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Welcome to SemEval-2017

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state
of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2017 is the eleventh workshop in the series of International Workshops on Semantic Evaluation.
The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on
word sense disambiguation, each time growing in the number of languages offered, in the number of
tasks, and also in the number of participating teams. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year, but on a
two-year cycle, i.e., the tasks for SemEval-2017 were proposed in 2016.

SemEval-2017 was co-located with the 55th annual meeting of the Association for Computational
Linguistics (ACL’2017) in Vancouver, Canada. It included the following 12 shared tasks organized
in three tracks:

Semantic comparison for words and texts

e Task 1: Semantic Textual Similarity
e Task 2: Multi-lingual and Cross-lingual Semantic Word Similarity

e Task 3: Community Question Answering

Detecting sentiment, humor, and truth

Task 4: Sentiment Analysis in Twitter

Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News

Task 6: #HashtagWars: Learning a Sense of Humor
e Task 7: Detection and Interpretation of English Puns

e Task 8: RumourEval: Determining rumour veracity and support for rumours

Parsing semantic structures

Task 9: Abstract Meaning Representation Parsing and Generation

Task 10: Extracting Keyphrases and Relations from Scientific Publications

Task 11: End-User Development using Natural Language

Task 12: Clinical TempEval
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This volume contains both Task Description papers that describe each of the above tasks and System
Description papers that describe the systems that participated in the above tasks. A total of 12 task
description papers and 169 system description papers are included in this volume.

We are grateful to all task organizers as well as the large number of participants whose enthusiastic
participation has made SemEval once again a successful event. We are thankful to the task organizers
who also served as area chairs, and to task organizers and participants who reviewed paper submissions.
These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the
ACL 2017 conference organizers for their support. Finally, we most gratefully acknowledge the support
of our sponsor, the ACL Special Interest Group on the Lexicon (SIGLEX).

The SemEval-2017 organizers,

Steven Bethard, Marine Carpuat, Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, David Jurgens
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#WarTeam at SemEval-2017 Task 6: Using Neural Networks for Discovering Hu-
morous Tweets

Iuliana Alexandra Flescan-Lovin-Arseni, Ramona Andreea Turcu, Cristina Sirbu,
Larisa Alexa, Sandra Maria Amarandei, Nichita Herciu, Constantin Scutaru, Diana
Trandabat and Adrian Iftene

SVNIT @Q SemEval 2017 Task-6: Learning a Sense of Humor Using Supervised
Approach
Rutal Mahajan and Mukesh Zaveri

Duluth at SemEval-2017 Task 7 : Puns Upon a Midnight Dreary, Lexical Semantics

for the Weak and Weary
Ted Pedersen
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UWaterloo at SemEval-2017 Task 7: Locating the Pun Using Syntactic Character-
istics and Corpus-based Metrics
Olga Vechtomova

PunFields at SemEval-2017 Task 7: Employing Roget’s Thesaurus in Automatic
Pun Recognition and Interpretation
Elena Mikhalkova and Yuri Karyakin

JU CSE NLP @ SemEval 2017 Task 7: Employing Rules to Detect and Interpret
English Puns
Aniket Pramanick and Dipankar Das

N-Hance at SemEval-2017 Task 7: A Computational Approach using Word Associ-
ation for Puns
Ozge Sevgili, Nima Ghotbi and Selma Tekir

ELiRF-UPYV at SemEval-2017 Task 7: Pun Detection and Interpretation
Lluis-F. Hurtado, Encarna Segarra, Ferran Pla, Pascual Carrasco and José—Angel
Gonzalez

BuzzSaw at SemEval-2017 Task 7: Global vs. Local Context for Interpreting and
Locating Homographic English Puns with Sense Embeddings
Dieke Oele and Kilian Evang

UWAYV at SemEval-2017 Task 7: Automated feature-based system for locating puns
Ankit Vadehra

ECNU at SemEval-2017 Task 7: Using Supervised and Unsupervised Methods to
Detect and Locate English Puns
Yuhuan Xiu, Man Lan and Yuanbin Wu

Fermi at SemEval-2017 Task 7: Detection and Interpretation of Homographic puns
in English Language
Vijayasaradhi Indurthi and Subba Reddy Oota

UWaterloo at SemEval-2017 Task 8: Detecting Stance towards Rumours with Topic
Independent Features
Hareesh Bahuleyan and Olga Vechtomova

IKM at SemEval-2017 Task 8: Convolutional Neural Networks for stance detection
and rumor verification
Yi-Chin Chen, Zhao-Yang Liu and Hung-Yu Kao

NileTMRG at SemEval-2017 Task 8: Determining Rumour and Veracity Support for

Rumours on Twitter.
Omar Enayet and Samhaa R. El-Beltagy
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09:00-09:30

09:30-10:30

10:30-11:00

Turing at SemEval-2017 Task 8: Sequential Approach to Rumour Stance Classifi-
cation with Branch-LSTM
Elena Kochkina, Maria Liakata and Isabelle Augenstein

Mama Edha at SemEval-2017 Task 8: Stance Classification with CNN and Rules
Marianela Garcia Lozano, Hanna Lilja, Edward Tjornhammar and Maja Karasalo

DFKI-DKT at SemEval-2017 Task 8: Rumour Detection and Classification using
Cascading Heuristics

Ankit Srivastava, Georg Rehm and Julian Moreno Schneider

ECNU at SemEval-2017 Task 8: Rumour Evaluation Using Effective Features and
Supervised Ensemble Models

Feixiang Wang, Man Lan and Yuanbin Wu

IITP at SemEval-2017 Task 8 : A Supervised Approach for Rumour Evaluation
Vikram Singh, Sunny Narayan, Md Shad Akhtar, Asif Ekbal and Pushpak Bhat-
tacharyya

SemEval 2018 Tasks

State of SemEval Discussion

Coffee
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Task Descriptions

SemEval-2017 Task 4: Sentiment Analysis in Twitter
Sara Rosenthal, Noura Farra and Preslav Nakov

SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs
and News

Keith Cortis, André Freitas, Tobias Daudert, Manuela Huerlimann, Manel Zarrouk,
Siegfried Handschuh and Brian Davis

SemEval-2017 Task 9: Abstract Meaning Representation Parsing and Generation
Jonathan May and Jay Priyadarshi

SemEval 2017 Task 10: SciencelE - Extracting Keyphrases and Relations from Sci-
entific Publications

Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman and Andrew
McCallum

SemEval-2017 Task 11: End-User Development using Natural Language
Juliano Sales, Siegfried Handschuh and André Freitas

SemEval-2017 Task 12: Clinical TempEval
Steven Bethard, Guergana Savova, Martha Palmer and James Pustejovsky

Lunch
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Best Of SemEval

BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and
LSTMs
Mathieu Cliche

Lancaster A at SemEval-2017 Task 5: Evaluation metrics matter: predicting senti-
ment from financial news headlines
Andrew Moore and Paul Rayson

Sheffield at SemEval-2017 Task 9: Transition-based language generation from
AMR.
Gerasimos Lampouras and Andreas Vlachos

The AI2 system at SemEval-2017 Task 10 (SciencelE): semi-supervised end-to-end
entity and relation extraction
Waleed Ammar, Matthew Peters, Chandra Bhagavatula and Russell Power

LIMSI-COT at SemEval-2017 Task 12: Neural Architecture for Temporal Informa-
tion Extraction from Clinical Narratives
Julien Tourille, Olivier Ferret, Xavier Tannier and Aurélie Névéol

Coffee

Discussion

Poster Session

OMAM at SemEval-2017 Task 4: Evaluation of English State-of-the-Art Sentiment
Analysis Models for Arabic and a New Topic-based Model

Ramy Baly, Gilbert Badaro, Ali Hamdi, Rawan Moukalled, Rita Aoun, Georges El-
Khoury, Ahmad Al Sallab, Hazem Hajj, Nizar Habash, Khaled Shaban and Wassim
El-Hajj

NILC-USP at SemEval-2017 Task 4: A Multi-view Ensemble for Twitter Sentiment
Analysis

Edilson Anselmo Corréa Juinior, Vanessa Queiroz Marinho and Leandro Borges dos
Santos

deepSA at SemEval-2017 Task 4: Interpolated Deep Neural Networks for Sentiment

Analysis in Twitter
Tzu-Hsuan Yang, Tzu-Hsuan Tseng and Chia-Ping Chen
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NNEMBs at SemEval-2017 Task 4: Neural Twitter Sentiment Classification: a Sim-
ple Ensemble Method with Different Embeddings
Yichun Yin, Yangqiu Song and Ming Zhang

CrystalNest at SemEval-2017 Task 4: Using Sarcasm Detection for Enhancing Sen-
timent Classification and Quantification
Raj Kumar Gupta and Yinping Yang

SINAI at SemEval-2017 Task 4: User based classification
Salud Maria Jiménez-Zafra, Arturo Montejo-Rédez, Maite Martin and L. Alfonso
Urena Lopez

HLPQUPenn at SemEval-2017 Task 4A: A simple, self-optimizing text classification
system combining dense and sparse vectors
Abeed Sarker and Graciela Gonzalez

ej-sa-2017 at SemEval-2017 Task 4: Experiments for Target oriented Sentiment
Analysis in Twitter
Enkhzol Dovdon and José Saias

SentiME++ at SemEval-2017 Task 4: Stacking State-of-the-Art Classifiers to En-
hance Sentiment Classification
Raphael Troncy, Enrico Palumbo, Efstratios Sygkounas and Giuseppe Rizzo

Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection
on Twitter
Alon Rozental and Daniel Fleischer

TWINA at SemEval-2017 Task 4: Twitter Sentiment Analysis with Ensemble Gradi-
ent Boost Tree Classifier
Naveen Kumar Laskari and Suresh Kumar Sanampudi

Tw-StAR at SemEval-2017 Task 4. Sentiment Classification of Arabic Tweets
Hala Mulki, Hatem Haddad, Mourad Gridach and Ismail Babaoglu

OMAM at SemEval-2017 Task 4: English Sentiment Analysis with Conditional Ran-
dom Fields
Chukwuyem Onyibe and Nizar Habash

Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise clas-
sification models for sentiment analysis in Twitter

Athanasia Kolovou, Filippos Kokkinos, Aris Fergadis, Pinelopi Papalampidi, Elias
Iosif, Nikolaos Malandrakis, Elisavet Palogiannidi, Haris Papageorgiou, Shrikanth
Narayanan and Alexandros Potamianos

NRU-HSE at SemEval-2017 Task 4: Tweet Quantification Using Deep Learning

Architecture
Nikolay Karpov
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MI&T Lab at SemEval-2017 task 4: An Integrated Training Method of Word Vector
for Sentiment Classification
Jingjing Zhao, Yan Yang and Bing Xu

SiTAKA at SemEval-2017 Task 4: Sentiment Analysis in Twitter Based on a Rich Set
of Features
Mohammed Jabreel and Antonio Moreno

Sentil7 at SemEval-2017 Task 4: Ten Convolutional Neural Network Voters for
Tweet Polarity Classification
Hussam Hamdan

DUTH at SemEval-2017 Task 4: A Voting Classification Approach for Twitter Sen-
timent Analysis
Symeon Symeonidis, Dimitrios Effrosynidis, John Kordonis and Avi Arampatzis

SSN_MLRGI at SemEval-2017 Task 4: Sentiment Analysis in Twitter Using Multi-
Kernel Gaussian Process Classifier
Angel Deborah S, S Milton Rajendram and T T Mirnalinee

YNUDLG at SemEval-2017 Task 4: A GRU-SVM Model for Sentiment Classification
and Quantification in Twitter
Ming Wang, Biao Chu, Qingxun Liu and Xiaobing Zhou

LSIS at SemEval-2017 Task 4: Using Adapted Sentiment Similarity Seed Words For
English and Arabic Tweet Polarity Classification
Amal Htait, Sébastien Fournier and Patrice Bellot

ELIRF-UPV at SemEval-2017 Task 4: Sentiment Analysis using Deep Learning
José-Angel Gonzilez, Ferran Pla and Lluis-F. Hurtado

XJSA at SemEval-2017 Task 4: A Deep System for Sentiment Classification in Twit-
ter
Yazhou Hao, YangYang Lan, Yufei Li and Chen Li

Adullam at SemEval-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated
Convolutional Neural Networks with Attention
Joosung Yoon, Kigon Lyu and Hyeoncheol Kim

EICA at SemEval-2017 Task 4: A Simple Convolutional Neural Network for Topic-
based Sentiment Classification
wang maoquan, Chen Shiyun, Xie yufei and Zhao Iu

JfunSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classifica-

tion by Exploiting Word Embeddings, Text Features and Target Contexts
Quanzhi Li, Armineh Nourbakhsh, Xiaomo Liu, Rui Fang and Sameena Shah
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DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level
and Topic-based Sentiment Analysis
Christos Baziotis, Nikos Pelekis and Christos Doulkeridis

TwiSe at SemEval-2017 Task 4: Five-point Twitter Sentiment Classification and
Quantification
Georgios Balikas

LIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for Sentiment Clas-
sification
Mickael Rouvier

TopicThunder at SemEval-2017 Task 4: Sentiment Classification Using a Convolu-
tional Neural Network with Distant Supervision
Simon Miiller, Tobias Huonder, Jan Deriu and Mark Cieliebak

INGEOTEC at SemEval 2017 Task 4: A B4MSA Ensemble based on Genetic Pro-
gramming for Twitter Sentiment Analysis
Sabino Miranda-Jiménez, Mario Graff, Eric Sadit Tellez and Daniela Moctezuma

BUSEM at SemEval-2017 Task 4A Sentiment Analysis with Word Embedding and
Long Short Term Memory RNN Approaches
Deger Ayata, Murat Saraclar and Arzucan Ozgur

TakeLab at SemEval-2017 Task 4: Recent Deaths and the Power of Nostalgia in
Sentiment Analysis in Twitter
David Lozi¢, Doria Sarié, Ivan Tokié, Zoran Medi¢ and Jan §najder

NileTMRG at SemEval-2017 Task 4: Arabic Sentiment Analysis
Samhaa R. El-Beltagy, Mona El kalamawy and Abu Bakr Soliman

YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel CNN-LSTM Model
for Sentiment Classification
Haowei Zhang, Jin Wang, Jixian Zhang and Xuejie Zhang

TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures
Including Lexicon Features for Twitter Sentiment Analysis
Amit Ajit Deshmane and Jasper Friedrichs

UCSC-NLP at SemEval-2017 Task 4: Sense n-grams for Sentiment Analysis in Twit-
ter
José Abreu, Ivan Castro, Claudia Martinez, Sebastian Oliva and Yoan Gutiérrez

ECNU at SemEval-2017 Task 4: Evaluating Effective Features on Machine Learn-

ing Methods for Twitter Message Polarity Classification
Yunxiao Zhou, Man Lan and Yuanbin Wu
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Fortia-FBK at SemEval-2017 Task 5: Bullish or Bearish? Inferring Sentiment to-
wards Brands from Financial News Headlines
Youness Mansar, Lorenzo Gatti, Sira Ferradans, Marco Guerini and Jacopo Staiano

SSN_MLRG]I1 at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis Using
Multiple Kernel Gaussian Process Regression Model
Angel Deborah S, S Milton Rajendram and T T Mirnalinee

IBA-Sys at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial
Microblogs and News
Zarmeen Nasim

HHU at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Data
using Machine Learning Methods
Tobias Cabanski, Julia Romberg and Stefan Conrad

INF-UFRGS at SemEval-2017 Task 5: A Supervised Identification of Sentiment
Score in Tweets and Headlines
Tiago Zini, Karin Becker and Marcelo Dias

HCS at SemEval-2017 Task 5: Polarity detection in business news using convolu-
tional neural networks
Lidia Pivovarova, Lloreng Escoter, Arto Klami and Roman Yangarber

NLG301 at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial
Microblogs and News
Chung-Chi Chen, Hen-Hsen Huang and Hsin-Hsi Chen

funSentiment at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Finan-
cial Microblogs Using Word Vectors Built from StockTwits and Twitter
Quanzhi Li, Sameena Shah, Armineh Nourbakhsh, Rui Fang and Xiaomo Liu

SentiHeros at SemEval-2017 Task 5: An application of Sentiment Analysis on Fi-
nancial Tweets
Narges Tabari, Armin Seyeditabari and Wlodek Zadrozny

DUTH at SemEval-2017 Task 5: Sentiment Predictability in Financial Microblog-
ging and News Articles
Symeon Symeonidis, John Kordonis, Dimitrios Effrosynidis and Avi Arampatzis

TakeLab at SemEval-2017 Task 5: Linear aggregation of word embeddings for fine-
grained sentiment analysis of financial news
Leon Rotim, Martin Tutek and Jan Snajder

UW-FinSent at SemEval-2017 Task 5: Sentiment Analysis on Financial News Head-

lines using Training Dataset Augmentation
Vineet John and Olga Vechtomova
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RiTUAL-UH at SemEval-2017 Task 5: Sentiment Analysis on Financial Data Using
Neural Networks
Sudipta Kar, Suraj Maharjan and Thamar Solorio

COMMIT at SemEval-2017 Task 5: Ontology-based Method for Sentiment Analysis
of Financial Headlines
Kim Schouten, Flavius Frasincar and Franciska de Jong

ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effec-
tive Features for Fine-Grained Sentiment Analysis in Financial Domain
Mengxiao Jiang, Man Lan and Yuanbin Wu

IITPB at SemEval-2017 Task 5: Sentiment Prediction in Financial Text
Abhishek Kumar, Abhishek Sethi, Md Shad Akhtar, Asif Ekbal, Chris Biemann and
Pushpak Bhattacharyya

IITP at SemEval-2017 Task 5: An Ensemble of Deep Learning and Feature Based
Models for Financial Sentiment Analysis

Deepanway Ghosal, Shobhit Bhatnagar, Md Shad Akhtar, Asif Ekbal and Pushpak
Bhattacharyya

FEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and Intensity with
Financial Word Embeddings
Pedro Saleiro, Eduarda Mendes Rodrigues, Carlos Soares and Eugénio Oliveira

UIT-DANGNT-CLNLP at SemEval-2017 Task 9: Building Scientific Concept Fixing
Fatterns for Improving CAMR
Khoa Nguyen and Dang Nguyen

Oxford at SemEval-2017 Task 9: Neural AMR Parsing with Pointer-Augmented At-
tention
Jan Buys and Phil Blunsom

FORGe at SemEval-2017 Task 9: Deep sentence generation based on a sequence of
graph transducers
Simon Mille, Roberto Carlini, Alicia Burga and Leo Wanner

RIGOTRIO at SemEval-2017 Task 9: Combining Machine Learning and Grammar
Engineering for AMR Parsing and Generation
Normunds Gruzitis, Didzis Gosko and Guntis Barzdins

The Meaning Factory at SemEval-2017 Task 9: Producing AMRs with Neural Se-
mantic Parsing
Rik van Noord and Johan Bos

PKU_ICL at SemEval-2017 Task 10: Keyphrase Extraction with Model Ensemble

and External Knowledge
Liang Wang and Sujian Li
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NTNU-1QSciencelE at SemEval-2017 Task 10:
Keyphrases with Conditional Random Fields
Erwin Marsi, Utpal Kumar Sikdar, Cristina Marco, Biswanath Barik and Rune Setre

Identifying and Labelling

EELECTION at SemEval-2017 Task 10:
kEyphrase ClassificaTTON

Steffen Eger, Erik-Lan Do Dinh, Ilia Kuznetsov, Masoud Kiaeeha and Iryna
Gurevych

Ensemble of nEural Learners for

LABDA at SemEval-2017 Task 10: Extracting Keyphrases from Scientific Publica-
tions by combining the BANNER tool and the UMLS Semantic Network
Isabel Segura-Bedmar, Cristébal Colén-Ruiz and Paloma Martinez

The NTNU System at SemEval-2017 Task 10: Extracting Keyphrases and Relations
from Scientific Publications Using Multiple Conditional Random Fields
Lung-Hao Lee, Kuei-Ching Lee and Yuen-Hsien Tseng

MayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for
Keyphrase Classification in Scientific Publications
Sijia Liu, Feichen Shen, Vipin Chaudhary and Hongfang Liu

Know-Center at SemEval-2017 Task 10: Sequence Classification with the CODE
Annotator
Roman Kern, Stefan Falk and Andi Rexha

NTNU-2 at SemEval-2017 Task 10: Identifying Synonym and Hyponym Relations
among Keyphrases in Scientific Documents
Biswanath Barik and Erwin Marsi

LABDA at SemEval-2017 Task 10: Relation Classification between keyphrases via
Convolutional Neural Network
Victor Sudrez-Paniagua, Isabel Segura-Bedmar and Paloma Martinez

WING-NUS at SemEval-2017 Task 10: Keyphrase Extraction and Classification as
Joint Sequence Labeling
Animesh Prasad and Min-Yen Kan

MIT at SemEval-2017 Task 10: Relation Extraction with Convolutional Neural Net-
works
Ji Young Lee, Franck Dernoncourt and Peter Szolovits

TTI-COIN at SemEval-2017 Task 10: Investigating Embeddings for End-to-End
Relation Extraction from Scientific Papers
Tomoki Tsujimura, Makoto Miwa and Yutaka Sasaki

SZTE-NLP at SemEval-2017 Task 10: A High Precision Sequence Model for

Keyphrase Extraction Utilizing Sparse Coding for Feature Generation
Gabor Berend
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LIPN at SemEval-2017 Task 10: Filtering Candidate Keyphrases from Scientific
Publications with Part-of-Speech Tag Sequences to Train a Sequence Labeling
Model

Simon David Hernandez, Davide Buscaldi and Thierry Charnois

EUDAMU at SemEval-2017 Task 11: Action Ranking and Type Matching for End-
User Development
Marek Kubis, Pawet Skérzewski and Tomasz Zietkiewicz

Hitachi at SemEval-2017 Task 12: System for temporal information extraction from
clinical notes
Sarath P R, Manikandan R and Yoshiki Niwa

NTU-1 at SemEval-2017 Task 12: Detection and classification of temporal events
in clinical data with domain adaptation
Po-Yu Huang, Hen-Hsen Huang, Yu-Wun Wang, Ching Huang and Hsin-Hsi Chen

XJNLP at SemEval-2017 Task 12: Clinical temporal information ex-traction with a
Hybrid Model
Yu Long, Zhijing Li, Xuan Wang and Chen Li

ULISBOA at SemEval-2017 Task 12: Extraction and classification of temporal ex-
pressions and events
Andre Lamurias, Diana Sousa, Sofia Pereira, Luka Clarke and Francisco M Couto

GUIR at SemEval-2017 Task 12: A Framework for Cross-Domain Clinical Tempo-
ral Information Extraction
Sean MacAvaney, Arman Cohan and Nazli Goharian

KULeuven-LIIR at SemEval-2017 Task 12: Cross-Domain Temporal Information

Extraction from Clinical Records
Artuur Leeuwenberg and Marie-Francine Moens
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SemEval-2017 Task 1: Semantic Textual Similarity
Multilingual and Cross-lingual Focused Evaluation
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Abstract

Semantic Textual Similarity (STS) mea-
sures the meaning similarity of sentences.
Applications include machine translation
(MT), summarization, generation, question
answering (QA), short answer grading, se-
mantic search, dialog and conversational
systems. The STS shared task is a venue
for assessing the current state-of-the-art.
The 2017 task focuses on multilingual and
cross-lingual pairs with one sub-track ex-
ploring MT quality estimation (MTQE)
data. The task obtained strong participa-
tion from 31 teams, with 17 participating
in all language tracks. We summarize per-
formance and review a selection of well
performing methods. Analysis highlights
common errors, providing insight into the
limitations of existing models. To support
ongoing work on semantic representations,
the STS Benchmark is introduced as a new
shared training and evaluation set carefully
selected from the corpus of English STS
shared task data (2012-2017).

1 Introduction

Semantic Textual Similarity (STS) assesses the
degree to which two sentences are semantically
equivalent to each other. The STS task is moti-
vated by the observation that accurately modeling
the meaning similarity of sentences is a founda-
tional language understanding problem relevant to
numerous applications including: machine trans-
lation (MT), summarization, generation, question
answering (QA), short answer grading, semantic
search, dialog and conversational systems. STS en-
ables the evaluation of techniques from a diverse
set of domains against a shared interpretable perfor-
mance criteria. Semantic inference tasks related to

1

George Washington University
Washington, DC

dUniversity of Sheffield
Sheffield, UK

STS include textual entailment (Bentivogli et al.,
2016; Bowman et al., 2015; Dagan et al., 2010),
semantic relatedness (Bentivogli et al., 2016) and
paraphrase detection (Xu et al., 2015; Ganitkevitch
et al., 2013; Dolan et al., 2004). STS differs from
both textual entailment and paraphrase detection
in that it captures gradations of meaning overlap
rather than making binary classifications of par-
ticular relationships. While semantic relatedness
expresses a graded semantic relationship as well, it
is non-specific about the nature of the relationship
with contradictory material still being a candidate
for a high score (e.g., “night” and “day” are highly
related but not particularly similar).

To encourage and support research in this area,
the STS shared task has been held annually since
2012, providing a venue for evaluation of state-of-
the-art algorithms and models (Agirre et al., 2012,
2013, 2014, 2015, 2016). During this time, di-
verse similarity methods and data sets! have been
explored. Early methods focused on lexical se-
mantics, surface form matching and basic syntac-
tic similarity (Bir et al., 2012; Sarié et al., 2012a;
Jimenez et al., 2012a). During subsequent evalua-
tions, strong new similarity signals emerged, such
as Sultan et al. (2015)’s alignment based method.
More recently, deep learning became competitive
with top performing feature engineered systems
(He et al., 2016). The best performance tends to
be obtained by ensembling feature engineered and
deep learning models (Rychalska et al., 2016).

Significant research effort has focused on STS
over English sentence pairs.”> English STS is a

'i.a., news headlines, video and image descriptions,
glosses from lexical resources including WordNet (Miller,
1995; Fellbaum, 1998), FrameNet (Baker et al., 1998),
OntoNotes (Hovy et al., 2006), web discussion fora, plagia-
rism, MT post-editing and Q&A data sets. Data sets are sum-
marized on: http://ixa2.si.ehu.es/stswiki.

>The 2012 and 2013 STS tasks were English only. The
2014 and 2015 task included a Spanish track and 2016 had a

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 1-14,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



well-studied problem, with state-of-the-art systems
often achieving 70 to 80% correlation with human
judgment. To promote progress in other languages,
the 2017 task emphasizes performance on Arabic
and Spanish as well as cross-lingual pairings of
English with material in Arabic, Spanish and Turk-
ish. The primary evaluation criteria combines per-
formance on all of the different language condi-
tions except English-Turkish, which was run as a
surprise language track. Even with this departure
from prior years, the task attracted 31 teams pro-
ducing 84 submissions.

STS shared task data sets have been used exten-
sively for research on sentence level similarity and
semantic representations (i.a., Arora et al. (2017);
Conneau et al. (2017); Mu et al. (2017); Pagliardini
et al. (2017); Wieting and Gimpel (2017); He and
Lin (2016); Hill et al. (2016); Kenter et al. (2016);
Lau and Baldwin (2016); Wieting et al. (2016b,a);
He et al. (2015); Pham et al. (2015)). To encourage
the use of a common evaluation set for assessing
new methods, we present the STS Benchmark, a
publicly available selection of data from English
STS shared tasks (2012-2017).

2 Task Overview

STS is the assessment of pairs of sentences accord-
ing to their degree of semantic similarity. The task
involves producing real-valued similarity scores
for sentence pairs. Performance is measured by the
Pearson correlation of machine scores with human
judgments. The ordinal scale in Table 1 guides
human annotation, ranging from O for no meaning
overlap to 5 for meaning equivalence. Intermediate
values reflect interpretable levels of partial overlap
in meaning. The annotation scale is designed to
be accessible by reasonable human judges with-
out any formal expertise in linguistics. Using rea-
sonable human interpretations of natural language
semantics was popularized by the related textual
entailment task (Dagan et al., 2010). The result-
ing annotations reflect both pragmatic and world
knowledge and are more interpretable and useful
within downstream systems.

3 Evaluation Data

The Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) is the primary evalu-
ation data source with the exception that one of the

pilot track on cross-lingual Spanish-English STS. The English
tracks attracted the most participation and have the largest use
of the evaluation data in ongoing research.

The two sentences are completely equivalent, as they
mean the same thing.

The bird is bathing in the sink.
Birdie is washing itself in the water basin.

The two sentences are mostly equivalent, but some
unimportant details differ.

Two boys on a couch are playing video games.
Two boys are playing a video game.

The two sentences are roughly equivalent, but some
important information differs/missing.

John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

The two sentences are not equivalent, but share some
details.

They flew out of the nest in groups.
They flew into the nest together.

The two sentences are not equivalent, but are on the
same topic.

The woman is playing the violin.
The young lady enjoys listening to the guitar.

The two sentences are completely dissimilar.

The black dog is running through the snow.
A race car driver is driving his car through the mud.

Table 1: Similarity scores with explanations and
English examples from Agirre et al. (2013).

cross-lingual tracks explores data from the WMT
2014 quality estimation task (Bojar et al., 2014).3

Sentences pairs in SNLI derive from Flickr30k
image captions (Young et al., 2014) and are labeled
with the entailment relations: entailment, neutral,
and contradiction. Drawing from SNLI allows STS
models to be evaluated on the type of data used to
assess textual entailment methods. However, since
entailment strongly cues for semantic relatedness
(Marelli et al., 2014), we construct our own sen-
tence pairings to deter gold entailment labels from
informing evaluation set STS scores.

Track 4b investigates the relationship between
STS and MT quality estimation by providing STS
labels for WMT quality estimation data. The data
includes Spanish translations of English sentences
from a variety of methods including RBMT, SMT,
hybrid-MT and human translation. Translations
are annotated with the time required for human cor-
rection by post-editing and Human-targeted Trans-
lation Error Rate (HTER) (Snover et al., 2006).*
Participants are not allowed to use the gold quality
estimation annotations to inform STS scores.

3Previous years of the STS shared task include more data
sources. This year the task draws from two data sources and
includes a diverse set of languages and language-pairs.

“HTER is the minimal number of edits required for cor-
rection of a translation divided by its length after correction.



Track | Language(s) Pairs | Source

1 Arabic (ar-ar) 250 | SNLI

2 Arabic-English (ar-en) 250 | SNLI

3 Spanish (es-es) 250 | SNLI

4a Spanish-English (es-en) 250 | SNLI

4b Spanish-English (es-en) 250 | WMT QE
5 English (en-en) 250 | SNLI

6 Turkish-English (tr-en) 250 | SNLI

Total 1750

Table 2: STS 2017 evaluation data.

3.1 Tracks

Table 2 summarizes the evaluation data by track.
The six tracks span four languages: Arabic, En-
glish, Spanish and Turkish. Track 4 has subtracks
with 4a drawing from SNLI and 4b pulling from
WMT’s quality estimation task. Track 6 is a sur-
prise language track with no annotated training
data and the identity of the language pair first an-
nounced when the evaluation data was released.

3.2 Data Preparation

This section describes the preparation of the eval-
uation data. For SNLI data, this includes the se-
lection of sentence pairs, annotation of pairs with
STS labels and the translation of the original En-
glish sentences. WMT quality estimation data is
directly annotated with STS labels.

3.3 Arabic, Spanish and Turkish Translation

Sentences from SNLI are human translated into
Arabic, Spanish and Turkish. Sentences are trans-
lated independently from their pairs. Arabic trans-
lation is provided by CMU-Qatar by native Arabic
speakers with strong English skills. Translators
are given an English sentence and its Arabic ma-
chine translation® where they perform post-editing
to correct errors. Spanish translation is completed
by a University of Sheffield graduate student who
is a native Spanish speaker and fluent in English.
Turkish translations are obtained from SDL.%

3.4 Embedding Space Pair Selection

We construct our own pairings of the SNLI sen-
tences to deter gold entailment labels being used
to inform STS scores. The word embedding sim-
ilarity selection heuristic from STS 2016 (Agirre
et al., 2016) is used to find interesting pairs. Sen-
tence embeddings are computed as the sum of in-

>Produced by the Google Translate APL
*http://www.sdl.com/languagecloud/
managed-translation/

dividual word embeddings, v(s) = >, .. v(w).
Sentences with likely meaning overlap are identi-
fied using cosine similarity, Eq. (1).

.  v(s1)v(s2)
m(n2) = Rohveals

4 Annotation

Annotation of pairs with STS labels is performed
using Crowdsourcing, with the exception of Track
4b that uses a single expert annotator.

4.1 Crowdsourced Annotations

Crowdsourced annotation is performed on Amazon
Mechanical Turk.® Annotators examine the STS
pairings of English SNLI sentences. STS labels
are then transferred to the translated pairs for cross-
lingual and non-English tracks. The annotation in-
structions and template are identical to Agirre et al.
(2016). Labels are collected in batches of 20 pairs
with annotators paid $1 USD per batch. Five anno-
tations are collected per pair. The MTurk master’
qualification is required to perform the task. Gold
scores average the five individual annotations.

4.2 Expert Annotation

English-Spanish WMT quality estimation pairs for
Track 4b are annotated for STS by a University of
Sheffield graduate student who is a native speaker
of Spanish and fluent in English. This track differs
significantly in label distribution and the complex-
ity of the annotation task. Sentences in a pair are
translations of each other and tend to be more se-
mantically similar. Interpreting the potentially sub-
tle meaning differences introduced by MT errors
is challenging. To accurately assess STS perfor-
mance on MT quality estimation data, no attempt
is made to balance the data by similarity scores.

5 Training Data

The following summarizes the training data: Ta-
ble 3 English; Table 4 Spanish;'? Table 5 Spanish-
English; Table 6 Arabic; and Table 7 Arabic-
English. Arabic-English parallel data is supplied
by translating English training data, Table 8.

"We use 50-dimensional GloVe word embeddings (Pen-
nington et al., 2014) trained on a combination of Gigaword
5 (Parker et al., 2011) and English Wikipedia available at
http://nlp.stanford.edu/projects/glove/.

$https://www.mturk.com/

A designation that statistically identifies workers who
perform high quality work across a diverse set of tasks.

19Spanish data from 2015 and 2014 uses a 5 point scale
that collapses STS labels 4 and 3, removing the distinction
between unimportant and important details.



Year | Data set Pairs | Source Year | Data set Pairs | Source
2012 | MSRpar 1500 | newswire 2016 | Trial 103 | Sampled < 2015 STS
2012 | MSRvid 1500 | videos 2016 | News 301 | en-es news articles
2012 | OnWN 750 | glosses 2016 | Multi-source | 294 | en news headlines,
2012 | SMTnews 750 | WMT eval. short-answer plag.,
2012 | SMTeuroparl 750 | WMT eval. MT postedits,
2013 | HDL 750 | newswire Q&A forum answers,
2013 | FNWN 189 | glosses Q&A forum questions
2013 | OnWN 561 | glosses 2017 | Trial 23 | Mixed STS 2016
2013 | SMT 750 | MT eval. 2017 | MT 1000 | WMT13 Translation Task
2014 | HDL 750 | newswire headlines
2014 | OnWN 750 | glosses . . L.
2014 | Deft-forum 450 | forum posts Table 5: Spanish-English training data.
2014 | Deft-news 300 | news summary
2014 | Images 750 | image descriptions
2014 | Tweet-news 750 | tweet-news pairs Year | Data set Pairs | Source
2015 | HDL 750 | newswire headlines 2017 | Trial 23 | Mixed STS 2016
2015 | Images 750 | image descriptions 2017 | MSRpar 510 | newswire
2015 | Ans.-student 750 | student answers 2017 | MSRvid 368 | videos
2015 | Ans.-forum 375 | Q&A forum answers 2017 | SMTeuroparl 203 | WMT eval.
2015 | Belief 375 | committed belief
2016 | HDL 249 | newswire headlines . . .
2016 | Plagiarism 230 | short-answer plag. Table 6: Arabic training data.
2016 | post-editing 244 | MT postedits
2016 | Ans.-Ans. 254 | Q&A forum answers . . .
2016 | Quest-Quest. | 209 | Q&A forum questions ity estimation data has sc.entences that are much
2017 | Trial 23 | Mixed STS 2016 longer. The track 5 English data has an average
sentence length of 8.7 words, while the English
Table 3: English training data. sentences from track 4b have an average length of
19.4. The English training data has the following
Year | Dataset | Pairs | Source average lengths: 2012 10.8 words; 2013 8.8 words
2014 | Trial 56 . . .
2014 | Wiki 324 | Spanish Wikipedia (excludes restricted SMT data); 2014 9.1 words;
2014 | News 480 | Newswire 2015 11.5 words; 2016 13.8 words.
2015 | Wiki 251 | Spanish Wikipedi Cer . ..
2015 N;Wls 500 ngvrsjvire fipedia Similarity scores for our pairings of the SNLI
2017 | Trial 23 | Mixed STS 2016 sentences are slightly lower than recent shared task

Table 4: Spanish training data.

English, Spanish and English-Spanish training
data pulls from prior STS evaluations. Arabic and
Arabic-English training data is produced by trans-
lating a subset of the English training data and
transferring the similarity scores. For the MT qual-
ity estimation data in track 4b, Spanish sentences
are translations of their English counterparts, dif-
fering substantially from existing Spanish-English
STS data. We release one thousand new Spanish-
English STS pairs sourced from the 2013 WMT
translation task and produced by a phrase-based
Moses SMT system (Bojar et al., 2013). The data
is expert annotated and has a similar label distribu-
tion to the track 4b test data with 17% of the pairs
scoring an STS score of less than 3, 23% scoring
3, 7% achieving a score of 4 and 53% scoring 5.

5.1 Training vs. Evaluation Data Analysis

Evaluation data from SNLI tend to have sentences
that are slightly shorter than those from prior years
of the STS shared task, while the track 4b MT qual-

years and much lower than early years. The change
is attributed to differences in data selection and
filtering. The average 2017 similarity score is 2.2
overall and 2.3 on the track 7 English data. Prior
English data has the following average similarity
scores: 2016 2.4; 2015 2.4; 2014 2.8; 2013 3.0;
2012 3.5. Translation quality estimation data from
track 4b has an average similarity score of 4.0.

6 System Evaluation

This section reports participant evaluation results
for the SemEval-2017 STS shared task.

6.1 Participation

The task saw strong participation with 31 teams
producing 84 submissions. 17 teams provided 44
systems that participated in all tracks. Table 9 sum-
marizes participation by track. Traces of the focus
on English are seen in 12 teams participating just
in track 5, English. Two teams participated exclu-
sively in tracks 4a and 4b, English-Spanish. One
team took part solely in track 1, Arabic.




Year | Data set Pairs | Source

2017 | Trial 23 | Mixed STS 2016
2017 | MSRpar 1020 | newswire

2017 | MSRvid 736 | videos

2017 | SMTeuroparl 406 | WMT eval.

Table 7: Arabic-English training data.

Year | Data set Pairs | Source
2017 | MSRpar 1039 | newswire
2017 | MSRvid 749 | videos
2017 | SMTeuroparl 422 | WMT eval.

Table 8: Arabic-English parallel data.

6.2 Evaluation Metric

Systems are evaluated on each track by their Pear-
son correlation with gold labels. The overall rank-
ing averages the correlations across tracks 1-5 with
tracks 4a and 4b individually contributing.

Track | Language(s) Participants

1 Arabic 49

2 Arabic-English 45

3 Spanish 48

4a Spanish-English 53
4b Spanish-English MT 53

5 English 77

6 Turkish-English 48
Primary | All except Turkish 44

Table 9: Participation by shared task track.

6.3 CodaLab

As directed by the SemEval workshop organizers,
the CodaLab research platform hosts the task.!!

6.4 Baseline

The baseline is the cosine of binary sentence vec-
tors with each dimension representing whether an
individual word appears in a sentence.'? For cross-
lingual pairs, non-English sentences are translated
into English using state-of-the-art machine trans-
lation.'?> The baseline achieves an average corre-
lation of 53.7 with human judgment on tracks 1-5
and would rank 23" overall out the 44 system sub-
missions that participated in all tracks.

11https ://competitions.codalab.org/
competitions/16051

2Words obtained using Arabic (ar), Spanish (es) and En-
glish (en) Treebank tokenizers.

'3http: //translate.google.com

6.5 Rankings

Participant performance is provided in Table 10.
ECNU is best overall (avg r: 0.7316) and achieves
the highest participant evaluation score on: track
2, Arabic-English (r: 0.7493); track 3, Spanish (r:
0.8559); and track 6, Turkish-English (r: 0.7706).
BIT attains the best performance on track 1, Arabic
(r: 0.7543). CompiLIG places first on track 4a,
SNLI Spanish-English (r: 0.8302). SEF@UHH
exhibits the best correlation on the difficult track
4b WMT quality estimation pairs (r: 0.3407). RTV
has the best system for the track 5 English data (r:
0.8547), followed closely by DT_Team (r: 0.8536).

Especially challenging tracks with SNLI data
are: track 1, Arabic; track 2, Arabic-English; and
track 6, English-Turkish. Spanish-English perfor-
mance is much higher on track 4a’s SNLI data than
track 4b’s MT quality estimation data. This high-
lights the difficulty and importance of making fine
grained distinctions for certain downstream appli-
cations. Assessing STS methods for quality estima-
tion may benefit from using alternatives to Pearson
correlation for evaluation.'*

Results tend to decrease on cross-lingual tracks.
The baseline drops > 10% relative on Arabic-
English and Spanish-English (SNLI) vs. mono-
lingual Arabic and Spanish. Many participant sys-
tems show smaller decreases. ECNU’s top ranking
entry performs slightly better on Arabic-English
than Arabic, with a slight drop from Spanish to
Spanish-English (SNLI).

6.6 Methods

Participating teams explore techniques ranging
from state-of-the-art deep learning models to elabo-
rate feature engineered systems. Prediction signals
include surface similarity scores such as edit dis-
tance and matching n-grams, scores derived from
word alignments across pairs, assessment by MT
evaluation metrics, estimates of conceptual simi-
larity as well as the similarity between word and
sentence level embeddings. For cross-lingual and
non-English tracks, MT was widely used to convert
the two sentences being compared into the same
language.!> Select methods are highlighted below.

14¢.g., Reimers et al. (2016) report success using STS labels
with alternative metrics such as normalized Cumulative Gain
(nCG), normalized Discounted Cumulative Gain (nDCG) and
F1 to more accurately predict performance on the downstream
tasks: text reuse detection, binary classification of document
relatedness and document relatedness within a corpus.

SWithin the highlighted submissions, the following use a
monolingual English system fed by MT: ECNU, BIT, HCTI



Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6

Team Primary AR-AR AR-EN SP-SP SP-EN SP-EN-WMT EN-EN EN-TR
ECNU (Tian et al., 2017) 73.16 74.40 74.93¢ 85.59¢ 81.31 33.63 85.18 77.06e
ECNU (Tian et al., 2017) 70.44 73.80 71.26 84.56 74.95 33.11 81.81 73.62
ECNU (Tian et al., 2017) 69.40 72.71 69.75 8247 76.49 26.33 83.87 74.20
BIT (Wu et al., 2017)* 67.89 74.17 69.65 84.99 78.28 11.07 84.00 73.05
BIT (Wu et al., 2017)* 67.03 75.35 70.07 83.23 78.13 7.58 81.61 73.27
BIT (Wu et al., 2017) 66.62 75.43¢ 69.53 82.89 77.61 5.84 82.22 72.80
HCTI (Shao, 2017) 65.98 71.30 68.36 82.63 76.21 14.83 81.13 67.41
MITRE (Henderson et al., 2017) 65.90 72.94 67.53 82.02 78.02 15.98 80.53 64.30
MITRE (Henderson et al., 2017) 65.87 73.04 67.40 82.01 77.99 15.74 80.48 64.41
FCICU (Hassan et al., 2017) 61.90 71.58 67.82 84.84 69.26 2.54 82.72 54.52
neobility (Zhuang and Chang, 2017) 61.71 68.21 64.59 79.28 71.69 2.00 79.27 66.96
FCICU (Hassan et al., 2017) 61.66 71.58 67.81 84.89 68.54 2.14 82.80 53.90
STS-UHH (Kohail et al., 2017) 60.58 67.81 63.07 77.13 72.01 481 79.89 59.37
RTV 60.50 67.13 55.95 74.85 70.50 7.61 85.41 62.04
HCTI (Shao, 2017) 59.88 43.73 68.36 67.09 76.21 14.83 81.56 67.41
RTV 59.80 66.89 54.82 74.24 69.99 7.34 85.41 59.89
Matrusrilndia 59.60 68.60 54.64 76.14 71.18 5.72 77.44 63.49
STS-UHH (Kohail et al., 2017) 57.25 61.04 59.10 72.04 63.38 12.05 73.39 59.72
SEF@UHH (Duma and Menzel, 2017) 56.76 57.90 53.84 74.23 58.66 18.02 72.56 62.11
SEF@UHH (Duma and Menzel, 2017) 56.44 55.88 47.89 74.56 57.39 30.69 78.80 49.90
RTV 56.33 61.43 48.32 68.63 61.40 8.29 85.47e 60.79
SEF@UHH (Duma and Menzel, 2017) 55.28 57.74 48.13 69.79 56.60 34.07e 71.86 48.78
neobility (Zhuang and Chang, 2017) 51.95 13.69 62.59 77.92 69.30 0.44 75.56 64.18
neobility (Zhuang and Chang, 2017) 50.25 3.69 62.07 76.90 69.47 1.47 75.35 62.79
Matrusrilndia 49.75 57.03 43.40 67.86 55.63 8.57 65.79 49.94
NLPProxem 49.02 51.93 53.13 66.42 51.44 9.96 62.56 47.67
UMDeep (Barrow and Peskov, 2017) 47.92 47.53 49.39 51.65 56.15 16.09 61.74 52.93
NLPProxem 47.90 55.06 43.69 63.81 50.79 14.14 64.63 43.20
UMDeep (Barrow and Peskov, 2017) 47.73 45.87 51.99 51.48 52.32 13.00 62.22 57.25
Lump (Espafa Bonet and Barrén-Cedefo, 2017)* 47.25 60.52 18.29 75.74 43.27 1.16 73.76 58.00
Lump (Espaia Bonet and Barrén-Cedefio, 2017)* 47.04 55.08 13.57 76.76 48.25 11.12 72.69 51.79
Lump (Espaiia Bonet and Barrén-Cedeno, 2017)* 44.38 62.87 18.05 73.80 44.47 1.51 73.47 36.52
NLPProxem 40.70 53.27 47.73 0.16 55.06 14.40 66.81 47.46
RTM (Bigici, 2017)* 36.69 33.65 17.11 69.90 60.04 14.55 54.68 6.87
UMDeep (Barrow and Peskov, 2017) 35.21 39.05 37.13 45.88 34.82 5.86 47.27 36.44
RTM (Bigici, 2017)* 3291 33.65 0.25 56.82 50.54 13.68 64.05 11.36
RTM (Bigici, 2017)* 32.78 41.56 13.32 48.41 45.83 23.47 56.32 0.55
ResSim (Bjerva and Ostling, 2017) 31.48 28.92 10.45 66.13 23.89 3.05 69.06 18.84
ResSim (Bjerva and Ostling, 2017) 29.38 31.20 12.88 69.20 10.02 1.62 68.77 11.95
ResSim (Bjerva and Ostling, 2017) 21.45 0.33 10.98 54.65 22.62 1.99 50.57 9.02
LIPN-IIMAS (Arroyo-Fernandez and Meza Ruiz, 2017) 10.67 4.71 7.69 15.27 17.19 14.46 7.38 8.00
LIPN-IIMAS (Arroyo-Fernandez and Meza Ruiz, 2017) 9.26 2.14 12.92 4.58 1.20 1.91 20.38 21.68
hjpwhu 4.80 4.12 6.39 6.17 2.04 6.24 1.14 7.53
hjpwhu 2.94 471 2.04 7.63 0.46 2.57 0.69 2.46
compiLIG (Ferrero et al., 2017) 83.02¢ 15.50
compiLIG (Ferrero et al., 2017) 76.84 14.64
compiLIG (Ferrero et al., 2017) 79.10 14.94
DT-TEAM (Maharjan et al., 2017) 85.36
DT_TEAM (Maharjan et al., 2017) 83.60
DT_TEAM (Maharjan et al., 2017) 83.29
FCICU (Hassan et al., 2017) 82.17
ITNLPAIKEF (Liu et al., 2017) 82.31
ITNLPAIKF (Liu et al., 2017) 82.31
ITNLPAIKEF (Liu et al., 2017) 81.59
L2F/INESC-ID (Fialho et al., 2017)* 76.16 191 5.44 78.11 293
L2F/INESC-ID (Fialho et al., 2017) 69.52
L2F/INESC-ID (Fialho et al., 2017)* 63.85 15.61 5.24 66.61 3.56
LIM-LIG (Nagoudi et al., 2017) 74.63
LIM-LIG (Nagoudi et al., 2017) 73.09
LIM-LIG (Nagoudi et al., 2017) 59.57
Matrusrilndia 68.60 76.14 71.18 572 77.44 63.49
NRC* 42.25 0.23
NRC 28.08 11.33
OkadaNaoya 77.04
OPL-JSA (Spiewak et al., 2017) 78.50
OPI-JSA (Spiewak et al., 2017) 73.42
OPI-JSA (Spiewak et al., 2017) 67.96
PurdueNLP (Lee et al., 2017) 79.28
PurdueNLP (Lee et al., 2017) 55.35
PurdueNLP (Lee et al., 2017) 53.11
QLUT (Meng et al., 2017)* 64.33
QLUT (Meng et al., 2017) 61.55
QLUT (Meng et al., 2017)* 49.24
SIGMA 80.47
SIGMA 80.08
SIGMA 79.12
SIGMA_PKU_2 81.34
SIGMA_PKU_2 81.27
SIGMA_PKU2 80.61
STS-UHH (Kohail et al., 2017) 80.93
UCSC-NLP 77.29
UdL (Al-Natsheh et al., 2017) 80.04
UdL (Al-Natsheh et al., 2017)* 79.01
UdL (Al-Natsheh et al., 2017) 78.05

[ cosine baseline [ 5370 [ 6045 | 5155 | 7117 | 6220 3.20 [ 7278 ] 5456 |

* Corrected or late submission

Table 10: STS 2017 rankings ordered by average correlation across tracks 1-5. Performance is reported
by convention as Pearson’s  x 100. For tracks 1-6, the top ranking result is marked with a e symbol
and results in bold have no statistically significant difference with the best result on a track, p > 0.05
Williams’ t-test (Diedenhofen and Musch, 2015).



ECNU (Tian et al., 2017) The best overall sys-
tem is from ENCU and ensembles well perform-
ing a feature engineered models with deep learn-
ing methods. Three feature engineered models
use Random Forest (RF), Gradient Boosting (GB)
and XGBoost (XGB) regression methods with fea-
tures based on: n-gram overlap; edit distance;
longest common prefix/suffix/substring; tree ker-
nels (Moschitti, 2006); word alignments (Sul-
tan et al., 2015); summarization and MT evalua-
tion metrics (BLEU, GTM-3, NIST, WER, ME-
TEOR, ROUGE); and kernel similarity of bags-
of-words, bags-of-dependencies and pooled word-
embeddings. ECNU’s deep learning models are
differentiated by their approach to sentence em-
beddings using either: averaged word embeddings,
projected word embeddings, a deep averaging net-
work (DAN) (Iyyer et al., 2015) or LSTM (Hochre-
iter and Schmidhuber, 1997). Each network feeds
the element-wise multiplication, subtraction and
concatenation of paired sentence embeddings to
additional layers to predict similarity scores. The
ensemble averages scores from the four deep learn-
ing and three feature engineered models.'®

BIT (Wu et al.,, 2017) Second place overall is
achieved by BIT primarily using sentence informa-
tion content (IC) informed by WordNet and BNC
word frequencies. One submission uses sentence
IC exclusively. Another ensembles IC with Sul-
tan et al. (2015)’s alignment method, while a third
ensembles IC with cosine similarity of summed
word embeddings with an IDF weighting scheme.
Sentence IC in isolation outperforms all systems
except those from ECNU. Combining sentence IC
with word embedding similarity performs best.

HCTI (Shao, 2017) Third place overall is ob-
tained by HCTI with a model similar to a convolu-
tional Deep Structured Semantic Model (CDSSM)
(Chen et al., 2015; Huang et al., 2013). Sentence
embeddings are generated with twin convolutional
neural networks (CNNs). The embeddings are then
compared using cosine similarity and element wise
difference with the resulting values fed to addi-
tional layers to predict similarity labels. The archi-
and MITRE. HCTI submitted a separate run using ar, es and
en trained models that underperformed using their en model
with MT for ar and es. CompiLIG’s model is cross-lingual
but includes a word alignment feature that depends on MT.
SEF@UHH built ar, es, and en models and use bi-directional
MT for cross-lingual pairs. LIM-LIG and DT_Team only par-
ticipate in monolingual tracks.

!6The two remaining ECNU runs only use either RF or GB
and exclude the deep learning models.

tecture is abstractly similar to ECNU’s deep learn-
ing models. UMDeep (Barrow and Peskov, 2017)
took a similar approach using LSTMs rather than
CNN:s for the sentence embeddings.

MITRE (Henderson et al., 2017) Fourth place
overall is MITRE that, like ECNU, takes an ambi-
tious feature engineering approach complemented
by deep learning. Ensembled components in-
clude: alignment similarity; TakeLab STS (Sari¢
et al., 2012b); string similarity measures such as
matching n-grams, summarization and MT metrics
(BLEU, WER, PER, ROUGE); a RNN and recur-
rent convolutional neural networks (RCNN) over
word alignments; and a BiLSTM that is state-of-
the-art for textual entailment (Chen et al., 2016).

FCICU (Hassan et al., 2017)  Fifth place overall
is FCICU that computes a sense-base alignment us-
ing BabelNet (Navigli and Ponzetto, 2010). Babel-
Net synsets are multilingual allowing non-English
and cross-lingual pairs to be processed similarly to
English pairs. Alignment similarity scores are used
with two runs: one that combines the scores within
a string kernel and another that uses them with a
weighted variant of Sultan et al. (2015)’s method.
Both runs average the Babelnet based scores with
soft-cardinality (Jimenez et al., 2012b).

CompiLIG (Ferrero et al., 2017) The best
Spanish-English performance on SNLI sentences
was achieved by CompilLIG using features in-
cluding: cross-lingual conceptual similarity using
DBNary (Serasset, 2015), cross-language Multi-
Vec word embeddings (Berard et al., 2016), and
Brychcin and Svoboda (2016)’s improvements to
Sultan et al. (2015)’s method.

LIM-LIG (Nagoudi et al., 2017) Using only
weighted word embeddings, LIM-LIG took sec-
ond place on Arabic.!” Arabic word embeddings
are summed into sentence embeddings using uni-
form, POS and IDF weighting schemes. Sentence
similarity is computed by cosine similarity. POS
and IDF outperform uniform weighting. Combin-
ing the IDF and POS weights by multiplication is
reported by LIM-LIG to achieve r 0.7667, higher
than all submitted Arabic (track 1) systems.

DT _Team (Maharjan et al., 2017) Second place
on English (track 5)!8 is DT_Team using feature en-

"The approach is similar to SIF (Arora et al., 2017) but
without removal of the common principle component

BRTV took first place on track 5, English, but submitted
no system description paper.



Genre Train Dev Test | Total
news 3299 500 500 | 4299
caption | 2000 625 525 | 3250
forum 450 375 254 | 1079
total 5749 | 1500 | 1379 | 8628

Table 11: STS Benchmark annotated examples
by genres (rows) and by train, dev. test splits
(columns).

gineering combined with the following deep learn-
ing models: DSSM (Huang et al., 2013), CDSSM
(Shen et al., 2014) and skip-thoughts (Kiros et al.,
2015). Engineered features include: unigram over-
lap, summed word alignments scores, fraction of
unaligned words, difference in word counts by type
(all, adj, adverbs, nouns, verbs), and min to max
ratios of words by type. Select features have a mul-
tiplicative penalty for unaligned words.

SEF@QUHH (Duma and Menzel, 2017) First
place on the challenging Spanish-English MT pairs
(Track 4b) is SEF@UHH. Unsupervised similar-
ity scores are computed from paragraph vectors
(Le and Mikolov, 2014) using cosine, negation
of Bray-Curtis dissimilarity and vector correlation.
MT converts cross-lingual pairs, L;-Ls, into two
monolingual pairs, Li-L; and Ly-Lo, with aver-
aging used to combine the monolingual similarity
scores. Bray-Curtis performs well overall, while
cosine does best on the Spanish-English MT pairs.

7 Analysis

Figure 1 plots model similarity scores against hu-
man STS labels for the top 5 systems from tracks
5 (English), 1 (Arabic) and 4b (English-Spanish
MT). While many systems return scores on the
same scale as the gold labels, 0-5, others return
scores from approximately O and 1. Lines on the
graphs illustrate perfect performance for both a 0-5
and a 0-1 scale. Mapping the 0 to 1 scores to range
from 0-5,%° approximately 80% of the scores from
top performing English systems are within 1.0 pt of
the gold label. Errors for Arabic are more broadly
distributed, particularly for model scores between
1 and 4. The English-Spanish MT plots the weak
relationship between the predicted and gold scores.

Table 12 provides examples of difficult sentence
pairs for participant systems and illustrates com-
mon sources of error for even well-ranking systems
including: (i) word sense disambiguation ‘“making”

ECNU, BIT and LIM-LIG are scaled to the range 0-5.

205new =5 x s—min(s)

————/__ js used to rescale scores.
maz(s)—min(s)

and “preparing” are very similar in the context of
“food”, while “picture” and “movie” are not similar
when picture is followed by ‘“day”; (ii) attribute
importance “outside” vs. “deserted” are smaller
details when contrasting “The man is in a deserted
field” with “The man is outside in the field”; (iii)
compositional meaning “A man is carrying a ca-
noe with a dog” has the same content words as
“A dog is carrying a man in a canoe” but carries
a different meaning; (iv) negation systems score
“...with goggles and a swimming cap” as nearly
equivalent to ... without goggles or a swimming
cap”. Inflated similarity scores for examples like
“There is a young girl” vs. “There is a young boy
with the woman” demonstrate (v) semantic blend-
ing, whereby appending “with a woman” to “boy”
brings its representation closer to that of “girl”.

For multilingual and cross-lingual pairs, these is-
sues are magnified by translation errors for systems
that use MT followed by the application of a mono-
lingual similarity model. For track 4b Spanish-
English MT pairs, some of the poor performance
can in part be attributed to many systems using MT
to re-translate the output of another MT system, ob-
scuring errors in the original translation.

7.1 Contrasting Cross-lingual STS with MT
Quality Estimation

Since MT quality estimation pairs are translations
of the same sentence, they are expected to be min-
imally on the same topic and have an STS score
> 1.2! The actual distribution of STS scores is
such that only 13% of the test instances score be-
low 3, 22% of the instances score 3, 12% score 4
and 53% score 5. The high STS scores indicate
that MT systems are surprisingly good at preserv-
ing meaning. However, even for a human, inter-
preting changes caused by translations errors can
be difficult due both to disfluencies and subtle er-
rors with important changes in meaning.

The Pearson correlation between the gold MT
quality scores and the gold STS scores is 0.41,
which shows that translation quality measures and
STS are only moderately correlated. Differences
are in part explained by translation quality scores
penalizing all mismatches between the source seg-
ment and its translation, whereas STS focuses on
differences in meaning. However, the difficult in-
terpretation work required for STS annotation may

2I'The evaluation data for track 4b does in fact have STS
scores that are > 1 for all pairs. In the 1,000 sentence training
set for this track, one sentence that received a score of zero.
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Figure 1: Model vs. human similarity scores for top systems.

Pairs Human | DT _Team | ECNU | BIT | FCICU | ITNLP-AiKF
There is a cook preparing food. 5.0 4.1 4.1 3.7 39 4.5
A cook is making food.

The man is in a deserted field. 4.0 3.0 3.1 3.6 3.1 2.8
The man is outside in the field.

A girl in water without goggles or a swimming cap. 3.0 4.8 4.6 4.0 4.7 0.1
A girl in water, with goggles and swimming cap.

A man is carrying a canoe with a dog. 1.8 32 4.7 4.9 5.0 4.6
A dog is carrying a man in a canoe.

There is a young girl. 1.0 2.6 33 39 1.9 3.1
There is a young boy with the woman.

The kids are at the theater watching a movie. 0.2 1.0 2.3 2.0 0.8 1.7
it is picture day for the boys

Table 12: Difficult English sentence pairs (Track 5) and scores assigned by top performing systems.!

Genre File Yr. | Train | Dev | Test
news MSRpar 12 | 1000 | 250 | 250
news headlines 13/6 | 1999 | 250 | 250
news deft-news 14 300 0 0
captions | MSRvid 12 | 1000 | 250 | 250
captions | images 14/5 | 1000 | 250 | 250
captions | track5.en-en 17 0| 125 | 125
forum deft-forum 14 450 0 0
forum ans-forums 15 0| 375 0
forum ans-ans 16 0 0| 254

Table 13: STS Benchmark detailed break-down by
files and years.

increase the risk of inconsistent and subjective la-
bels. The annotations for MT quality estimation
are produced as by-product of post-editing. Hu-
mans fix MT output and the edit distance between
the output and its post-edited correction provides
the quality score. This post-editing based proce-
dure is known to produce relatively consistent esti-
mates across annotators.

8 STS Benchmark

The STS Benchmark is a careful selection of the
English data sets used in SemEval and *SEM STS
shared tasks between 2012 and 2017. Tables 11
and 13 provide details on the composition of the
benchmark. The data is partitioned into training,
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development and test sets.”> The development set
can be used to design new models and tune hy-
perparameters. The test set should be used spar-
ingly and only after a model design and hyperpa-
rameters have been locked against further changes.
Using the STS Benchmark enables comparable as-
sessments across different research efforts and im-
proved tracking of the state-of-the-art.

Table 14 shows the STS Benchmark results for
some of the best systems from Track 5 (EN-EN)?3
and compares their performance to competitive
baselines from the literature. All baselines were
run by the organizers using canonical pre-trained
models made available by the originator of each
method,?* with the exception of PV-DBOW that

2Similar to the STS shared task, while the training set
is provided as a convenience, researchers are encourage to
incorporate other supervised and unsupervised data as long as
no supervised annotations of the test partitions are used.

ZEach participant submitted the run which did best in the
development set of the STS Benchmark, which happened to
be the same as their best run in Track 5 in all cases.

Zsent2vec: https://github.com/epfml/
sent2vec, trained model sent2vec_twitter_unigrams;
SIF: https://github.com/epfml/sent2vec
Wikipedia trained word frequencies enwiki_vocab_min200.txt,
https://github.com/alexandres/lexvec em-
beddings from lexvec.commoncrawl.300d.W+C.pos.vectors,
first 15 principle components removed, o = 0.001, dev



STS 2017 Participants on STS Benchmark
Name Description Dev | Test
ECNU Ensemble (Tian et al., 2017) 84.7 | 81.0
BIT WordNet+Embeddings (Wu et al., 2017) 82.9 | 80.9
DT_-TEAM | Ensemble (Maharjan et al., 2017) 83.0 | 79.2
HCTI CNN (Shao, 2017) 83.4 | 784
SEF@UHH | Doc2Vec (Duma and Menzel, 2017) 61.6 | 59.2
Sentence Level Baselines
sent2vec Sentence spanning CBOW with words & bigrams (Pagliardini et al., 2017) 78.7 | 75.5
SIF Word embedding weighting & principle component removal (Arora et al., 2017) 80.1 | 72.0
InferSent Sentence embedding from bi-directional LSTM trained on SNLI (Conneau et al., 2017) | 80.1 | 75.8
C-PHRASE | Prediction of syntactic constituent context words (Pham et al., 2015) 743 | 63.9
PV-DBOW | Paragraph vectors, Doc2Vec DBOW (Le and Mikolov, 2014; Lau and Baldwin, 2016) 72.2 | 64.9
Averaged Word Embedding Baselines
LexVec Weighted matrix factorization of PPMI (Salle et al., 2016a,b) 68.9 | 55.8
FastText Skip-gram with sub-word character n-grams (Joulin et al., 2016) 65.3 | 53.6
Paragram Paraphrase Database (PPDB) fit word embeddings (Wieting et al., 2015) 63.0 | 50.1
GloVe Word co-occurrence count fit embeddings (Pennington et al., 2014) 52.4 | 40.6
Word2vec Skip-gram prediction of words in a context window (Mikolov et al., 2013a,b) 70.0 | 56.5

Table 14: STS Benchmark. Pearson’s r x 100 results for select participants and baseline models.

uses the model from Lau and Baldwin (2016)
and InferSent which was reported independently.
When multiple pre-trained models are available for
a method, we report results for the one with the
best dev set performance. For each method, input
sentences are preprocessed to closely match the
tokenization of the pre-trained models.”> Default

experiments varied «, principle components removed and
whether GloVe, LexVec, or Word2Vec word embeddings

were used; C-PHRASE: http://clic.cimec.unitn.

it/composes/cphrase-vectors.html; PV-
DBOW: https://github.com/jhlau/doc2vec,
AP-NEWS trained apnews_dbow.tgz; LexVec: https:
//github.com/alexandres/lexvec, embedddings
lexvec.commoncrawl.300d.W.pos.vectors.gz; FastText:
https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md, Wikipedia trained embeddings from wiki.en.vec; Para-
gram: http://ttic.uchicago.edu/~wieting/,
embeddings trained on PPDB and tuned to WS353 from
Paragram-WS353; GloVe:
edu/projects/glove/, Wikipedia and Gigaword
trained 300 dim. embeddings from glove.6B.zip;
Word2vec: https://code.google.com/archive/
p/word2vec/, Google News trained embeddings from
GoogleNews-vectors-negative300.bin.gz.

Bsent2vec: results shown here tokenized by tweetTok-
enize.py constrasting dev experiments used wikiTokenize.py,
both distributed with sent2vec. LexVec: numbers were con-
verted into words, all punctuation was removed, and text
is lowercased; FastText: Since, to our knowledge, the tok-
enizer and preprocessing used for the pre-trained FastText
embeddings is not publicly described. We use the follow-
ing heuristics to preprocess and tokenize sentences for Fast-
Text: numbers are converted into words, text is lowercased,
and finally prefixed, suffixed and infixed punctuation is re-
cursively removed from each token that does not match an
entry in the model’s lexicon; Paragram: Joshua (Matt Post,
2015) pipeline to pre-process and tokenized English text; C-
PHRASE, GloVe, PV-DBOW & SIF: PTB tokenization pro-
vided by Stanford CoreNLP (Manning et al., 2014) with post-
processing based on dev OOVs; Word2vec: Similar to Fast-

https://nlp.stanford.
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inference hyperparameters are used unless noted
otherwise. The averaged word embedding base-
lines compute a sentence embedding by averaging
word embeddings and then using cosine to com-
pute pairwise sentence similarity scores.

While state-of-the-art baselines for obtaining
sentence embeddings perform reasonably well on
the benchmark data, improved performance is ob-
tained by top 2017 STS shared task systems. There
is still substantial room for further improvement.
To follow the current state-of-the-art, visit the
leaderboard on the STS wiki.?

