations to
human-holistic scores.

This research can be extended in several new di-
rections. First, we will apply the proposed methods
on other language assessment tasks, such as on long
(written) essays, to fully test that the proposed meth-
ods are universally helpful. Second, we are consid-
ering doing the third experiment in more iterations
— adding the VSM-derived features into the auto-



mated scoring model so that more accurate machine-
predicted scores can be used for building further im-
proved VSM.
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Abstract

We developed an approach to predict the pro-
ficiency level of Estonian language learners
based on the CEFR guidelines. We performed
learner classification by studying morpho-
syntactic variation and lexical richness in texts
produced by learners of Estonian as a sec-
ond language. We show that our features
which exploit the rich morphology of Esto-
nian by focusing on the nominal case and ver-
bal mood are useful predictors for this task.
We also show that re-formulating the classifi-
cation problem as a multi-stage cascaded clas-
sification improves the classification accuracy.
Finally, we also studied the effect of training
data size on classification accuracy and found
that more training data is beneficial in only
some of the cases.

1 Introduction and Motivation

Every year, language learners across the world learn
various languages and take tests that measure their
proficiency level. The Estonian language profi-
ciency examination' in particular is usually taken
by the immigrant population for citizenship and/or
employment needs in Estonia. Assessing learner
texts to classify them into relevant proficiency lev-
els is usually done by human evaluators and is of-
ten a time consuming process. An approach to au-
tomate this process would complement the human
annotators and reduce the overall effort in evaluat-
ing learner texts for their proficiency. Investigat-
ing features that follow any sort of trend across the

"http://www.ekk.edu.ee/
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various proficiency levels among learners is a first
step in building such automatic proficiency classifi-
cation systems. This is the main motivation for our
research.

Several factors might play a role in determining a
learner’s proficiency in a given language. Since we
study the learner corpus of Estonian, a morphologi-
cally complex language with an elaborate declension
and conjugation system, we hypothesized that study-
ing the role of morpho-syntactic features would be a
good starting point to perform proficiency classifi-
cation. We used the Estonian Interlanguage Corpus
(EIC)?, a publicly accessible corpus of written texts
produced by learners of Estonian as a second lan-
guage, for this purpose. All the texts were annotated
with a proficiency level that is based on the Com-
mon European Framework of Reference for Lan-
guages Council of Europe (CEFR). We constructed
various proficiency classification models based on
this corpus by using features motivated primarily by
the morphological complexity of Estonian and found
that true to our hypothesis, they turn out to be good
predictors of the proficiency level.

We also studied the effect of breaking up the
main classification task into sub-tasks and cascad-
ing them. We show that this approach increases the
overall accuracy of proficiency classification. In ad-
dition, we studied the effect of training data size and
found that it does not have a significant impact in
most of the classification tasks we performed. To
summarize, we studied the task of proficiency clas-
sification for Estonian by studying both the aspects
feature engineering and model construction.

Mttp://evkk.tlu.ee/wwwdata/what_is_evk
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The rest of this paper is organized as follows: Sec-
tion 2 briefly surveys related work and explains the
context of our research. Section 3 describes our cor-
pus and the experimental setup. Section 4 describes
our feature set. Section 5 describes our experiments
and results. Section 6 concludes the paper with a
discussion on results and directions for future work.

2 Related Work

With the availability of computer based learner cor-
pora, research focusing on studying the criterial fea-
tures that correlate with proficiency levels began to
emerge. A wide body of research exists on studying
the syntactic complexity of texts produced by learn-
ers across different proficiency levels, their lexical
richness and the errors they make (e.g., Lu, 2012;
Vyatkina, 2012; Tono, 2000) . Learner data from
both longitudinal and cross sectional studies was an-
alyzed to understand the linguistic patterns among
learners of different proficiency levels, in Second
Language Acquisition (SLA) research.

Automatic proficiency assessment of learner texts
is another active area of related research, which
plays an important role in language testing. Auto-
mated systems are now being used both for evalua-
tion of language learners and for offering feedback
on their language proficiency (e.g., Williamson,
2009; Burstein et al., 2003 ). Forms of text used for
assessment include mathematical responses, short
answers, essays and spoken responses among oth-
ers (Williamson et al., 2010). Standardized tests like
GRE and GMAT too use such systems to comple-
ment human scorers while evaluating student essays
automatically (Burstein, 2003; Rudner et al., 2005).
Zhang (2008) discusses proficiency classification for
the Examination for the Certificate of Proficiency
in English (ECPE) in detail, by comparing proce-
dures based on four types of measurement models.
The problem of automatic student classification i.e.,
making inferences about a student’s skill level by us-
ing some form of data about them is an active area
of research in Educational data mining (e.g., Des-
marais and Baker, 2012; Baker 2010).

But, automatic approaches for classifying lan-
guage learners into standardized proficiency levels
(e.g., the European CEFR levels®, Common Core

http://www.coe.int/t/dg4/linguistic/
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Standards?) is a relatively new area of interest.

Supnithi et al. (2003) used a dataset consisting of
audio transcripts by Japanese learners of English to
build a proficiency classification model with a fea-
ture set that modeled vocabulary, grammatical accu-
racy and fluency. This dataset had 10 levels of pro-
ficiency. Hasan and Khaing (2008) performed profi-
ciency classification with the same dataset using er-
ror rate and fluency features. Dickinson et al. (2012)
developed a system for classifying Hebrew learners
into five proficiency levels, using features that focus
on the nature of errors in a corpus of scrambled sen-
tence exercise questions.

Proficiency Classification so far has been predom-
inantly focused on the correlation of error-rate with
proficiency. Although error-rate is a strong indicator
of a learner’s proficiency in a language, consider-
ing other factors like lexical indices or syntactic and
morphological complexity would help in providing
multiple views about the same data. Providing a
non-error driven model, Crossley et al. (2011) stud-
ied the impact of various lexical indices in predicting
the learner proficiency level. Using a corpus of 100
writing samples by L2 learners of English classified
in to three levels (beginner, intermediate, advanced),
they built a classification system that analyses lan-
guage proficiency using the Coh-metrix> lexical in-
dices.

Most of the research about the distinguishing fac-
tors among learners of various proficiency levels has
focused on English. However, issues like morpho-
logical variation, which may not be strong predic-
tors of learner proficiency in English, could be use-
ful in proficiency classification of other languages.
Hence, in this paper, we study the texts produced by
the learners of a morphologically rich and complex
language, Estonian and show that morphology can
be a good predictor for learner proficiency classifi-
cation.

We build our classification models using the Es-
tonian Interlanguage Corpus (EIC), which contains
texts produced by learners of Estonian as a second
language. We modeled our approach based on the
features motivated by the morphological complex-
ity of Estonian. To our knowledge, this is the first

Cadrel_en.asp
‘nttp://www.corestandards.org/
*http://cohmetrix.memphis.edu



work that studies the role of morphology based fea-
tures for proficiency classification in general and in
Estonian in particular.

3 Corpus and Experimental Setup

3.1 Corpus

The Estonian Interlanguage Corpus (EIC)® was cre-
ated by the Talinn University. It is a collection of
written texts produced by learners of Estonian as a
second language. Most of the learners were native
speakers of Russian. The corpus consists mainly of
short essays, answers to questions, translations and
personal letters. The texts are annotated with error
types and incorrect forms. The corpus also provides
information about the learner’s age, gender, educa-
tion and about other languages known to the learner.
Descriptive statistics about the corpus are available
on their website’. The corpus contains around 8000
documents (two million words), most of which are
texts from the Estonian language proficiency exam-
ination. The length of the texts varies in general be-
tween 50 and 1000 words (Eslon, 2007).

Information about the learner’s level of compe-
tence is based on the CEFR guidelines® and is de-
cided by human annotator judgement. Until late
2008, Estonian language proficiency was tested by
conducting proficiency exams at three levels - the
lowest level A, the medium level B and the highest
level C. Later, the CEFR standards were adapted, di-
viding the development of language proficiency into
six levels (Al, A2, B1, B2, C1, C2). Al indicates a
basic proficiency and C2 indicates a mastery.

For our current work, we use a sub-corpus con-
sisting of 2000 texts that can be accessibly through
the EIC. These texts are spread across three broad
levels A, B, C instead of the more fine grained six
levels and contain all kinds of texts including short
answers. Although these texts also have an an-
notated version containing information about error-
types and corrections, since our aim in this paper is
to study the effect of morpho-syntactic features, we
considered the raw texts produced by the learners as

*http://evkk.tlu.ee/

"http://evkk.tlu.ee/statistics.html

$http://en.wikipedia.org/wiki/Common_
European_Framework_of_ Reference_for_
Languages
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they were, without looking at the error annotations.
Table 1 shows a summary of the entire corpus that
was made available.

We prepared a test set consisting of 50 documents
from each category, picked randomly. This test set
was not used to train any of the classifiers we used
in this paper. Further, to avoid a training bias to-
wards any class, we used equal number of instances
from all classes during all our binary and three-class
training processes.

Proficiency Level | #Docs | Avg. #tokens
A-level 807 182.9
B-level 876 260.3
C-level 307 431.8

Table 1: The EIC Corpus

3.2 Pre-processing

All the texts in our corpus were POS-tagged with the
TreeTagger” and the tagged output was then used
to extract the required features. The TreeTagger
(Schmid, 1994) is a probabilistic part of speech tag-
ger, which contains parameter files to tag Estonian
data. The tag set was derived from the Tartu Mor-
phologically Disambiguated Corpus tag set'®. As
mentioned earlier, we do not use the error annotation
information for these learner texts, in this paper.

4 Features

Our choice of features were primarily motivated by
the nature of the morphology of Estonian.

4.1 The Estonian Language

The Estonian language has about one million native
speakers. It belongs to the Finnic branch of Uralic
languages and is known for it’s complex morphol-
ogy. It is both an agglutinative and a flectional (fu-
sional) language. Some of the prominent features of
Estonian language include:

e 14 productive nominal cases

‘http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/

Ohttp://www.cl.ut.ee/korpused/
morfkorpus/



no grammatical gender (either of nouns or per-
sonal pronouns) and no articles (either definite
or indefinite)

the verbal system lacks a morphological future
tense (the present tense is used instead)

relatively free word order (relations between
words are expressed by case endings)

extensive compound word formation

impersonal voice (specific to the Finnic lan-
guages and similar to passive voice. The verb
is conjugated in “fourth person”, who is never
mentioned)

Most of the inflected words in Estonian have
two distinctive parts: the stem and the forma-
tive. For example, raamatutele (book, plural,
allative) consists of the stem raamatu and the
formative tele, which in turn consists of plural
marker fe and allative case marker le (Erelt et
al., 2007, p. 203).

e Unlike most of other Finnic languages, Esto-
nian also has flective features, i.e., the same
morpheme may have different shapes in differ-
ent word forms. For example, the stem jalg
(foot”, singular, nominative) may appear as
Jjala (singular, genitive) or jalga (singular, par-
titive) and plural marker may appear as d, de,
te or i or merged with the stem as in jalad
(plural, nominative), jalgade (plural, genitive)
and jalgu (plural, partitive) (Erelt et al., 2007,
p-203).

As many of these characteristics are morpholog-
ical in nature, we hypothesized that this morpho-
logical complexity of Estonian may play a role in
the process of language learning and hence may
be a useful predictor for proficiency classification.
Hence, we built our feature set primarily focusing
on the morphological properties of the learner texts.
Apart from these features, we also included other
features based on the Parts of Speech and lexical
variation.

4.2 Morphological Features

In Estonian, as in other Finnic languages, nomi-
nals (nouns, adjectives, numerals and pronouns) and
verbs are inflected for number and case. Estonian
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nominals are inflected in 14 different cases. Three of
the nominal cases are grammatical cases, i.e., nom-
inative, genitive and partitive. They fulfill mainly
a syntactic purpose and have a very general gram-
matical meaning. All the other cases are semantic
cases, and they have a more concrete meaning than
grammatical cases, which often can be explained by
means of adverbs or adpositions (Erelt et al., 2007,
p.241). We considered the proportion of nouns and
adjectives tagged with various cases per document
and included them as our declension features. The
cases we considered in this paper are: nominative,
genitive, partitive, illative, inessive, elative, allative,
adessive, ablative, translative, terminative, essive,
abessive, comitative and short singular illative, i.e.,
aditive case.

The verb in Estonian has finite forms that occur
as predicates and auxiliary components of complex
predicates and non-finite forms. Finite forms are in-
flected for mood, tense, voice, aspect, person and
number. The verb has altogether five moods: the in-
dicative, conditional, imperative, quotative and jus-
sive. It has two simple tenses: the present and the
past, two voices: personal and impersonal, affirma-
tion and negation. Non-finite forms behave differ-
ently. Participles are inflected for voice and tense,
present participles also for case and number, and
supines for voice and case. There is one infinitive
and one gerund, which can be explained as the ines-
sive case form of the infinitve (Erelt, 2003, p. 52). In
this paper, we considered the proportion of verbs be-
longing to various tense, mood, voice, number and
person categories as our features.!!,

4.3 POS features

We included the various degrees of comparison of
adjectives and the proportion of words belonging to
various parts of speech among our features. This
group of features also included the proportion of ad-
positions (=prepositions+postpositions) along with
the proportion of prepositions and postpositions sep-
arately. We also included the proportion of co-
ordinating conjunctions and subordinating conjunc-
tions along with that of all conjunctions.

"Examples of various forms of declension and conjugation
can be found in the Estonian morphology guide at: http://
lpcs.math.msu.su/~pentus/etmorf.htm



4.4 Lexical Variation features

Lexical variation, also called lexical range indicates
the range of vocabulary displayed in a learner’s lan-
guage use. We implemented the measures of lexical
variation that are used in the English SLA research
to measure the lexical richness of the learners of En-
glish as a second language (Lu, 2012). These in-
cluded the noun variation, verb variation, adjective
variation and verb variation which indicated the ra-
tio of the words with the respective parts of speech
to the total number of lexical words (instead of all
words).

4.5 Text Length Feature

Since text length is one of the most commonly used
measures of learner proficiency and also because of
the variation in average text length across the pro-
ficiency levels (Tablel), we included the number of
word tokens per document as a feature.

4.6 Most Predictive Features

Apart from these individual feature groups, we also
performed a feature selection, to identify the most
predictive ones among all our features. We used the
Correlation based Feature Subset (CFS) selection
method in WEKA for this purpose. CFS chooses
a feature subset considering the correlation and the
degree of redundancy between the features. Table 2
consists of a list of the most predictive and non-
redundant features after ranking all the selected fea-
tures based on their Information Gain. This list con-
sisted of five verb morphology based features fol-
lowed by three nominal declension features.

Feature Group
Nominative case | NounMorph
Impersonal VerbMorph
Personal VerbMorph
Num. words TextLength
Present tense VerbMorph
2nd person verbs | VerbMorph
Prepositions POS
Allative case NounMorph
Imperatives VerbMorph
Translative case | NounMorph

Table 2: 10 Most Predictive, Non-redundant Features
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It is interesting to note that several characteris-
tics that are prominent in Estonian (cf. Section 4.1)
figured among this list of most predictive features.
Nominative being the top predictor can be explained
due to the difference in (the number of) cases be-
tween Estonian and other languages. For example
(Eslon, 2011) found in her corpus study based on the
same corpus that the learners frequently use nom-
inative case instead of genitive and partitive case.
So, it is to be expected that the usage of the nom-
inative case changes as the proficiency increases.
Impersonal and personal voice are distinctive fea-
tures in Estonian and other Finnic languages, as
they are different from the active and passive voice
that typically exist in other languages (Erelt, 2003).
This may make them difficult to master for language
learners, making them one of the top predictors for
proficiency. Further, Estonian has more postposi-
tions than prepositions. Hence, one could that the
use of prepositions will be replaced by postposi-
tions as the language acquisition progresses (Ehala,
1994).

5 Experiments and Results

We first studied the effect of the individual feature
groups as well as their combination for a three class
classification of Estonian learners into A, B and C
classes. We also studied the impact of a stacking
ensemble on the overall classification accuracy and
found out that it did not result in a significant im-
provement on the test set. Hence, we further investi-
gated the problem as a collection of multi-stage two-
class cascades instead of a single stage three class
classification. For all our classification experiments,
we used the WEKA (Hall et al., 2009) toolkit. We
report the overall classification accuracy as our eval-
uation metric.

5.1 Three Class-Classification

We first considered the learner classification as a sin-
gle step, three class classification problem. Since
50 documents from each category were separated as
a held-out test set (cf. Section 3.1), we built our
three-class models with 250 texts per category as our
training set to ensure that there is a balanced distri-
bution between classes. We trained multiple clas-
sification models considering the individual feature



groups and the most predictive feature group. Ta-
ble 3 shows the classification accuracy of various
feature groups, reported using the Sequential Mini-
mal Optimization (SMO) implementation in WEKA
(Platt, 1998).

Features 10-Fold CV | Test set
Random baseline 33.33% 33.33%
Noun Morph. 56.64% 52%
Verb Morph 57.55% 58%
POS 52.99% 47.33%
Lex. Variation 43.36% 47.33%
Text Length 33.72% 34%
All Features 62.45% 59.33%
Noun+Verb Morph 61.45% 58%
Top10 features (Table 2) | 57.34% 56.58%

Table 3: Estonian Learner Proficiency Classification with
various Feature groups

Although the classification accuracies overall are
not very high, it can be seen from the results that the
morphological variation does play a key role in pro-
ficiency classification of Estonian. While the verbal
morphology features performed best as an individ-
ual feature sub group, the addition of lexical varia-
tion and POS features to the morphological features
added very little to the overall classification accu-
racy.

Text length turned out to be the most predictive
single feature among the top features. It can be seen
from Table 3 that this feature alone resulted in a clas-
sification accuracy of 34%, which is just above the
random baseline (33.33%). But the fact that the C
level in general contained a higher number of es-
says and translations compared to other categories
of text like letters and short answers (than the A and
B levels), thereby resulting in longer texts in gen-
eral, may have resulted text length being the single
most predictive feature. The Top-10 features also
performed on par with the individual morphological
feature subgroups.

5.1.1 Ensemble Model

Since ensemble models are known to obtain a bet-
ter performance than their constituent models, we
compared the performance of a stacking ensemble
against its individual constituent models. We trained
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three classification models on the entire feature set,
using the same train-test sets as explained before and
trained an ensemble model with three classifiers. We
used the StackingC implementation of WEKA (See-
wald, 2002) to combine the models, with a linear re-
gression model as our meta classifier. Table 4 shows
the classification accuracies for the individual clas-
sifiers as well as the ensemble on a 10-fold CV of
the training set and on the held out test set. The
ensemble did not result in any significant improve-
ment (<1%) compared to the best model amongst
the three of its individual components (SMO). The
ensemble’s performance on the test set was poor
compared to the best classification model.

Classifier 10-Fold CV | Test set
SMO 62.45% 59.33%
Logistic Regression | 59.37% 52%

Decision Tree 57.29% 52.33%
Stacked Ensemble 63.28% 57.33%

Table 4: Proficiency Classification With an Ensemble

5.2 Classification Through Two-Class Cascades

Since combining the classifiers as a stacking ensem-
ble did not work, we turned to reformulating our
problem as a cascade of two-class classifiers. Cas-
cade generalization is the process of sequentially
using a set of small classifiers to perform an over-
all classification task. Gama and Brazdil (2000)
showed that a cascade can outperform other ensem-
ble methods like stacking or boosting. Kaynak and
Alpaydin (2000) proposed a method to sequentially
cascade classifiers and showed that this improves the
accuracy without increasing the computational com-
plexity and cost. Although the creation of our clas-
sifier cascades in this paper is not the same as any
of the above mentioned research, their conclusion
that cascading subsets of classifiers to build an over-
all classifier can possibly result in a better accuracy
was the main motivation for this experiment.

The SMO implementation in WEKA also con-
siders multi-class classification as a combination of
pairwise binary classifications. But, in our subse-
quent experiments, we combine our two-class clas-
sifiers as a multi-stage cascade rather than a multi-
expert stacking ensemble. For these experiments,



we first built the various binary classifiers that were
later used to construct the cascades. We chose our
combinations both by using a One vs All (OvA) as
well as a One vs One (OvO) strategy. Thus, six bi-
nary classifiers were created, namely:

e (A, B) classifier
e (B, C) classifier
e (C, A) classifier
e (A and Not A) classifier
e (B and Not B) classifier
e (C and Not C) classifier

In all the cases, our training data consisted of
equal number of instances per class. In the cases of
the last three classifiers, the training data for NotA,
NotB and NotC categories consisted of instances
from both the classes that were included in the re-
spective ”Not-" classes. The data from the held-
out test set was not included in any of these binary
classification experiments. The training data size for
each classifier has a different size depending on the
classes involved. In all cases, the number of train-
ing samples per category is equal to the number of
documents belonging to the category with the least
number of documents. Hence, in cases involving
the C-class (ABC, AC, BC, CnotC), we trained the
classifiers with 250 documents per category. In all
the other cases (AB, AnotA, BnotB), we trained the
classifiers with 750 documents per category. Table 5
summarizes the training data size and the classifica-
tion accuracies using 10-fold cross validation. All
the models were trained using the SMO algorithm.

Classifer | Training data size | Accuracy
A,B 750 per cat 70.8%
B,C 250 per cat 74.59%
A,C 250 per cat 85.93%
A,NotA | 750 per cat 74.20%
B,NotB | 750 per cat 60.04%
C,NotC | 250 per cat 79.69%

Table 5: Binary Classifications of Estonian Learners

This binary classification shows that there is a
clear trend among the features across the proficiency
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levels. In the case of a pair-wise classification be-
tween classes, the highest classification accuracy
was achieved for the binary classifier that considered
the A and C classes. Although the classification ac-
curacies of the binary classifiers (A,B) and (B,C) are
considerably higher than the overall three class clas-
sification accuracy (Table 3), they are very low com-
pared to that of the binary classifier (A,C). The con-
fusion between the three classes is the highest when
it involves the middle class, B. This confirmed the
ordinal nature of proficiency classification. In the
second set of binary classifiers, again, the classifier
with a poor performance turned out to be (B,NotB).

To take advantage of the fact that the two-class
classification is much more accurate than the three-
class classification, we studied three class classifica-
tion by building multi-stage classifier cascades us-
ing the above binary classifiers. Based on the output
of the first stage (which is the most accurate classi-
fier), we feed the test instance to one of the remain-
ing classifiers to get the final prediction.

5.2.1 Cascade-1

For the first cascade, we considered the pairwise
binary classifiers that used a One vs One (OvO)
strategy from Table 5. We constructed a classifier
cascade as follows: For each test instance,

o Classify the instance using the classifier (A,C).

o If A, re-classify the instance using the classifier
(A,B).

o if C, re-classify the instance using the classifier
(B,O).

5.2.2 Cascade-2

For the second cascade, we considered the sec-
ond set of binary classifiers from Table 5, which use
a One vs All (OvA) strategy. The cascade is con-
structed as follows: For each test instance,

e Classify the instance using the classifier
(C,NotC).

o If C, classify the instance as C.

o Else, re-classify the instance using the classifier
(A,notA).



The choice of these particular combinations of
cascades was motivated by two factors:

e To understand the performance of OvO and
OVA binary classifier cascades independently

o To start with the classifier that has the highest
accuracy as the first stage.

Table 6 compares the performance on the test set
of the cascaded classifiers against the normal 3-class
classifier and a classifier ensemble. Compared to a
normal three-class classifier, the cascaded approach
showed more than 5% improvement in the classifica-
tion accuracy using both the cascades. Compared to
Cascade-1, Cascade-2 performed even better with a
66.66% classification accuracy on the test set. Since
binary classification for certain pairs seemed to be
possible with higher accuracy than the three-class
classification, reformulating three class classifica-
tion as a cascade of binary classifications may result
in a better classification accuracy. This was the ini-
tial motivation for the choice of cascade classifica-
tion. Our results clearly showed that it was a fruitful
experiment.

Classifer Accuracy
Cascade-1 64.66 %
Cascade-2 66.66 %
3-class,without cascade | 59.33%
3-class ensemble 57.33%

Table 6: Comparison of Cascade classification

The cascades need more exploration though.
Also, although the morphological features turned
out to be useful predictors of proficiency classifica-
tion, the classification accuracies are still not very
high. Two possible explanations could be that our
features are good but not sufficient or that the train-
ing data was insufficient.

It is clear from our various classification experi-
ments that the morphological features are good pre-
dictors of proficiency levels. But, surely, there is
much more to language proficiency than morpholog-
ical complexity. So, exploring more features will be
the natural next step to improve the overall classi-
fication accuracy. However, to gain some more in-
sights at this level, we studied the effect of training

70

data sizes on the various classification tasks we per-
formed.

5.3 Effect of Training Sample Size

We took all the seven different classification mod-
els we used in the earlier experiments and studied
the impact of gradually increasing the training data
size on classification accuracy. For this purpose,we
trained all the classifiers with the complete feature
set using the SMO algorithm. The classifiers studied
include the three class ABC classifier and the binary
classifiers AB, BC, AC, AnotA, BnotB and CnotC.
Table 7 summarizes the effect of splitting the respec-
tive training sets into various train-test splits, on the
classification accuracies.

classifier | 50-50 60-40 70-30 80-20

ABC 56.73% | 60.05% | 61.76% | 62.76%
AB 71.07% | 71.3% | 71.2% | 72.04%
BC 71.33% | 72.35% | 71.73% | 74.86%
AC 86.31% | 84.95% | 84.15% | 85.55%
AnotA 75.39% | 75.20% | 76.65% | 75.82%
BnotB 59.05% | 57.95% | 56.91% | 58.08%
CnotC 77.34% | 77.56% | 77.27% | 76.52%

Table 7: Effect of training size on classification accuracy

As the table shows, training data size had an im-
pact only on some of the classification tasks. For
the three class classification, training set size had a
clear effect. Although our corpus had a large num-
ber of texts from A and B compared to C (Table
1), since we used balanced training sets to train all
models, the three-class model had relatively fewer
number of documents per category (250) compared
to, say, the AB classifier (750 per category). Re-
duction of this small training set further by 50% de-
creased the three class classification accuracy from
62.76% (when 80% of the data was used for train-
ing) to 56.73%. So, in this case, training data size
had an effect.

However, an interesting observation is that this
small training sample size (250 documents per cat-
egory) did not have any impact on the classification
performance of the classifier (A,C). This classifier
consistently performed at a higher level compared to
all the other classifiers even when the training data
was only 50% (125 documents per category). Al-



though it is possible that the length of the document
played a role here, there was little difference in the
performance (< 1%) even after removing the text
length feature. This indicates a strong differentiation
between the texts of the language learners of levels
A and C, in terms of the features we used.

In case of the other classification tasks, only the
(B,O) classifier showed some effect of the training
data on its overall classification accuracy. While
there might be other reasons that we did not no-
tice yet, it is possible that the inter class overlap
between (A,B) is more compared to the overlap be-
tween (B,C) at least in terms of the features we con-
sidered. Also, the fact that the B-level lies in be-
tween A and C could also have contributed to the
fact that more training data has little effect on clas-
sifiers involving data from all the three classes (An-
otA, BnotB, CnotC).

6 Conclusion and Discussion

In this paper, we discussed the task of classify-
ing learner texts into standardized proficiency lev-
els based on the texts produced by learners of Es-
tonian as a second language. We used the publicly
accessible Estonian Interlanguage Corpus (EIC) and
modeled our classifiers by considering the morpho-
syntactic variation as our primary feature group. We
hypothesized that the morphology may play an im-
portant role in detecting the proficiency levels as Es-
tonian is a morphologically rich and complex lan-
guage.

For building our classifiers, we experimented with
various methods such as three class classifiers, an
ensemble model and multi-stage cascades. Our ex-
periments showed that the multi-stage cascades im-
proved the classification accuracy compared to the
other approaches. Our experiments also showed a
clear trend across the proficiency levels. There was
little classification overlap between the beginner (A)
and the advanced (C) level texts but a strong overlap
of both these levels with the intermediate (B) level.

We can conclude from our experiments that the
morphological features can indeed play an impor-
tant role in the proficiency classification of Estonian.
Although the classification accuracies we achieved
(60-65%) have a long way to go in terms of a real-
world grading application, we believe that this is a
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good starting point to explore the role of morphol-
ogy in proficiency classification of Estonian in par-
ticular and other morphologically rich languages in
general.

As a part of our future work, we intend to investi-
gate the role of morphology in Estonian proficiency
classification further. We also want to compare the
proficiency levels across various genres of texts in
the corpus (e.g, essays, personal and official letters,
translations etc.). Another interesting dimension we
want to explore further is the distribution of specific
kinds of morphological phenomena (e.g., case mark-
ers) that exist in Estonian but not in the learner’s na-
tive language, across the different proficiency levels.
It would also be interesting to apply insights from
the theories of second language acquisition research
and study their utility for proficiency classification.
Apart from morphology, we also intend to study the
impact of other features such as lexical sophistica-
tion, error rate, syntactic complexity and discourse
coherence. Finally, on the model construction side,
we plan to investigate and understand the working
of cascaded classifiers better in this context.
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Abstract

This paper presents and evaluates approaches
to automatically score the content correctness
of spoken responses in a new language test for
teachers of English as a foreign language who
are non-native speakers of English. Most ex-
isting tests of English spoken proficiency elic-
it responses that are either very constrained
(e.g., reading a passage aloud) or are of a pre-
dominantly spontaneous nature (e.g., stating
an opinion on an issue). However, the assess-
ment discussed in this paper focuses on essen-
tial speaking skills that English teachers need
in order to be effective communicators in their
classrooms and elicits mostly responses that
fall in between these extremes and are moder-
ately predictable. In order to automatically
score the content accuracy of these spoken re-
sponses, we propose three categories of robust
features, inspired from flexible text matching,
n-grams, as well as string edit distance met-
rics. The experimental results indicate that
even based on speech recognizer output, most
of the feature correlations with human expert
rater scores are in the range of r =04 tor =
0.5, and further, that a scoring model for pre-
dicting human rater proficiency scores that in-
cludes our content features can significantly
outperform a baseline without these features
(r=0.56 vs. r=0.33).

1 Introduction

With the increased need for instruction of interna-
tional learners of English as a foreign language
(EFL), there is a concomitant rise in demand to
assess the language competence of English teach-
ers who are non-native speakers of English. This
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situation arises because it is neither possible nor
affordable for countries where English is not spo-
ken as a native language to employ only or even
mostly native speakers of English as EFL teachers.
Moreover, as the language of instruction increas-
ingly becomes English in most classrooms, teach-
ers’ competence in the productive language
modality of speaking becomes substantially more
important than in the past. In order to meet this
demand for assessing the English language profi-
ciency of teachers of English, a new test, English
Teachers Language Assessment (ETLA), was de-
veloped recently and piloted in 2012. The test
comprises items for all four main language modali-
ties: reading, listening, writing and speaking.

While reading and listening items use a multi-
ple-choice paradigm, test items for speaking and
writing elicit open responses. For cost and effi-
ciency reasons, we aim to employ automated scor-
ing of written and spoken responses in this test.
This paper is concerned in particular with the con-
ceptualization, implementation and evaluation of
features that can assess one aspect of English
speaking proficiency: the content correctness of a
test taker’s response. Our automated speech scor-
ing system, SpeechRater®™™ (Zechner et al., 2009),
also has features addressing other aspects of speak-
ing proficiency, such as fluency or pronunciation,
but the details of these features will not be dis-
cussed as part of this paper.

The speaking items in ETLA range in complexi-
ty from reading a text passage aloud to more chal-
lenging tasks requiring multi-sentence responses
related to typical teaching situations. The items,
therefore, elicit speech in which predictability
ranges from high (e.g., reading aloud) to medium
(e.g., open responses based on teaching material).

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 73-81,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



While approaches to capture the content of mostly
predictable speech have been widely used in the
past (see, e.g., Alwan et al., 2007; Franco et al.,
2010), this is not the case for responses that exhibit
considerable variation but are still much shorter
and more constrained than spontaneous items from
other language tests, such as TOEFL iBT®.

Therefore, the goal of the study reported in this
paper is to conceptualize, implement and evaluate
features that can address the subset of ETLA
speaking items where responses are not strongly
predictable but are still fairly short and constrained
by the context of the item stimulus and prompt.*
One important aspect of any features used for con-
tent scoring is that they have to be robust with re-
spect to speech recognition errors. Robustness is
necessary because we are using an automatic
speech recognition (ASR) system as a front end,
and the average word error rate of the system is
around 27% for moderately predictable item re-
sponses.

To illustrate what an ETLA speaking item may
look like, we provide a relatively simple example
here. Suppose the test taker (i.e., an English lan-
guage teacher) is asked to request that the class
open their textbooks on page 55. We could see a
range of responses, from “perfect” (score level 3,
e.g., “Please open your textbooks on page 55.” or
“Please open your textbooks and turn to page
55.”), to “good” (score level 2, e.g., “Please open
the books on the page 55.”) and to “poor” (score
level 1, e.g., “Open book page 55.”). Again, note
that for this paper we are not interested in potential
issues with fluency, such as long pauses or speak-
ing rate, nor with pronunciation or prosody. We
just look at the content of the test takers’ respons-
es, either in idealized form by means of a human
transcription of what a test taker actually said, or in
a realistic operational scenario, where we look at
the output of an ASR system. In both cases, we
consider the sequence of words only (i.e., a textual
representation of the test takers’ spoken respons-
es).

In order to investigate the effectiveness of can-
didate content features in a short-term development
cycle before a larger amount of pilot data would be
available, we first conducted a small scale in-house

! A test item is a basic element of a test, consisting of stimulus
material, such as text and/or visuals, and a prompt (test ques-
tion) that elicits a response from the test taker.
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data collection effort focusing on the moderately
predictable spoken items in ETLA. Based on the
analysis of this mini-corpus, several different cate-
gories of promising features were selected for po-
tential operational use and then evaluated on the
pilot data.

The paper is organized as follows: Section 2
provides an overview on related work; Section 3
describes the in-house data set, the pilot data and
the ASR system; the developed features are pre-
sented in Section 4; Section 5 presents our experi-
ments; we then discuss our findings in Section 6
and we conclude the paper in Section 7.

2 Related Work

Related to the automated assessment of writing
free-text, research to date has concentrated mainly
on two tasks: (1) scoring of short answers (Mitch-
ell et al.,, 2002; Leacock and Chodorow, 2003;
Mohler and Mihalcea, 2009) and (2) scoring of
essays (Foltz et al., 1999; Kanejiya et al., 2003;
Attali and Burstein, 2006). For example, Leacock
and Chodorow (2003) built an automated scoring
system, c-rater™, to evaluate the short constructed
or free-text responses, where the concepts given in
test items were modeled, and the presence of these
expected concepts in students’ answers would be
detected.

As for the evaluation of free-text essays, Attali
and Burstein (2006) used a selected set of mean-
ingful features to measure different constructed
aspects of writing essays, such as grammar, usage,
mechanics, style, organization, development, lexi-
cal complexity and prompt-specific vocabulary
usage. In addition, the Intelligent Essay Assessor
(Foltz et al., 1999) used Latent Semantic Analysis
(LSA) to score students’ answers by comparing
them to domain-representative texts. Since LSA is
based on the bag-of-words model, researchers have
also tried to expand it by introducing additional
information, such as part-of-speech (POS) tags
(Kanejiya et al., 2003).

In addition, research efforts have also been
made to evaluate the content relatedness and cor-
rectness for spoken responses. For example, Xie et
al. (2012) used LSA and Pairwise Mutual Infor-
mation approaches to evaluate the content correct-
ness of unrestricted spontaneous spoken responses.
Moreover, Chen and Zechner (2011) explored fea-



tures related to grammatical complexity in an au-
tomated speech scoring system.

In order to address the moderately predictable
speaking test items in the new ETLA, this paper
presents several different types of features to score
the content correctness of the elicited spoken re-
sponses. Following a series of experiments and
comparisons, seven features from three content
feature categories are selected and evaluated.

3 Data Sets and ASR System

This study conducts experiments and evaluations
based on two different data sets: (1) a small scale
in-house data collection effort, which was used for
the design and development of content features;
and (2) a larger-scale pilot data collection, which
was used to further evaluate the features selected
according to the in-house data and to build scoring
models for the prediction of human proficiency
scores.

3.1 In-house Data Collection

Twenty-two items from ETLA with moderately
predictable responses were selected for the in-
house data collection.? Firstly, 1,053 text responses
in total for all three score levels (3 = high profi-
ciency, 2 = medium proficiency, 1 = low profi-
ciency) were drafted and collected by human
experts. In order to simulate the operational scenar-
io with an ASR system in place, a subset of re-
sponses was recorded by a small set of
predominantly non-native speakers of English. For
each test item, four responses were randomly se-
lected from each score level, which resulted in 22
x 3 x 4 = 264 responses for voice recording. The
remainder of 789 text responses comprised the set
for feature development and training. In addition,
about two thirds of the 264 text responses were
randomly double-recorded by a second speaker,
resulting in a speech corpus with 444 spoken re-
sponses in total, used as the evaluation set. Fur-
thermore, all these spoken responses were
manually transcribed to accommodate the errors
introduced by reading, such as insertions of various
speech disfluencies.

2 We decided to focus our efforts only on the moderately pre-
dictable items since scoring of highly predictable item types
has been extensively studied in previous research already.
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3.2 Pilot Data Collection

This study uses data from a 2012 pilot administra-
tion of the ETLA assessment. In particular, we fo-
cus on 14 moderately predictable items from the
pilot, covering 2,308 test takers. In order to build
the automatic speech recognizer and the scoring
models, the pilot data were partitioned into five
different subsets without any speaker and response
overlaps. The first three data partitions were used
for training, development and evaluation of the
speech recognition system (hereafter, “asrTrain”,
“asrDev” and “asrEval”), which included spoken
responses from both the moderately and highly
predictable items. The asrTrain partition was fur-
ther used to develop and train the content features
described below. The remaining two partitions
were used for training and evaluation of scoring
models that predicted item scores based on a set of
features (hereafter, “smTrain” and “smEval”),
where only the spoken responses from 14 moder-
ately predictable items from one pilot form were
included.

The detailed partition information is listed in
Table 1. All these spoken responses have been
manually transcribed and scored with holistic
scores from 1 to 3 by trained human expert raters.
For the smTrain and smEval partitions, there were
6,367 responses receiving double annotation, and
the inter-rater correlation was 0.73. Furthermore,
the average length of responses from smTrain and
smEval sets was 10.5 words, and the correspond-
ing vocabulary size was 855 (not including partial
words).

Partitions | # Speakers | # Responses
asrTrain 1,658 27,604
asrDev 25 700
asrEval 25 700
smTrain 300 3,452
smEval 300 3,466

Table 1. Number of speakers and number of responses
included within each data partition.

3.3 System Architecture

Our  automated  speech  scoring  system,
SpeechRater (Zechner et al., 2009), consists of an
ASR system described below which generates a
word hypothesis for every response by a test taker,
including information about timing, energy and
pitch, and other information from the input audio



file. Next, the feature computation modules take
the outputs of the ASR system and compute a set
of features, related to fluency, pronunciation, pros-
ody, as well as content, the focus of this paper. Fi-
nally, a scoring model (linear regression model) is
trained based on the smTrain set to predict scores
and then evaluated on unseen data (smEval set).

3.4 ASR System

In this study, a state-of-the-art gender-independent
Hidden Markov Model speech recognition system
trained on about 800 hours of non-native speech is
taken as the baseline recognizer, and its language
model (LM) is then further adapted using the tran-
scriptions from the asrTrain data partition. The
language model adaptation weights are tuned on
the asrDev set, and the resulting word error rate
(WER) on the asrEval set (with both moderately
and highly predictable responses) is 11.7%, and its
WER on the subset of 264 moderately predictable
responses is 19.7%. This speech recognizer is fur-
ther evaluated on both smTrain and smEval sets as
shown in Table 2, only including moderately pre-
dictable responses.

Partition | WER (%)
smTrain 26.7
smEval 26.9

Table 2. Word error rates (WER) of the speech recog-
nizer on smTrain and smEval® data sets.

4  Content Features

Following a careful inspection and analysis of the
collected in-house data (described in Section 3.1
above), several different categories of content fea-
tures were designed and developed. The initial data
analysis showed that features need to be able to
capture very narrow ranges of expressions with
minor variations, but also should be able to capture
something like the “overall accuracy” of expres-
sion, where local word sequences or phrases
should conform to the expectations of the item de-
sign without requiring that a response follows a
confined pattern in its entirety. For the former situ-
ation, features like regular expression matches

® The calculation of WER is based on only the recognized
outputs with more than one word. Thus, the number of actual-
ly recognized responses is less than that in Table 1, i.e., 3,264
responses for smTrain and 3,255 responses for smEval.
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seem appropriate to be a good match, whereas for
the latter, more flexible approaches such as n-gram
models or string edit distance metrics may be more
appropriate. We list and describe our proposed
content features in the following section.

A. Flexible String Matching Metrics

Al. Regular Expressions

Since many responses in ETLA are expected to
follow certain patterns, it is intuitive to construct
limited regular expressions (RegEx) to match gold
standard responses for candidates with high profi-
ciency score levels. Accordingly, one type of regu-
lar expression related features, re_match, can be
extracted to detect whether the test response can be
matched by any of the pre-built regular expres-
sions. This feature can obtain the values of 0 (does
not match), 1 (partially matches) and 2 (exactly
matches). Here, a partial match indicates that a
RegEx can be matched within a test response that
also has other spoken material, which is useful
when the speaker repeats or corrects the answer
multiple times in a single item response, and the
compiled RegEXx can still be used to match parts of
the test response.

This content feature has the advantage of high
precision, as it can precisely examine the content
correctness of the test responses. Thus, the RegEXx
should be compiled to match all the example re-
sponses at the highest score level 3 from the train-
ing set. For some test items with relatively short
and fixed answer patterns, this feature is quite use-
ful; however, it is very time-consuming and diffi-
cult to manually build regular expressions for
items with longer and more flexible expressions.
Meanwhile, the mechanism of exact matching can
make this feature fail in very small variations of
expression. Especially when applying this feature
on ASR output, it is difficult to successfully match
some content-correct responses that have
disfluencies or recognition errors.

Therefore, in order to improve the robustness of
RegEXx, another regular expression related feature
is proposed. In general, for each item in ETLA,
some pieces of specific expressions are required in
a test response to represent its content correctness.
Accordingly, we can segment the reference re-
sponses into several fragments and identify some
pieces as key fragments. For example, when look-
ing at the reference response “Please open your



text books and turn to page 55.” two key fragments
can be extracted with “Please open your text
books” and “turn to page 55.” We group versions
of these key fragments from the training corpus
together and construct regular expressions to match
each group. Afterwards, a feature can be defined to
count how many key fragments can be matched by
a test response, namely num_fragments.

All. Keyword Detection

For moderately predictable items on ETLA, key-
word lists can be extracted from the stimulus mate-
rial and the item prompt, containing the words that
need to be included in a test response by test tak-
ers. Then a feature, num_keywords, can be used to
examine how many keywords appear in a test re-
sponse, which can be further normalized by the
number of predefined keywords for each item, i.e.,
percent_keywords. In addition, as some keywords
may be a phrase with multiple words, such as
“page 55, we can split all the keywords into sin-
gle words and get another sub-keywords list. Then
two corresponding features can be extracted as
num_sub_keywords and percent_sub_keywords.

B. N-grams

Bl. Word N-grams

The word n-gram model is introduced here to cap-
ture the similarity of word usage between the test
and the reference responses. Based on the collected
training samples, trigrams are trained using the text
responses from the highest score level 3. Then, the
LM can be used to score a test response, and the
resulting probability can be taken as feature, called
Im_3.

BIl. POS Similarity

This feature measures the syntactic complexity of
test responses based on the distribution of POS
tags. First, all the responses from the training data
set are assigned with POS tag sequences via an
automatic POS tagger. Then, a POS vector accord-
ing to each score level can be obtained by gather-
ing the POS unigram, bigram or trigram statistics
from the same score level.

Given a test response, its corresponding POS
sequence can be determined by the same POS tag-
ger, and the cosine similarities between the test
POS n-gram vector and the POS vectors from three
different score levels can be calculated as pos_1,
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pos_2 and pos_3, where pos_3 is used as a feature
in our experiments below. Furthermore, by com-
paring these three cosine similarities, the score cat-
egory with the highest similarity can be extracted
as another feature, i.e., pos_score.

BIll. Machine Translation Evaluation Metric
(BLEU)

BLEU (Papineni et al., 2002) is one of the most
popular metrics for automatic evaluation of ma-
chine translation, where the score is calculated
based on the modified n-gram precision. In this
study, the BLEU score is introduced to evaluate
the content quality of a test response, where three
different gold standard reference corpora are ex-
tracted from the training set according to each
score level. Similar to the edit distance and WER
features described below, three BLEU scores are
calculated by comparing them with reference re-
sponses from each score level (i.e., bleu_1, bleu_2
and bleu_3). We decide to use the following two
features for our experiments below: bleu_3 and
bleu_score, the score level which receives the
maximum BLEU score.

C. String Edit Distance Metrics

ClI. String Edit Distance
As the edit distance is an effective string metric for
measuring the amount of difference between two
word sequences, including insertions, deletions and
substitutions, we use it to capture the sequence dis-
tance between the test and reference responses.
Given a test response, we can separately calcu-
late the edit distance by comparing it with training
responses from each score level. Afterwards, the
minimum edit distance from each score level can
be extracted ased 1, ed 2 and ed 3, where ed 3 is
selected as feature for our experiments. Further-
more, by comparing these three edit distances, the
score category with the minimum value is taken as
another feature, ed _score.

CIl. Word Error Rate (WER)
By dividing the edit distance by the length of the
reference response, we obtain the word error rate
(WER) metrics, commonly used in speech recogni-
tion, and two additional features, wer 3 and
wer_score, similarly as above, can be calculated.
Compared to the above category of n-gram re-
lated features, which capture the n-gram fragment



matching between the test and reference samples,
the category of edit distance features try to find the
most similar reference sample to the test sample at
the whole-response level.

Finally, all the proposed features are implement-
ed and then examined based on both the ideal hu-
man transcription and the realistic ASR output.
The speech recognizer used with the small in-
house data is the same as the ASR system de-
scribed in Section 3.4, but its language model is
adapted with the much smaller set of 789 training
text responses. The WER of this system is 17.8%,
evaluated on 444 spoken responses.

In addition, in order to increase the robustness of
the extracted features, a preprocessing stage is in-
troduced to remove all the disfluencies from the
ASR output, such as filler words, recognized par-
tial words and repeated words. Afterwards, each
feature is evaluated on both the transcription and
the ASR output of the 444 collected spoken re-
sponses, and its corresponding Pearson correlation
coefficient with human scores is presented in Table
3.

Based on overall correlation, inter-correlation
analyses, as well as on construct* considerations,
seven content features from three categories are
selected and will be evaluated on a larger scale on
ETLA pilot data in the next section: re_match
(A1), num_fragments (A2), percent_sub_keywords
(A3), bleu_3 (B1), ed_score (C1), wer_3 (C2) and
wer_score (C3).

5 Experiments and Results

This section first describes experiments related to
the performance of the seven selected content fea-
tures on a larger corpus from an ETLA pilot ad-
ministration (described above in Section 3.2).
Then, a similar analysis is conducted based on hu-
man rater analytic content scores on a subset of
this data. Finally, the selected content features are
combined with other features related to pronuncia-
tion, prosody and fluency to build a scoring model
for the prediction of human scores.

4 A construct is the set of knowledge, skills and abilities
measured by a test. The term “construct considerations” in the
context of feature selection refers to the process of ensuring
that the selected feature set obtains a high coverage of all as-
pects of the relevant construct.
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Feature Trans | ASR
re_match 0.789 | 0.537
num_fragments 0.629 | 0.523
A num_keywords 0.269 | 0.254
percent_keywords 0.419 | 0.375
num_sub_keywords 0.249 | 0.239
percent_sub_keywords | 0.482 | 0.417
Im_3 0.482 | 0.461
pos_3 0.270 | 0.270
B | pos_score 0.315 | 0.339
bleu_3 0.531 | 0.458
bleu_score 0.144 | 0.194
ed_3 -0.362 | -0.337
C ed_score 0.642 | 0.614
wer_3 -0.573 | -0.513
wer_score 0.585 | 0.557

Table 3. Pearson correlation coefficients (r) of content
features with human holistic scores.

5.1 Feature Evaluation on Pilot Data

In the following experiments, we use the asrTrain
set to train the content features. Then these features
are examined on the smTrain and smEval data sets.
In order to extract the edit distance, WER- and
BLEU-related features for each item, three text
reference corpora according to different score lev-
els, are needed. Duplicate reference responses with
the same content are removed within each score
level.

Furthermore, we improve two RegEx features
using the reference responses from the highest
score level 3 in the asrTrain set. (1) Since the pre-
viously obtained re_match feature based on the in-
house data may not be able to match multiple con-
tent-correct responses in the pilot data, we need to
augment the set of RegEXx for this feature based on
correct responses from score level 3 in the asrTrain
set. (2) Since the maximum number of candidate
fragments varies across different ETLA items, the
num_fragments feature values are not comparable
across items. Therefore, we redesign this feature
by assigning a list of manually selected keywords
for each fragment. During feature extraction, we
count the number of distinct keywords associated
with all the matched fragments and divide this
number by the number of predefined keywords for
each item (as in All. Keyword Detection), which
results in another feature: perc_fragment_kw (A2).

Based on the ASR output of smTrain and
smEval data sets, seven content features are ex-
tracted and their Pearson correlation coefficients
with the holistic human scores are calculated and
shown in Table 4.



smTrain (r) smEval (r)
Feature

Trans | ASR | Trans | ASR
Al 0.53 | 0.415 | 0.534 | 0.441
A2 0.576 | 0.458 | 0.583 | 0.48
A3 0.42 | 0.286 | 0.419 | 0.297
B1 0.597 | 0.478 | 0.564 | 0.452
C1 0.535 | 0.412 | 0.52 0.39
c2 -0.588 | -0.469 | -0.564 | -0.446
C3 0.554 | 0.433 | 051 | 0.428

Table 4. Pearson correlation coefficients between con-
tent features and human holistic scores, based on both
the transcription and the ASR output of smTrain and
smEval.® Features include Al (re_match), A2
(perc_fragment_kw), A3 (percent_sub_keywords), B1
(bleu_3), C1 (ed_score), C2 (wer_3) and C3
(wer_score)

5.2 Evaluations Using Human Rater Analyt-
ic Content Scores

In addition to the human rating of all spoken re-
sponses of the ETLA pilot data set with holistic
scores that take into account both the dimensions
of “delivery” (fluency, pronunciation, prosody)
and “content,” a subset of the data was further
scored by human expert raters in these two dimen-
sions separately, resulting in so-called analytic
scores for delivery and content. The inter-
correlation for content analytic scores was 0.79.

1,410 responses from the smTrain set and 1,402
responses from the smEval set received such ana-
Iytic content scores. On this subset, table 5 shows
the Pearson correlation coefficients between the
content features and the analytic content scores, as
well as the holistic scores, for comparison.

5.3 Scoring Model Comparison

We further examine these content features by in-
troducing them in a scoring model to predict hu-
man rater holistic proficiency scores, using
smTrain for training of the models and smEval for
their evaluation. The baseline system employs 14
features related to the construct dimension of de-
livery, such as pronunciation, prosody and fluency.

® The evaluation is conducted on recognition output with more
than one word. In addition, due to technical problems, such as
high background noise, some responses are non-scorable for
human raters, and these responses are removed from the eval-
uation sets. Finally, there are 3176 responses included in
smTrain, and 3084 responses in smEval.
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smTrain (r)
Feature Holistic Content

Trans | ASR | Trans | ASR
Al 0.529 | 0.415 | 0.563 | 0.434
A2 0.564 0.46 0.646 | 0.525
A3 0.422 | 0.283 | 0.452 | 0.277
Bl 0.6 0.499 | 0.654 | 0.504
C1l 0.527 0.43 0.555 0.46
C2 -0.588 | -0.473 | -0.627 | -0.488
C3 0.542 | 0.434 | 0.563 | 0.462

smEval (r)
Feature Holistic Content

Trans | ASR | Trans | ASR
Al 0.525 | 0.424 | 0.538 | 0.436
A2 0.579 | 0.472 | 0.621 | 0.512
A3 0.423 | 0.308 | 0.454 | 0.321
Bl 0.563 | 0.442 | 0.606 | 0.471
C1l 0.521 0.4 0.539 | 0.422
C2 -0.543 | -0.42 | -0.584 | -0.457
C3 0.514 | 0.417 | 0.529 | 0.439

Table 5. Pearson correlation coefficients between con-
tent features and human analytic content scores as well
as human holistic scores.

Furthermore, an extended scoring model is built by
adding the selected seven content features to the
model. Table 6 provides the comparison between
these two scoring models, reporting both quadratic
weighted kappa and Pearson correlation coeffi-
cients between automatically predicted scores and
human holistic scores on the smEval data set.

Scoring Model Kappa r
Baseline (Delivery only) 0.30 | 0.33
Extended (Delivery+Content) | 0.53 | 0.56

Table 6. Scoring model comparison: quadratic weighted
kappa and Pearson correlation coefficients between pre-
dicted scores (unrounded) and human holistic scores.

6 Discussion

The goal of this paper was to conceptualize, im-
plement and evaluate features that can determine
the content correctness of spoken item responses in
an English language test for teachers of English
who are not native speakers of English.

Based on observations from a small in-house da-
ta collection, where human test developers and
content experts created example responses to 22
test items for three different score levels, we de-
cided to implement a range of features that can
capture the content correctness of test takers’ re-
sponses in varying degree of precision. Our fea-



tures belong to three classes: features related to
fixed expressions, with potential small variations,
such as regular expressions or keywords; features
based on n-grams of words or POS tags, including
the BLEU metrics frequently used for evaluations
of machine translation output; and features related
to measures of string edit distance, including the
WER metrics commonly used in speech recogni-
tion evaluations.

It should be noted that we use the term “content”
in a fairly broad way in this paper, namely, every-
thing in a spoken response that is not related to
lower-level aspects of speech production such as
fluency or pronunciation. Since the scoring rubrics
for ETLA place a high emphasis both on the
grammatical accuracy, as well as on the correct
content (in a more narrow sense), this situation is
reflected by our choice of features that focus both
on elements traditionally associated with content
(such as matching of keywords), as well as on ele-
ments more related to correct grammatical expres-
sions (e.g., sequences of POS tags).

Our initial evaluations on the small in-house da-
ta collection showed that most of these features
correlate well with human expert scores, both
when using transcribed speech as well as when
using ASR output. The absolute correlations for
human transcriptions of speech range from r =
0.144 (bleu_score) to r = 0.789 (re_match), and for
ASR output from r = 0.194 (bleu_score) to r =
0.614 (ed_score). The relative drop in correlation
between these two conditions varies across fea-
tures, but is generally around 5%-15%, with
re_match having a much larger performance drop
from r = 0.789 for transcribed speech to r = 0.537
for ASR output (32% relative decrease in perfor-
mance). °

From this initial set of 15 features, we selected
seven features based on feature performance, inter-
correlation analyses (i.e., avoiding features that
have a high inter-correlation and measure a similar
aspect of content), and considerations of construct,
i.e., which features are representing content in a
way that is consistent with what human experts
would consider important in determining the con-
tent correctness of a response. This subset of seven

® The correlation of one feature, pos_3, remained unchanged
between the two conditions, and two features, pos_score and
bleu_score, showed higher correlations for ASR output than
for human transcriptions.
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features includes three features each from the clas-
ses of flexible string matching and string edit dis-
tance, and one feature (bleu_3) from the n-gram
class.

When evaluating these seven features on a larger
data set, the smTrain and smEval sets of the 2012
ETLA pilot data, we find absolute correlations be-
tween features and human holistic scores ranging
from r = 0.286 to r = 0.480 for ASR output, and
from r = 0.419 to r = 0.597 for transcriptions. The
relative decrease in correlation between transcrip-
tions and ASR outputs ranges from 16% to 32% in
these data sets (smTrain and smEval). The magni-
tude of content feature correlations observed in this
study is similar to that of features related to fluen-
cy and pronunciation computed on spontaneous
speech, as reported in Zechner et al. (2009). In
fact, due to the brevity of the moderately predicta-
ble responses in ETLA, features related to fluency
and pronunciation achieve correlations of less than
0.3 on this data set, making content features crucial
for the assessment of speech here.

When comparing the six content features that
are identical between the original feature set of 15
features (in-house data collection) and the final
feature set, we observe a relative drop in feature
correlation between the in-house data set and the
smEval pilot data set between 1% (blue_3) and
36% (ed_score), with an average decrease of 20%.
This performance decrease can be explained by (1)
the more challenging data set of the pilot, as indi-
cated, e.g., by a much higher word error rate of the
ASR system (27% vs. 18%); and (2) the fact that
the in-house data collection was much more con-
strained in terms of test taker response variation
compared to the real-world pilot data.

Since a subset of the ETLA responses was also
scored analytically by human raters, we could fur-
ther compare the feature correlations between ho-
listic vs. analytic content scores (Section 5.2). We
find that on smEval, for all features, absolute cor-
relations increase on human analytic content scores
compared to human holistic scores. Although these
differences are rather small (0.01 to 0.04), this is
an indicator that our features are measuring what
they are supposed to measure, since the holistic
scores also take other dimensions of speech, such
as fluency and pronunciation, into account.



7 Conclusion and Future Work

This paper presented a study whose aim was to
conceptualize, implement and evaluate features to
measure the content correctness of test takers’ re-
sponses in a new assessment for EFL teachers
whose native language is not English.

We implemented and evaluated an initial set of
15 content features from three feature classes: flex-
ible string matching, n-grams and string edit dis-
tance metrics. A subset of these features was then
evaluated on a 2012 ETLA pilot administration,
and we found correlations between features and
human holistic scores in the range of r = 0.29 to r
= 0.48 on ASR output. Correlations increased
when comparing features with human analytic con-
tent scores.

Finally, we compared a baseline regression scor-
ing model for prediction of human holistic scores
without any content features to an extended model
using seven content features and found that the
model correlation substantially improved from r =
0.33 (baseline) to r = 0.56 (extended model).

Future work will include devising strategies on
how to obtain RegEx features more quickly in a
semi-automated way in order to reduce human la-
bor. Further, we plan more in-depth analysis of the
feature performance across different test items and
item types which potentially could lead to further
improvements and refinements of our content fea-
tures.
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Abstract

We present a system for automatically iden-
tifying the native language of a writer. We
experiment with a large set of features and
train them on a corpus of 9,900 essays writ-
ten in English by speakers of 11 different lan-
guages. our system achieved an accuracy of
43% on the test data, improved to 63% with
improved feature normalization. In this paper,
we present the features used in our system, de-
scribe our experiments and provide an analysis
of our results.

1 Introduction

The task of Native Language Identification (NLI)
is the task of identifying the native language of a
writer or a speaker by analyzing their writing in
English. Previous work in this area shows that
there are several linguistic cues that can be used
to do such identification. Based on their native
language, different speakers tend to make different
kinds of errors pertaining to spelling, punctuation,
and grammar (Garfield, 1964; Wong and Dras, 2009;
Kochmar, 2011). We describe the complete set of
features we considered in Section 4. We evaluate
different combinations of these features, and differ-
ent ways of normalizing them in Section 5.

There are many possible applications for an NLI
system, as noted by Kochmar (2011): finding the
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origins of anonymous text; error correction in var-
ious tasks including speech recognition, part-of-
speech tagging, and parsing; and in the field of sec-
ond language acquisition for identifying learner dif-
ficulties. We are most interested in statistical ap-
proaches to this problem because it may point to-
wards fruitful avenues of research in language and
sound transfer, which are how people apply knowl-
edge of their native language, and its phonology
and orthography, respectively, to a second language.
For example, Tsur and Rappoport (2007) found that
character bigrams are quite useful for NLI, which
led them to suggest that second language learners’
word choice may in part be driven by their native
languages. Analysis of such language and sound
translation patterns might be useful in understand-
ing the process of language acquisition in humans.

2 Previous Work

The work presented in this paper was done as part
of the NLI shared task (Tetreault et al., 2013), which
is the first time this problem has been the subject
of a shared task. However, several researchers have
investigated NLI and similar problems. Authorship
attribution, a related problem, has been well stud-
ied in the literature, starting from the seminal work
on disputed Federalist Papers by Mosteller and Wal-
lace (1964). The goal of authorship attribution is
to assign a text to one author from a candidate set

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 8288,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



of authors. This technique has many applications,
and has recently been used to investigate terrorist
communication (Abbasi and Chen, 2005) and dig-
ital crime (Chaski, 2005). The goal of NLI some-
what similar to authorship attribution, in that NLI
attempts to distinguish between candidate commu-
nities of people who share a common cultural and
linguistic background, while authorship attribution
distinguishes between candidate individuals.

In the earliest treatment of this problem, Koppel
et al. (2005) used stylistic text features to identify
the native language of an author. They used features
based on function words, character n-grams and er-
rors and idiosyncrasies such as spelling errors and
non-standard syntactic constructions. They exper-
imented on a dataset with essays written by non-
native English speakers from five countries, Russia,
Czech Republic, Bulgaria, France and Spain, with
258 instances from each dataset. They trained a
multi-class SVM model using the above features and

reported 10-fold cross validation accuracy of 80.2%.

Tsur and Rappoport (2007) studied the problem
of NLI with a focus on language transfer, i.e. how
a seaker’s native language affects the way in which
they acquire a second language, an important area in
Second Language Acquisition research. Their fea-
ture analysis showed that character bigrams alone
can lead to a classification accuracy of about 66%
in a 5-class task. They concluded that the choice of
words people make when writing in a second lan-
guage is highly influenced by the phonology of their
native language.

Wong and Dras (2009) studied syntactic errors de-
rived from contrastive analysis as features for NLI.
They used the five languages from Koppel et al.
(2008) along with Chinese and Japanese, but did not
find an improvement in classification accuracy by
adding error features based on contrastive analysis.
Later, Wong and Dras (2011) studied a more gen-
eral set of syntactic features and showed that adding
these features improved the accuracy significantly.
They also investigated classification models based
on LDA (Wong et al., 2011), but did not find them
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to be useful overall. They did, however, notice that
some of the topics were capturing information that
would be useful for identifying particular native lan-
guages. They also proposed the use of adaptor gram-
mars (Johnson et al., 2007), which are a generaliza-
tion of probabilistic context-free grammars, to cap-
ture collocational pairings. In a later paper, Wong
et al. explored the use of adapter grammars in de-
tail (Wong et al., 2012) and showed that an exten-
sion of adaptor grammars to discover collocations
beyond lexical words can produce features useful for
the NLI task.

3 Dataset

The experiments for this paper were performed us-
ing the TOEFL11 dataset (Blanchard et al., 2013)
provided as part of the shared task. The dataset con-
tains essays written in English from native speakers
of 11 languages (Arabic, Chinese, French, German,
Hindi, Italian, Japanese, Korean, Spanish, Telugu,
and Turkish). The corpus contains 12,099 essays per
language sampled evenly from 8 prompts or topics.
This dataset was designed specifically to support the
task of NLI and addresses some of the shortcom-
ings of earlier datasets used for research in this area.
Specifically, the dataset has been carefully selected
in order to maintain consistency in topic distribu-
tions, character encodings and annotations across
the essays from different native languages. The data
was split into three data sets: a training set com-
prising 9,900 essays, a development set comprising
1,100 essays, and a test set comprising 1,100 essays.

4 Approach

We addressed the problem as a supervised, multi-
class classification task. We trained a Support Vector
Machine (SVM) classifier on a set of lexical, syntac-
tic and dependency features extracted from the train-
ing data. We computed the minimum and maximum
values for each of the features and normalized the
values by the range (max - min). Here we describe
the features in turn.



Character and Word N-grams
poport (2007) found that character bigrams were

Tsur and Rap-

useful for NLI, and they suggested that this may be
due to the writer’s native language influencing their
choice of words. To reflect this, we compute features
using both characters and word N-grams. For char-
acters, we consider 2,3 and 4-grams, with padding
characters at the beginning and end of each sentence.
The features are generated over the entire training
data, i.e., every n-gram occurring in the training data
is used as a feature. Similarly, we create features
with 1,2 and 3-grams of words. Each word n-gram
is used as a separate feature. We explore both binary
features for each character or word n-gram, as well
as normalized count features.

Part-Of-Speech N-grams Several investigations,
for example those conducted by Kochmar (2011)
and Wong and Dras (2011), have found that part-of-
speech tags can be useful for NLI. Therefore we in-
clude part-of-speech (POS) n-grams as features. We
parse the sentences with the Stanford Parser (Klein
and Manning, 2003) and extract the POS tags. We
use binary features describing the presence or ab-
sence of POS bigrams in a document, as well as nu-
merical features describing their relative frequency

in a document.

Function Words Koppel et al. (2005) found that
function words can help identify someone’s native
language. To this end, we include a categorical fea-
ture for the presence of function words that are in-

cluded in list of 321 function words.

Use of punctuation Based on our experience
with speakers of native languages, as well as
Kochmar’s (2011) observations of written English
produced by Germanic and Romance language
speakers, we suspect that speakers of different native
languages use punctuation in different ways, pre-
sumably based on the punctuation patterns in their
native language. For example, comma placement
differs between German and English, and neither
Chinese nor Japanese requires a full stop at the end
of every sentence. To capture these kinds of patterns,
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we create two features for each essay: the number of
punctuation marks used per sentence, and the num-
ber of punctuation marks used per word.

Number of Unique Stems
native languages might differ in the amount of vo-

Speakers of different

cabulary they use when communicating in English.
We capture this by counting the number of unique
stems in each essay and using this as an additional
feature. The hypothesis here is that depending on the
similarity of the native language with English, the
presence of common words, and other cultural cues,
people with different native language might have ac-
cess to different amounts of vocabulary.

Misuse of Articles We count instances in which
the number of an article is inconsistent with the as-
sociated noun. To do so, we fist identify all the det
dependency relations in the essay. We then com-
pute the ratio of det relations between ‘a’ or ‘an’
and a plural noun (NNS), to all det relations. We
also count the ratio of det relations between ‘a’ or
‘an’ and an uncountable noun, to all det relations.

We do this using a list of 288 uncountable nouns.'

Capitalization The writing systems of some lan-
guages in the data set, for example Telugu, do not
include capitalization. Furthermore, other languages
may use capitalization quite differently from En-
glish, for example German, in which all nouns are
capitalized, and French, in which nationalities are
not. Character capitalization mistakes may be com-
mon in the text written by the speakers of such lan-
guages. We compute the ratio of words with at least
two letters that are written in all caps to identify ex-
cessive capitalization. We also count the relative fre-
quency of capitalized words that appear in the mid-
dle of a sentence that are not tagged as proper nouns
by the part of speech tagger.

Tense and Aspect Frequency Verbal tense and
aspect systems vary widely between languages. En-
glish has obligatory tense (past, present, future) and

"http://www.englishclub.com/vocabulary/nouns-
uncountable-list.htm



aspect (imperfect, perfect, progressive) marking on
verbs. Other languages, for example French, may
require verbs to be marked for tense, but not as-
pect. Still other languages, for example Chinese,
may use adverbials and temporal phrases to com-
municate temporal and aspectual information. To
attempt to capture some of the ways learners of En-
glish may be influenced by their native language’s
system of tense and aspect, we compute two fea-
tures. First, we compute the relative frequency of
each tense and aspect in the article from the counts
of each verb POS tags (ex. VB, VBD, VBG). We
also compute the percentage of sentences that con-
tain verbs of different tenses or aspect, again using
the verb POS tags.

Missing Punctuation We compute the relative
frequency of sentences that include an introductory
phrase (e.g. however, furthermore, moreover) that is
not followed by a comma. We also count the relative
frequency of sentences that start with a subordinat-
ing conjunction (e.g. sentences starting with if, after,
before, when, even though, etc.), but do not contain
a comma.

Average Number of Syllables We count the num-
ber of syllables per word and the ratio of words with
three or more syllables. To count the number of syl-
lables in a word, we used a perl module that esti-
mates the number of syllables by applying a set of

hand-crafted rules.2.

Arc Length We calculate several features pertain-
We
parse each sentence separately, using the Stanford

ing to dependency arc length and direction.

Dependency Parser, and then compute a single value
for each of these features for each document. First,
we simply compute the percentage of arcs that point
left or right (PCTARCL, PCTARCR). We also com-
pute the minumum, maximum, and mean depen-
dency arc length, ignoring arc direction. We also
compute similar features for typed dependencies:
the minimum, maximum, and mean dependency arc

2http://search.cpan.org/dist/Lingua-EN-
Syllable/Syllable.pm
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length for each typed dependency; and the percent-
age of arcs for each typed dependency that go to the
left or right.

Downtoners and Intensifiers
features to describe the use of downtoners, and three

We compute three

for intensifiers in each document. First, we count the
number of downtoners or intensifiers in a given doc-
ument.> We normalize this count by the number of
tokens, types, and sentences in the document to yield
the three features capturing the use of downtoners or
intensifiers.

Production Rules We compute a set of features to
describe the relative frequency of production rules
in a given document. First, we parse each sentence
using the Stanford Parser, using the default English
PCFG (Klein and Manning, 2003). We then count
all non-terminal production rules in a given docu-
ment, and report the relative frequency of each pro-

duction rule in that document.

Subject Agreement We count the number of sen-
tences in which there appears to be a mistake in sub-
ject agreement. To do this, we first identify nsubj
and nsubjpass dependency relationships. Of these
dependencies, we count ones meeting the following
criteria as mistakes: a third person singular present
tense verb with a nominal that is not third person
singular, and a third person singular subject with a
present tense verb not marked as third person sin-
gular. We then normalize the count of errors by the
total number of nsubj and nsubj pass dependencies
in the document, and the number of sentences in the
document to produce two features.

Words per Sentence We compute both the num-
ber of tokens per line and the number of types per

3The words we count as downtoners are: ‘almost’, ‘alot’,
‘a lot’, ‘barely’, ‘a bit’, ‘fairly’, ‘hardly’, ‘just’, ‘kind of’,
‘least’, ‘less’, ‘merely’, ‘mildly’, ‘nearly’, ‘only’, ‘partially’,
‘partly’, ‘practically’, ‘rather’, ‘scarcely’, ‘sort of’, ‘slightly’,
and ‘somewhat’. The intensifiers are: ‘a good deal’, ‘a great
deal’, ‘absolutely’, ’altogether’, ‘completely’,‘enormously’,
‘entirely’, ‘extremely’, ‘fully’, ‘greatly’, ‘highly’, ‘intensely’,

>

‘more’, ‘most’, ‘perfectly’, ‘quite’, ‘really’, ‘so’, ‘strongly’,

‘super’, ‘thoroughly’, ‘too’, ‘totally’, ‘utterly’, and ‘very’.



line.

Topic Scores We construct an unsupervised topic
model for all of the documents using Mallet (Mc-
Callum, 2002) with 100 topics, dirichlet hyperpa-
rameter reestimation every 10 rounds, and all other
options set to default values. We then use the topic

weights as features.

Passive Constructions We count the number of
times an author uses passive constructions by count-
ing the number of nsubjpass dependencies in each
document. We normalize this count in two ways to
produce two different features: dividing by the num-
ber of sentences, and dividing by the total number of

nsubj and nsubjpass dependencies.

5 Experiments and Results

We used weka (Hall et al., 2009) and libsvm (Chang
and Lin, 2011) to run the experiments. The classi-
fication was done using an SVM classifier. We ex-
perimented with different SVM kernels and different
values for the cost parameter. The best performance
was achieved with a linear kernel and cost = 0.001.
We trained the model using the combination of the
training and the development sets. We submitted the
output of the system to the NLI shared task work-
shop. Our system achieved 43.3% accuracy. Table 1
shows the confusion matrix and the precision, recall,
and F-measure for each language. After the NLI
submission deadline, we noticed that we our system
was not handling the normalization of the features
properly which resulted in the poor performance.
After fixing the problem, our system achieved 63%
accuracy on both test data and 10-fold cross valida-
tion on the entire data.

6 Analysis

We did feature analysis on the training and devel-
opment data sets using the Chi-squared test. Our
feature analysis shows that the most important fea-
tures for the classifier were topic models, charac-
ter n-grams of all orders, word unigrams and bi-
grams, POS bigrams, capitalization features, func-
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tion words, production rules, and arc length. These
results are consistent with those presented in previ-
ous work done on this task.

Looking at the confusion matrix in Figure 1, we
see that Korean and Japanese were the most com-
monly confused pair of languages. Hindi and Tel-
ugu, two languages from the Indian subcontinent,
were also often confused. To analyze this further,
we did another experiment by training just a binary
classifier on Korean and Japanese using the exact
same feature set as earlier. We achieved a 10-fold
cross validation accuracy of 83.3% on this classifi-
cation task. Thus, given just these two languages,
we were able to obtain high classification accuracy.
This suggests that a potentially fruitful strategy for
NLI systems might be to fuse often-confused pairs,
such as Korean/Japanese and Hindi/Telugu, into sin-
gleton classes for the initial run, and then run a sec-
ond classifier to do a more fine grained classification
within these higher level classes.

When doing feature analysis for these two lan-
guages, we found that the character bigrams rep-
resenting the country names were some of the top
features used for classification. For example “Kor”
occurred as a trigram frequently in essays from na-
tive language speakers of Korean. Based on this, we
designed a small experiment where we created fea-
tures corresponding to the country name associated
with each native language, e.g., “Korea”, “China”,
“India”, “France”, etc. For Arabic, we used a list of
22 countries where Arabic is spoken. Just using this
feature, we obtained a 10-fold cross validation accu-
racy of 21.3% on the development set. This suggests
that in certain genres, one may be able to leverage in-
formation conveying geographical and demographic
attributes for NLI.

7 Conclusion

In this paper, we presented a supervised system for
the task of Native Language Identification. We de-
scribe and motivate several features for this task
and report results of supervised classification using
these features on a test data set consisting of 11 lan-



ARA | CHI | FRE | GER | HIN | ITA | JPN | KOR | SPA | TEL | TUR | Precision | Recall | F-measure
ARA | 41 7 8 3 6 2 3 5 10 7 8 44.6% | 41.0% 42.7%
CHI 6 38 5 2 2 8 15 8 3 3 10 40.0% 38.0% 39.0%
FRE 8 6 43 8 1 14 2 4 6 1 7 39.1% | 43.0% 41.0%
GER 3 3 10 49 4 9 1 7 6 0 8 54.4% | 49.0% 51.6%
HIN 5 2 6 9 34 0 3 1 3 32 5 47.9% 34.0% 39.8%
ITA 5 3 10 5 1 52 2 1 17 0 4 46.0% | 52.0% 48.8%
JPN 3 11 0 1 1 3 49 26 1 1 4 374% | 49.0% 42.4%
KOR 2 6 6 1 1 2 35 40 1 1 5 38.1% | 40.0% 39.0%
SPA 4 6 14 1 1 17 6 2 38 0 11 40.9% 38.0% 39.4%
TEL 9 7 3 4 18 2 2 2 2 48 3 51.1% | 48.0% 49.5%
TUR 6 6 5 7 2 4 13 9 6 1 41 38.7% | 41.0% 39.8%

Accuracy =43.0%

Table 1: The results of our original submission to the NLI shared task on the test set. These results reflect the
performance of the system that does not normalize the features properly

guages provided as part of the NLI shared task. We
found that our classifier often confused two pairs
of languages that are spoken near one another, but
are linguistically unrelated: Hindi/Telugu and Ko-
rean/Japanese. We found that we could obtain high
classification accuracy on these two pairs of lan-
guages using a binary classifier trained on just these
pairs. During our feature analysis, we also found
that certain features that happened to convey geo-
graphical and demographic information were also
informative for this task.
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Abstract

This paper describes the system developed
for the NLI 2013 Shared Task, requiring
to identify a writer’s native language by
some text written in English. I explore the
given manually annotated data using word
features such as the length, endings and
character trigrams. Furthermore, I em-
ploy k-NN classification. Modified TFIDF
is used to generate a stop-word list auto-
matically. The distance between two docu-
ments is calculated combining n-grams of
word lengths and endings, and character
trigrams.