9 Conclusion

We have presented the results of the 2017 STS
shared task. This year’s shared task differed sub-
stantially from previous iterations of STS in that
the primary emphasis of the task shifted from
English to multilingual and cross-lingual STS in-
volving four different languages: Arabic, Spanish,
English and Turkish. Even with this substantial
change relative to prior evaluations, the shared task
obtained strong participation. 31 teams produced
84 system submissions with 17 teams producing
a total of 44 system submissions that processed
pairs in all of the STS 2017 languages. For lan-
guages that were part of prior STS evaluations

Text, to our knownledge, the preprocessing for the pre-trained
Word2vec embeddings is not publicly described. We use the
following heuristics for the Word2vec experiment: All num-
bers longer than a single digit are converted into a ‘#° (e.g.,
24 — #4#) then prefixed, suffixed and infixed punctuation is
recursively removed from each token that does not match an
entry in the model’s lexicon.
®pnttp://ixa2.si.ehu.es/stswiki/index.

php/STSbenchmark



(e.g., English and Spanish), state-of-the-art sys-
tems are able to achieve strong correlations with
human judgment. However, we obtain weaker
correlations from participating systems for Ara-
bic, Arabic-English and Turkish-English. This
suggests further research is necessary in order to
develop robust models that can both be readily
applied to new languages and perform well even
when less supervised training data is available. To
provide a standard benchmark for English STS, we
present the STS Benchmark, a careful selection
of the English data sets from previous STS tasks
(2012-2017). To assist in interpreting the results
from new models, a number of competitive base-
lines and select participant systems are evaluated
on the benchmark data. Ongoing improvements
to the current state-of-the-art is available from an
online leaderboard.
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Abstract

This paper introduces a new task on Multi-
lingual and Cross-lingual Semantic Word
Similarity which measures the semantic
similarity of word pairs within and across
five languages: English, Farsi, German,
Italian and Spanish. High quality datasets
were manually curated for the five lan-
guages with high inter-annotator agree-
ments (consistently in the 0.9 ballpark).
These were used for semi-automatic con-
struction of ten cross-lingual datasets. 17
teams participated in the task, submitting
24 systems in subtask 1 and 14 systems in
subtask 2. Results show that systems that
combine statistical knowledge from text
corpora, in the form of word embeddings,
and external knowledge from lexical re-
sources are best performers in both sub-
tasks. More information can be found on
the task website: http://alt.qgcri.
org/semeval2017/task2/ .

1 Introduction

Measuring the extent to which two words are se-
mantically similar is one of the most popular re-
search fields in lexical semantics, with a wide
range of Natural Language Processing (NLP) ap-
plications. Examples include Word Sense Disam-
biguation (Miller et al., 2012), Information Re-
trieval (Hliaoutakis et al., 2006), Machine Trans-
lation (Lavie and Denkowski, 2009), Lexical Sub-
stitution (McCarthy and Navigli, 2009), Question
Answering (Mohler et al., 2011), Text Summa-
rization (Mohammad and Hirst, 2012), and On-
tology Alignment (Pilehvar and Navigli, 2014).
Moreover, word similarity is generally accepted as
the most direct in-vitro evaluation framework for
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word representation, a research field that has re-
cently received massive research attention mainly
as a result of the advancements in the use of neural
networks for learning dense low-dimensional se-
mantic representations, often referred to as word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014). Almost any application in NLP that
deals with semantics can benefit from efficient se-
mantic representation of words (Turney and Pan-
tel, 2010).

However, research in semantic representation
has in the main focused on the English language
only. This is partly due to the limited availabil-
ity of word similarity benchmarks in languages
other than English. Given the central role of
similarity datasets in lexical semantics, and given
the importance of moving beyond the barriers of
the English language and developing language-
independent and multilingual techniques, we felt
that this was an appropriate time to conduct a task
that provides a reliable framework for evaluating
multilingual and cross-lingual semantic represen-
tation and similarity techniques. The task has
two related subtasks: multilingual semantic sim-
ilarity (Section 1.1), which focuses on representa-
tion learning for individual languages, and cross-
lingual semantic similarity (Section 1.2), which
provides a benchmark for multilingual research
that learns unified representations for multiple lan-
guages.

1.1 Subtask 1: Multilingual Semantic
Similarity

While the English community has been using
standard word similarity datasets as a common
evaluation benchmark, semantic representation for
other languages has generally proved difficult to
evaluate. A reliable multilingual word similar-
ity benchmark can be hugely beneficial in eval-
uating the robustness and reliability of semantic
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representation techniques across languages. De-
spite this, very few word similarity datasets ex-
ist for languages other than English: The origi-
nal English RG-65 (Rubenstein and Goodenough,
1965) and WordSim-353 (Finkelstein et al., 2002)
datasets have been translated into other languages,
either by experts (Gurevych, 2005; Joubarne and
Inkpen, 2011; Granada et al., 2014; Camacho-
Collados et al., 2015), or by means of crowdsourc-
ing (Leviant and Reichart, 2015), thereby creat-
ing equivalent datasets in languages other than En-
glish. However, the existing English word similar-
ity datasets suffer from various issues:

1. The similarity scale used for the annotation of
WordSim-353 and MEN (Bruni et al., 2014)
does not distinguish between similarity and
relatedness, and hence conflates these two.
As a result, the datasets contain pairs that
are judged to be highly similar even if they
are not of similar type or nature. For in-
stance, the WordSim-353 dataset contains the
pairs weather-forecast or clothes-closet with
assigned similarity scores of 8.34 and 8.00
(on the [0,10] scale), respectively. Clearly,
the words in the two pairs are (highly) re-
lated, but they are not similar.

. The performance of state-of-the-art systems
have already surpassed the levels of human
inter-annotator agreement (IAA) for many
of the old datasets, e.g., for RG-65 and
WordSim-353. This makes these datasets
unreliable benchmarks for the evaluation of
newly-developed systems.

. Conventional datasets such as RG-65, MC-
30 (Miller and Charles, 1991), and WS-Sim
(Agirre et al., 2009) (the similarity portion
of WordSim-353) are relatively small, con-
taining 65, 30, and 200 word pairs, respec-
tively. Hence, these benchmarks do not allow
reliable conclusions to be drawn, since per-
formance improvements have to be large to
be statistically significant (Batchkarov et al.,
2016).

. The recent SimLex-999 dataset (Hill et al.,
2015) improves both the size and consistency
issues of the conventional datasets by provid-
ing word similarity scores for 999 word pairs
on a consistent scale that focuses on simi-
larity only (and not relatedness). However,
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the dataset suffers from other issues. First,
given that SimLex-999 has been annotated
by turkers, and not by human experts, the
similarity scores assigned to individual word
pairs have a high variance, resulting in rela-
tively low IAA (Camacho-Collados and Nav-
igli, 2016). In fact, the reported IAA for this
dataset is 0.67 in terms of average pairwise
correlation, which is considerably lower than
conventional expert-based datasets whose
IAA are generally above 0.80 (Rubenstein
and Goodenough, 1965; Camacho-Collados
etal., 2015). Second, similarly to many of the
above-mentioned datasets, SimLex-999 does
not contain named entities (e.g., Microsoft),
or multiword expressions (e.g., black hole).
In fact, the dataset includes only words that
are defined in WordNet's vocabulary (Miller
et al., 1990), and therefore lacks the ability
to test the reliability of systems for WordNet
out-of-vocabulary words. Third, the dataset
contains a large number of antonymy pairs.
Indeed, several recent works have shown how
significant performance improvements can be
obtained on this dataset by simply tweaking
usual word embedding approaches to handle
antonymy (Schwartz et al., 2015; Pham et al.,
2015; Nguyen et al., 2016).

Since most existing multilingual word similar-
ity datasets are constructed on the basis of con-
ventional English datasets, any issues associated
with the latter tend simply to be transferred to
the former. This is the reason why we proposed
this task and constructed new challenging datasets
for five different languages (i.e., English, Farsi,
German, Italian, and Spanish) addressing all the
above-mentioned issues. Given that multiple large
and high-quality verb similarity datasets have been
created in recent years (Yang and Powers, 2006;
Baker et al., 2014; Gerz et al., 2016), we decided
to focus on nominal words.

1.2 Subtask 2: Cross-lingual Semantic
Similarity

Over the past few years multilingual embeddings
that represent lexical items from multiple lan-
guages in a unified semantic space have garnered
considerable research attention (Zou et al., 2013;
de Melo, 2015; Vuli¢ and Moens, 2016; Ammar
et al., 2016; Upadhyay et al., 2016), while at
the same time cross-lingual applications have also



been increasingly studied (Xiao and Guo, 2014;
Franco-Salvador et al., 2016). However, there
have been very few reliable datasets for evaluat-
ing cross-lingual systems. Similarly to the case of
multilingual datasets, these cross-lingual datasets
have been constructed on the basis of conven-
tional English word similarity datasets: MC-30
and WordSim-353 (Hassan and Mihalcea, 2009),
and RG-65 (Camacho-Collados et al., 2015). As
a result, they inherit the issues affecting their par-
ent datasets mentioned in the previous subsection:
while MC-30 and RG-65 are composed of only
30 and 65 pairs, WordSim-353 conflates similarity
and relatedness in different languages. Moreover,
the datasets of Hassan and Mihalcea (2009) were
not re-scored after having been translated to the
other languages, thus ignoring possible semantic
shifts across languages and producing unreliable
scores for many translated word pairs.

For this subtask we provided ten high qual-
ity cross-lingual datasets, constructed according to
the procedure of Camacho-Collados et al. (2015),
in a semi-automatic manner exploiting the mono-
lingual datasets of subtask 1. These datasets con-
stitute a reliable evaluation framework across five
languages.

2 Task Data

Subtask 1, i.e., multilingual semantic similarity,
has five datasets for the five languages of the task,
i.e., English, Farsi, German, Italian, and Span-
ish. These datasets were manually created with the
help of trained annotators (as opposed to Mechan-
ical Turk) that were native or fluent speakers of
the target language. Based on these five datasets,
10 cross-lingual datasets were automatically gen-
erated (described in Section 2.2) for subtask 2, i.e.,
cross-lingual semantic similarity.

In this section we focus on the creation of the
evaluation test sets. We additionally created a set
of small trial datasets by following a similar pro-
cess. These datasets were used by some partici-
pants during system development.

2.1 Monolingual datasets

As for monolingual datasets, we opted for a size of
500 word pairs in order to provide a large enough
set to allow reliable evaluation and comparison of
the systems. The following procedure was used
for the construction of multilingual datasets: (1)
we first collected 500 English word pairs from a
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Animals Language and linguistics
Art, architecture and archaeology Law and crime
Biology Literature and theatre
Business, economics, and finance Mathematics
Chemistry and mineralogy Media
Computing Meteorology
Culture and society Music

Education

Numismatics and currencies

Engineering and technology

Philosophy and psychology

Farming

Physics and astronomy

Food and drink

Politics and government

Games and video games
Geography and places
Geology and geophysics
Health and medicine
Heraldry, honors, and vexillology
History

Religion, mysticism and mythology
Royalty and nobility
Sport and recreation
Textile and clothing
Transport and travel
Warfare and defense

Table 1: The set of thirty-four domains.

wide range of domains (Section 2.1.1), (2) through
translation of these pairs, we obtained word pairs
for the other four languages (Section 2.1.2) and,
(3) all word pairs of each dataset were manually
scored by multiple annotators (Section 2.1.3).

2.1.1 English dataset creation

Seed set selection. The dataset creation started
with the selection of 500 English words. One of
the main objectives of the task was to provide an
evaluation framework that contains named enti-
ties and multiword expressions and covers a wide
range of domains. To achieve this, we considered
the 34 different domains available in BabelDo-
mains' (Camacho-Collados and Navigli, 2017),
which in the main correspond to the domains of
the Wikipedia featured articles page*. Table 1
shows the list of all the 34 domains used for the
creation of the datasets. From each domain, 12
words were sampled in such a way as to have at
least one multiword expression and two named en-
tities. In order to include words that may not be-
long to any of the pre-defined domains, we added
92 extra words whose domain was not decided
beforehand. We also tried to sample these seed
words in such a way as to have a balanced set
across occurrence frequency.®> Of the 500 English
seed words, 84 (17%) and 83 were, respectively,
named entities and multiwords.

Similarity scale. For the annotation of the
datasets, we adopted the five-point Likert scale of
the SemEval-2014 task on Cross-Level Semantic

"http://lcl.uniromal.it/babeldomains/

https://en.wikipedia.org/wiki/
Wikipedia:Featured_articles

3We used the Wikipedia corpus for word frequency calcu-
lation during the dataset construction.



Very similar

3 Similar

The two words are synonyms (e.g., midday-noon or motherboard-mainboard).

The two words share many of the important ideas of their meaning but include slightly different details.

They refer to similar but not identical concepts (e.g., lion-zebra or firefighter-policeman).

2 Slightly similar

The two words do not have a very similar meaning, but share a common topic/domain/function and ideas

or concepts that are related (e.g., house-window or airplane-pilot).

1 Dissimilar

The two words describe clearly dissimilar concepts, but may share some small details, a far relationship

or a domain in common and might be likely to be found together in a longer document on the same topic
(e.g., software-keyboard or driver-suspension).

0  Totally dissimilar

and unrelated monarchy).

The two words do not mean the same thing and are not on the same topic (e.g., pencil-frog or PlayStation-

Table 2: The five-point Likert scale used to rate the similarity of item pairs. See Table 4 for examples.

Similarity (Jurgens et al., 2014) which was de-
signed to systematically order a broad range of
semantic relations: synonymy, similarity, related-
ness, topical association, and unrelatedness. Table
2 describes the five points in the similarity scale
along with example word pairs.

Pairing word selection. Having the initial 500-
word seed set at hand, we selected a pair for each
word. The selection was carried out in such a
way as to ensure a uniform distribution of pairs
across the similarity scale. In order to do this, we
first assigned a random intended similarity to each
pair. The annotator then had to pick the second
word so as to match the intended score. In order
to allow the annotator to have a broader range of
candidate words, the intended score was consid-
ered as a similarity interval, one of [0-1], [1-2],
[2-3] and [3,4]. For instance, if the first word was
helicopter and the presumed similarity was [3-4],
the annotator had to pick a pairing word which
was “semantically similar” (see Table 2) to heli-
copter, e.g., plane. Of the 500 pairing words, 45
(9%) and 71 (14%) were named entities and mul-
tiwords, respectively. This resulted in an English
dataset comprising 500 word pairs, 105 (21%) and
112 (22%) of which have at least one named entity
and multiword, respectively.

2.1.2 Dataset translation

The remaining four multilingual datasets (i.e.,
Farsi, German, Italian, and Spanish) were con-
structed by translating words in the English dataset
to the target language. We had two goals in
mind while selecting translation as the construc-
tion strategy of these datasets (as opposed to inde-
pendent word samplings per language): (1) to have
comparable datasets across languages in terms
of domain coverage, multiword and named en-
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tity distribution* and (2) to enable an automatic
construction of cross-lingual datasets (see Section
2.2).

Each English word pair was translated by two
independent annotators. In the case of disagree-
ment, a third annotator was asked to pick the pre-
ferred translation. While translating, the annota-
tors were shown the word pair along with their
initial similarity score, which was provided to help
them in selecting the correct translation for the in-
tended meanings of the words.

2.1.3 Scoring

The annotators were instructed to follow the
guidelines, with special emphasis on distinguish-
ing between similarity and relatedness. Further-
more, although the similarity scale was originally
designed as a Likert scale, annotators were given
flexibility to assign values between the defined
points in the scale (with a step size of 0.25), in-
dicating a blend of two relations. As a result of
this procedure, we obtained 500 word pairs for
each of the five languages. The pairs in each lan-
guage were shuffled and their initial scores were
discarded. Three annotators were then asked to
assign a similarity score to each pair according to
our similarity scale (see Section 2.1.1).

Table 3 (first row) reports the average pairwise
Pearson correlation among the three annotators for
each of the five languages. Given the fact that our
word pairs spanned a wide range of domains, and
that there was a possibility for annotators to mis-
understand some words, we devised a procedure
to check the quality of the annotations and to im-
prove the reliability of the similarity scores. To
this end, for each dataset and for each annotator

* Apart from the German dataset in which the proportion
of multiwords significantly reduces (from 22% of English to
around 11%) due to the compounding nature of the German
language, other datasets maintain similar proportions of mul-
tiwords to those of the English dataset.



English Farsi German Italian Spanish
Initial scores 0.836 0.839 0.864 0.798 0.829
Revised scores 0.893 0.906 0.916 0.900 0.890

Table 3: Average pairwise Pearson correlation among annotators for the five monolingual datasets.

MONOLINGUAL

DE Tuberkulose LED 0.25
Es Zumo batido 3.00
EN Multiple Sclerosis  MS 4.00
IT Nazioni Unite Ban Ki-moon 2.25
Fa Alels bl 2,08
CROSS-LINGUAL
DE-Es  Sessel taburete 3.08
DE-FA  Lawine Sy 2.25
DE-IT Taifun ciclone 3.46
EN-DE  pancreatic cancer ~ Chemotherapie  1.75
EN-Es  Jupiter Mercurio 3.25
EN-FA film = Sen 0.25
EN-IT  island penisola 3.08
Es-FA  duna oble 2.25
Es-IT estrella pianeta 2.83
IT-FA avvocato Sigles 0.08

Table 4: Example pairs and their ratings (EN: En-
glish, DE: German, ES: Spanish, IT: Italian, FA:
Farsi).

we picked the subset of pairs for which the dif-
ference between the assigned similarity score and
the average of the other two annotations was more
than 1.0, according to our similarity scale. The
annotator was then asked to revise this subset per-
forming a more careful investigation of the possi-
ble meanings of the word pairs contained therein,
and change the score if necessary. This procedure
resulted in considerable improvements in the con-
sistency of the scores. The second row in Table
3 (“Revised scores”) shows the average pairwise
Pearson correlation among the three revised sets
of scores for each of the five languages. The inter-
annotator agreement for all the datasets is consis-
tently in the 0.9 ballpark, which demonstrates the
high quality of our multilingual datasets thanks to
careful annotation of word pairs by experts.

2.2 Cross-lingual datasets

The cross-lingual datasets were automatically cre-
ated on the basis of the translations obtained with
the method described in Section 2.1.2 and using
the approach of Camacho-Collados et al. (2015).
By intersecting two aligned translated pairs across

http://lcl.uniromal.it/
similarity-datasets/

19

EN DE ES IT FA
EN | 500 914 978 970 952
DE| - 500 956 912 888
ES | - - 500 967 967
IT - - - 500 916
FA | - - - - 500

Table 5: Number of word pairs in each dataset.
The cells in the main diagonal of the table (e.g.,
EN-EN) correspond the monolingual datasets of
subtask 1.

two languages (e.g., mind-brain in English and
mente-cerebro in Spanish), the approach creates
two cross-lingual pairs between the two languages
(mind-cerebro and brain-mente in the example).
The similarity scores for the constructed cross-
lingual pairs are computed as the average of
the corresponding language-specific scores in the
monolingual datasets. In order to avoid seman-
tic shifts between languages interfering in the pro-
cess, these pairs are only created if the differ-
ence between the corresponding language-specific
scores is lower than 1.0. The full details of the al-
gorithm can be found in Camacho-Collados et al.
(2015). The approach has been validated by hu-
man judges and shown to achieve agreements of
around 0.90 with human judges, which is similar
to inter-annotator agreements reported in Section
2.1.3. See Table 4 for some sample pairs in all
monolingual and cross-lingual datasets. Table 5
shows the final number of pairs for each language
pair.

3 Evaluation

We carried out the evaluation on the datasets de-
scribed in the previous section. The experimental
setting is described in Section 3.1 and the results
are presented in Section 3.2.

3.1 Experimental setting

3.1.1 Evaluation measures and official scores

Participating systems were evaluated according to
standard Pearson and Spearman correlation mea-



sures on all word similarity datasets, with the fi-
nal official score being calculated as the harmonic
mean of Pearson and Spearman correlations (Jur-
gens et al., 2014). Systems were allowed to partic-
ipate in either multilingual word similarity, cross-
lingual word similarity, or both. Each participat-
ing system was allowed to submit a maximum of
two runs.

For the multilingual word similarity subtask,
some systems were multilingual (applicable to dif-
ferent languages), whereas others were monolin-
gual (only applicable to a single language). While
monolingual approaches were evaluated in their
respective languages, multilingual and language-
independent approaches were additionally given a
global ranking provided that they tested their sys-
tems on at least four languages. The final score of
a system was calculated as the average harmonic
mean of Pearson and Spearman correlations of the
four languages on which it performed best.

Likewise, the participating systems of the cross-
lingual semantic similarity subtask were allowed
to provide a score for a single cross-lingual
dataset, but must have provided results for at least
six cross-lingual word similarity datasets in order
to be considered for the final ranking. For each
system, the global score was computed as the aver-
age harmonic mean of Pearson and Spearman cor-
relation on the six cross-lingual datasets on which
it provided the best performance.

3.1.2 Shared training corpus

We encouraged the participants to use a shared text
corpus for the training of their systems. The use
of the shared corpus was intended to mitigate the
influence that the underlying training corpus might
have upon the quality of obtained representations,
laying a common ground for a fair comparison of
the systems.

* Subtask 1. The common corpus for subtask
1 was the Wikipedia corpus of the target lan-
guage. Specifically, systems made use of the
Wikipedia dumps released by Al-Rfou et al.
(2013).6

* Subtask 2. The common corpus for subtask
2 was the Europarl parallel corpus’. This
corpus is available for all languages except

*https://sites.google.com/site/rmyeid/
projects/polyglot

"http://opus.lingfil.uu.se/Europarl.
php
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Farsi. For pairs involving Farsi, participants
were allowed to use the OpenSubtitles2016
parallel corpora®. Additionally, we proposed
a second type of multilingual corpus to al-
low the use of different techniques exploiting
comparable corpora. To this end, some par-
ticipants made use of Wikipedia.

3.1.3 Participating systems

This task was targeted at evaluating multilingual
and cross-lingual word similarity measurement
techniques. However, it was not only limited to
this area of research, as other fields such as se-
mantic representation consider word similarity as
one of their most direct benchmarks for evalua-
tion. All kinds of semantic representation tech-
niques and semantic similarity systems were en-
couraged to participate.

In the end we received a wide variety of par-
ticipants: proposing distributional semantic mod-
els learnt directly from raw corpora, using syn-
tactic features, exploiting knowledge from lexi-
cal resources, and hybrid approaches combining
corpus-based and knowledge-based clues. Due to
lack of space we cannot describe all the systems in
detail, but we recommend the reader to refer to the
system description papers for more information
about the individual systems: HCCL (He et al.,
2017), Citius (Gamallo, 2017), jmp8 (Melka and
Bernard, 2017), 12f (Fialho et al., 2017), QLUT
(Meng et al., 2017), RUFINO (Jimenez et al.,
2017), MERALI (Mensa et al., 2017), Luminoso
(Speer and Lowry-Duda, 2017), hhu (Qasem-
iZadeh and Kallmeyer, 2017), Mahtab (Ranjbar
et al.,, 2017), SEW (Delli Bovi and Raganato,
2017) and Wild_Devs (Rotari et al., 2017), and
000.

3.1.4 Baseline

As the baseline system we included the results of
the concept and entity embeddings of NASARI
(Camacho-Collados et al.,, 2016). These em-
beddings were obtained by exploiting knowledge
from Wikipedia and WordNet coupled with gen-
eral domain corpus-based Word2Vec embeddings
(Mikolov et al., 2013). We performed the eval-
uation with the 300-dimensional English embed-
ded vectors (version 3.0)° and used them for
all languages. For the comparison within and

$http://opus.lingfil.uu.se/
OpenSubtitles2016.php
http://lcl.uniromal.it/nasari/



English Farsi German Italian Spanish

System

r p  Final r p Final r p Final r p Final r p  Final
Luminoso_run2 0.78 080 0.79 |0.51 0.50 0.50 |0.70 0.70 0.70 | 0.73 0.75 0.74 | 0.73 0.75 0.74
Luminoso_runl 0.78 0.79 0.79 | 0.51 0.50 0.50 |0.69 0.69 0.69 |0.73 0.75 0.74 | 0.73 0.75 0.74
QLUT_runl* 0.78 0.78 0.78 - - - - - - - - - - - -
hhu_run1* 0.71 0.70 0.70 | 0.54 0.59 0.56 | - - - - - - - - -
HCCL_runl* 0.68 070 0.69 042 045 044 /058 0.61 059 [0.63 0.67 0.65| 0.69 0.72 0.70
NASARI (baseline) 0.68 0.68 0.68 |0.41 040 0.41 |0.51 0.51 0.51]0.60 0.59 0.60 | 0.60 0.60 0.60
hhu_run2* 0.66 070 0.68 |0.61 0.60 0.60 | - - - - - - - - -
QLUT _run2* 0.67 0.67 0.67 - - - - - - - - - - -
RUFINO_runl* 0.65 066 0.66 038 034 0.36 |054 054 054048 047 048 | 053 057 0.55
Citius_run2 0.60 0.71 0.65 - - - - - - - - - 044 064 052
12f_run2 (a.d.) 0.64 0.65 0.65 - - - - - - - - - - - -
12f_runl (a.d.) 0.64 065 064 | - - - - - - - - - - - -
Citius_runl* 0.57 0.65 0.61 - - - - - - - - - 0.44 0.63 0.51
MERALI runl* 0.59 060 059 | - - - - - - - - - - - -
Amateur_runl* 058 059 0.59 - - - - - - - - - - - -
Amateur_run2* 058 059 0.59 - - - - - - - - - - - -
MERALI run2* 0.57 058 0.58 - - - - - - - - - - - -
SEW _run2 (a.d.) 0.56 058 0.57 038 040 0.39 |045 045 045 ]0.57 057 0.57 | 0.61 0.62 0.62
jmp8_runl* 047 069 056 | - - - 1026 0.51 035|041 0.64 0.50 - - -
Wild Devs_runl 046 048 047 - - - - - - - - - - - -
RUFINO_run2* 0.39 040 039 025 026 0.26 1038 0.36 037 {030 031 031 040 041 041
SEW _runl 0.37 041 039 038 040 0.39 |045 045 045057 057 057 | 0.61 062 0.62
hjpwhuer_runl -0.04 -0.03 0.00 |0.00 0.00 0.00 |0.02 0.02 0.02 0.05 0.05 0.05|-0.06 -0.06 0.00
Mahtab_run2* - - - 0.72 0.71 0.71 - - - - - - - - -
Mahtab_runl* - - - 0.72 0.71 0.71 - - - - - - - - -

Table 6: Pearson (), Spearman (p) and official (Final) results of participating systems on the five

monolingual word similarity datasets (subtask 1).

across languages NASARI relies on the lexicaliza-
tions provided by BabelNet (Navigli and Ponzetto,
2012) for the concepts and entities in each lan-
guage. Then, the final score was computed
through the conventional closest senses strategy
(Resnik, 1995; Budanitsky and Hirst, 2006), using
cosine similarity as the comparison measure.

3.2 Results

We present the results of subtask 1 in Section 3.2.1
and subtask 2 in Section 3.2.2.

3.2.1 Subtask 1

Table 6 lists the results on all monolingual
datasets.!  The systems which made use of
the shared Wikipedia corpus are marked with
* in Table 6. Luminoso achieved the best re-
sults in all languages except Farsi. Luminoso
couples word embeddings with knowledge from
ConceptNet (Speer et al., 2017) using an exten-
sion of Retrofitting (Faruqui et al., 2015), which
proved highly effective. This system addition-
ally proposed two fallback strategies to handle

10Systems followed by (a.d.) submitted their results after
the official deadline.
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System Score Official Rank
Luminoso_run2 0.743 1
Luminoso_runl 0.740 2
HCCL_run1* 0.658 3
NASARI (baseline) 0.598 -
RUFINO_run1* 0.555 4
SEW _run2 (a.d.) 0.552 -
SEW _runl 0.506 5
RUFINO_run2* 0.369 6
hjpwhuer_runl 0.018 7

Table 7: Global results of participating systems
on subtask 1 (multilingual word similarity).

out-of-vocabulary (OOV) instances based on loan-
words and cognates. These two fallback strategies
proved essential given the amount of rare words
or domain-specific words which were present in
the datasets. In fact, most systems fail to provide
scores for all pairs in the datasets, with OOV rates
close to 10% in some cases.

The combination of corpus-based and
knowledge-based features was not unique to



German-Spanish

German-Farsi

German-Italian

English-German

English-Spanish

System

r p  Final r p  Final 7~ p  Final r p  Final r p  Final
Luminoso_run2 072 0.74 0.73] 0.59 059 059|074 0.75 0.74 | 0.76 0.77 0.76 | 0.75 0.77 0.76
Luminoso_runl 072 073 0.72] 059 059 0.59 073 0.74 0.73| 075 0.77 0.76 | 0.75 0.77 0.76
NASARI (baseline) 0.55 0.55 0.55| 046 045 046056 056 056 | 060 0.59 0.60 | 0.64 0.63 0.63
0O00O_runl 0.54 0.56 0.55 - - - 1054 055 055) 056 058 057058 059 058
SEW _run2 (a.d.) 052 054 053] 042 044 043052 052 052]050 053 051]059 0.60 0.59
SEW _runl 052 054 053] 042 044 043|052 052 052] 046 047 046|050 051 0.50
HCCL_run2* (a.d.) 042 039 041 033 0.28 0.30(038 034 036|049 048 048|055 056 0.55
RUFINO _runl1f 031 032 032]023 025 024032 033 033|033 034 033]034 034 034
RUFINO _run2f 0.30 030 030 026 027 027022 024 023|030 030 030|034 033 034
hjpwhu_run2 0.05 0.05 0.05] 001 001 0.010.06 0.05 0.05]| 004 0.04 0.04] 004 0.04 0.04
hjpwhu_run1 0.05 0.05 0.05] 0.01 0.01 0.01|0.06 0.05 0.05]-0.01 -0.01 0.00| 0.04 0.04 0.04
HCCL_runl* 0.03 0.02 0.02] 003 002 0.02/0.03 -001 0.00]| 034 028 031]0.10 0.08 0.09
UniBuc-Sem_runl* — — — - - - - - - 0.05 0.06 0.06| 0.08 0.10 0.09
Citius_run1f - - - - - - - - - - - - 1057 059 058
Citius_run2f - - - - - - - - - - - - 1056 058 057
System English-Farsi English-Italian Spanish-Farsi Spanish-Italian Italian-Farsi

r p  Final r p  Final r p  Final r p  Final r p  Final
Luminoso_run2 0.60 0.59 0.60 | 0.77 0.79 0.78 | 0.62 0.63 0.63 | 0.74 0.77 0.75 | 0.60 0.61 0.60
Luminoso_runl 0.60 0.59 0.60 | 0.76 0.78 0.77 |0.62 0.63 0.63 | 0.74 0.76 0.75| 0.60 0.60 0.60
hhu_runl 049 054 051 - - - - - - - - - - - -
NASARI (baseline) 0.52 049 051 | 0.65 0.65 0.65]049 047 048] 060 059 0.60| 050 0.48 0.49
hhu_run2 043 0.58 049 - - - - - - - - - - - -
SEW_run2 (a.d.) 046 049 048] 058 0.60 0.59 050 0.53 0.52] 059 060 0.60 | 048 0.50 0.49
HCCL_run2* (a.d.) 044 042 043 | 050 049 049037 033 035|043 041 042033 0.28 0.30
SEW _runl 041 043 042052 053 053050 053 0.52] 059 060 0.60| 048 050 0.49
RUFINO _run2f 037 037 037] 024 023 024|030 030 030|028 029 029|021 021 0.21
RUFINO _run1? 026 025 025] 034 034 034025 026 026|035 036 036|025 025 025
HCCL_runl* 0.02 0.01 0.01]0.12 0.07 0.090.05 0.05 0.05]| 008 0.06 0.06]0.02 0.00 0.00
hjpwhu_runl 0.00 -0.01 0.00 |-0.05 -0.05 0.000.01 0.00 0.01] 003 0.03 0.03]0.02 0.02 0.02
hjpwhu_run2 0.00 -0.01 0.00 |-0.05 -0.05 0.00|0.01 0.00 0.01] 0.03 0.03 0.03]|0.02 0.02 0.02
000_runl - - - 0.58 0.59 058 - - - 0.57 0.57 057 - - -
UniBuc-Sem_runl* - - - 0.08 0.10 0.09| - - - - - - - - -

Table 8: Pearson (1), Spearman (p) and the
cross-lingual word similarity datasets (subtask 2).

Luminoso. In fact, most top performing systems
combined these two sources of information. For
Farsi, the best performing system was Mahtab,
which couples information from Word2Vec word
embeddings (Mikolov et al., 2013) and knowledge
resources, in this case FarsNet (Shamsfard et al.,
2010) and BabelNet. For English, the only system
that came close to Luminoso was QLUT, which
was the best-performing system that made use
of the shared Wikipedia corpus for training.
The best configuration of this system exploits
the Skip-Gram model of Word2Vec with an
additive compositional function for computing
the similarity of multiwords. However, Mahtab
and QLUT only performed their experiments in a
single language (Farsi and English, respectively).

For the systems that performed experiments in
at least four of the five languages we computed
a global score (see Section 3.1.1). Global rank-
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official (Final) results of participating systems on the ten

ings and results are displayed in Table 7. Lumi-
noso clearly achieves the best overall results. The
second-best performing system was HCCL, which
also managed to outperform the baseline. HCCL
exploited the Skip-Gram model of Word2Vec
and performed hyperparameter tuning on existing
word similarity datasets. This system did not make
use of external resources apart from the shared
Wikipedia corpus for training. RUFINO, which
also made use of the Wikipedia corpus only, at-
tained the third overall position. The system ex-
ploits PMI and an association measure to capture
second-order relations between words based on
the Jaccard distance (Jimenez et al., 2016).

3.2.2 Subtask 2

The results for all ten cross-lingual datasets are
shown in Table 8. Systems that made use of
the shared Europarl parallel corpus are marked
with * in the table, while systems making use of



System Score Official Rank
Luminoso_run2 0.754 1
Luminoso_runl 0.750 2
NASARLI (baseline) 0.598 -
OoO_runl* 0.567 3
SEW _run2 (a.d.) 0.558 -
SEW_runl 0.532 4
HCCL_run2* (a.d.) 0.464 -
RUFINO _runlf 0.336 5
RUFINO _run2f 0.317 6
HCCL_runl* 0.103 7
hjpwhu_run2 0.039 8
hjpwhu_runl 0.034 9

Table 9: Global results of participating systems in
subtask 2 (cross-lingual word similarity).

Wikipedia are marked with t. Luminoso, the best-
performing system in Subtask 1, also achieved
the best overall results on the ten cross-lingual
datasets. This shows that the combination of
knowledge from word embeddings and the Con-
ceptNet graph is equally effective in the cross-
lingual setting.

The global ranking for this subtask was com-
puted by averaging the results of the six datasets
on which each system performed best. The global
rankings are displayed in Table 9. Luminoso
was the only system outperforming the baseline,
achieving the best overall results. OoO achieved
the second best overall performance using an
extension of the Bilingual Bag-of-Words with-
out Alignments (BilBOWA) approach of Gouws
et al. (2015) on the shared Europarl corpus. The
third overall system was SEW, which leveraged
Wikipedia-based concept vectors (Raganato et al.,
2016) and pre-trained word embeddings for learn-
ing language-independent concept embeddings.

4 Conclusion

In this paper we have presented the SemEval 2017
task on Multilingual and Cross-lingual Semantic
Word Similarity. We provided a reliable frame-
work to measure the similarity between nomi-
nal instances within and across five different lan-
guages (English, Farsi, German, Italian, and Span-
ish). We hope this framework will contribute
to the development of distributional semantics in
general and for languages other than English in
particular, with a special emphasis on multilin-
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gual and cross-lingual approaches. All evaluation
datasets are available for download at http://
alt.gcri.org/semeval2017/task2/.

The best overall system in both tasks was Lu-
minoso, which is a hybrid system that effectively
integrates word embeddings and information from
knowledge resources. In general, this combina-
tion proved effective in this task, as most other top
systems somehow combined knowledge from text
corpora and lexical resources.
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Abstract

We describe SemEval2017 Task 3 on Com-
munity Question Answering. This year,
we reran the four subtasks from SemEval-
2016: (A) Question—-Comment Similarity, (B)
Question—Question Similarity, (C) Question—
External Comment Similarity, and (D) Rerank
the correct answers for a new question in Arabic,
providing all the data from 2015 and 2016 for
training, and fresh data for testing. Additionally,
we added a new subtask E in order to enable ex-
perimentation with Multi-domain Question Du-
plicate Detection in a larger-scale scenario, using
StackExchange subforums. A total of 23 teams
participated in the task, and submitted a total of
85 runs (36 primary and 49 contrastive) for sub-
tasks A—D. Unfortunately, no teams participated
in subtask E. A variety of approaches and fea-
tures were used by the participating systems to
address the different subtasks. The best systems
achieved an official score (MAP) of 88.43, 47.22,
15.46, and 61.16 in subtasks A, B, C, and D, re-
spectively. These scores are better than the base-
lines, especially for subtasks A—C.

1 Introduction

Community Question Answering (CQA) on web
forums such as Stack Overflow! and Qatar Liv-
ing,” is gaining popularity, thanks to the flexibility
of forums to provide information to a user (Mos-
chitti et al., 2016). Forums are moderated only in-
directly via the community, rather open, and sub-
ject to few restrictions, if any, on who can post and
answer a question, or what questions can be asked.
On the positive side, a user can freely ask any
question and can expect a variety of answers. On
the negative side, it takes efforts to go through the
provided answers of varying quality and to make
sense of them. It is not unusual for a popular ques-
tion to have hundreds of answers, and it is very
time-consuming for a user to inspect them all.

'"http://stackoverflow.com/
http://www.gatarliving.com/forum
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Hence, users can benefit from automated tools to
help them navigate these forums, including sup-
port for finding similar existing questions to a
new question, and for identifying good answers,
e.g., by retrieving similar questions that already
provide an answer to the new question.

Given the important role that natural language
processing (NLP) plays for CQA, we have orga-
nized a challenge series to promote related re-
search for the past three years. We have provided
datasets, annotated data and we have developed
robust evaluation procedures in order to establish
a common ground for comparing and evaluating
different approaches to CQA.

In greater detail, in SemEval-2015 Task 3 “An-
swer Selection in Community Question Answer-
ing” (Nakov et al., 2015),> we mainly targeted
conventional Question Answering (QA) tasks,
i.e., answer selection. In contrast, in SemEval-
2016 Task 3 (Nakov et al., 2016b), we targeted
a fuller spectrum of CQA-specific tasks, moving
closer to the real application needs,* particularly in
Subtask C, which was defined as follows: “given
(i) a new question and (ii) a large collection of
question-comment threads created by a user com-
munity, rank the comments that are most useful
for answering the new question”. A test question
is new with respect to the forum, but can be re-
lated to one or more questions that have been pre-
viously asked in the forum. The best answers can
come from different question—comment threads.
The threads are independent of each other, the lists
of comments are chronologically sorted, and there
is meta information, e.g., date of posting, who is
the user who asked/answered the question, cate-
gory the question was asked in, etc.

*http://alt.gcri.org/semeval2015/task3
*A system based on SemEval-2016 Task 3 was integrated
in Qatar Living’s betasearch (Hoque et al., 2016):
http://www.gatarliving.com/betasearch
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The comments in a thread are intended to answer
the question initiating that thread, but since this is
aresource created by a community of casual users,
there is a lot of noise and irrelevant material, in ad-
dition to the complications of informal language
use, typos, and grammatical mistakes. Questions
in the collection can also be related in different
ways, although there is in general no explicit rep-
resentation of this structure.

In addition to Subtask C, we designed subtasks
A and B to give participants the tools to create a
CQA system to solve subtask C. Specifically, Sub-
task A (Question-Comment Similarity) is defined
as follows: “given a question from a question—
comment thread, rank the comments according
to their relevance (similarity) with respect to the
question.” Subtask B (Question-Question Similar-
ity) is defined as follows: ‘“given a new question,
rerank all similar questions retrieved by a search
engine, assuming that the answers to the similar
questions should also answer the new question.”

The relationship between subtasks A, B, and C
is illustrated in Figure 1. In the figure, g stands for
the new question, ¢’ is an existing related question,
and c is a comment within the thread of question
q'. The edge qc relates to the main CQA task (sub-
task C), i.e., deciding whether a comment for a po-
tentially related question is a good answer to the
original question. This relation captures the rele-
vance of c for q. The edge qq’ represents the sim-
ilarity between the original and the related ques-
tions (subtask B). This relation captures the relat-
edness of q and ¢'. Finally, the edge ¢/c represents
the decision of whether c is a good answer for the
question from its thread, ¢’ (subtask A). This re-
lation captures the appropriateness of ¢ for ¢’. In
this particular example, ¢ and ¢’ are indeed related,
and c is a good answer for both ¢ and q.

The participants were free to approach Subtask
C with or without solving Subtasks A and B, and
participation in the main subtask and/or the two
subtasks was optional.

We had three objectives for the first two edi-
tions of our task: (i) to focus on semantic-based
solutions beyond simple “bag-of-words” represen-
tations and “word matching” techniques; (ii) to
study new NLP challenges arising in the CQA
scenario, e.g., relations between the comments in
a thread, relations between different threads, and
question-to-question similarity; and (iii) to facili-
tate the participation of non-IR/QA experts.

q: ‘ Can I drive with an Australian driver’s license in Qatar?
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\ :

q

How long can i drive in Qatar with my
international driver's permit before I'm forced
to change my Australian license to a Qatari
one? When I do change over to a Qatar license
do I actually lose my Australian license? I'd
prefer to keep it if possible...

depends on the insurer, Qatar Insurance Company said this in email
to me: “Thank you for your email! With regards to your query
below, a foreigner is valid to drive in Doha with the following
conditions: Foreign driver with his country valid driving license
allowed driving only for one week from entry date Foreign driver
with international valid driving license allowed driving for 6
months from entry date Foreign driver with GCC driving license
allowed driving for 3 months from entry”. As an Aussie your driving
licence should be transferable to a Qatar one with only the eyetest
(temporary, then permanent once RP sorted).

Figure 1: The similarity triangle for CQA, show-
ing the three pairwise interactions between the
original question ¢, the related question ¢/, and a
comment c in the related question’s thread.

The third objective was achieved by providing the
set of potential answers and asking the participants
to (re)rank the answers, and also by defining two
optional subtasks (A and B), in addition to the
main subtask (i.e., C).

Last year, we were successful in attracting a
large number of participants to all subtasks. How-
ever, as the task design was new (we added sub-
tasks B and C in the 2016 edition of the task), we
felt that participants would benefit from a rerun,
with new test sets for subtasks A—C.

We preserved the multilinguality aspect (as in
2015 and 2016), providing data for two languages:
English and Arabic. In particular, we had an Ara-
bic subtask D, which used data collected from
three medical forums. This year, we used a
slightly different procedure for the preparation of
test set compared to the way the training, devel-
opment, and test data for subtask D was collected
last year.

Additionally, we included a new subtask,
subtask E, which enables experimentation on
Question—Question Similarity on a large-scale
CQA dataset, i.e., StackExchange, based on the
CQADupStack data set (Hoogeveen et al., 2015).
Subtask E is a duplicate question detection task,
and like Subtask B, it is focused on question—
question similarity. Participants were asked to
rerank 50 candidate questions according to their
relevance with respect to each query question. The
subtask included several elements that differenti-
ate it from Subtask B (see Section 3.2).



We provided manually annotated training data for
both languages and for all subtasks. All exam-
ples were manually labeled by a community of
annotators using a crowdsourcing platform. The
datasets and the annotation procedure for the old
data for subtasks A, B and C are described in
(Nakov et al., 2016b). In order to produce the new
data for Subtask D, we used a slightly different
procedure compared to 2016, which we describe
in Section 3.1.1.

The remainder of this paper is organized as fol-
lows: Section 2 introduces related work. Section 3
gives a more detailed definition of the subtasks;
it also describes the datasets and the process of
their creation, and it explains the evaluation mea-
sures we used. Section 4 presents the results for
all subtasks and for all participating systems. Sec-
tion 5 summarizes the main approaches used by
these systems and provides further discussion. Fi-
nally, Section 6 presents the main conclusions.

2 Related Work

The first step to automatically answer questions on
CQA sites is to retrieve a set of questions similar
to the question that the user has asked. This set of
similar questions is then used to extract possible
answers for the original input question. Despite
its importance, question similarity for CQA is a
hard task due to problems such as the “lexical gap”
between the two questions.

Question-question similarity has been featured
as a subtask (subtask B) of SemEval-2016 Task 3
on Community Question Answering (Nakov et al.,
2016b); there was also a similar subtask as part of
SemEval-2016 Task 1 on Semantic Textual Sim-
ilarity (Agirre et al.,, 2016). Question-question
similarity is an important problem with applica-
tion to question recommendation, question du-
plicate detection, community question answering,
and question answering in general. Typically,
it has been addressed using a variety of textual
similarity measures. Some work has paid atten-
tion to modeling the question topic, which can be
done explicitly, e.g., using question topic and fo-
cus (Duan et al., 2008) or using a graph of topic
terms (Cao et al., 2008), or implicitly, e.g., using
a language model with a smoothing method based
on the category structure of Yahoo! Answers (Cao
et al., 2009) or using LDA topic language model
that matches the questions not only at the term
level but also at the topic level (Zhang et al., 2014).
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Another important aspect is syntactic structure,
e.g., Wang et al. (2009) proposed a retrieval model
for finding similar questions based on the similar-
ity of syntactic trees, and Da San Martino et al.
(2016) used syntactic kernels. Yet another emerg-
ing approach is to use neural networks, e.g., dos
Santos et al. (2015) used convolutional neural net-
works (CNNs), Romeo et al. (2016) used long
short-term memory (LSTMs) networks with neu-
ral attention to select the important part of text
when comparing two questions, and Lei et al.
(2016) used a combined recurrent—convolutional
model to map questions to continuous semantic
representations. Finally, translation (Jeon et al.,
2005; Zhou et al., 2011) and cross-language mod-
els (Da San Martino et al., 2017) have also been
popular for question-question similarity.

Question-answer similarity has been a subtask
(subtask A) of our task in its two previous edi-
tions (Nakov et al., 2015, 2016b). This is a well-
researched problem in the context of general ques-
tion answering. One research direction has been
to try to match the syntactic structure of the ques-
tion to that of the candidate answer. For exam-
ple, Wang et al. (2007) proposed a probabilis-
tic quasi-synchronous grammar to learn syntac-
tic transformations from the question to the can-
didate answers. Heilman and Smith (2010) used
an algorithm based on Tree Edit Distance (TED)
to learn tree transformations in pairs. Wang and
Manning (2010) developed a probabilistic model
to learn tree-edit operations on dependency parse
trees. Yao et al. (2013) applied linear chain condi-
tional random fields (CRFs) with features derived
from TED to learn associations between questions
and candidate answers. Moreover, syntactic struc-
ture was central for some of the top systems that
participated in SemEval-2016 Task 3 (Filice et al.,
2016; Barron-Cedefio et al., 2016).

Another important research direction has been
on using neural network models for question-
answer similarity (Feng et al., 2015; Severyn and
Moschitti, 2015; Wang and Nyberg, 2015; Tan
et al., 2015; Barrén-Cedefio et al., 2016; Filice
et al., 2016; Mohtarami et al., 2016). For instance,
Tan et al. (2015) used neural attention over a bidi-
rectional long short-term memory (LSTM) neural
network in order to generate better answer repre-
sentations given the questions. Another example is
the work of Tymoshenko et al. (2016), who com-
bined neural networks with syntactic kernels.



Yet another research direction has been on us-
ing machine translation models as features for
question-answer similarity (Berger et al., 2000;
Echihabi and Marcu, 2003; Jeon et al., 2005; Sori-
cut and Brill, 2006; Riezler et al., 2007; Li and
Manandhar, 2011; Surdeanu et al., 2011; Tran
et al., 2015; Hoogeveen et al., 2016a; Wu and
Zhang, 2016), e.g., a variation of IBM model 1
(Brown et al., 1993), to compute the probability
that the question is a “translation” of the candidate
answer. Similarly, (Guzman et al., 2016a,b) ported
an entire machine translation evaluation frame-
work (Guzmadn et al., 2015) to the CQA problem.

Using information about the answer thread is
another important direction, which has been ex-
plored mainly to address Subtask A. In the 2015
edition of the task, the top participating systems
used thread-level features, in addition to local fea-
tures that only look at the question—answer pair.
For example, the second-best team, HITSZ-ICRC,
used as a feature the position of the comment in
the thread, such as whether the answer is first or
last (Hou et al., 2015). Similarly, the third-best
team, QCRI, used features to model a comment in
the context of the entire comment thread, focusing
on user interaction (Nicosia et al., 2015). Finally,
the fifth-best team, ICRC-HIT, treated the answer
selection task as a sequence labeling problem and
proposed recurrent convolutional neural networks
to recognize good comments (Zhou et al., 2015b).

In follow-up work, Zhou et al. (2015a) included
long-short term memory (LSTM) units in their
convolutional neural network to model the classifi-
cation sequence for the thread, and Barrén-Cedefio
et al. (2015) exploited the dependencies between
the thread comments to tackle the same task. This
was done by designing features that look globally
at the thread and by applying structured prediction
models, such as CRFs.

This research direction was further extended by
Joty et al. (2015), who used the output structure at
the thread level in order to make more consistent
global decisions about the goodness of the answers
in the thread. They modeled the relations between
pairs of comments at any distance in the thread,
and combined the predictions of local classifiers
using graph-cut and Integer Linear Programming.
In follow up work, Joty et al. (2016) proposed joint
learning models that integrate inference within the
learning process using global normalization and
an Ising-like edge potential.
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Question—External comment similarity is our
main task (subtask C), and it is inter-related to
subtasks A and B, as described in the triangle of
Figure 1. This task has been much less studied
in the literature, mainly because its definition is
specific to our SemEval Task 3, and it first ap-
peared in the 2016 edition (Nakov et al., 2016b).
Most of the systems that took part in the compe-
tition, including the winning system of the SU-
per team (Mihaylova et al., 2016), approached
the task indirectly by solving subtask A at the
thread level and then using these predictions to-
gether with the reciprocal rank of the related ques-
tions in order to produce a final ranking for sub-
task C. One exception is the KeLP system (Fil-
ice et al., 2016), which was ranked second in the
competition. This system combined information
from different subtasks and from all input com-
ponents. It used a modular kernel function, in-
cluding stacking from independent subtask A and
B classifiers, and applying SVMs to train a Good
vs. Bad classifier (Filice et al., 2016). In a related
study, Nakov et al. (2016a) discussed the input in-
formation to solve Subtask C, and concluded that
one has to model mainly question-to-question sim-
ilarity (Subtask B) and answer goodness (subtask
A), while modeling the direct relation between the
new question and the candidate answer (from a re-
lated question) was found to be far less important.

Finally, in another recent approach, Bonadiman
et al. (2017) studied how to combine the different
CQA subtasks. They presented a multitask neural
architecture where the three tasks are trained to-
gether with the same representation. The authors
showed that the multitask system yields good im-
provement for Subtask C, which is more complex
and clearly dependent on the other two tasks.

Some notable features across all subtasks. Fi-
nally, we should mention some interesting fea-
tures used by the participating systems across all
three subtasks. This includes fine-tuned word em-
beddings® (Mihaylov and Nakov, 2016b); features
modeling text complexity, veracity, and user troll-
ness® (Mihaylova et al., 2016); sentiment polar-
ity features (Nicosia et al., 2015); and PMI-based
goodness polarity lexicons (Balchev et al., 2016;
Mihaylov et al., 2017a).

Shttps://github.com/tbmihailov/
semeval20l6-task3-cga

SUsing a heuristic that if several users call somebody a
troll, then s/he should be one (Mihaylov et al., 2015a,b; Mi-
haylov and Nakov, 2016a; Mihaylov et al., 2017b).



Cat Train+Dev+Test Train(1,2)+Dev+Test Test
ategory from SemEval-2015 from SemEval-2016 es

Original Questions - (200+67)+50+70 88
Related Questions 2,480+291+319 (1,999+670)+500+700 880
— Perfect Match - (181+54)+59+81 24
— Relevant - (606+242)+155+152 139
— Irrelevant - (1,212+374)+286+467 717
Related Comments - (19,990+6,700)+5,000+7,000 8,800
(with respect to Original Question)

— Good - (1,988+849)+345+654 246
—Bad - (16,319+5,154)+4,061+5,943 8,291
— Potentially Useful - (1,683+697)+594+403 263
Related Comments 14,893+1,529+1,876  (14,110+3,790)+2,440+3,270 2,930
(with respect to Related Question)

— Good 7,418+813+946 (5,287+1,364)+818+1,329 1,523
—Bad 5,971+544+774 (6,362+1,777)+1,209+1,485 1,407
— Potentially Useful 1,504+172+156 (2,461+649)+413+456 0

Table 1: Statistics about the English CQA-QL dataset. Note that the Potentially Useful class was merged
with Bad at test time for SemEval-2016 Task 3, and was eliminated altogether at SemEval-2017 task 3.

3 Subtasks and Data Description

The 2017 challenge was structured as a set of five
subtasks, four of which (A, B, C and E) were of-
fered for English, while the fifth (D) one was for
Arabic. We leveraged the data we developed in
2016 for the first four subtasks, creating only new
test sets for them, whereas we built a completely
new dataset for the new Subtask E.

3.1 Old Subtasks

The first four tasks and the datasets for them are
described in (Nakov et al., 2016b). Here we re-
view them briefly.

English subtask A  Question-Comment Similar-
ity. Given a question () and the first ten com-
ments’ in its question thread (cy, . . ., c19), the goal
is to rank these ten comments according to their
relevance with respect to that question.

Note that this is a ranking task, not a classifica-
tion task; we use mean average precision (MAP)
as an official evaluation measure. This setting
was adopted as it is closer to the application sce-
nario than pure comment classification. For a per-
fect ranking, a system has to place all “Good”
comments above the “PotentiallyUseful” and the
“Bad” comments; the latter two are not actually
distinguished and are considered “Bad” at evalu-
ation time. This year, we elliminated the ‘“Poten-
tiallyUseful” class for test at annotation time.

"We limit the number of comments we consider to the first
ten only in order to spare some annotation efforts.
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English subtask B Question-Question Similar-
ity. Given a new question () (aka original ques-
tion) and the set of the first ten related ques-
tions from the forum (Q1, . .., Q1) retrieved by a
search engine, the goal is to rank the related ques-
tions according to their similarity with respect to
the original question.

In this case, we consider the “PerfectMatch”
and the “Relevant” questions both as good (i.e.,
we do not distinguish between them and we will
consider them both “Relevant”), and they should
be ranked above the “Irrelevant” questions. As in
subtask A, we use MAP as the official evaluation
measure. To produce the ranking of related ques-
tions, participants have access to the correspond-
ing related question-thread.® Thus, being more
precise, this subtask could have been named Ques-
tion — Question+Thread Similarity.

English subtask C Question-External Com-
ment Similarity. Given a new question @ (also
known as the original question), and the set of the
first ten related questions (Q1, . .., Q10) from the
forum retrieved by a search engine for (), each as-
sociated with its first ten comments appearing in
Qs thread (c1, ..., 1% ..., clg, - . ., ci(), the goal
is to rank these 10x 10 = 100 comments {c] 112:1
according to their relevance with respect to the
original question Q).

8Note that the search engine indexes entire Web pages,
and thus, the search engine has compared the original ques-

tion to the related questions together with their comment
threads.



This is the main English subtask. As for subtask
A, we want the “Good” comments to be ranked
above the “PotentiallyUseful” and the “Bad” com-
ments, which will be considered just bad in terms
of evaluation. Although, the systems are supposed
to work on 100 comments, we take an application-
oriented view in the evaluation, assuming that
users would like to have good comments concen-
trated in the first ten positions. We believe users
care much less about what happens in lower po-
sitions (e.g., after the 10th) in the rank, as they
typically do not ask for the next page of results
in a search engine such as Google or Bing. This
is reflected in our primary evaluation score, MAP,
which we restrict to consider only the top ten re-
sults for subtask C.

Arabic subtask D Rank the correct answers
for a new question. Given a new question ()
(aka the original question), the set of the first
30 related questions retrieved by a search en-
gine, each associated with one correct answer
((Q1,c1) ..., (@30, c30)), the goal is to rank the 30
question-answer pairs according to their relevance
with respect to the original question. We want the
“Direct” and the “Relevant” answers to be ranked
above the “Irrelevant” answers; the former two are
considered “Relevant” in terms of evaluation. We
evaluate the position of “Relevant” answers in the
rank, and this is again a ranking task. Unlike the
English subtasks, here we use 30 answers since
the retrieval task is much more difficult, leading
to low recall, and the number of correct answers
is much lower. Again, the systems were evaluated
using MAP, restricted to the top-10 results.

3.1.1 Data Description for A-D

The English data for subtasks A, B, and C comes
from the Qatar Living forum, which is orga-
nized as a set of seemingly independent question—
comment threads. In short, for subtask A, we
annotated the comments in a question-thread as
“Good”, “PotentiallyUseful” or “Bad” with re-
spect to the question that started the thread. Addi-
tionally, given original questions, we retrieved re-
lated question—comment threads and annotated the
related questions as “PerfectMatch”, “Relevant”,
or “Irrelevant” with respect to the original ques-
tion (Subtask B). We then annotated the comments
in the threads of related questions as “Good”, “Po-
tentiallyUseful” or “Bad” with respect to the orig-
inal question (Subtask C).
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For Arabic, the data was extracted from medical
forums and has a different format. Given an orig-
inal question, we retrieved pairs of the form (re-
lated_question, answer_to_the_related_question).
These pairs were annotated as “Direct” answer,
“Relevant” and “Irrelevant” with respect to the
original question.

For subtasks A, B, and C we annotated new
English test data following the same setup as for
SemEval-2016 Task 3 (Nakov et al., 2016b), ex-
cept that we elliminated the “Potentially Useful”
class for subtask A. We first selected a set of ques-
tions to serve as original questions. In a real-world
scenario those would be questions that had never
been asked previously, but here we used existing
questions from Qatar Living.

From each original question, we generated a
query, using the question’s subject (after some
word removal if the subject was too long). Then,
we executed the query against Google, limiting
the search to the Qatar Living forum, and we
collected up to 200 resulting question-comment
threads as related questions. Afterwards, we fil-
tered out threads with less than ten comments as
well as those for which the question was more than
2,000 characters long. Finally, we kept the top-10
surviving threads, keeping just the first 10 com-
ments in each thread.

We formatted the results in XML with UTF-8
encoding, adding metadata for the related ques-
tions and for their comments; however, we did not
provide any meta information about the original
question, in order to emulate a scenario where it is
a new question, never asked before in the forum.
In order to have a valid XML, we had to do some
cleansing and normalization of the data. We added
an XML format definition at the beginning of the
XML file and we made sure it validated.

We organized the XML data as a sequence
of original questions (OrgQuestion), where each
question has a subject, a body, and a unique
question identifier (ORGQ_ID). Each such orig-
inal question is followed by ten threads, where
each thread consists of a related question (from the
search engine results) and its first ten comments.

We made available to the participants for train-
ing and development the data from 2016 (and for
subtask A, also from 2015), and we created a new
test set of 88 new questions associated with 880
question candidates and 8,800 comments; details
are shown in Table 1.



SemEval-2016 data

Category Tram Dev Test Test-2017
Questions 1,031 250 250 1,400
QA Pairs 30,411 7,384 7,369 12,600
— Direct 917 70 65 891
— Related 17,412 1,446 1,353 4,054
—Irrelevant 12,082 5,868 5,951 7,655

Table 2: Statistics about the CQA-MD corpus.

For subtasks D we had to annotate new test
data. In 2016, we used data from three Arabic
medical websites, which we downloaded and in-
dexed locally using Solr.” Then, we performed
21 different query/document formulations, and we
merged the retrieved results, ranking them accord-
ing to the reciprocal rank fusion algorithm (Cor-
mack et al., 2009). Finally, we truncated the result
list to the 30 top-ranked question—answer pairs.

This year we only used one of these websites,
namely A1t ibbi . com!? First, we selected some
questions from that website to be used as original
questions, and then we used Google to retrieve po-
tentially related questions using the site :  filter.

We turned the question into a query as follows:
We first queried Google using the first thirty words
from the original question. If this did not return
ten results, we reduced the query to the first ten
non-stopwords!! from the question, and if needed
we further tried using the first five non-stopwords
only. If we did not manage to obtain ten results,
we discarded that original question.

If we managed to obtain ten results, we fol-
lowed the resulting links and we parsed the target
page to extract the question and the answer, which
is given by a physician, as well as some metadata
such as date, question classification, doctor’s name
and country, etc.

In many cases, Google returned our original
question as one of the search results, in which
case we had to exclude it, thus reducing the re-
sults to nine. In the remaining cases, we excluded
the 10th result in order to have the same num-
ber of candidate question—answer pairs for each
original question, namely nine. Overall, we col-
lected 1,400 original questions, with exactly nine
potentially related question—answer pairs for each
of them, i.e., a total of 12,600 pairs.

9https ://lucene.apache.org/solr/
Pnttp://wuw.altibbi . com/ iwb- il
'"'We used the following Arabic stopword list: https:

//sites.google.com/site/kevinbouge/
stopwords—1lists

We created an annotation job on CrowdFlower
to obtain judgments about the relevance of the
question—answer pairs with respect to the origi-
nal question. We controlled the quality of anno-
tation using a hidden set of 50 test questions. We
had three judgments per example, which we com-
bined using the CrowdFlower mechanism. The av-
erage agreement was 81%. Table 2 shows statistics
about the resulting dataset, together with statistics
about the datasets from 2016, which could be used
for training and development.

3.1.2 Evaluation Measures for A-D

The official evaluation measure we used to rank
the participating systems is Mean Average Pre-
cision (“MAP”), calculated over the top-10 com-
ments as ranked by a participating system. We
further report the results for two unofficial ranking
measures, which we also calculated over the top-
10 results only: Mean Reciprocal Rank (“MRR”)
and Average Recall (“AvgRec”). Additionally, we
report the results for four standard classification
measures, which we calculate over the full list of
results: Precision, Recall and F; (with respect to
the Good/Relevant class), and Accuracy.

We released a specialized scorer that calculates
and returns all the above-mentioned scores.

3.2 The New Subtask E

Subtask E is a duplicate question detection task,
similar to Subtask B. Participants were asked to
rerank 50 candidate questions according to their
relevance with respect to each query question. The
subtask included several elements that distinguish
it from Subtask B:

e Several meta-data fields were added, includ-
ing the tags that are associated with each
question, the number of times a question has
been viewed, and the score of each question,
answer and comment (the number of upvotes
it has received from the community, minus
the number of downvotes), as well as user
statistics, containing information such as user
reputation and user badges.!?

e At test time, two extra test sets containing
data from two surprise subforums were pro-
vided, to test the participants’ system’s cross-
domain performance.

2The complete list of available meta-data fields can be
found on the Task website.



Subforums Train Development Test
Android 10,360 3,197 3,531
English 20,701 6,596 6,383
Gaming 14,951 4,964 4,675
Wordpress 13,733 5,007 3,816
Surprise 1 — — 5,123
Surprise 2 — — 4,039

Table 3: Statistics on the data for Subtask E.
Shown is the number of query questions; for each
of them, 50 candidate questions were provided.

e The participants were asked to truncate their
result list in such a way that only ‘“Perfect-
Match” questions appeared in it. The evalua-
tion metrics were adjusted to be able to han-
dle empty result lists (see Section 3.2.2).

The data was taken from StackExchange in-
stead of the Qatar Living forums, and re-
flected the real-world distribution of dupli-
cate questions in having many query ques-
tions with zero relevant results.

The cross-domain aspect was of particular inter-
est, as it has not received much attention in earlier
duplicate question detection research.

3.2.1 Data Description for E

The data consisted of questions from the follow-
ing four StackExchange subforums: Android, En-
glish, Gaming, and Wordpress, derived from a data
set known as CQADupStack (Hoogeveen et al.,
2015). Data size statistics can be found in Ta-
ble 3. These subforums were chosen due to their
size, and to reflect a variety of domains.

The data was provided in the same format as for
the other subtasks. Each original question had 50
candidate questions, and these related questions
each had a number of comments. On top of that,
they had a number of answers, and each answer
potentially had individual comments. The differ-
ence between answers and comments is that an-
swers should contain a well-formed answer to the
question, while comments contain things such as
requests for clarification, remarks, and small addi-
tions to someone else’s answer. Since the content
of StackExchange is provided by the community,
the precise delineation between comments and the
main body of a post can vary across forums.
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The relevance labels in the development and in the
training data were sourced directly from the users
of the StackExchange sites, who can vote for ques-
tions to be closed as duplicates: these are the ques-
tions we labeled as PerfectMatch.

The questions labeled as Related are questions
that are not duplicates, but that are somehow sim-
ilar to the original question, also as judged by
the StackExchange community. It is possible that
some duplicate labels are missing, due to the vol-
untary nature of the duplicate labeling on Stack-
Exchange. The development and training data
should therefore be considered a silver standard
(Hoogeveen et al., 2016b).

For the test data, we started an annotation
project together with StackExchange.'®> The goal
was to obtain multiple annotations per question
pair in the test set, from the same community that
provided the labels in the development and in the
training data. We expected the community to react
enthusiastically, because the data would be used to
build systems that can improve duplicate question
detection on the site, ultimately saving the users
manual effort. Unfortunately, only a handful of
people were willing to annotate a sizeable set of
question pairs, thus making their annotations un-
usable for the purpose of this shared task.

An example that includes a query question from
the English subforum, a duplicate of that question,
and a non-duplicate question (with respect to the
query) is shown below:

o Query: Why do bread companies add sugar
to bread?

e Duplicate: What is the purpose of sugar in
baking plain bread?

e Non-duplicate: Is it safe to eat potatoes that
have sprouted?

3.2.2 Evaluation Measure for E

In CQA archives, the majority of new questions do
not have a duplicate in the archive. We maintained
this characteristic in the training, in the develop-
ment, and in the test data, to stay as close to a real
world setting as possible. This means that for most
query questions, the correct result is an empty list.

3A post made by StackExchange about the project can
be found here: http://meta.stackexchange.com/
questions/286329/project-reduplication-
of-deduplication—-has—-begun



This has two consequences: (1) a system that al-
ways returns an empty list is a challenging base-
line to beat, and (2) standard IR evaluation met-
rics like MAP, which is used in the other subtasks,
cannot be used, because they break down when the
result list is empty or there are no relevant docu-
ments for a given query.

To solve this problem we used a modified ver-
sion of MAP, as proposed by Liu et al. (2016).
To make sure standard IR evaluation metrics do
not break down on empty result list queries, Liu
et al. (2016) add a nominal terminal document to
the end of the ranking returned by a system, to
indicate where the number of relevant documents
ended. This terminal document has a correspond-
ing gain value of:

.

The result of this adjustment is that queries with-
out relevant documents in the index, receive a
MAP score of 1.0 for an empty result ranking.
This is desired, because in such cases, the empty
ranking is the correct result.

1 if R=0
S ri/R fR>0

4 Participants and Results

The list of all participating teams can be found in
Table 4. The results for subtasks A, B, C, and D
are shown in tables 5, 6, 7, and 8, respectively.
Unfortunately, there were no official participants
in Subtask E, and thus we present baseline re-
sults in Table 9. In all tables, the systems are
ranked by the official MAP scores for their pri-
mary runs'* (shown in the third column). The
following columns show the scores based on the
other six unofficial measures; the ranking with re-
spect to these additional measures are marked with
a subindex (for the primary runs).