1 Introduction

Native Language Identification (NLI) is the task
of identifying the first spoken language (L1) of
a person based on the person’s written text
in another language. As a natural language
processing (NLP) task, it is properly catego-
rized as text classification, and standard ap-
proaches like support vector machines (SVM)
are successufully applied to it. Koppel et al.
(2005) trained SVM models with a set of stylis-
tic features, including Part of Speech (POS) and
character n-grams (sequences), function words,
and spelling error types, achieving 80% accu-
racy in a 5-language task. Tsur and Rappoport
(2007) focused on character n-grams. Wong and
Dras (2011) showed that syntactic patterns, de-
rived by a parser, are more effective than other
stylistic features. The Cambridge Learner Cor-
pus has been used recently by Kochmar (2011),
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who concluded that character n-grams are the
most promising features. Brooke and Hirst
(2012) investigated function words, character n-
grams, POS n-grams, POS/function n-grams,
CFG productions, dependencies, word n-grams.

A notable problem in the recent NLI research
is a clear interaction between native languages
and topics in the corpora. The solution in the
mentioned work was to avoid lexical features
that might carry topical information.

2 Data

The NLI 2013 Shared Task uses the TOEFL11
corpus (Blanchard et al., 2013) which was de-
signed specifically for the task of native language
identification. The corpus contains 12100 En-
glish essays from the TOEFL (Test of English
as a Foreign Language) that were collected
through ETS (Educational Testing Service) op-
erational test delivery system. TOEFLI11 con-
tains eleven native languages: Arabic, Chinese,
French, German, Hindi, Italian, Japanese, Ko-
rean, Spanish, Telugu, and Turkish. The sam-
pling of essays ensures approximately equal rep-
resentation of native languages across eight top-
ics, labeled as prompts. The corpus contains
more than 1000 essays for each L1 language.
Each essay is labelled with an English language
proficiency level — high, medium, or low — given
by human assessment specialists. The essays are
usually 300 to 400 words long. The corpus is
split into training, development and test data
(9900, 1100 and 1100, respectively). The corpus
contains plain text files and the index for these

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 89-95,
Atlanta, Georgia, June 13 2013. (©2013 Association for Computational Linguistics



File name Prompt Native Language
language proficiency
1000025.txt P2 CHI high
100021.txt P1 ARA low
1000235.txt P8 TEL medium
1000276.txt P4 TEL high
1000392.txt P3 JPN medium
1000599.txt P6 CHI medium
1000617.txt P4 GER high
1000719.txt P1 HIN high
100082.txt P2 TUR medium

Table 1: The sample of the training data index.

files. Sample of this index is shown in Table 1.

3 Nend transformation

The training and the development corpora con-
tain a lot of spelling errors and no POS tagging
is provided. For instance, a sentence from the
training corpus “Acachely I write abawet may
communitie and who the people support youg
people”.  Therefore I needed to find features
which encode the information about native lan-
guage of a writer in a more generalized way.
Also, my primary interest was to build a sys-
tem which does not utilize any language pro-
cessing tool, such as part of speech or syntactic
trees, and topic-related information, such as full
words. The reason for that is to have the possi-
bility to apply the same techniques for the texts
written in other languages than English in the
future. Thus, I choose to use the word length as
the number of characters together with the last
n characters of that word. Words in the essays
were transformed into tokens using five kinds of
transformations:

Oend — takes the pure length of a word (for ex-
ample, make — /);

lend — adds to the length of a word the last
character (make — 4e);

2end — adds to the length of a word the last
two characters (make — Jke);

3end — adds to the length of a word the last
three characters (make — 4ake);

4end — adds to the length of a word the last
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four characters (make — 4make).

For instance, the sentence “Difference makes
a lot of opportunities .” is translated to:

Oend: 10 5 1 3 2 13 1
lend: 10e 5s la 3t 2f 13s 1.
2end: 10ce bHes 1la 3ot 20of 13es 1.
3end: 10nce bkes 1la 3lot 2of 13ies 1
4end: 10ence bakes 1a 3lot 2of 13ties 1

4 N-gram features

The VTEX NLI 2013 system is based on n-
gram features. There are no strict rules for
how long n-grams should be. Frequently used n-
grams are unigrams, bigrams and trigrams as in
Brooke and Hirst (2012; Wong and Dras (2011).
The training NLI 2013 corpus is large enough
to build higher-order n-grams of nend tokens.
I use unigrams, bigrams, trigrams, quad-grams
and five-grams based on nend tokens. Some ex-
amples of these n-grams are shown below:

Oend

l-gram: 3

2-gram: 1 3

3-gram: 1 10 6

4-gram: 1 5 3 3
5-gram: 1 3 3 3 7
3end

l-gram: Tess

2-gram: 2to Tess

3-gram: 4dest 2to Tess
4-gram: 3but 3not 3for T7ess
5-gram: 3try bSeir 4est 2to Tess

Beside n-grams of mends, the character n-
grams are of interest also. Kochmar (2011)
noted that character n-grams provide promiss-
ing features for NLI task. Therefore, I tried to
use character trigrams also. For instance, from
the sentence “Difference makes a lot of opportu-
nities .” the following trigrams were generated:

Whitespace is included in character trigrams
and denotes the beginning or the end of a word.



5 CTFIDF for weigthing features

The most widely used technique for weight-
ing items in a list is Term-Frequency—Inverse-
Document-Frequency, known as TF-IDF. Dau-
daravicius (2012) shows that the small change of
TF-IDF allows to the generation of stop-word
lists automatically. For the NLI 2013 Shared
Task I use Conditional TF-IDF:

Dpax —d(z) + 1

CTFIDF(z) = TF(z) - In R

where TF(x) is the frequency of the item z in
the training corpus, d(x) is the number of doc-
uments in the training corpus where the item
x appears, known as document frequency, Dmax
is the maximum of document frequency of any
item in the training corpus.

The idea of my Conditional TF-IDF is as fol-
lows: if a term occures in less than Dyyay /4 doc-
uments then this term is considered a normal
term, and the term is considered as stop-word if
it occures in more than Dy .y /4 documents. The
range of TF-IDF is between 0 and positive infin-
ity. The range of CTFIDF is from minus infinity
to zero for items that are considered stop-words.
And the range of CTFIDF is from zero to infin-
ity for the rest of the items.

For instance, the Dy, for the different n-
gram length and different Nend transformations
is presented in Table 2. The example list of 4end
ungrams with positive and negative CTFIDFs
are shown in Tables 4 and 3, respectively.

It is important to note that I count Dy, and
d(z) for each training language separately; i.e.,
when I measure the distance between a docu-
ment and the document in the training data,

The number of n-grams
1 2 3 4 5
900 899 834 444 168
900 759 358 320 148
899 581 354 319 148
899 572 320 303 148
899 572 320 303 148

Oend
lend
2end
3end
4end

Table 2: The maximum of the document frequency
in the training corpus.
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I use Dpax and d(z) of the language which the
training document denotes.

token ctfidf | token ctfidf | token ctfidf
Searn  0.00 | 4Most  1.16 | 10ents 2.51
Tally 0.04 | Tlity 1.20 | 4your  2.59
10sion  0.10 | 20f 1.22 | 7arly  2.59
Tieve 0.10 | 6ance 1.22 | Geple 2.64
5hing  0.12 | 6mous 1.22 | Ttory  2.71
10ence 0.12 | bhier 1.24 | 8tics 2.94
9tion 0.15 | 3Now  1.25 | 9gers  3.00
2us 0.22 | being  1.27 | 4cool  3.07
6rson  0.23 | 12tion 1.30 | 3Let 3.13
Thout 0.29 | 2He 1.30 | 4rule  3.29
3may  0.30 | 4ways 1.41 | bimes 3.52
3say 0.31 | 6hers  1.43 | 3job 3.53
3see 0.34 | 5reat 1.45 | 13ties  3.60
3try 0.35 | 9rent 1.53 | 8cial 3.68
3did 0.36 | 3him 1.55 | beals 3.81
27 0.42 | bower 1.61 | 6lent 3.81
2¢ 0.44 | 12ties 1.65 | 4lose  3.95
2he 0.46 | 3You  1.68 | 8naly 4.13
4hard  0.52 | 11lity 1.74 | 6skes 4.34
Tpany  0.58 | 4cost 1.76 | Tcted 4.34
Hakes  0.60 | bince 1.78 | Ttest 4.34
4kind  0.68 | 6ills 1.82 | 6alth  4.36
Tblem  0.70 | bisks 1.82 | Heall 4.60
S5ever  0.71 | boney 1.89 | 9dent 4.73
4been  0.74 | 6rget  2.07 | Tcess  4.75
4same  0.81 | bired 2.10 | Tkers  5.36
8king  0.86 | 9nies  2.11 | 9ters  5.46
6king  0.93 | dever  2.15 | 2D. 5.52
5ften 0.96 | 6ates  2.15 | bneof  5.52
6urse  0.97 | 3his 2.22 | 8idnt  5.52
7ling 0.97 | 10ered 2.24 | 8klin  5.52
4Even 0.98 | 4love  2.24 | 9velt 5.52
8ible 0.99 | 6ited 2.24 | 10sful  6.62
4used  1.02 | Oties 2.27 | 4four  7.62
10tely 1.07 | 4dearn  2.30 | 3oil 8.05
4best 1.09 | 6llow  2.30 | 9cans  8.26
Tught 1.10 | 9ated  2.37 | 4jobs  8.96
4deasy  1.12 | 3got 2.42 | 3FDR 11.04
4Then 1.12 | 8ngly 1.13

Table 3: The list of 4end unigrams with positive CT-
FIDFs of one document from the training corpus.



token ctfidf | token ctfidf | token ctfidf
1. -224.19 | 3but  -3.48 | 3lot -0.92
1, -127.63 | 5bout -2.58 | 2we -0.88
2to -69.62 | 3get  -2.57 | 5hich -0.85
2of -56.92 | Tmple -2.54 | 9ment -0.84
3the -45.09 | 2by -2.39 | 3who -0.84
3and  -27.25 | 4from -2.26 | 3The -0.81
2is -24.79 | 4they -2.18 | 4them -0.79
la -23.19 | 3can  -2.12 | 3one  -0.77
6ople -22.78 | 4will  -2.11 | 4only -0.75
3not  -22.31 | 3all -1.83 | 4much -0.70
3are -18.11 | 2If -1.72 | 4what -0.68
3for -15.82 | 2at -1.63 | 4also  -0.64
4that -14.39 | 2In -1.50 | 4want -0.57
2do -13.16 | 6ings -1.38 | 6cond -0.56
2it -12.50 | birst  -1.35 | 9tant -0.43
4have -11.53 | 3For  -1.33 | 3how -0.35
4with  -9.39 | bgree -1.33 | 3new -0.31
11 -8.72 | 3you -1.31 | 6ould -0.31
Tause -7.73 | 2s0 -1.30 | 4need -0.20
2in -6.40 | 4time -1.15 | 5oing -0.15
S5heir -6.23 | 3was  -1.08 | 4take -0.11
2be -5.44 | 7Tever -0.98 | 2So -0.10
dmany -5.40 | Sther -0.95 | 6ally -0.09
2as -5.06 | 4make -0.93 | 3But  -0.08
Shere -3.92 | bhink -3.64

Table 4: The list of 4end unigrams with negative
CTFIDFs of the same document as in Fig. 3.

6 Distance between documents

Cosine distance is a widely used technique to
measure the distance between two feature vec-
tors. It is calculated as follows:

> (XiY)
cos(X,Y) = d .
\/Zi X7+ \/Zi Y7

CTFIDF allows the splitting of feature vectors
into the list of “informative” items and the list
of functional items. For the NLI 2013 Shared
task, I combine two cosine distances of negative
and positive CTFIDFs as follows:

2cos(X",Y') + cos(X", Y")

cos'(X,Y) = 3 ,
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where

X/ = ﬁlterzo X, Y, = ﬁlterzo Y,
X" = abs(filter.g X), Y” = abs(filter-oY),

so X' and Y’ contain features with positive CT-
FIDF, while X” and Y” contain features with
negative CTFIDF.

The cos’ combines two cosine distances giving
the weight for cosine of positive CTFIDFs equal
to 2 and for the negative CTFIDFs equal to 1.
I have also tested combinations of 1 to 0, 0 to
1, 1 to 1, and 1 to 2. But these combinations
did not achieve better results. Therefore, for all
submitted system results I used the same com-
bination of 2 to 1.

I utilize 26 feature vectors and obtain 26 com-
bined cosine distances for each document: one
for character trigrams and other 25 for token
n-grams of diverse word transformations. Each
combined cosine distance has an assigned weight
to get the final distance between two documents.
The distance between two documents X and Y
is calculated as follows:

> w;cos' (X5, Y5)
2 Wi

where w; is the weight of ith feature vector.

The most difficult task was to find the best
combination of these 26 weights. For the NLI
2013 Shared Task I have used the combinations
shown in Table 5. The n-gram weights in most
cases are diagonal with the highest value at the
Oend unigram and the lowest at the 4end five-
gram. In the beggining I tested the opposite
combination, but this led to worse results. Also,
the influence of character trigrams on the results
was high. The first and second combinations in
Table 5 differ in the use of five-grams and 4end
transformations, while the leverage of charac-
ter trigrams were kept the same. The final of-
ficial results show that richer features improve
results. Also, I found that the higher leverage
is for character trigrams over n-grams the bet-
ter the results are. But, the results of character
trigrams only resulted in lower performance. It
is a long way to find the optimal combination of
the weights.

dist(X,Y) = e [0,1],



Token n-gram
1 2 3 4 5
1-closed
Character trigrams 64

Oend 7 6 5 4 0
lend 6 5 4 3 0
2end 5 4 3 2 0
dend 4 3 2 1 0
4dend 0 O O O 0
2-closed
Character trigrams 125
Oend 9 8 7 6 5
lend 8 7 6 5 4
2end 7 6 5 4 3
dend 6 5 4 3 2
4end 5 4 3 2 1
3-closed
Character trigrams 25
Oend 1 1 1 1 1
led 1 1 1 1 1
2nd 1 1 1 1 1
dend 1 1 1 1 1
dend 1 1 1 1 1
4-closed
Character trigrams 225
Oend 17 15 13 11 9
lend 15 13 11 9 7
2end 13 11 9 7 5
dend 11 9 7 5 3
4dend 9 7 5 3 1
5-closed
Character trigrams 550
Oend 17 15 13 11 9
lend 15 13 11 9 7
2end 13 11 9 7 5
dend 11 9 7 5 3
4dend 9 7 5 3 1

Table 5: Weights of the NLI 2013 different submis-

sions.

7 Assigning native language to a text

I used the k-NN technique to assign native lan-
guage to a text. I counted the distances between
the test document and all training documents,
and take some amount of closest documents for
each language. To reduce the influnce of out-
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liers, I dropped off the n closest documents and
only then take some amount from the rest. At
first, I remove the 10 top documents from each
language, and then kept the 20 closest docu-
ments for each language. In total, I obtained 220
documents and ranked them by distance. Then,
I employed voting for the closest 20 documents.
A winner language is assigned to a document as
the native language. This technique was used for
VTEX-closed-(1, 2 and 3) system submitions.
For the VTEX-closed-(4 and 5) I used another
number for outliers and the top closest ones:
the 50 closest documents for each language were
dropped off, the remianing 25 for each language
were kept, and, finally, the closest 25 documents
are used for the voting of native language.

8 Results

My primary interest in participating in the NLI
2013 Shared Task was to investigate new fea-
tures that were not used earlier, and what the
value of each feature in the identification of a
writer’s native language is. The results of five
submitted systems are shown in Tables 6 and
7. The best submitted system had 31.9 percent
accuracy. This result was the worst of all par-
ticipating teams. At the time of writing this re-
port, I tested new combinations of outliers and
tops, “stop-words” and significant items, nend
n-grams and character trigram weights. New
settings improved my best submitted system ac-
curacy from 31.9 to 63.9 percent. This result
was achieved with the following settings. I took
the last 50 percent of closest documents for each
language. I set to use only stop-words and to
exclude significant items, i.e., items with only
negative CTFIDF. Finaly, I set n-gram weights
accordingly: 84 for character trigrams, and
for nend 1,1,1,1,1, 1,3,3,3,1, 1,3,5,3,1, 1,3,3,3,1,
1,1,1,1,1. This result shows that 2end and 3end
transformation trigrams have the highest impact
on the results. Nevertheless, all tested transfor-
mations help to improve the results.
clusion, I investigated the influence of features,
such as character trigrams and Nend n-grams,
to the identification of writer’s native language
and found them very informative.

In con-



Results for VTEX-closed-1
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure
ARA 30 5 2 5 5 11 12 6 10 13 1 26.3% 30.0% 28.0%

CHI 4 20 2 ) 5 6 21 20 5 9 3 24.1% 20.0% 21.9%
FRE 6 8 9 3 3 14 14 9 8§ 10 6 28.1% 9.0%  13.6%
GER 6 4 5 30 7 13 4 1 7T 20 3 35.3% 30.0% 32.4%
HIN 15 5 0 7T 17 5 6 ) 3 31 6 23.0% 17.0% 19.5%
ITA 7 2 4 3 4 47 9 3 4 16 2 34.8% 47.0%  40.0%
JPN 4 5 1 4 5 7 44 12 4 14 0 25.3% 44.0% 32.1%
KOR 2 8 1 3 2 9 3 27 3 9 1 26.0% 27.0% 26.5%
SPA 13 10 4 3 5 15 13 8 12 13 4 19.0% 12.0% 14.7%
TEL 13 8 0 1 13 4 2 1 4 52 2 26.3% 52.0% 34.9%
TUR 14 8 4 1 8 4 14 12 3 12 10 263% 10.0% 14.5%

Accuracy = 27.1%

Results for VTEX-closed-2
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure
ARA 31 5 1 3 5 11 13 6 8§ 15 2 26.5% 31.0% 28.6%

CHI 6 23 1 4 6 5 21 15 6 10 3 27.7%  23.0% 25.1%
FRE 5 8 v 12 7 15 12 10 6 10 8 25.9% 7.0% 11.0%
GER 7 4 4 28 9 12 6 1 6 20 3 35.0% 28.0% 31.1%
HIN 13 5 2 6 17 4 6 5 4 30 8 20.2% 17.0% 18.5%
ITA 7 2 4 3 4 47 9 3 4 16 2 35.1% 47.0%  40.2%
JPN 4 7 0 5 6 7 36 16 3 15 1 22.0% 36.0% 27.3%
KOR 3 7 1 3 2 9 34 26 4 9 2 25.7% 26.0%  25.9%
SPA 15 7 3 5 6 1v 10 7 10 15 5 16.4% 10.0% 12.4%
TEL 13 6 1 0 15 2 2 1 6 52 2 25.5% 52.0% 34.2%
TUR 13 9 3 1 7 5 1 11 4 13 9 20.0% 9.0% 12.4%

Accuracy = 26.0%

Results for VTEX-closed-3
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure
ARA 27 6 1 5 6 11 11 7 11 13 2 25.2% 27.0% 26.1%

CHI 6 22 2 6 8§ 2 21 14 5 12 2 272% 22.0% 24.3%
FRE 6 8 6 12 8 14 15 7 5 10 9 17.1%  6.0% 8.9%
GER 7 4 6 24 9 13 1 2 7T 22 5 27.3% 24.0%  25.5%
HIN 15 4 2 7T 17T 4 6 3 5 30 7 19.5% 17.0% 18.2%
ITA 7 0 6 3 4 45 8 5 4 16 2 34.1% 45.0% 38.8%
JPN 4 9 0 5 6 8 32 15 4 16 1 21.2%  32.0% 25.5%
KOR 2 6 1 ) 2 9 31 26 4 12 2 27.7%  26.0%  26.8%
SPA 15 7 4 6 8§ 16 7 6 11 14 6 15.3% 11.0% 12.8%
TEL 10 6 2 0 13 5 2 1 10 50 1 23.9% 50.0% 32.4%
TUR 8 9 ) 5 6 5 17 8 6 14 7 15.9%  7.0% 9.7%

Accuracy = 24.3%

Table 6: The results for closed-task VTEX systems.
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Results for VTEX-closed-4

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision Recall F-measure

ARA 21 5 1 6 4 14 15 6
CHI 2 22 2 ) 5 5 24 18
FRE 4 9 8 13 3 14 16 9
GER 5 4 8§ 25 8 13 5 2
HIN 7 7 1 7T 15 5 7 7
ITA 2 3 3 4 2 48 12 3
JPN 1 5 1 5 4 8 42 17
KOR 1 6 1 2 1 7 36 33
SPA 9 11 5 6 4 18 14 )
TEL 8 5 3 1 15 5 2 1
TUR 9 7 3 3 7 5 20 9

14 12 2 30.4% 21.0% 24.9%
7 7 3 26.2% 22.0% 23.9%
6 12 6 222% 8.0% 11.8%
6 19 5 28.7% 25.0%  26.7%
4 31 9 22.1% 15.0% 17.9%
4 16 3 33.8% 48.0%  39.7%
4 13 0 21.8% 42.0% 28.7%
2 10 1 30.0% 33.0% 31.4%
10 14 4 15.9% 10.0% 12.3%
4 53 3 27.0% 53.0% 35.8%
2 9 16 30.8% 16.0% 21.1%

Accuracy = 26.6%

Results for VTEX-closed-5

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Precision

ARA 40 7 0 2 2 14 10 4
CHI 6 32 4 0 4 4 21 16
FRE 5 13 13 9 2 15 14 8
GER 10 5 8§ 22 2 13 7 3
HIN 12 9 4 5 11 5 6 6
ITA 3 5 6 2 1 54 7 4
JPN 6 0 3 1 8 48 16
KOR 1 121 0 2 6 29 39
SPA 12 9 ) 1 3 20 14 5)
TEL 14 6 0 0 8 5 2 0
TUR 13 11 4 4 2 4 24 10

Recall F-measure

7 11 3 33.9% 40.0% 36.7%
4 8 1 27.8% 32.0% 29.8%
6 12 3 28.9% 13.0% 17.9%
8 16 6 45.8% 22.0% 29.7%
4 30 8 289% 11.0% 15.9%
5 11 2 36.5% 54.0% 43.5%
3 12 1 26.4% 48.0%  34.0%
2 7 1 35.1% 39.0% 37.0%
16 12 3 27.1% 16.0%  20.1%
3 59 3 31.4% 59.0% 41.0%
1 10 17 354% 17.0% 23.0%

Accuracy = 31.9%

Table 7: The results for closed-task VTEX systems.
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Abstract

We decribe the submissions made by the Na-
tional Research Council Canada to the Native
Language Identification (NLI) shared task.
Our submissions rely on a Support Vector Ma-
chine classifier, various feature spaces using
a variety of lexical, spelling, and syntactic
features, and on a simple model combination
strategy relying on a majority vote between
classifiers. Somewhat surprisingly, a clas-
sifier relying on purely lexical features per-
formed very well and proved difficult to out-
perform significantly using various combina-
tions of feature spaces. However, the com-
bination of multiple predictors allowed to ex-
ploit their different strengths and provided a
significant boost in performance.

1 Introduction

We describe the National Research Council
Canada’s submissions to the Native Language Iden-
tification 2013 shared task (Tetreault et al., 2013).
Our submissions rely on fairly straightforward
statistical modelling techniques, applied to various
feature spaces representing lexical and syntactic
information. Our most successful submission was
actually a combination of models trained on differ-
ent sets of feature spaces using a simple majority
vote.

Much of the work on Natural Language Process-
ing is motivated by the desire to have machines
that can help or replace humans on language-related
tasks. Many tasks such as topic or genre classifi-
cation, entity extraction, disambiguation, are fairly
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straightforward for humans to complete. Machines
typically trade-off some performance for ease of ap-
plication and reduced cost. Equally fascinating are
tasks that seem non-trivial to humans, but on which
machines, through appropriate statistical analysis,
discover regularities and dependencies that are far
from obvious to humans. Examples may include cat-
egorizing text by author gender (Koppel et al., 2003)
or detecting whether a text is an original or a trans-
lation (Baroni and Bernardini, 2006). This is one
motivation for addressing the problem of identify-
ing the native language of an author in this shared
task.

In the following section, we describe various as-
pects of the models and features we used on this
task. In section 3, we describe our experimental set-
tings and summarize the results we obtained. We
discuss and conclude in section 4.

2 Modelling

Our submissions rely on straightforward statistical
classifiers trained on various combinations of fea-
tures and feature spaces. We first describe the clas-
sifier we used, then give the list of features that we
have been combining. Our best performing submis-
sion used a combination of the three systems we sub-
mitted in a majority vote, which we also describe at
the end of this section.

2.1 Classification Model

We decided to use a straightforward and state-of-
the-art statistical classifier, in order to focus our at-
tention on the combination of features and models
rather than on the design of the classifier.

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 96—100,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



We used freely available implementations of Sup-
port Vector Machines (SVM) provided in SVM-light
(Joachims, 1999) and SVM-perf (Joachims, 2006).
SVM performance may be influenced by at least two
important factors: the choice of the kernel and the
trade-off parameter “C”. In our experiments, we did
not observe any gain from using either polynomial
or RBF kernels. All results below are therefore ob-
tained with linear models. Similarly, we investigated
the optimization of parameter “C” on a held-out val-
idation set, but found out that the resulting perfor-
mance was not consistently significantly better than
that provided by the default value. As a consequence
our results were obtained using the SVM-light de-
fault.

One important issue in this shared task was to
handle multiple classes (the 11 languages). There
are essentially two easy approaches to handle sin-
gle label, multiclass classification with binary SVM:
one-versus-all and one-versus-one. We adopted the
one-versus-all setting, combined with a calibration
step. We first trained 11 classifiers using the docu-
ments for each language in turn as “positive” exam-
ples, and the documents for the remaining 10 lan-
guages as negative examples. The output score for
each class-specific SVM model was then mapped
into a probability using isotonic regression with the
pair-adjacent violators (PAV) algorithm (Zadrozny
and Elkan, 2002). A test document is then assigned
to the class with the highest probability.

2.2 Feature Space Extraction

We extracted the following features from the docu-
ments provided for the shared task.

Character ngrams: We index trigrams of charac-
ters within each word (Koppel et al., 2005). The
beginning and end of a word are treated as special
character. For example, the word “at” will produce
two trigrams: “at” and “at ““. These features allow us
to capture for example typical spelling variants. In
a language with weak morphology such as English,
they may also be able to capture patterns of usage
of, e.g. suffixes, which provides a low-cost proxy
for syntactic information.

Word ngrams: We index unigrams and bigrams
of words within each sentence. For bigrams, the be-
ginning and end of a sentence are treated as special
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tokens. Note that we do not apply any stoplist fil-
tering. As a consequence, function words, an often-
used feature (Koppel et al., 2005; Brooke and Hirst,
2012), are naturally included in the unigram feature
space.

Spelling features: Misspelled words are identified
using GNU Aspell V0.60.4! and indexed with their
counts. Some parser artifacts such as “n’t” are re-
moved from the final mispelled word index. Al-
though misspellings may seem to provide clues as
to the author’s native language, we did not find these
features to be useful in any of our experiments. Note
however, that misspelled words will also appear in

the unigram feature space.

Part-of-speech ngrams: The texts were tagged
with the Stanford tagger v. 3.0% using the largest
and best (bidirectional) model. Note that the lan-
guage in a couple of documents was so poor that the
tagger was unable to complete, and we reverted to a
slightly weaker (left three words) model for those.
After tagging, we indexed all ngrams of part-of-
speech tags, with n = 2,3,4,5. We experimented
with the choice of n and found out that n > 2 did
not bring any significant difference in performance.

Syntactic dependencies: We ran the Stanford
Parser v2.0.0 on all essays, and use the typed
dependency output to generate features.  Our
goal is to capture phenomena such as preposi-
tion selection which might be influenced by the
native language of the writer. In order to reduce
sparsity, each observed dependency is used to
generate three features: one feature for the full
lexicalized dependency relation; one feature for
the head (which generalizes over all observed
modifiers); one feature for the modifier (which
generalizes over all possible heads). For instance,
in the sentence “they participate to one ’s appear-
ance”, the parser extracts the following depen-
dency: “preps.(participate,appearance)”. It yields
three features “prepy(participate,appearance)”,
’prepyo(participate,X)” and
’prepo(X,appearance)”. We experimented with all
three feature types, but the systems used for the

'nttp://aspell.net
http://nlp.stanford.edu/software/
tagger.shtml



official evaluation results only used the last two
(head and modifier features.) Note that while these
features can capture long distance dependencies in
theory, they significantly overlap with word ngram
features in practice.

For each feature space, we used a choice of two
weighting schemes inspired by SMART (Manning
et al., 2008):

ltc: log of the feature count, combined with the log
inverse document frequency (idf), with a cosine
normalization;

nnc: straight feature count, no idf, with cosine nor-
malization.

Normalization is important with SVM classifiers as
they are not scale invariant and tend to be sensitive
to large variations in the scale of features.

2.3 Voting Combination

Investigating the differences in predictions made
by different models, it became apparent that there
were significant differences between systems that
displayed similar performance. For example, our
first two submissions, which perform within 0.2% of
each other on the test data, disagree on almost 20%
of the examples.

This suggests that there is potentially a lot of in-
formation to gain by combining systems trained on
different feature spaces. An attempt to directly com-
bine the predictions of different systems into a new
predictive score proved unsuccessful and failed to
provide a significant gain over the systems used in
the combination.

A more successful combination was obtained us-
ing a simple majority vote. Our method relies on
simply looking at the classes predicted by an en-
semble of classifier for a given document. The pre-
diction for the ensemble will be the most predicted
class, breaking possible ties according to the overall
scores of the component models: for example, for an
ensemble of only 2 models, the decision in the case
of a tie will be that of the best model.

3 Experiments

We describe the experimental setting that we used
to prepare our submissions, and the final perfor-

98

mance we obtained on the shared task (Tetreault et
al., 2013).

3.1 Experimental Setting

In order to test the performance of various choices
of feature spaces and their combination, we set up a
cross-validation experimental setting. We originally
sampled 9 equal sized disjoint folds of 1100 docu-
ments each from the training data. We used strati-
fied sampling across the languages and the prompts.
This made sure that the folds respected the uniform
distribution across languages, as well as the distri-
bution across prompts, which was slightly uneven
for some languages. These 9 folds were later aug-
mented with a 10th fold containing the development
data released during the evaluation.

All systems were evaluated by computing the ac-
curacy (or equivalently the micro-averaged F-score)
on the cross-validated predictions.

3.2 Experimental Results

We submitted four systems to the shared task evalu-
ation:

1. BOW2!**+CHAR3"¢: Uses counts of word bi-
grams and character trigrams, both weighted
independently with the [tc weighting scheme
(tf-1df with cosine normalization);

2. BOW2/c4DEP!¢:  Uses counts of word
bigrams and syntactic dependencies, both
weighted independently with the /tc weighting
scheme;

3. BOW2/*+CHAR3"“+P0OS2""¢: Same as sys-
tem #1, adding counts of bigrams of part-of-
speech tags, independently cosine-normalized;

4. 3-system vote: Combination of the three sub-
missions using majority vote.

The purpose of submission #1 was to check the
performance that we could get using only surface
form information (words and spelling). As shown
on Table 1, it reached an average test accuracy of
79.5%, which places it in the middle of the pack over
all submissions. For us, it establishes a baseline of
what is achievable without any additional syntactic
information provided by either taggers or parsers.



Model # | Acc(%)
BOW2/*c+CHAR3¢ 1] 79.27
BOW?2/tc4DEP!tc 2| 7955
BOW2/*+CHAR3"°+POS2™"¢ | 3 | 78.82
3-system vote 4 81.82
10-system vote - 84.00

Table 1: The four systems submitted by NRC, plus a
more extensive voting combination. System 1 uses only
surface information. Systems 2 and 3 use two types of
syntactic information and system #4 uses a majority vote
among the three previous submissions. The last (unsub-
mitted) uses a majority vote among ten systems.

Our submissions #2 and #3 were meant to check
the effect of adding syntactic features to basic lexi-
cal information. We evaluated various combinations
of feature spaces using cross-validation performance
and found out that these two combinations seemed to
bring a small boost in performance. Unfortunately,
as shown on Table 1, this did not reflect on the actual
test results. The test performance of submission #2
was a mere 0.2% higher than our baseline, when we
expected +0.6% from the cross-validation estimate.
The test performance for submission #3 was 0.5%
below that of the baseline, whereas we expected a
small increase.

Submission #4 was our majority voting submis-
sion. Due to lack of time, we could not generate
test predictions for all the systems that we wanted to
include in the combination. As a consequence, we
performed a majority voting over just the 3 previ-
ous submissions. Despite this, the majority voting
proved remarkaby effective, yielding a 2.5% perfor-
mance boost over our baseline, and a 2.3% increase
over our best single system.

In order to further test the potential of the major-
ity vote, we later applied it to the 10 best systems in
a pool generated from various combinations of fea-
ture spaces (10-system vote in Table 1). That (unsub-
mitted) combination outperformed our official sub-
missions by another 2.2% accuracy, and in fact out-
performed the best system in the official evaluation
results by a small (and very likely not significant)
margin.

In comparison with submissions from other
groups, our top submission was 1.8% below the top
performing system (Table 2). According to the re-
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Model Accuracy(%) | p-value
Jarvis 83.6 0.082
Oslo NLI 83.4 0.1
Unibuc 82.7 0.361
MITRE-Carnie 82.6 0.448
Tuebingen 82.2 0.715
NRC 81.8

CMU-Haifa 81.5 0.807
Cologne-Nijmegen 81.4 0.665
NAIST 81.1 0.472
UTD 80.9 0.401
UAlberta 80.3 0.194
Toronto 80.2 0.167
MQ 80.1 0.097

Table 2: Resulting accuracy scores and significance vs.
NRC top submission (3-system vote).

sults of significance tests released by the organizers,
the difference is slightly below the traditional thresh-
old of statistical significance (0.05).

4 Discussion and Conclusion

Our results suggest that on the shared task, a combi-
nation of features relying only on word and character
ngrams provided a strong baseline. Our best system
ended up being a combination of models trained on
various sets of lexical and syntactic features, using a
simple majority vote. Our submission #4 combined
only our three other submissions, but we later exper-
imented with a larger pool of models. Table 3 shows
that the best performance is obtained using the top
10 models, and many of the combinations are com-
petitive with the best performance achieved during
the evaluation. Our cross-validation estimate was
also maximized for 10 models, with as estimated ac-
curacy of 83.23%. It is interesting that adding some
of the weaker models does not seem to hurt the vot-
ing combination very much.

One obvious limitation of this study is that it was
applied to a well defined and circumscribed setting.
There is definitely no guarantee on the performance
that may be obtained on a different corpus of docu-
ments.

Another limitation is that although the resulting
performance of our models seems encouraging, it
is not obvious that we have learned particularly



Model | Vote
Rank | score | score | Feature set
1 79.55 | 79.55 | BOW2+DEP
2 79.36 | 79.55 | BOWI1+DEP
3 79.27 | 82.18 | BOW2+CHAR3
4 79.00 | 82.27 | BOWI1+DEPL
5 78.91 | 82.91 | BOW2+CHAR3+POS3
6 78.82 | 83.18 | BOW2+CHAR3+POS2
7 78.73 | 83.45 | BOW2+DEPL
8 78.36 | 83.55 | BOW2
9 77.09 | 83.82 | BOW1+POS3
10 76.82 | 84.00 | BOW2+POS2
11 76.55 | 83.64 | BOW2+POS3
12 76.55 | 83.82 | BOWI+POS2
13 75.27 | 83.55 | BOWI1
14 74.36 | 83.73 | BOW1+CHAR3
15 74.27 | 83.73 | DEP
16 66.91 | 83.91 | DEPL
17 64.18 | 83.82 | CHAR3
18 51.64 | 83.82 | POS3
19 49.64 | 83.36 | POS2
Table 3: Majority vote among the top-N mod-
els. BOWn=word ngrams; CHAR3=char trigrams;

POSn=POS ngrams; DEP/DEPL=syntactic dependecies.
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useful clues about what differentiates the English
written by authors with different native languages.
This is of course a side effect of a format where
systems compete on a specific performance met-
ric, which encourages using large, well-regularized
models which optimize the relevant metric, at the ex-
pense of sparser models focusing on a few markers
that may be more easily understandable.

During the workshop, we plan to show more com-
plete results using the majority vote strategy, involv-
ing a wider array of base models.
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Abstract

This paper describes MITRE’s participation in
the native language identification (NLI) task
at BEA-8. Our best effort performed at an ac-
curacy of 82.6% in the eleven-way NLI task,
placing it in a statistical tie with the best per-
forming systems. We describe the variety
of machine learning approaches that we ex-
plored, including Winnow, language model-
ing, logistic regression and maximum-entropy
models. Our primary features were word and
character n-grams. We also describe several
ensemble methods that we employed for com-
bining these base systems.

1 Introduction

Investigations into the effect of authors’ latent at-
tributes on language use have a long history in lin-
guistics (Labov, 1972; Biber and Finegan, 1993).
The rapid growth of social media has sparked in-
creased interest in automatically identifying author
attributes such as gender and age (Schler et al., 2006;
Burger and Henderson, 2006; Argamon et al., 2007;
Mukherjee and Liu, 2010; Rao et al., 2010). There
is also a long history of computational aids for lan-
guage pedagogy, both for first- and second-language
acquisition. In particular, automated native language
identification (NLI) is a useful aid to second lan-
guage learning. This is our first foray into NLI,
although we have recently described experiments
aimed at identifying the gender of unknown Twit-
ter authors (Burger et al., 2011). We performed well
using only character and word n-grams as evidence.
In the present work, we apply that same approach
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to NLI, and combine it with several other baseline
classifiers.

In the remainder of this paper, we describe our
high-performing system for identifying the native
language of English writers. We explore a varied
set of learning algorithms and present two ensem-
ble methods used to produce a better system than
any of the individuals. In Section 2 we describe the
data and task in detail as well as the evaluation met-
ric. In Section 3 we discuss details of the particular
system configuration that scored best for us. We de-
scribe our experiments in Section 4, including our
exploration of several different classifier types and
parametrizations. In Section 5 we present and an-
alyze performance results, and inspect some of the
features that were useful in discrimination. Finally
in Section 6 we summarize our findings, and de-
scribe possible extensions to the work.

2 Task, data and evaluation

Native Language Identification was a shared task or-
ganized as part of the Eighth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, 2013. The task was to identify an author’s
native language based on an English essay.

The data provided consisted of a set of 12,100
Test of English as a Foreign Language (TOEFL) ex-
aminations contributed by the Educational Testing
Service (Blanchard et al., to appear). These were
English essays written by native speakers of Arabic,
Chinese, French, German, Hindi, Italian, Japanese,
Korean, Spanish, Telugu, and Turkish. A set of 1000
essays for each language was identified as training
data, along with 100 per language for development,

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 101-110,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



and another 100 per language for a final test set. The
mean length of an essay is 348 words.

The primary evaluation metric for shared task
submissions was simple accuracy: the fraction of the
test essays for which the correct native language was
identified. A baseline accuracy would thus be about
9% (one out of eleven). Results were also reported
in terms of F-measure on a per-language basis. F-
measure is a harmonic mean of precision and recall:
F = %. For the evaluation, the precision de-
nominator was the number of items labeled with a
particular language by the system and the recall de-
nominator was the number of items marked with a
particular language in the reference set.

The training, development, and test sets all had
balanced distributions across the native languages,
so error rates and accuracy did not favor any partic-
ular language in any set.

3 System overview

The systems we used to generate results for the NLI
competition were all machine-learning-based, with
no handwritten rules or features. The final submitted
systems were ensembles built from the outputs and
confidence scores of independent eleven-way multi-
nomial classifiers.

3.1 Features

The features used to build these systems were
language-independent and were generated using the
same infrastructure designed for the experiments de-
scribed in Burger et al. (2011).

We incorporated a variety of binary features into
our systems, each of which was hashed into a 64-bit
numeric representation using MurmurHash3 (Ap-
pleby, 2011). The bulk of our features were case-
sensitive word- and character-based n-grams, in
which a feature was turned “on” if its sequence of
words or characters appeared at least once in the text
of an essay. We also added binary features describ-
ing surface characteristics of the text such as average
word length and word count. Features were sepa-
rated into tracks such that the word unigram “i”” and
the character unigram “i” would each generate a dis-
tinct feature.

Part of speech tag n-grams were added to the
feature set after reviewing performance results in
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Brooke and Hirst (2012). We used the Stan-
ford log-linear part of speech tagger described in
Toutanova et al. (2003), with the english-left3words-
distsim.tagger pretrained model and the Penn Tree-
bank tagset. The tagger was run on each essay and
outputs were incorporated as sequence features with
n-grams up to length 5.

3.2 Classifiers

Carnie! is a MITRE-developed linear classifier

that implements the Winnow?2 algorithm of Carvalho
and Cohen (2006), generalized for multinomial clas-
sification. Carnie was developed to perform clas-
sification of short, noisy texts with many training
examples. It maintains one weight per feature per
output class, and performs multiplicative updates
that reinforce weights corresponding to the correct
class while penalizing weights associated with the
top-scoring incorrect class. The learner is mistake-
driven and performs an update of size € after an error
or when the ratio of weight masses of the correct and
top incorrect classes is below 1 + 4. It iterates over
the training data, cooling its updates after each itera-
tion. For the purposes of these experiments, an input
to Carnie was the text of a single TOEFL essay, and
the output was the highest scoring class and several
related scores.

SRI’s Language Modeling Toolkit (SRILM) is
a toolkit for sequence modeling that continues to
be relevant after more than a decade of develop-
ment (Stolcke, 2002). It can be used to both build
models of sequence likelihoods and to evaluate like-
lihoods of previously unseen sequences. Building
a multinomial text classifier with a language model
toolkit involves building one model for each target
class and choosing the label whose model gives the
highest probability.

Many smoothing methods are implemented by
SRILM, along with a variety of n-gram filter-
ing techniques. The out-of-the-box default con-
figuration produces trigram models with Good-
Turing smoothing. It worked well for this com-
petition. Using open vocabulary models (—unk),
turning off sentence boundary insertion (—no-sos
-no-eos) and treating each essay as one sentence

'Tt is named for entertainers who guess personal character-
istics of carnival goers.



worked best in our development environment.

LIBLINEAR is a popular open source library for
classification of large, sparse data. We experimented
with several of their standard Support Vector Ma-
chine and logistic regression configurations (Fan et
al., 2008). We selected multiclass ¢o-regularized
logistic regression with the dual-form solver and
default parameters. Inputs to the model were bi-
nary features generated from a single TOEFL essay.
Features for this model were generated by Carnie.
The model provided probability estimates for each
candidate output class (L1) for each essay, which
were then combined with the outputs of Carnie and
SRILM in an ensemble to produce a single predic-
tion.

3.3 Ensembles

The classifiers described above were selected for in-
clusion as components in a larger ensemble on the
basis of their performance and the observation that
errors committed by these systems were not highly
correlated. We used the entirety of our training data
for construction of each component system, leaving
scant data available for estimating parameters of en-
sembles. This scenario led us to choose naive Bayes
to combine the outputs of the original components.

Given hq, ..., hg hypothesis labels from £ differ-
ent systems, one approximates the conditional like-
lihood of the reference label P(R|H; ... Hy) using
the Bayes transform and the development set esti-
mates of P(H;|R). One investigates all possible la-
bels to decode 7* = argmax, P(r) [[; P(h;|r). The
class balance in every set we operated on made the
prior P(r) irrelevant for maximization and simpli-
fied many of the denominators along the way. This
is a typical formulation of naive Bayes.

Confidence All of our component systems pro-
duce scores as well as a predicted label. Carnie pro-
duces (non-probability) scores for all of the candi-
date labels, SRILM produces log-probabilities and
perplexities, and LIBLINEAR produces P(h|r), the
likelihood of each of the possible labels. We ex-
perimented with several transformations of those
scores to best use them to predict correctness of
their hypothesis. There were several graphical mod-
els we could use for folding these scores into the
Bayes ensemble, and we chose a simple, discretized
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P(H, S|R). We evenly partitioned and relabeled our
system outputs according to their scores (5), and
used those partition labels in the Bayes ensemble.
Thus when a particular reference label was scored
in the ensemble during decoding, both its prediction
and score contributed to the label in the naive Bayes
table lookup.

3.4 Best configuration

We submitted five systems with a variety of con-
figurations. One of our systems was our individual
Carnie system on its own for calibration. The other
four were ensembles.

The best system we submitted was a Bayes en-
semble of the Carnie, SRILM, and LIBLINEAR
components each trained on the train+development
sets. Carnie was trained for twelve iterations with
e = 0.03, § = 0.05, and a cooling rate of 0.1.
SRILM models were trained for open vocabulary
and the default trigram, Good-Turing setting. Lo-
gistic regression from LIBLINEAR was run with ¢
regularization and using the dual form solver.

Parameters for the Bayes model were collected
from the development set when the components
were trained only on the training set. A grid search
was performed over likely candidates for ), the
Dirichlet parameter, and p, the number of score-
based partitions, resulting in A = 0.03125 and p =
2. The grid search was performed with the compo-
nent models trained only on the training set and us-
ing 10-fold cross validation on the development set.

4 Experiments

In all experiments described below, systems were
trained initially on the 9900 training examples alone,
with the 1100 item development set held back to al-
low for hyperparameter estimation. When prepar-
ing our final test set submissions, the development
set was folded into the training data, and all models
were re-trained on this new dataset containing 11000
items.

4.1 Baselines

How hard is the NLI task? Simple baselines of-
ten give us a quick glimpse into what matters in a
NLP task. In Figure 1, we give accuracy results
on ten different baselines we trained on the training



Baseline Accuracy(%)
random 9.1
char length 9.6
SRILM(letter unigram) 10.8
word length 12.0
proficiency 14.9
SRILM(letter bigram) 15.1
JS(vowels) 20.6
JS(consonants) 33.8
JS(vowels+consonants) 34.1
JS(bag-of-words) 52.5

Figure 1: Simple baseline development set scores.

set and evaluated on the development set. Predic-
tions based on simple character and word lengths
show only slight gains over random. Using the
high/medium/low proficiency score that accompa-
nied the data similarly gives a tiny amount of infor-
mation over baseline (14.9%). We ignored those rat-
ings elsewhere in our work, to focus on the core task
of prediction based on essay content.

We collected some simple distributions of vowel
and consonant clusters and used them for predic-
tion, scoring with Jensen-Shannon divergence. JS
divergence is a symmetrized form of KL divergence
to alleviate the mathematical problem involved with
missing observations. It has behaved well in the
context of language processing applications (Lee,
1999). The score progression from consonant clus-
ters, to vowel clusters, to words suggests that there
is NLI information scattered at various levels of sur-
face features.

4.2 Varied Carnie configurations

Carnie’s out-of-the-box configuration is one that has
been optimized for application to micro-blogs and
other ungrammatical short texts. While our hypoth-
esis was that this configuration would be well suited
to analysis of English TOEFL essays, we investi-
gated a number of possible techniques to help Carnie
adapt to the new domain.

We began by performing a grid search to select
model hyperparameters that enabled our standard
configuration to generalize well from the training
dataset to the development dataset. These values of
€, 0, and cooling rate were then applied to various
new feature configurations.
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The standard configuration included binary fea-
tures for word unigrams and bigrams, character n-
grams of sizes 1 to 5, and surface features. We
experimented here with word trigrams, character 6-
grams, and lowercased character n-grams of sizes 1
to 6. We also added skip bigrams, which were or-
dered word pairs in which 1 to 6 intervening words
were omitted. We incorporated part of speech tags in
anumber of ways, including POS n-grams of lengths
1to 5, POS k-skip bigrams with k ranging from 1 to
6, and POS n-grams in which closed-class POS tags
were replaced with the actual content word used.
We also measured the impact of using frequency-
weighted features.

Our standard approach with Carnie is to perform
multinomial classification using one model trained
on all the data simultaneously. We experimented
with other ways of framing the NLI problem, such
as building eleven binary classifiers, each of which
was trained on all of the data but with the sole task
of accepting or rejecting a single candidate L1. We
also partitioned the training data to build 55 binary
classifiers for all possible pairs of L1s. These bi-
nary classifiers were then combined via a voting
mechanism to select a single winner. This allowed
us to apply focused efforts to improve discrimina-
tion in language pairs which Carnie found challeng-
ing, such as Hindi-Telugu or Japanese-Korean. To
this end, we collected a substantial amount of ad-
ditional out-of-domain training data from the web-
sites lang8.com (70,000 entries) and gohackers.com
(40,000 entries). Although we did not use this
data in our final submission, we performed experi-
ments to measure the value of this new data in the
TOEFL11 domain with no adaptation, with feature
filtering to limit training features to items observed
in the test sets, and with “frustratingly easy” do-
main adaptation, EasyAdapt, described in Daumé
and Marcu (2007).

4.3 Varied SRILM configurations

SRILM offers a number of parameters for ex-
perimentation. ~ We hill-climbed on the train-
ing/development split to select a good configura-
tion. We experimented with n-gram lengths from
1-5 (bag of words through word 5-grams), using the
tokenization given by the NLI organizers. We tried
the lighter weight smoothing techniques offered by



System Confidence MRD
Carnie s(h1)/s(h2) 343
s(h1)/ 32 s(hi) 268
(1) — 5(ha) 72
SRILM logp(h1)/logp(ha) | 315.7
logp(h1) —logp(ha) | 315.3
ppl1(hy)/ppli(hy) | 315.12
ppll(hy) — ppll(h2) | 260
ppll 77
log p(h1) 40
MaxEnt > p(hq) log p(h;) 385.7
(JCarafe) | p(h1) 383.15
logp(hy) 383.15
p(h1)/p(h2) 373.75
logp(h1)/logp(he) | 379.8
LIBLINEAR | 3, p(h;)logp(hs) | 379.8

Figure 2: Confidence candidates measured in Mean Rank
Difference between correct and incorrect labels.

SRILM including Good-Turing, Witten-Bell, Ris-
tad’s natural discounting, both modified and original
Kneser-Ney. We built both closed vocabulary and
open vocabulary language models and with special
symbols added for sentence boundaries.

4.4 Component confidence experiments

Our components generate scores, but those scores
were not always scaled in the same way. Winnow
(in Carnie) is a margin-based, mistake-driven learner
generating scores which are interpretable only as
sums of weights. SRILM produces logp(d;|h;),
but renormalizing those (with priors) into estimates
of p(h;|d;) is unreliable because the different sub-
models are not connected with smoothing. Logistic
regression produces a distribution for p(h;|d;). We
aimed to express these notions of confidence in a
way that was common to all systems. We did this by
relabeling system hypotheses after sorting by confi-
dence, but not all metrics were equally good at this
sorting.

We performed an ad hoc assessment of several
candidate scoring functions. Our goal was to find
functions that best separated correct answers from
incorrect answers in a sorted ranking. We ran several
candidates on our development set and measured the
difference between the mean rank of correct answers
and the mean rank of incorrect answers. Figure 2
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displays the results. In each case h; was the best hy-
pothesis generated by the system and ho is second
best. p(-) indicates probabilities, s(-) indicates non-
probability scores. We chose those functions with
the highest values.

4.5 Simple models for combination

In this work, we focused our ensembles only on the
output of our individual components, ignoring the
features from the original data that they attempt to
model. The base systems are all trained to minimize
errors, and did not appear to have any particular
preferential capabilities. Thus we rely on them en-
tirely for the primary processing and focus on their
outputs.

In our naive Bayes formulation, the random vari-
ables produced by the component systems (H ) need
not take on values directly comparable with the ref-
erence labels to be predicted (12). We experimented
with folding in several one-shot systems that pro-
duced labels in {L,L}, for particular native lan-
guage groups, but none of these proved to be good
complements for the components described above.

To cope with decode-time configurations of H
that hadn’t been seen during estimation, we used
a Dirichlet prior on R in this ensemble. A sin-
gle parameter, )\, was introduced. Thus our esti-
mates for P(h;|r) were based on smoothed counts:
%. The search for A\ was performed using
cross-validation on the development set.

Assignment In many prediction settings, we know
that our evaluation data consists of examples drawn
from a particular allocation of candidate classes.
One can take advantage of this in a probabilistic
setting by doing a global search for the maximum
likelihood assignment of the test documents to the
L1 languages under the constraint that each L1 lan-
guage must have a particular occupancy by the doc-
uments — in this case, an even split. More generally,
once we have p(h;|d;) for each candidate language
h; and document d;, we can find an assignment A =
{(4,7) : a;; = 1} that maximizes the likelihood
P(H|D) = [l jyeap(hild;) = T1; ; p(hild;)*ea
under the constraints that >, «; ; = |D|/|H| and
> ; @i,j = 1. The first constraint says that each lan-
guage should get an even allocation of documents
assigned to it and the second constraint says that



each document should be assigned to only one lan-
guage. This reduces to a maximum weight match-
ing on ), ; v jlogp(hi|d;). This problem is di-
rectly convertible into a max flow problem or a lin-
ear program. It can be solved with methods such
as the Hungarian algorithm, Ford-Fulkerson, or lin-
ear programming. In our case, we used LPSOLVE?
to find this global maximum. This looks at first
glance like an integer programming problem, but
one can relax the constraints into inequalities and
still be guaranteed that the solution will end up with
all o;; landing on either zero or one in the right
amounts. We applied this assignment combination
as a post-processing step to the probabilities gener-
ated in the naive Bayes ensemble and also to the raw
LIBLINEAR outputs. The hope in doing this is that
the optimizer will move the less likely assignments
around appropriately while preserving the assign-
ments where it has more confidence. We observed
mixed results on our development set and submitted
two systems using this ensemble technique.

4.6 Other components explored

LIBLINEAR provides an implementation of a linear
SVM as well as a logistic regression package. We
experimented with various combinations of ¢;- and
£y -loss SVMs, with both ¢; and /o-regularization,
but in the end opted to use the ¢»-regularized logistic
regression due to slightly superior performance and
the ease with which we could extract eleven values
of P(H) for inclusion in our ensemble.

Another component that was tested in develop-
ment of our ensemble systems was a maximum en-
tropy classifier. This particular effort used the imple-
mentation from JCarafe,? which uses L-BFGS for
optimization.

We approached the NLI task as document classi-
fication, following a typical JCarafe recipe (Gibson
et al., 2007). The class of the document is the native
language of the author. Each document was treated
as a bag of words, and several classes of features
were extracted: token n-gram frequency, character
n-gram frequency, part of speech n-gram frequency.
The feature mix that produced the best score was
token bigrams and trigrams, character trigrams and

2http: //lpsolve.sourceforge.net
*https://github.com/wellner/jcarafe
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L1 Mean F Our Best F
GER 1 0.776 | 1 0.921
ITA 2 0.757 | 2 0.88
CHI 3 0.723 | 4 0.85
JPN 4 0.708 | 5 0.837
FRE 5 0.701 | 7 0.818
TEL 6 0.667 | 3 0.802
KOR | 7 0.665 | 6 0.827
TUR 8 0.656 | 8 0.81
ARA | 9 0.65 3 0.872
SPA | 10 0.631 | 10 0.768
HIN | 11 0.606 | 11 0.762

Figure 3: L1s by empirical prediction difficulty. Mean F
incorporates all submissions by all competition teams.

POS trigrams. A feature frequency threshold of 5
was used to curb the number of features.

5 Results

Our best performing ensemble was 82.6% accurate
when scored on the competition test set, and was
composed of Carnie, SRILM, and logistic regres-
sion, using naive Bayes to combine the subsystem
outputs and confidence scores into a single predic-
tion. The best performing subsystem during system
development scored 79.3% on the test set in isola-
tion, demonstrating once again the value of combin-
ing systems that make independent errors.

Certain L1s gave our systems more difficulty than
others. Our best submitted F-measure scores ranged
from 0.921 for German to 0.762 for Hindi. Fig-
ure 3 demonstrates that our systems’ scores were
highly correlated with average scores from all sub-
missions by all teams (R? = 0.84). From this we
infer that our performance differences between L1s
may be explained by inherent difficulties in certain
languages or by the selection of similar L1s as a part
of the competition task, rather than quirks of our ap-
proach. Our submissions do appear to have a partic-
ular advantage on Arabic and Korean, relative to the
field.

Figure 4 shows the overall performance of our
submissions and subsystems on the development
and test evaluation sets.

Our scores dropped 4 to 5% between development
and test evaluations, representing significant overfit-



Figure 4: Results.

ting to the development set. The development set
was used for model selection, ensemble parameteri-
zation, and eventually as additional training data for
final submissions. Later tests showed that this fi-
nal retraining actually reduced the Carnie score by
0.9%.

Figure 4 also shows the effect of various efforts to
improve our baseline Carnie system. Adding part-
of-speech n-grams and word trigrams as features
improved the score on the development set by 1%
in total. Meanwhile many of our experiments with
new types of features yielded no gains. Lowercased
character n-grams, skip bigrams and all non-vanilla
formulations of part-of-speech tags provided no im-
provement and were discarded.

It was observed that all of our systems showed
a strong preference for binary features over
frequency-weighted inputs. In the case of the
JCarafe classifier, switching to binary features
yielded a 10% accuracy gain. Although JCarafe
didn’t provide a gain over the ensemble of Carnie,
SRILM, and LIBLINEAR logistic regression, de-
velopment set results indicated that JCarafe served
capably as a replacement for LIBLINEAR in some
ensembles.

We also measured the impact of using out-of-
domain Japanese and Korean L1 data to train a pair-
wise JPN/KOR system. Only 78.5% of JPN and
KOR texts were correctly identified in our eleven-
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Configuration dev % | test % Rank | L1 Score Feature
Components 14 | GER | 21.05 | (for,example)
base Carnie 82.6 40 | GER | 15.95 | (have,to)
+ trigrams 83.1 55 | HIN | 14.80 | (as,compared,to)
+ POS tags 83.6 79.3 57 | ITA | 14.60 | (Ithink,that)
1v1 voted Carnie 79.4 58 | TEL | 14.18 | (and,also)
SRILM 77.1 60 | HIN | 13.97 | (as,compared)
MaxEnt 7.7 79 | TEL | 12.82 | (the,people)
Linear SVM 81.9 96 | TEL | 12.14 | (for,a)
Logistic Regression 83.4 101 | ITA 11.83 | (that,in)
assignment(LR) 82.4 116 | ITA | 10.94 | (think,that)
Ensembles 119 | GER | 10.93 | (has,to)
bayes(Carnie,SRILM,LR) 87.3 82.6 120 | TEL | 10.89 | (with,the,statement)
assign(Carnie,SRILM,LR) 86.5 82.0 ) o .
assign(Carnie,SRILM,MaxEnt) | 86.4 82.3 Figure 5: Word n-gram features predicting particular L1.
bayes(Carnie,SRILM) 86.9 81.7

way baseline system. We restricted train and evalu-
ation data to only those two L1s and found our base-
line technique was 86.5% accurate. When we added
our out-of-domain data with no domain adaptation
technique, that score dropped to 82.0%. Removing
features that didn’t appear in our test set only raised
the score to 82.5%. However, the EasyAdapt tech-
nique (Daumé and Marcu, 2007) showed promise.
By making an additional source-specific copy of
each feature, we were able to raise the score to
88.5%. While this result was of limited applicabil-
ity in our final submission, and was therefore not
submitted to the open data competition task, we be-
lieve that this technique may prove useful in en-
abling cross-domain NLI system transfer.

Figure 5 provides a small sample of word-level
features discovered by the Winnow classifier. The
table shows the rank of each n-gram relative to all
features, and the native language that the feature
predicts. The weight assigned by the Winnow?2 al-
gorithm is not readily interpretable, although higher
weights indicate a stronger association.

Similarly, the top character n-grams can be seen in
Figure 7, along with manually selected examples of
each. These features can be seen to mainly fall into
several broad categories. There are mentions of the
authors’ home countries as in Klorealn, Iftallian and
Tlurkley. There are also characteristic misspellings
and infelicities such as personnlaly, perhaps incor-
rectly modeled from the French perslonnlellement.

It is worth noting that the weights (and thus the
ranks) for the top character n-gram features are



System Accuracy (%) | Errors
Carnie 80.4 2153
SRILM 74.5 2800
LIBLINEAR 80.8 2116
ensemble-assign 81.9 1990
ensemble-Bayes 82.2 1961

Figure 6: Training set cross-validation results.

higher than for the top word features, indicating that
Winnow found the former to be more informative.

Finally, the top part-of-speech n-gram features are
shown in Figure 8, again with manually selected
examples. These features have similar weights
to the character n-gram features and for the most
part seem to represent ungrammatical constructions
(e.g., the first feature indicates that a personal pro-
noun followed by an uninflected verb predicts Chi-
nese). However, there are some perfectly grammat-
ical items that are indicative of a particular native
language (e.g., as compared to for Hindi). One pos-
sible explanation might be a dominant L2 pedagogy
for that language.

5.1 Cross-validation results

The task organizers requested that the participants
run a ten-fold cross validation on a particular split of
the union of the training and development sets after
the evaluation was over. Results of our leading com-
ponent systems and ensemble systems are presented
in Table 6. These are comparable with the TOEFL-
11 column of Figure 3 in Tetreault et al. (2012).

6 Conclusion

In this paper, we have presented MITRE’s partici-
pation in the native language identification task at
BEA-8. Our best system was a naive Bayes ensem-
ble combining component systems that used Win-
now, language modeling and logistic regression ap-
proaches, all using relatively simple character and
word n-gram features. This ensemble performed at
an accuracy of 82.6% in the eleven-way NLI task,
placing it in a statistical tie with the winning systems
submitted by 29 teams. For individual native lan-
guages, our submission performed best among the
participants on Arabic, as ranked by F-measure.

In addition to the three base systems in our best
ensemble, we experimented with a maximum en-
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tropy classifier and an assignment-based ensemble
method. We described a variety of experiments we
performed to determine the best configurations and
settings for the various systems. We also covered
experiments aimed at using out-of-domain data for
several native languages. In future work we will ex-
pand upon these, with the goal of applying domain
adaptation approaches.

One concern with NLI as framed in this evalua-
tion is the interaction between native language and
essay topic. The distribution of topics was very sim-
ilar in the various subcorpora, but in more natural
settings this is unlikely to be the case, and there is
a danger of overtraining on topic, to the detriment
of language identification performance. This is es-
pecially problematic for a highly lexical approach
such as ours. In future work, we intend to explore
the extent of this effect, using topic-based splits of
the corpus. Our initial experiments to remedy this
problem are likely to involve domain adaptation ap-
proaches, such as Daumé and Marcu (2007).

As described above, we have had success using
the Winnow-based system Carnie for other latent au-
thor attributes, such as gender. We would like to ex-
plore ensembles similar to those described here for
these attributes as well.

The techniques described in this paper success-
fully identified an author’s native language 82.6% of
the time using a sample of text averaging less than
350 words in length. Future work could study the
interaction of text length and NLI performance, in-
cluding texts shorter than 140 characters in length.
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Maximizing Classification Accuracy in Native Language Identification
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Abstract

This paper reports our contribution to the
2013 NLI Shared Task. The purpose of the
task was to train a machine-learning system to
identify the native-language affiliations of
1,100 texts written in English by nonnative
speakers as part of a high-stakes test of gen-
eral academic English proficiency. We trained
our system on the new TOEFLI11 corpus,
which includes 11,000 essays written by
nonnative speakers from 11 native-language
backgrounds. Our final system used an SVM
classifier with over 400,000 unique features
consisting of lexical and POS n-grams occur-
ring in at least two texts in the training set.
Our system identified the correct native-
language affiliations of 83.6% of the texts in
the test set. This was the highest classification
accuracy achieved in the 2013 NLI Shared
Task.

1 Introduction

The problem of automatically identifying a writer’s
or speaker’s first language on the basis of features
found in that person’s language production is a
relatively new but quickly expanding line of in-
quiry. It seems to have begun in 2001, but most of
the studies published in this area have appeared in
just the past two years. Although the practical ap-
plications of native-language identification (NLI)
are numerous, most of the existing research seems
to be motivated by one or the other of two types of
questions: (1) questions about the nature and extent
of native-language influence in nonnative speak-
ers’ speech or writing, and (2) questions about the
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maximum levels of NLI classification accuracy
that are achievable, which includes questions about
the technical details of the systems that achieve the
best results. Our previous work in this area has
been motivated primarily by the former (see the
multiple studies in Jarvis and Crossley, 2012), but
in the present study we conform to the goals of the
2013 NLI Shared Task (Tetreault et al., 2013) in a
pursuit of the latter.

2 Related Work

The first published study to have performed an
NLI analysis appears to have been Mayfield
Tomokiyo and Jones (2001). The main goal of the
study was to train a Naive Bayes system to identify
native versus nonnative speakers of English on the
basis of the lexical and part-of-speech (POS) n-
grams found in their speech. The nonnative speak-
ers in the study included six Chinese speakers and
31 Japanese speakers, and as a secondary goal, the
researchers trained the system to identify the
nonnative speakers by their native language (L1)
backgrounds. The highest NLI accuracy they
achieved was 100%. They achieved this result us-
ing a model made up of a combination of lexical 1-
grams and 2-grams in which nouns (and only
nouns) were replaced with a POS identifier (=N).
As far as we are aware, an NLI accuracy of
100% has not been achieved since Mayfield
Tomokiyo and Jones (2001), but the NLI tasks that
researchers have engaged in since then have been a
great deal more challenging than theirs. This is true
primarily in the sense that no other NLI study we
are aware of has had such a high baseline accuracy,
which is the accuracy that would be achieved if all

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 111-118,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



cases were classified as belonging to the largest
group. Because 31 of the 37 participants in the
Mayfield Tomokiyo and Jones study were Japa-
nese speakers, the baseline accuracy was already
83.8%. To avoid such a bias and to provide a
greater challenge to their systems, researchers in
recent years have engaged in NLI tasks that have
involved more equally balanced groups with a far
larger number of L1s. Most of these studies have
focused on the identification of the Lls of
nonnative writers who produced the texts included
in the International Corpus of Learner English
(ICLE) (Granger et al., 2009).

NLI studies that have focused on the ICLE in-
clude but are not limited to, in chronological order,
Koppel et al. (2005), Tsur and Rappoport (2007),
Jarvis (2011), Bestgen et al. (2012), Jarvis and
Paquot (2012), Bykh and Meuers (2012), and
Tetreault et al. (2012). The highest NLI accuracy
achieved in any of these studies was 90.1%, which
was reported by Tetreault et al. (2012). The re-
searchers in this study used a system involving the
LIBLINEAR instantiation of Support Vector Ma-
chines (SVM) with the L1-regularized logistic re-
gression solver and default parameters. The
features in their model included character n-grams,
function words, parts of speech, spelling errors and
features of writing quality, such as grammatical
errors, style markers, and so forth. They used spe-
cialized software to extract error counts, grammar
fragments, and counts of basic dependencies. They
also created language model perplexity scores that
reflected the lexical 5-grams most representative of
each L1 in the corpus. This combination of fea-
tures is more comprehensive than that used in any
other NLI study, but the authors reported that their
success was not due simply to the combination of
features, but also because of the ensemble classifi-
cation method they used. The ensemble method
involved the creation of separate classifier models
for each category of features; the L1 affiliations of
individual texts were later predicted by the com-
bined probabilities produced by the different clas-
sifier models. The authors pointed out that
combining all features into a single classifier gave
them an NLI accuracy of only 82.6%, which is far
short of the 90.1% they achieved through the en-
semble method.

The number of L1s represented in the study by
Tetreault et al. (2012) was seven, and it is notewor-
thy that they achieved a higher NLI accuracy than
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any of the previous NLI studies that had examined
the same number (Bykh and Meurers, 2012) or
even a smaller number of L1s in the ICLE (e.g.,
Koppel et al., 2005, Tsur and Rappoport, 2007;
Bestgen et al.,, 2012). The only NLI studies we
know of that have examined more than seven L1s
in the ICLE are Jarvis (2011) and Jarvis and
Paquot (2012). Both studies examined 12 Lls in
the ICLE, and both used a combination of features
that included only lexical n-grams (l-grams, 2-
grams, 3-grams, and 4-grams). Jarvis (2011) com-
pared 20 different NLI systems to determine which
would provide the highest classification accuracy
for this particular task, and he found that LDA per-
formed best with an NLI accuracy of 53.6%. This
is the system that was then adopted for the Jarvis
and Paquot (2012) study. It is important to note
that the primary goal for Jarvis and Paquot was not
to maximize NLI accuracy per se, but rather to use
NLI as a means for assisting in the identification of
specific instances and types of lexical influence
from learners’ L1s in their English writing.

As noted by Bestgen et al. (2012), Jarvis and
Paquot (2012), and Tetreault et al. (2012), there are
certain disadvantages to using the ICLE for NLI
research. One problem made especially clear by
Bestgen et al. is that the language groups repre-
sented in the ICLE are not evenly balanced in
terms of their levels of English proficiency. This
creates an artificial sampling bias that allows an
NLI system to distinguish between L1 groups on
the basis of proficiency-related features without
creating a classification model that accurately re-
flects the influences of the learners’ language
backgrounds. Another problem mentioned by these
and other authors is that writing topics are not
evenly distributed across the L1 groups in the
ICLE. That is, learners from some L1 groups tend-
ed to write their essays in response to certain writ-
ing prompts, whereas learners from other LI
groups tended to write in response to other writing
prompts. Tetreault et al. took extensive measures
to remove as much of the topic bias as possible
before running their analyses, but they also intro-
duced a new corpus of nonnative English writing
that is much larger and better balanced than the
ICLE in terms of the distribution of topics across
L1 groups. The new corpus is the TOEFLI1,
which will be described in detail in Section 3.

Prior to the 2013 NLI Shared Task, the only NLI
study to have been conducted on the TOEFL11



corpus was Tetreault et al. (2012). As described
earlier, they performed an NLI analysis on a sub-
sample of the ICLE representing seven L1 back-
grounds. They also used the same system
(including an identical set of features) in an NLI
analysis of the TOEFL11. The fact that the
TOEFLI11 is better balanced than the ICLE is ad-
vantageous in terms of the strength of the NLI
classification model that it promotes, but this also
makes the classification task itself more challeng-
ing because it gives the system fewer cues (i.e.,
fewer systematic differences across groups) to rely
on. The fact that the TOEFL11 includes 11 L1s, as
opposed to the seven L1s in the subsample of the
ICLE the authors examined, also makes the NLI
task more challenging. For these reasons, NLI ac-
curacy is bound to be higher for the ICLE than for
the TOEFL11. This is indeed what the authors
found. The NLI accuracy they reported for the
TOEFL11 was nearly 10% lower than for the ICLE
(80.9% vs. 90.1%). Nevertheless, their result of
80.9% accuracy was still remarkable for a task in-
volving 11 L1s. Tetreault et al. have thus set a very
high benchmark for the 2013 NLI Shared Task.

3 Data

The present study tests the effectiveness of our
own NLI system for identifying the L1s represent-
ed in the TOEFLI11 (Blanchard et al., 2013). The
TOEFLI11 is a corpus of texts consisting of 11,000
essays written by nonnative English speakers as
part of a high-stakes test of general proficiency in
academic English. The essays were written by
learners from the following 11 L1 backgrounds:
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish.
The corpus is perfectly balanced in terms of its
number of essays per L1 group (i.e., 1,000 per L1),
and it is also fairly well balanced in relation to the
topics written about. The essays in the TOEFL11
were written in response to any of eight different
writing prompts, and all eight prompts are reflected
in all 11 L1 groups. Within four of the L1 groups,
all prompts are almost equally represented with a
proportion of approximately 12.5% per prompt
(i.e., 100% =+ 8 prompts = 12.5%). In other groups,
there is more variability. The Italian group shows
the largest discrepancies, with one prompt repre-
senting only 1.2% of the essays, and another
prompt representing 17.2% of the group’s essays.
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English Proficiency
Ll Low | Medium High
ARABIC Count 274 545 181
% 27.4% 54.5% 18.1%
CHINESE  Count 90 662 248
% 9.0% 66.2%| 24.8%
FRENCH Count 60 526 414
% 6.0% 52.6%| 41.4%
GERMAN  Count 14 371 615
% 1.4% 37.1%| 61.5%
HINDI Count 25 399 576
% 2.5% 39.9%| 57.6%
ITALIAN  Count 145 569 286
% 14.5% 56.9%| 28.6%
JAPANESE Count 207 617 176
% 20.7% 61.7% 17.6%
KOREAN  Count 154 617 229
% 15.4% 61.7% | 22.9%
SPANISH  Count 73 502 425
% 7.3% 50.2% | 42.5%
TELUGU Count 86 595 319
% 8.6% 59.5% | 31.9%
TURKISH  Count 73 561 366
% 7.3% 56.1%| 36.6%

Table 1: Distribution of English Proficiency Levels

The distribution of learners’ proficiency levels
(low, medium, high) is even more variable across
groups. Ideally, 33% of each group would fall into
each proficiency level, but Table 1 shows that the
distribution of proficiency levels does not come
close to this in any L1 group. The distribution is
especially skewed in the case of the German
speakers, where only 1.4% of the participants fall
into the low proficiency category whereas 61.5%
fall into the high proficiency category. In any case,
in nine of the 11 groups, the bulk of participants
falls into the medium proficiency category, and in
seven of those nine groups, the proportion of high-
proficiency learners is greater than the proportion
of low-proficiency learners. Clearly, the TOEFL11



is not a perfectly balanced corpus, but it is much
larger than the ICLE and involves fewer prompts,
which are more evenly distributed across L1
groups. Another advantage of the TOEFL11 is that
each text is associated with a proficiency level that
has been determined by assessment experts using a
consistent rating procedure for the entire corpus.
This fact may allow researchers to isolate the ef-
fects of learners’ proficiency levels and to adjust
their systems accordingly.

The TOEFL11 data were distributed to the 2013
NLI Shared Task participants in three stages. The
initial distribution was a training set consisting of
9,900 of the 11,000 texts in the TOEFLI11. The
training set was made up of 900 texts from each L1
group. Later, a development set was made availa-
ble. This included the remaining 1,100 texts in the
TOEFL11, with 100 texts per L1. Finally, a test set
was also provided to the teams participating in the
2013 NLI Shared Task. The test set consisted of
1,100 texts representing the same 11 L1s that are
found in the TOEFL11. The test set included in-
formation about the prompt that each text was writ-
ten in response to, as well as information about the
writer’s proficiency level, but did not include in-
formation about the writer’s L1.