Twenty two teams participated in the challenge
presenting a variety of approaches and features to
address the different subtasks. They submitted a
total of 85 runs (36 primary and 49 contrastive),
which breaks down by subtask as follows: The En-
glish subtasks A, B and C attracted 14, 13, and 6
systems and 31, 34 and 14 runs, respectively. The
Arabic subtask D got 3 systems and 6 runs. And
there were no participants for subtask E.

4Participants could submit one primary run, to be used for
the official ranking, and up to two contrastive runs, which are
scored, but they have unofficial status.
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The best MAP scores had large variability depend-
ing on the subtask, going from 15.46 (best result
for subtask C) to 88.43 (best result for subtask A).
The best systems for subtasks A, B, and C were
able to beat the baselines we provided by sizeable
margins. In subtask D, only the best system was
above the IR baseline.

4.1 Subtask A, English (Question-Comment
Similarity)

Table 5 shows the results for subtask A, English,
which attracted 14 teams (two more than in the
2016 edition). In total 31 runs were submitted: 14
primary and 17 contrastive. The last four rows of
the table show the performance of four baselines.
The first one is the chronological ranking, where
the comments are ordered by their time of posting;
we can see that all submissions but one outper-
form this baseline on all three ranking measures.
The second baseline is a random baseline, which
is 10 MAP points below the chronological rank-
ing. Baseline 3 classifies all comments as Good,
and it outperforms all but three of the primary sys-
tems in terms of F; and one system in terms of
Accuracy. However, it should be noted that the
systems were not optimized for such measures. Fi-
nally, baseline 4 classifies all comments as Bad; it
is outperformed by all primary systems in terms of
Accuracy.

The winner of Subtask A is KeLP with a MAP
of 88.43, closely followed by Beihang-MSRA,
scoring 88.24. Relatively far from the first two, we
find five systems, IIT-UHH, ECNU, bunji, EICA
and SwissAlps, which all obtained an MAP of
around 86.5.

4.2 Subtask B, English (Question-Question
Similarity)

Table 6 shows the results for subtask B, English,
which attracted 13 teams (3 more than in last
year’s edition) and 34 runs: 13 primary and 21
contrastive. This is known to be a hard task. In
contrast to the 2016 results, in which only 6 out
of 11 teams beat the strong IR baseline (i.e., or-
dering the related questions in the order provided
by the search engine), this year 10 of the 13 sys-
tems outperformed this baseline in terms of MAP,
AvgRec and MRR. Moreover, the improvements
for the best systems over the IR baseline are larger
(reaching > 7 MAP points absolute). This is a
remarkable improvement over last year’s results.



The random baseline outperforms two systems
in terms of Accuracy. The “all-good” baseline
is below almost all systems on F;, but the “all-
false” baseline yields the best Accuracy results.
This is partly because the label distribution in the
dataset is biased (81.5% of negative cases), but
also because the systems were optimized for MAP
rather than for classification accuracy (or preci-
sion/recall).

The winner of the task is SimBow with a MAP
of 47.22, followed by LearningToQuestion with
46.93, KeLP with 46.66, and Talla with 45.70.
The other nine systems scored sensibly lower than
them, ranging from about 41 to 45. Note that
the contrastivel run of KeLP, which corresponds
to the KeLP system from last year (Filice et al.,
2016), achieved an even higher MAP of 49.00.

4.3 Subtask C, English (Question-External
Comment Similarity)

The results for subtask C, English are shown in
Table 7. This subtask attracted 6 teams (sizable
decrease compared to last year’s 10 teams), and
14 runs: 6 primary and 8 contrastive. The test set
from 2017 had much more skewed label distribu-
tion, with only 2.8% positive instances, compared
to the ~10% of the 2016 test set. This makes the
overall MAP scores look much lower, as the num-
ber of examples without a single positive comment
increased significantly, and they contribute O to the
average, due to the definition of the measure. Con-
sequently, the results cannot be compared directly
to last year’s.

All primary systems managed to outperform all
baselines with respect to the ranking measures.
Moreover, all but one system outperformed the
“all true” system on F;, and all of them were be-
low the accuracy of the “all false” baseline, due to
the extreme class imbalance.

The best-performing team for subtask C is II7-
UHH, with a MAP of 15.46, followed by bunji
with 14.71, and KeLP with 14.35. The con-
trastivel run of bunji, which used a neural net-
work, obtained the highest MAP, 16.57, two points
higher than their primary run, which also uses the
comment plausibility features. Thus, the differ-
ence seems to be due to the use of comment plau-
sibility features, which hurt the accuracy. In their
SemEval system paper, Koreeda et al. (2017) ex-
plain that the similarity features are more impor-
tant for Subtask C than plausibility features.
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Indeed, Subtask C contains many comments that
are not related to the original question, while can-
didate comments for subtask A are almost always
on the same topic. Another explanation may be the
overfitting to the development set since the authors
manually designed plausibility features using that
set. As aresult, such features perform much worse
on the 2017 test set.

4.4 Subtask D, Arabic (Reranking the
Correct Answers for a New Question)

Finally, the results for subtask D, Arabic are
shown in Table 8. This year, subtask D attracted
only 3 teams, which submitted 6 runs: 3 primary
and 3 contrastive. Compared to last year, the 2017
test set contains a significantly larger number of
positive question—answer pairs (~40% in 2017,
compared to ~20% in 2016), and thus the MAP
scores are higher this year. Moreover, this year,
the IR baseline is coming from Google and is thus
very strong and difficult to beat. Indeed, only the
best system was able to improve on it (marginally)
in terms of MAP, MRR and AvgRec.

As in some of the other tasks, the participants in
Subtask D did not concentrate on optimizing for
precision/recall/Fy/accuracy and they did not pro-
duce sensible class predictions in most cases.

The best-performing system is GW_QA with a
MAP score of 61.16, which barely improves over
the IR baseline of 60.55. The other two systems
UPC-USMBA and QU _BIGIR are about 3-4 points
behind.

4.5 Subtask E, English (Multi-Domain
Question Duplicate Detection)

The baselines for Subtask E can be found in Ta-
ble 9. The IR baseline is BM25 with perfect
truncation after the final relevant document for a
given document (equating to an empty result list
if there are no relevant documents). The zero re-
sults baseline is the score for a system that returns
an empty result list for every single query. This
is a high number for each subforum because for
many queries there are no duplicate questions in
the archive.

As previously stated, there are no results sub-
mitted by participants to be discussed for this sub-
task. Eight teams signed up to participate, but un-
fortunately none of them submitted test results.



5 Discussion and Conclusions

In this section, we first describe features that are
common across the different subtasks. Then, we
discuss the characteristics of the best systems for
each subtask with focus on the machine learning
algorithms and the instance representations used.

5.1 Feature Types

The features the participants used across the sutb-
tasks can be organized into the following groups:

(i) similarity features between questions and
comments from their threads or between original
questions and related questions, e.g., cosine sim-
ilarity applied to lexical, syntactic and semantic
representations, including distributed representa-
tions, often derived using neural networks;

(i) content features, which are special signals
that can clearly indicate a bad comment, e.g.,
when a comment contains “thanks”;

(iii) thread level/meta features, e.g., user ID,
comment rank in the thread;

(iv) automatically generated features from syn-
tactic structures using tree kernels.

Generally, similarity features were developed
for the subtasks as follows:

Subtask A. Similarities between question sub-
ject vs. comment, question body vs. comment, and
question subject+body vs. comment.

Subtask B. Similarities between the original
and the related question at different levels: sub-
ject vs. subject, body vs. body, and subject+body
vs. subject+body.

Subtask C. The same as above, plus the similar-
ities of the original question, subject and body at
all levels with the comments from the thread of the
related question.

Subtask D. The same as above, without infor-
mation about the thread, as there is no thread.

The similarity scores to be used as features
were computed in various ways, e.g., most teams
used dot product calculated over word n-grams
(n=1,2,3), character n-grams, or with TF-IDF
weighting. Simple word overlap, i.e., the num-
ber of common words between two texts, was
also considered, often normalized, e.g., by ques-
tion/comment length. Overlap in terms of nouns
or named entities was also explored.
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5.2 Learning Methods

This year, we saw variety of machine learning ap-
proaches, ranging from SVMs to deep learning.

The KeLP system, which performed best on
Subtask A, was SVM-based and used syntactic
tree kernels with relational links between ques-
tions and comments, together with some standard
text similarity measures linearly combined with
the tree kernel. Variants of this approach were
successfully used in related research (Tymoshenko
et al., 2016; Da San Martino et al., 2016), as well
as in last year’s KeLP system (Filice et al., 2016).

The best performing system on Subtask C, IIT-
UHH, was also SVM-based, and it used tex-
tual, domain-specific, word-embedding and topic-
modeling features. The most interesting as-
pect of this system is their method for dialogue
chain identification in the comment threads, which
yielded substantial improvements.

The best-performing system on Subtask B was
SimBow. They used logistic regression on a rich
combination of different unsupervised textual sim-
ilarities, built using a relation matrix based on
standard cosine similarity between bag-of-words
and other semantic or lexical relations.

This year, we also saw a jump in the popularity
of deep learning and neural networks. For exam-
ple, the Beihang-MSRA system was ranked second
with a result very close to that of KeLP for Subtask
A. They used gradient boosted regression trees,
i.e., XgBoost, as a ranking model to combine
(i) TFXIDF, word sequence overlap, translation
probability, (if) three different types of tree ker-
nels, (iii) subtask-specific features, e.g., whether a
comment is written by the author of the question,
the length of a comment or whether a comment
contains URLSs or email addresses, and (iv) neural
word embeddings, and the similarity score from
Bi-LSTM and 2D matching neural networks.

LearningToQuestion achieved the second best
result for Subtask B using SVM and Logistic Re-
gression as integrators of rich feature representa-
tions, mainly embeddings generated by the follow-
ing neural networks: (i) siamese networks to learn
similarity measures using GloVe vectors (Pen-
nington et al., 2014), (if) bidirectional LSTMs,
(iii) gated recurrent unit (GRU) used as another
network to generate the neural embeddings trained
by a siamese network similar to Bi-LSTM, (iv) and
convolutional neural networks to generate embed-
dings inside the siamese network.



The bunji system, second on Subtask C, produced
features using neural networks that capture the se-
mantic similarities between two sentences as well
as comment plausibility. The neural similarity fea-
tures were extracted using a decomposable atten-
tion model (Parikh et al., 2016), which can model
alignment between two sequences of text, allow-
ing the system to identify possibly related regions
of a question and of a comment, which then helps
it predict whether the comment is relevant with re-
spect to the question. The model compares each
token pair from the question tokens and comment
tokens associating them with an attention weight.
Each question-comment pair is mapped to a real-
value score using a neural network with shared
weights and the prediction loss is calculated list-
wise. The plausibility features are task-specific,
e.g., is the person giving the answer actually trying
to answer the question or is s/he making remarks
or asking for more information. Other features are
the presence keywords such as what, which, who,
where within the question. There are also features
about the question and the comment length. All
these features were merged in a CRF.

Another interesting system is that of 7Talla,
which consists of an ensemble of syntactic, se-
mantic, and IR-based features, i.e., semantic word
alignment, term frequency Kullback-Leibler di-
vergence, and tree kernels. These were integrated
in a pairwise-preference learning handled with a
random forest classifier with 2,000 weak estima-
tors. This system achieved very good performance
on Subtask B.

Regarding Arabic, GW_QA, the best-
performing system for Subtask D, used fea-
tures based on latent semantic models, namely,
weighted textual matrix factorization models
(WTMF), as well as a set of lexical features based
on string lengths and surface-level matching.
WTMF builds a latent model, which is appro-
priate for semantic profiling of a short text. Its
main goal is to address the sparseness of short
texts using both observed and missing words to
explicitly capture what the text is and is not about.
The missing words are defined as those of the
entire training data vocabulary minus those of
the target document. The model was trained on
text data from the Arabic Gigaword as well as on
Arabic data that we provided in the task website,
as part of the task. For Arabic text processing, the
MADAMIRA toolkit was used.
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The second-best team for Arabic, QU-BIGIR, used
SVM-rank with two similarity feature sets. The
first set captured similarity between pairs of text,
i.e., synonym overlap, language model score, co-
sine similarity, Jaccard similarity, etc. The second
set used word2vec to build average word embed-
ding and covariance word embedding similarity to
build the text representation.

The third-best team for Arabic, UPC-USMBA,
combined several classifiers, including (i) lexical
string similarities in vector representations, and
(ii) rule-based features. A core component of
their approach was the use of medical terminology
covering both Arabic and English terms, which
was organized into the following three categories:
body parts, drugs, and diseases. In particular, they
translated the Arabic dataset into English using
the Google Translate service. The linguistic pro-
cessing was carried out with Stanford CoreNLP
for English and MADAMIRA for Arabic. Finally,
WordNet synsets both for Arabic and English were
added to the representation without performing
word sense disambiguation.

6 Conclusions

We have described SemEval-2017 Task 3 on Com-
munity Question Answering, which extended the
four subtasks at SemEval-2016 Task 3 (Nakov
et al., 2016b) with a new subtask on multi-domain
question duplicate detection. Overall, the task at-
tracted 23 teams, which submitted 85 runs; this is
comparable to 2016, when 18 teams submitted 95
runs. The participants built on the lessons learned
from the 2016 edition of the task, and further ex-
perimented with new features and learning frame-
works. The top systems used neural networks with
distributed representations or SVMs with syntactic
kernels for linguistic analysis. A number of new
features have been tried as well.

Apart from the new lessons learned from this
year’s edition, we believe that the task has another
important contribution: the datasets we have cre-
ated as part of the task, and which we have re-
leased for use to the research community, should
be useful for follow-up research beyond SemEval.

Finally, while the new subtask E did not get any
submissions, mainly because of the need to work
with a large amount of data, we believe that it is
about an important problem and that it will attract
the interest of many researchers of the field.
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Team ID

Team Affiliation

Beihang-MSRA
bunji

ECNU

EICA
FuRongWang
FA3L

GW_QA
II'T-UHH

KeLP

MoRS

LearningToQuestion

LS2N
NLM_NIH
QU-BIGIR
SCIR-QA
SimBow
SnowMan
SwissAlps
TakeLab-QA
Talla

TrentoTeam

UINSUSKA-TiTech

UPC-USMBA

Beihang University, Beijing, China; Microsoft Research, Beijing, China
(Wu et al., 2017b)

Hitachi Ltd., Japan

(Koreeda et al., 2017)

East China Normal University, PR. China; Shanghai Key Laboratory of Multidimensional
Information Processing, P.R. China (Wu et al., 2017a)

East China Normal University, Shanghai, P.R.China

(Xie et al., 2017)

National University of Defense Technology, P.R. China

(Zhang et al., 2017)

University of Pisa, Italy

(Attardi et al., 2017)

The George Washington University, D.C. USA

(Almarwani and Diab, 2017)

Indian Institute of Technology Patna, India; University of Hamburg, Germany
(Nandi et al., 2017)

University of Roma, Tor Vergata, Italy; Qatar Computing Research Institute,
HBKU, Qatar (Filice et al., 2017)

Universidade de Lisboa, Portugal

(Rodrigues and Couto, 2017)

Georgia Institute of Technology, Atlanta, GA, USA

(Goyal, 2017)

LS2N

[no paper submitted]

U.S. National Library of Medicine, Bethesda, MD, USA

(Ben Abacha and Demner-Fushman, 2017)

Qatar University, Qatar

(Torki et al., 2017)

Harbin Institute of Technology, P.R. China

(Qietal., 2017)

Orange Labs, France

(Charlet and Damnati, 2017)

Harbin Institute of Technology, PR. China

[no paper submitted]

Zurich University of Applied Sciences, Switzerland

(Deriu and Cieliebak, 2017)

University of Zagreb, Croatia

(Saina et al., 2017)

Talla, Boston, MA, USA

(Galbraith et al., 2017)

University of Trento, Italy

(Qwaider et al., 2017)

UIN Sultan Syarif Kasim Riau, Indonesia; Tokyo Institute of Technology, Japan
(Agustian and Takamura, 2017)

Universitat Politecnica de Catalunya, Spain; Sidi Mohamed Ben Abdellah University, Morocco
(El Adlouni et al., 2017)

Table 4: The participating teams and their affiliations.
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Submission MAP  AvgRec MRR p R F1 Acc

1 KeLP-primary 88.43; 9379, 9282 87305 5824, 69875  73.89;
2  Beihang-MSRA-primary 88.24, 9387, 9234, 5198, 100.00,  6840s 51983
Beihang-MSRA-contrastive2 88.18 93.91 9245 5198 10000 6840  51.98
Beihang-MSRA-contrastivel 88.17 9382 9217 5198 10000 6840  51.98
3 IIT-UHH-primary 86.883 9204, 9120, 7337, 74525, 7394, 72704
ECNU-contrastivel 86.78 92.41 92.65 83.05 66.91 74.11 75.70
4 ECNU-primary 86.72, 9262, 91455 8409, 7216, 7767, 7843,
EICA-contrastive2 86.60 92.25 90.67 88.50 31.32 46.27 62.18
5 bunji-primary 86.585 92715 9137, 8459,  6343; 72505 7498,
6 EICA-primary 86.53; 9250, 89575 8829, 30201, 45015, 6L.64q;
EICA-contrastivel 86.48 92.18 90.69 88.43 29.61 44,37 61.40
IIT-UHH-contrastivel 86.35 91.74 91.40 79.42 51.94 62.80 68.02
7  SwissAlps-primary 86.247 9228, 9089 9078, 2843;35 43305  61.30;,
SwissAlps-contrastivel 85.53 9198 9052  90.37 24.03 37.97 59.18
bunji-contrastivel 85.29 9177 9148 83.14 5634  67.16 7137
IIT-UHH-contrastive2 85.24 91.37 90.38 81.22 57.65 67.43 71.06
8 *FuRongWang-primary 84.265  90.79; 8940,  84.58; 48.98,, 6204,  68.84;
bunji-contrastive2 84.01 9045  89.17 8188 5903 6860 7191
9 FA3L-primary 83.429 8990, 9032, 73820  59.626 65965  68.02
ECNU-contrastive2 83.15 90.01 8946 7506 7886 7691 75.39
LS2N-contrastive?2 82.91 89.70 89.58 72.19 71.77 71.98 70.96
FA3L-contrastivel 82.87 89.64 89.98 77.28 56.27 65.12 68.67
SnowMan-contrastivel 82.01 89.36 88.56 75.92 73.47 74.67 74.10
10 SnowMan-primary 81.8417 8867, 8721, 79545 5844,  67.37;  70.58;
11 TakeLab-QA-primary 81.14,; 8848, 8751, 7872 58315 66995  70.14g
12 LS2N-primary 80.99,5 8855, 87.92,,  80.07; 4327, 56.18;; 6491
TakeLab-QA-contrastivel 79.71 87.31 87.03 73.88 62.77 67.87 69.11
TakeLab-QA-contrastive2 78.98 86.33 87.13 80.06 56.66 66.36 70.14
13 TrentoTeam-primary 78.5613 866615 857615 6559, 7571, 7028,  66.72
LS2N-contrastivel 74.08 81.88 81.66 70.66 28.30 40.41 56.62
14 MoRS-primary 63.321, 716714 7199, 592315 5061, 9324 488454
Baseline 1 (chronological) 72.61 7932 8237 — — — —
Baseline 2 (random) 62.30 70.56 68.74 53.15 75.97 62.54 52.70
Baseline 3 (all ‘true’) — — — 5198 100.00 68.40 51.98
Baseline 4 (all ‘false’) — — — — — — 48.02

Table 5: Subtask A, English (Question-Comment Similarity): results for all submissions. The first
column shows the rank of the primary runs with respect to the official MAP score. The second column
contains the team’s name and its submission type (primary vs. contrastive). The following columns show
the results for the primary, and then for other, unofficial evaluation measures. The subindices show the
rank of the primary runs with respect to the evaluation measure in the respective column. All results are
presented as percentages. The system marked with a * was a late submission.
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Submission MAP  AvgRec MRR p R F1 Acc
KeLP-contrastivel 49.00 83.92 5241 36.18 88.34 51.34 68.98
SimBow-contrastive2 47.87 82.77 50.97 27.03 93.87 41.98 51.93
1 SimBow-primary 47.22; 8260, 50075 273050 94485 4237, 5239,
LearningToQuestion-contrastive2 47.20 81.73 53.22 1852 10000 3126 18.52
LearningToQuestion-contrastivel 47.03 81.45 52.47 1852 10000 3126 18.52
2 LearningToQuestion-primary 46.93, 8129, 5301, 1852, 10000, 31261,  18.521,
SimBow-contrastivel 46.84 82.73 50.43 27.80 94.48 42.96 53.52
3  KeLP-primary 46.665 81365 5085, 36015 85285,  50.64;  69.205
Talla-contrastivel 46.54 82.15 49.61 30.39 76.07 4343 63.30
Talla-contrastive2 46.31 81.81 49.14 29.88 7423 4261 62.95
4 Talla-primary 4570, 8148, 49555 2959, 76075  42.6ls  62.055
Beihang-MSRA-contrastive2 44.79 79.13 49.89 1852 10000 3126 18.52
5 Beihang-MSRA-primary 44.785  7913; 4988, 1852;5 100.005 312613  18.52;5
NLM_NIH-contrastivel 44.66 79.66 48.08 33.68 79.14 47.25 67.27
6 NLM _NIH-primary 44.62¢ 7959, 4774 33.68; 19045 47255 6727,
UINSUSKA-TiTech-contrastivel 44.29 78.59 48.97 34.47 68.10 45.77 70.11
NLM _NIH-contrastive2 44.29 79.05 4745 33.68 79.14 4725 67.27
Beihang-MSRA-contrastivel 43.89 7948 4818 1852 10000 3126 18.52
7 UINSUSKA-TiTech-primary 43.447 7750, 47030 3571, 6748, 4671, 7148,
8 IT-UHH-primary 43128  7923¢ 4725, 2685, 71171, 38990 58750
UINSUSKA-TiTech-contrastive2 43.06 76.45 46.22 3571 67.48 46.71 7148
9 SCIR-QA-primary 42.729 78249 46.65,, 31265  89.57,  4635; 6159
SCIR-QA-contrastivel 42.72 78.24 46.65 32.69 83.44 46.98 65.11
ECNU-contrastive2 42.48 79.44 45.09 36.47 78.53 49.81 70.68
IIT-UHH-contrastive2 42.38 78.59 46.82 32,99 59.51 42.45 70.11
ECNU-contrastivel 42.37 78.41 45.04 3434 83.44 48.66 67.39
IIT-UHH-contrastivel 42.29 7841 46.40 32,66 50.51 4217 69.77
10 FA3L-primary 422415 77710 47055 33.07c 404915 36461,  73.86;
LS2N-contrastivel 42.06 77.36 47.13 32,01 50.51 41.63 69.09
11 ECNU-primary 41.3711 78715 4452,5 3743, 7669, 5030, 71933
12 EICA-primary 411115 7745, 4557, 3260, 7239, 4495,  67.16;
EICA-contrastivel 41.07 77.70 46.38 3230 70.55 4432 67.16
13 LS2N-primary 40.56135 76675 46331, 3655, 53371, 4339, 74.20
EICA-contrastive2 40.04 76.98 44.00 31.69 71.17 43.86 66.25
Baseline 1 (IR) 41.85 77.59 46.42 — — — —
Baseline 2 (random) 29.81 62.65 33.02 18.72 75.46 30.00 34.77
Baseline 3 (all ‘true’) — — — 1852 100.00 31.26 18.52
Baseline 4 (all ‘false’) — — — — — — 81.48
Table 6: Subtask B, English (Question-Question Similarity): results for all submissions. The first

column shows the rank of the primary runs with respect to the official MAP score. The second column
contains the team’s name and its submission type (primary vs. contrastive). The following columns show
the results for the primary, and then for other, unofficial evaluation measures. The subindices show the
rank of the primary runs with respect to the evaluation measure in the respective column. All results are
presented as percentages.
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Submission

MAP

AvgRec MRR P R F1 Acc

bunji-contrastive2 16.57 3098 1704 1983 1911 1946 95.58

1 IHIT-UHH-primary 1546, 3342, 1814, 8413 51225 1444,  83.03,
IIT-UHH-contrastivel 15.43 3378 17.52 9.45 5407 1608  84.23

2 bunji-primary 14.715 2947, 1648, 2026, 1911, 1967, 95.64,
EICA-contrastivel 14.60 3271 1614 10.80 935 1002 9531

3 KeLP-primary 14.355 3074, 1607; 6485  89.02, 1207, 63.75;
IIT-UHH-contrastive2 14.00 3053 1465 5.98 8537 1117 62.06

4 EICA-primary 13.48; 24445 1604,  7.69, 041 077, 97.08;
ECNU-contrastive2 13.29 3015 1495 1386 2642 18.18 9335

5 *FuRongWang-primary 13.235 2951, 14275 2805 10000, 5445 2806
EICA-contrastive2 13.18 2516 1505 1000 0.81 150 97.02

6 ECNU-primary 10.545 25565 11095 1344, 1382, 13.635 95.105
ECNU-contrastivel 10.54 2556 1109  13.83 1423 1403 95.13
bunji-contrastivel 8.19 1512 925 0.00 000 000  97.20
Baseline 1 (IR) 9.18 2172 1011 — — — —
Baseline 2 (random) 5.77 7.69 570 276 73.98 532 2637
Baseline 3 (all ‘true’) — — — 280 100.00 5.44 2.80
Baseline 4 (all ‘false’) — — — — — — 9120

Table 7: Subtask C, English (Question-External Comment Similarity): results for all submissions.
The first column shows the rank of the primary runs with respect to the official MAP score. The sec-
ond column contains the team’s name and its submission type (primary vs. contrastive). The follow-
ing columns show the results for the primary, and then for other, unofficial evaluation measures. The
subindices show the rank of the primary runs with respect to the evaluation measure in the respective
column. All results are presented as percentages. The system marked with a * was a late submission.

Submission MAP AvgRec  MRR p R F1 Acc
1 GW_QA-primary 61.16; 8543, 6685 0005 0005 0005 60.77,
QU _BIGIR-contrastive2 59.48 8383 6456 5535 7095 6219  66.15
QU _BIGIR-contrastivel 59.13 83.56 6468 4937 8541 6257 5991
2 UPC-USMBA-primary 57.732 81765 6288, 6341, 33.00, 4341, 6624
3 QU_BIGIR-primary 56.695 8189, 61.83; 4159,  70.16; 5222,  49.643
UPC-USMBA-contrastivel  56.66 8116 6287 4500 6404 5286  55.18
Baseline 1 (IR) 60.55 8506  66.80 — — — —
Baseline 2 (random) 48.48 7389 5327 39.04 6643  49.18 4613
Baseline 3 (all ‘true’) — — — 3923 10000 5636 3923
Baseline 4 (all ‘false’) — — — — — — 6077

Table 8: Subtask D, Arabic (Reranking the correct answers for a new question):

results for all

submissions. The first column shows the rank of the primary runs with respect to the official MAP score.
The second column contains the team’s name and its submission type (primary vs. contrastive). The
following columns show the results for the primary, and then for other, unofficial evaluation measures.
The subindices show the rank of the primary runs with respect to the evaluation measure in the respective
column. All results are presented as percentages.
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Baseline TMAP

Android Baseline 1 (IR oracle) 99.00
Android Baseline 2 (all empty results) 98.56
English Baseline 1 (IR oracle) 98.05
English Baseline 2 (all empty results) 97.65
Gaming Baseline 1 (IR oracle) 99.18
Gaming Baseline 2 (all empty results) 98.73
Wordpress Baseline 1 (IR oracle) 99.21

Wordpress Baseline 2 (all empty results)  98.98

Table 9: Subtask E, English (Multi-Domain Duplicate Detection): Baseline results on the test dataset.
The empty result baseline has an empty result list for all queries. The IR baselines are the results of
applying BM25 with perfect truncation. All results are presented as percentages.
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SemEval-2017 Task 6: #HashtagWars: Learning a Sense of Humor

Peter Potash, Alexey Romanov, Anna Rumshisky
University of Massachusetts Lowell
Department of Computer Science
{ppotash, aromanov, arum}@cs.uml.edu

Abstract

This paper describes a new shared task for
humor understanding that attempts to es-
chew the ubiquitous binary approach to
humor detection and focus on comparative
humor ranking instead. The task is based
on a new dataset of funny tweets posted
in response to shared hashtags, collected
from the ‘Hashtag Wars’ segment of the
TV show @midnight. The results are eval-
uated in two subtasks that require the par-
ticipants to generate either the correct pair-
wise comparisons of tweets (subtask A), or
the correct ranking of the tweets (subtask
B) in terms of how funny they are. 7 teams
participated in subtask A, and 5 teams par-
ticipated in subtask B. The best accuracy
in subtask A was 0.675. The best (lowest)
rank edit distance for subtask B was 0.872.

1 Introduction

Most work on humor detection approaches the
problem as binary classification: humor or not hu-
mor. While this is a reasonable initial step, in
practice humor is continuous, so we believe it is
interesting to evaluate different degrees of humor,
particularly as it relates to a given person’s sense
of humor. To further such research, we propose
a dataset based on humorous responses submitted
to a Comedy Central TV show, allowing for com-
putational approaches to comparative humor rank-
ing.

Debuting in Fall 2013, the Comedy Central
show @midnight! is a late-night “game-show”
that presents a modern outlook on current events
by focusing on content from social media. The
show’s contestants (generally professional come-
dians or actors) are awarded points based on how

"http://www.cc.com/shows/-midnight
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funny their answers are. The segment of the
show that best illustrates this attitude is the Hash-
tag Wars (HW). Every episode the show’s host
proposes a topic in the form of a hashtag, and
the show’s contestants must provide tweets that
would have this hashtag. Viewers are encouraged
to tweet their own responses. From the viewers’
tweets, we are able to apply labels that determine
how relatively humorous the show finds a given
tweet.

Because of the contest’s format, it provides an
adequate method for addressing the selection bias
(Heckman, 1979) often present in machine learn-
ing techniques (Zadrozny, 2004). Since each tweet
is intended for the same hashtag, each tweet is ef-
fectively drawn from the same sample distribution.
Consequently, tweets are seen not as humor/non-
humor, but rather varying degrees of wit and clev-
erness. Moreover, given the subjective nature of
humor, labels in the dataset are only “gold” with
respect to the show’s sense of humor. This concept
becomes more grounded when considering the use
of supervised systems for the dataset.

The idea of the dataset is to learn to character-
ize the sense of humor represented in this show.
Given a set of hashtags, the goal is to predict which
tweets the show will find funnier within each hash-
tag. The degree of humor in a given tweet is de-
termined by the labels provided by the show. We
propose two subtasks to evaluate systems on the
dataset. The first subtask is pairwise comparison:
given two tweets, select the funnier tweet, and the
pairs will be derived from the labels assigned by
the show to individual tweets. The second subtask
is to rank the the tweets based on the compara-
tive labels provided by the show. This is a semi-
ranking task because most labels are applied to
more than one tweet. Seen as a classification task,
the labels are comparative, because there is a no-
tion of distance. We introduce a new edit distance-

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 49-57,
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inspired metric for this subtask.

A number of different computational ap-
proaches to humor have been proposed within the
last decade (Yang et al., 2015; Mihalcea and Strap-
parava, 2005; Zhang and Liu, 2014; Radev et al.,
2015; Raz, 2012; Reyes et al., 2013; Barbieri and
Saggion, 2014; Shahaf et al., 2015; Purandare and
Litman, 2006; Kiddon and Brun, 2011). In par-
ticular, Zhang and Liu (2014); Raz (2012); Reyes
etal. (2013); Barbieri and Saggion (2014) focus on
recognizing humor in Twitter. However, the ma-
jority of this work focuses on distinguishing hu-
mor from non-humor.

This representation has two shortcomings: (1) it
ignores the continuous nature of humor, and (2) it
does not take into account the subjectivity in hu-
mor perception. Regarding the first issue, we be-
lieve that shifting away from the binary approach
to humor detection as done in the present task is
a good pathway towards advancing this work. Re-
garding the second issue, consider a humour anno-
tation task done by Shahaf et al. (2015), in which
the annotators looked at pairs of captions from
the New Yorker Caption Content”, Shahaf et al.
(2015) report that “Only 35% of the unique pairs
that were ranked by at least five people achieved
80% agreement...” In contrast, the goal of the
present task is to not to identify humour that is uni-
versal, but rather, to capture the specific sense of
humour represented in the show.

2 Related Work

Mihalcea and Strapparava (2005) developed a hu-
mor dataset of puns and humorous one-liners in-
tended for supervised learning. In order to gen-
erate negative examples for their experimental de-
sign, the authors used news titles from Reuters and
the British National Corpus, as well as proverbs.
Recently, Yang et al. (2015) used the same dataset
for experimental purposes, taking text from AP
News, New York Times, Yahoo! Answers, and
proverbs as their negative examples. To further
reduce the bias of their negative examples, the au-
thors selected negative examples with a vocabu-
lary that is in the dictionary created from the pos-
itive examples. Also, the authors forced the neg-
ative examples to have a similar text length com-
pared to the positive examples.

Zhang and Liu (2014) constructed a dataset for
recognizing humor in Twitter in two parts. First,

http://contest .newyorker.com/
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the authors use the Twitter API with targeted user
mentions and hashtags to produce a set of 1,500
humorous tweets. After manual inspections, 1,267
of the original 1,500 tweets were found to be hu-
morous, of which 1,000 were randomly sampled
as positive examples in the final dataset. Sec-
ond, the authors collect negative examples by ex-
tracting 1,500 tweets from the Twitter Streaming
API, manually checking for the presence of hu-
mor. Next, the authors combine these tweets with
tweets from part one that were found to actually
not contain humor. The authors argue this last step
will partly assuage the selection bias of the nega-
tive examples.

In Reyes et al. (2013) the authors create a model
to detect ironic tweets. To construct their dataset
they collect tweets with the following hashtags:
irony, humor, politics, and education. Therefore,
a tweet is considered ironic solely because of the
presence of the appropriate hashtag. Barbieri and
Saggion (2014) also use this dataset for their work.

Finally, recently researchers have developed a
dataset similar to our HW dataset based on the
New Yorker Caption Contest (NYCC) (Radev
et al.,, 2015; Shahaf et al., 2015). Whereas for
the HW segment, viewers submit a tweet in re-
sponse to a hashtag, for the NYCC readers sub-
mit humorous captions in response to a cartoon. It
is important to note this key distinction between
the two datasets, because we believe that the pres-
ence of the hashtag allows for further innovative
NLP methodologies aside from solely analyzing
the tweets themselves. In Radev et al. (2015),
the authors developed more than 15 unsupervised
methods for ranking submissions for the NYCC.
The methods can be categorized into broader cat-
egories such as originality and content-based.

Alternatively, Shahaf et al.(2015) approach the
NYCC dataset with supervised models, evaluat-
ing on a pairwise comparison task, upon which we
base our evaluation methodology. The features to
represent a given caption fall in the general areas
of Unusual Language, Sentiment, and Taking Ex-
pert Advice. For a single data point (which rep-
resents two captions), the authors concatenate the
features of each individual caption, as well as en-
coding the difference between each caption’s vec-
tor. The authors’ best-performing system records
a 69% accuracy on the pairwise evaluation task.
Note that for this evaluation task, random baseline
is 50%.



3 #HashtagWars Dataset

3.1 Data collection

The following section describes our data collec-
tion process. First, when a new episode airs
(which generally happens four nights a week), a
new hashtag will be given. We wait until the fol-
lowing morning to use the public Twitter search
APP to collect tweets that have been posted with
the new hashtag. Generally, this returns 100-200
tweets. We wait until the following day to al-
low for as many tweets as possible to be submit-
ted. The day of the ensuing episode (i.e. on a
Monday for a hashtag that came out for a Thurs-
day episode), @midnight creates a Tumblr post*
that announces the top-10 tweets from the pre-
vious episode’s hashtag (the tweets are listed as
embedded images, as is often done for sharing
public tweets on websites). If they’re not already
present, we add the tweets from the top-10 to our
existing list of tweets for the hashtag. We also
perform automated filtering to remove redundant
tweets. Specifically, we see that the text of tweets
(aside from hashtags and user mentions) are not
the same. The need for this results from the fact
that some viewers submit identical tweets.

Using both the @midnight official Tumblr ac-
count, as well as the show’s official website where
the winning tweet is posted, we annotate each
tweet with labels 0, 1 and 2. Label 2 desig-
nates the winning tweet. Thus, the label 2 only
occurs once for each hashtag. Label 1 indicates
that the tweet was selected as a top-10 tweet (but
not the winning tweet) and label 0 is assigned for
all other tweets. It is important to note that every
time we collect a tweet, we must also collect its
tweet ID. While this was initially done to comply
with Twitter’s terms of use®, which disallows the
public distribution of users’ tweets, The presence
of tweet IDs allows us to easily handle the eval-
uation process when referencing tweets (see Sec-
tion 4). The need to determine the tweet IDs for
tweets that weren’t found in the initial query (i.e.
tweets added from the top 10) makes the data col-
lection process slightly laborious, since the top-10
list doesn’t contain the tweet ID. In fact, it doesn’t
even contain the text itself since it’s actually an

‘https://dev.twitter.com/rest/public/
search

*nttp://atmidnightcc.tumblr.com/

Shttps://dev.twitter.com/overview/
terms
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image.

3.1.1 A Semi-Automated System for Data
Collection

Because the data collection process is continu-
ously repeated and requires a non-trivial amount
of human labor, we have built a helper system that
can partially automate the process of data collec-
tion. This system is organized as a website with a
convenient user interface.

On the start page the user enters the id of the
Tumblr post with the tweets in the top 10. Next,
we invoke Tesseract ©, an OCR command-line util-
ity, to recognize the textual content of the tweet
images. Using the recognized content, the system
forms a webpage on which the user can simultane-
ously see the text of the tweets as well as the orig-
inal images. On this page, the user can query the
Twitter API to search by text, or click the button
”Open twitter search” to open the Twitter Search
page if the API returns zero results. We note that
the process is not fully automated because a given
text query can we return redundant results, and we
primarily check to make sure we add the tweet that
came from the appropriate user. With the help of
this system, the process of collecting the top-10
tweets (along with their tweet IDs) takes roughly
2 minutes. Lastly, we note that the process for an-
notating the winning tweet (which is already in-
cluded in the top-10 posted in the Tumblr list) is
currently manual, because it requires going to the
@midnight website. This is another aspect of the
data collection system that could potentially be au-
tomated.

3.2 Dataset

Data collection occurred for roughly eight months,
producing a total of 12,734 tweets for 112 hash-
tags. The resulting dataset is what we used for the
task.

The distribution of the number of tweets per
hashtag is represented in Figure 1. For 71% of
hashtags, we have at least 90 tweets. The files of
the individual hashtags are formatted so that the
individual hashtag tokens are easily recoverable.
Specifically, tokens are separated by the ‘.’ char-
acter. For example, the hashtag FastFoodBooks
has the file name “fast_food_books.tsv”.

Figure 2 represents an example of the tweets
collected for the hashtag FastFoodBooks. Ob-

*https://github.com/tesseract-ocr/
tesseract
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Figure 1: Distribution of the numbers of tweets
per hashtag

serve that this hashtag requires external knowl-
edge about fast food and books in order to un-
derstand the humor. Furthermore, this hashtag
illustrates how prevalent puns are in the dataset,
especially related to certain target hashtags. In
contrast, the hashtag IfIWerePresident (see Fig-
ure 3) does not require external knowledge and
the tweets are understandable without awareness
of any specific concepts.

For the purpose of our task, we released 5
files/660 tweets as the trial data, 101 files/11,325
tweets (separate from the trial data) as the train-
ing data, and 6 files/749 tweets as the evaluation
data. The 6 evaluation files were chosen based
on the following logic: first, we examined the
results of our own systems on individual hash-
tags using leave-one-out evaluation (Potash et al.,
2016). We looked for a mixture of hashtags that
had high, average, and low performance. Sec-
ondly, we wanted a mixture of hashtags that pro-
mote different types of humor, such as puns that
use external knowledge (for example the hashtag
FastFoodBooks in Figure 3.2), or hashtags that
seek to express more general humor (for example
the hashtag IfIWerePresident in Figure 3.2).

4 Subtasks

In this task, the results are evaluated in two sub-
tasks. Subtask A requires the participants to gen-
erate the correct pairwise comparisons of tweets to
determine which tweet is funnier according to the
TV show @midnight. Subtask B asks for the cor-
rect ranking of tweets in terms of how funny they
are (again, according to @midnight).
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As I Lay Dying of congestive heart failure
@midnight #FastFoodBooks

Harry Potter and the Order of the Big Mac
#FastFoodBooks @midnight

The Girl With The Jared Tattoo #FastFood-
Books @midnight

A Room With a Drive-thru @midnight #Fast-
FoodBooks

Figure 2: An example of the items in the dataset
for the hashtag FastFoodBooks that requires exter-
nal knowledge in order to understand the humor.
Furthermore, the tweets for this hashtag are puns
connecting book titles and fast food-related lan-
guage

#IfIWerePresident my Cabinet would just be
cats. @midnight

Historically, I'd oversleep and eventually get
fired. @midnight #IflWerePresident
#IfIWerePresident I'd pardon Dad so we
could be together again... @midnight
#IfIlWerePresident my estranged children
would finally know where I was @midnight

Figure 3: An example of the items in the dataset
for the hashtag IflWerePresident that does not re-
quire external knowledge in order to understand
the humor

4.1 Subtask A: Pairwise Comparison

For the first subtask, we follow the approach taken
by Shahaf et al. (2015) and make predictions on
pairs of tweets with the goal of determining which
tweet is funnier. Using the tweets for each hashtag,
we construct pairs of tweets in which one tweet is
judged by the show to be funnier than the other.
The pairs used for evaluation are constructed as
follows:

(1) The tweets that are the top-10 funniest tweets
are paired with the tweets not in the top-10.

(2) The winning tweet is paired with the other
tweets in the top-10.

If we have n tweets for a given hashtag, (1) will
produce 10(n — 10) pairs, and (2) will produce 9
pairs, giving us 10n — 91 data points for a single



hashtag. Constructing the pairs for evaluation in
this way ensures that one of the tweets in each pair
has been judged to be funnier than the other. We
follow Shahaf et al. and use the label 1 to denote
that the first tweet is funnier, and O to denote that
the second tweet is funnier. However, this labeling
is counter-intuitive to zero-indexing, and could be
changed to avoid confusion in labeling (see Sec-
tion 5).

Since we only provide teams with files contain-
ing tweet ID, tweet text, and tweet label (gold la-
bel: 0, 1, or 2), it is up to the teams to form the
appropriate pairs with the correct labels. In order
to produce balanced training data, we recommend
that the ordering of tweets in a pair be determined
by a coin-flip. At evaluation time, we provide the
teams with hashtag files with tweet id and tweet
text. We then ask the teams to provide predictions
for every possible tweet combination. Our evalua-
tion script then chooses only the tweet pairs where
two different labels are present. The pairs can be
listed in either ordering of the tweets because the
scorer accounts for the two possible orderings for
each pair. We decided against the idea of provid-
ing the appropriate pairs themselves for evaluation
because it is very easy to use frequencies of tweet
IDs in the pairs to determine overall tweet label.

The evaluation measure for subtask A is the mi-
cro average of accuracy across the individual eval-
uation hashtags. For a given hashtag, the accuracy
is the number of correctly predicted pairs divided
by the total number of pairs. Therefore, random
guessing will produce 50% accuracy on this task.

4.2 Subtask B: Ranking

The second subtask asks teams to use the same
input data for training and evaluation as subtask
A. However, whereas subtask A creates pairs of
tweets based on the labeling, subtask B asks teams
to predict the labels directly. For this dataset, the
number of tweets per class is known. Moreover,
since the labels describe a partial ordering, pre-
dicting the labels is akin to providing a ranking of
tweets in order of how funny they are. Therefore,
for subtask B, we ask the teams to provide pre-
diction files where the tweets are ranking by how
funny they are. From the provided ranking we in-
fer the labeling: the first tweet is labeled 2, the
next nine labeled 1, and the rest labeled 0.

The metric for evaluating subtask B is inspired
by a notion of edit distance, because standard clas-
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sification metrics do not take into account class’
comparative rankings. Treating labels as buckets,
the metric determines, for a predicted label, how
many ‘moves’ are needed to place it in the cor-
rect bucket. For example, if the correct label is 1
and the predicted label is 0, the edit distance is 1.
Similarly, if the correct label is 0 and the predicted
label is 2, the edit distance is 2. For a given hash-
tag file, the maximum edit distance for all tweets is
22. As aresult, the edit distance for a given hash-
tag file is the total number of moves for all tweets
divided by 22. This gives a normalized metric be-
tween 0 and 1 where a lower value is better. For
the final distance metric, we micro-average across
all evaluation files.

5 Results

Three teams participated only in subtask A, one
team participated only in subtask B, and four
teams participated in both subtasks. The offi-
cial results for participating teams are shown in
Tables 1 and 2 for subtasks A and B, respec-
tively. Note that due to space constraints we
use short versions of hashtag names in the tables.
Namely, “Christmas” corresponds to the hash-
tag RuinAChristmasMovie, “Shakespeare” corre-
sponds to ModernShakespeare, “Bad Job” to Bad-
JobIn5Words, “Break Up” to BreakUpIn5Words,
“Broadway” to BroadwayACeleb, and “Cereal” to
CerealSongs.

We report the results broken down by hashtag,
as well as the overall micro-average. This ta-
ble records results that were submitted to the Co-
daLab competition pages’. TakeLab (Kukovacec
et al., 2017) submitted predictions with the labels
flipped, which causes each run to appear in the ta-
ble twice. The corrected files are not given an offi-
cial ranking. After the release of the labeled evalu-
ation data, many teams reported improved results.
We have accrued these new results and combined
them with the official submission rankings to pro-
duce Tables 3 and 4. The goal of these tables is
to report the most up-to-date results on the evalu-
ation set. Moreover, all results that do not have an
official ranking in these tables are results that are
reported individually by the teams in their system
papers (except for TakeLab’s results) after the gold
evaluation labels were released.

"https://competitions.codalab.org/
competitions/15682, https://competitions.
codalab.org/competitions/15689



Hashatag

Rank Team Run Christmas Shakespeare Bad Job Break Up Broadway Cereal Average
1 HumorHawk | 2 0.673 0.789 0.704 0.723 0.643 0.492 0.675 (£0.101)
TakeLab 2 0.683 0.543 0.641 0.576 0.716 0.704 0.641 (£0.071)
2 HumorHawk | 1 0.650 0.726 0.603 0.620 0.627 0.588 0.637 (£0.049)
3 DataStories | 1 0.641 0.714 0.828 0.686 0.496 0.479 0.632 (£0.134)
4 Duluth 2 0.485 0.585 0.557 0.913 0.527 0.589 0.627 (£0.154)
TakeLab 1 0.575 0.550 0.620 0.563 0.603 0.689 0.597 (£0.051)
5 SRHR 1 0.520 0.451 0.606 0.505 0.550 0.524 0.523 (£0.051)
6 SVNIT 1 0.455 0.353 0.395 0.654 0.542 0.563 0.506 (£0.113)
7 TakeLab 1 0.425 0.450 0.380 0.437 0.397 0.311 0.403 (£0.051)
8 Duluth 1 0.441 0.445 0.417 0.240 0.470 0.402 0.397 (£0.083)
9 TakeLab 2 0.317 0.457 0.359 0.424 0.284 0.296 0.359 (£0.071)
10 QUB 1 0.165 0.343 0.229 0.165 0.091 0.154 0.187 (£0.086)
Average 0.529 (£0.157)  0.550 (£0.156) 0.560 (£0.171) 0.565 (£0.221) 0.527 (£0.170) 0.518 (£0.158) | 0.542 (+0.150)

Table 1: The official results for the subtask A broken down by hashtag. Bold indicates the best run
for the given hashtag. “Christmas” corresponds to the hashtag RuinAChristmasMovie, ‘“‘Shakespeare”
corresponds to ModernShakespeare, “Bad Job” to BadJobln5Words, “Break Up” to BreakUpIn5Words,
“Broadway” to BroadwayACeleb, and “Cereal” to CerealSongs.

Hashatag

Rank Team Run Christmas Shakespeare Bad Job Break Up Broadway Cereal Average
1 Duluth 2 0.818 0.909 1.000 0.636 1.000 0.909 0.872 (£0.137)
2 TakeLab 1 0.909 0.909 1.000 0.818 1.000 0.818 0.908 (£0.081)
3 QUB 1 0.818 0.909 0.818 1.000 1.000 0.909 0.924 (£0.081)
3 QUB 2 0.818 0.909 0.818 1.000 1.000 0.909 0.924 (£+0.081)
5 SVNIT 2 0.818 1.000 0.909 1.000 1.000 0.818 0.938 (£0.089)
6 TakeLab 2 0.818 1.000 1.000 0.909 1.000 0.909 0.944 (£0.074)
7 SVNIT 1 1.000 0.818 1.000 0.909 1.000 1.000 0.949 (£0.076)
8 Duluth 1 1.000 1.000 1.000 1.000 0.909 0.909 0.967 (£0.047)
9 #WarTeam | 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (£0.000)
Average 0.889 (£0.088)  0.939 (£0.064) 0.949 (+0.08) 0.919 (+0.124) 0.990 (+0.030) 0.909 (+0.064) | 0.936 (+£0.036)

Table 2: The official results for the subtask B broken down by hashtag. Bold indicates the best run
for the given hashtag. “Christmas” corresponds to the hashtag RuinAChristmasMovie, ‘“‘Shakespeare”
corresponds to ModernShakespeare, “Bad Job” to BadJobln5Words, “Break Up” to BreakUpIn5Words,
“Broadway” to BroadwayACeleb, and “Cereal” to CerealSongs.

6 Discussion

6.1 Task Analysis

The last row of Table 1 shows the average ac-
curacy of each hashtag across all systems (the
official results of the TakelLab systems are not
included in this average since we also include
in the average the unofficial, corrected results).
The two easiest hashtags are ones that require
less external knowledge compared to the other
four. These four hashtags specifically riff on a
particular Christmas movie, Shakespeare quote,
celebrity/Broadway play, or cereal/song. Conse-
quently, one single system did best in three out of
four of these hashtags (TakeLab). It is not coin-
cidence, since this system made extensive use of
external knowledge bases. Furthermore, the three
hashtags where it did best required knowledge of
specific entities, whereas the knowledge required
in the hashtag ModernShakespeare is the actual
lines from Shakespeare plays.

As we mentioned in Section 3.2, the evaluation

54

hashtags were chosen partly because of our own
system performance on the hashtags (Potash et al.,
2016). One of the most difficult hashtags from our
initial experiments was the hashtag CerealSongs,
which was the hashtag systems performed the
worse on in this task. We believe this is because
the humor in this hashtag is based on two sources
of external knowledge: cereals and songs. Cor-
respondingly, the hashtag with the second worse
performance also requires two sources of external
knowledge: Broadway plays and celebrities (this
hashtag was originally chosen as a representative
of the hashtags our systems recorded average per-
formance). The hashtag BadJobln5Words was one
that had high performance by our own systems,
and that continued in this task. This hashtag had
the second highest accuracy, and would have had
the highest if the Duluth team (Yan and Pedersen,
2017) did not have such remarkable success on the
highest accuracy hashtag, BreakUplIn5Words.

The poor performance for the hashtags Cere-
alSongs and BroadwayACeleb is also interesting



Official Ranking Team Accuracy Notes
SVNIT 0.751 An SVM classifier with incongruity, ambiguity, and stylistic features
DataStories | 0.711 Siamese biderectional LSTM with attention
HumorHawk | 0.683 Embedding/Character Joint Humor Model
1 HumorHawk | 0.675 XGBoost ensemble of feature-based and emedding models
TakeLab 0.641 Gradient boosting classifier with a rich set of features, including cultural references
2 HumorHawk | 0.637 Embedding/Character Joint Humor Model
3 DataStories | 0.632 Siamese biderectional LSTM with attention
4 Duluth 0.627 Trigram language model (news dataset)
SRHR 0.564 Random Forest classifier with word association and sematic relatedness features
5 SRHR 0.523 Random Forest classifier with word association and sematic relatedness features
6 SVNIT 0.506 Multilayer perceptron with incongruity, ambiguity, and stylistic features
7 TakeLab 0.403 Gradient boosting classifier with a rich set of features, including cultural references (reversed labels)
8 Duluth 0.397 Trigram language model (tweets dataset)
9 TakeLab 0.359 Gradient boosting classifier with a rich set of features, including cultural references (reversed labels)
10 QUB 0.187 A set of imblanaced classifiers with n-gram features

Table 3: Unofficial results for the subtask A on the released evaluation set reported by the participating

teams
Official Ranking Team Score Notes
Duluth 0.853 | Bigram language model (news dataset)
1 Duluth 0.872 | Trigram language model (news dataset)
2 TakeLab 0.908 | Gradient boosting classifier with a rich set of features, including cultural references
3 QUB 0.924 | A set of imblanaced classifiers with n-gram features
3 QUB 0.924 | A set of imblanaced classifiers with n-gram features
5 SVNIT 0.938 | Multilayer perceptron with incongruity, ambiguity, and stylistic features
6 TakeLab 0.944 | Gradient boosting classifier with a rich set of features, including cultural references
7 SVNIT 0.949 | A Naive Bayes classifier with incongruity, ambiguity, and stylistic features
8 Duluth 0.967 | Trigram language model (tweets dataset)
9 #WarTeam | 1.000 | A word-based voting algorithm of a Naive Bayes and neural network word scorers

Table 4: Unofficial results for the subtask B on the released evaluation set reported by the participating

teams

to note since they were chosen because the hash-
tag names had strong similarity to hashtags in the
training data. For example, 12 hashtags in the
training data had the word ‘Song’. Likewise, five
hashtags had the word ‘Celeb’, and there was one
more hashtag with the word ‘Broadway’. Alterna-
tively, The two hashtags with the best performance
followed the ‘X in X words’ format, for which
there were 16 such hashtags in the training data.
Regarding the hashtag BadJobln5Words, there are
six hashtags in the training data beginning with the
word ‘Bad’.

Our current task analysis has focused on subtask
A. The primary reason for this is that the perfor-
mance on subtask B was relatively poor. To put the
results in perspective, we created random guesses
for subtask B, and these random guesses recorded
an average distance of 0.880. From the results,
only one team was able to beat this score. We can
see that two of the three highest performing teams
in subtask A did not participate in subtask B, and
the other team that did participate approached sub-
task B as a secondary task (see Section 6.2).
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6.2 System Analysis

For the teams that participated in both subtasks,
they used the output of a single system to predict
for both subtasks. Two teams, SVNIT (Mahajan
and Zaveri, 2017) and QUB (Han and Toner, 2017)
, initially predicted the labels of each tweet based
on the output of a supervised classifier, and then
used these labels to both rank the tweets and make
pairwise predictions for the subtasks. Duluth took
a similar approach, but used the output of a lan-
guage model to rank the tweets, as opposed to la-
bels provided by a classifier. Conversely, TakeLab
sought to solve subtask A first, then used the fre-
quencies of a tweet being chosen as funnier in a
pair to provide a single, ordered metric to make
predictions for subtask B. The team that only par-
ticipated in subtask B, #WarTeam, also used the
output of a supervised classifier to label the tweets,
which in turn provided the ranking. One of inter-
esting results from having the two subtasks (which
are effectively two different ways of evaluating the
same overall task) is to see how it distinguishes
the unified approaches to solving both subtasks.
We can see that, in fact, the top team is not con-



sistent between the two subtasks. It is not a sur-
prise to see that the best performing team (out of
the four that participated in both subtasks) in sub-
task A was TakeLab, who focused primarily on
this task. Conversely, TakeLab finished second in
subtask B to Duluth, who focused on creating an
ordered metric for ranking via language models.

In terms of overall system approach, we can
analyze how heavily systems rely on feature-
engineering, verse using learned representations
from neural networks. Three of the top four sys-
tems for subtask A leveraged neural network ar-
chitectures. Two of these systems used only pre-
trained word representations as external knowl-
edge for the neural network systems. This is in
opposition to other systems that relied on the out-
put of separate tools, or looking up terms in cor-
pora. Some teams, such as HumorHawk® (Don-
ahue et al., 2017) and #WarTeam, used a com-
bination of these two types of systems, and no-
tably, the system that was ranked first in Subtask
A (HumorHawk) was an ensemble system that uti-
lized prediction from both feature-based and neu-
ral networks-based models.

As for the feature-based systems, one trend we
observed is that many teams tried to capture the in-
congruity aspect of humor (Cattle and Ma, 2017)
, often present in the dataset. The approaches
used by teams varied from n-gram language mod-
els, word association, to semantic relatedness fea-
tures. In addition, the TakeLab team used cul-
tural reference features, such as movie and song
references, and Google Trends features for named
entities. During the performed analysis, the team
found these features most useful for the model.

Considering neural network-based systems,
LSTMs were used the most, which is expected
given the sequential nature of text data. Plain
LSTM models alone, using pretrained word
embeddings, achieved competitive results, and
DataStories (Baziotis et al., 2017) ranked third us-
ing a siamese bidirectional LSTM model with at-
tention.

One key difference between the dataset used
in this task and the datasets based on the
NYCC (Radev et al., 2015; Shahaf et al., 2015)
is the presence of the hashtag. Some teams used
additional hashtag-based features in their systems.

8Two of the organizers were members of this team. They
were not involved in the data selection process. They had no
knowledge of which files were selected for evaluation, nor
how these files were chosen.
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For example, humor patterns, defined by the hash-
tag, were one of the most important features for
the TakeLab team. Other teams used semantic dis-
tances between the hashtag and tweets as features.

Table 1 also includes the standard deviation of
system scores across the hashtags. Looking at the
numbers there appears to be little in the way of
a pattern regarding the standard deviation num-
bers. When correlated with system accuracy, the
results is 0.11, which supports the idea that consis-
tency across the hashtags has no relation to over-
all system performance. Even between the two
purest neural network-based systems, DataStories
and HumorHawk run 1, the standard deviations
vary greatly: 0.134 (DataStories) and 0.049 (Hu-
morHawk run 1). In fact, 0.049 was the low-
est standard deviation across all systems. Duluth
recorded the highest standard deviation across the
datasets, primarily due to the fact that it had the
single highest accuracy on any hashtag (0.913 for
the hashtag BreakUpIn5Words), as well as the low-
est single hashtag score for any system with an
overall accuracy greater than 0.600 (0.485 for the
hashtag RuinAChristmasMovie). One possibility
for this high standard deviation is that this is the
only unsupervised system. However, the other run
submitted by Duluth (whose primary difference is
that its language model was trained on a dataset
of tweets as opposed to news articles) has a both
a significantly lower accuracy and standard devia-
tion.

7 Conclusion

We have presented the results of the SemEval
2017 shared task: #HashtagWars: Learning a
Sense of Humor. It was the first year this task
was presented, attracting 8 teams and 19 systems
across two substasks. The top performing systems
achieved 0.675 accuracy in subtask A and 0.872
score on subtask B, advancing the difficult task
of humor understanding. Interestingly, the top-
ranked system used an ensemble of both feature-
based and neural network-based systems, suggest-
ing that despite the overwhelming success of neu-
ral networks in the past few years, human intuition
is still important for systems that seek to automat-
ically understand humor.
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Abstract

A pun is a form of wordplay in which a word
suggests two or more meanings by exploit-
ing polysemy, homonymy, or phonological
similarity to another word, for an intended
humorous or rhetorical effect. Though a
recurrent and expected feature in many dis-
course types, puns stymie traditional ap-
proaches to computational lexical semantics
because they violate their one-sense-per-
context assumption. This paper describes
the first competitive evaluation for the auto-
matic detection, location, and interpretation
of puns. We describe the motivation for
these tasks, the evaluation methods, and
the manually annotated data set. Finally,
we present an overview and discussion of
the participating systems’ methodologies,
resources, and results.

1 Introduction

Word sense disambiguation (WSD), the task of
identifying a word’s meaning in context, has long
been recognized as an important task in compu-
tational linguistics, and has been the focus of a
considerable number of Senseval/SemEval evalu-
ation tasks. Traditional approaches to WSD rest
on the assumption that there is a single, unambigu-
ous communicative intention underlying each word
in the document. However, there exists a class
of language constructs known as puns, in which
lexical-semantic ambiguity is a deliberate effect
of the communication act. That is, the speaker or
writer intends for a certain word or other lexical
item to be interpreted as simultaneously carrying
two or more separate meanings. Though puns are a
recurrent and expected feature in many discourse
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types, they have attracted relatively little attention
in the fields of computational linguistics and nat-
ural language processing in general, or WSD in
particular. In this document, we describe a shared
task for evaluating computational approaches to the
detection and semantic interpretation of puns.

A pun is a form of wordplay in which one sign
(e.g., a word or phrase) suggests two or more mean-
ings by exploiting polysemy, homonymy, or phono-
logical similarity to another sign, for an intended hu-
morous or rhetorical effect (Aarons, 2017; Hempel-
mann and Miller, 2017). For example, the first of
the following two punning jokes exploits the sound
similarity between the surface sign “propane” and
the latent target “profane”, while the second exploits
contrasting meanings of the word “interest’:

(1) When the church bought gas for their annual
barbecue, proceeds went from the sacred

to the propane.

I used to be a banker but I lost interest.

2

Puns where the two meanings share the same pro-
nunciation are known as homophonic or perfect,
while those relying on similar- but not identical-
sounding signs are known as heterophonic or im-
perfect. Where the signs are considered as written
rather than spoken sequences, a similar distinction
can be made between homographic and hetero-
graphic puns.

Conscious or tacit linguistic knowledge—
particularly of lexical semantics and phonology—is
an essential prerequisite for the production and in-
terpretation of puns. This has long made them an
attractive subject of study in theoretical linguistics,
and has led to a small but growing body of research
into puns in computational linguistics. Most compu-
tational treatments of puns to date have focused on
generative algorithms (Binsted and Ritchie, 1994,
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1997, Ritchie, 2005; Hong and Ong, 2009; Waller
et al., 2009; Kawahara, 2010) or modelling their
phonological properties (Hempelmann, 2003a,b).
However, several studies have explored the detection
and interpretation of puns (Yokogawa, 2002; Taylor
and Mazlack, 2004; Miller and Gurevych, 2015;
Kao et al., 2015; Miller and Turkovi¢, 2016; Miller,
2016); the most recent of these focus squarely on
computational semantics. In this paper, we present
the first organized public evaluation for the compu-
tational processing of puns.

We believe computational interpretation of puns
to be an important research question with a number
of real-world applications. For example:

e It has often been argued that humour
can enhance human—computer interaction
(HCI) (Hempelmann, 2008), and at least one
study (Morkes et al., 1999) has already shown
that incorporating canned humour into a user
interface can increase user satisfaction with-
out adversely affecting user efficiency. An
interactive system that is able to recognize and
produce contextually appropriate responses
to users’ puns could further enhance the HCI
experience.

Recognizing humorous ambiguity is also im-
portant in machine translation, particularly
for sitcoms and other comedic works, which
feature puns and other forms of wordplay as
a recurrent and expected feature (Schroter,
2005). Puns can be extremely difficult for
non-native speakers to detect, let alone trans-
late. Future automatic translation aids could
scan source texts, flagging potential puns for
special attention, and perhaps even propos-
ing ambiguity-preserving translations that best
match the original pun’s double meaning.

Wordplay is a perennial topic of scholarship
in literary criticism and analysis, with entire
books (e.g., Wurth, 1895; Rubinstein, 1984;
Keller, 2009) having been dedicated to cata-
loguing the puns of certain authors. Computer-
assisted detection and classification of puns
could help digital humanists in producing sim-
ilar surveys of other ceuvres.

2 Data sets

The pun processing tasks at SemEval-2017 used
two manually annotated data sets, both of which
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we are freely releasing to the research community.!

Our first data set, containing English homo-
graphic puns, is based on the one described by
Miller and Turkovié¢ (2016) and Miller (2016).2 It
contains punning and non-punning jokes, apho-
risms, and other short, self-contained contexts
sourced from professional humorists and online
collections. For the purposes of deciding which
contexts contain a pun, we used a somewhat weaker
definition of homography: the lexical units corre-
sponding to a pun’s two distinct meanings must be
spelled exactly the same way, with the exception
that inflections and particles (e.g., the prepositions
or dummy object pronouns in phrasal verbs such
as “duke it out”) may be disregarded. The contexts
have the following characteristics:

* Each context contains a maximum of one pun.

» Each pun (and its latent target) contains exactly
one content word (i.e., a noun, verb, adjective,
or adverb) and zero or more non-content words
(e.g., prepositions or articles). Here “word” is
defined as a sequence of letters delimited by
space or punctuation. This means that puns
and targets do not include hyphenated words,
and they do not consist of multi-word expres-
sions containing more than one content word,
such as “get off the ground” or “state of the art”.
Puns and targets may be multi-word expres-
sions containing only one content word—this
includes phrasal verbs such as “take off” or
“put up with”.

Each pun (and its target) has a lexical entry in
WordNet 3.1. However, the sense of the pun or
the target may or may not exist in WordNet 3.1.

The homographic data set contains 2250 contexts,
of which 1607 (71%) contain a pun. Sense annota-
tion was carried out by three trained human judges,
two of whom independently applied sense keys
from WordNet 3.1. Each pun word was annotated
with two sets of sense keys, one for each meaning
of the pun. As in previous Senseval/SemEval word
sense annotation tasks, annotators were permitted
to select more than one sense key per meaning,
or to indicate that the meaning was not listed in

https://www.ukp.tu-darmstadt.de/data/sense-
labelling-resources/sense-annotated-english-
puns/

2The only significant difference is that we removed several

hundred of the contexts not containing puns and added them
to our new heterographic data set.



words / context

pun type subtask contexts words min mean max
homographic  detection 2250 24499 2 109 44
homographic  location 1607 18998 3 11.8 44
homographic interpretation 1298 15510 3 119 44
heterographic  detection 1780 19461 2 10.9 69
heterographic location 1271 15145 3 119 69
heterographic interpretation 1098 13258 3 12.1 69

Table 1: Data set statistics

WordNet. Interannotator agreement, as measured
by Krippendorff’s (1980) @ and a variation of the
MASI set comparison metric (Passonneau, 2006;
Miller, 2016), was 0.777. Disagreements were
resolved automatically by taking the intersection of
the corresponding sense sets; for contexts where
this was not possible, the third judge manually adju-
dicated the disagreements. Of the 1607 puns, 1298
(81%) have both meanings in WordNet.

The second data set is similar to the first, except
that the puns are heterographic rather than homo-
graphic. It was constructed in a similar manner,
including the use of two annotators and an adju-
dicator. However, as heterographic puns have an
extra level of complexity (it being sometimes nec-
essary to discuss or explain an obscure joke before
one “gets it”), the annotators were given an oppor-
tunity to resolve their disagreements themselves
before passing the remainder on to the adjudicator.
Pre-adjudication agreement for the sense annota-
tions was @ = 0.838. The final data set contains
1780 contexts, of which 1271 (71%) contain a pun.
Of the puns, 1098 (86%) have both meanings in
WordNet.

As described in the following section, the two
data sets are used in three subtasks—pun detection,
pun location, and pun interpretation. The pun
detection subtask uses the full data sets, while the
other two subtasks use subsets of the full data sets.
Table 1 presents some statistics on the size of each
subtask’s data set in terms of the number of contexts
and word tokens.