4 System

Although our previous work has used NLI as a
means toward exploring and identifying the effects
of crosslinguistic influence in language learners’
written production (see Jarvis and Crossley, 2012),
in the present study we approached NLI exclusive-
ly as a classification task, in keeping with the goals
of the NLI Shared Task (Tetreault et al. 2013). In
order to maximize classification accuracy for the
present study, we chose a system that would allow
for the inclusion of thousands of features without
violating statistical assumptions. Due to the unre-
stricted number of features it allows and the high
levels of classification accuracy it has achieved in
previous research, such as in the study by Tetreault
et al. (2012), we chose to use linear Support Vector
Machines (SVM) via the LIBLINEAR software
package (Fan et al., 2008). The software allows the
user to choose among the following types of solv-
ers:

a: L2-regularized L1-loss SVM (dual)

b: L2-regularized L2-loss SVM (dual)

c: L2-regularized logistic regression (primal)
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d: L1-regularized L2-loss SVM

e: L1-regularized logistic regression

f: L2-regularized L1-loss SVM (primal)

g: L2-regularized L2-loss SVM (primal)

h: Multi-class SVM by Crammer and Singer

Although Tetreault et al. (2012) used the Type e
solver, we found Type b to be the most efficient in
terms of both speed and accuracy. LIBLINEAR
implements SVM via a multi-class classification
strategy that juxtaposes each class (i.e., each L1)
against all others. It also optimizes a cost parame-
ter (Parameter C) using a grid search that relies on
a crossvalidation criterion. The software iterates
over multiple values of C until it arrives at an op-
timal value. Although LIBLINEAR has a built-in
program for optimizing C, we used our own opti-
mization program in order to have more flexibility
in choosing values of C to test.

4.1 Features Used

The features we tried represented three broad cate-
gories: words, characters, and complex features.
The word category included lexemes, lemmas, and
POS tags, as well as n-grams consisting of lex-
emes, lemmas, and POS tags. Lexemes were de-
fined as the observed forms of words, numbers,
punctuation marks, and even symbols that were
encountered in the TOEFL11. Lemmas were de-
fined as the dictionary forms of lexemes, and we
used the TreeTagger software package (Schmid,
1995) to automate the task of converting lexemes
to lemmas. TreeTagger is unable to determine
lemmas for rare words, misspelled words, and
newly borrowed or coined words, and in such cas-
es, it outputs “unknown” in place of a lemma. We
also used TreeTagger to automate the identification
of the parts of speech (POS) associated with indi-
vidual words. TreeTagger can only estimate the
POS for unknown words, and it is also not perfect-
ly accurate in determining the correct POS for
words that it does recognize. Nevertheless, Schmid
(1995) found that its POS tagging accuracy tends
to be between 96% and 98%, which we consider to
be adequate for present purposes. We included in
our system all 1-grams, 2-grams, 3-grams, and 4-
grams of lexemes, lemmas, and POS tags that oc-
curred in at least two texts in the training set.

Our character n-grams included all character n-
grams from one character to nine characters in
length that occurred in at least two texts in the



training set. Finally, our complex features included
nominalization suffixes (e.g., -tion, -ism), number
of tokens per essay, number of types, number of
sentences, number of characters, mean sentence
length, mean length of lexemes, and a measure of
lexical variety (i.e., type-token ratio).

5 Results

We applied the system described in the previous
section to the TOEFL11 corpus. We did this in
multiple stages, first by training the system on the
original training set of 9,900 texts while using
LIBLINEAR’s built-in 5-fold crossvalidation.
With the original training set, we tried multiple
combinations of features in order to arrive at an
optimal model. We found that our complex fea-
tures contributed very little to any model we tested,
and that we could achieve higher levels of NLI
accuracy by excluding them altogether. We also
found that models made up of optimal sets of lexi-
cal features gave us roughly the same levels of NLI
accuracy as models made up of optimal sets of
character n-grams. However, models made up of a
combination of lexical features and character fea-
tures together performed worse than models made
up of just one or the other. Our best performing
model, by a small margin, was a model consisting
of 1-grams, 2-grams, and 3-grams involving lex-
emes, lemmas, and POS tags. The results of our
comparison of multiple lexical models is shown in

Table 2, with the best performing model represent-
ed as Model A.

Table 2 shows that Model A consists of all 1-
gram, 2-gram, and 3-gram lexemes, lemmas, and
POS tags that occur in at least two texts, using a
log-entropy weighting schema and normalizing
each text to unit length. It is noteworthy that nor-
malizing each text vector, but also using a log-
entropy weighting schema clearly improves the
model accuracy. Normalizing each text vector as
recommended by Fan et al. (2008), but also using a
log-entropy weighting schema (Dumais, 1991;
Bestgen, 2012) clearly improves the model accura-
cy. The total number of unique features in Model
A is over 400,000. Our initial run of this model on
the training set gave us a 5-fold cross-validated
NLI accuracy of 82.53%.

We then attempted to determine whether these
results could be replicated using other test
materials. We first applied the best performing
models displayed in Table 2 to the development
set—using the development set as a test set—and
achieved an NLI accuracy of over 86% for Model
A, which remained the most accurate one.

Then we applied these models to our own test
set built to be evenly balanced in terms of the strat-
ification of both L1s and prompts. We built this
test set because we discovered large differences
when we compared the distribution of prompts
across L1 groups in the official test set for the 2013

Parts of Speech | Frequency | Weighting | Normalization | Accurac
Model Lexemes Lemmas (POS t: ) c;lt-off ' scligema ¢ (to 1 per text) (5-fold)y
lg| 2g | 3g | 1lg | 2g [3g| 1lg | 2g | 3g

A X X X X X X X X X >2 LE Yes 82.53
B X X X X X X X X X >5 LE Yes 82.52
C X X X X X X X X X >10 LE Yes 82.48
D X X X X X X X X X >2 LE No 80.46
E X X X X X X X X X >2 Bin Yes 79.13
F X X X X X X X X X >2 LFreq Yes 79.12
G X X X X X X >2 LE Yes 82.49
H X X X >2 LE Yes 76.42
I X X X X X X >2 LE Yes 82.09
J X X X X X X >2 LE Yes 81.24
K X X X X X X >2 LE Yes 80.92
L X X X >2 LE Yes 81.57
M X X X >2 LE Yes 81.02
N X X X >2 LE Yes 54.95

Weighting schema: LE = Log-Entropy, Bin = Binary, LFreq = log of the raw frequencies

Table 2: Feature Combinations
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NLI Shared Task versus both the training set and
development set. To build it, we combined the
training set and development set into a single cor-
pus (i.e., the full TOEFL11), and then divided the
TOEFLI11 into a double-stratified set of cells
cross-tabulated by L1 and prompt. This resulted in
11 x 8 = 88 cells, and we randomly selected 10
texts per cell for the test set. This gave us a test set
of 880 texts. We used the remaining 10,120 texts
as a training set. However, the new division of
training and test sets did not strongly modify our
results, so we retained the previous Model A as our
final model.

In preparation for the final task of identifying
the L1 affiliations of the 1,100 texts included in the
official test set for the 2013 NLI Shared Task, we
used the entire TOEFL11 corpus of 11,000 texts as
our training set—with the features in Model A—in
order to select the final values for the cost parame-
ter (C) of our SVM system. By means of a 10-fold

crossvalidation (CV) procedure on this dataset, the
C parameter was set to 3200.

The results of a 10-fold CV (using the fold split-
ting of Tetreault et al., 2012) of the system’s per-
formance with the TOEFL11 are shown in Table 3.
The total number of texts per L1 group is consist-
ently 1000, which makes the raw frequencies in the
table directly interpretable as percentages. The
lowest rate of accurate identification for any L1 in
the 10-fold CV was 78.6%, and this was for Telu-
gu. For all other L1s, the NLI accuracy rate ex-
ceeded 80%, and in the case of German, it reached
96.5%. The overall NLI accuracy for the 10-fold
CV was 84.5%.

For the final stage of the analysis, we applied
our system to the official test set in order to deter-
mine how well it can identify writers’ L1s in texts
it has not yet encountered. The results of the final
analysis are shown in Table 4. The classification
accuracy (or recall) for individual L1s in the final

Predicted L1
Actual | ARA CHI FRE | GER HIN ITA JPN | KOR SPA TEL | TUR | Total
L1
ARA 802 16 41 14 28 11 9 12 47 8 12 1000
CHI 6 894 5 6 15 2 20 31 7 3 11 1000
FRE 24 11 856 28 11 25 4 4 33 1 3 1000
GER 2 4 6 965 5 3 1 2 9 0 3 1000
HIN 10 6 1 7 803 0 1 1 11 155 5 1000
ITA 3 3 26 24 8 890 3 1 35 1 6 1000
JPN 10 29 3 11 3 0 810 108 9 4 13 1000
KOR 5 51 3 8 7 1 98 802 12 1 12 1000
SPA 20 9 40 24 10 65 5 5 807 5 10 1000
TEL 5 0 2 1 200 0 1 2 1 786 2 1000
TUR 22 11 16 20 18 5 7 14 17 5 865 1000
Accuracy = 84.5%
Table 3: 10-Fold Crossvalidation Results
ARA | CHI| FRE| GER | HIN | ITA| JPN | KOR | SPA | TEL | TUR | Prec. F
ARA 75 0 5 2 2 1 1 2 7 3 2| 824 | 785
CHI 1 89 0 1 1 0 4 2 0 0 2| 824 | 856
FRE 2 1 86 6 2 1 0 0 2 0 0] 86.0| 86.0
GER 0 0 1 96 0 0 0 0 2 0 1| 83.5]| 89.3
HIN 1 0 0 0 81 0 0 0 4 13 1| 743 | 775
ITA 0 1 3 4 0 90 0 0 2 0 0] 909 | 90.5
JPN 2 3 0 1 1 2 85 3 2 0 1| 8.9 | 854
KOR 0 10 1 0 1 0 8 76 1 2 1| 874 | 81.3
SPA 4 0 4 2 3 3 0 1 81 0 2| 78.6 | 79.8
TEL 1 1 0 1 18 0 0 0 0 79 0| 81.4 | 80.2
TUR 5 3 0 2 0 2 1 3 2 0 82| 89.1 | 854

Accuracy = 83.6%

Table 4: Final NLI Results

116




analysis ranges from 75% (Arabic) to 96% (Ger-
man), and precision ranges from 74.3% (Hindi) to
90.9% (Italian). Our overall accuracy in identifying
the L1s in the test set was 83.6%.

6 Conclusion

Our system turned out to be the most successful
system in the 2013 NLI Shared Task. Our 10-fold
crossvalidated accuracy of 84.5% is also higher
than the result of 80.9% previously achieved by
Tetreault et al. (2012) in their earlier NLI analysis
of the TOEFL11. We find this to be both interest-
ing and unexpected given that Tetreault et al. used
more complex measures than we did, such as 5-
gram language models, and they also used an en-
semble method of classification. Accordingly, we
interpret the success of our model as an indication
that the most reliable L1 specificity in the
TOEFLI11 is to be found simply in the words, word
forms, sequential word combinations, and sequen-
tial POS combinations that the nonnative writers
produced. Tetreault et al. emphasized the useful-
ness of features that reflect L1-specific language
models, but we believe that the multiple binary
class comparisons that SVM makes might already
take full advantage of L1 specificity as long as all
of the relevant features are fed into the system.

As for the ensemble method of classification
used by Tetreault et al., their results clearly indi-
cate that this method enhanced their NLI accuracy
not only for the TOEFL11, but also for three addi-
tional learner corpora, including the ICLE. Our
own study did not compare our single-model sys-
tem with the use of an ensemble method, but we
are naturally curious about whether our own results
could have been enhanced through the use of an
ensemble method. As mentioned earlier, our pre-
liminary attempts to construct a model based on
character n-grams produced nearly as high levels
of NLI accuracy as our final model involving lexi-
cal and POS n-grams. Although we found that
combining lexical and character n-grams worsened
our results, we believe that a fruitful avenue for
future research would be to test whether an ensem-
ble of separate models based on character versus
lexical n-grams could improve classification accu-
racy. Importantly, however, a useful ensemble
method generally needs to include more than two
models unless it is based on probabilities rather
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than on the majority-vote method (cf. Jarvis, 2011;
Tetreault et al., 2012).

Our original interest in NLI began with a curios-
ity about the evidence it can provide for the pres-
ence of crosslinguistic influence in nonnative
speakers’ speech and writing. We believe that NLI
strongly supports investigations of L1 influence,
but in the case of the present results, we do not
believe that L1 influence is solely responsible for
the 83.6% NLI accuracy our system has achieved.
Other factors are certainly also at play, such as the
educational systems and cultures that the nonnative
speakers come from. Apparent effects of cultural
and/or educational background can be seen in the
misclassification results in Table 4. Note, for ex-
ample, that when Hindi speakers are miscatego-
rized, they are overwhelmingly identified as
Telugu speakers and vice versa. Importantly, Hindi
and Telugu are both languages of India, but they
belong to separate language families. Thus, L1 in-
fluence appears to overlap with other background
variables that, together, allow texts to be grouped
reliably. To the extent that this is true, the term
NLI might be somewhat misleading. Clearly, NLI
research has the potential to contribute a great deal
to the understanding of crosslinguistic influence,
but it of course also needs to be combined with
other types of evidence that demonstrate L1 influ-
ence (see Jarvis, 2012).
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Abstract

Native Language Identification (NLI), which
tries to identify the native language (L1) of a
second language learner based on their writ-
ings, is helpful for advancing second language
learning and authorship profiling in forensic
linguistics. With the availability of relevant
data resources, much work has been done to
explore the native language of a foreign lan-
guage learner. In this report, we present our
system for the first shared task in Native Lan-
guage Identification (NLI). We use a linear
SVM classifier and explore features of words,
word and character n-grams, style, and
metadata. Our official system achieves accu-
racy of 0.773, which ranks it 18" among the
29 teams in the closed track.

1 Introduction

Native Language Identification (NLI) (Ahn, 2011;
Kochmar, 2011), which tries to identify the native
language (L1) of a second language learner based
on their writings, is expected to be helpful for ad-
vancing second language learning and authorship
profiling in forensic linguistics. With the availabil-
ity of relevant data resources, much work has been
done to explore the effective way to identify the
native language of a foreign language learner
(Koppel et al., 2005; Wong et al., 2011; Brooke
and Hirst, 2012a, 2012b; Bykh and Meurers, 2012;
Crossley and McNamara, 2012; Jarvis et al., 2012;
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Jarvis and Paquot, 2012; Tofighi et al., 2012; Tor-
ney et al. 2012).

To evaluate different techniques and approaches
to Native Language Identification with the same
setting, the first shared task in Native Language
Identification (NLI) was organized by researchers
from Nuance Communications and Educational
Testing Service (Tetreault et al., 2013). A larger
and more reliable data set, TOEFL11 (Blanchard et
al., 2013), was used in this open evaluation.

This paper reports our NLI2013 shared task sys-
tem that we built at the Department of Computer
Science, Henan University of Technology, China.
To be involved in this evaluation, we would like to
obtain a more thorough knowledge of the research
on native language identification and its state-of-
the-art, as we may focus on authorship attribution
(Koppel et al., 2008) problems in the near future.

The NLI2013 shared task is framed as a super-
vised text classification problem where the set of
native languages (L1s), i.e. categories, is known,
which includes Arabic, Chinese, French, German,
Hindi, Italian, Japanese, Korean, Spanish, Telugu,
and Turkish. A system is given a large part of the
TOEFLI11 dataset for training a detection model,
and then makes predictions on the test writing
samples.

Inspired by our experience of dealing with dif-
ferent text classification problems, we decide to
employ a linear support vector machine (SVM) in
our NLI2013 system. We plan to take this system
as a starting point, and may explore other complex
classifiers in the future. Although in-depth syntac-
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tic features may be helpful for this kind of tasks
(Bergsma et al., 2012; Wong and Dras, 2011;
Swanson and Charniak, 2012; Wong et al., 2012),
we decide to explore the effectiveness of the tradi-
tional word and character features, as well as style
features, in our system. We would like to verify on
the first open available large dataset whether these
traditional features work and how good they are.

Training Tgsting
Phrase ata

| ------- ‘r_ |
i Data Preprocessing |
| | ! |

| v . | v |

Training
Data

i Feature Extraction |

L ] : ) ¥

| | | i
: Linear SVM ! NLI : . !
| Training | | SVM Testing |

Testing
Phrase

Figure 1. System Architecture.

We submitted four runs with different feature
sets. The run with all the features achieved the best
accuracy of 0.773, which ranks our system 18th
among the 29 systems in the closed track.

In the rest of this paper we describe the detail of
our system and analyze the results. Section 2 gives
the overview of our system, while Section 3 dis-
cusses the various features in-depth. We present
our experiments and discussions in Section 4, and
conclude in Section 5.

2 System Description

Figure 1 gives the architecture of our NLI2013
system, which takes machine learning framework.
At the training stage, annotated data is first pro-
cessed through preprocessing and feature extrac-
tion, then fed to the classifier learning module, and
we can finally obtain a NLI model. At the testing
stage, each test sample goes through the same pre-
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processing and feature extraction modules, and is
assigned a category with the learned NLI model.

Data Preprocessing: this module aims at trans-
forming the original data into a suitable format for
the system, e.g. inserting the category information
into the individual writing sample and attaching
metadata to essays.

Feature Extraction: this module tries to obtain
all the useful features from the original data. We
considered features like: word, word n-gram, char-
acter n-gram, style, and available metadata.

Linear SVM training and testing: these two
modules are the key components. The training
module takes the transformed digitalized vectors as
input, and train an effective NLI model, where the
testing module just applies the learned model on
the testing data. As linear support vector machines
(SVM) achieves quite good performance on a lot
of text classification problems, we use this general
machine learning algorithm in our NLI2013 system.
The excellent SVM implementation, Libsvm
(Chang and Lin, 2011), was incorporated in our
system and TFIDF is used to derive the feature
values in vectors. Then, we turn to focus on what
features are effective for native language identifi-
cation. We explore words, word n-grams, character
n-grams, style, and metadata features in the system.

3 Features

In this section, we explain what kind of features we
used in our NLI2013 system.

3.1 Word and Word n-gram

The initial feature set is words or tokens in the da-
taset. As the dataset is tokenized and sen-
tence/paragraph split, we simply use space to
delimit the text and get individual tokens. We re-
move rare features that appear only once in the
training dataset. Words or tokens are transformed
to lowercase.

Word n-grams are combined by consecutive
words or tokens. They are expecting to capture
some syntactic characteristics of writing samples.
Two special tokens, “BOS” and “EOS”, which in-
dicate “Beginning” and “Ending”, are attached at
the two ends of a sentence. We considered word 2-
grams and word 3-grams in our system.

3.2 Character n-gram



We assume sub-word features like prefix and
suffix are useful for detecting the learners’ native
languages. To simplify the process rather than
employing a complex morphological analyzer, we
consider character n-grams as another important
feature set. The n-grams are extracted from each
sentence by regarding the whole sentence as a
large word / string and replacing the delimited
symbol (i.e. white space) with a special uppercase
character ‘S’. As what we did in getting word n-
grams, we attached two special character “B” and
“E” at the two ends of a sentence. Character 2-
grams, 3-grams, 4-grams, and 5-grams are used in
our system.

3.3 Style

We would like to explore whether the traditional
style features are helpful for this task as those fea-
tures are widely used in authorship attribution. We
include the following style features:
e _ PARA_ :aparagraph in an essay;
e _ SENT__: asentence in an essay;
e PARASENTLEN=NN: a paragraph of NN
sentences long;
e SENTWDLEN=NN: a sentence of 4*NN
words long;
e  WDCL=NN: a word of NN characters long;

3.4 Other

As the TOEFL11 dataset includes two metadata for
each essay, English language proficiency level
(high, medium, or low) and Prompt ID, we include
them as additional features in our system.

4 Experiments and Results

4.1 Dataset

The dataset of the NLI2013 shared task contains
12,100 English essays from the Test of English as
a Foreign Language (TOEFL). Educational Testing
Service (ETS) published the dataset through the
LDC with the motivation to create a larger and
more reliable data set for researchers to conduct
Native Language Identification experiments on.
This dataset, henceforth TOEFL11, comprises 11
native languages (L1s) with 1,000 essays per lan-
guage. The 11 covered native languages are: Ara-
bic, Chinese, French, German, Hindi, Italian,
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Japanese, Korean, Spanish, Telugu, and Turkish.
In addition, each essay in the TOEFL11 is marked
with an English language proficiency level (high,
medium, or low) based on the judgments of human
assessment specialists. The essays are usually 300
to 400 words long. 9,900 essays of this set are cho-
sen as the training data, 1,100 are for development
and the rest 1,100 as test data.

Runs HAUTCS-1 HAUTCS-2 HAUTCS-3 HAUTCS-4
Accuracy 0.773 0.758 0.76 0.756
ARA 0.731' 0.703 0.703 0.71
CHI 0.82 0.794 0.794 0.782
FRE 0.806 0.788 0.786 0.783
GER 0.897 0.899 0.899 0.867
HIN 0.686 0.688 0.694 0.707
ITA 0.83 0.84 0.844 0.844
JPN 0.832 0.792 0.798 0.81
KOR 0.763 0.764 0.768 0.727
SPA 0.703 0.651 0.651 0.65
TEL 0.702 0.702 0.702 0.751
TUR 0.736 0.715 0.716 0.698

Table 1. Official results of our system.

BHAUTCS-1

BHAUTCS-2

EHAUTCS 3

HAUTCS-4

Figure 2. Performance of our official runs.

4.2 Official Results

Accuracy, which measures the percentage of how
many essays are correctly detected, is used as the
main evaluation metric in the NLI2013 shared task.

Table 1 gives the official results of our system
on the evaluation data. We submitted four runs
with different feature sets:

HAUTCS-1: all the features, which include
words, word 2-grams, word 3-grams, character 2-
grams, character 3-grams, character 4-grams,

! This number, as well as others in the cells from this row to
the bottom, is value of F-1 measure for each language.



character 5-grams, style, and other metadata fea-
tures;

HAUTCS-2: uses words, word 2-grams, word
3-grams, style, and other metadata features;

HAUTCS-3: uses words, word 2-grams, word
3-grams, and other metadata features;

HAUTCS-4: uses words or tokens and other
metadata features.

For the runs HAUTCS-2, HAUTCS-3, and
HAUTCS-4, we combined the development and
training data for learning the identification model,
where for the HAUTCS-1, it’s a pity that we forgot
to include the development data for training the
model.

Our best run (HAUTCS-1) achieved the overall
accuracy (0.773). The system performs best on the
German category, but poorest on the Hindi catego-
ry, as can be easily seen on figure 2.

Analyzing the four runs’ performance showing
on figure 2, we observe: word features are quite
effective for Telugu and Hindi categories, but not
powerful enough for others; word n-grams are
helpful for languages Chinese, French, German,
Korean, and Turkish, but useless for others; Style
features only boost a little for French; Character n-
grams work for Arabic, Chinese, French, Japanese,
Spanish, and Turkish; Spanish category prefers
character n-grams, where Telugu category likes
word features. As different features have different
effects on different languages, a better NLI system
is expected to use different features for different
languages.

After the evaluation, we experimented with the
same setting as the HAUTCS-1 run, but included
both training and development data for learning the
NLI model. We got accuracy 0.781 on the new
released test data, which has the same format with
paragraph split as the training and development
data.

As we include style features like how many par-
agraphs in an essay, the old test data, which re-
moved the paragraph delimiters (i.e. single blank
lines), may be not good for our trained model.
Therefore, we did experiments with the new test
data. Unfortunately, the accuracy 0.772 is a little
poorer than that we obtained with the old test data.
It seems that the simple style features are not effec-
tive in this task. As shown in table 1, HAUTCS-2
performs poorer than HAUTCS-3, which helps us
derive the same conclusion.
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4.3 Additional Experiments

We did 10-fold cross validation on the training and
development data with the same setting as the
HAUTCS-1 run. The data splitting is given by the
organizers. Accuracies of the 10 runs are show in
table 2. The overall accuracy 0.799 is better than
that on the test data.

Fold 1 2 3 4 5
Accuracy | 0.802 | 0.795 | 0.81 | 0.791 | 0.79

Fold 6 7 8 9 10
Accuracy | 0.805 | 0.789 |0.803 | 0.798 | 0.805

Table 2. Results of 10-fold cross validation on the train-
ing and development data.

To check how metadata features work, we did
another run HAUTCS-5, which uses only words as
features. This run got the same overall accuracy
0.756 on the old test data as HAUTCS-4 did,
which demonstrates that those metadata features
may not provide much useful information for na-
tive language identification.

5 Conclusion and Future Work

In this paper, we report our system for the
NLI2013 shared task, which automatically detect-
ing the native language of a foreign English learner
from her/his writing sample. The system was built
on a machine learning framework with traditional
features including words, word n-grams, character
n-grams, and writing styles. Character n-grams are
simple but quite effective.

We plan to explore syntactic features in the fu-
ture, and other machine learning algorithms, e.g.
ECOC (Li and Vogel, 2010), also deserve further
experiments. As we discussed in section 4, we are
also interested in designing a framework to use
different features for different categories.
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Abstract

Our submission for this NLI shared task used
for the most part standard features found in re-
cent work. Our focus was instead on two other
aspects of our system: at a high level, on pos-
sible ways of constructing ensembles of multi-
ple classifiers; and at a low level, on the gran-
ularity of part-of-speech tags used as features.
We found that the choice of ensemble com-
bination method did not lead to much differ-
ence in results, although exploiting the vary-
ing behaviours of linear versus logistic regres-
sion SVM classifiers could be promising in fu-
ture work; but part-of-speech tagsets showed
noticeable differences.

We also note that the overall architecture, with
its feature set and ensemble approach, had an
accuracy of 83.1% on the test set when trained
on both the training data and development data
supplied, close to the best result of the task.
This suggests that basically throwing together
all the features of previous work will achieve
roughly the state of the art.

1 Introduction

Among the efflorescence of work on Native Lan-
guage Identification (NLI) noted by the shared task
organisers, there are two trends in recent work in
particular that we considered in building our sub-
mission. The first is the proposal and use of new
features that might have relevance to NLI: for exam-
ple, Wong and Dras (2011), motivated by the Con-
trastive Analysis Hypothesis (Lado, 1957) from the
field of Second Language Acquisition, introduced
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syntactic structure as a feature; Swanson and Char-
niak (2012) introduced more complex Tree Substi-
tution (TSG) structures, learned by Bayesian infer-
ence; and Bykh and Meurers (2012) used recurring
n-grams, inspired by the variation n-gram approach
to corpus error annotation detection (Dickinson and
Meurers, 2003). Starting from the features intro-
duced in these papers and others, then, other recent
papers have compiled a comprehensive collection of
features based on the earlier work — Tetreault et
al. (2012) is an example, combining and analysing
most of the features used in previous work. Given
the timeframe of the shared task, there seemed to be
not much mileage in trying new features that were
likely to be more peripheral to the task.

A second trend, most apparent in 2012, was the
examination of other corpora besides the Interna-
tional Corpus of Learner English used in earlier
work, and in particular the use of cross-corpus evalu-
ation (Brooke and Hirst, 2012; Tetreault et al., 2012)
to avoid topic bias in determining native language.
Possible topic bias had been a reason for avoiding
a full range of n-grams, in particular those contain-
ing content words (Koppel et al., 2009); the devel-
opment of new corpora and the analysis of the effect
of topic bias mitigated this. The consequent use of a
full range of n-grams further reinforced the view that
novel features were unlikely to be a major source of
interesting results.

We therefore concentrated on two areas: the use
of classifier ensembles, and the choice of part-of-
speech tags. With classifier ensembles, Tetreault
et al. (2012) noted that these were highly useful in
their system; but while that paper had extensive fea-
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ture descriptions, it did not discuss in detail the ap-
proach to its ensembles. We therefore decided to
examine a range of possible ensemble architectures.
With part-of-speech tags, most work has used the
Penn Treebank tagset, including those based on syn-
tactic structure. Kochmar (2011) on the other hand
used the CLAWS tagset,! which is much richer and
more oriented to linguistic analysis than the Penn
Treebank one. Given the much larger size of the
TOEFLI11 corpus used for this shared task than the
corpora used for much earlier work, data sparsity
could be less of an issue, and the tagset a viable one
for future work.

The description of our submission is therefore in
three parts. In §2 we present the system description,
with a focus on the ensemble architectures we inves-
tigated; in §3 we list the features we used, which are
basically those of much of the previous work; in §4
we present results of some of the variants we tried,
particularly with respect to ensembles and tagsets;
and in §5 we discuss some of the interesting charac-
teristics of the data we noted during the shared task.

2 System Design

Our overall approach in terms of features and clas-
sifiers used is a fairly standard one. One difference
from most approaches, but inspired by Tetreault et
al. (2012), is that we train multiple classifiers over
subsets of the features, over different feature rep-
resentations, and over different regularisation ap-
proaches; we then combine them in ensembles (Di-
etterich, 2000).

2.1 SVM Ensemble Construction

To construct our ensemble, we train individual clas-
sifiers on a single feature type (e.g. PoS n-grams),
using a specific feature value representation and
classifier. We utilise a parallel ensemble structure
where the classifiers are run on the input texts in-
dependently and their results are then fused into the
final output using a combiner.

Additionally, we also experiment with bagging
(bootstrap aggregating), a commonly used method
for ensemble generation (Breiman, 1996) to gener-
ate multiple ensembles per feature type.

'http://ucrel.lancs.ac.uk/claws/
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For our classifier, we use SVMs, specifically the
LIBLINEAR SVM software package (Fan et al.,
2008),2 which is well-suited to text classification
tasks with large numbers of features and large num-
bers of documents. LIBLINEAR provides both lo-
gistic regression and linear SVMs; we experiment
with both. In general, the linear classifier performs
better, but it only provides the decision output. The
logistic regression classifier on the other hand gives
probability estimates, which are required by most
of our combination methods (§2.3). We therefore
mostly use the logistic regression classifiers.

2.2 L1- and L2-regularized SVM Classifiers

In our preliminary experiments we noted that
some feature types performed better with L1-
regularization and others with L2. In this work we
generate classifiers using both methods and evaluate
their individual and combined performance.

2.3 Classifier Combination Methods

We experiment with the following decision combi-
nation methods, which have been discussed in the
machine learning literature. Polikar (2006) provides
an exposition of these rules and methods.

Plurality vote: Each classifier votes for a single
class label, the label with the highest number of
votes wins. Ties are broken arbitrarily.

Sum: All probability estimates are added together
and the label with the highest sum is picked.

Average: The mean of all scores for each class
is calculated and the label with the highest average
probability is chosen.

Median: Each label’s estimates are sorted and the
median value is selected as the final score for that
label. The label with the highest value is picked.

Product: For each class label, all of the probabil-
ity estimates are multiplied together to create the la-
bel’s final estimate. The label with the highest esti-
mate is selected. A single low score can have a big
effect on the outcome.

Highest Confidence: In this simple method, the
class label that receives the vote with the largest de-
gree of confidence is selected as the final output.

ZAvailable at http://www.csie.ntu.edu.tw/
~cjlin/liblinear/



Borda Count: The confidence estimates are con-
verted to ranks and the final label selected using the
Borda count algorithm (Ho et al., 1994). In this
combination approach, broadly speaking points are
assigned to ranks, and these tallied for the overall
weight.

With the exception of the plurality vote, all of
these can be weighted. In our ensembles we also ex-
periment with weighting the output of each classifier
using its individual accuracy on the training data as
an indication of our degree of confidence in it.

2.4 Feature Representation

Most NLI studies have used two types of feature rep-
resentations: binary (presence or absence of a fea-
ture in a text) and normalized frequencies. Although
binary feature values have been used in some stud-
ies (e.g. Wong and Dras (2011)), most have used
frequency-based values.

In the course of our experiments we have ob-
served that the effect of the feature representation
varies with the feature type, size of the feature space
and the learning algorithm itself. In our current sys-
tem, then, we generate two classifiers for each fea-
ture type, one trained with frequency-based values
(raw counts scaled using the L.2-norm) and the other
with binary. Our experiments assess both their indi-
vidual and joint performance.

2.5 Proficiency-level Based Classification

To utilise the proficiency level information provided
in the TOEFL11 corpus (texts are marked as either
low, medium or high proficiency), we also investi-
gate classifiers that are trained using only texts from
specific proficiencies.

Tetreault et al. (2012) established that the classi-
fication accuracy of their system varied across pro-
ficiency levels, with high proficiency texts being the
hardest to classify. This is most likely due to the fact
that writers at differing skill levels commit distinct
types of errors at different rates (Ortega, 2009, for
example). If learners of different backgrounds com-
mit these errors with different distributions, these
patterns could be used by a learner to further im-
prove classification accuracy. We will use these fea-
tures in one of our experiments to investigate the
effectiveness of such proficiency-level based classi-
fiers for NLIL
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3 Features

We roughly divide out feature types into lexical,
part-of-speech and syntactic. In all of the feature
types below, we perform no feature selection.

3.1 Lexical Features

As all previous work, we use function words as fea-
tures. In addition, given the attempts to control for
topic bias in the TOEFL11 corpus, we also make
use of various lexical features which have been pre-
viously avoided by researchers due to the reported
topic bias (Brooke and Hirst, 2011) in other NLI cor-
pora such as the ICLE corpus.

Function Words In contrast to content words,
function words do not have any meaning themselves,
but rather can be seen as indicating the grammat-
ical relations between other words. Examples in-
clude articles, determiners, conjunctions and auxil-
iary verbs. They have been widely used in studies of
authorship attribution as well as NLI and established
to be informative for these tasks. We use the list
of 398 common English function words from Wong
and Dras (2011). We also tested smaller sets, but ob-
served that the larger sets achieve higher accuracy.

Function Word n-grams We devised and tested a
new feature that attempts to capture patterns of func-
tion word use at the sentence level. We define func-
tion word n-grams as a type of word n-gram where
content words are skipped: they are thus a specific
subtype of skip-gram discussed by Guthrie et al.
(2006). For example, the sentence We should all
start taking the bus would be reduced to we should
all the, from which we would extract the n-grams.

Character n-grams Tsur and Rappoport (2007)
demonstrated that character n-grams are a useful
feature for NLI. These n-grams can be considered
as a sub-word feature and their effectiveness is hy-
pothesized to be a result of phoneme transfer from
the writer’s L1. They can also capture orthographic
conventions of a language. Accordingly, we limit
our n-grams to a maximum size of 3 as longer se-
quences would correspond to short words and not
phonemes or syllables.

Word n-grams There has been a shift towards the
use of word-based features in several recent studies
(Brooke and Hirst, 2012; Bykh and Meurers, 2012;



Tetreault et al., 2012), with new corpora come into
use for NLI and researchers exploring and address-
ing the issues relating to topic bias that previously
prevented their use. Lexical choice is considered to
be a prime feature for studying language transfer ef-
fects, and researchers have found word n-grams to
be one of the strongest features for NLI. Tetreault
et al. (2012) expanded on this by integrating 5-gram
language models into their system. While we did not
replicate this, we made use of word trigrams.

3.2 POS n-grams

Most studies have found that POS tag n-grams are
a very useful feature for NLI (Koppel et al., 2005;
Bykh and Meurers, 2012, for example). The tagset
provided by the Penn TreeBank is the most widely
used in these experiments, with tagging performed
by the Stanford Tagger (Toutanova et al., 2003).

We investigate the effect of tagset granularity
on classification accuracy by comparing the clas-
sification accuracy of texts tagged with the PTB
tagset against those annotated by the RASP Tagger
(Briscoe et al., 2006). The PTB POS tagset contains
36 unique tags, while the RASP system uses a subset
of the CLAWS?2 tagset, consisting of 150 tags.

This is a significant size difference and we hy-
pothesize that a larger tagset could provide richer
levels of syntactically meaningful info which is
more fine-grained in distinction between syntactic
categories and contains more morpho-syntactic in-
formation such as gender, number, person, case
and tense. For example, while the PTB tagset
has four tags for pronouns (PRP, PRPS$, WP,
WP $), the CLAWS tagset provides over 20 pronoun
tags (PPHO1, PPIS1, PPX2, PPY, etc.) dis-
tinguishing between person, number and grammati-
cal role. Consequently, these tags could help better
capture error patterns to be used for classification.

3.3 Syntactic Features

Adaptor grammar collocations Drawing on
Wong et al. (2012), we also utilise an adaptor gram-
mar to discover arbitrary lengths of n-gram collo-
cations for the TOEFL11 corpus. We explore both
the pure part-of-speech (POS) n-grams as well as
the more promising mixtures of POS and function
words. Following a similar experimental setup as
per Wong et al. (2012), we derive two adaptor gram-
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mars where each is associated with a different set of
vocabulary: either pure POS or the mixture of POS
and function words. We use the grammar proposed
by Johnson (2010) for capturing topical collocations
as presented below:

Sentence — Doc; jel....m
Docj — _j jel....om
Doc; — Doc; Topic; 1€1,...,1;
jel,....m
Topic; — Words 1€1,...,t
Words — Word
Words — Words Word
Word — w w € Vpos;
w e V}oos—&-fw

As per Wong et al. (2012), V.5 contains 119
distinct POS tags based on the Brown tagset and
Vpos+fw 18 extended with 398 function words used
in Wong and Dras (2011). The number of topics ¢
is set to 50 (instead of 25 as per Wong et al. (2012))
given that the TOEFL corpus is larger than the ICLE
corpus. The inference algorithm for the adaptor
grammars are based on the Markov Chain Monte
Carlo technique made available by Johnson (2010).

Tree Subtitution Grammar fragments In rela-
tion to the context-free grammar (CFG) rules ex-
plored in the previous NLI work of Wong and Dras
(2011), Tree Substitution Grammar (TSG) frag-
ments have been proposed by Swanson and Char-
niak (2012) as another form of syntactic features
for NLI classification tasks. Here, as an approxi-
mation to deploying the Bayesian approach to in-
duce a TSG (Post and Gildea, 2009; Swanson and
Charniak, 2012), we first parse each of the essays in
the TOEFL training corpus with the Stanford Parser
(version 2.0.4) (Klein and Manning, 2003) to obtain
the parse trees. We then extract the TSG fragments
from the parse trees using the TSG system made
available by Post and Gildea (2009).4

Stanford dependencies In Tetreault et al. (2012),
Stanford dependencies were investigated as yet an-
other form of syntactic features. We follow a
similar approach: for each essay in the train-
ing corpus, we extract all the basic (rather than

‘http://web.science.mg.edu.au/~mjohnson/
Software.htm
*https://github.com/mjpost/dptsg



the collapsed) dependencies returned by the Stan-
ford Parser (de Marneffe et al., 2006). Simi-
larly, we generate all the variations for each of
the dependencies (grammatical relations) by sub-
stituting each lemma with its corresponding PoS
tag.  For instance, a grammatical relation of
det (knowledge, the) yields the following
variations: det (NN, the), det (knowledge,
DT), and det (NN, DT).