3 Task definition

Participating systems competed in any or all of the
following three subtasks, evaluated consecutively.
Within each subtask, participants had the choice of
running their system on either or both data sets.

60

Subtask 1: Pun detection. For this subtask, par-
ticipants were given an entire raw data set. For each
context in the data set, the system had to decide
whether or not it contains a pun. For example, take
the following two contexts:

(2) I used to be a banker but I lost interest.

(3) What if there were no hypothetical ques-
tions?

For (2), the system should have returned “pun”,
whereas for (3) the system should have returned
“non-pun”.

Systems had to classify all contexts in the data set.
Scores were calculated using the standard precision,
recall, accuracy, and F-score measures as used in
classification (Manning et al., 2008, §8.3):

P
P= —
TP + FP
P
R= ——
TP + FN
~ TP + TN
" TP + TN + FP + FN
2PR
F =
P+R

where TP, TN, FP, and FN are the numbers of true
positives, true negatives, false positives, and false
negatives, respectively.

Subtask 2: Pun location. For this subtask, the
contexts not containing puns were removed from
the data sets. For any or all of the contexts, systems
had to make a single guess as to which word is
the pun. For example, given context (2) above, the
system should have indicated that the tenth word,
“interest”, is the pun.

Scores were calculated using the standard cover-
age, precision, recall, and F-score measures as used
in word sense disambiguation (Palmer et al., 2007):

_ #of guesses
~ # of contexts



# of correct guesses

# of guesses

# of correct guesses

# of contexts
2PR
“P+R
Note that, according to the above definitions, it

is always the case that P > R, and F1 = P = R
whenever P = R.

F

Subtask 3: Puninterpretation. For this subtask,
the pun word in each context is marked, and contexts
where the pun’s two meanings are not found in
WordNet are removed from the data sets. For any or
all of the contexts, systems had to annotate the two
meanings of the given pun by reference to WordNet
sense keys. For example, given context (2), the
system should have returned the WordNet sense
keys interest%1:09:00: : (glossed as “a sense
of concern with and curiosity about someone or
something”) and interest%1:21:00: : (“a fixed
charge for borrowing money; usually a percentage
of the amount borrowed”).

As with the pun location subtask, scores were
calculated using the coverage, precision, recall, and
F-score measures from word sense disambiguation.
A guess is considered to be “correct” if one of
its sense lists is a non-empty subset of one of the
sense lists from the gold standard, and the other of
its sense lists is a non-empty subset of the other
sense list from the gold standard. That is, the order
of the two sense lists is not significant, nor is the
order of the sense keys within each list. If the gold
standard sense lists contain multiple senses, then it
is sufficient for the system to correctly guess only
one sense from each list.

4 Baselines

For each subtask, we provide results for various
baselines:

Pun detection. The only baseline we use for this
subtask is a random classifier. It makes no as-
sumption about the underlying class distribution,
labelling each context as “pun” or “non-pun” with
equal probability. On average, its recall and accu-
racy will therefore be 0.5, and its precision equal
to the proportion of contexts containing puns.

Pun location. For this subtask we present the
results of three naive baselines. The first simply
selects one of the context words at random. The

61

second baseline always selects the last word of the
context as a pun. It is informed by empirical studies
of large joke corpora, which have found that punch-
lines tend to occur in a terminal position (Attardo,
1994). The third baseline is a slightly more sophis-
ticated pun location baseline inspired by Mihalcea
et al. (2010). In that study, genuine joke punchlines
were selected among several non-humorous alterna-
tives by finding the candidate whose words have the
highest mean polysemy. We adapt this technique
by selecting as the pun the word with the highest
polysemy (counting together senses from all parts
of speech). In the case of a tie, we choose the most
polysemous word nearest to the end of the context.

Pun interpretation. Following the practice in
traditional word sense disambiguation, we present
the results of the random and most frequent sense
baselines, as adapted to pun annotation.

The random baseline attempts to lemmatize the
pun word, looks it up in WordNet, and selects two
of its senses at random, one for each meaning of
the pun. It scores

G, -G,

1 n
P=R=ZZ Si
o (3)

where 7 is the number of contexts, Gj. is the number
of gold-standard sense keys in the jth meaning of
the pun word in context i, and S’ is the number of
sense keys WordNet contains for the pun word in
context i. We compute the random baseline only
for the homographic data set. (It would in principle
be adaptable to the heterographic data set, though
the large number of potential target words means
the scores would be negligible.)

The most frequent sense (MFS) baseline is a
supervised baseline in that it depends on a man-
ually sense-annotated background corpus. As its
name suggests, it involves always selecting from the
candidates that sense that has the highest frequency
in the corpus. For the homographic data set, our
MFS implementation attempts to lemmatize the
pun word (if necessary, building a list of candidate
lemmas) and then selects the two most frequent
senses of these lemmas according to WordNet’s
built-in sense frequency counts.3 For the hetero-
graphic data set, only the first sense is selected
from the list of candidate lemmas. A second list is
constructed by finding all other lemmas in WordNet

3These counts come from the SemCor (Miller et al., 1993)
corpus.



with the minimum Levenshtein (1966) distance to
the lemmas in the first list. The most frequent sense
of the lemmas in the second list is selected as the
second meaning of the pun.

In addition to the two naive baselines, we also
provide scores for the homographic pun interpre-
tation system described by Miller and Gurevych
(2015). This system works by running each pun
through a variation of the Lesk (1986) algorithm
that scores each candidate sense according to the
lexical overlap with the pun’s context. The two
top-scoring senses are then selected; in case of ties,
the system attempts to select senses which are not
closely related to each other, and at least one of
whose parts of speech matches the one applied to
the pun by a POS tagger.

The baseline pun interpretation scores presented
in this paper differ slightly from those given in
Miller and Gurevych (2015) and Miller (2016).
This is because the scoring program used in those
studies compared sense keys on the basis of their
underlying WordNet synsets, whereas in this shared
task the sense keys are compared directly.

5 Participating systems

Our shared task saw participation from ten systems:

BuzzSaw (Oele and Evang, 2017). BuzzSaw as-
sumes that each meaning of the pun will ex-
hibit high semantic similarity with one and
only one part of the context. The system’s
approach to homographic pun interpretation
is to compute the semantic similarity between
the two halves of every possible contiguous,
binary partitioning of the context, retaining the
partitioning with the lowest similarity between
the two parts. A Lesk-like WSD algorithm
based on word and sense embeddings is then
used to disambiguate the pun word separately
with respect to each part of the context.

The pun interpretation system is also used for
homographic pun location. First, the interpre-
tation system is run once for each polysemous
word in the context. The word whose two
disambiguated senses have maximum cosine
distance between their sense embeddings is
selected as the pun word.

Duluth (Pedersen, 2017). For pun detection, the
Duluth system assumes that all-words WSD
systems will have difficulties in consistently
assigning sense labels to contexts containing
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puns. The system therefore disambiguates
each context with four slightly different config-
urations of the same WSD algorithm. If more
than two sense labels differ across runs, the
context is assumed to contain a pun. For pun
location, the system selects the word whose
sense label changed across runs; if multiple
words changed senses, then the system selects
the one closest to the end of the context.

Homographic pun interpretation is carried out
by running various configurations of a WSD al-
gorithm on the pun word and selecting the two
most frequently returned senses. For hetero-
graphic puns, the system attempts to recover
the target form either by generating a list of
WordNet lemmas with minimal edit distance
to the pun word, or by querying the Datamuse
API for words with similar spellings, pronun-
ciations, and meanings. WSD algorithms are
then run separately on the pun and the set of
target candidates, with the best matching pun
and target senses retained.

ECNU (Xiu et al., 2017). ECNU uses a super-
vised approach to pun detection. The au-
thors collected a training set of 60 homo-
graphic and 60 heterographic puns, plus 60
proverbs and famous sayings, from various
Web sources. The data is then used to train a
classifier, using features derived from Word-
Net and word2vec embeddings. The ECNU
pun locator is knowledge-based, determining
each context word’s likelihood of being the
pun on the basis of the distance between its
sense vectors, or between its senses and the
context.

ELiRF-UPV (Hurtado et al., 2017). This  sys-
tem’s approach to homographic pun location
rests on two hypotheses: that the pun will
be semantically very similar to one of the
non-adjacent words in the sentence, and that
the pun will be located near the end of the
sentence. The system therefore calculates the
similarity between every pair of non-adjacent
words in the context using word2vec, retaining
the pair with the highest similarity. The word
in the pair that is closer to the end of the
context is selected as the pun.

To interpret homographic puns, ELiRF-UPV
first finds the two context words whose word
embeddings are closest to that of the pun.



Then, for each context word, the system builds
a bag-of-words representation for each of its
candidate senses, and for each of the pun
word’s candidate senses, using information
from WordNet. The lexical overlap between
every pair of pun and context senses is cal-
culated, and the pun sense with the highest
overlap is selected as one of the meanings of
the pun.

Fermi (Indurthi and Oota, 2017). Fermi takes a

supervised approach to the detection of homo-
graphic puns. Unlike ECNU, the authors did
not construct their own data set of puns, but
rather split the shared task data set into sep-
arate training and test sets, the first of which
they manually annotated. A bi-directional
RNN then learns a classification model, using
distributed word embeddings as input features.

Fermi’s approach to pun location is a
knowledge-based approach similar to that of
ELiRF-UPV. For every pair of words in the
context, a similarity score is calculated on the
basis of the maximum pairwise similarity of
their WordNet synsets. In the highest-scoring
pair, the word closest to the end of the context
is selected as the pun.

Idiom Savant (Doogan et al., 2017). Idiom Sa-

vant uses a variety of different methods de-
pending on the subtask and pun type, but which
are generally based on Google n-grams and
word2vec. Target recovery in heterographic
puns involves computing phonetic distance
with the aid of the CMU Pronouncing Dictio-
nary. Uniquely among participating systems,
Idiom Savant attempts to flag and specially
process Tom Swifties, a genre of punning jokes
commonly seen in the test data.

JU_CSE_NLP (Pramanick and Das, 2017). As

a supervised approach, JU_CSE_NLP relies
on a manually annotated data set of 413
puns sourced by the authors from Project
Gutenberg. The data is used to train a
hidden Markov model and cyclic dependency
network, using features from a part-of-speech
tagger and a syntactic parser. The classifiers
are applied to the pun detection and location
subtasks.

PunFields (Mikhalkova and Karyakin, 2017).

PunFields uses separate methods for pun
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detection, location, and interpretation; central
to all of them is the notion of semantic fields.
The system’s approach to pun detection
is a supervised one, with features being
vectors tabulating the number of words in the
context that appear in each of the 34 sections
of Roget’s Thesaurus. For pun location,
PunFields uses a weakly supervised approach
that scores candidates on the basis of their
presence in Roget’s sections, their position
within the context, and their part of speech.

For pun interpretation, the system partitions
the context on the basis of semantic fields,
and then selects as the first sense of the pun
the one whose WordNet gloss has the greatest
number of words in common with the first
partition. For homographic puns, the second
sense selected is the one with the highest fre-
quency count in WordNet (or the next-highest
frequency count, in case the first selected sense
already has the highest frequency). For hetero-
graphic puns, a list of candidate target words is
produced using Damerau-Levenshtein (1964)
distance. Among their corresponding Word-
Net senses, the system selects the one whose
definition has the highest lexical overlap with
the second partition.

UWaterloo (Vechtomova, 2017). UWaterloo is a

rule-based pun locator that scores candidate
words according to eleven simple heuristics.
These heuristics involve the position of the
word within the context or relative to certain
punctuation or function words, the word’s in-
verse document frequency in a large reference
corpus, normalized pointwise mutual informa-
tion (PMI) with other words in the context,
and whether the word exists in a reference set
of homophones and similar-sounding words.
Only words in the second half of the context
are scored; in the event of a tie, the system
chooses the word closer to the end of the
context.

UWAY (Vadehra, 2017). UWAV participated in

the pun detection and location subtasks. The
detection component is another supervised
system, taking the votes of three classifiers
(support vector machine, naive Bayes, and
logistic regression) trained on lexical-semantic
and word embedding features of a manually
annotated data set.



For pun location, UWAYV splits the context in
half and checks whether any word in the second
half is in some predefined lists of homonyms,
homophones, and antonyms. If so, one of
those words is selected as the pun. Otherwise,
word2vec similarity is calculated between ev-
ery pair of words in the context. In the highest-
scoring word pair, the word closest to the end
of the context is selected.

One further team submitted answers after the
official evaluation period was over:

N-Hance (Sevgili et al., 2017). The N-Hance sys-
tem assumes every pun has a particularly
strong association with exactly one other word
in the context. To detect and locate puns,
then, it calculates the PMI between every pair
of words in the context. If the PMI of the
highest-scoring pair exceeds a certain thresh-
old relative to the other pairs’ PMI scores, then
the context is assumed to contain a pun, with
the pun being the word in the pair closest to
the end of the context. Otherwise, the context
is assumed to have no pun.

For homographic pun interpretation, the first
sense is selected by finding the maximum over-
lap between the candidate sense definitions
and the pun’s context. N-Hance then finds
the word in the context that has the highest
PMI score with the pun. The system selects as
the second sense of the pun that sense whose
synonyms have the greatest word2vec cosine
similarity with the paired word.

6 Results and analysis

Tables 2 through 4 show the results for each of
the three subtasks and two data sets. Results for
the participating systems are shown in the upper
section of each table; the lower section shows the
baselines and the N-Hance system entered out of
competition. Pun detection results for ECNU and
Fermi are also in the non-competition section, since
their training data, by accident or design, included
some contexts from the test data. To calculate the
pun detection scores for these two systems, we
first removed the overlapping contexts from the test
set.* The PunFields pun locator is also marked

4Two further supervised pun detection systems, UWAV
and Punfields, were found to have inadvertently used training
contexts that also appear in the test data. In these two cases,
however, the authors removed the overlapping contexts from
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as it makes use of POS frequency counts of the
homographic data set that were published in Miller
and Gurevych (2015).

For each metric, the result of the best-performing
participating system is shown in boldface. Where a
baseline or non-competition entry matched or out-
performed the best participating system, its result
is also shown in boldface. Generally only the best-
scoring run submitted by each system is shown;> we
have made an exception for Duluth’s Datamuse- and
edit distance—based pun interpretation variations
(“DM” and “ED”, respectively), neither of which
outperformed the other on all metrics.

Subtask 1: Pun detection. No one system
emerged as the clear winner for this subtask, mak-
ing it hard to draw conclusions on what approaches
work best. Among the participating systems for
the homographic data set, Punfields achieved the
highest precision (0.7993), JU_CSE_NLP the high-
est recall (0.9079), and Duluth the highest accu-
racy and F-score (0.7364 and 0.8254, respectively).
N-Hance equalled or outperformed the participat-
ing systems on recall, accuracy, and F-score. For the
heterographic data set, Idiom Savant had the highest
precision, accuracy, and F-score (0.8704, 0.7837,
and 0.8439, respectively), while JU_CSE_NLP
achieved the best recall (0.9402). N-Hance per-
formed about as well as Idiom Savant in terms of
F-Score (0.8440). For both data sets, all systems
outperformed the random baseline.

Subtask 2: Pun location. The last word baseline
(F1 = 0.4704 and 0.5704 for homographic and
heterographic puns, respectively) turned out to be
surprisingly hard to beat for this subtask. For the
homographic data set, this baseline was exceeded
only by Idiom Savant (] = 0.6631) and UWaterloo
(F1 = 0.6523). For the heterographic puns, it
was bested only by Idiom Savant (F; = 0.6845),
UWaterloo (F; = 0.7964), and N-Hance (F; =
0.6553).

Idiom Savant was not the only system to measure
semantic relatedness via word2vec, though it was
the only one to do so with n-grams from a large
background corpus. It was also the only system
to directly (albeit simplistically) measure phonetic
ma, retrained their systems, and submitted new
results, which we report here.

SParticipants were permitted to submit the results of up
to two runs for each subtask and data set. The intention was
to allow participants the opportunity to fix problems in the

formatting of their output files, or to try minor variations of
the same system.



homographic heterographic
system P R A Fq P R A | O
Duluth 0.7832 0.8724 0.7364 0.8254 0.7399 0.8662 0.6871 0.7981
Idiom Savant — — — — 0.8704 0.8190 0.7837 0.8439
JU_CSE_NLP 0.7251 0.9079 0.6884 0.8063 0.7367 0.9402 0.7174 0.8261
PunFields 0.7993 0.7337 0.6782 0.7651 0.7580 0.5940 0.5747 0.6661
UWAV 0.6838 0.4723 0.4671 0.5587 0.6523 0.4178 0.4253 0.5094
random 0.7142 0.5000 0.5000 0.5882 0.7140 0.5000 0.5000 0.5882
ECNU" 0.7127 0.6474 0.5628 0.6785 0.7807 0.6761 0.6333 0.7247
Fermi' 0.9024 0.8970 0.8533 0.8997 — — — —
N-Hance 0.7553 09334 0.7364 0.8350 0.7725 0.9300 0.7545 0.8440
Table 2: Pun detection results
homographic heterographic
system C P R Fq C P R Fy
BuzzSaw 1.0000 0.2775 0.2775 0.2775 — — — —
Duluth 1.0000 0.4400 0.4400 0.4400 1.0000 0.5311 0.5311 0.5311
ECNU 1.0000 0.3373 0.3373 0.3373 1.0000 0.5681 0.5681 0.5681
ELiRF-UPV 1.0000 0.4462 0.4462 0.4462 — — — —
Fermi 1.0000 0.5215 0.5215 0.5215 — — — —
Idiom Savant ~ 0.9988 0.6636 0.6627 0.6631 1.0000 0.6845 0.6845 0.6845
JU_CSE_NLP 1.0000 0.3348 0.3348 0.3348 1.0000 0.3792 0.3792 0.3792
PunFields* 1.0000 0.3279 0.3279 0.3279 1.0000 0.3501 0.3501 0.3501
UWaterloo 0.9994 0.6526 0.6521 0.6523 0.9976 0.7973 0.7954 0.7964
UWAV 1.0000 0.3410 0.3410 0.3410 1.0000 0.4280 0.4280 0.4280
random 1.0000 0.0846 0.0846 0.0846 1.0000 0.0839 0.0839 0.0839
last word 1.0000 0.4704 0.4704 0.4704 1.0000 0.5704 0.5704 0.5704
max. polysemy 1.0000 0.1798 0.1798 0.1798 1.0000 0.0110 0.0110 0.0110
N-Hance 0.9956 0.4269 0.4250 0.4259 0.9882 0.6592 0.6515 0.6553
Table 3: Pun location results
homographic heterographic
system C P R Fy C P R | O
BuzzSaw 0.9761 0.1563 0.1525 0.1544 — — — —
Duluth (DM) 0.8606 0.1683 0.1448 0.1557 0.9791 0.0009 0.0009 0.0009
Duluth (ED) 0.9992 0.1480 0.1479 0.1480 0.9262 0.0315 0.0291 0.0303
ELiRF-UPV 0.9646 0.1014 0.0978 0.0996 — — — —
Idiom Savant 0.9900 0.0778 0.0770 0.0774 0.8434 0.0842 0.0710 0.0771
PunFields 0.8760 0.0484 0.0424 0.0452 0.9709 0.0169 0.0164 0.0166
random 1.0000 0.0931 0.0931 0.0931 — — — —
MFS 1.0000 0.1348 0.1348 0.1348 0.9800 0.0716 0.0701 0.0708
Miller & Gurevych 0.6826 0.1975 0.1348 0.1603 — — — —
N-Hance 0.9831 0.0204 0.0200 0.0202 — — — —

Table 4: Pun interpretation results

*Evaluated on 2237 of the 2250 homographic contexts, and 1778 of the 1780 heterographic contexts.
TEvaluated on 675 of the 2250 homographic contexts.
*Uses POS frequency counts from the homographic test set.
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distance using a pronunciation dictionary, and the
only system that flagged puns of a certain genre
for special processing. These features, alone or in
combination, may have contributed to the system’s
success.

UWaterloo and N-Hance were the only systems
making use of pointwise mutual information, to
which their success might be credited. Evidently
the notion of a unique “trigger” word in the context
that activates the pun is an important one to model.
UWaterloo also shares with Idiom Savant the use of
hand-crafted rules based on real-world knowledge
of punning jokes.

Subtask 3: Pun interpretation. As in the pun
detection subtask, no one approach worked best
here, at least for the homographic data set. Only
two systems (BuzzSaw and Duluth) were able to
beat the most frequent sense baseline. The Miller
and Gurevych (2015) system remains the best-
performing pun interpreter in terms of precision
(0.1975) and F-score (0.1603), though BuzzSaw
was able to exceed it in terms of recall (0.1525).
Both BuzzSaw and Miller and Gurevych (2015)
apply Lesk-like algorithms to “disambiguate” the
pun word. However, lexical overlap approaches
are also used by most of the lower-performing sys-
tems. For heterographic pun interpretation, Idiom
Savant achieved the highest scores (P = 0.0842,
R =0.0710, F; = 0.0771), though its recall is not
much higher than the most frequent sense baseline
(0.0701).

It seems that for probabilistic approaches like
those submitted, classifying texts as puns and, to
a lesser degree, pinpointing the punning lexical
material are easier than actual semantic tasks like
our Subtask 3. This may be because probabilis-
tic approaches cannot, in principle, see past the
arbitrariness of the linguistic sign, instead relying
on context to reflect meaning. We assume that
producing a full semantic analysis in terms of a
knowledge-based system, akin to those proposed in
Bar-Hillel’s (1960) famous evaluation of fully auto-
matic high-quality translation, might be necessary,
because only these approaches can get beyond ob-
served shared features to natural language meaning.
Such knowledge-based approaches to meaning in
humour, based on relevant semantic humour theo-
ries (Raskin, 1985; Attardo and Raskin, 1991), have
been in development since Raskin et al. (2009) and
one recent (albeit non-scalable) approach, Kao et al.
(2015), has already shown very interesting results.
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7 Concluding remarks

In this paper we have introduced SemEval-2017
Task 7, the first shared task for the computational
processing of puns. We have described the rules for
three subtasks—pun detection, pun location, and
pun interpretation—and described the manually
annotated data sets used for their evaluation. Both
data sets are now freely available for use by the
research community. We have also described the
approaches and presented the results of ten partici-
pating teams, as well as several baseline algorithms
and a further system entered out of competition.
We observe most systems performed well on the
pun detection task, with F-scores in the range of
0.5587 to 0.8440. However, only a few systems beat
a simple baseline on pun location. Pun interpre-
tation remains an extremely challenging problem,
with most systems failing to exceed the baselines,
and with sense assignment accuracy much lower
than what is seen with traditional word sense dis-
ambiguation. Interestingly, though there exists
a considerable body of research in linguistics on
phonological models of punning (Hempelmann
and Miller, 2017) and on semantic theories of hu-
mour (Raskin, 2008), little to none of this work
appeared to inform the participating systems.
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Abstract

Media is full of false claims. Even Ox-
ford Dictionaries named “post-truth” as
the word of 2016. This makes it more
important than ever to build systems that
can identify the veracity of a story, and
the nature of the discourse around it. Ru-
mourEval is a SemEval shared task that
aims to identify and handle rumours and
reactions to them, in text. We present an
annotation scheme, a large dataset cov-
ering multiple topics — each having their
own families of claims and replies — and
use these to pose two concrete challenges
as well as the results achieved by partici-
pants on these challenges.

1 Introduction and Motivation

Rumours are rife on the web. False claims affect
people’s perceptions of events and their behaviour,
sometimes in harmful ways. With the increasing
reliance on the Web — social media, in particular —
as a source of information and news updates by in-
dividuals, news professionals, and automated sys-
tems, the potential disruptive impact of rumours is
further accentuated.

The task of analysing and determining veracity
of social media content has been of recent interest
to the field of natural language processing. After
initial work (Qazvinian et al., 2011), increasingly
advanced systems and annotation schemas have
been developed to support the analysis of rumour
and misinformation in text (Kumar and Geethaku-
mari, 2014; Zhang et al., 2015; Shao et al., 2016;
Zubiaga et al., 2016b). Veracity judgment can
be decomposed intuitively in terms of a compar-
ison between assertions made in — and entailments
from — a candidate text, and external world knowl-
edge. Intermediate linguistic cues have also been
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shown to play a role. Critically, based on recent
work the task appears deeply nuanced and very
challenging, while having important applications
in, for example, journalism and disaster mitigation
(Hermida, 2012; Procter et al., 2013a; Veil et al.,
2011).

We propose a shared task where participants
analyse rumours in the form of claims made in
user-generated content, and where users respond
to one another within conversations attempting to
resolve the veracity of the rumour. We define a ru-
mour as a “circulating story of questionable verac-
ity, which is apparently credible but hard to verify,
and produces sufficient scepticism and/or anxiety
so as to motivate finding out the actual truth” (Zu-
biaga et al., 2015b). While breaking news unfold,
gathering opinions and evidence from as many
sources as possible as communities react becomes
crucial to determine the veracity of rumours and
consequently reduce the impact of the spread of
misinformation.

Within this scenario where one needs to listen
to, and assess the testimony of, different sources
to make a final decision with respect to a rumour’s
veracity, we ran a task in SemEval consisting of
two subtasks: (a) stance classification towards ru-
mours, and (b) veracity classification. Subtask A
corresponds to the core problem in crowd response
analysis when using discourse around claims to
verify or disprove them. Subtask B corresponds
to the Al-hard task of assessing directly whether
or not a claim is false.

1.1 Subtask A - SDQC Support/ Rumour
stance classification

Related to the objective of predicting a rumour’s
veracity, Subtask A deals with the complementary
objective of tracking how other sources orient to
the accuracy of the rumourous story. A key step
in the analysis of the surrounding discourse is to

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 69-76,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



SDQC support classification. Example 1:

remain on display #7News [support]
u2: @ul not ISIS flags [deny]
u3:

us:
u6:

SDQC support classification. Example 2:

—PICTURE- [support]
u2
u3:
ud:

response soon. [comment]
ud: @uS ok, thanks. [comment]

ul: We understand there are two gunmen and up to a dozen hostages inside the cafe under siege at Sydney.. ISIS flags

@u1 sorry - how do you know it’s an ISIS flag? Can you actually confirm that? [query]
ud: @u3 no she can’t cos it’s actually not [deny]
@ul More on situation at Martin Place in Sydney, AU —~LINK- [comment]

@u1 Have you actually confirmed its an ISIS flag or are you talking shit [query]

ul: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier after today’s shooting #StandforCanada

: @ul Apparently a hoax. Best to take Tweet down. [deny]

@u1 This photo was taken this morning, before the shooting. [deny]

@ul I don’t believe there are soldiers guarding this area right now. [deny]

u5: @u4 wondered as well. I've reached out to someone who would know just to confirm that. Hopefully get

Figure 1: Examples of tree-structured threads discussing the veracity of a rumour, where the label asso-
ciated with each tweet is the target of the SDQC support classification task.

determine how other users in social media regard
the rumour (Procter et al., 2013b). We propose
to tackle this analysis by looking at the conversa-
tion stemming from direct and nested replies to the
tweet originating the rumour (source tweet).

To this effect RumourEval provided partici-
pants with a tree-structured conversation formed
of tweets replying to the originating rumourous
tweet, directly or indirectly. Each tweet presents
its own type of support with respect to the rumour
(see Figure 1). We frame this in terms of support-
ing, denying, querying or commenting on (SDQC)
the original rumour (Zubiaga et al., 2016b). There-
fore, we introduce a subtask where the goal is to
label the type of interaction between a given state-
ment (rumourous tweet) and a reply tweet (the lat-
ter can be either direct or nested replies).

We note that superficially this subtask may bear
similarity to SemEval-2016 Task 6 on stance de-
tection from tweets (Mohammad et al., 2016),
where participants are asked to determine whether
a tweet is in favour, against or neither, of a given
target entity (e.g. Hillary Clinton) or topic (e.g.
climate change). Our SQDC subtask differs in two
aspects. Firstly, participants needed to determine
the objective support towards a rumour, an entire
statement, rather than individual target concepts.
Moreover, they are asked to determine additional
response types to the rumourous tweet that are rel-
evant to the discourse, such as a request for more
information (questioning, Q) and making a com-
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ment (C), where the latter doesn’t directly address
support or denial towards the rumour, but pro-
vides an indication of the conversational context
surrounding rumours. For example, certain pat-
terns of comments and questions can be indicative
of false rumours and others indicative of rumours
that turn out to be true.

Secondly, participants need to determine the
type of response towards a rumourous tweet from
a tree-structured conversation, where each tweet is
not necessarily sufficiently descriptive on its own,
but needs to be viewed in the context of an aggre-
gate discussion consisting of tweets preceding it
in the thread. This is more closely aligned with
stance classification as defined in other domains,
such as public debates (Anand et al., 2011). The
latter also relates somewhat to the SemEval-2015
Task 3 on Answer Selection in Community Ques-
tion Answering (Moschitti et al., 2015), where the
task was to determine the quality of responses in
tree-structured threads in CQA platforms. Re-
sponses to questions are classified as ‘good’, ‘po-
tential” or ‘bad’. Both tasks are related to tex-
tual entailment and textual similarity. However,
Semeval-2015 Task3 is clearly a question answer-
ing task, the platform itself supporting a QA for-
mat in contrast with the more free-form format of
conversations in Twitter. Moreover, as a question
answering task Semeval-2015 Task 3 is more con-
cerned with relevance and retrieval whereas the
task we propose here is about whether support or



denial can be inferred towards the original state-
ment (source tweet) from the reply tweets.

Each tweet in the tree-structured thread is cate-
gorised into one of the following four categories,
following Procter et al. (2013b):

e Support: the author of the response supports

the veracity of the rumour.

e Deny: the author of the response denies the
veracity of the rumour.

Query: the author of the response asks for
additional evidence in relation to the veracity
of the rumour.

Comment: the author of the response makes
their own comment without a clear contribu-
tion to assessing the veracity of the rumour.

Prior work in the area has found the task dif-
ficult, compounded by the variety present in lan-
guage use between different stories (Lukasik et al.,
2015; Zubiaga et al., 2017). This indicates it is
challenging enough to make for an interesting Se-
mEval shared task.

1.2 Subtask B - Veracity prediction

The goal of this subtask is to predict the verac-
ity of a given rumour. The rumour is presented
as a tweet, reporting an update associated with a
newsworthy event, but deemed unsubstantiated at
the time of release. Given such a tweet/claim, and
a set of other resources provided, systems should
return a label describing the anticipated veracity of
the rumour as true or false — see Figure 2.

The ground truth of this task has been manually
established by journalist members of the team who
identified official statements or other trustworthy
sources of evidence that resolved the veracity of
the given rumour. Examples of tweets annotated
for veracity are shown in Figure 2.

The participants in this subtask chose between
two variants. In the first case — the closed vari-
ant — the veracity of a rumour had to be predicted
solely from the tweet itself (for example (Liu et al.,
2015) rely only on the content of tweets to assess
the veracity of tweets in real time, while systems
such as Tweet-Cred (Gupta et al., 2014) follow a
tweet level analysis for a similar task where the
credibility of a tweet is predicted). In the second
case — the open variant — additional context was
provided as input to veracity prediction systems;
this context consists of a Wikipedia dump. Criti-
cally, no external resources could be used that con-
tained information from after the rumour’s resolu-
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tion. To control this, we specified precise versions
of external information that participants could use.
This was important to make sure we introduced
time sensitivity into the task of veracity prediction.
In a practical system, the classified conversation
threads from Subtask A could be used as context.

We take a simple approach to this task, us-
ing only true/false labels for rumours. In prac-
tice, however, many claims are hard to verify;
for example, there were many rumours concern-
ing Vladimir Putin’s activities in early 2015, many
wholly unsubstantiable. Therefore, we also expect
systems to return a confidence value in the range
of 0-1 for each rumour; if the rumour is unverifi-
able, a confidence of 0 should be returned.

1.3 Impact

Identifying the veracity of claims made on the web
is an increasingly important task (Zubiaga et al.,
2015b). Decision support, digital journalism and
disaster response already rely on picking out such
claims (Procter et al., 2013b). Additionally, web
and social media are a more challenging environ-
ment than e.g. newswire, which has traditionally
provided the mainstay of similar tasks (such as
RTE (Bentivogli et al., 2011)). Last year we ran
a workshop at WWW 2015, Rumors and Decep-
tion in Social Media: Detection, Tracking, and
Visualization (RDSM 2015)! which garnered in-
terest from researchers coming from a variety of
backgrounds, including natural language process-
ing, web science and computational journalism.

2 Data & Resources

To capture web claims and the community reac-
tion around them, we take data from the “model
organism” of social media, Twitter (Tufekci,
2014). Data for the task is available in the form
of online discussion threads, each pertaining to a
particular event and the rumours around it. These
threads form a tree, where each tweet has a par-
ent tweet it responds to. Together these form a
conversation, initiated by a source tweet (see Fig-
ure 1). The data has already been annotated for
veracity and SDQC following a published anno-
tation scheme (Zubiaga et al., 2016b), as part of
the PHEME project (Derczynski and Bontcheva,
2014), in which the task organisers are partners.

"http://www.pheme.eu/events/rdsm2015/



Veracity prediction examples:

ul: Hostage-taker in supermarket siege killed, reports say. #ParisAttacks —LINK- [true]

ul: OMG. #Prince rumoured to be performing in Toronto today. Exciting! [false]

Figure 2: Examples of source tweets with a veracity value, which has to be predicted in the veracity

prediction task.

Subtask A
S D Q C
Train 910 344 358 2,907
Test 94 71 106 778
Subtask B
T F U
Train 137 62 98
Test 8 12 8
Table 1: Label distribution of training and test
datasets.

2.1 Training Data

Our training dataset comprises 297 rumourous
threads collected for 8 events in total, which in-
clude 297 source and 4,222 reply tweets, amount-
ing to 4,519 tweets in total. These events include
well-known breaking news such as the Charlie
Hebdo shooting in Paris, the Ferguson unrest in
the US, and the Germanwings plane crash in the
French Alps. The size of the dataset means it can
be distributed without modifications, according to
Twitter’s current data usage policy, as JSON files.

This dataset is already publicly available (Zubi-
aga et al., 2016a) and constitutes the training and
development data.

2.2 Test Data

For the test data, we annotated 28 additional
threads. These include 20 threads extracted from
the same events as the training set, and 8 threads
from two newly collected events: (1) a rumour
that Hillary Clinton was diagnosed with pneumo-
nia during the 2016 US election campaign, and
(2) arumour that Youtuber Marina Joyce had been
kidnapped.

The test dataset includes, in total, 1,080 tweets,
28 of which are source tweets and 1,052 replies.
The distribution of labels in the training and test
datasets is summarised in Table 1.
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2.3 Context Data

Along with the tweet threads, we also provided ad-
ditional context that participants could make use
of. The context we provided was two-fold: (1)
Wikipedia articles associated with the event in
question. We provided the last revision of the ar-
ticle prior to the source tweet being posted, and
(2) content of linked URLs, using the Internet
Archive to retrieve the latest revision prior to the
link being tweeted, where available.

2.4 Data Annotation

The annotation of rumours and their subsequent
interactions was performed in two steps. In the
first step, we sampled a subset of likely rumourous
tweets from all the tweets associated with the
event in question, where we used the high num-
ber of retweets as an indication of a tweet be-
ing potentially rumourous. These sampled tweets
were fed to an annotation tool, by means of which
our expert journalist annotators members manu-
ally identified the ones that did indeed report un-
verified updates and were considered to be ru-
mours. Whenever possible, they also annotated
rumours that had ultimately been proven true or
the ones that had been debunked as false stories;
the rest were annotated as “unverified”. In the
second step, we collected conversations associ-
ated with those rumourous tweets, which included
all replies succeeding a rumourous source tweet.
The type of support (SDQC) expressed by each
participant in the conversation was then annotated
through crowdsourcing. The methodology for per-
forming this crowdsourced annotation process has
been previously assessed and validated (Zubiaga
et al., 2015a), and is further detailed in (Zubiaga
et al., 2016b). The overall inter-annotator agree-
ment rate of 63.7% showed the task to be chal-
lenging, and easier for source tweets (81.1%) than
for replying tweets (62.2%).

The evaluation data was not available to those
participating in any way in the task, and selec-



tion decisions were taken only by organisers not
connected with any submission, to retain fairness
across submissions.

Figure 1 shows an example of what a data in-
stance looks like, where the source tweet in the
tree presents a rumourous statement that is sup-
ported, denied, queried and commented on by oth-
ers. Note that replies are nested, where some
tweets reply directly to the source, while other
tweets reply to earlier replies, e.g., u4 and u5 en-
gage in a short conversation replying to each other
in the second example. The input to the verac-
ity prediction task is simpler than this; here par-
ticipants had to determine if a rumour was true or
false by only looking at the source tweet (see Fig-
ure 2), and optionally making use of the additional
context provided by the organisers.

To prepare the evaluation resources, we col-
lected and sampled the tweets around which there
is most interaction, placed these in an existing an-
notation tool to be annotated as rumour vs. non-
rumour, categorised them into rumour sub-stories,
and labelled them for veracity.

For Subtask A, the extra annotation for sup-
port / deny / question / comment at the tweet level
within the conversations were performed through
crowdsourcing — as performed to satisfactory qual-
ity already with the existing training data (Zubiaga
et al., 2015a).

3 Evaluation
The two subtasks were evaluated as follows.

SDQC stance classification: The evaluation of
the SDQC needed careful consideration, as the
distribution of the categories is clearly skewed to-
wards comments. Evaluation is through classifica-
tion accuracy.

Veracity prediction: The evaluation of the pre-
dicted veracity, which is either true or false for
each instance, was done using macroaveraged ac-
curacy, hence measuring the ratio of instances for
which a correct prediction was made. Addition-
ally, we calculated RMSE p for the difference be-
tween system and reference confidence in correct
examples and provided the mean of these scores.
Incorrect examples have an RMSE of 1. This
is normalised and combined with the macroaver-
aged accuracy to give a final score; e.g. acc
(1 - p)ace.

The baseline is the most common class.

For
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Team Score
DFKI DKT 0.635
ECNU 0.778
IITP 0.641
IKM 0.701
Mama Edha 0.749
NileTMRG 0.709
Turing 0.784
UWaterloo 0.780
Baseline (4-way) 0.741
Baseline (SDQ) 0.391
Table 2: Results for Task A: sup-

port/deny/query/comment classification.

Task A, we also introduce a baseline excluding the
common, low-impact “comment” class, consider-
ing accuracy over only support, deny and query.
This is included as the SDQ baseline.

4 Participant Systems and Results

We have had 13 system submissions at Ru-
mourEval, eight submissions for Subtask A
(Kochkina et al., 2017; Bahuleyan and Vech-
tomova, 2017; Srivastava et al., 2017; Wang
et al.,, 2017; Singh et al., 2017; Chen et al.,,
2017; Garcia Lozano et al., 2017; Enayet and El-
Beltagy, 2017), the identification of stance to-
wards rumours, and five submissions for Sub-
task B (Srivastava et al., 2017; Wang et al., 2017;
Singh et al., 2017; Chen et al., 2017; Enayet and
El-Beltagy, 2017), the rumour veracity classifi-
cation task, with participant teams coming from
four continents (Europe: Germany, Sweden, UK;
North America: Canada; Asia: China, India, Tai-
wan; Africa: Egypt), showing the global reach of
the issue of rumour veracity on social media.
Most participants tackled Subtask A, which in-
volves classifying a tweet in a conversation thread
as either supporting (S), denying (D), querying (Q)
or commenting on (C) a rumour. Results are given
in Table 2 The distribution of SDQC labels in the
training, development and test sets favours com-
ments (see Table 1. Including and recognising the
items that fit in this class is important for reduc-
ing noise in the other, information-bearing classi-
fications (support, deny and query). In actual fact,
comments are often express implicit support; the
absence of dispute is a soft signal of agreement.
Systems generally viewed this task as a four-
way single tweet classification task, with the ex-



ception of the best performing system (Turing),
which addressed it as a sequential classification
problem, where the SDQC label of each tweet
depends on the features and labels of the pre-
vious tweets, and the ECNU and IITP systems.
The IITP system takes as input pairs of source
and reply tweets whereas the ECNU system ad-
dressed class imbalance by decomposing the prob-
lem into a two step classification task (com-
ment vs. non-comment), and all non-comment
tweets classified as SDQ. Half of the systems em-
ployed ensemble classifiers, where classification
was obtained through majority voting (ECNU,
MamaEdha, UWaterloo, DFKI-DKT). In some
cases the ensembles were hybrid, consisting both
of machine learning classifiers and manually cre-
ated rules, with differential weighting of classi-
fiers for different class labels (ECNU, MamaEdha,
DFKI-DKT). Three systems used deep learning,
with team Turing employing LSTMs for sequen-
tial classification, team IKM using convolutional
neural networks (CNN) for obtaining the repre-
sentation of each tweet, assigned a probability for
a class by a softmax classifier and team Mama
Edha using CNN as one of the classifiers in their
hybrid conglomeration. The remaining two sys-
tems NileTMRG and IITP used support vector
machines with linear and polynomial kernel re-
spectively. Half of the systems invested in elabo-
rate feature engineering including cue words and
expressions denoting Belief, Knowledge, Doubt
and Denial (UWaterloo) as well as Tweet domain
features including meta-data about users, hash-
tags and event specific keywords (ECNU, UWa-
terloo, IITP, NileTMRG). The systems with the
least elaborate features were IKM and Mama Edha
for CNNs (word embeddings), DFKI-DKT (sparse
word vectors as input to logistic regression) and
Turing (average word vectors, punctuation, sim-
ilarity between word vectors in current tweet,
source tweet and previous tweet, presence of nega-
tion, picture, URL). Five out of the eight systems
used pre-trained word embeddings, mostly Google
News word2vec embeddings, while ECNU used
four different types of embeddings. Overall, elab-
orate feature engineering and a strategy for ad-
dressing class imbalance seemed to pay off, as can
be seen by the success of the high performance
of the UWaterloo and ECNU systems. The suc-
cess of the best performing system (Turing) can
be attributed both to the use of LSTM to address
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Confidence RMSE
0.746

Team Score
IITP 0.393

Table 3: Results for Task B: Rumour veracity -
open variant.

Team Score Confidence RMSE
DFKIDKT 0.393 0.845
ECNU 0.464 0.736
IITP 0.286 0.807
IKM 0.536 0.763
NileTMRG 0.536 0.672
Baseline 0.571 -

Table 4: Results for Task B: Rumour veracity -
closed variant.

the problem as a sequential task and the choice of
word embeddings.

Subtask B, veracity classification of a
source tweet, was viewed as either a three-
way (NileTMRG, ECNU, IITP) or two-way
(IKM, DFKI-DKT) single tweet classification
task. Results are given in Table 3 for the open
variant, where external resources may be used,’
and Table 4 for the closed variant — with no
external resource use permitted. The systems used
mostly similar features and classifiers to those in
Subtask A, though some added features more spe-
cific to the distribution of SDQC labels in replies
to the source tweet (e.g. the best performing
system in this task, NileTMRG, considered the
percentage of reply tweets classified as either S,
D or Q).

5 Conclusion

Detecting and verifying rumours is a critical task
and in the current media landscape, vital to pop-
ulations so they can make decisions based on the
truth. This shared task brought together many ap-
proaches to fixing veracity in real media, working
through community interactions and claims made
on the web. Many systems were able to achieve
good results on unravelling the argument around
various claims, finding out whether a discussion
supports, denies, questions or comments on ru-
mours.

The commentary around a story often helps de-
termine how true that story is, so this advance is
a great positive. However, finding out accurately

*Namely, the 20160901 English Wikipedia dump.



whether a story is false or true remains really
tough. Systems did not reach the most-common-
class baseline, despite the data not being excep-
tionally skewed. even the best systems could have
the wrong level of confidence in a true/false judg-
ment, weakly verifying stories that are true and so
on. This tells us that we are making progress, but
that the problem is so far very hard.

RumourEval leaves behind competitive results,
a large number of approaches to be dissected by
future researchers, and a benchmark dataset of
thousands of documents and novel news stories.
This sets a good baseline for the next steps in the
area of fake news detection, as well as the mate-
rial anyone needs to get started on the problem and
evaluate and improve their systems.
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Abstract

This paper presents three systems
for semantic textual similarity (STS)
evaluation at SemEval-2017 STS task.
One is an unsupervised system and the
other two are supervised systems which
simply employ the unsupervised one.
All our systems mainly depend on the
semantic information space (SIS), which
is constructed based on the semantic
hierarchical taxonomy in WordNet, to
compute non-overlapping information
content (IC) of sentences. Our team
ranked 2nd among 31 participating
teams by the primary score of Pearson
correlation coefficient (PCC) mean of 7
tracks and achieved the best performance
on Track 1 (AR-AR) dataset.

1 Introduction

Given two snippets of text, semantic textual simi-
larity (STS) measures the degree of equivalence in
the underlying semantics. STS is a basic but im-
portant issue with multitude of application areas in
natural language processing (NLP) such as exam-
ple based machine translation (EBMT), machine
translation evaluation, information retrieval (IR),
question answering (QA), text summarization and
SO on.

The SemEval STS task has become the most
famous activity for STS evaluation in recent years
and the STS shared task has been held annual-
ly since 2012 (Agirre et al., 2012, 2013, 2014,
2015, 2016; Cer et al.,, 2017), as part of the
SemEval/*SEM family of workshops. The orga-
nizers have set up publicly available datasets of
sentence pairs with similarity scores from human
annotators, which are up to more than 16,000
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sentence pairs for training and evaluation, and
attracted a large number of teams with a variety
of systems to participate the competitions.
Generally, STS systems could be divided into
two categories: One kind is unsupervised sys-
tems (Li et al., 2006; Mihalcea et al., 2006; Is-
lam and Inkpen, 2008; Han et al., 2013; Sultan
et al.,, 2014b; Wu and Huang, 2016), some of
which are appeared for a long time when there
wasn’t enough training data; The other kind is
supervised systems (Bir et al., 2012; Sari¢ et al.,
2012; Sultan et al., 2015; Rychalska et al., 2016;
Brychcin and Svoboda, 2016) applying machine
learning algorithms, including deep learning, after
adequate training data has been constructed. Each
kind of methods has its advantages and application
areas. In this paper, we present three systems, one
unsupervised system and two supervised systems
which simply make use of the unsupervised one.

2 Preliminaries

Following the standard argumentation of informa-
tion theory, Resnik (1995) proposed the definition
of the information content (IC) of a concept as
follows:

IC (¢) = —log P(c), ()
where P(c) refers to statistical frequency of con-
cept c.

Since information content (IC) for multiple
words, which sums the non-overlapping
concepts IC, is a computational difficulties
for knowledge based methods. For a long time,
IC related methods were usually used as word
similarity (Resnik, 1995; Jiang and Conrath,
1997; Lin, 1997) or word weight (Li et al., 2006;
Han et al., 2013) rather than the core evaluation
modules of sentence similarity methods (Wu and
Huang, 2016).

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 77-84,
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2.1 STS evaluation using SIS

To apply non-overlapping IC of sentences in STS
evaluation, we construct the semantic information
space (SIS), which employs the super-subordinate
(is-a) relation from the hierarchical taxonomy of
WordNet (Wu and Huang, 2016). The space size
of a concept is the information content of the
concept. SIS is not a traditional orthogonality
multidimensional space, while it is the space with
inclusion relation among concepts. Sentences in
SIS are represented as a real physical space instead
of a point in vector space.

We have the intuitions about similarity: The
similarity between A and B is related to their com-
monality and differences, the more commonality
and the less differences they have, the more similar
they are; The maximum similarity is reached when
A and B are identical, no matter how much com-
monality they share(Lin, 1998). The principle of
Jaccard coeflicient (Jaccard, 1908) is accordance
with the intuitions about similarity and we define
the similarity of two sentences S, and S based on

it:
IC (s, N sp)

IC (s, U sp)’
The quantity of the intersection of the informa-

tion provided by the two sentences can be obtained
through that of the union of them:

2

sim (Sq, Sp) =

IC (sa N sp) = IC (s,)+IC (sp)—1C (s, U s5p). (3)

So the remaining problem is how to compute the
quantity of the union of non-overlapping informa-
tion of sentences. We calculate it by employing the
inclusion-exclusion principle from combinatorics
for the total IC of sentence s, and the same way is
used for sentence s, and both sentences:

IC (s4) = IC(LnJ cg)
i=1
(GO ADY

1 1<ij<<ix<n

4)

IC(cflﬂ---ﬂc?k).

WM:

For the IC of n-concepts intersection in Equa-
tion (4), we use the following equation':

'For the sake of high computational complexity in-
troduced by Equation (4), we simplify the calculation of
common IC of n-concepts and use the approximate formula
in Equation (6). The accurate formula of common IC is:

T

commonlC (c, - -,c,,):IC((n] ci):IC( cj), 5)
i=1

1

J
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Algorithm 1: getInExT otallC(S)
Imput: S : {cjli=1,2,...,n;n =S|}
Output: #/C: Total IC of input S
if S = @ then
L return 0
Initialize: tIC <« 0
fori=1;i<mji++do
foreach comb in C(n, i)-combinations do
cIC « commonlIC (comb)
L tIC+ = (=1)7' - cIC
return ¢t/IC

N NN AW N =

=]

commonlC (c1,--+,c,) = IC(
[—log P(c)],

n
Ci
i=1

where, subsum (cy,---,c,) is the set of concepts
that subsume all the concepts of ¢y, - - -, ¢, in SIS.

Algorithm 1 is according to Equation (4)
and (6), here C (n, i) is the number of combinations
of i-concepts from n-concepts, commonlC(comb)
is calculated through Equation (6).

For more details about this section, please see
the paper (Wu and Huang, 2016) for reference.

(6)

~
=~

max
cesubsum(cy,,cn)

2.2 The Efficient Algorithm for Sentence IC

According to the Binomial Theorem, the amount
of combinations for commonlC(comb) calculation
from Equation (4) is:
Cn,H)+---+C(n,n) =2"-1. (@)
Searching subsumers in the hierarchical taxono-
my of WordNet is the most time-consuming opera-
tion. Define one time searching between concepts
be the minimum computational unit. Considering
searching subsumers among multiple concepts,
the real computational complexity is more than
0«xCn,DN+1«Cn,2)+--- +(n—1)*C (n,n).
Note that the computational complexity through
the inclusion-exclusion principle is more than
O(2"). To decrease the computational complexity,
we exploit the efficient algorithm for precise
non-overlapping IC computing of sentences by
making use of the thinking of the different
set in hierarchical network (Wu and Huang,

where ¢; € subsum(cy,---,c,), m is the total number of c;.
We could see Equation.(4) and (5) are indirect recursion.



Algorithm 2: getT otallC(S)

Algorithm 3: getIntersect(c;, Root(i — 1))

Imput: S : {cili=1,2,...,n;n =S|}
Output: 7/C: Total IC of input S

1 if S = @ then

2 L return O

3 Initialize: tIC <« 0, Root(0) «— @&
4 fori=1;i<n;i++do

5 Intersect(ili — 1), Root(i) «
getIntersect(c;, Root(i — 1))
6 ICG «
I1C(c;) — getTotallC(Intersect(ili — 1))
7 tIC+ = ICG

8 return /C

2017): We add the words into the SIS one by
one each time and sum the gain IC of ICG(c;)
from the newly added concept ¢;. For sentence
S = {cli=1,2,...,n;n =S|}, where ¢; is the
concept of the i-th concept in §, |S| is concept
count of §, the formula of ICG(c;) is as follows:

1C(S) = 21 ICG(cy) (8)

For convenience in the expression of ICG(c;),
we define some functions: Root(c;) indicates the
set of paths, each path is the node list from
¢;i to the root in the nominal hierarchical tax-
onomy of WordNet. Root(n) is the short form
of Root(cy,--+,c,). Formally, let Set(p) be the
set of nodes in path p, Root(n) = {pilVpr €
Root(c;), Ap; € Root(cj),Set(py) € Set(p).i =
1,2,...,n;j = 1,2,...,n}. |Root(c;)| means the
number of paths in Root(c;). HS N(c;) expresses
the set of nodes in any of path in Root(c;). HS N(n)
is the short form of HSN (cy,---,c,), formally,
HSN (n) = {ctlck € HSN(c)).i=1,2,...,n}.

Let depth(c) be the max depth from concept ¢
to the root. We define Intersect(n + 1ln) =
{ciVe; €  {Set(p) N HSNmn)},Ac; €
{Set(p)) N HS N(n)},depth(c;) < depth(cj).p; €
Root(cp41);t 1,---,|Root(c,+1)]} and
totallC (cy,--+,c,) 1is the quantity of total
information of n-concepts. We have

ICG(Cy)=IC(c;)—totallC(Intersect(ili—1)).
9)
Algorithm 2 and 3 are according to Equation (8)
and (9). Algorithm 3 is approximately equal to one
time subsumer searching between concepts, thus
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Input: ¢;, Root(i — 1)
Output: Intersect(ili — 1), Root(i)

1 Initialize: get Root(c;) from WordNet
Intersect(ili — 1) « @; Root(i) « Root(i — 1)

2 if Root(i) = @ then /¥i=1 %/

3 Root(i) < Root(c;)

4 | return Intersect(ili — 1), Root(i)

5 foreach r; € Root(c;) do

6 pos «— depth(r;))—1/* pos & root */

7 foreach r;_; € Root(i — 1) do

8 (p,q) < deepest common node
position: p in r;, g in ri_;

9 if p = 0 then /¥ r; in rily ¥/

10 add ¢; to Intersect(ili — 1)

11 break the outer foreach loop

12 if g = 0 then /¥ ricp inrp */

13 L remove r;_ from Root(i)

14 if p < posthen /* ri_; intersect
at deeper node in r; */

15 L pos < p

16 add r; to Root(i)

17 | add ¢ € r; to Intersect(ili — 1)

18 return Intersect(ili — 1), Root(i)

the computational complexity of Algorithm 2 is
O(n). This indicates SIS methods could be applied
to any length of sentences even short paragraphs.
The open source implementations of Algorithm 2
and 3 with related library are also available at
GitHub?.

Theoretical system with lemmas and theorems
has been established for supporting the correctness
of Equation (8) and (9). For more details about
this section, please see the paper (Wu and Huang,
2017) for reference.

2.3 Increasing Word Recall Rate for SIS

We made three aspects improvements in our an-
other previous work:

First, we utilize WordNet to directly obtain the
nominal forms of a content word which is not
a noun mainly through derivational pointers in
WordNet. The word formation helps enhance the
recall rate of known content words in sentence-to-
SIS mappings. Second, name entity (NE) recogni-
tion tool (Manning et al., 2014) and the alignment

Zhttps://github.com/hao123wu/STS



tool (Sultan et al., 2014a) are employed to obtain
non-overlapping unknown NEs, which are used
for simulating non-overlapping IC in SIS. The
alignment tool is mainly used for finding actually
same NEs with different string forms and incon-
sistent NE annotations by the NE recognition tool.
Through the statistic values of known NEs of the
same kinds from previous datasets, we simulate
the IC of out-of-vocabulary NEs in SIS. Finally,
sentence IC is augmented by word weights which
could deem as the importance of words.

The above contents of this subsection is mainly
based on the work which is currently under review.

3 System Overview

We submitted three systems: One is the unsu-
pervised system of exploiting non-overlapping IC
in SIS, the other two are supervised systems of
making use of the methods of sentence alignment
and word embedding respectively.

3.1 Preprocessing

First of all, we translated all the other languages
into English by employing Google machine trans-
lation system® and preprocessed the test datasets
with tokenizer.perl and truecase.perl, which are
the tools from Moses machine translation toolk-
it (Koehn et al., 2007), then utilized the prepro-
cessed datasets to do POS obtaining and lemmati-
zation by utilizing NLTK (Bird, 2006), and finally
made use of lemma to do sentence alignmen-
t (Sultan et al., 2014a) and name entity recogni-
tion (Manning et al., 2014). We use the lemma
instead of the original word in all the situations
where need words to participate for the considera-
tion of simplicity.

We also developed a word spelling correction
module based on Levenshtein distance which is
special for the spelling mistakes in STS datasets.
It proved important for the eventual performances
in previous years, however, it was not so critical
this year.

3.2 Run 1: Unsupervised SIS

Run 1 is from the unsupervised system constructed
using the framework described in Section 2 and
the implementation is as follows:

Word IC calculation employs Equation (1) and

3http://translate.google.com
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the probability of a concept c is:

Znavords(c) CO"””(”)
N

P(c) = 10)
where words (c) is the set of all the words con-
tained in concept ¢ and its sub-concepts in Word-
Net, N is the sum of frequencies of words con-
tained in all the concepts in the hierarchy of
semantic net. The word statistics are from British
National Corpus (BNC) obtained by NLTK (Bird,
2006). Sentence IC computation applies Equa-
tion (9).

For the simplification, we choose the concept
of a word with the minimal IC, which denotes
the most common sense of a word, in all the
circumstances of conversion of word-to-concept
and the selection between two aligned words,
instead of word sense disambiguation (WSD).

3.3 Run 2: Supervised IC and Alignment

As the aligner of Sultan et al. (2014a) is suc-
cessfully applied in STS evaluation, we should
leverage its advantage of finding potential word
aligned pairs from both sentences, especially for
different surface forms. However, we did not
obtain the global inverse document frequency (ID-
F) data on time, thus we did not employ the
aligner of Brychcin and Svoboda (2016), which
is the improved version of Sultan et al. (2014a),
that introduces IDF information of words in the
similarity formula.

In this run, we use support vector
machines (Chang and Lin, 2011) (SVM) for
regression, more specifically sequential minimal
optimization (Shevade et al., 2000) (SMO). There
two features: One is the output of SIS, the other
is that of unsupervised method of Sultan et al.
(2015).

Actually, we tested some other regression meth-
ods. We found that LR and SVM always outper-
form the others. The tool for regression methods
are implemented in WEKA (Hall et al., 2009).

3.4 Run 3: Supervised IC and Embeddings

Deep learning has become a hot topic in recent
years and many supervised methods of STS in-
corporate deep learning models. At SemEval
2016 STS task, at least top 5 teams included
deep learning modules according to incomplete
statistics (Agirre et al., 2016).

In this run, we take advantage of the embed-
dings that obtained information from large scale



Track Dataset Total GS Pairs
Track 1 Arabic-Arabic 250 250
Track 2 Arabic-English 250 250
Track 3 Spanish-Spanish 250 250
Track 4a  Spanish-English 250 250
Track 4b  Spanish-English-WMT 250 250
Track 5 English-English 250 250
Track 6 English-Turkish 500 250
Sum 2000 1750

Table 1: Test sets at SemEval 2017 STS task.

corpora and train the linear regression (LR) model.
There two features: One is the outputs of SIS, the
other is from a modified version of basic sentence
embedding which is the simply combination of
word embeddings.

The word embedding vectors are generated
from word2vec (Mikolov et al., 2013) over the 5th
edition of the Gigaword (LDC2011T07) (Parker
et al., 2011). We also preprocess the Gigaword
data with fokenizerperl and truecase.perl.
We modify this basic sentence embedding by
importing domain IDF information. The domain
IDFs of words could be obtained from the current
test dataset by deeming each sentence as a
document. We did not directly use the domain
IDFs d as the weight of a word embedding. On
previous datasets, we found d’® as its weight
performed nearly the best.

4 Data

SemEval 2017 STS task assesses the ability of
systems to determine the degree of semantic simi-
larity between monolingual and cross-lingual sen-
tences in Arabic, English, Spanish and a surprise
language of Turkish. The shared task is organized
into a set of secondary sub-tracks and a single
combined primary track. Each secondary sub-
track involves providing STS scores for monolin-
gual sentence pairs in a particular language or for
cross-lingual sentence pairs from the combination
of two particular languages. Participation in the
primary track is achieved by submitting results for
all of the secondary sub-tracks (Cer et al., 2017).

As shown in Table 1, the SemEval 2017 STS
shared task contains 1750 pairs with gold standard
(GS) out of total 2000 pairs from 7 different tracks.
Systems were required to annotate all the pairs and
performance was evaluated on all pairs or a subset
with GS in the datasets. The GS for each pair
ranges from O to 5, with the values indicating the
corresponding interpretations:
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5 indicates completely equivalence; 4 expresses
mostly equivalent with differences only in some
unimportant details; 3 means roughly equivalent
but with differences in some important details; 2
means non-equivalence but sharing some details;
1 means the pairs only share the same topic; and 0
represents no overlap in similarity.

5 Evaluation

The evaluation metric is the Pearson product-
moment correlation coefficient (PCC) between se-
mantic similarity scores of machine assigned and
human judgements. PCC is used for each individ-
ual test set, and the primary evaluation is measured
by weighted mean of PCC on all datasets (Cer
etal., 2017).

Performances of our three runs on each of
SemEval 2017 STS test set are shown in Table 2.
Bold numbers represents the best scores from
any our system on each test set, including the
primary scores. Cosine Baseline utilizes basic
sentence embedding method for monolingual sim-
ilarity (Track 1, 3 and 5) provided officially by
STS organizers; Best system denotes all the scores
are from the state-of-the-art system; All Systems
Best means the best scores from all the systems
participated in each track, regardless of whether
they come from the same system; Differences
indicates the differences between the best scores
from our three systems and All Single Best in
each track, primary difference is between our
best system and state-of-the-art system. 7Zeam
Rankings show the rankings of our best scores
from that of other teams. 7Team Rankings of
Primary could be the most important ranking for
participants who submitted scores for all tracks.

Our team ranked 2nd for the primary score and
achieved the best performance in Track 1 (Arabic-
Arabic). Track 1 is the only track that totally
employed new languages which has no references
from the past (cross-lingual evaluation contains
English sentences).

The very failing performance is in Track 4b.
We guess the reasons could be the followings and
further research is needed on this issue:

1) Our methods, especially for unsupervised
SIS, ignore some important information as the
embedding methods and are currently not suit for
complicated post-editing sentences. We tested
basic sentence embedding method in isolation
which could achieve the score of more than 0.16,



Primary | Track1 Track2 Track3 Track4a Track4b Track5 Track6
Run 1 0.6703 0.7535 0.7007 0.8323 0.7813 0.0758 0.8161 0.7327
Run 2 0.6662 0.7543 0.6953 0.8289 0.7761 0.0584 0.8222 0.7280
Run 3 0.6789 0.7417 0.6965 0.8499 0.7828 0.1107 0.8400 0.7305
Cosine Baseline 0.5370 0.6045 0.5155 0.7117 0.6220 0.0320 0.7278 0.5456
Best System 0.7316 0.7440 0.7493 0.8559 0.8131 0.3363 0.8518 0.7706
All Single Best - 0.7543 0.7493 0.8559 0.8302 0.3407 0.8547 0.7706
Differences 5.3% -0.8% 4.9% 0.6% 4.7% 23.0% 1.5% 3.8%
Team Rankings 2 1 2 2 3 14 4 2
Table 2: Performances on SemEval 2017 STS evaluation datasets.
much better than our IC based systems of Run 1 Set Size Runl Run2 Run3
. . Development 1500 0.8194 0.8240 0.8291
(0.0758) and Run 2 (0.0584),which are without Tet 1379 07942 07962  0.8085

embedding modules.

2) The translation quantity for long sentences
by machine translation may be not good enough
as that for short sentences. The translation results
may lose some information in the original sen-
tences for SIS and introduce more noise.

6 STS benchmark

In order to provide a standard benchmark to com-
pare among the state-of-the-art in Semantic Tex-
tual Similarity for English, the organizers of Se-
mEval STS tasks are already setting a leaderboard
this year which includes results of some selected
systems. The benchmark comprises a selection
of the English datasets used in the STS tasks in
the context of SemEval from 2012 to 2017 and it
is organized into train, development and test (Cer
et al., 2017).

Our systems are selected by the organizers to
submit the results for STS benchmark. We employ
the models that described above, but a small
difference is in Run 3: ¢%° was used as the weights
of word embeddings, which could achieve the best
performance of cosine similarity from the summed
word embeddings in isolation. As our models need
not tune hyperparameters, the train part is used
for tuning parameters and training models while
the development part and the test part are used for
the testing of the final systems. Table 3 shows the
performances of our systems.

From the table we could see Run 3 provides
the best performance in benchmark, which is in
accordance with the results in SemEval 2017 STS
task. Our best system ranks 2nd at present. More
details about STS benchmark and the real-time
leaderboard could be find in the official website®.

“http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Table 3: Performances of runs on STS benchmark.

7 Conclusions

At SemEval 2017 STS task, we introduced a un-
supervised knowledge based method, SIS, which
could be new at SemEval. SIS is the extension
of information content for STS evaluation. The
performance of SIS is pretty good on STS test
sets for it’s just a new unsupervised method with
room to improve. Currently, our main concern
is how to gain the information contained in word
embeddings, which may be lost in knowledge
based SIS, and combine it with SIS to improve
STS performance.
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Abstract

This paper describes Luminoso’s partici-
pation in SemEval 2017 Task 2, “Multi-
lingual and Cross-lingual Semantic Word
Similarity”, with a system based on Con-
ceptNet. ConceptNet is an open, multilin-
gual knowledge graph that focuses on gen-
eral knowledge that relates the meanings
of words and phrases. Our submission to
SemEval was an update of previous work
that builds high-quality, multilingual word
embeddings from a combination of Con-
ceptNet and distributional semantics. Our
system took first place in both subtasks. It
ranked first in 4 out of 5 of the separate
languages, and also ranked first in all 10
of the cross-lingual language pairs.

1 Introduction

ConceptNet 5 (Speer and Havasi, 2013) is a mul-
tilingual, domain-general knowledge graph that
connects words and phrases of natural language
(terms) with labeled, weighted edges. Compared
to other knowledge graphs, it avoids trying to
be a large gazetteer of named entities. It aims
most of all to cover the frequently-used words
and phrases of every language, and to represent
generally-known relationships between the mean-
ings of these terms.

The paper describing ConceptNet 5.5 (Speer
et al., 2017) showed that it could be used in com-
bination with sources of distributional semantics,
particularly the word2vec Google News skip-gram
embeddings (Mikolov et al., 2013) and GloVe 1.2
(Pennington et al., 2014), to produce new em-
beddings with state-of-the-art performance across
many word-relatedness evaluations. The three
data sources are combined using an extension of
the technique known as retrofitting (Faruqui et al.,
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2015). The result is a system of pre-computed
word embeddings we call “ConceptNet Number-
batch”.

The system we submitted to SemEval-2017
Task 2, “Multilingual and Cross-lingual Semantic
Word Similarity”, is an update of that system, co-
inciding with the release of version 5.5.3 of Con-
ceptNet!. We added multiple fallback methods for
assigning vectors to out-of-vocabulary words. We
also experimented with, but did not submit, sys-
tems that used additional sources of word embed-
dings in the five languages of this SemEval task.

This task (Camacho-Collados et al., 2017) eval-
uated systems at their ability to rank pairs of words
by their semantic similarity or relatedness. The
words are in five languages: English, German,
Italian, Spanish, and Farsi. Subtask 1 compares
pairs of words within each of the five languages;
subtask 2 compares pairs of words that are in dif-
ferent languages, for each of the ten pairs of dis-
tinct languages.

Our system took first place in both subtasks.
Detailed results for our system appear in Sec-
tion 3.4.

2 Implementation

The way we built our embeddings is based on
retrofitting (Faruqui et al., 2015), and in par-
ticular, the elaboration of it we call “expanded
retrofitting” (Speer et al., 2017). Retrofitting, as
originally described, adjusts the values of exist-
ing word embeddings based on a new objective
function that also takes a knowledge graph into ac-
count. Its output has the same vocabulary as its
input. In expanded retrofitting, on the other hand,
terms that are only present in the knowledge graph
are added to the vocabulary and are also assigned

'Data  and code available at

conceptnet.io.

are http://
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vectors.

2.1 Combining Multiple Sources of Vectors

As described in the ConceptNet 5.5 paper (Speer
et al., 2017), we apply expanded retrofitting sepa-
rately to multiple sources of embeddings (such as
pre-trained word2vec and GloVe), then align the
results on a unified vocabulary and reduce its di-
mensionality.

First, we make a unified matrix of embeddings,
M3, as follows:

e Take the subgraph of ConceptNet consisting
of nodes whose degree is at least 3. Re-
move edges corresponding to negative rela-
tions (such as NotUsedFor and Antonym).

Remove phrases with 4 or more words.

Standardize the sources of embeddings by
case-folding their terms and L;-normalizing
their columns.

For each source of embeddings, apply ex-
panded retrofitting over that source with the
subgraph of ConceptNet. In each case, this
provides vectors for a vocabulary of terms
that includes the ConceptNet vocabulary.

Choose a unified vocabulary (described be-
low), and look up the vectors for each term
in this vocabulary in the expanded retrofitting
outputs. If a vector is missing from the vo-
cabulary of a retrofitted output, fill in zeroes
for those components.

Concatenate the outputs of expanded
retrofitting over this unified vocabulary to
give M.

2.2 Vocabulary Selection

Expanded retrofitting produces vectors for all the
terms in its knowledge graph and all the terms in
the input embeddings. Some terms from outside
the ConceptNet graph have useful embeddings,
representing knowledge we would like to keep, but
using all such terms would be noisy and wasteful.

To select the vocabulary of our term vectors, we
used a heuristic that takes advantage of the fact
that the pre-computed word2vec and GloVe em-
beddings we used have their rows (representing
terms) sorted by term frequency.

To find appropriate terms, we take all the terms
that appear in the first 500,000 rows of both the
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word2vec and GloVe inputs, and appear in the first
200,000 rows of at least one of them. We take the
union of these with the terms in the ConceptNet
subgraph described above. The resulting vocabu-
lary, of 1,884,688 ConceptNet terms plus 99,869
additional terms, is the vocabulary we use in the
system we submitted and its variants.

2.3 Dimensionality Reduction

The concatenated matrix M has k columns repre-
senting features that may be redundant with each
other. Our next step is to reduce its dimensional-
ity to a smaller number &', which we set to 300,
the dimensionality of the largest input matrix. Our
goal is to learn a projection from k dimensions to
k' dimensions that removes the redundancy that
comes from concatenating multiple sources of em-
beddings.

We sample 5% of the rows of M; to get Mo,
which we will use to find the projection more effi-
ciently, assuming that its vectors represent approx-
imately the same distribution as Mj.

M5 can be approximated with a truncated SVD:
My ~ UXY/2VT  where X is truncated to a k' x &’
diagonal matrix of the k' largest singular values,
and U and V are correspondingly truncated to
have only these &’ columns.

U is a matrix mapping the same vocabulary to
a smaller set of features. Because V' is orthonor-
mal, U2 is a rotation and truncation of the origi-
nal data, where each feature contributes the same
amount of variance as it did in the original data.
UX'/2 is a version that removes some of the vari-
ance that came from redundant features, and also
is analogous to the decomposition used by Levy
et al. (2015) in their SVD process.

We can solve for the operator that projects M
into UX1/2:

USY? ~ M,y 12

V12 is therefore a k x k' operator that,
when applied on the right, projects vectors from
our larger space of features to our smaller space
of features. It can be applied to any vector in
the space of M, not just the ones we sampled.
Mz = M, VX~ /2 is the projection of the selected
vocabulary into k&’ dimensions, which is the matrix
of term vectors that we output and evaluate.

2.4 Don’t Take “OOV” for an Answer

Published evaluations of word embeddings can
be inconsistent about what to do with out-of-



vocabulary (OOV) words, those words that the
system has learned no representation for. Some
evaluators, such as Bojanowski et al. (2016), dis-
card all pairs containing an OOV word. This
makes different systems with different vocabular-
ies difficult to compare. It enables gaming the
evaluation by limiting the system’s vocabulary,
and gives no incentive to expand the vocabulary.

This SemEval task took a more objective po-
sition: no word pairs may be discarded. Every
system must submit a similarity value for every
word pair, and “OOV” is no excuse. The organiz-
ers recommended using the midpoint of the simi-
larity scale as a default.

In our previous work with ConceptNet, we
eliminated one possible cause of OOV terms. A
term that is outside of the selected vocabulary,
perhaps because its degree in ConceptNet is too
low, can still be assigned a vector. When we en-
counter a word with no computed vector, we look
it up in ConceptNet, find its neighbors, and take
the average of whatever vectors those neighboring
terms have. This approximates the vector the term
would have been assigned if it had participated in
retrofitting. If the term has no neighbors with vec-
tors, it remains OOV.

For this SemEval task, we recognized the im-
portance of minimizing OOV terms, and imple-
mented two additional fallback strategies for the
terms that are still OOV.

It is unavoidable that training data in non-
English languages will be harder to come by and
sparser than data in English. It is also true that
some words in non-English languages are bor-
rowed directly from English, and are therefore ex-
act cognates for English words.

As such, we used a simple strategy to further
increase the coverage of our non-English vocabu-
laries: if a term is not associated with a vector in
matrix M3, we first look up the vector for the term
that is spelled identically in English. If that vector
is present, we use it.

This method is in theory vulnerable to false cog-
nates, such as the German word Gift (meaning
“poison”). However, false cognates tend to appear
among common words, not rare ones, so they are
unlikely to use this fallback strategy. Our German
embeddings do contain a vector for “Gift”, and it
is similar to English “poison”, not English “gift”.

As a second fallback strategy, when a term can-
not be found in its given language or in English,
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we look for terms in the vocabulary that have the
given term as a prefix. If we find none of those,
we drop a letter from the end of the unknown term,
and look for that as a prefix. We continue dropping
letters from the end until a result is found. When
a prefix yields results, we use the mean of all the
resulting vectors as the word’s vector.

3 Results

In this task, systems were scored by the harmonic
mean of their Pearson and Spearman correlation
with the test set for each language (or language
pair in Subtask 2). Systems were assigned ag-
gregate scores, averaging their top 4 languages on
Subtask 1 and their top 6 pairs on Subtask 2.

3.1 The Submitted System: ConceptNet +
word2vec + GloVe

The system we submitted applied the retrofitting-
and-merging process described above, with Con-
ceptNet 5.5.3 as the knowledge graph and two
well-regarded sources of English word embed-
dings. The first source is the word2vec Google
News embeddings?, and the second is the GloVe
1.2 embeddings that were trained on 840 billion
tokens of the Common Crawl>.

Because the input embeddings are only in En-
glish, the vectors in other languages depended en-
tirely on propagating these English embeddings
via the multilingual links in ConceptNet.

This system appears in the results as
“Luminoso-run2”. Run 1 was similar, but it
was looking up neighbors in an unreleased ver-
sion of the ConceptNet graph with fewer edges
from DBPedia in it.

This system’s aggregate score on subtask 1 was
0.743. Its combined score on subtask 2 (averaged
over its six best language pairs) was 0.754.

3.2 Variant A: Adding Polyglot Embeddings

Instead of relying entirely on English knowledge
propagated through ConceptNet, it seemed rea-
sonable to also include pre-calculated word em-
beddings in other languages as inputs. In Vari-
ant A, we added inputs from the Polyglot embed-
dings (Al-Rfou et al., 2013) in German, Spanish,
Italian, and Farsi as four additional inputs to the
retrofitting-and-merging process.

https://code.google.com/archive/p/
word2vec/

*http://nlp.stanford.edu/projects/
glove/



The results of this variant on the trial data were
noticeably lower, and when we evaluate it on the
test data in retrospect, its test results are lower as
well. Its aggregate scores are .720 on subtask 1
and .736 on subtask 2.

3.3 Variant B: Adding Parallel Text from
OpenSubtitles

In Variant B, we calculated our own multilin-
gual distributional embeddings from word co-
occurrences in the OpenSubtitles2016 parallel cor-
pus (Lison and Tiedemann, 2016), and used this as
a third input alongside word2vec and GloVe.

For each pair of aligned subtitles among the
five languages, we combined the language-tagged
words into a single set of n words, then added
1/n to the co-occurrence frequency of each pair
of words, yielding a sparse matrix of word co-
occurrences within and across languages. We
then used the SVD-of-PPMI process described by
Levy et al. (2015) to convert these sparse co-
occurrences into 300-dimensional vectors.

On the trial data, this variant compared incon-
clusively to Run 2. We submitted Run 2 instead of
Variant B because Run 2 was simpler and seemed
to perform slightly better on average.

However, when we run variant B on the released
test data, we note that it would have scored better
than the system we submitted. Its aggregate scores
are .759 on subtask 1 and .767 on subtask 2.

3.4 Comparison of Results

The released results* show that our system, listed
as Luminoso-Run2, got the highest aggregate
score on both subtasks, and the highest score on
each test set except the monolingual Farsi set.

Table 1 compares the results per language of
the system we submitted, the same system without
our OOV-handling strategies, variants A and B,
and the baseline Nasari (Camacho-Collados et al.,
2016) system.

Variant B performed the best in the end, so we
will incorporate parallel text from OpenSubtitles
in the next release of the ConceptNet Number-
batch system.

4 Discussion

The idea of producing word embeddings from
a combination of distributional and relational

*nttp://alt.qcri.org/semeval2017/
task2/index.php?id=results
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Eval. Base Ours —-OOV Var. A Var. B
en .683 789 147 778 .796
de 513 .700 .599 673 722
es 602 743 611 716 761
it 597 741 .606 711 .756
fa 412 503 363 .506 541
Scorel  .598 743 .641 720 759
en-de .603 763 .696 749 767
en-es 636  .761 .675 752 778
en-it 650 776 677 759 .786
en-fa 519 .598 502 .590 634
de-es 550 728 .620 704 747
de-it 565 741 612 722 757
de-fa 464 587 .501 .586 610
es-it 598 753 .613 732 765
es-fa 493 627 482 .623 .646
it-fa 497 .604 474 .599 635
Score2  .598 754 .649 736 767
Table 1: Evaluation scores by language. “Score
17 and “Score 2” are the combined subtask

scores. “Base” is the Nasari baseline, “Ours” is
Luminoso-Run2 as submitted, “—OOV” removes
our OOV strategy, and “Var. A” and “Var. B” are
the variants we describe in this paper.

knowldedge has been implemented by many oth-
ers, including lacobacci et al. (2015) and vari-
ous implementations of retrofitting (Faruqui et al.,
2015). ConceptNet is distinguished by the large
improvement in evaluation scores that occurs
when it is used as the source of relational knowl-
edge. This indicates that ConceptNet’s particu-
lar blend of crowd-sourced, gamified, and expert
knowledge is providing valuable information that
is not learned from distributional semantics alone.

The results transfer well to other languages,
showing ConceptNet’s usefulness as “multilingual
glue” that can combine knowledge in multiple lan-
guages into a single representation.

Our submitted system relies heavily on inter-
language links in ConceptNet that represent direct
translations, as well as exact cognates. We sus-
pect that this makes it perform particularly well
at directly-translated English. It would have more
difficulty determining the similarity of words that
lack direct translations into English that are known
or accurate. This is a weak point of many cur-
rent word-similarity evaluations: The words that
are vague when translated, or that have language-
specific connotations, tend not to appear.

On a task with harder-to-translate words, we
may have to rely more on observing the distribu-
tional semantics of corpus text in each language,
as we did in the unsubmitted variants.
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Abstract

In this paper we present the system for An-
swer Selection and Ranking in Commu-
nity Question Answering, which we build
as part of our participation in SemEval-
2017 Task 3. We develop a Support Vector
Machine (SVM) based system that makes
use of textual, domain-specific, word-
embedding and topic-modeling features.
In addition, we propose a novel method
for dialogue chain identification in com-
ment threads. Our primary submission
won subtask C, outperforming other sys-
tems in all the primary evaluation met-
rics. We performed well in other English
subtasks, ranking third in subtask A and
eighth in subtask B. We also developed
open source toolkits for all the three En-
glish subtasks by the name cQARank!.

1 Introduction

This paper presents the system built for partic-
ipation in the SemEval-2017 Shared Task 3 on
Community Question Answering (CQA). The task
aims to classify and rank a candidate text c in
relevance to a target text . Based on the na-
ture of the candidate and target texts, the main
task is subdivided into three subtasks in which
the teams are expected to solve the problem of
Question-Comment similarity, Question-Question
similarity and Question-External Comment simi-
larity (Nakov et al., 2017).

In this work, we propose a rich feature-based sys-
tem for solving these problems. We create an ar-
chitecture which integrates textual, semantic and
domain-specific features to achieve good results in
the proposed task. Due to the extremely noisy na-
ture of the social forum data, we also develop a

"https://github.com/TitasNandi/cQARank
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customized preprocessing pipeline, rather than us-
ing the standard tools. We use Support Vector Ma-
chine (SVM) (Cortes and Vapnik, 1995) for clas-
sification, and its confidence score for ranking.
We initially define a generic set of features to de-
velop a robust system for all three subtasks, then
include additional features based on the nature of
the subtasks. To adapt the system to subtasks
B and C, we include features extracted from the
scores of the other subtasks, propagating mean-
ingful information essential in an incremental set-
ting. We propose a novel method for identifica-
tion of dialogue groups in the comment thread by
constructing a user interaction graph and also in-
corporate features from this graph in our system.
Our algorithm outputs mutually disjoint groups of
users who are involved in conversation with each
other in the comment thread.

The rest of the paper is organized as follows: Sec-
tion 2 describes the related work. Sections 3, 4,
and 5 elucidate the system architecture, features
used and algorithms developed. Section 6 pro-
vides experimentation details and reports the of-
ficial results.

2 Related Work

In Question Answering, answer selection and
ranking has been a major research concern in Nat-
ural Language Processing (NLP) during the past
few years. The problem becomes more interest-
ing for Community Question Answering due to
the highly unstructured and noisy nature of the
data. Also, domain knowledge plays a major role
in such an environment, where meta data of users
and context based learning can capture trends well.
The task on Community Question Answering in
SemEval began in 2015, where the objective was
to classify comments in a thread as Good, Bad or
PotentiallyUseful. In subsequent years, the task

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 90-97,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



was extended and modified to focus on ranking
and duplicate question detection in a cross domain
setting.

In their 2015 system, Belinkov (2015) used
word vectors of the question and of the comment,
various text-based similarities and meta data fea-
tures. Nicosia (2015) derived features from a com-
ment in the context of the entire thread. They
also modelled potential dialogues by identifying
interlacing comments between users. Establishing
similarity between Questions and External com-
ments (subtask C) is quite challenging, which can
be tackled by propagating useful context and in-
formation from other subtasks. Filice (2016) in-
troduced an interesting approach of stacking clas-
sifiers across subtasks and Wu & Lan (2016) pro-
posed a method of reducing the errors that propa-
gated as a result of this stacking.

3 System Description

3.1 System Pipeline

The system architecture of our submission to sub-
task A is depicted in Figure 1. We explain the
pre-processing pipeline in the next subsection.
The cleaned data is fed into our supervised ma-
chine learning framework. We train our word-
embedding model on the unannotated and train-
ing data® provided by the organizers, and train a
probabilistic topic model on the training data. The
detailed description of features is provided in the
following section. After obtaining the feature vec-
tors, we perform feature selection using wrapper
methods to maximize the accuracy on the devel-
opment set. We Z-score normalize the feature vec-
tors and feed them to a SVM. We tune the hyper-
parameters of SVM and and generate classifica-
tion labels and probabilities, the latter being used
for computing the MAP score.

3.2 Preprocessing Pipeline

Due to the highly unstructured, spelling and gram-
matical error-prone nature of the data, adaptation
of any standard tokenization pipeline was not well
motivated. We customized the preprocessing ac-
cording to the nature of the data. We unescaped
HTML special characters and removed URLs, e-
mails, HTML tags, image description tags, punc-
tuations and slang words (from a defined dictio-
nary). Finally, we expanded apostrophe words and

http://alt.qgcri.org/semeval2017/
task3/index.php?id=data-and-tools
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removed stopwords.
The cleaned data is then used in all further experi-
ments.

4 Features

We use a rich set of features to capture the textual
and semantic relevance between two snippets of
text. These features are categorized into several
broad classes:

4.1 String Similarity Features

This set of features makes use of a number of
string matching algorithms to compute the string
similarity between the question and comment.
This generates a continuous set of values for ev-
ery comment, and is apt for a baseline system.
The bag of algorithms used is a careful combina-
tion of various string similarity, metric distances
and normalized string distance methods, capturing
the overall profiling of texts. The string similar-
ity functions used include Longest Common Sub-
sequence (LCS), Q-Gram (g = 1,2,3), Weighted
Levenshtein and Optimal String Alignment. The
normalized similarity algorithms used are Jaro-
Winkler, Normalized Levenshtein, n-gram (n
1,2,3), cosine-similarity (n = 1,2,3), Jaccard Index
(n = 1,2,3), and Sorensen-Dice coefficient (n
1,2,3). The metric distance methods implemented
are Levenshtein, Damerau, and Metric LCS.

4.2 Word Embedding Features

Semantic features constitute the core of our fea-
ture engineering pipeline. These try to capture the
proximity between the meanings encoded in the
word sequences of question and comments. We
train word embeddings using Word2Vec (Mikolov
et al., 2013) on the unannotated and given train-
ing data. The unannotated data is in the same
format as the training data, except that the com-
ments are not annotated. We performed experi-
ments with different vector sizes (N = 100, 200,
300), and finally settled on using 100 dimensional
word vectors. We also used a pre-trained model
on Google News dataset in order to compare the
performance of the two models. Interestingly, the
domain-specific model trained on the unannotated
and training data proved to be better than the one
trained on Google News dataset, hence we used
the former in building our final system.

Since we wanted a feature vector corresponding to
each comment in the thread, we had to transform
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these trained word vectors into sentence vectors.
Two approaches were considered for this:

e Construct the sentence vector by taking an
average of the vectors of all words that con-
stitute the sentence.

Construct the sentence vector as a weighted
average of all the word vectors constituting
that sentence. Here the weight corresponds to
the Inverse Document Frequency (IDF) value
of the word in the thread.

Although the first approach has an evident disad-
vantage of not assigning importance to the key-
words in the sentence (which is why we resorted
to the IDF-based weighted averaging), it yielded
better results, which is why we included it in our
final system.

We extract two sets of features from these sentence
vectors:

e The vector subtraction of the comment vector
from the vector of the question at the head of
the thread is used as the scoring vector for
that comment.

e We calculate the cosine similarity, Euclidean
and Manhattan distances between question
and comment vectors.

4.3 Topic Modeling Features

To capture the thematic similarity between the
question and comment texts, we train a LDA topic
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model on the training data using Mallet (McCal-
Ium, 2002). We perform different experiments by
varying the number of topics (n = 10, 20, 50, 100)
and obtain the best performance with 20 topics.
We generate a topic vocabulary of 50 words for
each topic class. The following features were en-
tailed from these topic distributions and words:

e The vector subtraction of question and com-
ment topic vectors, measuring the topical dis-
tance between the two snippets of text.
Cosine, Euclidean and Manhattan distance
between the topic vectors.

We generate a vocabulary for each text by
taking the union of topic words of its first 10
most probable topic classes.

10
Vocabulary(T') = |J topic_words(t;)
=1

where each t; rei)resents one of the top 10
topic classes for comment or question 7.

We then determine the word overlap of the
topic vocabulary of the question with (i) the
entire comment string and (ii) the topic vo-
cabulary of the comment.

4.4 Domain Specific Features

In CQA sites, comments in a thread typically re-
flect an underlying discussion about a question,
and there is usually a strong correlation among
the nearby comments in the thread. Users reply
to each other, ask for further details, can acknowl-



edge others’ answers or can tease other users.
Therefore, as discussed in (Barrén-Cedeiio et al.,
2015), comments in a common thread are strongly
interconnected.

We extract various features from the meta data of
the thread and from our surface observation of the
thread’s structure and properties. We extract if the
comment is written by the asker of the question.
In the case of repeated comments by the asker,
we monitor if the comment is an acknowledge-
ment (thanks, thank you, appreciate) or a further
question. With the likely assumption that the com-
ments at the beginning of a thread will be more
relevant to the question, we have a feature captur-
ing the position of comment in the thread. We also
compute the coverage (the ratio of the number of
tokens) of question by the comment and comment
by the question.

We further try to model explicit conversations
among users in the thread. We do it in two ways:

e Repeated and interlacing comments by a user
in the same thread

e Explicitly mentioning the name of some pre-
vious user in the comment

The case of implicit dialogues (where the intent of
the conversation has to be inferred solely from the
context of the comment by a user) is discussed in a
separate section later. These domain-specific fea-
tures proved to be quite effective in classification,
and thus form an integral part of our system.

4.5 Keyword and Named Entity Features

Finding the focus of the question and comment
is important in measuring if the comment specifi-
cally covers the aspects of the question. We extract
keywords from the texts using the RAKE keyword
extraction algorithm (Rose et al., 2010), and derive
features from the keyword match between ques-
tion and comment. We also use the relative impor-
tance of common keywords as feature values.

In case of factoid questions, or especially in sub-
task B, Named Entity Recognition becomes an
important tool for computing the relevance of a
text. We extract named entities using the Stanford
Named Entity Recognizer (Finkel et al., 2005)
and classify words into seven entity categories
including PERSON, LOCATION, ORGANIZA-
TION, DATE, MONEY, PERCENT, and TIME.
We compute if both question and comment have
named entities, and if these belong to the same

classes, if the named entity is an answer to a Wh-
type question or not.

4.6 Implicit Dialogue Identification

Data driven error analysis on the Qatar Living
Data indicated the presence of implicit dialogue
chains. Users were almost always engaging in
conversations with each other but this could only
be captured by the content of their comment. Here
we propose a novel algorithm based on construc-
tion of a user interaction graph to model these
potential dialogues. The components of our con-
struction are as follows:

e Vertices - Users in the comment thread and
the Question

o Edges - Directed edges showing interaction

o Edge Weights - Numerical estimate of the in-
teraction

Algorithm 1 Dialogue Group Detection

1: Initialize:
U — User Graph > Initially Empty
D — Dialogue Graph > Initially Empty
@ — Question node > Node indexed 0

2: procedure DIALOGUE IDENTIFICATION

3 V(U) < V({U)U{Q} > AddQ to vertex set of U
4 for each comment ¢, in thread do

5: u; commented c,.

6 if u; is a new user then

7 VU)—V(U)U{u;}

8 V(D) — V(D) U {u;}

9

: end if
10: for Q and each previous comment ¢, do
11: u; commented ¢,
12: if i # j and e;; doesn’t exist in E(U) then
13: Adde;; in E(U) > Add e;; in edge set
of U
14: end if
15: w(e;;) < Compute_Weight(cz, ¢y, i, j)
16: end for
17: e — max; w(e;;) > Pick max outgoing edge
18: if j # 0 and e does not exist in E(D) then
19: Add e in E(D)
20: end if
21: end for
22: Find weakly connected components in D

23: end procedure

The algorithm to construct this dynamic graph
is given in Algorithm 1. We simultaneously
construct two graphs, a user graph and a dialogue
graph. Initially, the user graph has the question
node and the dialogue graph is empty. We add
new users to the graphs according to the time-
stamp of their occurrence in the thread. For each
new comment, we add edges to each previous user
and the question, in the user graph for the user



who commented. Then we pick the maximum
outgoing edge to some previous user from the
user who commented, and add that edge in the
dialogue graph. Finally, we find the weakly con-
nected components (WCCs) in the dialogue graph
and the users in each such WCC are in mutual
dialogue. Note that the user graph at the end of
each iteration depicts the current conversational
interaction of the user who commented, with
respect to all other users in the thread.

Algorithm 2 Compute Weight Function

1: procedure COMPUTE_WEIGHT(cy, Cy, ¢, j)

u; commented ¢,

u; commented ¢,

€ij < 0.0

if user u; explicitly mentions user u; in comment
then

eij +— eij + 1.0
end if

6 > Explicit dialogue
7:

8: ¢z — {w1, w2, ..., wik}

9 ’

0

> w; is the i*" word in ¢q
’ !
Cy — {wl, Wy veuy wl}
tr_score «— ( max cos(Va,, v, ))/k
1<m<k 1<n<l "

11: t,. « topic vector for ¢,

12: t, « topic vector for ¢,

13: to_score «— cos(t;, t;) > Topic similarity score
14: eij < eij + tr_score +to_score > Edge weight
15: return e;;

16: end procedure

The main part of the algorithm is where we
compute the edge weights between a pair of users
after some comment, see Algorithm 2 for de-
tails. We have three components that constitute
the weight:

o if the user mentions the other user explicitly

e we calculate the score of reformulating one
comment from the other by closest word
match based on cosine scores of word vectors
(tr_score)

e cosine of the topic vectors of a pair of com-
ments (fo_score)

In addition to identifying latent dialogue groups,
we also extract features from this graph and these
features prove to be very helpful in classification.

4.7 Classifier

We use an SVM classifier as implemented in Lib-
SVM (Chang and Lin, 2011) for classification.
We experiment with different kernels (Hsu et al.,
2003), and achieve the best results with the RBF
kernel, which we use to train the model for our pri-
mary submission. We also achieve comparable re-

sults with the linear kernel and L2-regularized lo-
gistic regression. The ranking score for a question-
comment pair in subtask A is the calculated prob-
ability of the pair to be classified as Good.

The ranking score for subtask B is the SVM prob-
ability score for the original question-related ques-
tion pair multiplied by the reciprocal search engine
rank provided in the data.

For subtask C, the scoring value is the sum of the
log probabilities of the SVM scores of all subtasks
final_score = log (sum_A) + log (svm_B) +
log (sum_C)

5 Stacking features for other subtasks

We implemented a generic system for tackling se-
mantic similarity for any two snippets of text. We
further fine tuned it with domain specific features
for subtask A. For subtasks B and C, we again
adopted this generic system with slight modifica-
tions. But, the strong interconnectivity and incre-
mental nature of the subtasks motivated the devel-
opment of a stacking strategy where we propagate
useful information from other subtasks as features
for the present subtask and re-run the classifier.
Filice (2016) developed a stacking strategy that we
adopt with modifications.

For subtask B, we consider the scores for subtasks
A and C as probability distributions and calcu-
late various features and correlation coefficients
(Spearmann, Kendall, Pearson) over these distri-
butions.

For subtask C, we calculate feature values from the
SVM scores of all three subtasks, and re-run our
system with these stacking features. These fea-
tures include average, minimum and maximum of
subtask A and B scores, and binary features cap-
turing if these probability scores are above 0.5.

6 Experimentation and Results

We extensively experimented with a lot of feature
engineering. Notable features that were discarded
in the feature ablation process are:

e Statistical Paraphrasing: We found the top
10 semantically related words corresponding
to every word in the comment, based on word
vectors and did an n-gram matching (n =
1,2,3) on the extended wordlist.

e Doc2Vec: We also used Doc2Vec (Le and
Mikolov, 2014) to generate sentence vectors
directly, but these degraded the results.



[ Features | Development Set 2017 ]
Subtask A MAP AvgRec MRR P R F1 Accuracy
All Features 65.50 84.86 71.96 58.43 62.71 60.50 72.54
All — string features 65.53 84.90 72.19 57.84 62.71 60.18 72.17
All — embedding features 62.11 81.23 69.00 53.03 53.42 53.23 68.52
All — domain features 61.85 81.06 69.80 54.46 54.52 54.49 69.47
All — topic features 65.15 84.79 72.37 59.02 61.98 60.47 72.83
All — keyword features 65.73 84.65 71.94 57.98 62.59 60.20 72.25
IR Baseline 53.84 72.78 63.13 - - - -
Subtask B
All Features 73.03 88.77 78.33 72.39 45.33 55.75 69.20
All — string features 73.46 88.83 78.95 72.87 43.93 54.81 69.00
All — embedding features 73.91 89.11 79.33 71.53 45.79 55.84 69.00
All — domain features 73.07 88.77 78.33 71.77 41.59 52.66 68.00
All — topic features 72.95 88.07 78.17 67.86 44.39 53.67 67.20
All — keyword features 73.55 88.99 79.33 72.93 45.33 55.91 69.40
All — stacking features 72.95 88.64 78.67 71.90 40.65 51.94 67.80
IR Baseline 71.35 86.11 76.67 - - - -
Subtask C
All Features 36.09 41.13 39.89 18.42 37.10 24.62 84.32
All — string features 36.85 40.27 39.72 16.81 35.07 22.72 83.54
All — embedding features 39.39 45.09 45.01 17.48 47.83 25.60 80.82
All — domain features 36.83 40.68 39.69 17.21 35.07 23.09 83.88
All — topic features 35.89 41.18 40.50 16.98 38.84 23.63 82.68
All — keyword features 35.39 41.17 38.57 18.58 37.97 24.95 84.24
All — stacking features 36.57 41.85 40.80 16.80 36.81 23.07 83.06
IR Baseline 30.65 34.55 35.97 - - - -
Runs Test Set 2017
Subtask A MAP AvgRec MRR P R F1 Accuracy
Primary 86.88 92.04 91.20 73.37 74.52 73.94 72.70
Contrastive 1 86.35 91.74 91.40 79.42 51.94 62.80 68.02
Contrastive 2 85.24 91.37 90.38 81.22 57.65 67.43 71.06
IR Baseline 72.61 79.32 82.37 - - - -
Subtask B
Primary 43.12 79.23 47.25 26.85 71.17 38.99 58.75
Contrastive 1 42.29 78.41 46.40 32.66 59.51 42.17 69.77
Contrastive 2 42.38 78.59 46.82 32.99 59.51 42.45 70.11
IR Baseline 41.85 77.59 46.42 - - - -
Subtask C
Primary 15.46 33.42 18.14 08.41 51.22 14.44 83.03
Contrastive 1 15.43 33.78 17.52 09.45 54.07 16.08 84.23
Contrastive 2 14.00 30.53 14.65 05.98 85.37 11.17 62.06
IR Baseline 09.18 21.72 10.11 - - - -

Table 1: Feature Ablation Results on Development Set and Runs on Test Set

Our primary submission for subtasks A and B uses
SVM with an RBF kernel for classification as this
yielded the best results on the dev set. We also
achieved similar results with the linear and L2-
regularized logistic regression classifiers and we
use these for our contrastive submissions. All the
submissions comprised of same number of fea-
tures. For subtask C, we oversample the training
data using the SMOTE (Chawla et al., 2002) tech-
nique in the ImbalancedLearn® toolkit, due to the
highly skewed distribution of labels. We use reg-
ular SMOTE for our primary and SMOTE SVM
for our first contrastive submission. For the sec-

*https://github.com/
scikit—-learn—-contrib/imbalanced-learn
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ond contrastive submission, we integrate the fea-
ture sets of subtasks A and B directly in the feature
set of subtask C.

The feature ablation results on the development
set and the results of different runs on the test set
are presented in Table 1. It reports the system
performance on all evaluation metrics including
Mean Average Precision (MAP), Average Recall
(AvgRec), Mean Reciprocal Rank (MRR), Preci-
sion (P), Recall (R), F1-score (1) and Accuracy.

7 Conclusion

We establish the importance of domain specific
and dialogue identification features in tackling the
given task. In future work, we would like to fo-



cus on extracting more information from inter-
comment dependencies. This should improve our
algorithm for dialogue group detection and model
conversational activity better. We also wish to
work on a Deep Learning architecture for handling
this, as in (Wu and Lan, 2016) and (Guzman et al.,
2016). The problem can be modeled as a semi-
supervised classification task, where the unanno-
tated data can help supervised classification. Sub-
task C still presents a challenging research prob-
lem and we will investigate novel methods to in-
tegrate results from other subtasks to tackle this
subtask better.
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Abstract

This paper describes the winning system
for SemEval-2017 Task 6: #HashtagWars:
Learning a Sense of Humor. Humor de-
tection has up until now been predomi-
nantly addressed using feature-based ap-
proaches. Our system utilizes recurrent
deep learning methods with dense embed-
dings to predict humorous tweets from the
@midnight show #HashtagWars. In or-
der to include both meaning and sound in
the analysis, GloVe embeddings are com-
bined with a novel phonetic representa-
tion to serve as input to an LSTM com-
ponent. The output is combined with a
character-based CNN model, and an XG-
Boost component in an ensemble model
which achieved 0.675 accuracy in the of-
ficial task evaluation.

1 Introduction

Computational approaches to how humour is ex-
pressed in language have received relatively lim-
ited attention up until very recently. With few
exceptions, they have used feature-based machine
learning techniques (Zhang and Liu, 2014; Radev
et al., 2015) drawing on hand-engineered features
such as sentence length, the number of nouns,
number of adjectives, and tf-idf-based LexRank
(Erkan and Radev, 2004). Among the recent
proposals, puns have been emphasized as a cru-
cial component of humor expression (Jaech et al.,
2016). Others have proposed that text is per-
ceived as humorous when it deviates in some
way from what is expected (Radev et al., 2015).
One of the reasons for such dominant position of
the feature-based approaches is the fact that the
datasets have been relatively small, rendering deep
learning methods ineffective. Furthermore, exist-
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ing humour detection datasets tended to treat hu-
mor as a classification task in which text has to
be labeled as funny or not funny, with nothing
in between, which makes the task considerably
simpler. In contrast, the #HashtagWars dataset
(Potash et al., 2016b) provided for SemEval-2016
Task 6 assumes that humor can be evaluated on
a scale, reflecting the reality that humor is non-
binary and some things may be seen as funnier
than others. It is also large in size, making it bet-
ter suited to the application of deep learning tech-
niques.

SemEval 2017 Task 6 used the tweets posted
by the viewers of the Comedy Central’s @mid-
night show, the #HashtagWars segment. Our team
participated in subtask A, which was as follows:
given a pair of tweets supplied for a given hashtag
by the viewers, the goal was to identify the tweet
that the show judged to be funnier (Potash et al.,
2017). This paper describes the winning submis-
sion, and specifically, our systems that took first
and second place in the official rankings for the
task.

Our goal was to create a model that could repre-
sent both meaning and sound, thus covering differ-
ent aspects of the tweet that might make it funny.
Word embeddings have been used in a variety of
applications, but phonetic information can pro-
vide new insights into the punchline of humor not
present in traditional embeddings. The pronuncia-
tion of a sentence is important to the delivery of a
punchline, and can connect sound-alike words.

In our first submission for Subtask A, seman-
tic information for each word is provided to the
model in the form of a GloVe embedding. We
then provide the model with a novel phonetic
representation of each word, in the form of a
learned phonetic embedding taken as an interme-
diate state from an encoder-decoder character-to-
phoneme model. With access to both meaning and

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 98-102,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



sound embeddings, the model learns to read each
tweet using a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN) encoder. The
encoded state of each tweet passes into dense lay-
ers, where a prediction is made as to which tweet
is funnier.

In addition to the embedding model described
above, we construct a Convolutional Neural Net-
work (CNN) to process each tweet character by
character. This character-level model was used by
Potash et al. (2016b), and serves as a baseline. The
output of the CNN feeds into the same final dense
layers as the embedding LSTM tweet encoders.
This model achieved 63.7% accuracy in the offi-
cial task evaluation, placing it second in the offi-
cial task rankings.

To boost prediction performance further, we
built an ensemble model over different model con-
figurations. In addition to the model above, we
provided an embedding-LSTM-only model and
a character-CNN-only model as input to the en-
semble. Inspired by previous work in NLP, we
added an XGBoost feature-based model as input
to the ensemble. This system was our second sub-
mission. The predictions of the ensemble model
achieved 67.5% accuracy, placing it first in the of-
ficial rankings for the task.

We also report experiments we conducted after
the release of the test data, in which a few of the
bugs present in the original submissions were ad-
dressed, and in which the best model achieves the
accuracy of 68.3%.

2 Previous Work

Considerable research has gone into understand-
ing the properties of humor in text. Radev et al.
(2015) used a feature-bucket approach to ana-
lyze captions from the New Yorker Caption Con-
test. They noted that negative sentiment, human-
centeredness and lexical centrality were their most
important model features. Zhang and Liu (2014)
trained a classifier using tweets that use the hash-
tag #Humor for positive examples. They con-
cluded that tweet part-of-speech ratios are a major
factor in humor detection. They also showed that
sexuality and politics are popular topics in Twitter
jokes that can boost humor perception. Jaech et al.
(2016) and Miller and Turkovi¢ (2016) explored
the complicated nature of puns and their role in
humor. Barbieri and Saggion (2014) explored the
concept of irony in humor and used a large va-
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riety of syntactic and semantic features to detect
irony in tweets. To summarize, negative senti-
ment, human-centeredness, lexical centrality, syn-
tax, puns, and irony represent just a few of many
aspects that characterize humor in text.

The majority of attempts at humor detec-
tion, including those listed above, rely on hand-
engineered features to distinguish humor from
non-humor. However, recently deep learning
strategies have also been employed. Chen and Lee
(2017) used convolutional networks to make pre-
dictions on humorous/non-humorous sentences in
a TED talk corpus. Bertero and Fung (2016) pre-
dicted punchlines using textual and audio features
from the popular sitcom The Big Bang Theory.
While feature-based solutions use linguistic prop-
erties of text to detect humour, our hope in exper-
imenting with deep learning models for this task
was that they could capture such properties in a
more unstructured form, without pre-determined
hand-engineered indicators.

3 System Description

In order to identify the funnier tweet in each pair,
as required by the task setup, we build the follow-
ing models:

Character-to-Phoneme Model (C2P)
Embedding Humor Model (EHM)
Character Humor Model (CHM)
Embedding/Character Joint Model (ECIM)
XGBoost Feature-Based Model (XGBM)
Ensemble Model (ENSEMBLE)

3.1 Character-to-Phoneme Model

In addition to understanding the meaning of each
word in the sentence and how those meanings fit
together, some words sound funnier to the ear than
others. The sound of a sentence might also reveal
the power of its punchline.

To give the model a representation of sound
(i.e., pronunciation) for each word, we train an
encoder-decoder LSTM model to convert a se-
quence of characters (via learned character em-
beddings) into a sequence of phonemes. Much like
other sequence-to-sequence models, our model
learns how to convert an English word into a se-
quence of phonemes that determine how that word
is pronounced (see Figure 1).

We train and evaluate this model on the CMU
Pronouncing Dictionary corpus (Lenzo, 2017),
which contains mappings from each word to its
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Figure 1: Character-to-Phoneme Model

corresponding phonemes. We use a 0.6/0.4 train-
test split. Once the model is trained, we extract the
intermediate embedding state (200 dim) between
the encoder and decoder; this acts as a phonetic
embedding, containing all information needed to
pronounce the word. The resulting phonetic em-
bedding for each word is concatenated with a se-
mantic embedding to serve as the input for the
embedding humor model (see below). Table 3.1
shows sample output of the model.

3.2 Embedding Humor Model

For both tweets in a tweet pair, a concatenation of
a GloVe word embedding (Pennington et al., 2014)
and phonetic embedding is processed by an LSTM
encoder at each time-step (per word). We use word
embeddings pre-trained on a Twitter corpus, avail-
able on the GloVe website!. Zero padding is added
to the end of each tweet for a maximum length
of 20 words/tweet. The output of each LSTM en-
coder (800 dim) is inserted into dense layers, and
a binary classification decision is generated.

3.3 Character Humor Model

The character-based humor model processes each
tweet as a sequence of characters with a CNN
(Koushik, 2016). 30-dimensional embeddings are
learned per character as input. The output of the
CNN for both tweets in the pair are inserted into
dense layers.

3.4 XGBoost Feature-Based Model

In order to approach the problem from a differ-
ent prospective, in addition to the neural network-
based systems described above, we constructed a
feature-based model using XGBoost (Chen and
Guestrin, 2016). In line with previous work
(Radev et al., 2015; Zhang and Liu, 2014), we
used the following features as input to the model:

'https://nlp.stanford.edu/projects/
glove/

1. Sentiment of each tweet in a pair, obtained
with TwitterHawk, a state-of-the-art senti-
ment analysis system for Twitter (Boag et al.,
2019).

2. Sentiment of the tokenized hashtag.

3. Length of each tweet in both tokens and char-
acters (a very long tweet might not be funny)

4. Distance of the average GloVe embeddings of
the tokens of the tweets to the global centroid
of the embeddings of all tweets for the given
hashtag.

5. Minimum, maximum and average distance
from each token in a tweet to the hashtag.

6. Number of tokens belonging to the top-10
most frequent POS tags on the training data.

3.5 Embedding/Character Joint Model

The output of the embedding model LSTM en-
coders and the character model CNN encoders are
fed into dense layers. For encoder input NV, the
three dense layers are of size (3/4)N, (1/2)N,
and 1. Each layer gradually reduces dimension-
ality to final binary decision.

3.6 Ensemble Model

Inspired by the success of ensemble models in
other tasks (Potash et al., 2016a; Rychalska et al.,
2016) we built an ensemble model that com-
bines the predictions of the character-based model,
embedding-based model, the character/embedding
joint humor model, and the feature-based XG-
Boost model to make the final prediction which
incorporates different views of the input data. For
the ensemble model itself, we use an XGBoost
model again. Input predictions are obtained by us-
ing 5-fold cross-validation on the training data.

4 Results

Accuracies are calculated over three run aver-
age. Embedding/character models trained for five
epochs with a learning rate of 1e-5 using the Adam
optimizer (Kingma and Ba, 2014). Parameters are
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Word Model Output CMU Dictionary

rupard RUWOPEROD D RUWI1PEROD
disabling D AY1 SEY1 B LIHONG DIHO S EY1 B AHO L IHO NG
clipping K L IH1 PIHONG KL IH1 PIHONG

enfranchised | IHONFR AEINSHAY2DD | EHONFR AEI NCHAY2ZD

eimer AY1 M ERO AY1 M ERO

dowel D AWI1 AHOL D AWI1 AHOL

vasilly V AE1 STHOLIYO V AHO S IH1 L IYO

Table 1: Sample character-to-phoneme model output.

Model Configuration/Features Trial Acc Evaluation Acc  Official Evaluation Acc
ENSEMBLE 64.02% 65.99 % 67.5% (Run #2)
ECIM 59.31%  68.30% 63.7% (Run #1)

ECJM (GloVe-only) 64.42% 65.95%

EHM 58.09% 67.56%

EHM (GloVe-only) 64.76 % 67.44%

EHM (Phonetic-only) 54.55% 65.93%

CHM 59.59% 63.52%

XGBM 57.02% 60.35%

Table 2: Model performance (accuracy). Official results reported for joint and ensemble models.

tuned to the trial set, which contained five hash-
tags. Train, trial and evaluation datasets were pro-
vided by task organizers, with the evaluation data
containing six hashtags. Table 2 shows the re-
sults obtained by different models on the evalua-
tion data. Note that the reported figures were ob-
tained in additional experiments after a few of the
bugs present in the original submission were ad-
dressed. For completeness, we also report the of-
ficial results obtained by our system submissions
(runs #1 and #2).

5 Discussion

The ensemble model performed the best during the
official evaluation, placing it 1% among 10 runs,
submitted by the 7 participating teams. Note that
accuracies on evaluation hashtags are on average
5.36% higher than on trial hashtags (see Table 2).
This suggests each dataset contains different hash-
tag types, and that the evaluation set more closely
matches the training set. For example, phonetic
embeddings reduce performance in the trial set
and improve performance in the evaluation set.
We hypothesize that phonetic embeddings are not
important for some hashtags, and that the evalua-
tion set contains more such hashtags .

While adding phonetic embeddings and/or the
character model yields inconsistent results across

the trial and evaluation sets, adding the GloVe
representation produced the best scores for both
datasets. From these results, token-based semantic
knowledge appears to be the most important fac-
tor in humor recognition for this dataset. These re-
sults differ from that of Potash et al. (2016b), who
report that a CNN-based character model achieves
the highest accuracy on leave-one-out evaluation.
The character-to-phoneme model yields very
interesting results upon testing. The model cor-
rectly classifies 75% of phonemes in the test set.
As shown in Table 3.1, the model often guesses a
similar-sounding phoneme in cases when the cor-
rect phoneme is not guessed. For example, in
'vasilly’, AEI is guessed instead of AHO.

6 Conclusion

The learned character embeddings achieved rea-
sonable results on both trial and evaluation data.
The incorporation of phonetic embeddings in hu-
mor prediction, on the other hand, appears to yield
inconsistent performance across different hash-
tags. The ensemble model improved performance
on the official data. Overall, GloVe embeddings
consistently improved performance, highlighting
the importance of lexical semantic information for
this humour classification task.
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Abstract

This paper describes our system, entitled
Idiom Savant, for the 7th Task of the Se-
meval 2017 workshop, “Detection and in-
terpretation of English Puns”. Our system
consists of two probabilistic models for
each type of puns using Google n-grams
and Word2Vec. Our system achieved f-
score of 0.84, 0.663, and 0.07 in ho-
mographic puns and 0.8439, 0.6631, and
0.0806 in heterographic puns in task 1,
task 2, and task 3 respectively.

1 Introduction

A pun is a form of wordplay, which is often pro-
filed by exploiting polysemy of a word or by
replacing a phonetically similar sounding word
for an intended humorous effect. From Shake-
speare’s works to modern advertisement catch-
phrases (Tanaka, 1992), puns have been widely
used as a humorous and rhetorical device. For
a polysemous word, the non-literal meaning is
addressed when contextual information has low
accordance with it’s primary or most prominent
meaning (Giora, 1997). A pun can be seen as a
democratic form of literal and non-literal meaning.
In using puns, the author alternates an idiomatic
expression to a certain extent or provides enough
context for a polysemous word to evoke non-literal
meaning without attenuating literal meaning com-
pletely (Giora, 2002).

Task 7 of the 2017 SemEval workshop (Miller
et al., 2017) involves three subtasks. The first sub-
task requires the system to classify a given context
into two binary categories: puns and non-puns.
The second subtask concerns itself with finding
the word producing the punning effect in a given
context. The third and final subtask involves an-
notating puns with the dual senses with which the
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punning effect is being driven.

In a written context, puns are classified into 2
categories. Homographic puns shown in exam-
ple 1, exploits polysemy of the language by us-
ing a word or phrase which has multiple coher-
ent meanings given its context; And heterographic
puns shown in example 2, humorous effect is often
induced by adding incongruity by replacing a pho-
netically similar word which is semantically dis-
tant from the context.

(1) Tires are fixed for a flat rate.

(2) A dentist hates having a bad day at the
orifice.

The rest of the paper is organized as fol-
lows. Section 2 give a general description of
our approach. Section 3 and 4 illustrate the de-
tailed methodologies used for detecting and locat-
ing Heterographic and Homographic puns respec-
tively. In section 5, we provided an analysis of the
system along with experimental results and finally
section 6 contains some closing remarks and con-
clusion.

2 General Approach

We argue that the detection of heterographic puns
rests on two assumptions. Firstly, the word be-
ing used to introduce the punning effect is pho-
netically similar to the intended word, so that the
reader can infer the desired meaning behind the
pun. Secondly, the context in which the pun takes
place is a subversion of frequent or idiomatic lan-
guage, once again so that the inference appropri-
ately facilitated. This introduces two computa-
tional tasks - designing a model which ranks pairs
of words based on their phonetic similarity, and in-
troducing a means by which we can determine the
normativeness of the context in question. The sys-
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tem is attempting to recreate how a human mind
might recognize a pun. Take this example:

(3) “Acupuncture is a jab well done”

It is immediately noticeable that this sentence is
not a normative use of language. However, we
can easily recognize the familiar idiom “a job well
done”, and it is easy to make this substitution due
to the phonetic overlap between the words “job”
and “jab”. Our system is therefore trying to mimic
two things: the detection of an infrequent (or even
semantically incoherent) use of language, and the
detection of the intended idiom by means of pho-
netic substitution. To model the detection of sub-
verted uses of idioms, we use the Google n-gram
corpus (Brants and Franz, 2006). We assume that
the normativeness of a context is represented by
the n-gram frequency provided by this corpus. The
system then replaces phonetically similar words in
the non-normative context in an attempt to pro-
duce an idiomatic use of language. We determine
an idiomatic use of language to be one that has an
adequately high frequency in the Google n-gram
corpus. We argue that if, by replacing a word
in an infrequent use of language with a phonet-
ically similar word, we arrive at a very frequent
use of language, we have derived an indicator for
the usage of puns. For example, the quadgram
“a jab well done” occurs 890 times in the cor-
pus. By replacing the word “jab” with “job”, the
new quadgram occurs 203575 times. This increase
in frequency suggests that a pun is taking place.
The system uses several methods to examine such
changes in frequency, and outputs a “score”, or the
estimated likelihood that a pun is being used. The
way in which these scores are computed is detailed
below.

Homographic puns are generally figurative in
nature. Due to identical spelling, interpretation of
literal and non-literal meaning is solely dependent
on the context information. Literal and non-literal
meaning of a polysemous word are referred by dif-
ferent slices of context, which is termed as “double
grounding” by Feyaerts and Brone (2002). Con-
sidering example 1, it is easily noticeable that two
coherent meanings of ‘flat’, ‘a deflated pneumatic
tire’ and ‘commercially inactive’, have been re-
ferred by ‘Tires’ and ‘rate’ respectively. Thus de-
tection of homographic puns involves establish-
ing links between concepts present in context with
meanings of polysemous word.
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From the general description of different types
of puns, it is evident that detection of pun is com-
plex and challenging. To keep the complexity at
its minimum, Idiom Savant contains two distinct
models to handle homographic and heterographic
pun tasks.

3 Heterographic Puns

Idiom Savant calculates scores for all possible
ngram pairs for a given context. To generate pairs,
the system first separates the context into n-grams.
For each of these original n-grams, the corpus is
searched for n-grams that are at most one word
different. The pairs are then scored using the met-
ric described below. The scores for these pairs are
then used to tackle each subtask, which is covered
below. Since heterographic puns are fabricated by
replacing phonetically similar words, classifica-
tion and identification requires a phonetic knowl-
edge of the language. To obtain phonetic represen-
tation of a word, CMU pronouncing dictionary'
was used. We have ignored the lexical stresses in
the pronunciation, as experimentation showed that
coarser definitions led to better results. To mea-
sure the phonetic distance between a phoneme rep-
resentation of a pair of words, we have employed
three different strategies which use Levenshtein
distances. The first distance formula, dpy,, calcu-
lates Levenshtein distance between two words by
considering each CMU phoneme of a word as a
single unit. Take the pun word and intended word
from example 2:

d,,({AO, F, AH, S}, {AO, R, AH, F, AH, S}) = 2

Our second strategy treats the phonetic repre-
sentation as a concatenated string and calculates
Levenshtein distance dpp,s.

dphs(“AOFAHS”, “AORAHFAHS”) = 3

With this metric, the distance reflects the simi-
larity between phonemes such as “AH” and “AA”,
which begin with the same vowel sounds. The fall-
back method for out-of-vocabulary words uses the
original Levenshtein string distance.

dep (“office”, “orifice”) = 2

"http://www.speech.cs.cmu.edu/cgi-bin/
cmudict



The system normalizes these distances with re-
spect to the length of the phonetic representation
of the target words to reduce the penalty caused
by word length. By converting distance measures
into similarity ratios, longer words remain candi-
dates for possible puns, even though Levenshtein
distances will be greater than the shorter counter-
parts. The system chooses the maximum positive
ratio from all possible phonetic representations.
If no positive ratio exists, the target word is dis-

carded as a possible candidate.

wein, [lwlly=ds(wiws)

ratiof(wi, we) =

wheref € {ph,phs,ch}

min
wewy, wy

lwll ¢

ratio = max(ratiopp, ratiopys, ratiocn)

We choose the maximum ratio in order to min-
imize the drawbacks inherent in each metric. The
assumption is that the maximum ratio between all
three methods is the most reflective of the real pho-
netic similarity between a pair of words. The final
score is calculated as the inverted ratio subtracted
from the difference between the ngram pair’s fre-
quency.

1

score = (fre(thram’ — f’f’eCIngram) - W

Deducting the original n-gram’s frequency from
the new frequency effectively ignores normal uses
of language which do not relate to pun language.
The value of the exponent introduces a trade off
between phonetic similarity and frequency. The
frequencies of certain n-grams are so high that if
n is too low, even words with very little phonetic
similarity will score high using this method. In our
experiments, an optimal value of 10 was found for
this trade off.

3.1 Binary Classification

Tto classify a context as a pun or non pun, /diom
Savant finds the maximum score from all possi-
ble n-gram pairs. If the maximum score found ex-
ceeds a threshold value, the context is classified as
a pun.

Finding the correct threshold value to accurately
classify contexts is discussed below in the Experi-
ments and Results section.
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3.2 Locating Pun Word

By maximizing the score when replacing all po-
tential lexical units, the system also produces a
candidate word. Whichever replacement word
used to produce the top n-gram pair is returned as
the candidate word. The system only examines the
last two ngrams. Those grams, the system anno-
tates the POS tag and only the content words —
nouns, verbs, adverbs and adjectives— are con-
sidered as candidate words. The system uses a fall
back by choosing the last word in the context when
no adequate substitution is found.

3.3 Annotating senses for pun meanings

Subtask 3 introduces an added difficulty with re-
gards to heterographic puns. The system needs to
correctly identify the two senses involved of pun,
which is based on the accuracy of selecting tar-
get words. The system produce a ranked list of
n-gram pairs using single word substitution. The
highest ranked pair then contains the new or re-
placed word with which we search for a sense
in WordNet (Fellbaum, 1998). For this particular
task, the pun word are already given, so the sys-
tem chooses only the n-grams which contain this
word, and only needs to replace this word in order
to produce pairs.

Once both words are found, we apply the se-
mantic similarity measure akin to the one used in
our systems approach to homographic puns de-
scribed in Section 4. Both the original and target
word is compared to a list of wordnet glosses cor-
responding to the senses available for each word.
Idiom Savant uses Word2Vec cosine similarity be-
tween the words and their sense glosses to choose
the best sense key.

3.4 Tom Swifties

“Tom Swifty” (Lessard and Levison, 1992) is one
type of pun often found in the test data set. An
example found is “ It’s March 14th, Tom said
piously”. Such puns frequently use adverbs to
introduce the contextual ties inherent in hetero-
graphic puns. Despite that, most of these adverbs
occurred in the test data set show little connec-
tion with their contexts, rather they are specifi-
cally used for ironic purpose. As such, our system
did not adequately recognize these instances, so
we designed a separate procedure for these cases.
To flag whether a pun might be of a Tom Swifty
type, the system uses a Part of Speech tagger from



NLTK (Bird, 2006) and also analyses the suffixes
of the last word in the context (for example, words
ending in “ly”).

With relation to tasks 1, an amalgamation of
this approach and the original is performed. If the
highest score does not exceed the threshold, we
check to see if the pun is of type Tom Swifty. If
this is the case, then we mark the context as a pun.
Task 2 operates similarly - if the pun is flagged as
a Tom Swifty, then the last adverb is returned as a
candidate. For task 3 however, we need to trans-
form the adverb into the intended word in order to
get the appropriate sense entry in WordNet.

To do so we build two prefix trees: one is a pho-
netic prefix tree based on CMU pronunciation dic-
tionary; the other is a string prefix tree, to cover
the exception cases where the adverb is not present
in the CMU. If the word is in the phonetic prefix
tree, the program returns all words which share at
least two common prefix phonemes. For example,
given the adverb “punctually”, the words “punc-
ture”, “punk”, “pun” and so on will be returned as
candidates. If the string prefix tree is used, the pro-
gram returns words which share at least the first
three characters found in th input word. For the
word “dogmatically”, “dogmatic”, “dogma”, and
“dog” will be returned as candidates. The list of
such candidates is then used to replace the ngrams
in which they occur, and the new ngram pairs are
ranked according to the metric described at the be-
ginning of 3. The highest scoring prefix is then
used to search the appropriate WordNet sense tags.

4 Homographic Puns

Since polysemous words have identical spelling
but different meanings, detecting homographic
puns is solely dependent on context information.
Following double grounding theory, if the i*" word
of input sentence W = wi.,, has a higher possi-
bility to be the punning word, two senses of w;
should infer a higher similarity score with two dif-
ferent components in its context ¢; = W11 i+1:n-
In the baseline model we design, the pun potential
score of a word w; is computed as the sum of co-
sine similarities between the word w; and every
word in context w; € ¢;, using distributed repre-
sentation Word2Vec (Mikolov et al., 2013). The
word with highest score is returned as the punning
word.

Furthermore, as additional context information,
w; were replaced with set of gloss information ex-

tracted from its different senses, noted as g;, ob-
tained from WordNet. While calculating similar-
ity between g; and c;, two different strategies were
employed. In the first strategy, the system com-
putes similarities between every combination of g;
and ¢;, and sum of similarity scores is the score for
w;. In the second strategy, similarity score were
calculated between g; and g;, the gloss of w; € c;.
In most of the cases, pun words and their ground-
ing words in the context do not share the same
part-of-speech (POS) tags. In the latter strategy,
we added a POS damping factor, noted as p;; of
0.2 if the POS tags of w; and w; are equal. Follow-
ing Optimal Innovation hypothesis, the similarity
of a punning word and its grounding word should
neither be too high or too low in order to evoke the
non-literal meaning. We applied following correc-
tion on computed similarities.

0 xr < 0.01
xr) =
fus () {1—93 z >=0.01

In puns, punning words and grounding words in
context are often not adjacent. Thus the system
does not consider the adjacent words of the candi-
date word. The system also ignored stopwords of-
fered by NLTK. We noticed that words with high
frequency other than stopwords overshadow low
frequency words since every word with high fre-
quency poses certain similarity score with every
other phrases. Thus we added a frequency damp-
ing factor(f;;) of 0.1 to the score for whose words
have frequencies more than 100 in Brown Cor-
pus (Francis and Kucera, 1979). The final scoring
function is shown as follows.

9kdm )

score(W, i)
|9kl lgm|

pr fii Z Z Fus(

k=1m=1

n is the number of words in ¢; and [ and ¢ is num-
ber of senses of w; and w;. g, and g, are gloss of
the k" sense and m!"* sense of w; and w; Tespec-
tively.

For task 3, in order to obtain the sense keys
of intended meaning from Wordnet, we chose the
top two glosses of the pun word based on similar-
ity score between gloss and word in context. For
adding more context, instead of comparing only
with words in context, we performed similarity
measurement among the glosses.

For subtask 1, for each word we calculated sim-
ilarity with other words and we averaged the top

106



two similarity score. We have considered a word
as a pun if the average score is more than threshold
of 0.6, which we chose empirically after observing
a number of examples. For subtask 3, we chose
the top two senses of the word ranked by the gloss
similarity as candidate senses of punned word.

5 Experiment results and analysis

5.1 Heterographic Puns Processing

1D Method P R F
| Infrequent Quadgram | 0.90 | 0.71 | 0.79
Trigram Score 0.82 | 0.87 | 0.84
> Last Word 0.55 | 0.55 | 0.55
BestQuadGramPairs | 0.68 | 0.68 | 0.68
3 TopSenses 0.14 | 0.11 | 0.12
GlossSim 0.08 | 0.07 | 0.07

Table 1: The precision, recall, and F-score value
of heterographic pun subtasks

The experiment results for the heterographic
pun subtasks are shown in Table 5.1. For subtask
1, the baseline infrequent quadgram is created: if
a pun contains no infrequent quadgrams, which
have a frequency less than 150 in Ngram corpus,
then it is labeled as a non pun. The system uses
trigram in subtask 1 because it is computationally
feasible to search the ngram space, whilst still be-
ing representative of typical uses of language. We
set a balanced threshold value of —14 by observ-
ing the first 200 samples in the test set.

The high precision score indicates the underly-
ing mechanism behind such puns: a mutation of a
typical use of language needs to take place. How-
ever the recall for this baseline is poor. A large
portion of puns de facto use frequent language us-
ages as targets for linguistic perversion, which this
baseline method fails.

Our system outperforms the baseline about five
percentage of F-score. The largest factor regard-
ing improper classifications of our model is false
positives. Not all infrequent uses of language
are heterographic puns. Idiom Savant’s technique
would sometimes misread a context, modify an
infrequent trigram that was not the source of a
pun to produce a much more frequent trigram.
These false positives are the result of the enormous
amount of possible uses in the English language.
Infrequent yet “normal” trigrams are an important
caveat when using frequency based techniques
such as Idiom Savant. Hence we see the differ-
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ence between our model and the simple baseline:
although the puns that were detected were very
precise, the baseline failed to detect more subtle
puns, where normal uses of language are still us-
ing phonetic translations to introduce ambiguity.

For subtask 2, Idiom Savant uses quadgrams to
produce the scores. This is possible because the
system employs a number of methods to reduce
the search space created when attempting to re-
place quadgrams. Firstly, the system won’t search
the Tom Swifty puns in ngrams corpus. Analysing
the first 200 samples in the test data, which is not
Tom Swifty puns, we found that roughly half all
pun words are the last words in the context. Us-
ing this method on the whole corpus produced the
LastWord baseline seen above. When expanding
that to quadgrams and thus enlarging the window,
an even greater ratio presents itself. Of the same
200 samples, three fourth of punning words are
present in the last quadgram. In the gold stan-
dard, ninety percent of pun words appear in the
last quadgram. We apply the same scoring tech-
nique as described above and achieved the per-
formance presented in the table. We find an in-
crease of 13% as compared to the last word base-
line across the board.

To create a baseline for subtask 3, we followed
the approach described in (Miller and Gurevych,
2015). and choose the top WordNet senses for
each word selected as pun word. As WordNet
ranks each sense with their associated frequency
of usage, the baseline simply selects the most fre-
quent sense for the pun word and replaced word
respectively. As the replaced word are produced
by the system, the possibility of error even with
the baseline approach is affected by the accuracy
of previous steps. When an incorrect word is pro-
duced, the sense key attached is by default incor-
rect and thus the precision, recall, and F scores
suffer. The baseline outperforms our system to
choose the best sense keys by approximately 6 per-
centage points. Our method involves Word2Vec is
insufficient for solving this subtask, which is evi-
dently much more difficult than the previous sub-
tasks.

5.2 Homographic Pun Processing

For homographic pun processing, we participated
in subtask 2 and 3. We calculated scores of sub-
task 1 on test data after task. For subtask 1, our
system achieves 0.84 F-score, which outperforms



the all positive baseline. For subtask 2, our sys-
tem achieves 0.66 F-score. We observed that our
system performed well on long sentences. How-
ever, for short sentences, most frequent word in
the sentence were selected as pun word. This may
be caused by lack of context.

Our system does not perform well on subtask 3
as it could not pick the apt sense intended in the
pun. We noticed that the system can not pinpoint
the apt senses whose glosses are not long enough.

Task Method P R F-score
AllPositive 0.71 | 1.00 0.83
Task 1 —
WordPairSim 0.73 | 0.98 0.84
WordSim 0.57 | 0.54 0.55
Task 2 -
WordGlossSim 0.66 | 0.66 0.66
Task 3 | GlossSim 0.08 | 0.08 0.08

Table 2: The precision, recall, and F-score value
of homographic pun processing subtasks

6 Concluding Remarks

We introduced Idiom Savant, a computational sys-
tem that capable of classifying and analyzing het-
erographic and homographic puns. We show that
using n-grams in combination with the CMU dic-
tionary can accurately model heterographic pun.

There are however a number of drawbacks to
this approach. We hypothesize that using a larger
corpus would increase the performance of hetero-
grahic pun processing. And we may combine dif-
ferent length grams to search for these idiomatic
uses of language, which would more accurately
model how human recognizes heterographic puns.
Furthermore, the system has no means of checking
whether the candidate words offered up by Idiom
Savant are correlated to the rest of the context. Our
system suffers intensely for short sentences and
short gloss information, since Word2Vec doesn’t
offer context information.
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Abstract

We present our submitted systems for Se-
mantic Textual Similarity (STS) Track 4 at
SemEval-2017. Given a pair of Spanish-
English sentences, each system must esti-
mate their semantic similarity by a score
between 0 and 5. In our submission,
we use syntax-based, dictionary-based,
context-based, and MT-based methods.
We also combine these methods in unsu-
pervised and supervised way. Our best run
ranked 1% on track 4a with a correlation
of 83.02% with human annotations.

1 Introduction

CompiLIG is a collaboration between Compilatio'
- a company particularly interested in cross-
language plagiarism detection - and LIG research
group on natural language processing (GETALP).
Cross-language semantic textual similarity detec-
tion is an important step for cross-language plagia-
rism detection, and evaluation campaigns in this
new domain are rare. For the first time, SemEval
STS task (Agirre et al., 2016) was extended with
a Spanish-English cross-lingual sub-task in 2016.
This year, sub-task was renewed under track 4 (di-
vided in two sub-corpora: track 4a and track 4b).
Given a sentence in Spanish and a sentence in
English, the objective is to compute their seman-
tic textual similarity according to a score from 0

lwww.compilatio.net

Laurent Besacier
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Univ. Grenoble Alpes, France
laurent .besacier@imag. fr

Frédéric Agnes
Compilatio
276 rue du Mont Blanc
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to 5, where 0 means no similarity and 5 means
full semantic similarity. The evaluation metric is
a Pearson correlation coefficient between the sub-
mitted scores and the gold standard scores from
human annotators. Last year, among 26 submis-
sions from 10 teams, the method that achieved the
best performance (Brychcin and Svoboda, 2016)
was a supervised system (SVM regression with
RBF kernel) based on word alignment algorithm
presented in Sultan et al. (2015).

Our submission in 2017 is based on cross-
language plagiarism detection methods combined
with the best performing STS detection method
published in 2016. CompiLIG team participated to
SemEval STS for the first time in 2017. The meth-
ods proposed are syntax-based, dictionary-based,
context-based, and MT-based. They show addi-
tive value when combined. The submitted runs
consist in (1) our best single unsupervised ap-
proach (2) an unsupervised combination of best
approaches (3) a fine-tuned combination of best
approaches. The best of our three runs ranked 1%
with a correlation of 83.02% with human annota-
tions on track 4a among all submitted systems (51
submissions from 20 teams for this track). Cor-
relation results of all participants (including ours)
on track 4b were much lower and we try to explain
why (and question the validity of track 4b) in the
last part of this paper.
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2 Cross-Language Textual Similarity
Detection Methods

2.1 Cross-Language Character N-Gram
(CL-CnG)

CL-CnG aims to measure the syntactical similar-
ity between two texts. It is based on Mcnamee
and Mayfield (2004) work used in information re-
trieval. It compares two texts under their n-grams
vectors representation. The main advantage of this
kind of method is that it does not require any trans-
lation between source and target text.

After some tests on previous year’s dataset to
find the best n, we decide to use the Potthast et al.
(2011)’s CL-C3G implementation. Let S, and S,
two sentences in two different languages. First,
the alphabet of these sentences is normalized to
the ensemble Y = {a — 2,0 — 9, }, so only
spaces and alphanumeric characters are kept. Any
other diacritic or symbol is deleted and the whole
text is lower-cased. The texts are then segmented
into 3-grams (sequences of 3 contiguous charac-
ters) and transformed into #f.idf vectors of charac-
ter 3-grams. We directly build our idf model on
the evaluation data. We use a double normaliza-
tion K (with K =0.5) as #f (Manning et al., 2008)
and a inverse document frequency smooth as idf.
Finally, a cosine similarity is computed between
the vectors of source and target sentences.