4 Experiments and Results

We report our results using 10-fold cross-validation
on the combined training and development sets, as
well as by training a model using the training and
development data and running it on the test set.

We note that for our submission, we trained only
on the training data; the results here thus differ from
the official ones.

4.1 Individual Feature Results and Analysis

We ran the classifiers generated for each feature type
to assess their performance. The results are summa-
rized in Table 1: the Train + Dev Set results were for
the system when trained on the training and develop-
ment data with 10 fold cross-validation, and the Test
Set results for the system trained on the training and
development data combined.

Character n-grams are an informative feature and
our results are very similar to those reported by pre-
vious researchers (Tsur and Rappoport, 2007). In
particular, it should be noted that the use of punc-
tuation is a very powerful feature for distinguishing
languages. Romance language speakers were most
likely to use more punctuation symbols (colons,
semicolons, ellipsis, parenthesis, etc.) and at higher
rates. Chinese, Japanese and Korean speakers were
far less likely to use punctuation.

The performance for word n-grams, TSG frag-
ments and Stanford Dependencies is very strong and
comparable to previously reported research. For the
adaptor grammar n-grams, the mixed POS/function
word version yielded best results and was included
in the ensemble.

4.2 POS-based Classification and Tagset Size

To compare the tagsets we trained individual classi-
fiers for n-grams of size 1-4 using both tagsets and
tested them. The results are shown in Table 2 and
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Feature Train + | Test Set

Dev Set
Chance Baseline 9.1 9.1
Character unigram 33.99 34.70
Character bigram 51.64 49.80
Character trigram 66.43 66.70
RASP POS unigram 43.76 45.10
RASP POS bigram 58.93 61.60
RASP POS trigram 59.39 62.70
Function word unigram 51.38 54.00
Function word bigram 59.73 63.00
Word unigram 74.61 75.50
Word bigram 74.46 76.00
Word trigram 63.60 65.00
TSG Fragments 72.16 72.70
Stanford Dependencies 73.78 75.90
Adaptor Grammar 69.76 70.00
POS/FW n-grams

Table 1: Classification results for our individual features.

N | PTB | RASP
1 | 34.03 | 43.76
2 | 48.85 | 58.93
3 | 51.06 | 59.39
4 |49.85 | 52.81

Table 2: Classification accuracy results for POS n-grams
of size N using both the PTB and RASP tagset. The larger
RASP tagset performed significantly better for all N.

N | Accuracy
1 51.38
2 59.73
3 52.14

Table 3: Classification results for Function Word n-grams
of size N. Our proposed Function Word bigram and tri-
gram features outperform the commonly used unigrams.



Ensemble Train + | Test Set
Dev Set
Complete Ensemble 81.50 81.60
Only binary values 82.46 83.10
Only freq values 65.28 67.20
L1-regularized solver only 80.33 81.10
L2-regularized solver only 81.42 81.10
Bin, L1-regularized only 81.57 82.00
Bin, L2-regularized only 82.00 82.50

Table 4: Classification results for our ensembles, best re-
sult in column in bold (binary values with L1- and L2-
regularized solvers).

show that the RASP tagged data provided better per-
formance in all cases. While it is possible that these
differences could be attributed to other factors such
as tagging accuracy, we do not believe this to be the
case as the Stanford Tagger is known for its high ac-
curacy (97%). These differences are quite clear; this
finding also has implications for other syntactic fea-
tures that make use of POS tags, such as Adaptor
Grammars, Stanford Dependencies and Tree Substi-
tution Grammars.

4.3 Function Word n-grams

The classification results using our proposed Func-
tion Word n-gram feature are shown in Table 3.
They show that function word skip-grams are more
informative than the simple function word counts
that have been previously used.

4.4 Ensemble Results

Table 4 shows the results from our ensembles. The
feature types included in the ensemble are those
whose results are listed individually in Table 1. (So,
for example, we only use the RASP-tagged PoS n-
grams, not the Penn Treebank ones.) The complete
ensemble consists of four classifiers per feature type:
L1-/L2-regularized versions with both binary and
freq. values.

Bagging Our experiments with bagging did not
find any improvements in accuracy, even with larger
numbers of bootstrap samples (50 or more). Bag-
ging is said to be more suitable for unstable clas-
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sifiers which have greater variability in their perfor-
mance and are more susceptible to noise in the train-
ing data (Breiman, 1996). In our experiments with
individual feature types we have found the classi-
fiers to be quite stable in their performance, across
different folds and training set sizes. This is one po-
tential reason why bagging did not yield significant
improvements.

Combiner Methods Of the methods outlined in
§2.3 we found the sum and weighted sum combiners
to be the best performing, but the weighted results
did not improve accuracy in general over their un-
weighted counterparts. Our results are reported us-
ing the unweighted sum combiner. A detailed com-
parison of the results for the combiners has been
omitted here due to time constraints; the differences
across all combination methods was roughly 1-2%.
Any new approach to ensemble combination meth-
ods would consequently want to be radically differ-
ent to expect a notable improvement in performance.

As noted at the start of this section, results here
are for the system trained on training and develop-
ment data. The best result on the test set (83.1%)
is almost 4% higher than our submission result, and
close to the highest result achieved (83.6%).

Binary & Frequency-Based Feature Values Our
results are consistent with those of Brooke and Hirst
(2012), who conclude that there is a preference
for binary feature values instead of frequency-based
ones. Including both types in the ensemble did not
improve results.

However, in other experiments on the TOEFL11
corpus we have also observed that use of frequency
information often leads to significantly better results
when using a linear SVM classifier: in fact, the lin-
ear classifier is better on all frequency feature types,
and also on some of the binary feature types. We
present results in Table 5 comparing the two. An ap-
proach using the linear SVM that provides an asso-
ciated probability score — perhaps through bagging
— allowing it to be combined with the methods de-
scribed in §2.3 could then perhaps boost results. All
these results were from a system using the training
data with 10 fold cross-validation.

Combining Regularisation Approaches Results
show that combining the L1- and L2-regularized
classifiers in the ensemble provided a small in-



Feature L2-norm scaled counts Binary

linear | log. regr. linear | log. regr.
Char unigram 31.60 26.23 25.68 26.36
Char bigram 51.59 41.81 41.20 45.11
Char trigram 65.78 54.97 58.30 61.76
RASP POS bigram 60.38 54.00 50.31 54.56
RASP POS trigram 58.75 53.92 55.93 58.58
Function word unigram 51.38 45.09 46.67 47.13
Function word bigram 58.95 53.22 54.97 58.53
Word unigram 70.33 55.60 69.40 72.00
Word bigram 73.90 54.25 73.65 74.93
Word trigram 63.78 52.46 64.78 64.94

Table 5: Classification results for our individual features.

crease in accuracy. Ensembles with either the L1 or
L2-regularized solver have lower accuracy than the
combined methods (row 2).

4.5 Proficiency-level Based Classification

Table 6 shows our results for training models with
texts of a given proficiency level and the accuracy on
the test set. The numbers show that in general texts
should be classified with a learner trained with texts
of a similar proficiency. They also show that not all
texts in a proficiency level are of uniform quality as
some levels perform better with data from the clos-
est neighbouring levels (e.g. Medium texts perform
best with data from all proficiencies), suggesting
that the three levels form a larger proficiency con-
tinuum where users may fall in the higher or lower
ends of a level. A larger scale with more than three
levels could help address this.

5 Discussion

5.1 Unused Experimental Features

We also experimented with some other feature types
that were not included in the final system.

CCG SuperTag n-grams In order to introduce
additional rich syntactic information into our sys-
tem, we investigated the use CCG SuperTags as fea-
ture for NLI classification. We used the C&C CCG
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Train | Test | Acc. || Train | Test | Acc.
Low Low | 52.2 || All Med | 86.8
Med Low | 72.1 || M+H | Med | 85.3
High | Low | 403 || L+M | Med | 83.8
All Low | 75.2 || Low High | 16.1
L+M | Low | 76.0 || Med High | 68.1
Low Med | 40.7 || High High | 65.7
Med Med | 83.6 || M+ H | High | 74.7
High | Med | 62.1 || All High | 75.2

Table 6: Results for classifying the test set documents
using classifiers trained with a specific proficiency level.
Each level’s best result in bold.

Parser and SuperTagger (Curran et al., 2007) to ex-
tract SuperTag n-grams from the corpus, which were
then used as features to construct classifiers. The
best results were achieved by using n-grams of size
2-4, which achieved classification rates of around
44%. However, adding these features to our ensem-
ble did not improve the overall system accuracy. We
believe that this is because when coupled with the
other syntactic features in the system, the informa-
tion provided by the SuperTags is redundant, and
thus they were excluded from our final ensemble.

Hapax Legomena and Dis Legomena The spe-
cial word categories Hapax Legomena and Dis
legomena refer to words that appear only once and



twice, respectively, in a complete text. In practice,
these features are a subset of our Word Unigram
feature, where Hapax Legomena correspond to un-
igrams with an occurrence count of 1 and Hapax dis
legomena are unigrams with a count of 2.

In our experimental results we found that Ha-
pax Legomena alone provides an accuracy of 61%.
Combining the two features together yields an accu-
racy of 67%. This is an interesting finding as both
of these features alone provide an accuracy close to
the whole set of word unigrams.

5.2 Corpus Representativeness

We conducted a brief analysis of our extracted fea-
tures, looking at the most predictive ones according
to their Information Gain. Although we did not find
any obvious indicators of topic bias, we noted some
other issues of potential concern.

Chinese, Japanese and Korean speakers make ex-
cessive use of phrases such as However, First of all
and Secondly. At first glance, the usage rate of these
phrases seems unnaturally high (more than 50% of
Korean texts had a sentence beginning with How-
ever). This could perhaps be a cohort effect relat-
ing to those individually attempting this particular
TOEFL exam, rather than an L1 effect: it would
be useful to know how much variability there is in
terms of where candidates come from.

It was also noticed that many writers mention the
name of their country in their texts, and this could
potentially create a high correlation between those
words and the language class label, leading perhaps
to an artificial boosting of results. For example, the
words India, Turkey, Japan, Korea and Germany ap-
pear with high frequency in the texts of their corre-
sponding L1 speakers — hundreds of times, in fact,
in contrast to frequencies in the single figures for
speakers of other L1s. These might also be an arte-
fact of the type of text, rather than related to the L1
as such.

5.3 Hindi vs. Telugu

We single out here this language pair because of
the high level of confusion between the two classes.
Looking at the results obtained by other teams, we
observe that this language pair provided the worst
classification accuracy for almost all teams. No
system was able to achieve an accuracy of 80%
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for Hindi (something many achieved for other lan-
guages). In analysing the actual and predicted
classes for all documents classified as Hindi and
Telugu by our system, we find that generally all
of the actual Hindi and Telugu texts (96% and
99%, respectively) are within the set. Our classifier
is clearly having difficulty discriminating between
these two specific classes.

Given this, we posit that the confounding influ-
ence may have more to do with the particular style
of English that is spoken and taught within the
country, rather than the specific L1 itself. Consult-
ing other research about SLA differences in multi-
lingual countries could shed further light on this.

Analysing highly informative features provides
some clues about the influence of a common cul-
ture or national identity: in our classifier, the words
India, Indian and Hindu were highly predictive of
both Hindi and Telugu texts, but no other lan-
guages. In addition, there were terms that were
not geographically- or culturally-specific that were
strongly associated with both Hindi and Telugu:
these included hence, thus, and efc, and a much
higher rate of use of male pronouns. It has been
observed in a number of places (Sanyal, 2007, for
example) that the English spoken across India still
retains characteristics of the English that was spo-
ken during the time of the Raj and the East India
Company that have disappeared from other varities
of English, so that it can sound more formal to other
speakers, or retain traces of an archaic business cor-
respondence style; the features just noted would fit
that pattern. The effect is likely to occur regardless
of the L1.

Looking at individual language pairs in this way
could lead to incremental improvement in the overall
classification accuracy of NLI systems.
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Abstract

This paper describes the Nara Institute of
Science and Technology (NAIST) native lan-
guage identification (NLI) system in the NLI
2013 Shared Task. We apply feature selec-
tion using a measure based on frequency for
the closed track and try Capping and Sampling
data methods for the open tracks. Our system
ranked ninth in the closed track, third in open
track 1 and fourth in open track 2.

1 Introduction

There have been many studies using English as a
second language (ESL) learner corpora. For exam-
ple, automatic grammatical error detection and cor-
rection is one of the most active research areas in this
field. More recently, attention has been paid to na-
tive language identification (NLI) (Brooke and Hirst,
2012; Bykh and Meurers, 2012; Brooke and Hirst,
2011; Wong and Dras, 2011; Wong et al., 2011).
Native language identification is the task of identi-
fying the ESL learner’s L1 given a learner’s essay.

The NLI Shared Task 2013 (Tetreault et al., 2013)
is the first shared task on NLI using the com-
mon dataset “TOEFL-11" (Blanchard et al., 2013;
Tetreault et al., 2012). TOEFL-11 consists of essays
written by learners of 11 native languages (Arabic,
Chinese, French, German, Hindi, Italian, Japanese,
Koran, Spanish, Telugu, Turkish), and it contains
1,100 essays for each native language. In addition,
the essay topics are balanced, and the number of top-
ics is 8.

In the closed track, we tackle feature selection
for increasing accuracy. We use a feature selection
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method based on the frequency of each feature (e.g.,
document frequency, TF-IDF).

In the open tracks, to address the problem of im-
balanced data, we tried two approaches: Capping
and Sampling data in order to balance the size of
training data.

In this paper, we describe our system and exper-
imental results. Section 2 describes the features we
used in the system for NLI. Section 3 and Section 4
describe the systems for closed track and open track
in NLI Shared Task 2013. Section 5 describes the re-
sults for NLI Shared Task 2013. Section 6 describes
the experimental result for 10-fold cross validation
on the data set used by Tetreault et al. (2012).

2 Features used in all tracks

In this section, we describe the features in our sys-
tems. We formulate NLI as a multiclass classifica-
tion task. Following previous work, we use LIB-
LINEAR ? for the classification tool and tune the C
parameter using grid-search.

We select the features based on previous work
(Brooke and Hirst, 2012; Tetreault et al., 2012). All
features used are binary. We treated the features as
shown in Table 1. The example of features in Table
1 shows the case whose input is “I think not a really
difficult question”.

We use a special symbol for the beginning and
end of sentence (or word) for bigrams and trigrams.
For surface forms, we lowercased all words. POS,
POS-function and dependency features are extracted

"http://www.lextek.com/manuals/onix/stopwords 1.html
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 134-139,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



’ Name \ Description Example
Word N-gram (N=1,2) Surface form of the word. =1 | i, think, not
N=2 | BOS i, i think
POS N-gram (N=2,3) POS tags of the word. N=2 | BOS PRP, PRP VBP
N=3 | BOS PRP VBP, PRP VBP RB
Character N-gram (N=2,3) N=2 | “t, th,hi, in, nk, k$
N=3 | “th,thi
POS-function N-gram (N=2,3) | We use surface form for words in stop | N=2 | RB difficult, difficult NN

word list !, otherwise we use POS form.

Z
11
w

RB difficult NN

Dependency

surface

the surface and relation name
the surface and the dependend token’s

the surface, relation name and the de-
pendend token’s surface

(i, nsubj)
(think, 1)

(nsubyj, i, think)

Tree substitution grammer Fragments of TSG

(PRP_UNK-INITC-

KNOWNLC)  (VB._think)
(NP_RB_DT_ADJP_NN)
(J_UNK-LC)

Table 1: All features for native language identification.

using the Stanford Parser 2.0.2 3.

We use tree substitution grammars as fea-
tures. TSGs are generalized context-free grammars
(CFGs) that allow nonterminals to re-write to tree
fragments. The fragments reflect both syntactic and
surface structures of a given sentence more effi-
ciently than using several CFG rules. In practice,
efficient Bayesian approaches have been proposed
in prior work (Post and Gildea, 2009). In terms
of the application of TSG to NLI task, (Swanson
and Charniak, 2012) have shown a promising re-
sult. Post (2011) also uses TSG to judge grammat-
icality of a sentence written by language learners.
With these previous findings in mind, we also ex-
tract TSG rules. We use the training settings and
public software from Post (2011)*, obtaining 21,020
unique TSG fragments from the training dataset of
the TOEFL-11 corpus.

3 Closed Track

In this section, we describe our system for the closed
track. We use the tools and features described in
Section 2.

In our system, feature selection is performed us-
ing a measure based on frequency. Although Tsur

3http://nlp.stanford.edu/software/lex-parser.shtml
“https://github.com/mjpost/post201 1judging
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and Rappoport (2007) used TF-IDF, they use it to
decrease the influence of topic bias rather than for
increasing accuracy. Brooke and Hirst (2012) used
document frequency for feature selection, however
it does not affect accuracy.

We use the native language frequency (hereafter
we refer to this as NLF). NLF is the number of na-
tive languages a feature appears in. Thus, NLF takes
values from 1 to 11. Figure 1 shows an example of
NLF. The word bigram feature “in Japan™ appears
only in essays of which the learners’ native language
is Japanese, therefore the NLF is 1.

The assumption behind using this feature is that a
feature which appears in all native languages affects
NLI less, while a feature which appears in few na-
tive language affects NLI more. The features whose
NLFs are 11 include e.g. “there are”, “PRP VBP”
and “a JJ NN”. Table 2 shows some examples of the
features appearing in only 1 native language in the
TOEFL-11 corpus. The features include place-name
or company name such as “tokyo”, “korea”, “sam-
sung”, which are certainly specific for some native
language.



Native Language
Chinese Japanese Korean
carry more this : NN samsung
i hus become of tokyo of korea
JJ whole and when i worked | debatable whether
striking conclusion usuful NN VBG whether
traffic tools oppotunity for in thesedays

Table 2: Example of feature appearing in 1 native language for Chinese, Japanese and Korean

Target feature: [ in Japan]  NLF=1
o No No Yes No

N;

Corpus of
native language

feature
appearance

Figure 1: Example of native language frequency

Native Language | # of articles
Japanese 258,320
Mandarin 48,364
Korean 31,188
Spanish 5,106
Italian 2,589
Arabic 1,549
French 1,168
German 832
Turkish 504
Hindi 223
Telugu 19
Table 3: Distribution of native languages in Lang-8

corpus
4 Open tracks

4.1 Lang-8 corpus

For the open tracks, we used Lang-8 as a source to
create a learner corpus tagged with the native lan-
guages of learners. Lang-8 is a language learning
social networking service. > Users write articles
in their non-native languages and native speakers
correct them. We used all English articles written
through the end of 2012. We removed all sentences
which contain non-ASCII characters. ¢

Almost all users register their native language on
the site. We regard users’ registered native language

Shttp://lang-8.com/
®Some users also add translation in their native languages
for correctors’ reference.
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as the gold label for each article. We split the learner
corpus extracted from Lang-8 into sub-corpora by
the native languages. The numbers of articles in all
corpora are summarized in Table 3. Unfortunately,
some sub-corpora are too small to train the model.
For example, the Telugu corpus has only 19 articles.

In order to balance the size of the training data,
we tried two approaches: Capping and Sampling.
We confirmed in preliminary experiments that the
model with these approaches work better than the
model with the original sized data.

Capping

In this approach, we limit the size of a sub-corpus
for training to IV articles. For a sub-corpus which
contains over N articles, we randomly extract ar-
ticles up to N. We set N = 5000 and adapt this
approach for Run 1 and Run 3 in the open tracks.

Sampling

In this approach, we equalize the size of all sub-
corpora. For corpora which contain less than N ar-
ticles, we randomly copy articles until their size be-
comes N. We set N = 5000 and adapt this approach
for Run 2 and Run 4 in the open tracks.

4.2 Models

We compared two approaches with baseline features
and all features.

The models in Run 1 and Run 3 were trained with
the data created by the Capping approach, and the
models in Run 2 and Run 4’ were trained by the
Sampling approach.

We used only word N-grams (/N = 1, 2) as base-
line features. As extra features we used the follow-
ing features.

"We did not have time to train the model for Run 4 in the
open 1 track.



* POS N-grams (N = 2, 3)
* dependency
e character N-grams (N = 2, 3)

In open track 2, we also add the TOEFL-11
dataset to the training data for all runs.

5 Result for NLI shared Task 2013

Table 4 shows the results of our systems for NLI
Shared Task. Chance accuracy is 0.09. All results
outperform random guessing.

5.1 Closed track

In the closed track, we submitted 5 runs. Run 1
is the system using only word 1,2-grams features.
Run 2 is the system using all features with NLF fea-
ture selection (1 < NLF < 11). Run 3 is the system
using word 1,2-grams and POS 2,3-grams features.
Run 4 is the system using word 1,2-grams, POS 2,3-
grams, character 2,3-grams and dependency features
without parameter tuning. Run 5 is the system us-
ing word 1,2-grams without parameter tuning. The
method using the feature selection method we pro-
posed achieved the best performance of our systems.

5.2 Open tracks

Comparison of the two data balancing
approaches

In open track 1, the method of “Sampling” out-
performs that of “Capping” (Run 2 > Run 1). This
means even duplicated training data can improve the
performance.

On the other hand, in open track 2, “Capping”
works better than “Sampling” (Run 1 > Run 2 and
Run 3 > Run 4). In the first place, the models trained
with both Lang-8 data and TOEFL data do not per-
form better than ones trained with only TOEFL data.
This means the less Lang-8 data we use, the better
performance we obtain.

Comparison on two feature sets

In open track 1, adding extra features seems to
have a bad influence because the result of Run 3
is worse than that of Run 1. This may be because
Lang-8 data is out of domain of the test corpus
(TOEFL).
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Closed Open 1 Open 2
Run | Accuracy | Accuracy | Accuracy
1 0.811 0.337 0.699
2 *0.817 0.356 0.661
3 0.808 0.285 0.703
4 0.771 - 0.665
5 0.783 - -

Table 4: Result for systems which submitted in NLI

2013 *We re-evaluated the Run2 because we submitted the
Runl with the same output as Run?2.

In open track 2, adding extra features makes the
performance better (Run 3 > Run 1, Run 4 > Run
2). In-domain TOEFL data seem to be effective for
training with extra features. In order to improve the
result with extra features in open track 2, domain
adaptation may be effective.

6 Experiment and Result for 10 fold
Cross-Validation

We conducted an experiment using 10-fold cross
validation on the data set used by Tetreault et al.
(2012). Table 5 shows the results for different fea-
ture set. The table consists of 3 blocks; the first
block is results of the system using 1 feature, the
second block is the result of the system using word
1,2-grams feature and another feature, and the third
block is the result of the system using word 1,2-
grams and more features.

In the first block results, the system using the
word 1,2-grams feature achieved 0.8075. It is the
highest accuracy in the first block, and third highest
accuracy in the results of Table 5. From the second
block of results, adding an extra feature does not im-
prove accuracy, however in the third block the sys-
tems in (14) and (15) outperform the system using
only word 1,2-grams.

Table 6 shows the results of using feature selec-
tion by NLF. The table consists of 3 blocks; the
first block is the results of the system using features
whose NLF is smaller than N (N =11, 10, 9, 8), the
second block is the results of the system using fea-
tures whose NLF is greater than N (N =1, 2, 3, 4),
and the third block is the results of the system using
features whose NLF is smaller than 11 and greater
than N (N =1, 2, 3, 4).

The best accuracy is achieved by excluding fea-



Feature Accuracy
(1) Word 1,2-gram 0.8075
) POS 2,3-gram 0.5555
3) POS,Function 2,3-gram 0.7080
4 Chracter 2,3-gram 0.6678
®) Dependency 0.7236
(6) | Tree substitution grammar 0.6455
7 1+2 0.7825
(8) 1+3 0.7913
) 1+4 0.7953
(10) 1+5 0.8020
(11) 1+6 0.7999
(12) 1+2+3 0.7849
(13) 1+2+3+4 0.8000
(14) 1+42+3+4+5 0.8097
(15) ALL 0.8088

Table 5: 10-fold cross validation results for each
feature

tures whose NLF is 1 or 11. While the results of the
first block and the second block are intuitive, the re-
sults of the third block are not (looking at the second
block of Table 6, excluding features whose NLF is
greater than N (1, 2, 3, 4) reduces accuracy). One
possible explanation is that features whose NLF is
1 includes features that rarely appear in the training
corpus.

7 Conclusion

In this paper, we described our systems for the NLI
Shared Task 2013. We tried feature selection using
native language frequency for the closed track and
Capping and the Sampling data to balance the size of
training data for the open tracks. The feature selec-
tion we proposed improves the performance for NLI.
The system using our feature selection achieved
0.817 on the test data of NLI Shared Task and 0.821
using 10-fold cross validation. While the Sampling
system outperformed Capping system for open track
1, the Capping system outperformed Sampling sys-
tem in open track 2 (because it reduced the amount
of out of domain data).
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Abstract

We apply Support Vector Machines to differ-
entiate between 11 native languages in the
2013 Native Language Identification Shared
Task. We expand a set of common language
identification features to include cognate inter-
ference and spelling mistakes. Our best results
are obtained with a classifier which includes
both the cognate and the misspelling features,
as well as word unigrams, word bigrams, char-
acter bigrams, and syntax production rules.

1 Introduction

As the world becomes more inter-connected, an in-
creasing number of people devote effort to learn-
ing one of the languages that are dominant in the
global community. English, in particular, is stud-
ied in many countries across the globe. The goal is
often related to increasing one’s chances to obtain
employment and succeed professionally. The lan-
guage of work-place communication is often not a
speaker’s native language (L.1) but their second lan-
guage (L2). Speakers and writers of the same L1
can sometimes be identified by similar L2 errors.
The weak Contrastive Analysis Hypothesis (Jarvis
and Crossley, 2012) suggests that these errors may
be a result of L1 causing linguistic interference; that
is, common tendencies of a speaker’s L1 are super-
imposed onto their L2. Native Language Identifi-
cation, or NLI, is an attempt to exploit these errors
in order to identify the L1 of the speaker from texts
written in L2.

Our group at the University of Alberta was unfa-
miliar with the NLI research prior to the announce-
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ment of a shared task (Tetreault et al., 2013). How-
ever, we saw it as an opportunity to apply our exper-
tise in character-level NLP to a new task. Our goal
was to propose novel features, and to combine them
with other features that have been previously shown
to work well for language identification.

In the end, we managed to define two feature sets
that are based on spelling errors made by L2 writers.
Cognate features relate a spelling mistake to cognate
interference with the writer’s L1. Misspelling fea-
tures identify common mistakes that may be indica-
tive of the writer’s L1. Both feature sets are meant
to exploit the Contrastive Analysis Hypothesis, and
benefit from the writer’s L1 influence on their L2
writing.

2 Related Work

Koppel et al. (2005b) approach the NLI task using
Support Vector Machines (SVMs). They experi-
ment with features such as function-word unigrams,
rare part-of-speech bigrams, character bigrams, and
spelling and syntax errors. They report 80% accu-
racy across 5 languages. We further investigate the
role of word unigrams and spelling errors in native
language identification. We consider not only func-
tion words, but also content words, as well as word
bigrams. We also process spell-checking errors with
a text aligner to find common spelling errors among
writers with the same L1.

Tsur and Rappoport (2007) also use SVMs on the
NLI task, but limit their feature set to character bi-
grams. They report 65% accuracy on 5 languages,
and hypothesize that the choice of words when writ-
ing in L2 is strongly affected by the phonology of
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their L1. We also consider character bigrams in our
feature set, but combine them with a number of other
features.

Wong and Dras (2011) opt for a maximum en-
tropy classifier, and focus more on syntax errors than
lexical errors. They find that syntax tree production
rules help their classifier in a seven language clas-
sification task. They only consider non-lexicalized
rules, and rules with function words. In contrast, we
consider both lexicalized and non-lexicalized pro-
duction rules, and we include content words.

Bergsma et al. (2012) consider the NLI task as a
sub-task of the authorship attribution task. They fo-
cus on the following three questions: (1) whether the
native language of the writer of a paper is English,
(2) what is the gender of the writer, and (3) whether
a paper is a conference or workshop paper. The au-
thors conclude that syntax aids the native language
classification task, further motivating our decision to
use part-of-speech n-grams and production rules as
features for our classifier. Furthermore, the authors
suggest normalizing text to reduce sparsity, and im-
plement several meta-features that they claim aid the
classification.

3 C(Classifier

Following Koppel et al. (2005b) and others, we
perform classification with SVMs. We chose the
SVM-Multiclass package, a version of the SVM-
light package(Joachims, 1999) specifically modified
for multi-class classification problems. We use a lin-
ear kernel, and two hyperparameters that were tuned
on the development set: the ¢ soft-margin regular-
ization parameter, which measures the tradeoff be-
tween training error and the size of the margin, and
€, which is used as a stopping criterion for the SVM.
C was tuned to a value of 5000, and epsilon to a
value of 0.1.

4 Features

As features for our SVM, we used a combination of
features common in the literature and new features
developed specifically for this task. The features are
listed in the following section.
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4.1 Word n-grams

Following previous work, we use word n-grams as
the primary feature set. We normalize the text before
selecting n-grams using the method of Bergsma et
al. (2012). In particular, all digits are replaced with
a representative *0’ character; for example, *22’ and
97’ are both represented as *00’. However, unlike
Koppel et al. (2005b), we incorporate word bigrams
in addition to word unigrams, and utilize both func-
tion words and content words.

4.1.1 Function Words

Using a list of 295 common function words, we
reduce each document to a vector of values repre-
senting their presence or absence in a document. All
other tokens in the document are ignored. When
constructing vectors of bigrams, any word that is not
on the list of function words is converted to a place-
holder token. Thus, most of our function-word bi-
grams consist of a single function word preceded or
followed by a placeholder token.

4.1.2 Content Words

Other than the normalization mentioned in Sec-
tion 4.1, all tokens in the documents are allowed as
possible word unigrams. No spelling correction is
used for reducing the number of word n-grams. Fur-
thermore, we consider all token unigrams that occur
in the training data, regardless of their frequency.

An early concern with token bigrams was that
they were both large in number, and sparse. In an
attempt to reduce the number of bigrams, we con-
ducted experiments on the development set with dif-
ferent numbers of bigrams that exhibited the highest
information gain. It was found that using all combi-
nations of word bigrams improved predictive accu-
racy the most, and did not lead to a significant cost
to the SVM. Thus, for experiments on the test set, all
token bigrams that were encountered in the training
set were used as features.

4.2 Character n-grams

Following Tetreault et al. (2012), we utilize all char-
acter bigrams that occur in the training data, rather
than only the most frequent ones. However, where
the literature uses either binary indicators or relative
frequency of bigrams as features, we use a modi-
fied form of the relative frequency in our classifier.



In a pre-processing step, we calculate the average
frequency of each character bigram across all train-
ing documents. Then, during feature extraction, we
again determine the relative frequency of each char-
acter bigram across documents. We then use bi-
nary features to indicate if the frequency of a bigram
is higher than the average frequency. Experiments
conducted on the development set showed that al-
though this modified frequency was out-performed
by the original relative frequency on its own, our
method performed better when further features were
incorporated into the classifier.

4.3 Part-of-speech n-grams

All documents are tagged with POS tags using the
Stanford parser (Klein and Manning, 2003), From
the documents in the training data, a list of all POS
bigrams was generated, and documents were repre-
sented by binary indicators of the presence or ab-
sence of a bigram in the document. As with char-
acter bigrams, we did not simply use the most com-
mon bigrams, but rather considered all bigrams that
appeared in the training data.

4.4 Syntax Production Rules

After generating syntactic parse trees with the Stan-
ford Parser. we extract all possible production rules
from each document, including lexicalized rules.
The features are binary; if a production rule occurs
in an essay, its value is set to 1, and O otherwise. For
each language, we use information gain for feature
selection to select the most informative production
rules as suggested by Wong and Dras (2011). Ex-
periments on the development set indicated that the
information gain is superior to raw frequency for the
purpose of syntax feature selection. Since the accu-
racy increased as we added more production rules,
the feature set for final testing includes all produc-
tion rules encountered in the training set. The ma-
jority of the rules are of the form POS = terminal.
We hypothesized that most of the information con-
tained in these rules may be already captured by the
word unigram features. However, experiments on
the development set suggested that the lexicalized
rules contain information that is not captured by the
unigrams, as they led to an increase in predictive ac-
curacy.
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4.5 Spelling Errors

Koppel et al. (2005a) suggested spelling errors
could be helpful as writers might be affected by
the spelling convention in their native languages.
Moreover, spelling errors also reflect the pronun-
ciation characteristics of the writers’ native lan-
guages. They identified 8 types of spelling errors
and collected the statistics of each error type as
their features. Unlike their approach, we focus on
the specific spelling errors made by the writers be-
cause 8 types may be insufficient to distinguish the
spelling characteristics of writers from 11 differ-
ent languages. We extract the spelling error fea-
tures from character-level alignments between the
misspelled word and the intended word. For ex-
ample, if the word abstract is identified as the in-
tended spelling of a misspelling abustruct, the char-
acter alignments are as follows:

a bu s t ru ct

a b s t ra ct

Only the alignments of the misspelled parts, i.e.
(bu,b) and (ru,ra) in this case, are used as fea-
tures. The spell-checker we use is aspell', and the
character-level alignments are generated by m2m-
aligner (Jiampojamarn et al., 2007).

4.6 Cognate Interference

Cognates are words that share their linguistic origin.
For example, English become and German bekom-
men have evolved from the same word in a com-
mon ancestor language. Other cognates are words
that have been transfered between languages; for ex-
ample, English system comes from the Greek word
ovoTnua via Latin and French. On average, pairs
of cognates exhibit higher orthographic similarity
than unrelated translation pairs (Kondrak, 2013).

Cognate interference may cause an L1-speaker
to use a cognate word instead of a correct English
translation (for example, become instead of ger).
Another instance of cognate interference is mis-
spelling of an English word under the influence of
the L1 spelling (Table 1).

We aim to detect cognate interference by identi-
fying the cases where the cognate word is closer to

"http://aspell.net



Misspelling Intended Cognate
developped developed developpé (Fre)
exemple example exemple (Fre)
organisation  organization  organisation (Ger)
conzentrated concentrated konzentrierte (Ger)
comercial commercial comercial (Spa)
sistem system sistema (Spa)

Table 1: Examples of cognate interference in the data.

the misspelling than to the intended word (Figure 1).
We define one feature to represent each language L,
for which we could find a downloadable bilingual
English-L dictionary. We use the following algo-
rithm:

1. For each misspelled English word m found in
a document, identify the most likely intended
word e using a spell-checking program.

2. For each language L:

(a) Look up the translation f of the intended
word e in language L.

(b) Compute the orthographic edit distance D
between the words.

(c) If D(e, f) < t then f is assumed to be a
cognate of e.

(d) If f is a cognate and D(m, f) < D(e, f)
then we consider it as a clue that L = L1.

We use a simple method of computing ortho-
graphic distance with threshold ¢ = 0.58 defined
as the baseline method by Bergsma and Kondrak
(2007). However, more accurate methods of cog-
nate identification discussed in that paper could also
be used.

Misspellings can betray cognate interference even
if the misspelled word has no direct cognate in
language L1. For example, a Spanish speaker
might spell the word quick as cuick because of
the existence of numerous cognates such as ques-
tion/cuestion. Our misspelling features can detect
such phenomena at the character level; in this case,
qu:cu corresponds to an individual misspelling fea-
ture.

4.7 Meta-features

We included a number of document-specific meta-
features as suggested by Bergsma et al. (2012): the
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konzentrierte
concentrated + **
Figure 1: A cognate word influencing the spelling.

average number of words per sentence, the average
word length, as well as the total number of char-
acters, words, and sentences in a document. We
reasoned that writers from certain linguistic back-
grounds may prefer many short sentences, while
other writers may prefer fewer but longer sentences.
Similarly, a particular linguistic background may in-
fluence the preference for shorter or longer words.

5 Results

The dataset used for experiments was the TOEFL11
Non-Native English Corpus (Blanchard et al., 2013).
The dataset was split into three smaller datasets: the
Training set, consisting of 9900 essays evenly dis-
tributed across 9 languages, the Development set,
which contained a further 1100 essays, and the Test
set, which also contained 1100 essays. As the data
had a staggered release, we used the data differently.
We further split the Training set, with a split of 80%
for training, and 10% for development and testing.
We then used the Development set as a held-out test
set. For held-out testing, the classifier was trained on
all data in the Training set, and for final testing, the
classifier was trained on all data in both the Training
and Development sets.

We used four different combinations of features
for our task submissions. The results are shown in
Table 2. We include the following accuracy values:
(1) the results that we obtained on the Development
set before the Test data release, (2) the official Test
set results provided by the organizers (Tetreault et
al., 2013), (3) the actual Test set results, and (4) the
mean cross-validation results (for submissions 1 and
3). The difference between the official and the ac-
tual Test set results is attributed to two mistakes in
our submissions. In submission 1, the feature lists
used for training and testing did not match. In sub-
missions 3 and 4, only non-lexicalized syntax pro-
duction rules were used, whereas our intention was
to use all of them.