2.2 Cross-Language Conceptual
Thesaurus-based Similarity (CL-CTS)

CL-CTS (Gupta et al., 2012; Pataki, 2012) aims to
measure the semantic similarity between two vec-
tors of concepts. The model consists in represent-
ing texts as bag-of-words (or concepts) to compare
them. The method also does not require explicit
translation since the matching is performed using
internal connections in the used “ontology”.

Let S a sentence of length n, the n words of the
sentence are represented by w; as:

(1)

S, and S, are two sentences in two different
languages. A bag-of-words S’ from each sen-
tence S is built, by filtering stop words and by
using a function that returns for a given word all
its possible translations. These translations are
jointly given by a linked lexical resource, DBNary
(Sérasset, 2015), and by cross-lingual word em-
beddings. More precisely, we use the top 10 clos-
est words in the embeddings model and all the

S = {w17w27w37 7wn}

110

available translations from DBNary to build the
bag-of-words of a word. We use the MultiVec
(Berard et al., 2016) toolkit for computing and
managing word embeddings. The corpora used to
build the embeddings are Europarl and Wikipedia
sub-corpus, part of the dataset of Ferrero et al.
(2016)>.  For training our embeddings, we use
CBOW model with a vector size of 100, a win-
dow size of 5, a negative sampling parameter of 5,
and an alpha of 0.02.

So, the sets of words S}, and S, are the con-
ceptual representations in the same language of S,
and S, respectively. To calculate the similarity be-
tween S, and S, we use a syntactically and fre-
quentially weighted augmentation of the Jaccard
distance, defined as:

Q(S;) +Q(Sy)

T8 5) = Qs T s,

2

where S, and Sy are the input sentences (also
represented as sets of words), and €2 is the sum of
the weights of the words of a set, defined as:

n

> p(w)

i=1,w; €S

Q(9) 3)

where w; is the i*" word of the bag S, and ¢ is
the weight of word in the Jaccard distance:

o(w) = pos_weight(w) = . idf (w)®  (4)

where pos_weight is the function which gives
the weight for each universal part-of-speech tag
of a word, idf is the function which gives the
inverse document frequency of a word, and . is
the scalar product. Equation (4) is a way to
syntactically (pos_weight) and frequentially (idf)
weight the contribution of a word to the Jaccard
distance (both contributions being controlled with
the v parameter). We assume that for one word,
we have its part-of-speech within its original sen-
tence, and its inverse document frequency. We use
TreeTagger (Schmid, 1994) for POS tagging, and
we normalize the tags with Universal Tagset of
Petrov et al. (2012). Then, we assign a weight
for each of the 12 universal POS tags. The 12
POS weights and the value « are optimized with
Condor (Berghen and Bersini, 2005) in the same
way as in Ferrero et al. (2017). Condor applies
a Newton's method with a trust region algorithm

https://github.com/FerreroJeremy/
Cross—Language-Dataset



to determinate the weights that optimize a de-
sired output score. No re-tuning of these hyper-
parameters for SemEval task was performed.

2.3 Cross-Language Word Embedding-based
Similarity

CL-WES (Ferrero et al., 2017) consists in a cosine
similarity on distributed representations of sen-
tences, which are obtained by the weighted sum
of each word vector in a sentence. As in previ-
ous section, each word vector is syntactically and
frequentially weighted.

If S; and S, are two sentences in two differ-
ent languages, then CL-WES builds their (bilin-
gual) common representation vectors V, and V),
and applies a cosine similarity between them. A
distributed representation V' of a sentence S is cal-
culated as follows:

n

Z (vector(w;) . (w;))

i=1,w; €S

V= (&)

where w; is the i*" word of the sentence S,
vector is the function which gives the word em-
bedding vector of a word, ¢ is the same that in
formula (4), and . is the scalar product. We make
this method publicly available through MultiVec?
(Berard et al., 2016) toolkit.

2.4 Translation + Monolingual Word
Alignment (T+WA)

The last method used is a two-step process. First,
we translate the Spanish sentence into English
with Google Translate (i.e. we are bringing the
two sentences in the same language). Then, we
align both utterances. We reuse the monolingual
aligner* of Sultan et al. (2015) with the improve-
ment of Brychcin and Svoboda (2016), who won
the cross-lingual sub-task in 2016 (Agirre et al.,
2016). Because this improvement has not been re-
leased by the initial authors, we propose to share
our re-implementation on GitHub”.

If S; and S, are two sentences in the same lan-
guage, then we try to measure their similarity with
the following formula:

w(Az) +w(Ay)

T8 5) = S ¥ os,)

(6)

*https://github.com/eske/multivec

‘nttps://github.com/ma-sultan/
monolingual-word-aligner

Shttps://github.com/FerreroJeremy/
monolingual-word-aligner
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where S, and S, are the input sentences (repre-
sented as sets of words), A, and A, are the sets of
aligned words for S, and S, respectively, and w is
a frequency weight of a set of words, defined as:

n

> ddf (wi)

=1, w;€A

w(A) @)

where idf is the function which gives the in-
verse document frequency of a word.

2.5 System Combination

These methods are syntax-, dictionary-, context-
and MT- based, and are thus potentially comple-
mentary. That is why we also combine them in
unsupervised and supervised fashion. Our unsu-
pervised fusion is an average of the outputs of each
method. For supervised fusion, we recast fusion as
a regression problem and we experiment all avail-
able methods in Weka 3.8.0 (Hall et al., 2009).

3 Results on SemEval-2016 Dataset

Table 1 reports the results of the proposed systems
on SemEval-2016 STS cross-lingual evaluation
dataset. The dataset, the annotation and the eval-
uation systems were presented in the SemEval-
2016 STS task description paper (Agirre et al.,
2016), so we do not re-detail them here. The
lines in bold represent the methods that obtain
the best mean score in each category of system
(best method alone, unsupervised and supervised
fusion). The scores for the supervised systems are
obtained with 10-folds cross-validation.

4 Runs Submitted to SemEval-2017

First, it is important to mention that our outputs
are linearly re-scaled to a real-valued space [0; 5].

Run 1: Best Method Alone. Our first run is
only based on the best method alone during our
tests (see Table 1), i.e. Cross-Language Concep-
tual Thesaurus-based Similarity (CL-CTS) model,
as described in section 2.2.

Run 2: Fusion by Average. Our second run is
a fusion by average on three methods: CL-C3G,
CL-CTS and T+ WA, all described in section 2.

Run 3: M5’ Model Tree. Unlike the two prece-
dent runs, the third run is a supervised system.
We have selected the system that obtained the best
score during our tests on SemEval-2016 evalua-
tion dataset (see Table 1), which is the M5’ model
tree (Wang and Witten, 1997) (called M5P in



[ Methods [ News [ Multi [ Mean |
[ Unsupervised systems ]
CL-C3G (1) 0.7522 | 0.6550 | 0.7042
CL-CTS (2) 0.9072 | 0.8283 | 0.8682
CL-WES (3) 0.7028 | 0.6312 | 0.6674
T+WA (4) 0.9060 | 0.8144 | 0.8607
Average (1-2-3-4) 0.8589 | 0.7824 | 0.8211
Average (1-2-4) 0.9051 | 0.8347 | 0.8703
Average (2-3-4) 0.8923 | 0.8239 | 0.8585
Average (2-4) 0.9082 | 0.8299 | 0.8695
[ Supervised systems (fine-tuned fusion) ]
GaussianProcesses 0.8712 | 0.7884 | 0.8303
LinearRegression 0.9099 | 0.8414 | 0.8761
MultilayerPerceptron 0.8966 | 0.7999 | 0.8488
SimpleLinearRegression | 0.9048 | 0.8144 | 0.8601
SMOreg 0.9071 | 0.8375 | 0.8727
Ibk 0.8396 | 0.7330 | 0.7869
Kstar 0.8545 | 0.8173 | 0.8361
LWL 0.8572 | 0.7589 | 0.8086
DecisionTable 0.9139 | 0.8047 | 0.8599
M5Rules 0.9146 | 0.8406 | 0.8780
DecisionStump 0.8329 | 0.7380 | 0.7860
MS5P 0.9154 | 0.8442 | 0.8802
RandomForest 0.9109 | 0.8418 | 0.8768
RandomTree 0.8364 | 0.7262 | 0.7819
REPTree 0.8972 | 0.7992 | 0.8488

Table 1: Results of the methods on SemEval-2016
STS cross-lingual evaluation dataset.

Weka 3.8.0 (Hall et al., 2009)). Model trees have
a conventional decision tree structure but use lin-
ear regression functions at the leaves instead of
discrete class labels. The first implementation of
model trees, M5, was proposed by Quinlan (1992)
and the approach was refined and improved in a
system called M5’ by Wang and Witten (1997). To
learn the model, we use all the methods described
in section 2 as features.

5 Results of the 2017 evaluation and
Discussion

Dataset, annotation and evaluation systems are
presented in SemEval-2017 STS task description
paper (Cer et al., 2017). We can see in Table 2
that our systems work well on SNLI® (Bowman
et al., 2015) (track 4a), on which we ranked 1%
with more than 83% of correlation with human an-
notations. Conversely, correlations on the WMT
corpus (track 4b) are strangely low. This differ-
ence is notable on the scores of all participating
teams (Cer et al., 2017)”. This might be explained
by the fact that WMT was annotated by only one

®http://nlp.stanford.edu/projects/
snli/

"The best score for this track is 34%, while for the other
tracks it is around 85%.
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annotator, while the SNLI corpus was annotated
by many.

[ Methods | SNLI (4a) | WMT (4b) | Mean |

CL-CTS | 0.7684 0.1464 0.4574
Average | 0.7910 0.1494 0.4702
MS5P 0.8302 0.1550 0.4926

Table 2: Official results of our submitted systems
on SemEval-2017 STS track 4 evaluation dataset.

[Methods | SNLI (da) | WMT (@b) | Mean |
[ Our Annotations ]

CL-CTS | 0.7981 0.5248 0.6614
Average | 0.8105 0.4031 0.6068
MS5P 0.8622 0.5374 0.6998

[ SemEval Gold Standard ]
CL-CTS | 0.8123 0.1739 0.4931
Average | 0.8277 0.2209 0.5243
MS5P 0.8536 0.1706 0.5121

Table 3: Results of our submitted systems scored
on our 120 annotated pairs and on the same 120
SemEval annotated pairs.

To investigate deeper on this issue, we manu-
ally annotated 60 random pairs of each sub-corpus
(120 annotated pairs among 500). These annota-
tions provide a second annotator reference. We
can see in Table 3 that, on SNLI corpus (4a), our
methods behave the same way for both annotations
(a difference of about 1.3%). However, the dif-
ference in correlation is huge between our anno-
tations and SemEval gold standard on the WMT
corpus (4b): 30% on average. The Pearson corre-
lation between our annotated pairs and the related
gold standard is 85.76% for the SNLI corpus and
29.16% for the WMT corpus. These results ques-
tion the validity of the WMT corpus (4b) for se-
mantic textual similarity detection.

6 Conclusion

We described our submission to SemEval-2017
Semantic Textual Similarity task on track 4 (Sp-
En cross-lingual sub-task). Our best results were
achieved by a M5’ model tree combination of var-
ious textual similarity detection techniques. This
approach worked well on the SNLI corpus (4a -
finishes 1% with more than 83% of correlation with
human annotations), which corresponds to a real
cross-language plagiarism detection scenario. We
also questioned WMT corpus (4b) validity provid-
ing our own manual annotations and showing low
correlations with those of SemEval.
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Abstract

This paper describes the model UdL we
proposed to solve the semantic textual
similarity task of SemEval 2017 work-
shop. The track we participated in was
estimating the semantics relatedness of a
given set of sentence pairs in English.
The best run out of three submitted runs
of our model achieved a Pearson correla-
tion score of 0.8004 compared to a hid-
den human annotation of 250 pairs. We
used random forest ensemble learning to
map an expandable set of extracted pair-
wise features into a semantic similarity es-
timated value bounded between O and 5.
Most of these features were calculated us-
ing word embedding vectors similarity to
align Part of Speech (PoS) and Name En-
tities (NE) tagged tokens of each sentence
pair. Among other pairwise features, we
experimented a classical tf—idf weighted
Bag of Words (BoW) vector model but
with character-based range of n-grams in-
stead of words. This sentence vector
BoW-based feature gave a relatively high
importance value percentage in the fea-
ture importances analysis of the ensemble
learning.

1 Introduction

Semantic Textual Similarity (STS) is a shared task
that have been running every year by SemEval
workshop since 2012. Each year, the participat-
ing teams are encouraged to utilize the previous
years data sets as a training set for their models.
The teams are then ranked by their test score on
a hidden human annotated pairs of sentences. Af-
ter the end of the competition, the organizers pub-
lish the gold standards and ask the teams of the
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coming year task to use it as a training set and so
on. The description of STS2017 task is reported in
(Cer et al., 2017). In STS2017 , the primary task
consisted in 6 tracks covering both monolingual
and cross-lingual sentence pairs for the languages
Spanish, English, Arabic, and Turkish. Our team,
UdL, only participated in the English monolingual
track (Track 5).

The data consist in thousands of pairs of sen-
tences from various resources like (Twitter news,
image captions, news headline, questions, an-
swers, paraphrasing, post-editing...). For each
pair, a human annotated score (from 0O to 5) is as-
signed and indicates the semantic similarity values
of the two sentences. The challenge is then to esti-
mate the semantic similarity of 250 sentence pairs
with hidden similarity values. The quality of the
proposed models would then be evaluated by the
Pearson correlation between the estimated and the
human annotated hidden values.

In section 2, we link to some related work to this
problem. The data preparation method followed
by a full description of the model pipeline and its
implementation are then presented in sections 3, 4,
and 5. Results of the model selection experiments
and the final task results are shown in section 6.

2 Related Work

The general description of the methodologies pro-
posed by the task previous year winners are dis-
cussed in Agirre et al. (2016). However, there
were many other related work to solve the issue
of encoding semantics of short text, i.e., sentences
or paragraphs. Many of them tend to reuse word
embeddings (Pennington et al., 2014) as an in-
put for sentence embedding, while others (Shen
et al., 2014; Le and Mikolov, 2014) propose to di-
rectly learn the sentence semantics features. Most
of these embedding techniques are based on large
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text corpus where each word or short text dense
vector representations (i.e., word embedding) are
learned from the co-occurrence frequencies with
other words in the context. Other methodologies
are based on matrix decomposition of the Bag of
Word (BoW) matrix using Latent Semantic Anal-
ysis (LSA) techniques like Singular Value Decom-
position (SVD) or Non-Negative Matrix Factor-
ization (NMF). According to a comparable trans-
fer learning strategy (Bottou, 2014), if we are able
to build a model consisting in (1) a pairwise trans-
former (i.e., feature extractor), and (2) a compara-
tor that can well-predict if the two elements of
the input are of the same class or not, then the
learned transformer could be reused to easily train
a classifier to label a single element. A good ex-
ample to understand such system is face recogni-
tion, e.g., it is considered impossible to have all
human faces images to train the best features set
of a face, however, a learned model that can tell if
two given face-images are of the same person or
not, could guide us to define a set of good repre-
sentative features to recognize a person given one
face image. We can generate 27” comparative pairs
from n examples. Similarly, we cannot have all
possible sentences to identify the sentence seman-
tics, but we can generate a lot of comparative sen-
tence pairs to learn the best semantics features set,
i.e., sentence dense vector representation. Thus
we consider our pairwise feature-based model as
an initial step to build a sentence dense vector se-
mantics representation that can perform very well
in many applications like semantics highlighter,
question answering system and semantics-based
information retrieval system.

3 Data Set Preparation

The data set provided for the STS task consists in
a set of tab-separated values data files from differ-
ent text types accommodated year-after-year since
2012. Each year, the task organizers provide ad-
ditional data files from different text sources. The
text sources vary between classical narrative sen-
tences, news headlines, image captions or forum
questions or even chat Twitter news. The source
types used in the task are listed in Table 1.

Each files pair consists of a first file containing,
at each line, the two sentences to be compared and
some information about the sources of these sen-
tences if any. The second file contains, at each
line, the similarity score of the corresponding pair

of sentences that is presented in the first file. In
addition, for the data extracted from the previous
years, we have one directory for the training set
and another one for tests. We noticed that the
separator format for the data file is not optimized
since using a tabulator can make things confused
because it is also a character used in some cases
inside the text. This could be solved only by hand,
after a first automatic preprocessing. After that,
we can read the file by line, looking for the good
characters and line format. We are also grate-
ful that our predecessors, e.g., Tan et al. (2015),
who shared some of their aggregated data that we
could also add to our training set. In the end, we
used the set of data of all the previous years since
2012. An additional step we considered was the
spell-checker correction using Enchant software.
We assume that such preprocessing step could en-
hance the results. However, this step was not used
in our submitted system. Finally, we also consider
a version of the data set where we filtered out the
hash-tag symbol from the Twitter news sentence
pairs.

4 Model Description

Our approach is based on the comparable trans-
fer learning systems discussed in section 2. Ac-
cordingly, our model pipeline mainly consists in
2 phases: (1) pairwise feature extraction, i.e.,
feature transformer, and (2) regression estimator.
While many related work either use words em-
bedding as an input for learning the sentence se-
mantics representation or learning such semantics
features directly, our model is able to reuse both
types as input for the pairwise feature transformer.
For example, as listed in Table 2, we used features
that is based on word vectors similarity of aligned
words while we also have a feature that consider
the whole sentence vector, i.e., sparse BoW. The
model can also use, but not yet used in this pa-
per, unsupervised learned sentence representation
out of methods like BoW matrix decomposition,
paragraph vector, or sent2vec methods as input to
our pairwise features transformer.

4.1 Pairwise Feature Extraction

We used different feature types as in Table 2. The
first two types are based on aligning PoS and NE
tagged words and then compute the average word
vectors cosine similarity (CS) of the paired tags.
The process of extracting these type of pairwise
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Source Types (as named in the source file)

Manually Assigned Domain Class

FNWN, OnWN, surprise.OnWN

Definition

MSRpar, belief, plagiarism, postediting

Paraphrasing

MSRyvid, images

Image-captions

SMT, SMTeuroparl, deft-news, headlines,
surprise.SMTnews, tweet-news

News

answer-answer, answers-forums, answers-students,

deft-forum, question-question

Question-answer

Table 1: Sentence pairs data source types and its manually annotated domain class.

Algorithm 1: The pairwise features extraction
process of aligned PoS and NE tagged tokens.

Input: Sentence pair

1 Extract a PoS type or a NE type word tokens
from both sentences

2 Pair each tagged word-token in one sentence
to all same tagged tokens in the other
sentence

3 Get the word vector representations of both
tokens of each paired tokens

4 Compute the vector representations of both
tokens of each paired tokens

5 Align words if the cosine similarity (CS) is
above a threshold value

6 Solve alignment conflicts, if any, based on the
higher CS value

7 Compute the average CS of the aligned tokens
and use it as the pairwised feature value

features are resumed in the algorithm 1.

The third feature is extracted by transforming
each sentence to its BoW vector representation.
This sparse vector representation is weighted by
tf—idf. The vocabulary of the BoW is the character
grams range between 2 and 3. This BoW vocab-
ulary source is only the data set of the task itself
and not a general large text corpus like the ones
usually used for word embedding. We are plan-
ning to try out a similar feature, but unsupervised,
where we consider a corpus like Wikipedia dump
as a source for the BoW. Another feature we plan
to consider as a future work is the dense decom-
posed BoW using SVD or NMF. Finally, we can
also consider unsupervised sentence vectors using
paragraph vectors or sent2vec methods.

Features number 4 is extracted by computing
the absolute difference of the summation of all
numbers in each sentence. To achieve that, we
transferred any spelled number, e.g., “sixty-five”,
to its numerical value, e.g., 65. The fifth pairwise
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feature we used was simply based on the sentence
length. The last feature is extracted by mapping
each sentence pair source to a manually annotated
domain class as in Table 1. However, in order to
use this feature, we would need to specify the do-
main class of the sentence pairs of the test data set.
Manually checking the test data and also based on
some replies found from the task organizers about
the source of the test data, we classified them all
as “Image-captions”.

4.2 Regression

We have mainly evaluated two regression estima-
tors for this task. The first estimator was random
forests (RF) and the other was Lasso (least abso-
lute shrinkage and selection operator). Based on
a 10-fold cross-validation (CV), we set the num-
ber of estimators of 1024 for RF and a maximum
depth of 8. For Lasso CV, we finally set the num-
ber of iterations to 512.

5 Implementation

Our Python model implementation is available for
reproducing the results on GitHub'. For PoS and
RE tagging, we utilized both polyglot (Al-Rfou
et al., 2013) and spaCy. We used a pre-trained
GloVe (Pennington et al., 2014) word vectors of
a size 300. The pipeline of the transformer and
the regression estimator was built on scikit-learn
API. Finally, we used pair-wise feature combiners
similar to the ones used in Louppe et al. (2016).

6 Results

6.1 Regression Estimator Selection

First, we run few experiments to decide on using
RF or Lasso CV. The experimental results of these
runs are listed in Table 3. The feature-importances
analysis are shown in the right column of Table 2.

"https://github.com/natsheh/sensim



| Feature | Pair Combiner | Importance
1 | Aligned PoS tags (17 tags) | Average of w2v CS of all PoS tag pairs 0.113
2 | Aligned NE tags (10 tags) | Average of w2v CS of all NE tag pairs 0.003
3 | TFIDF char ngrams BoW | Cosine similarity of the sentence BoW vector pair 0.847
4 | Numbers Absolute difference of the number summation 0.006
5 | Sentence length Absolute difference of the number of characters 0.032
6 | Domain class of the pair N/A N/A
Table 2: Pairwise features set.
Regressor |  PoS | word_vectors | images | answers_students | headlines 2016 | Mean
Lasso CV | polyglot GloVe 0.82 0.74 0.80 0.79
Lasso CV spaCy spaCy 0.82 0.74 0.79 0.79
RF spaCy spaCy 0.85 0.78 0.80 0.81
RF polyglot spaCy 0.85 0.77 0.80 0.81

Table 3: Regression estimator selection based on experimental evaluation score over a few data sets.

6.2 System Configuration Selection

We experimented different settings varying the
feature transformation design parameters and try-
ing out three different training set versions for RF.
We show the 3 selected settings for submission
and the test score of a few evaluation data-sets
from previous years in Table 4.

6.3 Final Results

We finally submitted three runs of our model UdL
for the task official evaluation. The settings of
these three runs are shown in Table 4. The sum-
mary of the evaluation score with the baseline
(0.7278), the best score run model (0.8547), the
least (0.0069), the median (0.7775) and the mean
(0.7082) are shown in Figure 1. Run1 was our best
run with Pearson correlation score of (0.8004), At
this run, we used RF for regression estimator on
our all extracted pairwise features except the do-
main class feature. Run2 (0.7805) was same as
Runl except that we used the domain class fea-
ture. Finally, Run3, submission correction phase
(0.7901), used a different data set were we filtered-
out hash-tag symbol from Twitter-news sentence
pairs.

7 Conclusion and Future Work

We proposed UdL, a model for estimating sen-
tence pair semantic similarity. The model mainly
utilizes two types of pairwise features which are
(1) the aligned part-of-speech and named-entities
tags and (2) the tf—idf weighted BoW vector model
of character-based n-gram range instead of words.
The evaluation results shows that Random Forest
regression estimator on our extracted pairwise fea-
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1

0.9 0.8547
0.8004 0.7805 0.7901

0.7775

Pearson Correlation

Figure 1: Track 5 results summary in comparison
to UdL three runs;*: submission correction.

tures provided 80% of Pearson correlation with
hidden human annotation values. The model was
implemented in a scalable pipeline architecture
and is now made available to the public where the
user can add and experiment any additional fea-
tures or even any other regression models. Since
the sentence vector BoW-based pairwise feature
showed high percentage in the feature importances
analysis of the Random Forest estimator, we are
going to try other, but dense, sentence vector rep-
resentation, e.g., in Shen et al. (2014); Le and
Mikolov (2014). We are also planning to use and
evaluate the model in some related applications in-



Submission | dataset | DF | PoS | vectors | images | AS | H16 | AA | QQ | plagiarism | mean

- small no | polyglot | spaCy
- small yes | polyglot | spaCy
Run?2 settings big yes spaCy spaCy
- big yes | polyglot | spaCy
- big no spaCy spaCy
- big no | polyglot | spaCy
Runl settings big no | polyglot | spaCy
Run3 settings BH no | polyglot | spaCy
- BH no | polyglot | GloVe

0.85
0.82
0.82
0.82
0.82
0.85
0.85
0.85
0.85

0.77 | 0.80 | 0.47 | 0.54 0.82 0.71
0.75 | 0.79 | 0.53 | 0.56 0.84 0.72
0.74 | 0.79 | 0.54 | 0.61 0.84 0.72
0.75 | 0.79 | 0.52 | 0.55 0.84 0.71
0.78 | 0.80 | 0.46 | 0.60 0.82 0.71
0.77 | 0.80 | 0.51 | 0.56 0.82 0.72
0.77 | 0.80 | 0.46 | 0.54 0.82 0.71
0.77 | 0.80 | 0.51 | 0.58 0.82 0.72
0.77 | 0.80 | 0.46 | 0.57 0.81 0.71

Table 4: Evaluation 2-decimal-rounded score on some testsets. DF: domain feature, AA:answer-answer,
AS:answers_students, H16:headlines_2016, QQ:question-question, BH:bigger data set size where hash-

tags are filtered

cluding a semantic sentences highlighter, a topic-
diversified document recommender system as well
as a question-answering system.
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Abstract

We describe our system (DT_Team) sub-
mitted at SemEval-2017 Task 1, Seman-
tic Textual Similarity (STS) challenge for
English (Track 5). We developed three dif-
ferent models with various features includ-
ing similarity scores calculated using word
and chunk alignments, word/sentence em-
beddings, and Gaussian Mixture Model
(GMM). The correlation between our sys-
tem’s output and the human judgments
were up to 0.8536, which is more than
10% above baseline, and almost as good
as the best performing system which was
at 0.8547 correlation (the difference is just
about 0.1%). Also, our system produced
leading results when evaluated with a sep-
arate STS benchmark dataset. The word
alignment and sentence embeddings based
features were found to be very effective.

1 Introduction

Measuring the Semantic Textual Similarity (STS)
is to quantify the semantic equivalence between
given pair of texts (Banjade et al., 2015; Agirre
et al., 2015). For example, a similarity score of
0 means that the texts are not similar at all while
a score of 5 means that they have same meaning.
In this paper, we describe our system DT_Team
and the three different runs that we submitted to
this year’s SemEval shared task on STS English
track (Track 5; Agirre et al. (2017)). We ap-
plied Support Vector Regression (SVR), Linear
Regression (LR) and Gradient Boosting Regressor
(GBR) with various features (see § 3.4) in order to
predict the semantic similarity of texts in a given
pair. We also report the results of our models when
evaluated with a separate STS benchmark dataset
created recently by the STS task organizers.

2 Preprocessing

The preprocessing step involved tokenization,
lemmatization, POS-tagging, name-entity recog-
nition and normalization (e.g. pc, pct, % are nor-
malized to pc). The preprocessing steps were same
as our DTSim system (Banjade et al., 2016).

3 Feature Generation

We generated various features including similar-
ity scores generated using different methods. We
describe next the word-to-word and sentence-to-
sentence similarity methods used in our system.

3.1 Word-to-Word Similarity

We used the word2vec (Mikolov et al., 2013)!
vectorial word representation, PPDB database
(Pavlick et al., 2015)?, and WordNet (Miller,
1995) to compute similarity between words.
Please see DTSim system description (Banjade
et al., 2016) for additional details.

3.2 Sentence-to-Sentence Similarity

3.2.1 Word Alignment Method

We lemmatized all content words and aligned
them optimally using the Hungarian algorithm
(Kuhn, 1955) implemented in the SEMILAR
Toolkit (Rus et al., 2013). The process is the
same as finding the maximum weight matching in
a weighted bi-partite graph. The nodes are words
and the weights are the similarity scores between
the word pairs computed as described in § 3.1. In
order to avoid noisy alignments, we reset the sim-
ilarity score below 0.5 (empirically set threshold)
to 0. The similarity score was computed as the
sum of the scores for all aligned word-pairs di-
vided by the total length of the given sentence pair.

"http://code.google.com/p/word2vec/
*http://www.cis.upenn.edu/ ccb/ppdb/
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In some cases, we also applied a penalty for un-
aligned words which we describe in § 3.3

3.2.2 Interpretable Similarity Method

We aligned chunks across sentence-pairs and la-
beled the alignments, such as Equivalent or Spe-
cific as described in Maharjan et al. (2016). Then,
we computed the interpretable semantic score as
in the DTSim system (Banjade et al., 2016).

3.2.3 Gaussian Mixture Model Method

Similar to the GMM model we have proposed
for assessing open-ended student answers (Ma-
harjan et al., 2017), we represented the sentence
pair as a feature vector consisting of feature sets
{7,8,9,10,14} from § 3.4 and modeled the se-
mantic equivalence levels [0 5] as multivariate
Gaussian densities of feature vectors. We then
used GMM to compute membership weights to
each of these semantic levels for a given sentence
pair. Finally, the GMM score is computed as:

mem_wt; = w; N (x|, Z), i €[0,5]
i
5
gmm_score = Z mem_wt; * i
1=0

3.2.4 Compositional Sentence Vector Method

We used both Deep Structured Semantic Model
(DSSM; Huang et al. (2013)) and DSSM
with convolutional-pooling (CDSSM; Shen et al.
(2014); Gao et al. (2014)) in the Sent2vec tool® to
generate the continuous vector representations for
given texts. We then computed the similarity score
as the cosine similarity of their representations.

3.2.5 Tuned Sentence Representation Based
Method

We first obtained the continuous vector represen-
tations V4 and Vp for sentence pair A and B us-
ing the Sent2Vec DSSM or CDSSM models or
skip-thought model* (Zhu et al., 2015; Kiros et al.,
2015). Inspired by Tai et al. (2015), we then rep-
resented the sentence pairs by the features formed
by concatenating element-wise dot product V4.Vg
and absolute difference |V4 — Vp|. We used these
features in our logistic regression model which
produces the output pg. Then, we predicted the
similarity between the texts in the target pair as

3https://www.microsoft.com/en-
us/download/details.aspx?id=52365
*https://github.com/ryankiros/skip-thoughts
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§ = r7pp, where rT = {1,2,3,4,5} is the ordi-
nal scale of similarity. To enforce that g is close to
the gold rating y, we encoded y as a sparse target
distribution p such that y = 77 p as:

y—lyl.i=ly] +1
ly] —y+1,i= |y
0, otherwise

pi =

where 1 < i < 5 and, |y| is floor operation.
For instance, given y = 3.2, it would give sparse p
=[00 0.8 0.2 0]. For building logistic model, we
used training data set from our previous DTSim
system (Banjade et al., 2016) and used image test
data from STS-2014 and STS-2015 as validation
data set.

3.2.6 Similarity Vector Method

We generated a vocabulary V' of unique words
from the given sentence pair (A, B). Then,
we generated sentence vectors as in the fol-
lowings: Vi = (wiq,Waq,.-Wpe) and Vg
(w1p, Wap, ... Wnp), Where n = |V] and w;q = 1, if
word; at position ¢ in V" has a synonym in sentence
A. Otherwise, w;, is the maximum similarity be-
tween word; and any of the words in A, com-
puted as: w;, = ma:cj»lelsim(wj,wordi). The
sim(wj,word;) is cosine similarity score com-
puted using the word2vec model. Similarly, we
compute Vg from sentence B.

3.2.7 Weighted Resultant Vector Method

We combined word2vec word representations to
obtain sentence level representations through vec-
tor algebra. We weighted the word vectors corre-
sponding to content words. We generated resultant
vector for A as R4 = Zilf” 0; * word;, where
the weight 0; for word; was chosen as word; €
{noun = 1.0, verb = 1.0, adj = 0.2, adv = 0.4, oth-
ers (e.g. number) = 1.0}. Similarly, we computed
resultant vector 2 for text B. The weights were
set empirically from training data. We then com-
puted a similarity score as the cosine of R4 and
Rp. Finally, we penalized the similarity score by
the unalignment score (see § 3.3).

3.3 Penalty

We applied the following two penalization strate-
gies to adjust the sentence-to-sentence similarity
score. It should be noted that only certain sim-
ilarity scores used as features of our regression
models were penalized but we did not penalize



the scores obtained from our final models. Unless
specified, similarity scores were not penalized.

3.3.1 Crossing Score

Crossing measures the spread of the distance be-
tween the aligned words in a given sentence pair.
In most cases, sentence pairs with higher degree
of similarity have aligned words in same position
or its neighborhood. We define crossing crs as:
Zw¢€A7 wjE€B, aligned(w;,w;) |Z - =7|
max(|Al,|B]) * (#alignments)

crs =

where aligned(w;, w;) refers to word wj at in-
dex 7 in A and w); at index j in B are aligned.
Then, the similarity score was reset to 0.3 if crs >
0.7. The threshold 0.7 was empirically set based
on evaluations using the training data.

3.3.2 Unalignment Score

We define unalignment score similar to alignment
score (see § 3.2.1) but this time the score is calcu-
lated using unaligned words in both A and B as:
unalign_score = ‘A‘+|B|_|2;|(flﬁgnments). Then,
the similarity score was penalized as in the follow-

ings:

score® = (1 — 0.4 x unalign_score) * score
where the weight 0.4 was empirically chosen.

3.4 Feature Selection

We generated and experimented with many fea-
tures. We describe here only those features used
directly or indirectly by our three submitted runs
which we describe in § 4. We used word2vec rep-
resentation and WordNet antonym and synonym
for word similarity unless anything else is men-
tioned specifically.

1. {w2vwa, ppdbwa, ppdb_wa_pen_ua}:
similarity scores generated using word
alignment based methods (pen_ua for scores

penalized by unalignment score).
{gmm}: output of Gaussian Mixture Model.

. {dssm, cdssm}: similarity scores using
DSSM and CDSSM models (see § 3.2.4).

{dssm_lr, skipthought_r}:  similarity
scores using logistic model with sentence
representations from DSSM and skip-thought
models (see § 3.2.5).

. {sim_vec}: score using similarity vector
method (see § 3.2.6).
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. {res_vec}: score using the weighted resul-
tant vector method (see § 3.2.7).

. {interpretable}: score calculated using in-
terpretable similarity method ( § 3.2.2).

. {noun_wa, verb-wa, adj_wa, adv_-wa}:
Noun-Noun, Adjective-Adjective, Adverb-
Adverb, and Verb-Verb alignment scores us-
ing word2vec for word similarity.

. {noun_verb_mult}: multiplication of Noun-
Noun similarity scores and Verb-Verb simi-
larity scores.

{abs_dif f_t}:
% where C;, and C, are the counts
of tokens of type ¢ € {all tokens, adjectives,
adverbs, nouns, and verbs} in sentence A

and B respectively.

10. absolute difference as

11. {overlap_pen}: unigram overlap between
text A and B with synonym check given by:
score = %. Then penalized by

crossing followed by unalignment score.

12. {noali}: number of NOALI relations in
aligning chunks between texts relative to the

total number of alignments (see § 3.2.2).

13. {align, unalign}: fraction of aligned/non-

aligned words in the sentence pair.

Cu

{mmr_t}: min to max ratio as 5t where Cyy
and C}z are the counts of type ¢ € {all, adjec-
tives, adverbs, nouns, and verbs} for shorter
text 1 and longer text 2 respectively.

14.

4 Model Development

Training Data. We used data released in previous
shared tasks (see Table 1) for the model develop-
ment (see § 5 for STS benchmarking).

Models and Runs. Using the combination of
features described in § 3.4, we built three different
models corresponding to the three runs (R1-3)
submitted.

R1. Linear SVM Regression model (SVR;
e =01, C 1.0) with a set of 7 features:
overlap_pen, ppdb_wa_pen_ua, dssm, dssm_r,
noali, abs_dif f _all tkns, mmr_all _tkns.

R2. Linear regression model (LR; default weka
settings) with a set of 8 features: dssm, cdssm,
gmm, reswvec, skipthoughtlr, sim_vec,
aligned, noun_wa.



Data set Count Release time
Deft-news 299 STS2014-Test
Images 749 STS2014-Test
Images 750 STS2015-Test
Headlines 742 STS2015-Test
Answer-forums 375 STS2015-Test
Answer-students 750 STS2015-Test
Belief 375 STS2015-Test
Headlines 244 STS2016-Test
Plagiarism 230 STS2016-Test
Total 4514

Table 1: Summary of training data.

1st
0.8547

R1 R2 R3 Baseline
0.8536 0.8360 0.8329 0.7278

Table 2: Results of our submitted runs on test data
(1% is the best result among the participants).

R3. Gradient boosted regression model (GBR;
estimators 1000, max_depth = 3) which
includes 3 additional features: w2v_wa, ppdb_wa,
overlap to feature set used in Run 2.

We used SVR and and LR models in Weka
3.6.8. We used GBR model using sklearn python
library. We evaluated our models on training data
using 10-fold cross validation. The correlation
scores in the training data were 0.797, 0.816 and
0.845 for R1, R2, and R3, respectively.

5 Results

Table 2 presents the correlation () of our sys-
tem outputs with human ratings in the evaluation
data (250 sentence pairs from Stanford Natural
Language Inference data (Bowman et al., 2015)).
The correlation scores of all three runs are 0.83
or above, on par with top performing systems.
All of our systems outperform the baseline by a
large margin of above 10%. Interestingly, R1 sys-
tem is at par with the 1% ranked system differing
by a very small margin of 0.009 (<0.2%). Fig-
ure 1 presents the graph showing R1 system out-
put against human judgments (gold scores). It
shows that our system predicts relatively better for
similarity scores between 3 to 5 while the system
slightly overshoots the prediction for the gold rat-
ings in the range of 0 to 2. In general, it can be
seen that our system works well across all similar-
ity levels.

Our 11 features had a correlation of 0.75 or
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dssm (0.8254), ppdb_wa_pen_ua (0.8273),
ppdb_wa (0.8139), cdssm (0.8013),
dssm_lr (0.8135), overlap (0.8048)

Table 3: A set of highly correlated features with
gold scores in test data.

Figure 1: R1 system output in evaluation data plot-
ted against human judgments (in ascending order).

above when compared with gold scores in test
data. In Table 3, we list only those features
having correlations of 0.8 or above. Similarity
scores computed using word alignment and com-
positional sentence vector methods were the best
predictive features.

STS Benchmark (Agirre et al., 2017). We
also evaluated our models on a benchmark dataset
which consists of 1379 pairs and was created by
the task organizers. We trained our three runs with
the benchmark training data under identical set-
tings. We used benchmark development data only
for generating features from § 3.2.5 (as validation
dataset). The correlation scores for k1, R2 and
R3 systems were:

In Dev: 0.800, 0.822, 0.830 and

In Test: 0.755, 0.787, 0.792

All of our systems outperformed best baseline
benchmark system (Dev = 0.77, Test = 0.72). In-
terestingly, R3 was the best performing while R1
was the least performing among the three. As
such, generalization was found to improve with in-
creasing number of features (#features: 7, 8 and 11
for R1, R2 and R3 respectively).

6 Conclusion

We presented our DT _Team system submitted in
SemEval-2017 Task 1. We developed three differ-
ent models using SVM regression, Linear regres-
sion and Gradient Boosted regression for predict-
ing textual semantic similarity. Overall, the out-
puts of our models highly correlate (correlation up
to 0.85 in STS 2017 test data and up to 0.792 on
benchmark data) with human ratings. Indeed, our
methods yielded highly competitive results.
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Abstract

This paper describes FCICU team systems
that participated in SemEval-2017 Seman-
tic Textual Similarity task (Taskl) for
monolingual and cross-lingual sentence
pairs. A sense-based language independent
textual similarity approach is presented, in
which a proposed alignment similarity
method coupled with new usage of a se-
mantic network (BabelNet) is used. Addi-
tionally, a previously proposed integration
between sense-based and surface-based
semantic textual similarity approach is ap-
plied together with our proposed approach.
For all the tracks in Task1, Runl is a string
kernel with alignments metric and Run2 is
a sense-based alignment similarity meth-
od. The first run is ranked 10th, and the
second is ranked 12th in the primary track,
with correlation 0.619 and 0.617 respec-
tively.

1 Introduction

Semantic Textual Similarity (STS) is the task of
measuring the similarity between two short texts
semantically. STS is very important because a
wide range of Natural Language Processing
(NLP) applications rely heavily on such task.

This paper describes our participation in the
STS task (Taskl) at SemEval 2017 in all the six
monolingual and cross-lingual tracks (Cer et al.,
2017). The STS task seeks to calculate a graded
similarity score from 0 to 5 between two sentenc-
es according to their meaning, i.e. semantically.
The monolingual tracks are Arabic, English, and
Spanish sentence-pairs (trackl, track3, and trackb
respectively), while the cross-lingual tracks are

r.bahgat,
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Arabic, Spanish, and Turkish sentences paired
with English sentences (track2, track4a-4b, and
track6 respectively). An additional Primary track
is provided that presents the mean score of the re-
sults of all the other tracks.

The similarity between two natural language
sentences can be inferred from the quanti-
ty/quality of aligned constituents in both sentenc-
es. Such alignments provide valuable information
regarding how and to what extent the two sen-
tences are related or semantically similar, where
semantically equivalent text pairs are likely to
have a successful alignment between their words.
Our proposed sense-based approach employs this
aspect to calculate the similarity between sen-
tence-pairs regardless of their language. This is
achieved through a proposed word-sense aligner
that relies mainly on a new usage of the semantic
network BabelNet. BabelNet utilization compen-
sates the need of a machine translation module
that is most commonly used to transfer cross-
lingual STS to monolingual. Besides, the pro-
posed sense-based similarity score is combined
with a surface-based similarity score.

The paper is organized as follows. Section 2
explains our main multilingual sense-based align-
er. Section 3 describes our system that participated
in all tracks. Section 4 shows the experiments
conducted and analyzes the results achieved. Sec-
tion 5 concludes the paper and mentions some fu-
ture directions.

2 Multilingual Sense-Based Aligner

Highly semantically similar sentences should also
have a high degree of conceptual alignment be-
tween their semantic units: words, tokens,

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 125-129,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



phrases, etc. Several STS methods that use align-
ments in their calculations have been proposed in
literature. Many of those methods were very suc-
cessful and were among the top performing meth-
ods during the last years of SemEval 2013-2016
(Han et al., 2013; Han et al., 2015; Hénig et al.,
2015; Sultan et al., 2014a; Sultan et al., 2014b;
Sultan et al., 2015).

From this point, we present a sense-based STS
approach that produces a similarity score between
texts by means of a multilingual word-sense
aligner. The following subsections describe in de-
tail the main resource utilized in our STS ap-
proach, namely BabelNet (details in subsection
2.1), and our proposed word-sense aligner that our
sense-based similarity method relies on (subsec-
tion 2.2).

2.1 BabelNet

BabelNet! is a rich semantic knowledge resource
that covers a wide range of concepts and named
entities connected with large numbers of semantic
relations (Navigli and Ponzetto, 2010). Concepts
and relations are gathered from different lexical
resources such as: WordNet, Wikipedia, Wikidata,
Wiktionary, FrameNet, ImageNet, and others.

BabelNet is made up of about 14 million en-
tries called Babel synsets. Each Babel synset is a
set of multilingual lexicalizations (each being a
Babel Sense) that represents a given meaning, ei-
ther concept or named entity, and contains all the
synonyms which express that meaning in a range
of different languages. For example, the concept
‘A motor vehicle with four wheels’ is represented
by the synset {caren, autoen, automobilee,, automo-
biles, voitures, autos, automoviles, autoes, cochees,
otomobily, arabay, 3 ke , 48 e, 224}, this syn-
set contains synonyms in English (EN), French
(FR), Spanish (ES), Turkish (TR), and Arabic
(AR) languages.

BabelNet semantic knowledge is encoded as a
labeled directed graph, where vertices are Babel
synset (concepts or named entities), and edges
connect pairs of synsets with a label indicating the
type of the semantic relation between them.

2.2  Word-Sense Aligner

Alignment is the task of discovering and aligning
similar semantic units in a pair of sentences ex-
pressed in a natural language.

http://babelnet.org/
2 Each word is a Babel sense in the subscripted language.

The old guy kicked the bucket at the age of 70

[

The old guy died at the age of seventy

Figure 1: Token alignments using our aligner
between monolingual English - English sen-
tence pair example.

The young boys are brothers

olaad o gall lalgh

Figure 2: Token alignments using our aligner
between cross-lingual English - Arabic sen-
tence pair from SemEval 2017-Track2 dataset.

Our proposed multilingual aligner aligns tokens
across two sentences based on the similarity of
their corresponding Babel synsets. A token can be
in the form of a single word or a multi-words to-
ken. When alignment of a single word token fails,
its multi-words synonyms are retrieved from
BabelNet. The proposed aligner aligns only a to-
ken that is neither a stop word nor a punctuation
mark.

Figure 1 shows an example of alignments be-
tween English monolingual sentence-pairs using
our aligner. In this figure the idiom “kicked the
bucket” is considered as a single token of multiple
words, and it was successfully aligned with the
token “died” in the other sentence because both
tokens are synonyms to each other in BabelNet.
Figure 2 illustrates an example of direct token
alignments between English-Arabic cross-lingual
sentence pairs without using any machine transla-
tion module for translating one sentence language
to the other.

Token-pairs are aligned one-to-one in decreas-
ing order of their Babel synsets similarity score (s)
using Equation (1). The most commonly used Ba-
bel synset of each token is selected.

Alsiso ={(t,t,s) :te Ty, " € T,,and s >06 };
where T; is a set of tokens of sentence i, and Jis a
threshold parameter for alignment score (5 = 0.5)°

2.3 Synset Similarity Measure

Finding similarity between synsets is a fundamen-
tal part of our aligner. Hence, we proposed a syn-
set similarity measure based on the hypothesis

3 According to experimental results conducted, we found
that the best value for this threshold is 0.5.
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that highly semantically similar concepts have
high degree of common neighbor synsets. From
this standpoint, this measure calculates the simi-
larity between Babel synset pairs (bs;, bs;) based
on the overlap between their directly connected
synsets. The overlap-coefficient is used, which is
defined as the size of the intersection divided by
the smaller of the size of the two sets. That is:
NS, ANS;||

sim,,... (bs;,bs;) = @
synset( i J) mm(l NSI |,| NSJ |)

where NS; and NS; are the sets of all neighbor
Babel synsets having a connected edge with bs;
and bs; in the BabelNet network respectively.
Since synonyms are belong to the same synset,
their similarity score is equal to 1.

3 System Description

Our systems are based on the past successful inte-
grated architecture of sense-based and surface-
based similarity functions presented in SemEval-
2015 system (Hassan et al., 2015). We use the in-
tegration in the latter system unchanged (Equation
2), where the current results are provided by tak-
ing the arithmetic mean of: 1) SiMgroposed : @ Pro-
posed sentence-pair semantic similarity score (dif-
fers in each Run, details in subsection 3.2), and 2)
simsc : the surface-based similarity function pro-
posed by Jimenez et al. (2012). Hence,

sim S,,S,)+simg. (S,,S
sim(Sl,Sz): proposed( 1 2) SC( 1 2) (2)

2

The approach presented in (Jimenez et al.,
2012) represents sentence words as sets of Q-
grams and measures semantic similarity based on
soft cardinality computed from sentence g-grams
similarity. Our system employs this approach,
with the following parameters setup: p=2, bias=0,
and a=0.5.

In this section, the text preprocessing details is
firstly explained in subsection 3.1, and then each
submitted Run is described in subsection 3.2.

3.1 Text Preprocessing

The given multilingual input sentences are pre-
processed beforehand to map the raw natural lan-
guage text into structured representation that can
be processed. This process is including only four
different tasks: (1) tokenization, (2) stopwords
removal, (3) lemmatization, and (4) sense tagging.

Tokenization: is carried out using Stanford
CoreNLP* (Manning et al., 2014), in which the
input raw sentence text, in any language, is broken
down into a set of tokens.

Stopwords removal: is the task of removing
all tokens that are either a stop word or a punctua-
tion mark.

Lemmatization: is a language-dependent task,
in which each token is annotated with its lemma.
English tokens are lemmatized using Stanford
CoreNLP (Manning et al., 2014). Spanish tokens
are lemmatized using a freely available lemma-
token pairs dataset®. Arabic tokens are lemmatized
using Madamira® (Pasha et al., 2014). For Turkish
tokens, lemmatization is not carried out.

Sense tagging: is the task of attaching the Ba-
bel synsets (bs) to each sentence token (t). It is
achieved by retrieving all the Babel synsets of to-
ken’s lemma.

On completion of the text preprocessing phase,
each sentence is represented by a set of tokens (T),
in which each token (t) is annotated by its original
word (tword), lemma (temma), and a set of Babel
synsets (bsy). This structured representation is then
used as an input to our proposed aligner (subsec-
tion 2.3), and from which a set of aligned tokens
across two sentences Sy and Sz is formed (Alsy s2).

3.2 Submitted Runs

We made two system submissions to participate in
all the provided monolingual and cross-lingual
tracks, named Runl and Run2. Each run proposes
a new different sense-based similarity method be-
tween sentence-pairs. The proposed similarity
score is then applied in Equation (2), SiMproposed,
resulting in the final similarity score between two
sentences in each run. In the following, each of
the two runs is described.

Runl: String Kernel with Alignments

A kernel can be interpreted as a similarity measure
between two sentences, it is a simple way of com-
puting the inner product of two data points in a
feature space directly as a function of their origi-
nal space variables (Liang et al., 2011). At
SemEval 2015, a string kernel was presented,
which relied on the hypothesis that the greater the

“http://nlp.stanford.edu/software/corenl
p.shtml
Shttp://www.lexiconista.com/datasets/lem
matization/
bhttp://camel.abudhabi.nyu.edu/madamira/
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similarity of word senses between two texts, the
higher their semantic equivalence will be (Hassan
et al., 2015). Accordingly, this run employs the
string kernel presented in (Hassan et al., 2015) in
which the alignments obtained from our proposed
aligner is used in mapping a sentence to feature
space. The changed kernel mapping function is
given by:

4.(S) =max { sim(t,t;) | 3)

where sim(t, t;) is the alignment score s of the
two tokens if (t, ti, ) € Alsis2 , and is equal to 0
otherwise, and n is the number of tokens con-
tained in sentence S, i.e. | T |.

The normalized string kernel between two sen-
tences S; and S; is calculated as follows (Shawe-
Taylor and Cristianini, 2004):

S,,S,)= < 5,.5)
Kys (51,S,) \/KS(Sl,Sl)K'S(Sz’SZ)

K5 (S1,8,) = (4(5.),4(S,)) = D_4,(S:) - 4,(S,)

teT
where T is the set of all tokens in both S; and Ss.
Given two sentences, S: and Sz, our similarity
score between S; and S, proposed by this run is
the value of the normalized string kernel function
between the two sentences (Equation 4). That is:

Simproposed (51:5,) =Kys (S1,S,) ®)

Run2: Alignment-Based Similarity Metric

(4)

Alignment-based semantic similarity approaches
presented in (Sultan et al., 2014a; Sultan et al.,
2014b; Sultan et al., 2015) relied only on the pro-
portions of the aligned content words on the two
sentences. We hypothesized that alignments are
not of the same importance, an alignment of syn-
onym tokens with alignment score 1 is not the
same as an alignment of two semantically related
tokens with score 0.5. Hence, the proposed simi-
larity score between S; and S; proposed for this
run is based on the alignment scores as well as
their proportion to the number of tokens in both
sentences. It is given by:
2% Y als

. aleAl

SIM_ 0y (51, S,) = ———=2 (6)
pones (31:52) = 121

where Ti is a set of tokens in sentence i, and al.s is

the score calculated for the alignment al.
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Track Runl | Run2 | Baseline Best
Score

1:AR-AR | .7158 | .7158 .6045 7543
2:AR-EN | 6782 | .6781 7493
3:SP-SP .8484 | .8489 7117 .8559
4a: SP-EN | .6926 | .6854 .8302
4b: SP-EN | .0254 | .0214 .3407
5:EN-EN | .8272 | .8280 7278 .8547
6:TR-EN | .5452 | .5390 7706
Primary .6190 | .6166 7316

Table 1: System performance on SemEval-2107 da-
tasets.

4 Experimental Results

The main evaluation measure selected by the task
organizers was the Pearson correlation between
the system scores and the gold standard scores.
Table 1 presents the official results of our submis-
sions in SemEval2017-Taskl for both Runl and
Run2 in the six tracks as well as the primary track.
The best performing score obtained in each track
is included as well alongside with the baseline
system results announced by the task organizers.
Our best system (Runl) achieved 0.619 correla-
tion and ranked the 10" run and the 5" team out of
84 runs and 31 teams respectively.

Although the performance of the two Runs dif-
fers slightly, it is noticeable from the table that
Runl (Kernel) performs better with cross-lingual
sentence-pairs, while Run2 (Alignments) per-
forms better with monolingual sentence-pairs.
Hence, relying on aligned tokens only in cross-
lingual sentences is insufficient.

5 Conclusions and Future work

Experimental results proved that, in spite of the
fact that our proposed simple unsupervised ap-
proach relies only on BabelNet and token align-
ments, it is capable of assessing the semantic simi-
larity between two sentences in different lan-
guages with good performance, 10" run rank and
5N team rank. Also, the proposed approach
demonstrates the effectiveness and usefulness of
using the BabelNet semantic network in solving
the STS task. Some potential future work includes
enhancing our proposed synset similarity method,
and exploiting the extraction of promising content
words in the given sentences.
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Abstract

This paper describes our convolutional
neural network (CNN) system for the Se-
mantic Textual Similarity (STS) task. We
calculated semantic similarity score be-
tween two sentences by comparing their
semantic vectors. We generated a seman-
tic vector by max pooling over every di-
mension of all word vectors in a sentence.
There are two key design tricks used by
our system. One is that we trained a
CNN to transfer GloVe word vectors to
a more proper form for the STS task be-
fore pooling. Another is that we trained
a fully-connected neural network (FCNN)
to transfer the difference of two seman-
tic vectors to the probability distribution
over similarity scores. All hyperparame-
ters were empirically tuned. In spite of the
simplicity of our neural network system,
we achieved a good accuracy and ranked
3rd on primary track of SemEval 2017.

Introduction

Semantic Textual Similarity (STS) is the task
of determining the degree of semantic similarity
between two sentences. STS task is a building
block of many natural language processing (NLP)
applications. Therefore, it has received a signif-
icant amount of attention in recent years. STS
tasks in SemEval have been held from 2012 to
2017 (Cer et al., 2017). Successfully estimat-
ing the degree of semantic similarity between two
sentences requires a very deep understanding of
both sentences. Well performing STS methods
can be applied to many other natural language un-
derstanding tasks including paraphrasing, entail-
ment detection, answer selection, hypothesis evi-
dencing, machine translation (MT) evaluation and
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quality estimation, summarization, question an-
swering (QA) and short answer grading.
Measuring sentence similarity is challenging for
two reasons. One is the variability of linguistic
expression and the other is the limited amount of
annotated training data. Therefore, conventional
NLP approaches, such as sparse, hand-crafted fea-
tures are difficult to use. However, neural network
systems (He et al., 2015a; He and Lin, 2016) can
alleviate data sparseness with pre-training and dis-
tributed representations. We propose a convolu-
tional neural network system with 5 components:

1) Enhance GloVe word vectors by adding hand-
crafted features.

2) Transfer the enhanced word vectors to a more
proper form by a convolutional neural network.

3) Max pooling over every dimension of all word
vectors to generate semantic vector.

4) Generate semantic difference vector by con-
catenating the element-wise absolute differ-
ence and the element-wise multiplication of
two semantic vectors.

5) Transfer the semantic difference vector to the
probability distribution over similarity scores
by fully-connected neural network.

2 System Description

Figure 1 provides an overview of our system.
The two sentences to be semantically compared
are first pre-processed as described in subsection
2.1. Then the CNN described in subsection 2.2
combines the word vectors from each sentence
into an appropriate sentence level embedding. Af-
ter that, the methods described in subsection 2.3
are used to compute representations that compare
paired sentence level embeddings. Then, a fully-
connected neural network (FCNN) described in
subsection 2.4 transfers the semantic difference
vector to a probability distribution over similarity
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scores. All hyperparameters in our system were
empirically tuned for the STS task and shown in
Table 1. We implemented our neural network sys-
tem by using Keras' (Chollet, 2015) and Tensor-
Flow? (Abadi et al., 2016).

2.1 Pre-process

Several text preprocessing operations were per-
formed before feature engineering:

1) All punctuations are removed.
2) All words are lower-cased.

3) All sentences are tokenized by Natural Lan-
guage Toolkit (NLTK) (Bird et al., 2009).

4) All words are replaced by pre-trained GloVe
word vectors (Common Crawl, 840B tokens)
(Pennington et al., 2014). Words that do not
exist in the pre-trained embeddings are set to
the zero vector.

5) All sentences are padded to a static length [ =
30 with zero vectors (He et al., 2015a).

Several hand-crafted features are added to enhance
the GloVe word vectors:

1) If a word appears in both sentences, add a
TRUE flag to the word vector, otherwise, add
a FALSE flag.

2) If a word is a number, and the same number
appears in the other sentence, add a TRUE flag
to the word vector of the matching number in
each sentence, otherwise, add a FALSE flag.

3) The part-of-speech (POS) tag of every word ac-
cording to NLTK is added as a one-hot vector.

2.2 Convolutional neural network (CNN)

Our CNN consists of n = 300 one dimensional
filters. The length of the filters is set to be the
same as the dimension of the enhanced word vec-
tors. The activation function of the CNN is set
to be relu (Nair and Hinton, 2010). We did not
use any regularization or drop out. Early stopping
triggered by model performance on validation data
was used to avoid overfitting. The number of
layers is set to be 1. We used the same model
weights to transfer each of the words in a sentence.
Sentence level embeddings are calculated by max
pooling (Scherer et al., 2010) over every dimen-
sion of the transformed word level embedding.

Uhttp://github.com/fchollet/keras
*http://github.com/tensorflow/tensorflow
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2.3 Comparison of semantic vectors

To calculate the semantic similarity score of
two sentences, we generate a semantic difference
vector by concatenating the element-wise absolute
difference and the element-wise multiplication of
the corresponding paired sentence level embed-
dings. The calculation equation is

SDV = (|SV1—8V2[,8V105V2) (1)

Here, SDV is the semantic difference vector,
SV1 and SV?2 are the semantic vectors of the two
sentences, and o is Hadamard product which gen-
erate the element-wise multiplication of two se-
mantic vectors.

2.4 Fully-connected neural network (FCNN)

An FCNN is used to transfer the semantic dif-
ference vector (600 dimension) to a probability
distribution over the six similarity labels used by
STS. The number of layers is set to be 2. The
first layer uses 300 units with a tanh activation
function. The second layer produces the similar-
ity label probability distribution with 6 units com-
bined with a softmax activation function. We
train without using regularization or drop out.

3 Experiments and Results

We randomly split all dataset files of SemEval-
2012-2015 (Agirre et al., 2012, 2013, 2014, 2015)
into ten. We used the preparation of the data from
(Baudis et al., 2016). We used 90% of the pairs
in each individual dataset file for training and the
other 10% for validation. We tested our model
in the English dataset of SemEval-2016 (Agirre
etal., 2016). Our objective function is the Pearson
correlation coefficient computed over each batch.
ADAM was used as the gradient descent optimiza-
tion method. All parameters are set to the values



Table 1: Hyperparameters

Sentence pad length 30
Dimension of GloVe vectors 300
Number of CNN layers 1
Dimension of CNN filters 1
Number of CNN filters 300
Activation function of CNN relu
Initial function of CNN he_uni form
Number of FCNN layers 2
Dimension of input layer 600
Dimension of first layer 300
Dimension of second layer 6
Activation of first layer tanh
Activation of second layer softmax
Initial function of layers he_uni form
Optimizer ADAM
Batch size 339
Max epoch 6

Run times 8

suggested by (P.Kingma and Ba, 2015): learning
rate is 0.001, 81 is 0.9, (52 is 0.999, ¢ is 1e-08.
he_uniform (He et al., 2015b) was used as the
initial function of layers. We did the experiment 8
times and choose the model that achieved the best
performance on the validation dataset. Our sys-
tem got a Pearson correlation coefficient result of
0.7192+0.0062.

We also used the same model design to take
part in all tracks of SemEval-2017. We submitted
two runs. One with machine translation (MT) and
another without (non-MT). In MT run, we trans-
lated all the other languages in the test dataset into
English by Google Translate’ and used the En-
glish model to evaluate all similarity scores. For
the monolingual tracks, we also tried non-MT run,
which means we trained the models directly from
the English, Spanish and Arabic data. Here, we
independently trained another English model for
each run. The difference between English-English
performance from MT and non-MT is caused by
the random shuffling of data during training.

We also trained another English model with
same design to evaluate the STS benchmark
dataset (Cer et al., 2017)*. We used only the Train
part for training and the Dev. part to fine tune. We
also run our system without any hand-crafted fea-
tures. The purely sentence representation system

3http://translate.google.com
*http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Table 2: Pearson correlation coefficient with the
golden standard of 2017 test dataset

Tracks CNN Best Diff.(Rank)
STS2016 0.7192  0.7781 0.0589(14")
40.0062
STS 2017 (MT)
Primary 0.6598 0.7316  0.0718(3"%)
1 AR-AR  0.7130  0.7543  0.0413(6'")
2AR-EN  0.6836 0.7493  0.0657(3"%)
3 SP-SP 0.8263  0.8559  0.0296(4")
4aSP-EN  0.7621  0.8302  0.0681(5!")
4b SP-EN  0.1483  0.3407  0.1924(7")
5 EN-EN 0.8113  0.8547  0.0434(8")
6EN-TR  0.6741  0.7706  0.0965(3"%)
STS 2017 (non-MT)
1 AR-AR 04373 0.7543 0.3170(15")
3 SP-SP 0.6709  0.8559 0.1850(15")
5 EN-EN 0.8156  0.8547  0.0391(7*")
STS benchmark (hand-craft)
Dev. 0.8343  0.8470  0.0127(4tM)
Test 0.7842  0.8100  0.0258(4")
STS benchmark (no hand-craft)
Dev. 0.8236  0.8470  0.0234(4'M)
Test 0.7833  0.8100  0.0267(4")

also got a good accuracy. The results are shown in
Table 2. Our model achieves 4 place on the STS
benchmark®.

4 Discussion

The difference between our model’s perfor-
mance and that of the best participating system are
relative small for all tracks except track 4b and 6.
We note that the sentences in track 4b are signif-
icantly longer than the sentences in other tracks.
We speculate that the results of our system in track
4b were pulled down by the decision to use static
padding of length 30 within our model.

Another trend that could be observed is that
the results of non-MT were likely harmed by the
smaller amounts of available training data. We had
over 10,000 training pairs for English, but only
1634 pairs in Spanish and 1104 in Arabic. Corre-
spondingly, for our non-MT models, we achieved
our best Pearson correlation scores on English
with diminished results on Spanish and our worst
results on Arabic. Notably, the results obtained
by combining our English model with MT to han-
dle Spanish and Arabic were not affected by the

SAs of April 17, 2017



limited amount of training data for these two lan-
guages and provided better performance.

5 Conclusion

We proposed a simple convolutional neural net-
work system for the STS task. First, it uses a con-
volutional neural network to transfer hand-crafted
feature enhanced GloVe word vectors. Then, it
calculates a semantic vector representation of each
sentence by max pooling every dimension of their
transformed word vectors. After that, it generates
a semantic difference vector between two paired
sentences by concatenating their element-wise ab-
solute difference and the element-wise multiplica-
tion of their semantic vectors. Next, it uses a fully-
connected neural network to transfer the semantic
difference vector to a probability distribution over
similarity scores.

In spite of the simplicity of our neural network
system, the difference in performance between our
proposed model and the best performing systems
that participated in the STS shared task are less
than 0.1 absolute in almost all STS tracks and re-
sult in our model being ranked 3rd on primary
track of SemEval STS 2017.
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Abstract

This article describes our proposed sys-
tem named LIM-LIG. This system is de-
signed for SemEval 2017 Taskl: Seman-
tic Textual Similarity (Trackl). LIM-LIG
proposes an innovative enhancement to
word embedding-based model devoted to
measure the semantic similarity in Ara-
bic sentences. The main idea is to exploit
the word representations as vectors in a
multidimensional space to capture the se-
mantic and syntactic properties of words.
IDF weighting and Part-of-Speech tagging
are applied on the examined sentences to
support the identification of words that
are highly descriptive in each sentence.
LIM-LIG system achieves a Pearsons cor-
relation of 0.74633, ranking 2nd among
all participants in the Arabic monolingual
pairs STS task organized within the Se-
mEval 2017 evaluation campaign.

1 Introduction

Semantic Textual Similarity (STS) is an important
task in several application fields, such as infor-
mation retrieval, machine translation, plagiarism
detection and others. STS measures the degree
of similarity between the meanings of two text
sequences (Agirre et al., 2015). Since SemEval
2013, STS has been one of the official shared
tasks.

This is the first year in which SemEval has orga-
nized an Arabic monolingual pairs STS. The chal-
lenge in this task lies in the interpretation of the
semantic similarity of two given Arabic sentences,
with a continuous valued score ranging from 0 to
5. The Arabic STS measurement could be very
useful for several areas, including: disguised pla-
giarism detection, word-sense disambiguation, la-
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tent semantic analysis (LSA) or paraphrase identi-
fication. A very important advantage of SemEval
evaluation campaign, is enabling the evaluation of
several different systems on a common datasets.
Which makes it possible to produce a novel an-
notated datasets that can be used in future NLP
research.

In this article we present our LIM-LIG sys-
tem devoted to enhancing the semantic similarity
between Arabic sentences. In STS task (Arabic
monolingual pairs) SemEval 2017, the LIM-LIG
system propose three methods to measure this sim-
ilarity: No weighting, IDF weighting and Part-
of-speech weighting Method. The best submit-
ted method (Part-of-speech weighting) achieves a
Pearsons correlation of 0.7463, ranking 2nd in the
Arabic monolingual STS task. In addition, we
have proposed another method (after the compe-
tition) named Mixed method, with this method,
the correlation rate reached 0.7667, which repre-
sent the best score among the different submitted
methods involved in the Arabic monolingual STS
task.

2  Word Embedding Models

In the literature, several techniques are proposed
to build word-embedding model.

For instance, Collobert and Weston (2008) have
proposed a unified system based on a deep neu-
ral network architecture. Their word embed-
ding model is stored in a matrix M € R%IPI,
where D is a dictionary of all unique words
in the training data, and each word is embed-
ded into a d-dimensional vector. Mnih and
Hinton (2009) have proposed the Hierarchical
Log-Bilinear Model (HLBL). The HLBL Model
concatenates the n — 1 first embedding words
(w1..wp—1) and learns a neural linear model to
predicate the last word w,,.

Mikolov et al. (2013a, 2013b) have proposed
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two other approaches to build a words represen-
tations in vector space. The first one named the
continuous bag of word model CBOW (Mikolov
et al., 2013a), predicts a pivot word according
to the context by using a window of contextual
words around it. Given a sequence of words
S w1, Wwa, ..., w;, the CBOW model learns
to predict all words w; from their surrounding
words (Wg_q, ..oy Wk—1, Wkt 1, .., W17). The sec-
ond model SKIP-G, predicts surrounding words of
the current pivot word wg (Mikolov et al., 2013b).

Pennington et al.(2014) proposed a Global Vec-
tors (GloVe) to build a words representations
model, GloVe uses the global statistics of word-
word co-occurrence to calculate the probability of
word w; to appear in the context of another word
wj, this probability P(i/j) represents the relation-
ship between words.

3 System Description
3.1 Model Used

In Mikolov et al. (2013a), all the methods
(Collobert and Weston, 2008), (Turian et al.,
2010), (Mnih and Hinton, 2009), (Mikolov et al.,
2013c) have been evaluated and compared, and
they show that CBOW and SKIP-G are signifi-
cantly faster to train with better accuracy com-
pared to these techniques. For this reason, we have
used the CBOW word representations for Arabic
model! proposed by Zahran et al. (2015). To
train this model, they have used a large collection
from different sources counting more than 5.8 bil-
lion words including: Arabic Wikipedia (WikiAr,
2006), BBC and CNN Arabic corpus (Saad and
Ashour, 2010), Open parallel corpus (Tiedemann,
2012), Arabase Corpus (Raafat et al., 2013), Osac
corpus (Saad and Ashour, 2010), MultiUN cor-
pus (Chen and Eisele, 2012), KSU corpus (ksu-
corpus, 2012), Meedan Arabic corpus (Meedan,
2012) and other (see Zahran et al. 2015).

3.2 Words Similarity

We used CBOW model in order to identify the
near matches between two words w; and w;. The
similarity between w; and w; is obtained by com-
paring their vector representations v; and v; re-
spectively. The similarity between v; and v; can
be evaluated using the cosine similarity, euclidean
distance, manhattan distance or any other similar-
ity measure functions. For example, let »{xeld I

"https:/sites.google.com/site/mohazahran/data
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(university), 7LV (evening) and » LV (faculty)
be three words. The similarity between them is
measured by computing the cosine similarity be-
tween their vectors as follows:

sim(sld !, Lasld 1) = cos(V (sLudl), V(iaeld 1)) = 0.13

sim (&), Lnsld 1) = cos(V (iald ), V(L)) = 0.72
That means that, the words »&3P (faculty) and
7ixa\d I (university) are semantically closer than
7Ll (evening) and ” Lwel LV’ (university).

3.3 Sentences similarity

Let S1 = wi,wa, ..., w; and Sy = wy, W, ..., W]

be two sentences, their words vectors representa-
tions are (v1,ve, ..., v;) and (v], v}, ...,v}) respec-
tively. There exist several ways to compare two
sentences. For this purpose, we have used four
methods to measure the similarity between sen-
tences. Figure 1 illustrates an overview of the pro-
cedure for computing the similarity between two

candidate sentences in our system.

'| Word Embedding Background Pos
3 Model Corpus Tagger
y 2 ',['““\
M| . ; . L
o .
S Wil o v | Weighting 1 SiMsss(51,52)
[ R P ;
TR L o
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Normalization

Stop-Word Removal Calculation
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Figure 1: Architecture of the proposed system.

In the following, we explain our proposed meth-
ods to compute the semantic similarity among sen-
tences.

3.3.1 No Weighting Method

A simple way to compare two sentences, is to sum
their words vectors. In addition, this method can
be applied to any size of sentences. The similarity
between S and 5o is obtained by calculating the
cosine similarity between V; and V5, where:
{ Wi 22:1 Uk

J

/
Va k=1 Yk



For example, let S1 and S5 be two sentences:
S1 ="\ J! 2wy a3’ (Joseph went to college).
S = "&bl Lo s g2t Cougy” (Joseph goes quickly to
university).
The similarity between S7 and So is obtained as
follows:
Step 1: Sum of the word vectors

Vi = V(ZR) + V(aus) + V(o)

Vo = V(dalall) + V(Le ns) + V( g26) + V(2ws)
Step 2: Calculate the similarity
The similarity between S7 and .S> is obtained by
calculating the cosine similarity between V; and
Vo: sim(Sy, S2) = cos(Vi,V2) = 0.71

In order to improve the similarity results, we
have used two weighting functions based on
the Inverse Document Frequency IDF (Salton
and Buckley, 1988) and the Part-Of-Speech tag-
ging (POS tagging) (Schwab, 2005) (Lioma and
Blanco, 2009).

3.3.2 IDF Weighting Method

In this variant, the Inverse Document Frequency
IDF concept is used to produce a composite
weight for each word in each sentence. The idf
weight serves as a measure of how much informa-
tion the word provides, that is, whether the term
that occurs infrequently is good for discriminat-
ing between documents (in our case sentences).
This technique uses a large collection of document
(background corpus), generally the same genre as
the input corpus that is to be semantically veri-
fied. In order to compute the idf weight for each
word, we have used the BBC and CNN Arabic
corpus? (Saad and Ashour, 2010) as a background
corpus. In fact, the idf of each word is determined
by using the formula: idf (w) = log(%), where
S is the total number of sentences in the corpus
and WS is the number of sentences containing the
word w. The similarity between S; and S5 is ob-
tained by calculating the cosine similarity between
V1 and V3, cos(Vy, Vi) where:

{ Vi = 22:1 idf (wg) * vy

Vo > oh_q ddf (wy,) * vy,
and idf (wy,) is the weight of the word wy, in the
background corpus.
Example: let us continue with the sentences
of the previous example, and suppose that IDF
weights of their words are:

Zhttps://sourceforge.net/projects/ar-text-mining/files
/Arabic-Corpora/
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<!
0.31

ield |
0.34

& s
0.22

o

0.27

-V

0.37

s
0.29

Step 1: Sum of vectors with IDF weights
Vi = V(&) % 0.31 + V(awsy) * 0.37 +V (cad) % 0.27
Vo = V(aaald 1) 0.34 4+ V(L ns) ¥0.22 + V(_qatt) ¥ 0.29

V() % 0.37
Step 2: Calculate the similarity
The cosine similarity is applied to computed a
similarity score between V; and V5.

sim(S1,S2) = cos(Vy,Va) = 0.78

We note that the similarity result between the two
sentences is better than the previous method.

3.3.3 Part-of-speech weighting Method

An alternative technique is the application of the
Part-of-Speech tagging (POS tag) for identifica-
tion of words that are highly descriptive in each
input sentence (Lioma and Blanco, 2009). For this
purpose, we have used the POS tagger for Arabic
language proposed by G. Braham et al. (2012) to
estimate the part-of-speech of each word in sen-
tence. Then, a weight is assigned for each type
of tag in the sentence. For example, verb = 0.4,
noun 0.5, adjective 0.3, preposition
0.1, etc.

The similarity between S1 and S5 is obtained in
three steps (Ferrero et al., 2017) as follows:
Step 1: POS tagging
In this step the POS tagger of G. Braham et al.
(2012) is used to estimate the POS of each word
in sentence.

{ Pos_tag(S1) = Poswy, , Posy,, ..., Posy,

Pos_tag(S2) = Posy, Posyy, ..., Posw;_
The function Pos_tag(.S;) returns for each word
wy, in S; its estimated part of speech Pos,,, .
Step 2: POS weighting
At this point we should mention that, the weight
of each part of speech can be fixed empirically.
Indeed, we based on the training data of SemEval-
2017 (Task 1)? to fix the POS weights.

{V1

Va
where Pos_weight(Pos,, ) is the function which
return the weight of POS tagging of wy.
Step 3: Calculate the similarity
Finally, the similarity between S; and S5 is ob-
tained by calculating the cosine similarity between
V1 and V4 as follows: sim(S1, S2) = cos(Vy, Va).

Zzzl Pos_weight(Posy, ) * vg

J
k=1

Pos_weight(Pos,, ) * v

3http://alt.qcri.org/semeval2017/task 1 /data/uploads/



Example:

Let us continue with the same example, and sup-

pose that POS weights are:
verb | noun | noun_prop

0.4 0.5 0.7

Step 1: Pos tagging

The function Pos_tag(S;) is applied to each sen-

tence.

{

Step 2: Sum of vectors with POS weighting
Vi = V(&) % 0.5 + V(caws) * 0.7 + V(cw3) % 0.4

Vo = V(iasld 1) % 0.5+ V(ls as) ¥ 0.3 + V(_gar) % 0.4 +
V(awsy) % 0.7
Step 3: Calculate the similarity

sim(S1,S2) = cos(Vy,Va) = 0.82

Mixed weighting

adj
0.3

prep
0.1

Pos_tag(S1) = verb noun_prop noun
Pos_tag(S2) = noun_prop verb adj noun

3.34

We have proposed another method (after the com-
petition), this method propose to use both IDF and
the POS weightings simultaneously. The similar-
ity between S and S5 is obtained as follows:

{

If we apply this method to the previous example,
using the same weights in Section 3.2 and 3.3, we
will have: Sim(S1,S2) = Cos(Vy, V) = 0, 87.

4 Experiments And Results

4.1 Preprocessing
In order to normalize the sentences for the seman-
tic similarity step, a set of preprocessing are per-
formed on the data set. All sentences went through
by the following steps:

1. Remove Stop-word, punctuation marks, dia-
critics and non letters.
We normalized | ¢ |« | to land §to o.

Vi = 22:1 idf (wi) * Pos_weight(Posw, ) * vk
Vo =37 adf (wy,) * Pos,wez'ght(Posw;c) * ),

2.

3.
4. Normalizing numerical digits to Num.
4.2 Tests and Results
To evaluate the performance of our system, our
four approaches were assessed based on their ac-
curacy on the 250 sentences in the STS 2017
Monolingual Arabic Evaluation Sets v1.14. We
calculate the Pearson correlation between our
assigned semantic similarity scores and human
judgements. The results are presented in Table 1.

Replace final ¢ followed by s with .

*http://alt.qcri.org/semeval2017/task 1/data/uploads
/sts2017.eval.v1.1.zip
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Approach Correlation
Basic method (run 1) 0.5957
IDF-weighting method (run 2) 0.7309
POS tagging method (run 3) 0.7463
Mixed method 0.7667

Table 1: Correlation results

These results indicate that when the no weight-
ing method is used the correlation rate reached
59.57%. Both IDF-weighting and POS tagging
approaches significantly outperformed the corre-
lation to more than 73% (respectively 73.09%
and 74.63%). We noted that, the Mixed method
achieve the best correlation (76.67%) of the differ-
ent techniques involved in the Arabic monolingual
pairs STS task.

5 Conclusion and Future Work

In this article, we presented an innovative word
embedding-based system to measure semantic re-
lations between Arabic sentences. This system
is based on the semantic properties of words in-
cluded in the word-embedding model. In order
to make further progress in the analysis of the se-
mantic sentence similarity, this article showed how
the IDF weighting and Part-of-Speech tagging are
used to support the identification of words that are
highly descriptive in each sentence. In the exper-
iments we have shown how these techniques im-
prove the correlation results. The performance
of our proposed system was confirmed through
the Pearson correlation between our assigned se-
mantic similarity scores and human judgements.
As future work, we are going to combine these
methods with those of other classical techniques
in NLP field such as: n-gram, fingerprint and lin-
guistic resources.
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Abstract

Semantic Textual Similarity (STS) evalua-
tion assesses the degree to which two parts
of texts are similar, based on their semantic
evaluation. In this paper, we describe three
models submitted to STS SemEval 2017.
Given two English parts of a text, each of
proposed methods outputs the assessment
of their semantic similarity.

We propose an approach for computing
monolingual semantic textual similarity
based on an ensemble of three distinct
methods. Our model consists of recursive
neural network (RNN) text auto-encoders
ensemble with supervised a model of vec-
torized sentences using reduced part of
speech (PoS) weighted word embeddings
as well as unsupervised a method based
on word coverage (TakelLab). Addition-
ally, we enrich our model with additional
features that allow disambiguation of en-
semble methods based on their efficiency.
We have used Multi-Layer Perceptron as an
ensemble classifier basing on estimations
of trained Gradient Boosting Regressors.

Results of our research proves that us-
ing such ensemble leads to a higher ac-
curacy due to a fact that each member-
algorithm tends to specialize in particular
type of sentences. Simple model based
on PoS weighted Word2Vec word embed-
dings seem to improve performance of
more complex RNN based auto-encoders in
the ensemble. In the monolingual English-
English STS subtask our Ensemble based
model achieved mean Pearson correlation
of .785 compared with human annotators.
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1 Introduction

The objective of a system for evaluating seman-
tic textual similarity, is to produce a value which
serves as a rating of semantic similarity between
pair of text samples. Such task certainly could not
be regarded as toy problem, the results could be
used to solve multiple real-world problems, e.g.
plagiarism detection. We used described meth-
ods in STS task in the SemEval 2017 competition
(Bethard et al., 2017).

2 Methods

2.1 Data

For the purpose of this research we have used
datasets provided by the SemEval challenge or-
ganizers containing English sentence pairs coming
from several sources. STS Task objective is to
produce a value in the range between 0.0 and 5.0,
which assessing semantic similarity of a given pair
of sentences. Intermediate levels are correspond-
ing to partial similarity such as rough or topical
equivalence but with differing details. In this study,
we have used all English datasets provided by the
challenge organizers until this year to train our su-
pervised models.

2.2 Models

The core of the system is based on widely used
Gradient Boosting algorithm. The main novelty
of described system lies in the formulation of its
feature vectors.

Each feature vector can be divided into two main
parts: similarity scores and sentences’ descriptors.
The process of feature extraction compiles simi-
larity scores of three distinct methods (described
later in detail) — effectively forming an ensemble.
Additionally, for every pair of sentences, follow-
ing descriptors are also attached to feature vector:

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 139-143,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



lengths of the evaluated sentences, Word2 Vec cov-
erage as well as two boolean predicates — one of
them indicates if a sentence is a question and an-
other one indicating if sentence contains numbers.
Word2Vec coverage is defined as follows:

1S; NG

where S; denotes set of all words present in ith
sentence and G is a set of all words available in
Word2Vec.

The logic behind introduction of these descrip-
tors is based on observations made during evalu-
ation of each separate method. Overall they all
achieved a similar Pearson score, but accuracy of
every method in context of particular instances of
sentence pairs was different. For example, model
based on cosine similarity of Word2Vec vectors
performed worse in case of long sentences and
when the sentences contained words not present in
Word2Vec. Ideally introduction of sentences’ de-
scriptors to feature vectors would let the regressor
”pick” the right method for each case by learning
the correlations between features exhibited by sen-
tences and performance of particular method. This
hypothesis has been proven true, which is further
backed by achieved results.

We used the implementation of Gradient Boost-
ing and Multi-layer Perceptron (MLP) from scikit-
learn library (Pedregosa et al., 2011). Facilities
present in mentioned library were also used for
evaluation using 3-fold crossvalidation and hyper-
parameters optimization using grid search method.
We have used low number of folds in Cross Valida-
tion to prevent over-fitting.

2.2.1 TakeLab

This method contributes three components for fea-
ture vector used by the meta-regressor. These
components correspond to three word similarity
measures defined by (Sarié et al., 2012) — ngram
overlap, weighted word overlap and WordNet-
augmented word overlap. Authors of (Sari¢ et al.,
2012) use Google Books Ngrams for computing in-
formation content used in the weighted word over-
lap measure — we, in comparison, use the fre-
quency list from British National Corpus (Leech,
2016).

Mentioned overlaps were implemented in Java
programming language. The WS4J library was
used for computing the WordNet path lengths
between words with Wu-Palmer method. The

OpenNLP library was used for both lemmatiza-
tion and PoS-tagging. For complete overview of
TakeLab measures see (Sari¢ et al., 2012).

2.2.2 Run 1: Part of Speech weighted
Word2Vec Similarity (PoS-Word2Vec)

Described model is based on a well-documented
Word2Vec (Mikolov et al., 2013) method of textual
information encoding that allows vectorized repre-
sentation of words, enforces vector space proximity
for semantically similar words.

Given sentence pairs (z,y) of words length
(ng,n;), part of speech (PoS) weights of words
wg,, and wy, and vector representation of words
vy, and vy, coming from given sentences x and y,
respectively.To evaluate vector similarity we have
used cosine similarity between vectors x and y:

Ty
[l[[ - [yl]

We have extracted following features for each
sentence pair, to produce resulting vector 7:

cos(x,y) =

e cosine similarity of the mean of word vectors
in each sentence

r(0) = cos (

e cosine similarity of the mean of word vectors
in each sentence weighted by the PoS of the
word

k; 1ka Zk; 1“%)

g n;

zk 1 Wy,

n; .
r(1) = cos(zk L o )

Zk 1 Way, Zk:1 Wy,

Furthermore, we have analyzed cross sentence
word-wise cosine similarity:

M(i,7) = cos(vg,, vy, ),

and obtained maximum, PoS weighted, cross sen-
tence word similarity vector v:

v(k) = max M(k,j) - wy,
Jj=1,...n;
fork=1,...,n;, and
v(k) = max M(i,k —n;) - wy,
i:l,...,ni
for k = n;,...,n; +nj.
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We have extracted following statistical features
from the resulting vector v and added to the result-
ing vector r:, Mean , Kurtosis, Skewness, Standard
deviation, Maximum value, Minimum value, Per-
centiles (5th, 25th, 75th and 95th).

r(3) = mean(v)

r(4) = kurtosis(v)

r(5) = skewness(v)

r(6) = sd(v)

r(7) = max(v)

(8) = min(v)

r(9) = percentile(v, 5)
r(10) = percentile(v, 25)
r(11) = percentile(v, 75)

r(12) = percentile(v, 95)

We have used precomputed Word2Vec vectors
from GloVe dataset (300 dimensions) (Pennington
et al., 2014) for words in sentence pairs and British
National Corpus dataset (Leech, 2016) to obtain
information about PoS of given word. PoS weights
have been experimentally assigned using results
from random walk evaluated using Spearman cor-
relation. Statistical moments and percentiles have
been experimentally selected during manual trial
and error optimization. We trained Gradient Boost-
ing Regressor on the extracted features and eval-
vated it using 3 fold cross validation to prevent
over-fitting.

2.2.3 Run 2: Skip Thoughts Vectors

Skip-thought vectors is an encoder-decoder model
(Kiros et al., 2015), which is based on an RNN
encoder with GRU acivations and an RNN decoder
with a conditional GRU. Instead, in our approach,
we only used skip-thought vectors’ encoder pre-
trained on the BookCorpus dataset (Zhu et al.,
2015), which maps words to a sentence vector. We
determined skip-thought vectors as generic features
for all sentences.

Next, we computed component-wise features
for given pair of sentences. Denoting a and b
as two skip-thought vectors, we computed their
component-wise features: product a - b, absolute
difference |a — b|, and the other statistics between
sentence pairs used by (Socher et al., 2011). For
two compared sentenced the used statistics are as
follows:

e | if sentences contain exactly the same num-
bers or no numbers and O otherwise,
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1 if both sentences contain the same numbers,
1 if the set of numbers in one sentence is a
strict subset of the numbers in the second sen-
tence,

o the percentage of words in one sentence which

are in the second sentence and vice-versa,

e the mean of the ratios the number of words in
one sentence by the numbers of words in the
other sentence.

Finally, we concatenated all aforementioned fea-
tures together as a final features vector. Again
Gradient Boosting Regressor was trained on the
obtained features.

2.2.4 Run 3: Ensemble

Using all English pair of sentences from previous
years of this task with the available gold scores
we computed TakeLab score and trained Gradient
Boosting algorithm on PoS weighted Word2Vec
features (Run 1) and skip thoughts vectors (Run 2).
We used GridSearchCV function with 3 fold cross
validation from scikit-learn library to determine
the best parameters of Gradient Boosting algorithm
according to Pearson measure, separately for each
run. Next, we obtained three values as features
of Multi-layer Perceptron to determined the final
predicted gold scores for each pair of sentences.

3 Results

The purpose of the STS task is to assess the se-
mantic similarity of two sentences. Sentences are
scored using the continuous interval [0, 5], where
0 denotes a complete dissimilarity and 5 implies
a complete semantic equivalence between the sen-
tences. The final result is the Pearson score be-
tween the fixed gold scores and the predicted values
from the user system (Agirre et al., 2016).

Table 1: The official results on the test dataset for
Subtask 5 (english-english).

Method Pearson score
Run 3: Ensemble 0.7850
Run 2: Skip Thoughts Vectors 0.7342
STS Baseline 0.7278
Run 1: PoS-Word2Vec 0.6796

As mentioned above, our intention was to cre-
ate a system to measure the level of paraphrasing,
which may be applied to Polish pair of sentences
in a relatively easy way in the future. It is worth



noticing that the Run 1 and the Run 2 strongly de-
pend on particular language tools, e.g. Word2Vec
or a corpus using to train Skip Thoughts Vectors.
Furthermore, we did not have appropriate datasets
to train these tools for other languages, so we de-
cided to only take part in the Subtask 5 for English
pair of sentences. In Table 1 we present the official
results only for this subtask.

As was expected the best score was obtained
for the ensemble approach. Due to the fact that
used pair of sentences had a different format, the
final regressor chose which method is better for a
particular type of sentence (see Table 2).

Analysis of PoS-Word2Vec method clearly
shows that overestimation occurs when subject
in compared sentences differs. However cases of
underestimation display lack of representation of
idioms and use of informal speech. Overall the
method seems to be too focused on the meaning of
particular words. On the other hand, TakeLab ex-
hibits poor performance in case of nearly-duplicate
pairs of sentences. This doesn’t come as much of
surprise due to the way all TakeLLab measures es-
timate similarity between sentences. This in turn
translates to overestimation in cases when two sen-
tences have high word coverage, but effectively
differ in semantic meaning (see first example in
Table 2). Skip thoughts vectors approach has the
biggest problem with significant differences be-
tween the length of compared sentences, then there
are also over and underestimation error. Also, this
method does not handle near-duplicated sentences
that sentences differ in only one or two words, and
the different words are not synonyms.

4 Conclusion

In this paper, we have presented the OPI-JSA sys-
tem submitted by our team for SemEval 2017, Task
1, Subtask 5. The proposed system uses a lot of
different tools to encode a sentence to a features
vector. We used machine learning algorithms to
predict the gold score for given pairs of sentences
which measure their similarity. Additionally, we
showed that an ensemble method improved the per-
formance of our system. The best results we have
obtained is equal to 0.785 according to a Pearson’s
correlation while placing OPI - JSA as 36 of all
reported solutions (77) and 16 of 32 teams in the
Subtask 5.

142

Table 2: Examples of maximum over and underes-
timation of STS evaluation for proposed methods
and sentence pairs. Error corresponds to difference

between assessed STS and gold scores.

TakeLab Overestimation Error
‘What kind of socket is What kind of bug is 4,54
this? this?
The act of annoying The act of liber- 4,36
someone or something ating someone or

something.
What is the difference What is the dif- 4,26
between shawarma and ference between
gyros? portamento and

glissando?
TakeLab Underestimation Error
The lady peeled the A woman is peeling  -4,05
potatoe. a potato.
Utter fucking nonsense. That doesn’t make -3,96

any sense.
Eurozone backs Greek Eurozone agrees -3,87
bailout Greece bail-out
PoS-Word2Vec Overestimation Error
The activity of examin- The activity of 3,88
ing or assessing some- protecting someone
thing or something.
What is the significance =~ What is the sig- 3,72
of the cat? nificance of the

artwork?
Live Blog: Ukraine In Live Blog: Iraq In 3,71
Crisis Turmoil
PoS-Word2Vec Underestimation Error
Murray ends 77-year Murray wins Wim-  -3,94
wait for British win bledon title ends

Britains 77year

agony
The process must hap- The process must -3,87
pen in the blink of an be held in a heart-
eye. beat.
What the what?! ?: Good grief! Char- -3,45
Voice of Charlie Brown lie Brown actor
arrested, charged. ? charged
Skip Thoughts Vectors  Overestimation Error
Vietnamese citizens need  Nepalese citizens 2,52
a visa to visit the USA. require a visa to

visit the UK.
The PCA (format used AAC (the format 2,18
by the company and its used by Apple
Apple iPods taken from and its iPods),
them), meanwhile, is meanwhile, is less
less course. current.
The act of purchasing The act of explain- 2,08
back something previ- ing
ously sold.
Skip Thoughts Vectors = Underestimation Error
This frame covers words ~ The territory occu-  -2,57
that name locations as pied by a nation
defined politically, or
administratively.
Someone or something Someone (or some-  -1,88
that is the agent of fulfill-  thing) on which
ing desired expectations ~ expectations are

centered.
The quality of being The quality of -1,76

important, worthy of
attention

being important and
worthy of note.
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Abstract

This is the Lump team participation at Se-
mEval 2017 Task 1 on Semantic Textual
Similarity. Our supervised model relies on
features which are multilingual or interlin-
gual in nature. We include lexical sim-
ilarities, cross-language explicit semantic
analysis, internal representations of mul-
tilingual neural networks and interlingual
word embeddings. Our representations al-
low to use large datasets in language pairs
with many instances to better classify in-
stances in smaller language pairs avoid-
ing the necessity of translating into a sin-
gle language. Hence we can deal with all
the languages in the task: Arabic, English,
Spanish, and Turkish.

1 Introduction

The Semantic Textual Similarity (STS) task poses
the following challenge. Let s and ¢ be two text
snippets. Determine the degree of equivalence
a(s,t) | a € [0,5]. Whereas 0 represents com-
plete independence, 5 reflects semantic equiva-
lence. The current edition (Cer et al., 2017) in-
cludes the monolingual ar-ar, en—en, and es—
es, as well as the cross-language ar—en, es—
en, and tr—enlanguage pairs. We use the two-
letter ISO 639-1 codes: ar=Arabic, en=English,
es=Spanish, and t r=Turkish.

Multilinguality is the premise of the Lump ap-
proach: we use representations which lie towards
language-independence as we aim to be able to
approach similar tasks on other languages, pay-
ing the least possible effort. Our regression model
relies on different kinds of features, from simple
length-based and lexical similarities to more so-
phisticated embeddings and deep neural net inter-
nal representations.

Alberto Barron-Cedeio
Qatar Computing Research Institute
HBKU, Qatar
albarron@hbku.edu.qga
albarron@gmail.com

2 Features Description

The main algorithm used in this work is the sup-
port vector regressor from LibSVM (Chang and
Lin, 2011). We use an RBF kernel and greed-
ily select the best parameters by 5-fold cross-
validation. In addition, we experiment with a dif-
ferent machine learning component built with gra-
dient boosting algorithms as implemented by the
XGBoost package.!

We describe the features in growing level of
complexity: from language flags up to embed-
dings derived from neural machine translation.

2.1 Language-Identification Flags (6 feats.)

The novelty of the cross-language tasks causes a
noticeable language imbalance in the amount of
data (cf. Table 1). To deal with this issue, one of
our systems learns on the instances in all the lan-
guage pairs jointly. In order to reduce the clutter of
the different data distributions, we devised six bi-
nary features that mark the languages of each pair.
langl, lang2 and lang3 are set to 1 if s is written
in either ar, en, or es, respectively. The other
three features, lang4, lang5, and lang6, provide
the same information for ¢. For instance, the value
for the six features for a pair en—ar would be 0
1010 0.

2.2 Lengths (3 feats.)

Intuitively, if s and ¢ have a similar length, being
semantically similar is more plausible. Hence, we
consider two integer features tok_s and tok_t: the
number of tokens in s and ¢t. We also use a length
model (Pouliquen et al., 2003) len, defined as

o(s,t)=e ) (1)

'http ://xgboost .readthedocs.io
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where 1 and o are the mean and standard devia-
tion of the character lengths ratios between trans-
lations of documents from L into L’; |- | represents
the length of - in characters. If the ratio of lengths
of s and t is far from the mean for related snippets,
o(s, t) is rather low. This has shown useful in sim-
ilar cross-language tasks (Barrén-Cedefio et al.,
2010; Potthast et al., 2011). The parameters for the
different language pairs are fiep—qr = 1.2310.60,
Hen—es = 1.13+£0.41, pep—ypr = 1.04 £ 0.56, and
tgz—gz = 1.00 £ 0.32 for monolingual pairs.

2.3 Lexical Similarities (5 feats.)

We compute cosine similarities between character
n-gram representations of s and ¢, with n = [2, 5]
(2grm,. . .,5grm). The pre-processing in this case
is casefolding and diacritics removal. The fifth
feature cog is the cosine similarity computed over
“pseudo-cognate” representations. From an NLP
point of view, cognates are “words that are similar
across languages” (Manning and Schiitze, 1999).
We relax this concept and consider as pseudo-
cognates any words in two languages that share
prefixes. To do so, we discard tokens shorter
than four characters, unless they contain non-
alphabetical characters, and cut off the resulting
tokens to four characters (Simard et al., 1992).

This kind of representations is used on Euro-
pean languages with similar alphabets (McNamee
and Mayfield, 2004; Simard et al., 1992). We ap-
ply Buckwalter transliteration to texts in ar and
remove vowels from the snippets written in latin
alphabets. For the pseudo-cognates computations,
we use three characters instead of four.

2.4 Explicit Semantic Analysis (1 feat.)

We compute the similarity between s and
t by means of explicit semantic analysis
(ESA) (Gabrilovich and Markovitch, 2007).
ESA is a distributional-semantics model in which
texts are represented by means of their similarity
against a large reference collection. CL-ESA —its
cross-language extension (Potthast et al., 2008)—
relies on a comparable collection. We compute
a standard cosine similarity of the resulting
vectorial representations of s and ¢. Our reference
collection consists of 12k comparable Wikipedia
articles from the ar, en, and es 2015 editions.
We did not compile a reference collection for t r.
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2.5 Context Vectors in a Neural Machine
Translation Engine (2 feats.)

Hidden units in neural networks learn to interpret
the input and generate a new representation of it.
We take advantage of this characteristic and train
a multilingual neural machine translation (NMT)
system to obtain a representation in a common
space for sentences in all the languages. We build
the NMT system in the same philosophy of John-
son et al. (2016) using and adapting the Nematus
engine (Sennrich et al., 2016). The multilingual
system is able to translate between any combina-
tion of languages ar, en, and es. It was trained
on 60 k parallel sentences (20 k per language pair)
using 512-dimensional word embeddings, 1024
hidden units, a minibatch of 200 samples, and ap-
plying Adadelta optimisation. The parallel corpus
includes data from United Nations (Rafalovitch
and Dale, 2009), Common Crawl?, News Com-
mentary® and IWSLT.*

We are not interested in the translations but
in the context vectors output of the hidden lay-
ers of the encoder, as these are supposed to have
learnt an interlingua representation of the input.
We compute the cosine similarity between 2048-
dimensional context vectors from the internal rep-
resentation when the encoder is fed with s and .
Two independent systems, one trained with words
and another one trained with lemmas> provide our
two features INMT and wNMT.

2.6 Embeddings for Babel Synsets (2 feats.)

BabelNet is a multilingual semantic network con-
necting concepts via Babel synsets (Navigli and
Ponzetto, 2012). Each concept, or word, is identi-
fied by its ID irrespective of its language, making
these IDs interlingua. For this feature, we gather
corpora in the three languages, convert them into
sequences of BabelNet IDs, and estimate 300-
dimensional word embeddings using the CBOW
algorithm, as implemented in the Word2Vec

http://commoncrawl .org/

*http://www.casmacat .eu/corpus/
news—commentary.html

*nttps://sites.google.com/site/
iwsltevaluation2016/mt-track/

>We built a version of the lemma translator with an extra
language: Babel synsets (cf. Section 2.6), representing sen-
tences with BabelNet IDs instead of words. The purpose was
to extract also this feature for the t r surprise language, since
it could be used for every language once the input sentences
are converted into BabelNet IDs. However, the training was
not advanced enough before the deadline and we could not
include the results.



2017 Track | L-L’ Instances  Pctge.
1 ar-ar 1,081 5.11

2 ar—en 2,162  10.21

3 es-es 1,555 7.34

4 es—en 1,595 7.53

5 en—en 14,778  69.80

6 tr—en 0* 0.00
total 21,171 100

Table 1: Instances provided in the history of STS. (*No
training data exists for this pair.)

package (Mikolov et al., 2013), with a 5-token
window. We use the same corpora described be-
fore for training the NMT system with the addition
of parts of Wikipedia and Gigaword to estimate the
embeddings. For these experiments we annotated
1.7 G tokens for ar, 1.1 G for en, and 0.9 G for
es. As we are not interested in all the words of a
sentence to represent its semantics, we restrict the
extraction of Babel synsets to adjectives, adverbs,
nouns, and verbs. Negations are considered tag-
ging them with a special label. The global embed-
dings are then estimated from 1.9 G synsets (0.9 G
ar,0.5G en,and 0.4 G es).

Our two features consist of the cosine similar-
ity between the embeddings of the two snippets.
The full embedding of a snippet is obtained as
the sum of the embeddings if its tokens. The dif-
ference between the two features lies in the cor-
pus from which we estimate the embeddings. For
BNall we used the full collection of corpora in
the three languages. For BN sub we only used the
subcollection of data coming from the languages
involved in the pair. Significant differences in the
performance of these two features will allow us to
discern weather the interlinguality of these embed-
dings is a fair assumption or not (even if synsets
are interlingua, its embeddings do not need to be).

2.7 Additional Features

We produced variations of the described fea-
tures. We used other similarity measures than co-
sine: modified versions of the weighted Jaccard
similarity, and the Kullback—Leibler and Jensen—
Shannon divergences). We replicated the features
described in Sections 2.3 to 2.6 with their mono-
lingual counterpart. We obtained the counterpart
translating ar and es snippets into en for Tracks
1-4 and 6, and en snippets into es for Track
5 with the multilingual NMT system (cf. Sec-
tion 2.5). We used Google Translate for t r.
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3 Experiments

For training, we used all the annotated datasets
released both in the current and in previous edi-
tions.® Table 1 shows the size of the different lan-
guage collections. Note the important imbalance:
there are more than ten times more instances avail-
able in en only than in the rest of languages. We
used the test set from the 2016 edition (only in En-
glish) (Agirre et al., 2016) as our internal test set.

Using the features in Sections 2.1 to 2.6, we
train two regressors by:

Sysl learning one SVM per each language pair
Sys2 learning one single SVM for all the lan-
guage pairs together.

We experiment with a third system using all the
extensions of Section 2.7 on XGBoost. The pur-
pose of this system is to analyse and compare dif-
ferent assumptions made for Sys1 and Sys2:

Sys3 learning one single XGB for all the lan-
guage pairs with an extended set of features.

Table 2 shows the results of the three set-
tings; including the average Pearson correlation
for mono- and cross-language tracks. Compar-
ing Sysl and Sys2, we see that in the case of en—
en the best performance is obtained when training
on en only. Adding instances in other languages
slightly confuses our regressor, but differences are
small; the number of examples added is only a
30%. Nevertheless, considering together differ-
ent language pairs does help when dealing with
less-represented pairs. This is the case of ar—ar,
es—es, and es—en where the inclusion of more
than ten times more instances in other languages
boosts the performance. We did not observe this
behaviour in the rest of language pairs. The worst
case is that of the surprise pair t r—en. The reason
could be that we could not compute all the features
for these instances and instead, we used equiva-
lents for en. Regarding the performance of our
models on mono- and cross-language pairs, con-
sidering one single classifier versus one per lan-
guage pair makes no difference when dealing with
monolingual instances. This reflects the nature of
the data: 82% of the training set is monolingual.
The story is different when dealing with cross-
language instances. Further experiments are nec-
essary using one classifier with cross-language in-
stances only.

®In order to combine all the datasets we had to do some

cleaning and adaptation. For instance, the similarity values in
some of the subsets ranged [0, 4] rather than [0, 5].



Track | L-L’ Sysl Sys2 Sys3

Primary | all 0.4725 0.4438 0.4704
1 ar—ar | 0.6052 0.6287 0.5508

2 ar—en | 0.1829 0.1805 0.1357

3 es—es | 0.7574 0.7380 0.7676

4a es—en | 0.4327 0.4447 0.4825

4b es—en | 0.0116 0.0151 0.1112

5 en—en | 0.7376 0.7347  0.7269

6 tr—en | 0.5800 0.3652 0.5179
aAVEmono 0.7001  0.7005 0.6818
AVEcross 0.3359 0.2899  0.3435

Table 2: Official Pearson correlation performance for our
three submissions. Average correlations for mono- and
cross-language tracks at the bottom.

Regarding Sys3, we observe a lost in perfor-
mance with respect to Sysl and Sys2, except for
the tracks involving es. The system introduces
three variations with respect to Sys2: the learning
model, the addition of several similarity measures
for each representation, and the addition of new
representations obtained after translating the input
into en (es). A deeper analysis shows that the
performance drop is due to the learning algorithm.
XGBoost is performing better than SVM in our
cross-validation. However, the loss function we
use is a mean squared error and the evaluation is
done via Pearson correlation. We attribute the dis-
crepancy to this fact. Still, except for en—en, the
inclusion of the two families of features improves
the results of the basic features set.

Gradient boosting methods allow to estimate the
importance of each feature in a very natural way:
the more a feature is used to take the decisions in
the construction of the boosted trees, the more im-
portant it is (Hastie, 2013). The complete anal-
ysis is out of the scope of this paper, but some
comments and remarks can be made in the light
of their relative importance. Figure 1 shows the
relative importance of the features given by three
XGBoost regressors: one trained only with en
monolingual data, one for en—es cross-language
data, and one for all the languages trained together.
The concrete distribution of features depends on
the specific language pair, but the set {len, 2grm,
(CLYESA, INMT, wNMT, BNsub, BNall}
stands out among the full set. Notice that language
identifiers are not relevant at all for the joint model
and the regressor practically neglects them.

In general, the internal representation of the
neural network is more important for cross-
language pairs and Babel embeddings are more
relevant for monolingual pairs. In the latter, we
observe almost no difference between the relative

147

importance of BN sub and BN all, confirming the
assumption of the interlinguality of the embed-
dings. (CL-)ESA is always among the most in-
formative features. Finally, the high contribution
of two simple scores is worth noting: len and
2grm. This comes at no surprise for len (Barrén-
Cedefio et al., 2014). Regarding the n-grams sim-
ilarity, in general {3,4}-grams perform better in
similar tasks (e.g., comparable corpora parallelisa-
tion (Barrén-Cedeio et al., 2015)), but no impor-
tant difference exist with respect to using 2-grams.

4 Conclusions and Future Work

Our approach to the SemEval 2017 task on se-
mantic textual similarity focused on designing text
representations which could be equivalent across
languages. For example, instead of using stan-
dard monolingual or bilingual word embeddings,
we build embeddings for the interlingua Babel
synsets or let an autoencoder learn representations
in the multilingual space. In internal experiments,
monolingual word embeddings performed better
than BabelNet embeddings for the monolingual
tracks, but the advantage of the latter is that the
same embeddings can be used for the seven tracks.
This is useful for less-resourced languages and for
easy porting of the system to new languages. That
was true for the t r—en track but, at the moment,
the huge difference between the performance of
our systems across tracks does not allow us to go
further with this conclusion.

In the future we want to take advantage of the
amount of information that BabelNet has and we
aim at including synsets for multiword expressions
and exploiting translations to be able to extract the
same sense in all the languages. We are also study-
ing the behaviour of the internal representation of
NMT systems in order to determine the appropri-
ate configuration of the translation system to be
used for this purpose. To the best of our knowl-
edge, the internal representation and the impor-
tance of its dimensionality has not been studied as
an interlingual space.
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Abstract

This paper reports the details of our sub-
missions in the task 1 of SemEval 2017.
This task aims at assessing the semantic
textual similarity of two sentences or texts.
We submit three unsupervised systems
based on word embeddings. The differ-
ences between these runs are the various
preprocessing on evaluation data. The best
performance of these systems on the eval-
uation of Pearson correlation is 0.6887.
Unsurprisingly, results of our runs demon-
strate that data preprocessing, such as to-
kenization, lemmatization, extraction of
content words and removing stop words, is
helpful and plays a significant role in im-
proving the performance of models.

1 Introduction

Semantic Textual Similarity (STS) has been held
in SemEval since 2012 (Agirre et al., 2012; Agirre
et al.,, 2013; Agirre et al.,, 2014; Agirre et al.,
2015; Agirre et al., 2016), which is a basic task in
natural language processing (NLP) field. It aims at
computing the semantic similarity of two short
texts or sentences, and the result will be evaluated
on a gold standard set, which is made by several
official annotators (Cer et al., 2017). In recent
years, as an unsupervised method, word embed-
ding (Mikolov et al., 2013a) becomes more and
more popular in SemEval (Jimenez, 2016; Wu et
al., 2016).

The paper describes the submission of our sys-
tems to STS 2017, which utilize word embedding
method. Different from some teams who have
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zhangyutengl029@163.com,
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Figure 1: Framework of system.

used word embedding described above, what we
pay attention to is the point of preprocessing eval-
uation data. With this consideration, we process
the evaluation data with different method in order
to verify whether it works or not.

The framework of our systems is showed in
Figure 1. Its simple description is as follows:

Tokenization: This is to tokenize the two sen-
tences of the system’s input. Though the English
sentence is tokenized naturally, the punctuations
are not. For instance, the sentence “A person is on
a baseball team.” will be tokenized to “A person is
on a baseball team .”.

Extraction of content words: In this process,
content words of the tokenized sentence will be
extracted. For example, the tokenized sentence
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“A person is on a baseball team .” turns into “per-
son is baseball team”. In this paper, content words
include nouns, verbs, adverbs or adjectives.
Lemmatization: It is known that words in
English sentences have a variety of forms. This
operation will lemmatize these words to their
basic forms, for example, word “made” and “mak-
ing” will be changed to “make”. In addition, this
process also convert the uppercase to lowercase,
for instance, “Make” will be changed to “make”.
Word embeddings: This process utilizes the
word2vec toolkit! to train on the Wikipedia cor-
pus, then the word embeddings can be obtained.
Sentence similarity: The similarity of two sen-
tences is computed as the cosine of their sentence
embeddings, which can be gotten easily (see 2.3).
Normalization: Due to the different range of
the results of runs, similarity scores are normal-
ized to meet the official standard.

2 System Overview

In STS 2017, we submit three system runs, all of
which are unsupervised and utilize word embed-
ding method after preprocessing.

2.1 Data Set

Test Set: The test set of the Track 5 (English
monolingual pairs) consists of 250 sentence pairs.
Each of these sentence pairs is in a line, split by
tab.

Gold Standard Set: This set is the gold stand-
ard similarity score of 250 sentence pairs in the
test set. The range of the score is from O to 5.
More specially, 0 denotes that the two sentences
are completely dissimilar; 1 means that the two
sentences only have the same topic; 2 represents
that the two sentences only have some details in
common; 3 shows that the two sentences are ap-
proximately equivalent but they have some differ-
ences in the important details; 4 implies that the
two sentences are roughly equivalent and some
differences they have are not important; 5 indi-
cates that the two sentences are completely equiv-
alent.

2.2 Wikipedia Corpus

We use the unlabeled corpus, i.e., the English
Wikipedia corpus, which have been processed by
Rami Al-Rfou’2. The processed Wikipedia dumps

! https://code.google.com/p/word2vec/
2 https://sites.google.com/site/rmyeid/projects/polyglot
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have been tokenized in text format for all the lan-
guages which are considered in the evaluation.
What we use in the system run is the English Wik-
ipedia dump, after unzipped, a text file can be got-
ten and its size is 15.8 GB.

2.3

In this competition, we use the word2vec toolkit
on the Wikipedia corpus described above to train
word embeddings. Before training word embed-
dings, we preprocess the text file in the corpus to
transform its charset from Unicode to UTF-8, be-
cause UTF-8 is the default charset for us to run
the word2vec toolkit. We set the training window
size to 5 and default dimensions to 200, and
choose the Skip-gram model. After trained on the
corpus, the word2vec can generate a word em-
beddings file, in which each word in the corpus
can be mapped to a word embedding of 200 di-
mensions. Each dimension of the word embedding
is of floating point type double.

Mikolov has explained that the word embed-
ding has semantic meaning (Mikolov et al.,
2013a). Therefore, given two words, the semantic
similarity of words can be easily obtained by the
cosine of their word embeddings. Moreover, we
can extend this to the semantic sentence similarity.
Inspired by (Mikolov et al., 2013b; Wu et al.,
2016), the sentence embedding of a sentence can
be gained by accumulating the word embedding
of all the words in it. Then by computing the co-
sine of two sentence embeddings, the semantic
sentence similarity can be gotten as follows:

Method

Is2l .
j=1 vec(w])

Is1l ] Is2]
Ti vecwp||j2

, Tilvecwp x
Slmvec(sl'sz) = |

1
vec(w]-)|' ( )
where |s;| and |s,| are the number of tokens,
which sentence s; and s; include, respectively.
Word w; represents the word, which belongs to s;.

24 Runs

All of our runs utilize the same method described
above, i.e., word emdeddings method. The only
difference among them lies that each of these runs
have different details in preprocessing the evalua-
tion data. Here we clearly show their prepro-
cessing operations in details.

Runl: We firstly use the Stanford CoreNLP
toolkit® (Manning et al., 2014) to split each token
for the sentence pairs in the evaluation data. Then

3 http://stanfordnlp.github.io/CoreNLP/



Data set | Runl Run2 Run3 | Run3’

Track 5 | 0.6155 | 0.6433 | 0.4924 | 0.5299

Table 1: Official evaluation results of our
submitted runs on Track 5.

we tokenize all words with the help of the Stan-
ford CoreNLP toolkit, then extract content words
of the sentence pairs in the evaluation data.

Run2: As the operations of Runl, we tokenize
the sentence pairs and extract content words for
the sentence pairs in the evaluation data. Beyond
that, we get the lemmas of these content words
with the Stanford CoreNLP toolkit.

Run3: The only operation we do is to tokenize
the sentence pairs of the evaluation data. Com-
pared with Runl, all words are reserved in this
run.

At last, in order to carry on the following eval-
uation, we normalize the output of these systems
from [0, 1] to [0, 5].

The three runs are submitted to official evalua-
tion, which are compared in Table 1.

In order to further consider the influence of
stop words, we perform another group of experi-
ences. Based on the runs in Table 1, we remove
stop words which is from NLTK package. The
corresponding results are shown in Table 2.

3 Evaluation

In the task, the official evaluation tool is based on
Pearson correlation. A system run in each test set
is evaluated by its Pearson correlation with the of-
ficial provided gold standard set.

The results in Table 1 above shows that the sys-
tem Run2 get the best performance of 0.6433.
Compared with Runl, Run2 achieves a 2.78%
improvement, which implies that to lemmatize
content words can be helpful. The difference of
12.31% between Runl and Run3 indicates that the
extraction of content words can make a larger im-
provement for the similarity computation of the
sentence pairs.

In order to further know the effect of lemmati-
zation with Run3, we make the system Run3’. The
only difference between them is that in the opera-
tion of preprocessing the data, Run3’ makes the
lemmatization of the sentence pairs in the data, on
the contrary, Run3 do not do it. The contrast of
Run3 and Run3’ again confirms that lemmatiza-

Data set | Runl- | Run2- | Run3- | Run3’-

Track 5 | 0.6473 | 0.6887 | 0.6341 | 0.6683

Table 2: Official evaluation results of our
submitted runs after removing stop words
on Track 5.

tion for computing the similarity of the sentence
pairs can be effective.

As is shown in Table 2, the relative perfor-
mance of each run is similar with Table 1. Run2-
get the best performance of 0.6887, which demon-
strate the effectiveness of content words extrac-
tion and lemmatization. Each run in Table 2
achieves a better performance than that in Table 1,
which demonstrates that it is necessary to remove
stop words.

4 Conclusions and Future Work

The best Pearson correlation of our runs is 0.6887.
Although our runs do not get the state-of-the-art
performance, the result of these runs is acceptable.
And it shows that word embeddings method is ef-
fective. Besides, in the competition, we can con-
clude that the appropriate preprocessing operation
(such as tokenization, lemmatization, extraction of
content words and removing stop words) for the
data is helpful and necessary. In the future, with
the help of word embeddings, we will explore
some improved method to get a better perfor-
mance.
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Abstract

Shared Task 1 at SemEval-2017 deals with
assessing the semantic similarity between
sentences, either in the same or in differ-
ent languages. In our system submission,
we employ multilingual word representa-
tions, in which similar words in different
languages are close to one another. Us-
ing such representations is advantageous,
since the increasing amount of available
parallel data allows for the application of
such methods to many of the languages in
the world. Hence, semantic similarity can
be inferred even for languages for which
no annotated data exists. Our system is
trained and evaluated on all language pairs
included in the shared task (English, Span-
ish, Arabic, and Turkish). Although de-
velopment results are promising, our sys-
tem does not yield high performance on
the shared task test sets.

1 Introduction

Semantic Textual Similarity (STS) is the task of
assessing the degree to which two sentences are
semantically similar. Within the SemEval STS
shared tasks, this is measured on a scale ranging
from O (no semantic similarity) to 5 (complete se-
mantic similarity) (Cer et al., 2017). Monolingual
STS is an important task, for instance for evalua-
tion of machine translation (MT) systems, where
estimating the semantic similarity between a sys-
tem’s translation and the gold translation can aid
both system evaluation and development. The task
is already a challenging one in a monolingual set-
ting, e.g., when estimating the similarity between
two English sentences. In this paper, we tackle the
more difficult case of cross-lingual STS, e.g., es-
timating the similarity between an English and an
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Arabic sentence.

Previous approaches to this problem have fo-
cussed on two main approaches. On the one hand,
MT approaches have been attempted (e.g. Lo et al.
(2016)), which allow for monolingual similarity
assessment, but suffer from the fact that involv-
ing a fully-fledged MT system severely increases
system complexity. Applying bilingual word rep-
resentations, on the other hand, bypasses this issue
without inducing such complexity (e.g. Aldarmaki
and Diab (2016)). However, bilingual approaches
do not allow for taking advantage of the increas-
ing amount of STS data available for more than
one language pair.

Currently, there are several methods available
for obtaining high quality multilingual word rep-
resentations. It is therefore interesting to investi-
gate whether language can be ignored entirely in
an STS system after mapping words to their re-
spective representations. We investigate the utility
of multilingual word representations in a cross-
lingual STS setting. We approach this by com-
bining multilingual word representations with a
deep neural network, in which all parameters are
shared, regardless of language combinations.

The contributions of this paper can be summed
as follows: i) we show that multilingual input rep-
resentations in some cases can be used to train an
STS system without access to training data for a
given language; ii) we show that access to data
from other languages in some cases improves sys-
tem performance for a given language.

2 Multilingual Word Representations

2.1 Multilingual Skip-gram

The skip-gram model has become one of the most
popular manners of learning word representations
in NLP (Mikolov et al., 2013). This is in part
owed to its speed and simplicity, as well as the per-
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formance gains observed when incorporating the
resulting word embeddings into almost any NLP
system. The model takes a word w as its input,
and predicts the surrounding context c. Formally,
the probability distribution of ¢ given w is defined
as

exp(¢Tw)
e (1)
Tecv exp(d )
where V is the vocabulary, and 6 the parameters of
word emeddings (w) and context embeddings ().
The parameters of this model can then be learned
by maximising the log-likelihood over (w,c) pairs
in the dataset D,

J(6)

plclw;0) =

(2)

Z log p(c|w;0).
(w,c)eD

Guo et al. (2016) provide a multilingual exten-
sion for the skip-gram model, by requiring the
model to not only learn to predict English con-
texts, but also multilingual ones. This can be seen
as a simple adaptation of Firth (1957, p.11), i.e.,
you shall judge a word by the multilingual com-
pany it keeps. Hence, the vectors for, e.g., dog
and perro ought to be close to each other in such
a model. This assumes access to multilingual par-
allel data, as word alignments are used in order
to determine which words comprise the multilin-
gual context of a word. Whereas Guo et al. (2016)
only evaluate their approach on the relatively simi-
lar languages English, French and Spanish, we ex-
plore a more typological diverse case, as we ap-
ply this method to English, Spanish and Arabic.
We use the same parameter settings as Guo et al.
(2016).

2.2 Learning embeddings

We train 100-dimensional multilingual embed-
dings on the Europarl (Koehn, 2005) and UN
corpora (Ziemski et al., 2016). Word align-
ment, which is required for the training of mul-
tilingual embeddings, is performed using the Ef-
maral word-alignment tool (Ostling and Tiede-
mann, 2016). This allows us to extract a large
amount of multilingual (w,c) pairs. We then use
these pairs in order to learn multilingual embed-
dings, by applying the word2vecf tool (Levy and
Goldberg, 2014).

3 Method

3.1 System architecture

We use a relatively simple neural network ar-
chitecture, consisting of an input layer with pre-
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trained word embeddings and a network of fully
connected layers. Given word representations for
each word in our sentence, we take the simplis-
tic approach of averaging the vectors across each
sentence. The resulting sentence-level represen-
tations are then concatenated and passed through
a single fully connected layer, prior to the output
layer. In order to prevent any shift from occur-
ring in the embeddings, we do not update these
during training. The intuition here, is that we do
not want the representation for, e.g., dog to be up-
dated, which might push it further away from that
of perro. We expect this to be especially important
in cases where we train on a single language, and
evaluate on another.

We apply dropout (p = 0.5) between each layer
(Srivastava et al., 2014). All weights are ini-
tialised using the approach in Glorot and Bengio
(2010). We use the Adam optimisation algorithm
(Kingma and Ba, 2014), monitoring the categori-
cal cross entropy of a one-hot representation of the
(rounded) sentence similarity score, while sanity-
checking against the scores obtained as measured
with Pearson correlation. All systems are trained
using a batch size of 40 sentence pairs, over a max-
imum of 50 epochs, using early stopping. Hyper-
parameters are kept constant in all conditions.

3.2 Data

We use all available data from previous editions of
the SemEval shared tasks on (cross-lingual) STS.
An overview of the available data is shown in Ta-
ble 1.

Language pair N sentences

English / English 3750
English / Spanish 1000
English / Arabic 2162
Spanish / Spanish 1620
Arabic / Arabic 1081

Table 1: Available data for (cross-lingual) STS
from the SemEval shared task series.

4 Experiments and Results

We aim to investigate whether using a multilin-
gual input representation and shared weights al-
low us to ignore languages in STS. We first train
and evaluate single-source trained systems (i.e. on
a single language pair), and evaluate this both us-



ing the same language pair as target, and on all
other target language pairs.! Secondly, we inves-
tigate the effect of bundling training data together,
investigating which language pairings are helpful
for each other. We measure performance between
gold similarities and system output using the Pear-
son correlation measure, as this is standard in the
SemEval STS shared tasks. We first present re-
sults on the development sets, and finally the offi-
cial shared task evaluation results.

4.1 Single-source training

Results when training on a single source cor-
pus are shown in Table 2. Training on the tar-
get language pair generally yields the highest
results, except for one case. When evaluating
on Arabic/Arabic sentence pairs, training on En-
glish/Arabic texts yields comparable, or slightly
better, performance than when training on Ara-
bic/Arabic.

w en/en en/es en/ar es/es ar/ar
Test

en/en 0.69 0.07 -0.04 0.64 0.54
en/es 0.19 0.27 0.00 0.18 -0.04
en/ar -044 037 0.73 -0.10 0.62
es/es 0.61 0.07 0.12 0.65 0.50
ar/ar 059 052 0.73 059 0.71

Table 2: Single-source training results (Pearson
correlations). Columns indicate training language
pairs, and rows indicate testing language pairs.
Bold numbers indicate best results per row.

4.2 Multi-source training

We combine training corpora in order to investi-
gate how this affects evaluation performance on
the language pairs in question. In the first con-
dition, we copy the single-source setup, except
for that we also add in the data belonging to the
source-pair at hand, e.g., training on both En-
glish/Arabic and Arabic/Arabic when evaluating
on Arabic/Arabic (see Table 3).

We observe that the monolingual language pair-
ings (en/en, es/es, ar/ar) appear to be beneficial for
one another. We therefore run an ablation exper-
iment, in which we train on two out of three of
these language pairs, and evaluate on all three. Not

IThis setting can be seen as a sort of model transfer.
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w en/en en/es en/ar es/es ar/ar
Test

en/en 0.69 0.68 0.67 0.69 0.71
en/es 022 027 030 022 024
en/ar 072 072 0.73 071 0.72
es/es 0.63 060 0.63 0.65 0.66
ar/ar 0.71 0.72 0.75 0.70 0.71

Table 3: Training results with one source in ad-
dition to in-language data (Pearson correlations).
Columns indicate added training language pairs,
and rows indicate testing language pairs. Bold
numbers indicate best results per row.

including any Spanish training data yields compa-
rable performance to including it (Table 4).

Ablated
en/en es/es ar/ar none
Test

en/en 0.60 0.69 0.69 0.65
es/es 0.64 0.64 0.67 0.60
ar/ar 0.68 066 0.58 0.72

Table 4: Ablation results (Pearson correlations).
Columns indicate ablated language pairs, and rows
indicate testing language pairs. The none column
indicates no ablation, i.e., training on all three
monolingual pairs. Bold indicates results when
not training on the language pair evaluated on.

4.3 Shared Task Test Results

The results from the official SemEval-2017 eval-
uation are shown in Table 5. Although our re-
sults for Spanish/Spanish and English/English are
in line with our development results, the results
for all other language pairs are far lower than ex-
pected. This might be explained by overfitting to
the training/dev sets we use. After the official eval-
uation period ended, we also attempted to perform
a sanity check. We allowed our model to tune on
the gold data, which surprisingly did not increase
performance particularly much. We therefore sus-
pect that the poor system performance we observe,
may be partially owed to two factors: i) overfitting
on the tracks involving Arabic, as we did not ap-
ply any type of pre-processing, and our vector set
was tuned on relatively little Arabic data; ii) dis-
crepancies between the mix of training-data (and
possibly annotators) from previous editions of the



Primary ar/ar ar/fen es/es es/en es/en (wmt) en/en en/tr
Single-source  0.3148 0.2892 0.1045 0.6613 0.2389 0.0305 0.6906 0.1884
Multi-source 0.2938 0.3120 0.1288 0.6920 0.1002 0.0162 0.6877 0.1195
Ablation 0.2145 0.0033 0.1098 0.5465 0.2262 0.0199 0.5057 0.0902

Table 5: Results on SemEval-2017 Shared Task Test sets.

shared task, and test data in this year’s edition.

An interesting option to attempt to solve part of
this problem, would be to frame this as a multi-
task learning problem. This could be done by as-
signing each year’s data set a separate output layer.
Should annotator conventions differ, e.g., if a score
of 2.5 in 2015 is equivalent to a score of 3.5 in
2016, the network should be able to learn this and
compensate for such effects.

5 Discussion

In all cases, training on the target language pair is
beneficial. We also observe that using multilingual
embeddings is crucial for multilingual approaches,
as monolingual embeddings naturally only yield
on-par results in monolingual settings. This is due
to the fact that using the shared language-agnostic
input representation allows us to take advantage
of linguistic regularities across languages, which
we obtain solely from observing distributions be-
tween languages in parallel text. Using monolin-
gual word representations, however, there is no
similarity between, e.g., dog and perro to rely on
to guide learning.

For the single-source training, we in one case
observe somewhat better performance using other
training sets than the in-language one: training
on English/Arabic outperforms training on Ara-
bic/Arabic, when evaluating on Arabic/Arabic.
We expected this to be due to differing data set
sizes (English/Arabic is about twice as big). Con-
trolling for this does, indeed, bring the perfor-
mance of training on English/Arabic close to train-
ing on Arabic/Arabic. However, combining these
datasets increases performance further (Table 3).

In single-source training, we also observe that
certain source languages do not offer any gener-
alisation over certain target languages. Interest-
ingly, certain combinations of training/testing lan-
guage pairs yield very poor results. For instance,
training on English/English yields very poor re-
sults when evaluating on English/Arabic, and vice
versa. The same is observed for the combination
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Spanish/Spanish and English/Arabic. This may be
explained by domain differences in training and
evaluation data. A general trend appears to be
that either monolingual training pairs and evalua-
tion pairs, or cross-lingual pairs with some overlap
(e.g. English/Arabic, Arabic/Arabic) is beneficial.
The positive results on pairings without any lan-
guage overlap are particularly promising. Train-
ing on English/English yields results not too
far from training on the source language pairs,
for Spanish/Spanish and Arabic/Arabic. Simi-
lar results are observed when training on Span-
ish/Spanish and evaluating on English/English and
Arabic/Arabic, as well as when training on Ara-
bic/Arabic and evaluating on English/English and
Spanish/Spanish. This indicates that we can esti-
mate STS relatively reliably, even without assum-
ing any existing STS data for a given language.

6 Conclusions and Future Work

Multilingual word representations allow us to
leverage more available data for multilingual
learning of semantic textual similarity. We have
shown that relatively high STS performance can
be achieved for languages without assuming exist-
ing STS annotation, and relying solely on paral-
lel texts. An interesting direction for future work
is to investigate how multilingual character-level
representations can be included, perhaps learn-
ing morpheme-level representations and mappings
between these across languages. Leveraging ap-
proaches to learning multilingual word represen-
tations from smaller data sets would also be in-
teresting. For instance, learning such representa-
tions from only the New Testament, would allow
for STS estimation for more than 1,000 languages.
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Abstract

Semantic Textual Similarity (STS) devotes
to measuring the degree of equivalence in
the underlying semantic of the sentence
pair. We proposed a new system, ITNLP-
AiKF, which applies in the SemEval 2017
Task1 Semantic Textual Similarity track 5
English monolingual pairs. In our system,
rich features are involved, including On-
tology based, word embedding based, Cor-
pus based, Alignment based and Literal
based feature. We leveraged the features to
predict sentence pair similarity by a Sup-
port Vector Regression (SVR) model. In
the result, a Pearson Correlation of 0.8231
is achieved by our system, which is a com-
petitive result in the contest of this track.

1 Introduction

Semantic Evaluation (SemEval) contest devotes to
pushing the research of semantic analysis, which
attracts many participants and promote a lot of
groundbreaking achievements in natural language
processing (NLP) field. Semantic textual simi-
larity (STS) task works for computing word and
text semantics, which has made extensive attrac-
tion to the researchers and NLP community since
SemEval 2012 (Agirre et al., 2012).

In STS 2017, The organizers added monolin-
gual Arabic and Cross-lingual Arabic-English se-
mantic calculation in order to increase the diffi-
culty in the contest. The task definition is given
two sentences participating systems are asked to
predict a continuous similarity score on a scale
from 0 to 5 of the sentence pair, with 0 indicating
that the semantics of the sentences completely in-
dependent and 5 semantic equivalence. The eval-
uation criterion uses Pearson Correlation Coeffi-
cient, which computing the correlation between
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golden standard scores and semantic system pre-
dicted scores.

In our system, in order to predict similarity
score of two sentences, we trained a Support Vec-
tor Regression (SVR) model with abundant fea-
tures including Ontology based features, Word
Embedding based features, Corpus based features,
Alignment based features and Literal based fea-
tures. All the English training, trial and evalua-
tion data set released by previous STS tasks in Se-
mEval were used to construct our system. Our best
system achieved 0.8231 Pearson Correlation coef-
ficient in the SemEval 2017 evaluation data set,
and the winner achieved 0.8547.

2 Feature Engineering

In our system, many features are tried to promote
the performance of our system. Five kinds of fea-
tures are used: Ontology based features, Word
Embedding based features, Corpus based features,
Alignment based features and Literal based fea-
tures.The following is a detailed description of the
five kinds features.

2.1 Ontology Based Features

WordNet (Miller, 1995) is used to exploit On-
tology based features.  WordNet is a large
lexical database of English. In WordNet,
nouns, verbs, adjectives and adverbs are di-
vided into sets of cognitive synonyms called
synsets. Each synonym expresses a distinct
concept. WordNet measures two words sim-
ilarity based on Path_similarity, Res_similarity,
Lin_similarity, Wup_similarity, Lch_similarity and
so on. In our system, we directly use WordNet
APIs provided by NLTK toolkit (Bird, 2006) to
calculate the similarity of two words.
Path_similarity measure is based on the shortest
path similarity measure. The Path_similarity for-
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mula is defined as Eq 1:

Simpan(c1, c2) = 2 * deep-maz — len(cy, c2)
(1)
where c; and cy are concepts, deep_max is a
fixed value of the WordNet and len(cy,c2) is the
shortest path of concepts c; an cz in WordNet.
Lch_similarity (Leacock et al., 1998) mea-
sure two words similarity by using the depth of

concepts in the WordNet hierarchy tree. The
Lch_similarity formula is as Eq 2:
. len(cy,c
Simyen(c1, c2) = —log( (€1, c2) (2)

2 x deep_max

Res_similarity (Resniks Measure) calculates
similarity based on two concepts common in-

formation content in the taxonomy. The
Res_similarity formula is defined as Eq 3:
Simpes(c1,c2) = —log P(lso(c1, c2)) 3)

= IC(lso(c1, c2))

where [so(c1, c2) is the lowest subsumer of con-
cepts c¢; and co in the taxonomy. The value of
Lch_similarity and Res_similarity is not in [0, 1],
so we need to scale features into [0, 1].

Lin_similarity (Lin, 1998) considers the similar-
ity depending on the commonality and differences
of the information contained in the different mean-
ing concepts. The Lin_similarity formula is de-
fined as Eq 4:

2% IC(Iso(cy, ¢2))
IC(c1) + IC(c2)

4)

Simyin(c1,c2) =

Wup_similarity (Wu and Palmer, 1994) mea-
sures similarity based on the path of conception

node, shared parent node and root node. The
Wup_similarity formula is defined as Eq 5:
STMuyup (€1, c2) =
2 % depth(lso(cy, c2)) (5)

len(ey,c2) + 2 * depth(lso(cy, c2))

We can use two vectors S1 and Sy to represent
two sentences. For each word in S7 or Sy, search
for the most similar word in another sentence by
above methods. For S1, add all elements together,
which are divided by the length of S7, and then get
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the value of V. Do the same calculation for S5,
and then get the value of V5. Computing the har-
monic mean (denoted by harmonic_mean) of V)
and V5, and the result is the similarity of the two
sentences. The harmonic mean is defined as Eq 6:

2
1
Ty

harmonic_mean =

(6)

1
Vi

2.2 Word Embedding Based Features

Word Embedding maps words or phrases from de-
fined vocabulary with dense vectors of real val-
ues, which have been applied as features in doc-
ument classification (Sebastiani, 2002), question
answering (Tellex et al., 2003), and named entity
recognition (Turian et al., 2010) tasks. In our sys-
tem, we obtained word vectors using two kinds of
unsupervised models: Word2Vec (Mikolov et al.,
2013) and Global Vectors (GloVe) (Penning-
ton et al., 2014), which can produce high-quality
word vectors from millions of corpus data. With
the obtained word vectors, the following sen-
tences similarities are calculated: W2V _similarity,
IDFV _similarity, S2V _similarity, Text_similarity,
WESV _similarity.

In order to get a better word vector, we used
full Wikipedia English corpus to train Word2Vec
vectors (400 dimensions) and the Global vector of
twitter (200 dimensions) provided by GloVe.

W2V _similarity measures two sentences simi-
larity by using word vectors. The W2V _similarity
formula is defined as Eq 7:

Y wes, W2V (w)

W2V _S5im(S1,S2) = Cos_Dis(

Y wes, W2V (w)
(len(S2)

len(S1)

(7
where W2V (w) is the word embedding vector,
and len(S7), len(S2) is the length of sentence.