No. Features Dev Org Test CV A C F GH I J K S T Tu
1 Base 82.0 612 804 582 ARA 83 0 0 0 2 2 2 1 4 5 1
2 —cont. words 674 68.7 68.7 - CHI 1 8 2 0 1 0 8 6 1 0 O
3 + char 81.4 803 81.7 58.5 FRE 6 0 8 2 1 3 0 O 1 0 5
4  +char+meta 81.2 80.0 80.8 — GER 1 0 0 9 1 1 1 0 2 0 4

HN 1 2 2 0 76 1 0 0 0 16 2

Table 2: Accuracy of our submissions. ITA- 1. 1. 0 1 08 1 0 5 1 1

JPN 2 1 1 1 O 1 8 6 0 0 2

KOR 1 8 0 0 O O 11 78 0 1 1

All four submissions used the following base SPA 2 2 7 0 3 5 0 2 75 0 4
combination of features: TEL 2 0 0 2 15 0 0 O 1 8 O
TUR 4 3 2 1 0 1 1 5 2 2 79

e word unigrams

e word bigrams

e error alignments

e syntax production rules

e word-level cognate interference features

In addition, submission 3 includes character bi-
grams, while submission 4 includes both character
bigrams and meta-features. In submission 2, only
function words are used, with the exclusion of con-
tent words.

Our best submission, which achieves 81.73% ac-
curacy on the Test set, includes all features discussed
in Section 4 except POS bigrams. Early tests in-
dicated that any gains obtained with POS bigrams
were absorbed by the production rules, so they were
excluded form the final experiments. Character bi-
grams help on the Test set but not on the Devel-
opment set. The meta-features decrease accuracy
on both sets. Finally, the content words dramati-
cally improve accuracy. The reason we included a
submission which did not use content words is that
it is a common practice in previous work. In our
analysis of the data, we found content words that
were highly indicative of the language of the writer.
Particularly, words and phrases which contained the
speaker’s home country were useful in predicting the
language. It should be noted that this correspon-
dence may be dependent upon the prompt given to
the writer. Furthermore, it may lead to false posi-
tives for L1 speakers who live in multi-lingual coun-
tries.

5.1 Confusion Matrix

We present the confusion matrix for our best submis-
sion in Table 5.1. The highest number of incorrect

144

Table 3: Confusion Matrix for our best classifier.

Features Test
Full system 81.7
w/o error alignments 81.3
w/o word unigrams 81.1
w/o cognate features 81.0
w/o production rules 80.6
w/o character bigrams 80.4
w/o word bigrams 76.7

Table 4: Accuracy of various feature combinations.

classifications are between languages that are either
linguistically or culturally related (Jarvis and Cross-
ley, 2012). For example, Korean is often misclassi-
fied as Japanese or Chinese. The two languages are
not linguistically related to Korean, but both have
historically had cultural ties with Korean. Likewise,
while Hindi and Telugu are not related linguistically,
they are both spoken in the same geographic area,
and speakers are likely to have contact with each
other.

5.2 Ablation Study

Table 4 shows the results of an ablation experiment
on our best-performing submission. The word bi-
grams contribute the most to the classification; their
removal increases the relative error rate by 27%. The
word unigrams contribute much less., This is un-
surprising, as much of the information contained in
the word unigrams is also contained in the bigrams.
The remaining features are also useful. In particu-
lar, our cognate interference features, despite apply-
ing to only 4 of 11 languages, reduce errors by about
4%.



6 Conclusions and Future Work

We have described the system that we have devel-
oped for the NLI 2013 Shared Task. The system
combines features that are prevalent in the litera-
ture with our own novel character-level spelling fea-
tures and word cognate interference features. Most
of the features that we experimented with appear
to increase the overall accuracy, which contradicts
the view that simple bag-of-words usually perform
better than more complex feature sets (Sebastiani,
2002).

Our cognate features can be expanded by includ-
ing languages that do not use the Latin script, such
as Russian and Greek, as demonstrated by Bergsma
and Kondrak (2007). We utilized bilingual dictio-
naries representing only four of the eleven languages
in this task?; yet our cognate interference features
still improved classifier accuracy. With more re-
sources and with better methods of cognate identi-
fication, the cognate features have the potential to
further contribute to native language identification.

Our error-alignment features can likewise be fur-
ther investigated in the future. Currently, after ana-
lyzing texts with a spell-checker, we automatically
accept the first suggestion as the correct one. In
many cases, this leads to faulty corrections, and mis-
leading alignments. By using context sensitive spell-
checking, we can choose better corrections, and ob-
tain information which improves classification.

This shared task was a wonderful introduction
to Native Language Identification, and an excellent
learning experience for members of our group,
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Abstract

Tree Substitution Grammar rules form a large
and expressive class of features capable of rep-
resenting syntactic and lexical patterns that
provide evidence of an author’s native lan-
guage. However, this class of features can
be applied to any general constituent based
model of grammar and previous work has
done little to explore these options, relying
primarily on the common Penn Treebank an-
notation standard. In this work we contrast
the performance of syntactic features for Na-
tive Language Indentification using five dif-
ferent formalisms. The use of different for-
malisms captures complementary information
from second language data, and can be used
in combination to yield classification perfor-
mance superior to any formalism taken on its
OowWn.

1 Introduction

Native Language Identification, the automatic deter-
mination of an author’s native language (L1) from
their writing in a second language (L2), follows a
general trend of supervised classification using fea-
tures extracted from text. These systems can be opti-
mized by both classification algorithm selection and
the integration of diverse feature sets, and in this
work we focus on the latter.

Syntactic features have been shown to provide
a strong discriminative signal of an author’s na-
tive language (Wong and Dras, 2011; Swanson and
Charniak, 2012), but little work has been done to ex-
plore the various options for representation of syn-
tax of learner text. Many such representations ex-
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ist, and are routinely employed to improve perfor-
mance on the widely studied task of parsing the Penn
Treebank. Furthermore, most techniques that prove
widely successful at this task have publicly available
implementations, making them very feasible options
for NLI systems.

In this work we investigate the use of Tree Sub-
stitution Grammars as features for NLI, focusing on
the implication of syntactic paradigm (constituent vs
dependency grammar) and the addition of annota-
tions that have proved useful in statistical parsing.
A Tree Substitution Grammar (TSG) is an intuitive
extension of the Context Free Grammar (CFG) that
allows rewrite rules of arbitrary tree structure. Alter-
natively, a CFG can be seen as a TSG in which the
rewrite rules obey the constraint that each is a tree
structure of unit depth.

While a collection of parsed data can be poten-
tially generated by a TSG that is exponential in the
length of the text, recent techniques allow for the ef-
ficient induction of compact grammars (Cohn and
Blunsom, 2010). At a high level, this technique
employs the rich-get-richer dynamics of a Dirich-
let Process to sample derivations for the trees in the
training corpus: the more that a rule is used in other
derivations, the more likely it is that we will choose
it when sampling a derivation.

We follow previous work in stylometry with
TSGs for the NLI in that we parse the entirety of
the training data and use it to induce a compact TSG
using the method described above.! We then use the

! An alternative method of note that we do not consider in
this work is to induce TSG rules on hand-annotated data such
as the Penn Treebank, as in Bergsma et al. (2012).
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Figure 1: Sample parse trees produced by the Berkeley Parser. An example of what the tree might look like with split

symbol annotations is shown on the right.

TSG rules as binary features for supervised classi-
fication such that the feature for a TSG rule is trig-
gered on a document if that rule appears in the parse
of some derivation of any of its sentences. This de-
scription purposefully treats the parsing of text as a
black box whose input is plain text and whose out-
put is any valid tree structure. Our work considers
five alternatives for this black box, and evaluates the
effect of this choice on the NLI Shared Task at the
BEA Workshop of NAACL 2013 (Tetreault et al.,
2013).

2 Syntactic Representations

We investigate five variations on the output of the
parsing process. All five are easily produced by
freely available Java software; two with the Berkeley
Parser, two with the Stanford Parser, and one with a
combination of both software packages.

2.1 Berkeley Constituent Parses

Our first representation reproduces previous work by
using the output of the Berkeley Parser (Petrov et
al., 2006), one of highest performing systems on the
benchmark Penn Treebank task. The basic motivat-
ing principle involved is that the traditional nonter-
minal symbols used in Penn Treebank parsing are
too coarse to satisfy the context free assumption of
a CFG. To combat this, hierarchical latent annota-
tions are induced that split a symbol into several
subtypes, and a larger CFG is estimated on this set
of split nonterminals. A sentence is parsed using
this large CFG and each resulting symbol is mapped
back to its original unsplit supertype to produce the
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final parse.

One important subtlety of the Berkeley Parser is
its default binarization, which we leave intact in our
downstream use of its parses. While binarization is
normally motivated by the desired cubic complexity
of parsing algorithms, it also benefits syntactic sty-
lometry. Consider the nugget of wisdom from the
great Frank Zappa shown on the left in Figure 1, in
which artificially introduced binarization nodes are
marked with the @ symbol.

The use of binarization allows us to capture pat-
terns such as verb phrases that begin with ”is not”
independent of the following child constituents. The
capabilities of TSG rules makes the use of binariza-
tion even more apt, as we can easily choose to re-
cover the unbinarized pattern with a slightly larger
fragment. This choice will be made in TSG induc-
tion based on the frequency with which the combi-
nation occurs, which intuitively aligns with our goal
of choosing representative features.

The second form that we investigate is identical
to the normal Berkeley Parser output, but with the
split annotations used in parsing left intact, as shown
the right of Figure 1. This parsed sentence shows
how each nonterminal is annotated with a split cat-
egory, and illustrates the potential advantages that
this method affords. For example, consider the @ VP
node in the left-hand tree, whose subtree is gen-
erated with a CFG by first choosing to produce a
VBZ and RB, and then by lexicalizing each inde-
pendently. These two lexicalizations are not in fact
independent, as can be seen by the combination of
”is” with the RB ”may”, which is impossible al-



though each are independently quite likely. Splitting
the symbols as shown on the right allows us to cre-
ate a special RB node that is most likely to produce
“not” and VBZ node likely to produce “is”. Their
likely co-occurrence can then be modeled as shown
by a rule with both specialized tags as children.

It is worth noting that this particular ability of
split symbol grammars to coordinate lexical items
is easily captured with the TSG rules that we induce
on these parses, regardless of the presence of split
symbols. The more orthogonal quality of these split
grammars is their ability to categorize symbols that
appear in similar syntactic situations. Consider that
some adjectives are more likely to appear in "X is Y”
sentences in the ”Y” position, while some are more
likely to be used directly to the left of nouns. A split
symbol grammar handily captures this trait with a
split POS tag, while a TSG cannot associate patterns
containing different lexical items on its own.

2.2 Stanford Dependency Parses

The third and fourth syntactic models we employ
are derived from dependency parses produced by the
Stanford parser(Marneffe et al., 2006). In its stan-
dard form, a dependency parse is a directed tree in
which each word except the special ROOT node has
exactly one incoming edge and zero to many outgo-
ing edges, where edges represent syntactic depen-
dence. Arcs are labeled with the type of syntactic
dependence that they indicate. Following conven-
tion, we represent each word in combination with its
part of speech tag, as shown in the following exam-
ple dependency parse.

root

det nsubj dobj
YR\
ROOT DT NN VBZ PRP
The  poodle  chews it

In order to apply the techniques of TSG induction
to dependency parsed data, we implement a conver-
sion from dependency tree to constituent form. The
mechanics of this conversion are simple and illus-
trated in full by the following conversion of the de-
pendency tree shown above, and are similar to trans-
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forms used in previous work in unsupervised depen-
dency parsing(Carroll and Charniak, 1992).

ROOT
VBZ-L VBZ VBZ-R
nsubj che‘:ws do‘bj
NN-L NN PI‘QP
d‘et poc‘)dle i‘t
b1
e

Note that it is always the case that the arc labels
from the dependency parses are always produced
by unary rules. This allows the simple removal of
the nodes corresponding to arc labels, yielding our
fourth syntactic model.

ROOT
VBZ-L VBZ VBZ-R
| \
NN-L NN chews PRP

| \ |
DT  poodle it

|
the

Those familiar with the Stanford Parser may be
concerned that the dependency parses used here are
determined by a deterministic transform of a con-
stituent parse of Penn Treebank style, and then sim-
ply transformed back into constituent form. This is
especially concerning when considering the second
form in which arc labels have been removed; this
form can be constructed directly from the Berkeley
Parse form used above, and contains no additional
information. Our motivation in the investigation of
dependency parses is not that they offer new infor-
mation, but that they are organized differently than
constituent parses. When inducing a TSG, our abil-
ity to find a useful connections is impeded by phys-
ical distance between structures. In particular, in a
dependency parse, the head of the subject and the
verb are always contained in some TSG fragment



made up of small number of CFG rules, five or four
depending on the presence of arc labels. In con-
stituent parses, the presence of modifying phrases
can arbitrarily increase this distance.

2.3 Stanford Heuristic Annotations

Our final variation uses the annotations internal to
the Stanford Penn Treebank parser, as presented in
Klein and Manning (2003). These annotations are
motivated in the same way as Berkeley Parser split
states, but are deterministically applied to parse trees
using linguistic motivations. Besides handling ex-
plicit tracking of binarization and parent annotation,
several additional annotations are applied, such as
the splitting of certain POS tags into useful cate-
gories and annotation of some nodes with their num-
ber of children or siblings.

For ease of implementation, we do not use the
Stanford Parser itself to produce our trees, instead
we used our results from the Berkeley Parser. The
Stanford Parser annotations were then applied to
these trees after binarization symbols were first col-
lapsed. The following tree is an example of the
actual annotations applied by this process, and in-
cludes a fair subset of the many annotation types
that are used. The original symbol in each case is
the leftmost string of capital letters in the resulting
symbol strings shown.

ROOT
\
S-v
NP-B VP-VBE-v
\
NNP'NP
| VBZ'VB-BE PP
Ace \
18 IN‘PP NP-B

in DT'NP NN"NP
\ \

the house

3 Experiments

We contrast the syntactic formalisms on the NLI
shared task experimental setup for the NAACL 2013
BEA workshop. This new data set (Blanchard et al.,
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2013) consists of TOEFL essays drawn from speak-
ers of 11 different L1 backgrounds. 9900 Essays
were supplied as a training set, with an additional
1100 development set essays and 1100 test essays.

Previous work in NLI has relied heavily on the
International Corpus of Learner English, but due to
significant topic biases along L1 lines in this data
set the explicit use of word tokens was frequently
limited to a predetermined set of stopwords. With
this in mind, the data set for the shared task was bal-
anced across TOEFL essay prompts and proficiency
levels. The result was that the participants in this
task were not forced to limit the word tokens explic-
itly employed, with the hopes that mitigating factors
had been minimized.

We prepared the data in the five forms described
above and induced TSGs on each version of the
parsed training set with the blocked sampling algo-
rithm of Cohn and Blunsom (2010). The resulting
rules were used as binary feature functions over doc-
uments indicating the presence of the rule in some
derivation of sentence in that document. We used
the Mallet implementation of a log-linear (MaxEnt)
classifier with a zero mean Gaussian prior with vari-
ance .1 on the classifier’s weights. Our results on the
development set are shown in Figure 3.

While a range of performance is achieved, when
we construct a classifier that simply averages the
predictive distributions of all five methods we get
better accuracy than any model on its own. We ob-
served further evidence of the orthogonality of these
methods by looking at pairs of formalisms and ob-
serving how many development set items were pre-
dicted correctly by one formalism and incorrectly by
another. This was routinely around 10 percent of the
development set in each direction for a given pair,
implying that gains of up to at least 20 percent classi-
fication accuracy are possible with an expert system
that approaches oracle selection of which formalism
to use.

As our submission to the shared task, we used the
Berkeley Parser output in isolation, the average of
the five classifiers, and the weighted average of the
classifiers using the optimal weights on the devel-
opment set. The former two models use the devel-
opment set as additional training data, which is one
possible explanation of the slightly higher perfor-
mance of the equally weighted average model. An-



‘ ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR ‘ P R F
ARA | 76 2 4 1 2 2 2 1 4 3 3 76.8 76.0 764
CHI 2 86 0 1 1 0 4 4 1 0 1 81.1 86.0 83.5
FRE 2 1 77 3 2 6 2 1 5 1 0 82.8 77.0 79.8
GER 0 1 1 91 1 1 0 0 2 0 3 86.7 91.0 88.8
HIN 2 2 1 2 71 0 0 0 0 20 2 732 71.0 721
ITA 2 0 2 1 1 84 0 1 7 0 2 79.2 84.0 81.6
JPN 3 4 0 1 0 0 83 7 1 0 1 74.1 83.0 783
KOR 1 6 1 1 1 0 20 65 2 1 2 69.1 650 67.0
SPA 4 2 4 3 2 12 0 3 66 0 4 717 66.0 68.8
TEL 1 2 0 0 16 0 0 0 0 81 0 764 81.0 78.6
TUR 6 0 3 1 0 1 1 12 4 0 72 | 80.0 720 75.8

Figure 2: Confusion Matrix and per class results on the final test set evaluation using the evenly averaged model.

other explanation of note is that while the weight
optimization was carried out with EM over the like-
lihood of the development set labels, this did not
in correlate positively with classification accuracys;
even as we optimized on the development set the ac-
curacy in absolute classification of these items de-
creased slightly.

The confusion matrix for the evenly averaged
model, our best performing system, is shown in Fig-
ure 2. The most frequently confused L1 pairs were
Hindi and Telegu, Japanese and Korean, and Span-
ish and Italian. The similarity between Hindi and
Telegu is particularly troubling, as they come from
two completely different language families and their
most obvious similarity is that they are both spoken
primarily in India. This suggests that even though
the TOEFL corpus has been balanced by topic that
there is a strong geographical signal that is corre-
lated with but not caused by native language.

BP BPS DP DPA KM AVG
745 693 724 735 735 713

Acc

Figure 3: The resulting classification accuracies on the
development set for the various syntactic forms that we
considered. The forms used are plain Berkeley Parses
(BP), Berkeley Parses with split symbols (BPS), depen-
dency parses (DP), dependency parses without arc la-
bels (DPA), and the heuristic annotations from (Klein and
Manning, 2003) (KM). When the predictive distributions
of the five models are averaged (AVG), a higher accuracy
is achieved.
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BP AVG AVG-EM
747 715 77.0

Acc

Figure 4: The classification accuracies obtained on the
test data using the Berkeley parser output alone (BP), the
arithmetic mean of all five predictive distributions (AVG)
and the weighted mean using the optimal weights from
the development set as determined with EM (AVG-EM)

4 Conclusion

In this work we open investigation of a generally un-
considered variable in syntactic stylometry: the ac-
tual syntactic formalism. We examine five poten-
tial candidates of which only one has been previ-
ously presented in the context of TSG features for
NLI. These five formalisms cover both constituent
and dependency grammars, and explore the possi-
bility of split state annotations for constituent gram-
mars and the inclusion of arc labels for dependency
grammars. We find that the use of different grammar
formalisms captures orthogonal information about
an author’s native language. Furthermore, the com-
bination of different formalisms can be used to in-
crease classification accuracy.

While our results are intriguing, they primarily
serve as a proof of concept that syntactic stylome-
try can benefit from a range of representations and
should not be taken as an exhaustive search for the
best representations to use. Other syntactic forms
exist, and even in our methods there are additional
variables that can be adjusted.

One such variable is the number of splits used in



the Berkeley Parser when split states are included,;
the default number that we use in this work is 6,
the optimal value for the parsing task, but this may
be suboptimal as a representation for feature extrac-
tion. Binarization is another easily adjusted variable,
with several available options in the literature. For
example, binarization can be done that is aware of
head attachment. Another option is to binarize more
heavily, increasing the ability of TSG fragments to
separate sister nodes and find frequent patterns.

Alternative syntactic forms not explored in this
work are also available. These include well stud-
ied grammars such as Hierarchical Phrase Structure
Grammars and Combinatory Categorial Grammars,
and transforms that rearrange the tree such as the
Left Corner Transform used in Roark and Johnson
(1999). Furthermore, the use of the TSG as a fea-
ture extractor itself has the potential for extension
to more powerful systems such as Tree Adjoining
Grammars or Tree Insertion Grammars.
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Simple Yet Powerful Native Language Identification on TOEFL11
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Abstract

Native language identification (NLI) is the
task to determine the native language of the
author based on an essay written in a second
language. NLI is often treated as a classifica-
tion problem. In this paper, we use the
TOEFL11 data set which consists of more
data, in terms of the amount of essays and
languages, and less biased across prompts, i.e.,
topics, of essays. We demonstrate that even
using word level n-grams as features, and sup-
port vector machine (SVM) as a classifier can
yield nearly 80% accuracy. We observe that
the accuracy of a binary-based word level n-
gram representation (~80%) is much better
than the performance of a frequency-based
word level n-gram representation (~20%).
Notably, comparable results can be achieved
without removing punctuation marks, suggest-
ing a very simple baseline system for NLI.

1 Introduction

Native language identification (NLI) is an emerg-
ing field in the natural language processing com-
munity and machine learning community (Koppel
et al., 2005; Blanchard et al., 2013). It is a task to
identify the native language (L1) of an author
based on his/her texts written in a second language.
The application of NLI can bring many benefits,
such as providing a learner adaptive feedback of
their writing errors based on the native language
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for educational purposes (Koppel et al., 2005;
Blanchard et al., 2013).

NLI can be viewed as a classification problem.
In a classification problem, a classifier is first
trained using a set of training examples. Each
training example is represented as a set of features,
along with a class label. After a classifier is
trained, the classifier is evaluated using a testing
set (Murphy, 2012). Good data representation often
yields a better classification performance (Murphy,
2012). Often time, the simpler representations
might produce better performance. In this work,
we demonstrate that a binary-based word level n-
gram representation yields much better perform-
ance than a frequency-based word level n-gram
representation. In addition, we observed that re-
moving punctuation marks in an essay does not
make too much difference in a classification per-
formance.

The contributions of this paper are to demon-
strate the usefulness of a binary-based word level
n-gram representation, and a very simple baseline
system without the need of removing punctuation
marks and stop words.

This paper is organized as the following. In
Section 2, we present related literatures.
TOEFL11 data set is introduced in Section 3. In
Section 4, our features and system design are de-
scribed. The results are presented in Section 5,
followed by conclusion in Section 6.

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 152—156,
Atlanta, Georgia, June 13 2013. (©)2013 Association for Computational Linguistics



2 Related Work

The work by Koppel et al. (2005) is the first study
to investigate native language identification. They
use the International Corpus of Learner English
(ICLE). They set up this task as a classification
problem studied in machine learning community.
They use three types of features: function words,
character n-gram, errors and idiosyncrasies, e.g.
spelling and grammatical errors.  For errors and
idiosyncrasies, they used Microsoft Office Word to
detect those errors. Their features were evaluated
on a subset of the ICLE corpus, including essays
sampled from five native languages (Russian,
Czech, Bulgarian, French and Spanish) with 10-
fold cross validation. They achieve an accuracy of
80.2% by combining all of the features and using a
support vector machine as the classification algo-
rithm. In addition, Tsur and Rappoport (2007)
show that using character n-gram only on the ICLE
can yield an accuracy of 66%.

The work from Kochmar (2011) identifies an
author’s native language using error analysis. She
suggests that writers with different native lan-
guages generate different grammatical error pat-
terns. Instead of using ICLE, this work uses a
different corpus, English learner essays from the
Cambridge Learner Corpus. She uses SVM on
manually annotated spelling and grammatical er-
rors along with lexical features.

Most of the systems described in NLI literature
reach good performance in predicting an author’s
native language, using character n-gram and part of
speech n-gram as features (Blanchard et al., 2013).
In recent years, various studies have started to look
into complex features in order to improve the per-
formance. Wong and Dras (2009) use contrastive
analysis, a systematic analysis of structural simi-
larities and differences in a pair of languages. A
writer’s native language influences the target lan-
guage they aim to learn. They explore the impact
of three English as Second Language (ESL) error
types, subject-verb disagreement, noun-number
disagreement and determiner errors, and use a sub-
set of ICLE with 7 languages. However, although
the determiner error feature seems useful, when it
is combined with a baseline model of lexical fea-
tures, the classification performance is not signifi-
cantly improved (Wong and Dras, 2009).

Wong and Dras (2011) use complex features
such as production rules from two parsers and

153

reranking features into the classification frame-
work, incorporating lexical features of Koppel et al.
(2005). They achieve a classification performance
of 81.71% on the 7-native-languages NLI, slightly
better than 80.2% accuracy of the original Koppel
et al. (2005).

Note that although the International Corpus of
Learner English (ICLE) is used in most of the NLI
studies, ICLE has been known to have fewer es-
says, and a skewed distribution toward topics of
essays (Blanchard et al., 2013). In addition, even
though there are 16 native languages in ICLE, as
each language has different numbers of essays,
most work often uses different subsets of 7 native
languages, which makes comparison harder across
different studies (Blanchard et al., 2013). The NLI
shared task 2013 provides a new data set, namely
the TOEFL11 (Blanchard et al., 2013), which ad-
dresses these issues. As previously discussed,
complex features do not necessarily improve clas-
sification accuracy. In this work, we use
TOEFL11 to investigate the classification per-
formance using simple word n-gram based features.

3 Data

In this work, we use TOEFL11 as our corpus.
TOEFL11 is a new data set for NLI (Blanchard et
al., 2013). There are 11 native languages, including
Arabic (ARA), Chinese (CHI), French (French),
German (GER), Hindi (HIN), Italian (ITA), Japa-
nese (JPN), Korean (KOR), Spanish (SPA), Telugu
(TEL), and Turkish (TUR). Authors write essays
based on 8 different topics in English. There are
1,100 essays for each language, and sampled from
8 different topics, i.e., prompts.  Each essay is
also annotated with an English proficiency level
(low/medium/high) determined by assessment spe-
cialists. Among 12,100 essays, there are 9,900
essays in the training set, 1,100 essays in the de-
velopment set, i.e., validation set in machine learn-
ing, and 1,100 essays in the testing set. In the
training set and the development set, there are
equal numbers of essays from each of the 11 native
languages. By using TOEFL11, it makes our
analysis less biased toward a specific topic of es-
says (Blanchard et al., 2013).



4 NIL System Design

In this section, we describe our NLI system, the
features, and the classifier we use.

4.1 Data Preprocessing

Each essay is tokenized, and then capitalizations
are removed. Note that we did not remove English
stop words, which might be useful to discriminate
the native language for a writer. For example,
function words, which belong to stop words, such
as ‘the’, ‘at’, ‘which’, have been proven to be ef-
fective to distinguish native language for writers
(Koppel et al., 2005). There are two settings: ei-
ther punctuation marks are removed or Kkept.
When punctuation marks are kept, they are viewed
the same as word in constructing n-grams. For
example, in the sentence “NLI is fun.”, “fun .” is
viewed as a bigram.

4.2 Features

In our system, word level n-grams are used to rep-
resent an essay. Previous studies have shown that
word level n-grams are useful in determining the
native language of a writer (Bykh and Meurers,
2012). One reasonable hypothesis is that non-
native English writers with the same native lan-
guages tend to choose more similar words to ex-
press the same or similar concepts. In addition, the
combination of a sequence of words might also be
affected by the different native language of writers.
Therefore, word n-gram is useful to distinguish the
native language of a writer. Even though some
previous studies have looked into using word level
n-grams as features, how to use word level n-
grams has not been explored too much yet on
TOEFL11 corpus. To our knowledge, the most
recent study by Blanchard et al. (2013) started to
research the effect of different forms of word level
n-gram representations.

There could be many ways to represent an essay
by word level n-grams. One possible representa-
tion of an essay is to use the frequency of a spe-
cific word n-gram, i.e., the number of times a
specific word n-gram appears in an essay divided
by the number of times all word n-grams appear in
an essay. In this representation, an essay is a vec-
tor whose elements are the frequency of different
word n-grams in the essay. Another possible rep-
resentation is to use binary representation, i.e., 1
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indicates this word n-gram is in this essay, 0 indi-
cates this word n-gram is not in this essay. One
interesting question to ask is:

Which representation can be more informative
to distinguish the native language of writers of es-
says?

Here we compare the performance of a fre-
guency-based word level n-gram representation
and a binary-based word level n-gram representa-
tion. We included all word level n-grams in the
training set, without any frequency cutoff. For
both binary-based and frequency-based representa-
tions, we run the experiments on the two settings:
punctuation marks are either removed or kept.

In addition to word level n-grams, since
TOEFL11 also consists of English proficiency lev-
els evaluated by assessment experts, we also in-
cluded it to test whether this feature might improve
the classification performance. All of the features
used in our system are summarized in Table 1.
Besides each feature described above, we have also
combined different features to test whether various
combinations of features might improve the accu-
racy performance. Here, we simply aggregated
different features, for example, all word level uni-
grams, combined with all word level bigrams.

4.3 Classifier

Previous literatures have used various methods
such as Naive Bayse, logistic regression and sup-
port vector machine on NLI problem. As it has
been shown that when representing an essay in
order to perform a classification task, it often re-
sults in an essay being represented in a very high
dimensional space. Since support vector machine
(SVM) is known to be adaptive when the feature
dimension is high, we chose SVM as our classifi-
cation algorithm. We also compared the results
from Naive Bayse for an experimental purpose and
found that SVM is better. We use SVM-Light for
our system (Joachims, 1999). We then train our
SVM classifier on the training set (n=9900), and
test the trained classifier on the testing set
(n=1100).



5 Results and Discussions

5.1 Results

Table 1 and Table 2 show the accuracies on the
testing set for the different feature sets, when punc-
tuation marks are removed or kept respectively.
As the results demonstrated, the accuracies of word
level bigram are better than unigram using a bi-
nary-based representation. When combining word
level unigram and bigram, the accuracy is im-
proved in a binary-based representation. This is
consistent when punctuations are either removed or
kept. This observation is consistent with the exist-
ing NLI literatures: when combining word n-grams,
it seems to improve the accuracy of the classifier,
compared with a word n-gram alone. But we do
not observe too much difference when punctuation
marks are removed or kept, using both unigram
and bigram. In fact, including punctuation marks
lead to high accuracies in many scenarios, espe-
cially in unigram in a frequency-based representa-
tion, suggesting the usage of punctuation marks
varies across native languages.

a binary-based representation when punctuation
marks are removed. We observe that some of na-
tive languages, such as German, Italian, and Chi-
nese, lead to better classification accuracy than for
Korean, Spanish, and Arabic.

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR Psrigcni’ CR;I meaiure
ARA 75 1 5 3 1 3 1 1 3 4 3 789750 76.9
CHI 3 86 0 0 1 0 5 4 0 O 1 819 86.0 83.9
FRE 1 1 79 7 3 4 2 0 1 0 2 775 79.0 78.2
GER 31 2 87 1 1 1 0 2 0 2 79.8 87.0 83.3
HIN 1 2 1 2 77 0 0 0 5 10 2 740 77.0 75.5
ITA 0 0 6 4 08 0 0 3 0 2 833 85.0 84.2
JPN 2 2 1 0 0 1 86 3 2 0 3 775 860 81.5
KOR 0 8 2 1 1 014 72 1 1 0 828720 77.0
SPA 4 0 6 3 4 6 1 1 70 1 4 787 700 74.1
TEL 1 0 0 115 0 O 0 0 82 1 837 820 82.8
TUR 5 4 0 1 1 2 1 6 2 0 78 79.6 780 78.8

Average Performance: 79.7%. Precision, Recall, F-measures are in %.

Performance of Performance of
Features Binary Word n- Freg. Word n-
gram Representa- gram Representa-
tion tion
word unigram 70.91% 25.36%
word bigram 76.00% 17.64%
word unigram
and 79.73% 23.36%
word bigram

Table 1 Accuracy of Different Feature Sets, without

Punctuation Marks

Performance of Performance of
Binary Word n- Freg. Word n-
Features
gram Representa- gram Representa-
tion tion
word unigram 70.18% 30.00%
word bigram 77.09% 18.73%
word unigram
and 79.45% 28.73%
word bigram

Table 2 Accuracy of Different Feature Sets, with

Punctuation Marks

Table 3 shows the confusion matrix of classifi-
cation performance, using unigram and bigram, in
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Table 3 Confusion Matrix on Testing Set

5.2 Binary Based of Word N-Gram Repre-

sentation

We observe that the accuracy of a binary-based
word level n-gram representation in our system is
significantly better than a frequency-based repre-
sentation. This is similar to the result reported by
Blanchard et al., (2013) in TOEFL11 corpus. The
differences between their system and ours are that
the system developed by Blanchard et al., (2013)
used logistic regression with L1-regularzation, in-
stead of SVM and they did not remove all punctua-
tion marks and special characters.

This might imply that a frequency-based word
n-gram representation do not capture the character-
istics of the data. This might be because the data
resides in a high dimension space, and the frequen-
cies of word level n-grams would be skewed. In a
future study, one might investigate a better repre-
sentation form and other complex features that
have a stronger interpretative power of the data.

5.3 Effects of Proficiency Level

In our results, we have included English profi-
ciency level (low/medium/high) as a feature pro-
vided by assessment experts. However, we did not
find a strong improvement in accuracies, for ex-
ample, 79.13% using a binary-based word level n-
grams when punctuation marks removed. We
think this might be because only one feature will




not dramatically change the accuracies. This may
be due to the fact word n-grams have already con-
tributed a large amount of features.

6 Conclusion

In this paper, we used a new data set, TOEFL11 to
investigate NLI. In the most existing literatures,
ICLE corpus was used. However, ICLE has fewer
data and is known to be biased to topics of essays.
The newly released corpus, TOEFL11 addresses
these two drawbacks, which is useful for NLI
community. Support vector machine (SVM) was
used as a classifier in our system. We have dem-
onstrated that a binary-based word level n-gram
representation has resulted in a significantly better
performance compared to a frequency-based n-
gram representation. We observed that there is not
much difference in classification accuracies when
punctuation removed or kept, when combining
both unigram and bigram. Interestingly, a fre-
guency-based word unigram with punctuation
marks outperforms than the case without punctua-
tion marks, suggesting the potential of utilizing
punctuation marks in NLI. In addition, English
proficiency level has also been included in our fea-
ture set, but did not yield a significant improve-
ment in accuracy. As most of the essays are
represented in a high dimension space using word
level n-grams, we are looking into feature selection
to reduce dimensionality and how to represent
those features in order to improve accuracy, as
well as other features.
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Abstract

This paper investigates the use of prompt-
based content features for the automated as-
sessment of spontaneous speech in a spoken
language proficiency assessment. The results
show that single highest performing prompt-
based content feature measures the number
of unique lexical types that overlap with the
listening materials and are not contained in
either the reading materials or a sample re-
sponse, with a correlation of » = 0.450 with
holistic proficiency scores provided by hu-
mans. Furthermore, linear regression scor-
ing models that combine the proposed prompt-
based content features with additional spoken
language proficiency features are shown to
achieve competitive performance with scoring
models using content features based on pre-
scored responses.

1 Introduction

A spoken language proficiency assessment should
provide information about how well the non-native
speaker will be able to perform a wide range of tasks
in the target language. Therefore, in order to provide
a full evaluation of the non-native speaker’s speak-
ing proficiency, the assessment should include some
tasks eliciting unscripted, spontaneous speech. This
goal, however, is hard to achieve in the context of
a spoken language assessment which employs auto-
mated scoring, due to the difficulties in developing
accurate automatic speech recognition (ASR) tech-
nology for non-native speech and in extracting valid
and reliable features. Because of this, most spo-
ken language proficiency assessments which use au-
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tomated scoring have focused on restricted speech,
and have included tasks such as reading a word / sen-
tence / paragraph out loud, answering single-word
factual questions, etc. (Chandel et al., 2007; Bern-
stein et al., 2010).

In order to address this need, some automated
spoken language assessment systems have also in-
cluded tasks which elicit spontaneous speech. How-
ever, these systems have focused primarily on a non-
native speaker’s pronunciation, prosody, and fluency
in their scoring models (Zechner et al., 2009), since
these types of features are relatively robust to ASR
errors. Some recent studies have investigated the
use of features related to a spoken response’s con-
tent, such as (Xie et al., 2012). However, the ap-
proach to content scoring taken in that study requires
a large amount of responses for each prompt to be
provided with human scores in order to train the
content models. This approach is not practical for a
large-scale, high-stakes assessment which regularly
introduces many new prompts into the assessment—
obtaining the required number of scored training re-
sponses for each prompt would be quite expensive
and could lead to potential security concerns for the
assessment. Therefore, it would be desirable to de-
velop an approach to content scoring which does not
require a large amount of actual responses to train
the models. In this paper, we propose such a method
which uses the stimulus materials for each prompt
contained in the assessment to evaluate the content
in a spoken response.

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 157-162,
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2 Related Work

There has been little prior work concerning auto-
mated content scoring for spontaneous spoken re-
sponses (a few recent studies include (Xie et al.,
2012) and (Chen and Zechner, 2012)); however, sev-
eral approaches have been investigated for written
responses. A standard approach for extended writ-
ten responses (e.g., essays) is to compare the con-
tent in a given essay to the content in essays that
have been provided with scores by human raters us-
ing similarity methods such as Content Vector Anal-
ysis (Attali and Burstein, 2006) and Latent Semantic
Analysis (Foltz et al., 1999). This method thus re-
quires a relatively large set of pre-scored responses
for each test question in order to train the content
models. For shorter written responses (e.g., short an-
swer questions targeting factual content) approaches
have been developed that compare the similarity be-
tween the content in a given response and a model
correct answer, and thus do not necessarily require
the collection of pre-scored responses. These ap-
proaches range from fully unsupervised text-to-text
similarity measures (Mohler and Mihalcea, 2009) to
systems that incorporate hand-crafted patterns iden-
tifying specific key concepts (Sukkarieh et al., 2004;
Mitchell et al., 2002).

For extended written responses, it is less practical
to make comparisons with model responses, due to
the greater length and variability of the responses.
However, another approach that does not require
pre-scored responses is possible for test questions
that have prompts with substantial amounts of in-
formation that should be included in the answer. In
these cases, the similarity between the response and
the prompt materials can be calculated, with the hy-
pothesis that higher scoring responses will incorpo-
rate certain prompt materials more than lower scor-
ing responses. This approach was taken by (Gure-
vich and Deane, 2007) which demonstrated that
lower proficiency non-native essay writers tend to
use more content from the reading passage, which is
visually accessible and thus easier to comprehend,
than the listening passage. The current study inves-
tigates a similar approach for spoken responses.
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3 Data

The data used in this study was drawn from TOEFL
iBT, an international assessment of academic En-
glish proficiency for non-native speakers. For this
study, we focus on a task from the assessment which
elicits a 60 second spoken response from the test
takers. In their response, the test takers are asked
to use information provided in reading and listen-
ing stimulus materials to answer a question concern-
ing specific details in the materials. The responses
are then scored by expert human raters on a 4-point
scale using a scoring rubric that takes into account
the following three aspects of spoken English pro-
ficiency: delivery (e.g., pronunciation, prosody, flu-
ency), language use (e.g., grammar, lexical choice),
and topic development (e.g., content, discourse co-
herence). For this study, we used a total of 1189
responses provided by 299 unique speakers to four
different prompts' (794 responses from 199 speak-
ers were used for training and 395 responses from
100 speakers were used for evaluation).

4 Methodology

We investigated several variations of simple features
that compare the lexical content of a spoken re-
sponse to following three types of prompt materials:
1) listening passage: a recorded lecture or dialogue
containing information relevant to the test question
(the number of words contained in each of the four
listening passages used in this study were 213, 223,
234, and 318), 2) reading passage: an article or es-
say containing additional information relevant to the
test question (the number of words contained in the
two reading passages were 94 and 111), and 3) sam-
ple response: a sample response provided by the test
designers containing the main ideas expected in a
model answer (the number of words contained in the
four sample responses were 41, 74, 102, and 133).
The following types of features were investi-
gated for each of the materials: 1) stimulus_cosine:
the cosine similarity between the spoken response
and the various materials, 2) tokens/response,
types/response: the number of word tokens / types
that occur in both the spoken response and each of

"Two out of the four tasks in this study had only listening
materials; responses to these tasks are not included in the results
for the features which require reading materials.



the materials, divided by the number of word to-
kens / types in the response,? and 3) unique tokens,
unique types: the number of word tokens / types that
occur in both the spoken response and one or two
of the materials, but do not occur in the remaining
material(s).

As a baseline, we also compare the proposed
content features based on the prompt materials to
content features based on collections of scored re-
sponses to the same prompts. This type of feature
has been shown to be effective for content scoring
both in non-native essays (Attali and Burstein, 2006)
and spoken responses (Xie et al., 2012), and is com-
puted by comparing the content in a test response to
content models trained using responses from each of
the score points. It is defined as follows:

e Sim,;: the similarity score between the words
in the spoken response and a content model
trained from responses receiving score ¢ (¢ €
1,2, 3,4 in this study)

The Sim; features were trained on a corpus of
7820 scored responses (1955 for each of the four
prompts), and we investigated two different meth-
ods for computing the similarity between the test
responses and the content models: Content Vector
Analysis using the cosine similarity metric (CVA)
and Pointwise Mutual Information (PMI).

The spoken responses were processed using an
HMM-based triphone ASR system trained on 800
hours of non-native speech (approximately 15% of
the training data consisted of responses to the four
test questions in this study), and the ASR hypothe-
ses were used to compute the content features.’

5 Results

We first examine the performance of each of the
individual features by calculating their correlations
with the holistic English speaking proficiency scores
provided by expert human raters. These results for

’Dividing the number of matching word tokens / types by
the number of word tokens in the response factors out the over-
all length of the response from the calculation of the feature.

3Transcriptions were not available for the spoken responses
used in this study, so the exact WER of the ASR system is un-
known. However, the WER of the ASR system on a comparable
set of spoken responses is 28%.
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the training partition are presented in Table 1.*

Feature Set Feature ‘ r ‘
listening | 0.384
stimulus_cosine | reading | 0.176
sample | 0.384
listening | 0.022
tokens/response | reading | 0.096
sample | 0.121
listening | 0.426
types/response | reading | 0.142
sample | 0.128
L’RS 0.116
unique tokens L’RS’” | 0.162
LR’S | 0.219
LR’S” | 0.337
L’RS 0.140
unique types L’RS” | 0.166
LR’S | 0.259
LR’S” | 0.450
Simy | 0.091
Simg | 0.186
CVA Sims | 0.261
Simg | 0.311
Simy | 0.191
Simg | 0.261
PMI Sims | 0.320
Simy | 0.361

Table 1: Correlations of individual content features with
holistic human scores on the training partition

As Table 1 shows, some of the individual content
features based on the prompt materials obtain higher
correlations with human scores than the baseline
CVA and PMI features based on scored responses.
Next, we investigated the overall contribution of the
content features to a scoring model that takes into
account features from various aspects of speaking
proficiency. To show this, we built a baseline lin-
ear regression model to predict the human scores us-
ing 9 features from 4 different aspects of speaking

*For the unique tokens and unique types features, each row
lists how the prompt materials were used in the similarity com-
parison as follows: R = reading, L = listening, S = sample,
and ’ indicates no lexical overlap between the spoken response
and the material. For example, L’RS indicates content from the
test response that overlapped with both the reading passage and
sample response but was not contained in the listening material.



proficiency (fluency, pronunciation, prosody, and
grammar) produced by SpeechRater, an automated
speech scoring system (Zechner et al., 2009), as
shown in Table 2.

Features

normalized number of silences
> (.15 sec, normalized number
of silences > 0.495 sec, average
chunk length, speaking rate, nor-
malized number of disfluencies
normalzied Acoustic Model
score from forced alignment
using a native speaker AM,
average normalized phone du-
ration differnce compared to a
reference corpus

mean deviation of distance be-
tween stressed syllables
Language Model score

Category
Fluency

Pronunciation

Prosody

Grammar

Table 2: Baseline speaking proficiency features used in
the scoring model

In order to investigate the contribution of the vari-
ous types of content features to the scoring model,
linear regression models were built by adding the
features from each of the feature sets in Table 1 to
the baseline features. The models were trained using
the 794 responses in the training set and evaluated
on the 395 responses in the evaluation set. Table 3
presents the resulting correlations both for the indi-
vidual responses (N=395) as well as the sum of all
four responses from each speaker (N=97).

As Table 3 shows, all of the scoring models us-
ing feature sets with the proposed content features
based on the prompt materials outperform the base-
line model. While none of the models incorporat-
ing features from a single feature set outperforms
the baseline CVA model using features based on
scored responses, a model incorporating all of the
proposed prompt-based content features, all prompt-
based, does outperform this baseline. Furthermore,
a model incorporating all of the content features
(both the proposed features and the baseline CVA /
PMI features), all content, outperforms a model us-

>Three speakers were removed from the evaluation set for
this analysis since they provided fewer than four responses.

160

’ Feature Set response r | speaker r
Baseline 0.607 0.687
+ types/response 0.612 0.701
+ tokens/response 0.615 0.700
+ unique tokens 0.616 0.695
+ stimulus_cosine 0.630 0.716
+ unique types 0.658 0.761
+ CVA 0.665 0.762
+ all prompt-based 0.677 0.779
+ PMI 0.723 0.818
+ CVA and PMI 0.723 0.818
+ all content 0.742 0.838

Table 3: Performance of scoring models with the addition
of content features

ing only the baseline CVA and PMI features.®

6 Discussion and Conclusion

This paper has demonstrated that the use of content
scoring features based solely on the prompt stimu-
lus materials and a sample response is a viable al-
ternative to using features based on content mod-
els trained on large sets of pre-scored responses for
the automated assessment of spoken language profi-
ciency. Under this approach, automated scoring sys-
tems for large-scale spoken language assessments
involving spontaneous speech can begin to address
an area of spoken language proficiency (content ap-
propriateness) which has mostly been neglected in
systems that have been developed to date. Com-
pared to an approach using pre-scored responses for
training the content models, the proposed approach
is much more cost effective and reduces the risk
that test materials will be seen by test takers prior
to the assessment; both of these attributes are cru-
cial benefits for large-scale, high-stakes language as-
sessments. Furthermore, the proposed prompt-based
content features, when combined in a linear regres-
sion model with other speaking proficiency features,
outperform a baseline set of CVA content features
which use models trained on pre-scored responses,

SWhile the prompt-based content features do result in im-
provements, neither of these two differences are statistically sig-
nificant at o = 0.05 using the Hotelling-Williams Test, since
both the magnitude of the increase and the size of the data set
are relatively small.



and they add further improvement to a model incor-
porating the higher performing baseline with PMI
content features.

The results in Table 1 indicate that the indi-
vidual features based on overlapping lexical types
(types/response and unique types) perform slightly
better than the ones based on overlapping lexical to-
kens (tokens/response and unique tokens). This sug-
gests that it is important for test takers to use a range
of concepts that are contained in the stimulus mate-
rials in their responses. Similarly to the result from
(Gurevich and Deane, 2007), Table 1 also shows that
the features measuring overlap between the response
and the listening materials typically perform better
than the features measuring overlap between the re-
sponse and the reading materials; the best individ-
ual feature, LR’S’ for unique types, measures the
amount of overlap with lexical types that are con-
tained in the listening stimulus, but absent from the
reading stimulus and sample response. This indi-
cates that the use of content from the listening ma-
terials is a better differentiator among students of
differing language proficiency levels than reading
materials, likely because test takers generally have
more difficulty understanding the content from lis-
tening materials.

Table 1 also shows the somewhat counterintu-
itive result that features based on no lexical over-
lap with the sample response produce higher corre-
lations than features based on lexical overlap with
the sample response, when there is lexical overlap
with the listening materials and no overlap with the
reading materials. That is, the LR’S’ feature out-
performs the LR’S feature for both the unique types
and unique tokens features sets. However, as shown
in Section 4, the sample responses varied widely
in length (ranging from 41 to 133 words), and all
were substantially shorter than the listening materi-
als, which ranged from 213 to 318 words. Therefore,
it is likely that many of the important lexical items
from the sample response are also contained in the
listening materials. Thus, the LR’S feature provided
less information than the LR’S’ feature.

The features used in this study are all based on
simple lexical overlap statistics, and are thus triv-
ial to implement. Future research will investigate
more sophisticated methods of text-to-text similar-
ity for prompt-based content scoring, such as those
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used in (Mohler and Mihalcea, 2009). Furthermore,
future research will address the validity of the pro-
posed features by ensuring that there are ways to fil-
ter out responses that are too similar to the stimulus
materials, and thus indicate that the test taker simply
repeated the source verbatim.
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Abstract

We introduce a cognitive framework for mea-
suring reading comprehension that includes
the use of novel summary writing tasks. We
derive NLP features from the holistic rubric
used to score the summaries written by stu-
dents for such tasks and use them to design a
preliminary, automated scoring system. Our
results show that the automated approach per-
forms well on summaries written by students
for two different passages.

1 Introduction

In this paper, we present our preliminary work on
automatic scoring of a summarization task that is de-
signed to measure the reading comprehension skills
of students from grades 6 through 9. We first intro-
duce our underlying reading comprehension assess-
ment framework (Sabatini and O’Reilly, In Press;
Sabatini et al., In Press) that motivates the task of
writing summaries as a key component of such as-
sessments in §2. We then describe the summariza-
tion task in more detail in §3. In §4, we describe our
approach to automatically scoring summaries writ-
ten by students for this task and compare the results
we obtain using our system to those obtained by hu-
man scoring. Finally, we conclude in §6 with a brief
discussion and possible future work.

2 Reading for Understanding (RfU)
Framework

We claim that to read for understanding, readers
should acquire the knowledge, skills, strategies, and
dispositions that will enable them to:
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e learn and process the visual and typographical
elements and conventions of printed texts and
print world of literacy;

e learn and process the verbal elements of lan-
guage including grammatical structures and
word meanings;

e form coherent mental representations of texts,
consistent with discourse, text structures, and
genres of print;

e model and reason about conceptual content;

e model and reason about social content.

We also claim that the ability to form a coher-
ent mental model of the text that is consistent with
text discourse is a key element of skilled reading.
This mental model should be concise but also reflect
the most likely intended meaning of the source. We
make this claim since acquiring this ability:

1. requires the reader to have knowledge of
rhetorical text structures and genres;

2. requires the reader to model the propositional
content of a text within that rhetorical frame,
both from an author’s or reader’s perspective;
and

3. is dependent on a skilled reader having ac-
quired mental models for a wide variety of
genres, each embodying specific strategies for
modeling the meaning of the text sources to
achieve reading goals.

In support of the framework, research has shown
that the ability to form a coherent mental model

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 163—168,
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is important for reading comprehension. Kintsch
(1998) showed that it is a key aspect in the process of
construction integration and essential to understand-
ing the structure and organization of the text. Sim-
ilarly, Gernsbacher (1997) considers mental models
essential to structure mapping and in bridging and
making knowledge-based inferences.

2.1 Assessing Mental Models

Given the importance of mental models for reading
comprehension, the natural question is how does one
assess whether a student has been able to build such
models after reading a text. We believe that such
an assessment must encompass asking a reader to
(a) sample big ideas by asking them to describe the
main idea or theme of a text, (b) find specific details
in the text using locate/retrieve types of questions,
and (c) bridging gaps between different points in the
text using inference questions. Although these ques-
tions can be multiple-choice, existing research indi-
cates that it is better to ask the reader to write a brief
summary of the text instead. Yu (2003) states that
a good summary can prove useful for assessment of
reading comprehension since it contains the relevant
important ideas, distinguishes accurate information
from opinions, and reflects the structure of the text
itself. More specifically, having readers write sum-
maries is a promising solution since:

e there is considerable empirical support that it
both measures and encourages reading compre-
hension and is an effective instructional strat-
egy to help students improve reading skills
(Armbruster et al., 1989; Bean and Steenwyk,
1984; Duke and Pearson, 2002; Friend, 2001;
Hill, 1991; Theide and Anderson, 2003);

it is a promising technique for engaging stu-
dents in building mental models of text; and

it aligns with our framework and cognitive the-
ory described earlier in this section.

However, asking students to write summaries in-
stead of answering multiple choice questions entails
that the summaries must be scored. Asking human
raters to score these summaries, however, can be
time consuming as well as costly. A more cost-
effective and efficient solution would be to use an
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automated scoring technique using machine learn-
ing and natural language processing. We describe
such a technique in the subsequent sections.

Passage

During the Neolithic Age, humans developed agriculture-what we
think of as farming. Agriculture meant that people stayed in one
place to grow their crops. They stopped moving from place to
place to follow herds of animals or to find new wild plants to eat.
And because they were settling down, people built permanent
shelters. The caves they had found and lived in before could be
replaced by houses they built themselves.

To build their houses, the people of this Age often stacked mud
bricks together to make rectangular or round buildings. At first,
these houses had one big room. Gradually, they changed to
include several rooms that could be used for different purposes.
People dug pits for cooking inside the houses. They may have
filled the pits with water and dropped in hot stones to boil it. You
can think of these as the first kitchens.

The emergence of permanent shelters had a dramatic effect on
humans. They gave people more protection from the weather and
from wild animals. Along with the crops that provided more food
than hunting and gathering, permanent housing allowed people to
live together in larger communities.

Directions

Please write a summary. The first sentence of your summary
should be about the whole passage. Then write 3 more
sentences. Each sentence should be about one of the
paragraphs.

Figure 1: An example passage for which students are
asked to write a summary, and the summary-writing di-
rections shown to the students.

3 Summary Writing Task

Before describing the automated scoring approach,
we describe the details of the summary writing task
itself. The summarization task is embedded within
a larger reading comprehension assessment. As part
of the assessment, students read each passage and
answer a set of multiple choice questions and, in ad-
dition, write a summary for one of the passages. An
example passage and the instructions can be seen in
Figure 1. Note the structured format of summary
that is asked for in the directions: the first sentence
of the summary must be about the whole passage
and the next three should correspond to each of the
paragraphs in the passage. All summary tasks are
structured similarly in that the first sentence should
identify the “global concept” of the passage and the



next three sentences should identify “local concepts”
corresponding to main points of each subsequent
paragraph.

Each summary written by a student is scored ac-
cording to a holistic rubric, i.e., based on holistic
criteria rather than criteria based on specific dimen-
sions of summary writing. The scores are assigned
on a 5-point scale which are defined as:

Grade 4: summary demonstrates excellent global
understanding and understanding of all 3 lo-
cal concepts from the passage; does not include
verbatim text (3+ words) copied from the pas-
sage; contains no inaccuracies.

Grade 3: summary demonstrates good global un-
derstanding and demonstrates understanding of
at least 2 local concepts; may or may not in-
clude some verbatim text, contains no more
than 1 inaccuracy.

Grade 2: summary demonstrates moderate local
understanding only (2-3 local concepts but no
global); with or without verbatim text, contains
no more than 1 inaccuracy; OR good global un-
derstanding only with no local concepts

Grade 1: summary demonstrates minimal local
understanding (1 local concept only), with or
without verbatim text; OR contains only verba-
tim text

Grade 0: summary is off topic, garbage, or demon-
strates no understanding of the text; OR re-
sponse is “I don’t know” or “IDK”.

Note that students had the passage in front of them
when writing the summaries and were not penalized
for poor spelling or grammar in their summaries. In
the next section, we describe a system to automati-
cally score these summaries.

4 Automated Scoring of Student
Summaries

We used a machine learning approach to build an
automated system for scoring summaries of the type
described in §3. To train and test our system, we
used summaries written by more than 2600 students
from the 6th, 7th and 9th grades about two differ-
ent passages. Specifically, there were a total of 2695
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summaries — 1016 written about a passage describ-
ing the evolution of permanent housing through his-
tory (the passage shown in Figure 1) and 1679 writ-
ten about a passage describing living conditions at
the South Pole. The distribution of the grades for
the students who wrote the summaries for each pas-
sage is shown in Table 1.

Grade | Count
6 574
521
584
387
305
324

Passage

South Pole

Perm. Housing

© J OH|© 3

Table 1: The grade distribution of the students who wrote
summaries for each of the two passages.

All summaries were also scored by an experi-
enced human rater in accordance with the 5-point
holistic rubric described previously. Figure 2 shows
the distribution of the human scores for both sets of
summaries.

900-| South Pole (N=1679)
800
700
600
500
400 |
300
200

Permanent Housing (N=1016)
100
0

= HHHHW

Score

Score

Figure 2: A histogram illustrating the human score distri-
bution of the summaries written for the two passages.

Our approach to automatically scoring these sum-
maries is driven by features based on the rubric.
Specifically, we use the following features:

1. BLEU: BLEU (BiLingual Evaluation Under-
study) (Papineni et al., 2002) is an automated
metric used extensively in automatically scor-
ing the output of machine translation systems.



It is a precision-based metric that computes n-
gram overlap (n=1...4) between the summary
(treated as a single sentence) against the pas-
sage (treated as a single sentence). We chose to
use BLEU since it measures how many of the
words and phrases are borrowed directly from
the passage. Note that some amount of borrow-
ing from the passage is essential for writing a
good summary.

2. ROUGE: ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) (Lin and Hovy,
2003) is an automated metric used for scoring
summaries produced by automated document
summarization systems. It is a recall-based
metric that measures the lexical and phrasal
overlap between the summary under consider-
ation and a set of “model” (or reference) sum-
maries. We used a single model summary for
the two passages by randomly selecting each
from the set of student summaries assigned a
score of 4 by the human rater.

3. CopiedSumm: Ratio of the sum of lengths of
all 3-word (or longer) sequences that are copied
from the passage to the length of the summary.

4. CopiedPassage: Same as CopiedSumm but
with the denominator being the length of the
passage.

5. MaxCopy: Length of the longest word se-
quence in the summary copied from the pas-
sage.

6. FirstSent: Number of passage sentences that
the first sentence of the summary borrows 2-
word (or longer) sequences from.

7. Length: Number of sentences in the summary.

8. Coherence: Token counts of commonly used
discourse connector words in the summary.

ROUGE computes the similarity between the
summary S under consideration and a high-scoring
summary - a high value of this similarity indicates
that S should also receive a high score. Copied-
Summ, CopiedPassage, BLEU, and MaxCopy
capture verbatim copying from the passage. First-
Sent directly captures the “global understanding”
concept for the first sentence, i.e., a large value for
this feature means that the first sentence captures
more of the passage as expected. Length captures
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the correspondence between the number of para-
graphs in the passage and the number of sentences
in the summary. Finally, Coherence captures how
well the student is able to connect the different “lo-
cal concepts” present in the passage. Note that:

o Although the rubric states that students not be
penalized for spelling errors, we did not spell-
correct the summaries before scoring them. We
plan to do this for future experiments.

e The students were not explicitly told to refrain
from verbatim copying since the summary-
writing instructions indicated this implicitly
(““... about the whole passage” and . .. about
one of the paragraphs”). However, for future
experiments, we plan to include explicit in-
structions regarding copying.

All features were combined in a logistic regres-
sion classifier that output a prediction on the same
5-point scale as the holistic rubric. We trained a sep-
arate classifier for each of the two passage types.'
The 5-fold cross-validation performance of this clas-
sifier on our data is shown in Table 2. We compute
exact as well as adjacent agreement of our predic-
tions against the human scores using the confusion
matrices from the two classifiers. The exact agree-
ment shows the rate at which the system and the
human rater awarded the same score to a summary.
Adjacent agreement shows the rate at which scores
given by the system and the human rater were no
more than one score point apart (e.g., the system as-
signed a score of 4 and the human rater assigned a
score of 5 or 3). For holistic scoring using 5-point
rubrics, typical exact agreement rates are in the same
range as our scores (Burstein, 2012; Burstein et al.,
2013). Therefore, our system performed reasonably
well on the summary scoring task. For comparison,
we also show the exact and adjacent agreement of
the most-frequent-score baseline.

It is important to investigate whether the various
features correlated in an expected manner with the
score in order to ensure that the summary-writing
construct is covered accurately. We examined the
weights assigned to the various features in the clas-
sifier and found that this was indeed the case. As ex-
pected, the CopiedSumm, CopiedPassage, BLEU,

'We used the Weka Toolkit (Hall et al., 2009).



Method | Passage Exact | Adjacent

Baseline South Pole . b1 .90
Perm. Housing | .32 77

Logistic South Pole ' .65 97
Perm. Housing | .52 .93

Table 2: Exact and adjacent agreements of the most-
frequent-score baseline and of the 5-fold cross-validation
predictions from the logistic regression classifier, for both
passages.

and MaxCopy features all correlate negatively with
score, and ROUGE, FirstSent and Coherence cor-
relate positively.

In addition to overall performance, we also exam-
ined which features were most useful to the classi-
fier in predicting summary scores. Table 3 shows the
various features ranked using the information-gain
metric for both logistic regression models. These
rankings show that the features performed consis-
tently for both models.

South Pole Perm. Housing
BLEU (.375) BLEU (.450)
CopiedSumm (.290) | ROUGE (.400)

ROUGE (.264)
Length (.257)

CopiedSumm (.347)
Length (.340)

CopiedPassage (.246)
MaxCopy (.231)
FirstSent (.120)
Coherence (.103)

MaxCopy(.253)
CopiedPassage (.206)
Coherence (.155)
FirstSent (.058)

Table 3: Classifier features for both passages ranked by
average merit values obtained using information-gain.

5 Related Work

There has been previous work on scoring summaries
as part of the automated document summarization
task (Nenkova and McKeown, 2011). In that task,
automated systems produce summaries of multiple
documents on the same topic and those machine-
generated summaries are then scored by either hu-
man raters or by using automated metrics such as
ROUGE. In our scenario, however, the summaries
are produced by students—not automated systems—
and the goal is to develop an automated system to
assign scores to these human-generated summaries.
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Although work on automatically scoring student
essays (Burstein, 2012) and short answers (Lea-
cock and Chodorow, 2003; Mohler et al., 2011) is
marginally relevant to the work done here, we be-
lieve it is different in significant aspects based on
the scoring rubric and on the basis of the underlying
RfU framework. We believe that the work most di-
rectly related to ours is the Summary Street system
(Franzke et al., 2005; Kintsch et al., 2007) which
attempts to score summaries written for tasks not
based on the RfU framework and uses latent seman-
tic analysis (LSA) rather than a feature-based classi-
fication approach.

6 Conclusion & Future Work

We briefly introduced the Reading for Understand-
ing cognitive framework and how it motivates the
use of a summary writing task in a reading compre-
hension assessment. Our motivation is that such a
task is theoretically suitable for capturing the abil-
ity of a reader to form coherent mental representa-
tions of the text being read. We then described a
preliminary, feature-driven approach to scoring such
summaries and showed that it performed quite well
for scoring the summaries about two different pas-
sages. Obvious directions for future work include:
(a) getting summaries double-scored to be able to
compare system-human agreement against human-
human agreement (b) examining whether a single
model trained on all the data can perform as well as
passage-specific models, and (c) using more sophis-
ticated features such as TERp (Snover et al., 2010)
which can capture and reward paraphrasing in ad-
dition to exact matches, and features that can better
model the “local concepts” part of the scoring rubric.
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Inter-annotator Agreement for Dependency Annotation of Learner
Language

Marwa Ragheb
Indiana University
Bloomington, IN USA
mragheb@indiana.edu

Abstract

This paper reports on a study of inter-
annotator agreement (IAA) for a dependency
annotation scheme designed for learner En-
glish. Reliably-annotated learner corpora are
a necessary step for the development of POS
tagging and parsing of learner language. In
our study, three annotators marked several
layers of annotation over different levels of
learner texts, and they were able to obtain
generally high agreement, especially after dis-
cussing the disagreements among themselves,
without researcher intervention, illustrating
the feasibility of the scheme. We pinpoint
some of the problems in obtaining full agree-
ment, including annotation scheme vagueness
for certain learner innovations, interface de-
sign issues, and difficult syntactic construc-
tions. In the process, we also develop ways to
calculate agreements for sets of dependencies.

1 Introduction

Learner corpora have been essential for develop-
ing error correction systems and intelligent tutor-
ing systems (e.g., Nagata et al., 2011; Rozovskaya
and Roth, 2010). So far, error annotation has been
the main focus, to the exclusion of corpora and an-
notation for more basic NLP development, despite
the need for parse information for error detection
(Tetreault et al., 2010), learner proficiency identifi-
cation (Hawkins and Buttery, 2010), and acquisition
research (Ragheb and Dickinson, 2011). Indeed,
there is very little work on POS tagging (Thouésny,
2009; van Rooy and Schifer, 2002; de Haan, 2000)
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or parsing (Rehbein et al., 2012; Krivanek and Meur-
ers, 2011; Ott and Ziai, 2010) learner language, and,
not coincidentally, there is a lack of annotated data
and standards for these tasks. One issue is in know-
ing how to handle innovative learner forms: some
map to a target form before annotating syntax (e.g.,
Hirschmann et al., 2010), while others propose di-
rectly annotating the text (e.g., Ragheb and Dick-
inson, 2011). We follow this latter strand and fur-
ther our work towards a syntactically-annotated cor-
pus of learner English by: a) presenting an annota-
tion scheme for dependencies, integrated with other
annotation layers, and b) testing the inter-annotator
agreement for this scheme. Despite concerns that di-
rect annotation of the linguistic properties of learn-
ers may not be feasible (e.g., Rosén and Smedt,
2010), we find that annotators have generally strong
agreement, especially after adjudication, and the
reasons for disagreement often have as much to do
with the complexities of syntax or interface issues as
they do with learner innovations.

Probing grammatical annotation can lead to ad-
vancements in research on POS tagging and syntac-
tic parsing of learner language, for it shows what can
be annotated reliably and what needs additional di-
agnostics. We specifically report on inter-annotator
agreement (IAA) for the annotation scheme de-
scribed in section 2, focusing on dependency an-
notation. There are numerous studies investigating
inter-annotator agreement between coders for differ-
ent types of grammatical annotation schemes, focus-
ing on part-of-speech, syntactic, or semantic anno-
tation (e.g., Passonneau et al., 2006; Babarczy et al.,
2006; Civit et al., 2003). For learner language, a
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number of error annotation projects include mea-
sures of interannotator agreement, (see, e.g., Boyd,
2012; Lee et al., 2012; Rozovskaya and Roth, 2010;
Tetreault and Chodorow, 2008; Bonaventura et al.,
2000), but as far as we are aware, there have been no
studies on IAA for grammatical annotation.

We have conducted an IAA study to investigate
the quality and robustness of our annotation scheme,
as reported in section 3. In section 4, we report quan-
titative results and a qualitative analysis of this study
to tease apart disagreements due to inherent ambigu-
ity or text difficulty from those due to the annotation
scheme and/or the guidelines. The study has already
reaped benefits by helping us to revise our annota-
tion scheme and guidelines, and the insights gained
here should be applicable for future development of
other annotation schemes and to parsing studies.

On a final note, our dependency annotation allows
for multiple heads for each token in the corpus, vi-
olating the so-called single-head constraint (Kiibler
et al., 2009). In the process of evaluating these de-
pendencies (see section 4.1), we also make some mi-
nor contributions towards comparing sets of depen-
dencies, moving beyond just F-measure (e.g., Cer
et al., 2010) to account for partial agreements.

2 Annotation scheme

We present a sketch of the annotation scheme here,
outlining the layers and the general motivation. Our
general perspective is to annotate as closely as pos-
sible to what the learner wrote, marking grammat-
ical properties even if the meaning of the sentence
or clause is unclear within the particular grammat-
ical analysis. For example, in the learner sentence
(1), the verb admit clearly occurs in the form of
an active verb, and is annotated as such, regard-
less of the (passive) meaning of the sentence (cf.
was admitted). In this case, basing the annotation
on syntactic evidence makes for a more straightfor-
ward task. Moreover, adhering to a syntactic anal-
ysis helps outline the grammatical properties of a
learner’s interlanguage and can thus assist in auto-
matic tasks such as native language identification
(e.g., Tetreault et al., 2012), and proficiency level de-
termination (Yannakoudakis et al., 2011).

(1) When I admit to Korea University, I decide
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Another part of the motivation for shying away
from marking target forms and annotating the syn-
tactic properties of those (cf., e.g., Rehbein et al.,
2012) is that, for general essays from learners of
many levels, the grammatical evidence can be un-
derstood even when the intended meaning is not.
Consider (2): in the context of the learner’s es-
say, the sentence probably means that this person
guards their personal belongings very well because
of prevalent theft in the city they are talking about.

(2) Now I take very hard my personal stuffs.

Annotating the syntax of a target form here could
obscure the grammatical properties of the learner’s
production (e.g., pluralizing a mass noun). Encour-
aging annotators to focus on the syntactic properties
and not intended meanings makes identifying the de-
pendency relations in a sentence like this one easy.

Another aspect of our annotation scheme is that
we do not directly annotate errors (except for lexi-
cal violations; see section 2.1). Annotators had ac-
cess to an extensive manual detailing the annotation
scheme, which will be made public soon.! A brief
outline of the guidelines is in section 3.3.

2.1 Initial annotation layers

Using ideas developed for annotating learner lan-
guage (Ragheb and Dickinson, 2012, 2011; Diaz-
Negrillo et al., 2010; Dickinson and Ragheb, 2009),
we annotate several layers before targeting depen-
dencies: 1) lemmas (i.e., normalized forms), 2) mor-
phological part-of-speech (POS), 3) distributional
POS, and 4) lexical violations.

The idea for lemma annotation is to normalize a
word to its dictionary form. In (3), for example, the
misspelled excersice is normalized to the correctly-
spelled exercise for the lemma annotation. We spec-
ify that only “reasonable” orthographic or phonetic
changes are allowed; thus, for prison, it is lemma-
annotated as prison, not person. In this case, the
lemma annotation does not affect the rest of the an-
notation, as prison and person are both nouns, but
for no, the entire analysis changes based on whether
we annotate the lemma as no or not. Marking no
makes the final tree more difficult, but fits with the
principle of staying true to the form the learner has

'See: http://cl.indiana.edu/~salle



presented. As we will see in section 4.3, determining
the lemma can pose challenges for building trees.

(3) After to start , I want to tell that this excer-
sice is very important in the life , no only as
a prison .

We annotate two POS layers, one capturing mor-
phological evidence and one for distributional. For
most words, the layers include the same informa-
tion, but mismatches arise with non-canonical struc-
tures. For instance, in (3) the verb (fo) start has a
morphological POS of base form verb (VVO0), but
it appears in a context where some other verb form
would better be licensed, e.g., a gerund. Since we
do not want to overstate claims, we allow for un-
derspecified POS tags and annotate the distributional
POS simply as verb (VV). The use of two POS lay-
ers captures the mismatch between morphology and
distribution without referencing a unified POS.

Finally, annotators can mark lexical violations
when nothing else appears to capture a non-standard
form. Specifically, lexical violations are for syntac-
tically ungrammatical forms where the specific word
choice seems to cause the ungrammaticality. In (4),
for example, about should be marked as a lexical vi-
olation. Lexical violations were intended as a last re-
sort, but as we will see in section 4.3, there was con-
fusion about when to use lexical violations and when
to use other annotations, e.g., POS mismatches.

“)

... I agree about me that my country ’s help
and cooperation influenced . ..

2.2 Dependencies

While the initial annotation layers are used to build
the syntactic annotation, the real focus of the anno-
tation concerns dependencies. Using a set of 45 de-
pendencies,> we mark two types of annotations here:
1) dependency relations rooted in the lemma and the
morphological POS tag, and 2) subcategorization in-
formation, reflecting not necessarily what is in the
tree, but what is required. Justification for a mor-
phological, or morphosyntactic, layer of dependen-
cies, along with a layer of subcategorization, is given
in Ragheb and Dickinson (2012). Essentially, these
two layers allow one to capture issues involving ar-
gument structure (e.g., missing argument), without

2We use a label set adapted from Sagae et al. (2010).
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having to make the kind of strong claims a layer of
distributional dependencies would require. In (5),
for example, wondered subcategorizes for a finite
complement (COMP), but finds a non-finite comple-
ment (XCOMP), as the tree is based on the morpho-
logical forms (e.g., t0).

(5) Iwondered what success to be .

An example tree is shown in figure 1, where we
can see a number of properties of our trees: a) we
annotate many “raised” subjects, such as I being the
subject (SUBJ) of both would and like, thereby al-
lowing for multiple heads for a single token; b) we
ignore semantic anomalies, such as the fact that life
is the subject of be (successful); and c) dependencies
can be selected for, but not realized, as in the case of
career subcategorizing for a determiner (DET).

3 Inter-annotator agreement study

3.1 Selection of annotation texts

From a learner corpus of written essays we have col-
lected from students entering Indiana University, we
chose a topic (What Are Your Plans for Life?) and
randomly selected six essays, based on both learner
proficiency (beginner, intermediate, advanced) and
the native language of the speaker (L1).? From each
essay, we selected the first paragraph and put the six
paragraphs into two texts; each text contained, in
order, one beginner, one intermediate, and one ad-
vanced paragraph. Text 1 contained 19 sentences
(333 tokens), and Text 2 contained 22 sentences
(271 tokens). Annotators were asked to annotate
only these excerpts, but had access to the entire es-
says, if they wanted to view them.

While the total number of tokens is only 604, the
depth of the annotation is quite significant, in that
there are at least seven decisions to be made for ev-
ery token: lemma, lexical violation, morphological
POS, distributional POS, subcategorization, attach-
ment, and dependency label, in addition to possi-
ble extra dependencies for a given word, i.e., a few
thousand decisions. It is hard to quantify the ef-
fort, as some layers are automatically pre-annotated
(see section 3.5) and some are used sparingly (lexi-
cal violations), but we estimate around 2000 new or
changed annotations from each annotator.

3 Korean, Spanish, Chinese, Arabic, Japanese, Hungarian.
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Figure 1: Morphosyntactic dependency tree with subcategorization information

3.2 Annotators

This study involved three annotators, who were un-
dergraduate students at Indiana. They were native
speakers of English and majors in Linguistics (2 ju-
niors, 1 senior). Two had had a syntax course before
the semester, and one was taking it concurrently.
We trained them over the course of an academic
semester (fall 2012), by means of weekly meetings
to discuss relevant readings, familiarize them with
the scheme, and give feedback about their annota-
tion. The IAA study took place Nov. 9-Dec. 15.

Annotators were taking course credit for partici-
pating in this project. This being the case, they were
encouraged to learn from the experience, and part
of their training was to make notes of challenging
cases and their decision-making process. This has
provided significant depth in qualitatively analyzing
the IAA outcomes (section 4.3).

3.3 Guidelines

At the start of the study, the annotators were given
a set of guidelines (around 100 pages) to reference
as they made decisions. These guidelines outline
the general principles of the scheme (e.g., give the
learner the benefit of the doubt), an overview of the
annotation layers, and annotation examples for each
layer. The guidelines refer to the label sets used
for POS (Sampson, 1995) and dependencies (Sagae
et al., 2010), but emphasize the properties of our
scheme. Although the guidelines discuss general
syntactic treatment (e.g., “attach high” in the case of
attachment ambiguities), a considerable focus is on
handling learner innovations, across different layers.
While we cannot list every example of how learners
innovate, we include instructions and examples that
should generalize to other non-native constructions
(e.g., when to underspecify a label). Examples of
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<POBJ> <DET> ..

Text 1 Text 2
Time Avg. Min. Max.|Time Avg. Min. Max.
Al 224 11.8 3 25 |151 69 2 21
B| 280 147 4 30 |[170* 85 3 20
C| 480 253 8 60 | 385 175 10 45

Table 1: Annotation time, in minutes, for phase 1 (*times
for two sentences were not reported and are omitted)

how to treat difficult syntactic constructions are also
illustrated (e.g., coordination).

3.4 Annotation task

Via oral and written instructions, the annotators
were asked to independently annotate the two texts
and take notes on difficult issues, in addition to
marking how long they spent on each sentence.
Times are reported in table 1 for the first phase, as
described next. Longer sentences take more time
(cf. Text 1 vs. Text 2), and annotator times vary,
but, given the times of nearly 30-60 minutes per sen-
tence at the start of the semester, these times seemed
reasonable for the depth of annotation req