The cosine similarity is defined as Eq 8:

-

COS,DiS(VL VQ) = W

®)

S2V _similarity is another method that measures
two sentences similarity directly, by using the fol-



lowing formula as Eq 9:

SQVSim(Sl, SQ) =
1

len(S1)
Zwesl mazSim(w,S2)

len(S2)
Zwesz mazSim(w,S1)

)

maxSim(w,S) is to find the maximum similar-

ity value between one word in one sentence and

all words in another sentence, which is defined as
Eq 10.

mazxSim(w, S) =
Max{Cos_Dis(W2V (w), W2V (ws)), ws € S}
(10)
Text_similarity uses maxSim method and the
weight of tf-idf to calculate the pair of sentence.
Text_similarity measures (Mihalcea et al., 2006)
two sentences similarity uses the following for-
mula as Eq 11:

Text_sim(St, S2)
_ E(Zwesl (maxSim(w, Sa) * idf (w))

2 > wes, 1df (w) (11
N Y wes, (mazSim(w, Sy) * idf (w))
> wes, idf (w)

IDF_W2V similarity and Freq-W2V similarity
represent sentence vector with word embedding,
word frequency and word tf-idf. IDF_-W2V sim-
ilarity and Freq_-W2V similarity formula are as
Eq 12 and Eq 13:

IDFV(S) = Z IDF(w) + norﬂz/(af/;ﬁ)(w))

wesS (12)

WESV(S) =) WF(uw)« noﬂ%?(w»
weS

(13)

where IDF(w) and WF(w) are the word tf-idf and
frequency based on all Wikipedia english corpus.

After getting the sentence vectors, comput co-
sine distance between two vectors and the value is
a feature of two sentences.

2.3 Corpus Based Features

Latent semantic analysis (LSA) is a technique of
global matrix factorization methods, to analyse the
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relationships between a set of documents and the
words. Based on optimal vector space structure,
LSA method can leverage statistical information
efficiently, and be always used to measure word-
to-word similarity.

There are several publicly available tools to
construct LSA models, such as SemanticVec-
tors Package (Widdows and Ferraro, 2008) and
S-Space Package (Jurgens and Stevens, 2010)
can be used to generate LSA space vectors. For
this part, we directly use the word vectors pro-
vided by SEMILAR! (Stefanescu et al., 2014) to
calculate the features:  W2V_LSI_similarity,
S2V_LSI_similarity, Text_LSI_similarity,
IDF_LSI_similarity, WFSV_LSI_similarity.

2.4 Alignment Based Features

Alignment similarity based on monolingual align-
ment measures sentences similarity. Alignment
try to discover similar meaning word pairs by
exploiting the semantic and contextual similari-
ties. In our work, we directly use the monolingual
word aligner provided by (Sultan et al., 2014a,b).
Alignment similarity uses the following formula
Eq 14:

ne(S1) +ng(S2)
ne(S1) + ne(S2)

sts(S1,S52) = (14)

where n¢(S1) and n%(S2) is the amount of

word alignment in two sentences, and n.(S1) and
nc(S2) is the length of sentence.

2.5 Literal Based Features

For literal similarity, we use the edit distance and
jaccard distance to calculate sentences similarity.
Edit distance also known as Levenshtein Distance,
is the minimum step of editing operations from
one sentence to another.

Firstly, for jaccard distance, we extracted part-
of-speech tagging of each word from a sentence.
Then calculate jaccard distance by using the for-
mula defined by Eq 15:

. ‘51 ﬂSQ’

= 15
‘SlUSﬂ (15

J(S1,52)

where S and .S, are the tag of each word in a sen-
tence, which ignores the order. We use the NLTK
toolkit part-of-speech tagging.

"http://www.semanticsimilarity.org/



Ans-Ans | Qus-Qus | HDL | Postediting | Plagiarism

Ontology Based | 0.5926 0.6041 | 0.7192 0.8136 0.7349
Word2vec Based | 0.5838 0.6012 | 0.7395 0.8233 0.8053
GloVe Based 0.5360 0.5827 | 0.7172 0.7508 0.7478
Corpus Based 0.3737 0.4378 | 0.6157 0.7334 0.7356
Alignment Based | 0.4842 0.5827 | 0.7172 0.7508 0.7478
Literal Based 0.4860 0.5232 | 0.6715 0.8108 0.7339
All 0.6248 0.6315 | 0.8106 0.8307 0.8132

Table 1: The Pearson Correlation on SemEval 2016 evaluation data sets.

3 Experiments and Results

In our system, We build our data set by collecting
all off-the-shelf English data sets which released
by prior STS evaluations (except the evaluation
data set of STS 2016). After that, 80% data set
are used as train data set and 20% as valid data
set. In our system, we trained SVR model, and the
SVR parameters are set as Table 2.

parameter | kernel | C | gamma | epsilon

value rbf 0.1 auto 0.0

Table 2: parameter setting in SVR.

Ontology based, Word embedding based, Cor-
pus based, Alignment based and Literal based fea-
tures are used in SVR model respectively, in order
to explore the effect of each kind of features. We
used SemEval 2016 evaluation data set to test the
performance of different feature set, and the re-
sults of Pearson Correlation coefficients are shown
in Table 1.

The Table 1 indicates Word2 Vec performed bet-
ter in HDL, Postediting, Plagiarism data set, and
WordNet performed better in Ans-Ans, Qus-Qus
data set. The reason maybe that training Word2vec
uses all the English corpus of Wikipedia, and it can
learn better word vectors. WordNet can make full
uses of lexical information to match the synonyms
between two sentences.

We also used SemEval 2017 evaluation data to
test our system, and adding each kind of feature
one by one. The result of Pearson Correlation co-
efficients are shown in Table 3.

From Table 3, we can see Ontology based fea-
tures, Corpus based features and Literal based fea-
tures outperformed others in SemEval 2017 evalu-
ation data set.
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Feature Pearson correlation

Alignment Based 0.7527
Ontology Based 0.7816
Word2vec Based 0.7823
GloVe Based 0.7836
Corpus Based 0.8104
Literal Based 0.8231
All 0.8231

Table 3: The Pearson Correlation on SemEval
2017 evaluation data sets.

4 Conclusion and Future Works

In this paper, we describe our system in the Se-
mantic Textual Similarity task1 subtask 5 English
monolingual similarity in SenEval 2017. We used
5 kinds of features and SVR model to build the
ultimate system. We find that Ontology based fea-
ture, Word Embedding based feature and Align-
ment based feature performed better in some as-
pects of semantic similarity calculation. With the
limitation of time, we do not try other methods. In
our future work, we are going to attempt LSTM
tree method to calculate sentences similarity.
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Abstract

This paper describes a neural-network
model which performed competitively
(top 6) at the SemEval 2017 cross-lingual
Semantic Textual Similarity (STS) task.
Our system employs an attention-based
recurrent neural network model that op-
timizes the sentence similarity. In this
paper, we describe our participation in
the multilingual STS task which measures
similarity across English, Spanish, and
Arabic.

1 Introduction

Semantic textual similarity (STS) measures the
degree of equivalence between the meanings of
two text sequences (Agirre et al., 2016). The
similarity of the text pair can be represented as
discrete or continuous values ranging from irrel-
evance (1) to exact semantic equivalence (5). It
is widely applicable to many NLP tasks includ-
ing summarization (Wong et al., 2008; Nenkova
et al., 2011), generation and question answering
(Vo et al., 2015), paraphrase detection (Fernando
and Stevenson, 2008), and machine translation
(Corley and Mihalcea, 2005).

In this paper, we describe a system that is able
to learn context-sensitive features within the sen-
tences. Further, we encode the sequential informa-
tion with Recurrent Neural Network (RNN) and
perform attention mechanism (Bahdanau et al.,
2015) on RNN outputs for both sentences. Atten-
tion mechanism was performed to increase sen-
sitivity of the system to words of similarity sig-
nificance. We also optimize directly on the Pear-
son correlation score as part of our neural-based
approach. Moreover, we include a pair feature

*The author is currently serving in his Alternative Mili-
tary Service of Education.
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adapter module that could be used to include more
features to further improve performance. How-
ever, for this competition we include merely the
TakeLab features (Sari¢ et al., 2012). !

2 Related Works

Most proposed approaches in the past adopted
a hybrid of varying text unit sizes ranging from
character-based, token-based, to knowledge-based
similarity measure (Gomaa and Fahmy, 2013).
The linguistic depths of these measures often vary
between lexical, syntactic, and semantic levels.

Most solutions include an ensemble of modules
that employs features coming from different unit
sizes and depths. More recent approaches gen-
erally include the word embedding-based similar-
ity (Liebeck et al., 2016; Brychcin and Svoboda,
2016) as a component of the final ensemble. The
top performing team in 2016 (Rychalska et al.,
2016) uses an ensemble of multiple modules in-
cluding recursive autoencoders with WordNet and
monolingual aligner (Sultan et al., 2016). UMD-
TTIC-UW (He et al., 2016) proposes the MPCNN
model that requires no feature engineering and
managed to perform competitively at the 6™ place.
MPCNN is able to extract the hidden information
using the Convolutional Neural Network (CNN)
and adds an attention layer to extract the vital sim-
ilarity information.

3 Methods
3.1

Given two sentences [y = {w{, w3, ...,w},} and
I = {w?, w3, ...,wiQ}, where w;; denote the jth
token of the ith sentence, embedded using a func-
tion ¢ that maps each token to a D-dimension

trainable vector. Two sentences are encoded with

Model

'Our  system and data is  available at

github.com/iamalbert/semval2017taskl.
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Figure 1: Illustration of model architecture

an attentitve RNN to obtain sentence embeddings

ul, u?, respectively.

Sentence Encoder For each sentence, the RNN
firstly converts w’, into 2% € R*!, using an bidi-
rectional Gated Recurrent Unit (GRU) (Cho et al.,
2014) 2 by sequentially feeding wj- into the unit,
in both forward and backward directions. The su-
perscripts of w, x, a, u, n are omitted for clear no-
tation.

(1)
Then, we attend each word z; for different

salience a; and blend the memories 1., into sen-
tence embedding w:

a; o< exp(r! tanh(Wx;))
n
U = Z ;5
j=1

where W € R2H*2H gnd r ¢ R2H are trainable
parameters.

)

Surface Features Inspired by the simple system
described in (§arié et al., 2012), We also extract
surface features from the sentence pair as follow-
ing:

eNgram Overlap Similarity: These are features
drawn from external knowledge like Word-
Net (Miller, 1995) and Wikipedia. = We
use both PathLen similarity (Leacock and
Chodorow, 1998) and Lin similarity (Lin
et al., 1998) to compute similarity between
pairs of words wl-l and wJQ- in I; and I, re-
spectively. We employ the suggested pre-
processing step (Sarié et al., 2012), and add

2 We also explored Longer Short-Term Memory (LSTM),
but find it more overfitting than GRU.
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both WordNet and corpus-based information
to ngram overlap scores, which is obtained
with the harmonic mean of the degree of
overlap between the sentences.

eSemantic Sentence Similarity: We also com-
pute token-based alignment overlap and vec-
tor space sentence similarity (Sari¢ et al.,
2012). Semantic alignment similarity is com-
puted greedily between all pairs of tokens
using both the knowledge-based and corpus-
based similarity. Scores are further enhanced
with the aligned pair information. We obtain
the weighted form of latent semantic analy-
sis vectors (Turney and Pantel, 2010) for each
word w, before computing the cosine similar-
ity. As such, sentence similarity scores are
enhanced with corpus-based information for
tokens. The features are concatenated into a
vector, denoted as m.

Scoring Let S be a descrete random variable
over {0, 1,...,4, 5} describing the similarity of the
given sentence pair {11, I2}. The representation of
the given pair is the concatenation of u!, u?, and
m, which is fed into an MLP with one hidden layer

to calculate the estimated distribution of S.

P(S =0)
P(S=1)
p:
P(S =5)
ul
= softmax(V tanh(U | u? |)) (3)
m

Therefore, the score y is the expected value of



“4)

, where v = [0, 1,2,3,4,5]T
shown in Figure 1.

. The entire system is

3.2 Word Embedding

We explore initializing word embeddings ran-
domly or with pre-trained word2vec (Mikolov
et al., 2013) of dimension 50, 100, 300, respec-
tively. We found that the system works the best
with 300-dimension word2vec embeddings.

3.3 Optimization

Let p™, y" be the predicted probability density and
expected score and y" be the annotated gold score
of the n-th sample. Most of the previous learning-
based models are trained to minimize the follow-
ing objectives on a batch of N samples:

Negative Log-likelihood (NLL) of p and p
(Aker et al., 2016). The task is viewed as a
classification problem for 6 classes.

N
Lniy = Z — log pin

n=1

, where " is ¢" rounded to the nearest inte-
ger.

Mean square error (MSE) between ' and 4"
(Brychcin and Svoboda, 2016).

d -9

n=1

Lvse =

Kullback-Leibler divergence (KLD) of p™
and gold distribution p™ estimated by ¢":

Lyip = Z (Z ? log ~ )

n=1
where
g = 9", ifi=[g"]+1
pr=9q W +1=g" ifi=|g"]
0 otherwise

)

(Li and Huang, 2016; Tai et al., 2015). For
each n, there exists some k such that p; = 1
and Vh # k,p; = 0, KLD is identical to
NLL.
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However, the evaluation metric of this task is
Pearson Correlation Coefficient (PCC), which is
invariant to changes in location and scale of y" but
none of the above objectives can reflect it. Here we
use an example to illustrate that MSE and KLD
can even report an inverse tendency. In Table 1,
group A has lower MSE and KLD loss than group
B, but its PCC is also lower.

To solve this problem, we train the model to
maximize PCC directly. Hence, the loss function
is given by:

Lpcc = —
Vo m
(5)

where 7 NZ _,y" and § Nany
Since N is fixed for every batch, Lpcc is differ-

entiable with respect to y”, which means we can
apply back propagation to train the network. To
the best of our knowledge, we are the first team to
adopt this training objective.

zfX (= DE" D)

Group A B
Gold Score 3 4 5 3 4 5
P(S=0) 005 005 0.05 [0.15 005 0.1
P(S=1) 005 005 005 |03 02 0.1
P(S=2) 0.5 0.1 005 025 03 0.2
P(S=3) 05 0.35 0.0 0.1 025 03
P(S=4) 015 04 0.1 0.1 0.1 0.2
P(S=5) 0.1 0.05 0.7 0.1 0.1 0.1
E[S] 295 315 42 2.0 245 2.7
MSE KLD PCC | MSE KLD PCC
0.455 1.966 0931 [ 290 691 0.987
Table 1: Example of lower MSE and KLD not
indicating higher PCC.

4 Evaluation

4.1 Data
Dataset Pairs
Training | 22,401
Validation | 5,601

Table 2: Training and validation Data sets (STS
2012-2016 and SICK).

We gather dataset from SICK (Marelli et al.,
2014) and past STS across years 2012, 2013,
2014, 2015, and 2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016) for both cross-lingual and
monolingual subtasks. We shuffle and split them
according to the ratio 80:20 into training set and



validation set, respectively. Table 2 indicates the
size of training set and validation set. All non-
English sentence appearing in training, validation,
and test set are translated into English with Google
Cloud Translation APIL

4.2 Experiments

In the experiment, the size of output of GRU is
set to be H = 200. We use ADAM algorithm to
optimize the parameters with mini-batches of 125.
The learning rate is set to 10~ at the beginning
and reduced by half for every 5 epochs. We trained
the network for 15 epochs.

Word embeddings In Table 3, we demonstrate
that the system performs better with pretrained
word vectors (WI) than randomly initialized (RI).

D | PCC on validation set
50 0.7904

RI 300 0.8091
50 0.7974

Wi 300 0.8174

Table 3: System performance with different di-
mensions of word embeddings, using either ran-
domly initialized or pre-trained word embedding.

Loss function We display performances with
systems optimized with KLD, MSE, and PCC. It
shows that when using Lpcc as the training ob-
jective, our system not only performs the best but
also converges the fastest. As shown in Table 4
and Figure 2.

Loss function | PCC
Lxip 0.6839
Lyvse 0.7863
Lpcc 0.8174

Table 4: Influence of different loss objectives on
the system performance measured using PCC on
our validation set.

4.3 Final System Results

‘We tune the model on validation set, and select the
set of hyper-parameters that yields the best perfor-
mance to obtain the scores of test data. We report
the official provisional results in Table 5. There
is an obvious performance drop in track4b, which
happens to all teams. We hypothesize that the sen-
tences in track4b (en_es) are collected from a spe-
cial domain, due to the fact that the number of
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0.85

Pearson Correlation Coefficient

5 10 11 12 13 14 15

Epoch

KLD MSE

Figure 2: Performance of different loss functions

out-of-vocabulary words in track 4b is many times
more than that in other tracks.

Track PCC mean median max

Primary | 0.6171 || 0.66 0 28
1 0.6821 || 0.53 0 3

2 0.6459 || 0.50 0 3

3 0.7928 || 0.35 0 4

4a 0.7169 || 0.35 0 4
4b 0.0200 || 2.54 2 28

5 0.7927 || 0.36 0 4

6 0.6696 || 0.33 0 5

Table 5: Final system results and statistics of the
number of OOV words within a pair

5 Conclusion

We propose a simple neural-based system with a
novel means of optimization. We adopt a simple
neural network with surface features which leads
to a promising performance. We also revise sev-
eral popular training objectives and empirically
show that optimizing directly on Pearson’s corre-
lation coefficient achieved the best scores and per-
form competitively on STS-2017.
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Abstract

This paper describes our unsupervised
knowledge-free approach to the SemEval-
2017 Task 1 Competition. The proposed
method makes use of Paragraph Vector for
assessing the semantic similarity between
pairs of sentences. We experimented with
various dimensions of the vector and three
state-of-the-art similarity metrics. Given a
cross-lingual task, we trained models cor-
responding to its two languages and com-
bined the models by averaging the simi-
larity scores. The results of our submitted
runs are above the median scores for five
out of seven test sets by means of Pear-
son Correlation. Moreover, one of our sys-
tem runs performed best on the Spanish-
English-WMT test set ranking first out of
53 runs submitted in total by all partici-
pants.

1 Introduction

Semantic Textual Similarity (STS) aims to assess
the degree to which two snippets of text are re-
lated in meaning to each other. The SemEval an-
nual competition offers a track on STS (Cer et al.,
2017) where submitted STS systems are evaluated
in terms of the Pearson correlation between ma-
chine assigned semantic similarity scores and hu-
man judgments.

We participated in both monolingual sub-tracks
and cross-lingual sub-tracks. Given a sentence
pair in the same language, the SemEval STS task
is to assign a similarity score to it ranging from 0
to 5, with 0 implying that the semantics of the sen-
tences are completely independent and 5 denoting
semantic equivalence (Cer et al., 2017). The cross-
lingual side of STS is similar to the initial task,
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but differs in the input sentences which come from
two languages.

This year’s shared task features six sub-tasks:
Arabic-Arabic, Arabic-English, Spanish-Spanish,
Spanish-English (two test sets), English-English
and a surprise task (Turkish-English) for which no
annotated data is offered.

For example, for the English monolingual STS
track, the pair of sentences below had a score of
3 assigned by human annotators, meaning that the
two sentences are roughly equivalent, but some es-
sential information differs or is missing (Cer et al.,
2017).

Bayes’ theorem was named after Rev Thomas
Bayes and is a method used in probability theory.

As an official theorem, Bayes’ theorem is valid
in all universal interpretations of probability.

We present an unsupervised, knowledge-free
approach that utilizes Paragraph Vector (Le
and Mikolov, 2014) to represent sentences by
means of continuous distributed vectors. In
addition to experimenting with feature spaces
of different dimensionality, we also compare
three state-of-the-art similarity metrics (Cosine,
Bray-Curtis and Correlation) for calculating the
STS scores. We do not make use of any lexical
or semantic resources, nor hand-annotated labeled
corpora in addition to the distributed representa-
tions trained on non-annotated text. The approach
gives promising results on all sub-tasks, with our
submitted systems ranking first out of 53 for one
Spanish-English sub-track and above the median
scores for five out of seven test sets.

We first shortly summarize related work in STS
and describe Paragraph Vector in Section 2. Then
we present our method in Section 3 along with
the corpora we used in training the Paragraph Vec-
tor models. Section 4 contains an overview of the
evaluation and the results.

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 170-174,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics



2 Related Work

2.1 Semantic Textual Similarity

We present in this subsection the state-of-the-art in
STS-Task 1 using Paragraph Vector since it is the
most relevant to our work. King et al. (2016), for
instance make use of Paragraph Vectors as one ap-
proach in the English monolingual sub-task. Re-
sults are reported for a single vector size and the
Cosine metric which is employed in obtaining the
similarity score between sentences. Brychcin and
Svoboda (2016) follow a similar approach but ap-
ply it also to the cross-lingual task.

We raise three research questions regarding the
usage of Paragraph Vector in STS:

e To which degree does the vector size matter?

e What could be a better alternative to the tra-
ditional Cosine metric for measuring the sim-
ilarity between two vectors (obtained with
Doc2Vec!)?

e Given a cross-lingual task, does averaging the
similarity scores obtained using the Doc2Vec
models trained on both language corpora re-
sult in an improvement over using only the
scores from one model?

2.2 Paragraph Vector

In order to assess the semantic textual similarity of
two sentences, methods of representing them are
crucial. Le and Mikolov (2014) propose a contin-
uous, distributed vector representation of phrases,
sentences and documents, Paragraph Vectors. It
is a continuation of the work in Mikolov et al.
(2013a) where word vectors (embeddings) are in-
troduced in order to semantically represent words.

The strength of capturing the semantics of
words via word embeddings is visible not only
when considering words with similar meaning
like ”’strong” and “powerful” (Le and Mikolov,
2014), but also in learning relationships such as
male/female where the vector representation for
King - Man + Woman results in a vector very close
to Queen (Mikolov et al., 2013b).

In the Paragraph Vector framework, the para-
graph vectors are concatenated with the word vec-
tors to form one vector. The paragraph vector acts

!The terms Paragraph Vector and Doc2Vec are used inter-
changeably as follows.

as a memory of what is missing in the current con-
text. The word vectors are shared across all para-
graphs, while the paragraph vector is shared across
all contexts generated from the same paragraph.
The vectors are trained using stochastic gradient
descent with backpropagation (Le and Mikolov,
2014).

Since the STS task requires assigning a similar-
ity score between two sentences, we apply Para-
graph Vector at the sentence level. The models are
trained using the Gensim library (Rehtiek and So-
jka, 2010).

3 Semantic Textual Similarity via
Paragraph Vector

3.1 Corpora

For training the Doc2Vec models we used vari-
ous corpora available for the different language
pairs. Following the rationale from Lau and Bald-
win (2016), we concatenated to the corpora the
test set too as the Doc2Vec training is purely un-
supervised. The corpora we used are made avail-
able by Opus (Tiedemann, 2012) (except Com-
moncrawl> and SNLI (Bowman et al., 2015)):
Wikipedia (Wolk and Marasek, 2014), TEDS,
MultiUN (Eisele and Chen, 2010), EUBookshop
(Skadip$ et al., 2014), SETIMES®, Tatoeba’,
WMT® and News Commentary’. The follow-
ing table presents which corpora were used and
how many sentences they consist of. The corpora
marked with * were used only for the third run.

Track / Corpora AR-AR | AR-EN | ES-ES | ES-EN | EN-EN | TR-EN
Commoncrawl - - 1.84M - 2.39M -
Wikipedia 151K 151K - 1.81M - 160K
TED 152K 152K - 157K - 137K
MultiUN IM M - - - -
EUBookshop - - - - - 23K
SETIMES - - - - - 207K
Tatoeba - - - - - 156K
SNLI* - 150K - 150K 150K 150K
WMT* - 16K - 16K 16K 16K
News Commentary* - 238K - 238K 238K 238K

Table 1: Corpora used in training Doc2Vec models

The SNLI, WMT and News Commentary cor-
pora were used for run 3 in some sub-tasks where
we aimed to assess whether using more data makes

Zhttp://commoncrawl.org/
3http://www.casmacat.eu/corpus/ted2013 html
*http://nlp.ffzg.hr/resources/corpora/setimes/
Shttp://tatoeba.org/

Shttp://www.statmt.org/wmt14/
"http://www.casmacat.eu/corpus/news-commentary
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a difference. For training the English models only
the EN side of the ES-EN language pair was used.

3.2 Preprocessing

For the sub-tasks that included the Arabic lan-
guage we utilized the Stanford Arabic Segmenter
(Monroe et al., 2014) in order to reduce lexical
sparsity. For all the other sub-tasks, we performed
text normalization, tokenization and lowercasing
using the scripts available in the Moses Machine
Translation Toolkit (Koehn et al., 2007).

3.3 Methods

We assess the semantic similarity between two
sentences based on their continuous vector repre-
sentations obtained by means of various Paragraph
Vector models. A similarity metric is applied af-
terwards in order to determine the proximity be-
tween the two vectors. This measure is directly
used as the similarity score of the two sentences.

For all sub-tasks we experiment with the
PV-DBOW training algorithm, various vector
sizes (200, 300 and 400) and with vari-
ous state-of-the-art similarity metrics (Cosine,
Bray-Curtis, Correlation) defined as:

Cosine: 1 — —2&%——
[[ull2]]v]]2

~ e 2o Ui~
Bray-Curtis: S Tustor]

(u—1)-(v—0)
u—u)|f2]|(v=2)|l2

where v and v are the vector representations of
the two sentences, © and v denote the mean value
of the elements of u and and v, and x - y is the dot
product of x and y.

The Cosine metric is directly available from
the Gensim library, while the Bray-Curtis and
Correlation metrics are part of the spatial library
from scipy®. We need to invert the score produced
by the spatial library as it provides dissimilarity
scores instead of the required similarity measures.

Given a monolingual sub-task I.; — L; and mul-
tiple bilingual corpora, the L; side of the corpora
is used to train Doc2Vec models. For all cross-
lingual sub-tasks L1 — Lo we used Google Trans-
late to obtain the test set translation from L; to
Lo and vice versa. Then we trained the Doc2Vec
models for the two languages separately and com-
bined the similarity scores obtained by the two
models by averaging. Since the scores are in the

Correlation: 1 — i

8https://docs.scipy.org/doc/scipy-
0.18.1/reference/spatial.html

range (0, 1] we multiply them by 5 in order to re-
turn a continuous valued similarity score on a scale
from O to 5, as the competition requires.

We submitted three runs to the competition:

Model(size=200), Cosine similarity
EN-ES: Model _ES

AR-EN: Model_AR

TR-EN: Model TR
Model(size=400), Cosine similarity
EN-ES: Model _ES

AR-EN: Model_AR

TR-EN: Model TR
Model(size=200), Bray-Curtis similarity,
more training data

run3 | EN-ES: Model_EN

AR-EN: Model EN

TR-EN: Model EN

runl

run2

Table 2: Submitted runs settings

4 Evaluation and Results

The similarity scores are evaluated by computing
the Pearson Correlation between them and human
judgments for the same sentence pairs. This sec-
tion presents our results for all sub-tasks of the
2017 test sets and also for the STS Benchmark’
(Ceretal., 2017).

4.1 STS 2017 Test Sets

When considering all 85 submitted runs (including
the monolingual runs and the baseline), our best
runs ranked 26 out of 49 for AR-AR, 21 out of 45
for AR-EN, 22 out of 48 for ES-ES, 28 out of 53
for ES-EN-a, 1 out of 53 for ES-EN-b, 35 out of
77 for EN-EN and 16 out of 48 for TR-EN (Cer
etal., 2017).

Several experiments were conducted with size
200, 300 and 400 for the Doc2Vec vectors, train-
ing on both sides of the corpora for the cross-
lingual tasks and applying Cosine, Bray-Curtis
and Correlation similarity metrics. We detail in
Table 3 the Pearson Correlation scores obtained.

The results indicate that the Bray-Curtis met-
ric performs better than the other two in five out
of seven test sets, with a tie on the EN-EN test
set. Regarding the dimension of the Doc2 Vec vec-
tors, a conclusion cannot be simply drawn from
these results, since size 200 leads to best results
for ES-ES, ES-EN-a and EN-EN, size 300 gives
best results for AR-AR, size 400 for AR-EN and
ES-EN-b and a tie for TR-EN when using sizes
300 and 400. It is also important to note that the

*http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Task Cosine Bray-Curtis Correlation
AR-AR
200 0.5587 0.5790 0.5579
300 0.5825 0.5984 0.58
400 0.5773 0.5943 0.5767
AR-EN AR EN Mean AR EN Mean AR EN Mean
200 0.4789 0.4971 0.5221 0.755 0.503 0.5268 04779 0.4997 0.5227
300 0.4963 0.5141 0.5429 0.502 0.5085 0.5432 0.4963 0.5154 0.5437
400 0.4813 0.5266 0.5381 0.4949 0.5288 0.5469 0.4796 0.5275 0.5372
ES-ES
200 0.7455 0.7423 0.7434
300 0.7002 0.7054 0.6991
400 0.6979 0.7072 0.6982
ES-EN-a ES EN Mean ES EN Mean ES EN Mean
200 0.5738 0.6021 0.6212 0.5852 0.6208 0.6353 0.5748 0.6041 0.6227
300 0.5676 0.6162 0.6219 0.5793 0.6253 0.6299 0.566 0.6171 0.6213
400 0.566 0.6092 0.6187 0.5767 0.6162 0.6253 0.5643 0.606 0.6163
ES-EN-b ES EN Mean ES EN Mean ES EN Mean
200 0.3069 0.1933 03111 0.306 0.1686 0.2953 0.307 0.1919 0.31
300 0.3234 0.1784 0.3193 0.3187 0.1685 0.3099 0.323 0.1826 0.3222
400 0.3407 0.1873 0.3303 0.3436 0.1575 03113 0.342 0.1854 0.3284
EN-EN
200 0.7880 0.7880 0.7871
300 0.7237 0.7396 0.7249
400 0.7185 0.7264 0.7178
TR-EN TR EN Mean TR EN Mean TR EN Mean
200 0.4990 0.5554 0.5804 0.5080 0.5577 0.5846 0.5052 0.5540 0.5837
300 0.4919 0.5718 0.5792 0.4869 0.6001 0.5879 0.4909 0.5705 0.5770
400 0.4878 0.5832 0.5775 0.5024 0.6000 0.5930 0.4857 0.5836 0.5772

Table 3: Pearson Correlation results for various parameters

Pearson correlation scores range from 0.1575 to
0.3436 for the ES-EN-b test set and from 0.7178
to 0.788 for the EN-EN test set which suggests that
experimenting with various sizes of Doc2Vec vec-
tors is worth investigating, contrary to the com-
mon practice of experimenting with just a single
vector size.

Averaging the similarity scores for the source
and the target language also seems to be a promis-
ing approach. This combination led to best Pear-
son correlation scores for two of the four cross-
lingual test sets (AR-EN and ES-EN-a).

We report in Table 4 the Pearson correlation re-
sults of the runs we submitted to the competition.
For the first two runs we used Cosine for comput-
ing the similarity between the sentence pairs and
for the third run we used Bray-Curtis.

‘ average AR-AR AR-EN ES-ES ES-EN-a ES-EN-b EN-EN TR-EN
runl | 0.5644 0.5588 0.4789 0.7456  0.5739 0.3069  0.7880  0.4990
run2 | 0.5528 0.5774 0.4813 0.6979  0.5660 0.3407  0.7186  0.4878
run3 | 0.5676 0.5790 0.5384 0.7423  0.5866 0.1802  0.7256  0.6211

Table 4: Results for the submitted runs

The non-English language side of the corpora
was used for training the Doc2Vec models for the
cross-lingual tasks in the first two runs, while for
the third run we trained the Doc2Vec models on
the English side of the corpora. In the third run we
also included additional data (except for AR-AR
and ES-ES) in order to assess how the size of the
training corpus for the Doc2Vec models influences
the results. For the AR-EN, ES-EN-b and TR-EN
sub-tasks the scores improved when using more

training data, but the differences were small.

4.2 STS Benchmark

The Semeval STS organizers made available the
STS Benchmark for the EN-EN task with the pur-
pose of creating state-of-the-art approaches and
collecting their results on standard data sets. The
benchmark data consist of a selection of previous
data sets used in the competition between 2012
and 2017.

Since the methods we presented are unsuper-
vised and knowledge-free, we did not make use
of the annotated training data when computing the
similarity scores for the development and test sets.
We tested two approaches for obtaining similar-
ity scores on the EN-EN sub-task: the first in-
fers the vectors for the development and test set
sentences from the already trained Doc2Vec mod-
els (Post-training inference) and the other one
retrains from scratch new models by adding the
development and test sets to the initial Doc2Vec
training data (New-Model).

As it can be noted in Table 4, the best Pearson
correlation result for EN-EN was obtained using
the settings from our submitted run 1. These set-
tings also gave the best results for the STS Bench-
mark test data (Table 5).

Approach | Development set Test set
Post-training inference 0.6670 0.5915
New-Model 0.6158 0.5922

Table 5: Results for the STS Benchmark

173



5 Conclusions

We presented in this paper our unsupervised
knowledge-free approach to the STS task. A wide
range of experiments were carried out in order to
assess the impact of the similarity metric if Para-
graph Vector is used to represent sentences. Our
results indicate that Bray-Curtis might be a good
choice, because it outperformed the commonly
used Cosine metric on five out of seven test sets.
Moreover, training the Doc2Vec models on both
sides of the language corpora and averaging their
similarity scores seems to be a promising approach
for the cross-lingual STS task.

The proposed method achieved encouraging re-
sults as we ranked first on the EN-ES-b sub-task
and obtained Pearson correlation scores above the
median score for five out of seven test sets.
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Abstract

This paper reports the STS-UHH par-
ticipation in the SemEval 2017 shared
Task 1 of Semantic Textual Similarity
(STS). Overall, we submitted 3 runs cov-
ering monolingual and cross-lingual STS
tracks. Our participation involves two ap-
proaches: unsupervised approach, which
estimates a word alignment-based sim-
ilarity score, and supervised approach,
which combines dependency graph sim-
ilarity and coverage features with lexi-
cal similarity measures using regression
methods. We also present a way on ensem-
bling both models. Out of 84 submitted
runs, our team best multi-lingual run has
been ranked 12¢" in overall performance
with correlation of 0.61, 7" among 31 par-
ticipating teams.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree of semantic equivalence between a pair of
sentences. Accurate estimation of semantic simi-
larity would benefit many Natural Language Pro-
cessing (NLP) applications such as textual entail-
ment, information retrieval, paraphrase identifica-
tion and plagiarism detection (Agirre et al., 2016).
In an attempt to support the research efforts in
STS, the SemEval STS shared Task (Agirre et al.,
2017) offers an opportunity for developing cre-
ative new sentence-level semantic similarity ap-
proaches and to evaluate them on benchmark
datasets. Given a pair of sentences, the task is to
provide a similarity score on a scale of 0..5 ac-
cording to the extent to which the two sentences
are considered semantically similar, with 0 in-
dicating that the semantics of the sentences are

*These authors contributed equally to this work
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completely unrelated and 5 signifying semantic
equivalence. Final performance is measured by
computing the Pearson’s correlation (p) between
machine-assigned semantic similarity scores and
gold standard scores provided by human annota-
tors. Since last year, the STS task have been ex-
tended to involve additional subtasks for cross-
lingual STS. Similar to the monolingual STS task,
the cross-lingual task requires the semantic sim-
ilarity measurement for two snippets of text that
are written in different languages. In contrast
to last year’s edition (Agirre et al., 2016), the
task is organized into 6 sub-tracks and a primary
track, which is the average of all of the secondary
sub-tracks results. Secondary sub-tracks involve
scoring similarity for monolingual sentence pairs
in one language (Arabic, English, Spanish), and
cross-lingual sentence pairs from the combina-
tion of two different languages (Arabic-English,
Spanish-English, Turkish-English).

Our paper proposes both supervised and unsuper-
vised systems to automatically scoring semantic
similarity between monolingual and cross-lingual
short sentences. The two systems are then com-
bined with an average ensemble to strengthen the
similarity scoring performance. Out of 84 submis-
sions, our system is placed 12" with an overall
primary score of 0.61.

2 Related Work

Since 2012 (Agirre et al., 2012), the STS shared
task has been one of the official shared tasks in
SemkEval and has attracted many researchers from
the computational linguistics community (Agirre
et al.,, 2017). Most of the state-of-the-art ap-
proaches often focus on training regression mod-
els on traditional lexical surface overlap features.
Recently, deep learning models have achieved
very promising results in semantic textual sim-

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 175-179,
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ilarity. The top three best performing systems
from STS 2016 used sophisticated deep learning
based models (Rychalska et al., 2016; Brychcin
and Svoboda, 2016; Afzal et al., 2016). The high-
est correlation score was obtained by Rychalska
et al. (2016). They proposed a textual similar-
ity model that combines recursive auto-encoders
(RAE) from deep learning with WordNet award
penalty, which helps to adjusts the Euclidean dis-
tance between word vectors.

3 System Description

Our contribution in the STS shared task includes
three different systems: supervised, unsupervised
and supervised-unsupervised ensemble. Our mod-
els are mainly developed to measure semantic
similarity between monolingual sentences in En-
glish. For the cross-lingual tracks, we leverage
the Google translate API to automatically translate
other languages into English. In the following sub-
sections, we describe our data preprocessing and
present our three systems.

3.1 Data Preprocessing

We use all the previously released datasets since
2012 to train and evaluate our models. The fi-
nal total number of training examples is 14 619.
We use StanfordCoreNLP' pipeline to tokenize,
lemmatize, dependency parse, and annotate the
dataset for lemmas, part-of-speech (POS) tags,
and named entities (NE). Stopwords are removed
for the purpose of topic modeling and TfIdf com-
putation.

3.2 Unsupervised Model

Inspired by (Sultan et al., 2015; Brychcin and Svo-
boda, 2016), our unsupervised solution calculates
a similarity score based on the alignment of the
input pair of sentences. As presented in Figure
1, given a pair of sentences S1,S52, the align-
ment task builds a set of matched pair of words
match(w;,w;) where w; is a word in sentence S1,
and w; is a word in sentence S2. Each matched
pair has a score on the scale [0-1]. This matching
score indicates the strength of the semantic sim-
ilarity between the aligned pair of words, with 1
representing the highest similarity match.

As shown in Figure 2, after preprocessing, the
system starts with matching exact similar words

'"http://stanfordnlp.github.io/CoreNLP/
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Figure 2: Unsupervised solution overview

(lemmas), and words that share similar Word-
Net hierarchy (synonyms, hyponyms, and hyper-
nyms). We consider these two types of aligning as
exact match with score 1.

As a last step of the alignment process, we handle
the words that have not been matched in the pre-
ceding steps. The solution uses Glove word em-
beddings (Pennington et al., 2014) to calculate the
matching score. Glove (840B tokens, 2.2M vo-
cab) represent the word embeddings in 300d vec-
tor. We calculate the cosine distance between the
unmatched words and all the words in the other
sentence. Using a greedy strategy, we pick up the
best match of each word.

The global similarity is calculated using a
weighted matches scores as shown in equation (1).

YT fIdf (w;) * match(w;, wy)
B SN TfIdf(S1,S52)

Score (1)
For all w; in S1 or 2, and match(w;, w;) is the
best match score for W; with word W; from the
other sentence. T fIdf(S1,52) is the sum of the
term frequency inverse document frequency of the
words in S1, 52. The final alignment score is [0-



1], so we scale it into the [0-5] range.

3.3 Supervised Model

To generate our supervised model, we extract the
following features:

I Bag-of-Words: for each sentence a |V|-
dimension vector is generated, where V in-
cludes the unique vocabulary from both sen-
tences. Entries in single vectors correspond
to the frequency of the word in the respective
sentence. Cosine similarity between these
vectors serves as a feature.

I Distributional Thesaurus (DTs) Expansion
Feature: Each non-stopword is expanded to
its most similar top 10 words using the API
for the Distributional Thesaurus (DTs) by
Biemann and Riedl (2013).

IIT POS Tags Longest Common Subsequence:
We measure the length of the longest com-
mon subsequence of POS tags between sen-
tence pairs. Additionally, we also average this
length by dividing it by the total number of to-
kens in each sentence separately.

IV Topic Similarity Feature: To model the topi-
cal similarity between two documents, we use
Latent Dirichlet Allocation (LDA, (Blei et al.,
2003))? model trained on a recent Wikipedia
dump. To guarantee topic distribution stabil-
ity, we run LDA for 100 repeated inferences.
Then for each token, we assign the most fre-
quent topic ID (Riedl and Biemann, 2012).

V Dependency-Graph Features: Following
Kohail (2015), each sentence S is converted
into a graph using dependency relations ob-
tained from the parser. We define the de-
pendency graph Gg = {Vg, Eg}, where the
graph vertices Vg = {wy,ws, ..., w,} repre-
sent the tokens in a sentence, and Eg is a set
of edges. Each edge e;, represents a directed
dependency relation between w; and w,. We
calculate TfIdf on three levels and weight our
dependency graph using the following condi-
tions:

Word TfIdf: Considering only those words
that satisfy the condition: TfIdf (w;) > o
Pair TfIdf: Word pair are filtered based on

>The implementation was used in this work is available

at: http://gibbslda.sourceforge.net/

the condition: TfIdf (w;, wy) > ao

Triplet TfIdf: Considering only those triples
(word, pair and relation), which satisfies the
condition: TfIdf (w;, wy, e;y) > a3
Similarities are then measured on three lev-
els by representing each sentence as a vec-
tor of words, pairs and triples, where each
entry in one vector is weighted using TfIdf.
We used New York Times articles within the
years 2004-2006, as a background corpus for
TfIdf calculation.

VI Coverage Features: As a text gets longer,
term frequency factors increase, and thus hav-
ing a high similarity score is likelier for
longer than for shorter texts. Coverage fea-
tures measures the number of one-to-one to-
kens, edges and relations correspondence be-
tween the dependency graphs of a pair sen-
tences as described in (Kohail and Biemann,
2017).

VII NE Similarity: We measure similarity based
on the shared named entities between the pair
of text.

VIII Unsupervised Dependency Alignment
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score: Using a Glove word embedding, we
include the score of the cosine similarity
between the syntactic heads of the matched
words aligned in the unsupervised model
(Sec. 3.2), as presented in equation (2).

YT fIdf (w;) * Cos_sim(wj, wj)
ST F1df(S1,52)

score =

2

For all w; in S1 or S2, we calculate the
weighted cosine similarity between its syn-
tactic dependency head: w; and the syntactic
head of the matched word: w;.

These features are fed into three different regres-
sion methods’: Multilayer Perceptron (MLP)*
neural network, Linear Regression (LR) and Re-
gression Support Vector Machine (RegSVM). To
evaluate our preliminary pre-testing models, we
perform 10-fold cross-validation.

3We used the WEKA (Witten et al., 2016) implementation
with default parameters, if not mentioned otherwise
“Hidden layers = 2, Learning rate = 0.4, momentum = 0.2



. Track 1
System  Primary AR-AR  AR-EN

Track 2 Track 3 Track 4a

Track4b Track5 Track 6

SP-SP  SP-EN SP-EN EN-EN EN-TR
Runl 0.57 0.61 0.59 0.72 0.63 0.12 0.73 0.60
Run2 0.61 0.68 0.63 0.77 0.72 0.05 0.80 0.59
Run3 - - - - - - 0.81 -
Ens.* 0.63 0.68 0.66 0.80 0.73 0.11 0.82 0.63
Basel. - 0.60 - 0.71 - - 0.73 -
Top 0.73 0.75 0.75 0.85 0.83 0.34 0.85 0.77

Table 1: Results obtained in terms of Pearson correlation over three runs for all the six sub-tracks in
comparison with the baseline and the top obtained correlation in each track. The primary score represents
the weighted mean correlation. Ens.* represents the results after adding the expansion and topic modeling

features.

3.4 Ensembling Supervised and
Unsupervised models

We create an ensemble model by by averaging the
supervised and unsupervised models predictions.

4 Experimental Results

We report our results in Table 1. Overall we sub-
mitted 3 runs: Runl uses the unsupervised ap-
proach discussed earlier in Sec. 3.2, Run2 uses
a supervised MLP neural network trained as de-
scribed in Sec. 3.3, and Run3 uses the ensem-
ble average system described in Sec. 3.4. Due to
time constraints and technical issues, only evalua-
tion for English monolingual track was given. Ad-
ditionally, we were not able to compute the topic
modeling and expansion features. We included the
missing features later after the task deadline. Final
ensemble results are given under Ens.*. Accord-
ing to the results, we can make following observa-
tions:

e Our results significantly outperform the base-
line provided by the task organizers for
monolingual tracks by a large margin.

e The ensemble outperforms the individual en-
semble members.

e Results obtained in monolingual, especially
English, are markedly higher than in cross-
lingual tracks. This might be due to noise in-
troduced by the automatic translation.

e Results of track 4b appears to be significantly
worse compared to other tracks results. In
addition to the machine translation accuracy
challenge, the difficulty of this track lies in
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providing longer sentences with less infor-
mative surface overlap between the sentences
compared to other tracks.

5 Conclusion

We have presented and discussed our results on
the task of Semantic Textual Similarity (STS). We
have shown that combining supervised and un-
supervised models in an ensemble provides bet-
ter results than when each is used in isolation.
31 teams participated in the task with 84 runs.
Our best system achieves an overall mean Pear-
son’s correlation of 0.61, ranking 7¢* among all
teams, 12" among all submissions. Future work
includes building a real multi-lingual model by
projecting phrases from different languages into
the same embedding space. In the current solution,
we consider hyponyms/hypernyms as synonyms.
The system gives an exact match score for these
word pairs. In the future, we tackle finding a way
to give calculated dynamic scores for such kind
of alignment to do not equalize them with exact
matches.
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Abstract

We describe a modified shared-LSTM net-
work for the Semantic Textual Similar-
ity (STS) task at SemEval-2017. The
network builds on previously explored
Siamese network architectures. We treat
max sentence length as an additional hy-
perparameter to be tuned (beyond learn-
ing rate, regularization, and dropout). Our
results demonstrate that hand-tuning max
sentence training length significantly im-
proves final accuracy. After optimiz-
ing hyperparameters, we train the net-
work on the multilingual semantic similar-
ity task using pre-translated sentences. We
achieved a correlation of 0.4792 for all the
subtasks. We achieved the fourth highest
team correlation for Task 4b, which was
our best relative placement.

1 Introduction

Semantic Textual Similarity (STS) has been a sta-
ple of the SemEval competition and requires sys-
tems that automatically identify the semantic re-
latedness of two sentences. The resulting sys-
tem could be used down-stream in many impor-
tant NLP tasks, such as scoring the output of a
machine translation system or finding related doc-
ument/query pairs in web search.

The data available for this competition has been
updated annually and contains gold-label, human-
evaluated scores based on sentence pairs across
multiple languages ((Agirre et al., 2012), (Agirre
et al., 2013), (Agirre et al., 2014), (Agirre et al.,
2015)). The gold label for each sentence pair is
in the range [0, 5], with O being the sentences are
completely dissimilar to 5 being the sentences are
completely equivalent. (Agirre et al., 2016)
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The task is not restricted to English or mono-
lingual similarity scoring. The 2017 SemEval

task consists of seven different tracks, each
with a different language pair: Arabic-Arabic,
Arabic-English,  Spanish-Spanish,  Spanish-

English, an additional Spanish-English track,
English-English, and English-Turkish. We avoid
language-specific feature engineering and take
a representation learning approach to STS. This
requires constructing directly-comprable sentence
representations that can be induced from the
limited amounts of annotated STS training data.

We present a modified version of the Siamese
Long Short-Term Memory (LSTM) network to
solve this problem. (Mueller and Thyagarajan,
2016) A Siamese network is one in which parame-
ters between layers are shared, and are updated in
parallel during the learning phase. For the seman-
tic relatedness task, this allows two sentences to be
encoded into the same space using a single shared
recurrent neural network. The dual-encoding en-
ables the use of end-to-end supervised deep learn-
ing, using only the surface forms of the sentences
and the gold labels.

We extend the Siamese LSTM in two ways.
First, we consider the semantic relatedness as a
classification, rather than a regression problem.
Initially, semantic relatedness appears to be a con-
tinuous one-dimensional measure suitable for re-
gression. However, there are many subtleties
within the bands of scores, as sentences can differ
along more than a single dimension. Thus, rather
than regressing over the label, our model gener-
ates a distribution over possible labels. Second,
we use a different concatenative dense layer on
top of the dual LSTMs to better model the classi-
fication problem (Tai et al., 2015), and train using
KL-Divergence as the loss function for training.

Our results did not achieve the state-of-the-art
performance possible with a Siamese LSTM ar-
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chitecture. Despite this set-back, we are able to
demonstrate the effect of sentence training length
on a LSTM. Additionally, all foreign languages
were translated through Google Translate and the
same model was used for the seven tracks. This
standardization provides insight into the quality of
Google Translate and the negative effect of ma-
chine translation on correlation.

The following section provides detail on our
system and the training process. As our submis-
sion is focused on the use of end-to-end deep
learning in semantic relatedness, we do not use
hand-crafted features from external data, except
for pre-trained word embeddings to speed up train-
ing. A visual overview of the shared LSTM model
can be seen in Figure 1.

LSTM LSTM

Embeddings Embeddings

T T

Sentence 1 Sentence 2

Figure 1: The end-to-end shared-LSTM model.
Note that the shaded boxes represent shared pa-
rameters that are updated in parallel when the error
is backpropagated. In this model, both the embed-
dings and the LSTM weights are shared, mean-
ing the sentences are encoded into the same space.
The model was implemented in Lasagne. (Diele-
man et al., 2015)

2 End-to-End Shared LSTM

We use a shared-parameter LSTM model, also
known as a Siamese LSTM model, as a completely
end-to-end deep learning model. (Mueller and
Thyagarajan, 2016; Tai et al., 2015)

Shared Parameters. In the siamese LSTM, the
embedding layers share weights with each other,
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as do the LSTM layers. These weights are shared
throughout the entire training process, so updates
applied to one are applied to both. Each sentence
was transformed into a sequence of embeddings
and then encoded into a sentence vector by the
LSTM, and since the embedding and LSTM layers
were the same for both sentences, both sentences
were encoded into the same space. The sentence
embeddings were the final vector in the LSTM.

Word Embeddings. The model was initial-
ized with GloVe word embeddings. (Pennington
et al., 2014) Our experiments with both GloVe and
the Paragram (Wieting et al., 2015) embeddings
showed only a negligible difference in the final
performance of the model. This difference disap-
peared when embeddings were made trainable.

Should one include all the embeddings or sim-
ply the subset seen in the training data? If all the
embeddings are included, then the model should
theoretically generalize better, as there are fewer
UNKNOWN’s in the validation and testing data.
However, if all the embeddings are included and
the embeddings are trainable, then only the seen
portion of the embedding space is updated, which
could hurt model generalization.

Our model uses the whole embedding space,
but also updates the embeddings after each batch.
Although updating only part of the space could
risk damaging model generalizability, our experi-
ments found that we actually saw an improvement
in generalizability with both the whole embedding
space and trainable embeddings.

Dense Concatenative Layer. The original equa-
tion for the dense layer is: exp(—|| X1 — Xal|1)-
(Mueller and Thyagarajan, 2016) However, as
shown in Figure 1, our dense layer takes the con-
catenation of two different transformations: | X; —
Xs| and X7 ® X,. This is used to capture both the
difference in the angle and the absolute difference
of the two sentences. (Tai et al., 2015)

Training Objective. In order to use Kullback-
Leiber divergence (KL divergence) as the objec-
tive function, we had to convert the gold labels into
probability distributions: (Tai et al., 2015)

y—lyl, i=lyl+1
pi=1 lyl-y+1, i=ly]
0 otherwise

Thus, a label of 4.7 would distribute 70% of
its probability mass to the category 5, and 30%
of its probability mass to the category 4. To con-
vert from a probability distribution to a prediction,



simply take the dot product of the ordered vector
< 0,1,2,3,4,5 > and the distribution.

Then, the loss for each example was com-
puted using the standard KL divergence formula,
with some minor smoothing to disallow zeros:

Dir(P||Q) = = P(i)log 58,

3 Experiments and Results

We opted for minimal preprocessing in our final
model: merely tokenizing and lower-casing the
input. Lemmatizing the words did not lead to
a notable improvement, and hence was omitted.
Additionally, experimenting with targeted Part of
Speech exclusion (removing all articles, increas-
ing weight of proper nouns, etc.) did not produce
dramatically higher results. Therefore, we decided
to let the LSTM learn for itself.

Our final results on the 2017 data are shown
in Table 1. Retrospectively, we saw that the
2016 postediting data (65.13% accuracy when
2016 data was held out from training) would have
served as a close proxy for 2017 En-En perfor-
mance. Our three submissions to the 2017 Se-
meval task were trained treating maximum train-
ing sentence length as a hyperparameter. Our re-
sults show that this parameter can have a large im-
pact on the final outcome of the model.

The cosine baseline provided by SemEval orga-
nizers achieved a 0.72 correlation for the English-
English sentences, which was roughly 0.07 higher
than our best performance on the same dataset. Al-
though disheartening, a Siamese LSTM model is
capable of performing dramatically better with cu-
rated training data, whereas the baseline approach
cannot be significantly modified.

Network Architecture and Parameters. Our fi-
nal model used length 300 GloVe embeddings,
100 LSTM cells, 50 neurons in the final dense
layer, and 6 output neurons, one for each class.
We used the Kullback-Leibler Divergence of the
output distribution and the gold label distribution
as the objective function.

Data. We used all available past STS Task 1
datasets and no external data. In order to partic-
ipate in the non-English tracks, we used Google
Translate to translate all the sentence pairs into
English. We then used the model trained on the
English-English pairs on the translated-English
data.
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4 Discussion

Length. As shown in Table 1, the best identi-
fied length was 20. Meanwhile, the median length
for the labeled sentences was below 11. Train-
ing on the max length saw an improvement on the
English-English dataset, but an overall decrease in
performance on the other datasets, in particular the
SP-EN-WMT dataset, which contained very long
English-Spanish sentence pairs. This is likely due
to the network capturing long-term dependencies
present in the native English sentence pairs that
weren’t present in the translated sentence pairs.
Translations. Our results demonstrate that the in-
troduction of machine translation into the pipeline
damages performance. The drop for non-English
monolingual tasks exceeds that for English cross-
lingual tasks, as translation is only applied to one
side in the latter.

e Spanish - On the translated Spanish-Spanish
sentence pairs, our correlation went down
from 0.62 to 0.52. However, the drop was
only to 0.56 on the English-Spanish sentence
pairs, likely because half of the data was the
native English used in training.

Arabic - We saw a larger drop in accu-
racy on the Arabic-Arabic sentence pairs,
from 0.62 to 0.48. This likely demonstrates
that the translation quality of Google Trans-
late is higher for Spanish than for Arabic.
As was the case with Spanish, the Arabic-
English pairs did better than the Arabic-
Arabic pairs, achieving a correlation of 0.49
with the length 20 model, and 0.52 with the
max length model.

Turkish - Although there was no Turkish-
Turkish track this year, our system performed
roughly as expected on the Turkish-English
track, given its performance on the Spanish-
English and Arabic-English tracks. Uniquely
in Turkish, accuracy spikes between the
length 20 and max length models: from .53
to over .57 respectively.

Overall, we found the superior translation of
Spanish unsurprising given the similarity of the
languages and the large corpora available for
Spanish-English translations.

Investigating the Results. Table 2 shows a selec-
tion of sentence pairs, their gold labels, and our



2017 Language Pairs | Number of Pairs | Length 11 (p) | Length 20 (p) | Max Length (p) |

AR-AR 250 0.3905 0.4753 0.4587
AR-EN 250 0.3713 0.4939 0.5199
SP-SP 250 0.4588 0.5165 0.5148
SP-EN 250 0.3482 0.5615 0.5232
SP-EN-WMT 250 0.0586 0.1609 0.1300
EN-EN 250 0.4727 0.6174 0.6222
EN-TR 250 0.3644 0.5293 0.5725
Weighted Mean - 0.3521 0.4792 0.4773

Table 1: Results in the different tracks of SemEval-2017. The lengths refer to the maximum lengths of

the sentences used for training the model.

Sentence 1 Sentence 2 \ Gold \ Pred. ‘
A man is performing labor. A man is performing today. 2.8 1.5
A kid sits on a soccer ball outside. A kid sitting on a soccer ball at the park. | 4.2 4.2

The player shoots the winning points.

The basketball player is about to score | 2.8 2.7
points for his team.

The yard has a dog.

The dog is running after another dog. 1.6 4.1

the people are running a marathon

People are running a marathon

5.0 0.9

Table 2: A selection of results showing the successes and failures of our shared-LSTM architecture.
These sentences were selected to show areas in which our system excels or under-performs.

system’s predicted score. There were many cases
in which our system achieved very precise scoring,
as included in the table. The examples on which
the end-to-end model failed prove more interest-
ing.

There were many simple examples that fooled
our system. The most notable one is the pair (’the
people are running a marathon”, ”People are run-
ning a marathon”). In this case, the only differ-
ence is the inclusion of the determiner “the” at
the start of the sentence, as the capitalization of
people would have been removed during prepro-
cessing. Yet our system predicts the relatedness
to be 0.9, rather than 5.0. This example shows
that, although the sentences are theoretically en-
coded into the same space, the series of transfor-
mations that the sentence undergoes is complex
and imperfect. Another such example is the pair
(’The yard has a dog.”’, "The dog is running af-
ter another dog.”) The fact that a dog exists in
both sentences should not merit such a high score
alone. This trend of attributing similarity to sen-
tences with similar subjects percolates throughout
our results.

The sentence pair ("A man is performing la-
bor.”, ”A man is performing today.) demonstrates

the learning potential of our model’s predictions.
These sentences are identical in length and the sur-
face forms are 80% similar as only the final word
differs. However, the different sense of perform
make these sentences mostly unrelated. The dif-
ference is subtle, and unlikely to be picked up by
a more naive system. Some basic ability to disam-
biguate different word senses is suggested by the
shared weight LSTM’s 1.5 assignment.

5 Conclusion and Future Work

A Siamese LSTM architecture has the potential
for generating sophisticated predictions, but re-
lies heavily on selecting appropriate training data.
Our results show that hand-tweaking the maxi-
mum length of training sentences can significantly
affect model output. Additionally, we show that
the LSTM model performs worse on machine-
translated data than on native English sentences.

There are several possible extensions of the pro-
posed shared LSTM framework, such as a tree-
structured, rather than linear LSTM. This uses the
sentence parse as a “feature” for structuring the
model, and can provide significant improvements
over a purely linear LSTM for semantic related-
ness. (Tai et al., 2015)
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Abstract

This paper describes MITRE’s participa-
tion in the Semantic Textual Similarity
task (SemEval-2017 Task 1), which eval-
uated machine learning approaches to the
identification of similar meaning among
text snippets in English, Arabic, Spanish,
and Turkish. We detail the techniques
we explored, ranging from simple bag-of-
ngrams classifiers to neural architectures
with varied attention and alignment mech-
anisms. Linear regression is used to tie the
systems together into an ensemble submit-
ted for evaluation. The resulting system is
capable of matching human similarity rat-
ings of image captions with correlations of
0.73 to 0.83 in monolingual settings and
0.68 to 0.78 in cross-lingual conditions.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree to which two snippets of text convey the
same meaning. Cross-lingual STS measures the
same for sentence pairs written in two different
languages. Automatic identification of semanti-
cally similar text has practical applications in do-
mains such as evaluation of machine translation
outputs, discovery of parallel sentences in com-
parable corpora, essay grading, and news summa-
rization. It serves as an easily explained assay for
systems modeling semantics.

SemEval-2017 marked the sixth consecutive
year of a shared task measuring progress in STS.
Current machine learning approaches to measur-
ing semantic similarity vary widely. One de-
sign decision for STS systems is whether to ex-
plicitly align words between paired sentences.
Wieting et al. (2016) demonstrate that sentence
embeddings without explicit alignment or atten-
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tion can often provide reasonable performance
on STS tasks. Related work in textual entail-
ment offers evidence that neural models with
soft alignment outperform embeddings-only ap-
proaches Chen et al. (2016); Parikh et al. (2016).
However these results were obtained on a dataset
multiple orders of magnitude larger than existing
STS datasets. In absence of large datasets, word
alignments similar to those used in statistical ma-
chine translation have proven to be useful (Zarrella
et al., 2015; Itoh, 2016).

In this effort we explored diverse methods for
aligning words in pairs of candidate sentences:
translation-inspired hard word alignments as well
as soft alignments learned by deep neural net-
works with attention. We also examined a variety
of approaches for comparing aligned words, rang-
ing from bag-of-ngrams features leveraging hand-
engineered lexical databases, to recurrent and con-
volutional neural networks operating over dis-
tributed representations. Although an ideal cross-
lingual STS system might operate directly on input
sentences in their original language, we used ma-
chine translation to convert all the inputs into En-
glish. The paucity of in-domain training data and
the simplicity of the image caption genre made
the translation approach reasonable. Our contri-
bution builds on approaches developed for En-
glish STS but points a way forward for progress
on knowledge-lean, fully-supervised methods for
semantic comparison across different languages.

2 Task, Data and Evaluation

Semantic Textual Similarity was a shared task
organized within SemEval-2017 (Agirre et al.,
2017). The task organizers released 1,750 sen-
tence pairs of evaluation data organized into six
tracks: Arabic, Spanish, and English monolingual,
as well as Arabic-English, Spanish-English, and
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Turkish-English cross-lingual.

Most of this evaluation data was sourced from
the Stanford Natural Language Inference cor-
pus (Bowman et al., 2015). The sentences are
English-language image captions, grouped into
pairs and human-annotated on a scale of 0 to 5
for semantic similarity. In the monolingual En-
glish task, the average sentence length was 8.7
words, and the average rating was 2.3 (e.g. The
woman had brown hair. and The woman has gray
hair) There was a roughly balanced distribution of
highly rated pairs (e.g. A woman is bungee jump-
ing. and A girl is bungee jumping.) and poorly
rated pairs (e.g. The yard has a dog. and The dog
is running after another dog.) Annotated sentence
pairs were manually translated from English into
other languages to create additional tracks.

For each pair, task participants predicted a sim-
ilarity score. Systems were evaluated by Pearson
correlation with the human ratings.

3 System Overview

We created an ensemble of five systems which
each independently predicted a similarity score.
Some features were reused among many compo-
nents, including word embeddings, machine trans-
lations, alignments, and dependency parses.

3.1 English Word Embeddings

We used word2vec (Mikolov et al.,, 2013) to
learn distributed representations of words from
the text of the English Wikipedia. We applied
word2phrase twice to identify phrases of up to four
words, and trained a skip-gram model of size 256
for the 630,902 vocabulary items which appeared
at least 100 times, using a context window of 10
words and 15 negative samples per example.

3.2 Machine Translation

Sentences in the image caption genre tend to be
short and use a simple vocabulary. To test the ex-
tent to which this is true of SNLI data, we trained a
small unregularized neural language model which
achieved a perplexity of 18.9 on a held-out test
set. The same parameterization achieved a per-
plexity of 114.5 in experiments on the Penn Tree-
bank (Zaremba et al., 2014). We proceeded to
translate all non-English sentences to English, rec-
ognizing that modern MT systems are sufficient to
provide high quality translations for simple sen-
tences. We used the Google Translate API in mid-
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January 2017.

3.3 Dependency Parses

The dependency parse arcs were used as features
to assist in aligning and comparing pairs of words.
The Stanford Parser library produced these typed
dependency representations (Chen and Manning,
2014). The English PCFG model with basic de-
pendencies was used rather than the default col-
lapsed dependencies to ensure that the parser gave
us exactly one parse arc for each token.

3.4 Alignment

Comparing sentences can be a tallying process.
One can find all associated atomic pairs in the
left hand and right hand sides, cross them off,
and judge the dissimilarity based on the remain-
ing residuals. This process is reminiscent of find-
ing translation equivalences for training machine
translation systems (Al-Onaizan et al., 1999).

To this end, we built an alignment system on
top of word embeddings. First, the min alignment
is produced to maximize the sum of cosine simi-
larities (sim(wj, w;) = 1+ cos(w;,w;)) of word
vectors corresponding to aligned word pairs under
the constraint that no word is aligned more than
once. The max alignment is constrained such that
each word must be paired with at least one other,
and the total number of edges in the alignment can
be no more than word count of the longer string.
In both cases, LPSOLVE was employed to find the
assignment maximizing these criteria (Berkelaar
et al., 2004).

Dependency parses constructed in Section 3.3
were aligned in a similar way. Consider de-
pendency arcs a; head — dep In-
stead of the sum of cosine similarities as
atoms in the linear program, however, we used
sim(a1, az) sim(head(ay), head(as)) +
10sim(dep(ay), dep(az)) to give preference to
matching dependency arcs a; and a with similar
heads.

3.5 Ensemble Components

TakeLab The open source TakeLab Semantic
Text Similarity System was incorporated as a
baseline (Sari¢ et al., 2012). Specifically we
use LIBSVM to train a support vector regres-
sion model with an RBF kernel, cost parameter
of 20, gamma of 0.2, and epsilon of 0.5. Input
features were comprised of TakeLab-computed n-
gram overlap and word similarity metrics.



Recurrent Convolutional Neural Network We
recreate the recurrent neural network (RNN)
model described in Zarrella et al. (2015) and
train it using the embeddings and parse-aware
alignments described above. Briefly, this 16-
dimensional RNN operates over a sequence of
aligned word pairs, comparing each pair accord-
ing to features that encode embedding similarity,
word position, and unsupervised string similarity.

We extended this model with four new feature
categories. The first was a binary variable that in-
dicates whether both words in the pair were deter-
mined to have the same dependency type in their
respective parses. We also added three convolu-
tional recurrent neural networks (CRNNSs), each
of which receive as input a sequence of word
embeddings, and which learn STS features via
256 1D convolutional filters connected (with 50%
dropout) to a 128-dimensional LSTM. For each
aligned word pair, the first CRNN operates on
the embeddings of the aligned words, the sec-
ond CRNN operates on the squared difference of
the embeddings of the aligned words, and the fi-
nal CRNN operates on the embeddings of the
parent words selected by the dependency parse.
All above RNN outputs were concatenated to
form a sequence of 400-dimensional (16+128%3)
timesteps, which fed a 128-dimensional LSTM
connected to a single sigmoidal output unit.

We unrolled this network to a zero-padded se-
quence length of 60 and trained it to convergence
using Adam with a mean average error loss func-
tion (Kingma and Ba, 2014). The embeddings
were not updated during training. We ensembled
eight instances of this network trained from differ-
ent random initializations.

Paris: String Similarity More than a decade
ago, MITRE entered a system based on string
similarity metrics in the 2004 Pascal RTE com-
petition (Bayer et al., 2005). The libparis
code base implements eight different string sim-
ilarity and machine translation evaluation algo-
rithms; measures include an implementation of
the MT evaluation BLEU (Papineni et al., 2002);
WER, a common speech recognition word error
rate based on Levenshtein distance (Levenshtein,
1966); WER-g (Foster et al., 2003); ROUGE (Lin
and Och, 2004); a simple position-independent
error rate similar to PER (Leusch et al., 2003);
both global and local similarity metrics often used
for biological string comparison (Gusfield, 1997).
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Finally, there are precision and recall measures
based on bags of all substrings (or n-grams in
word tokenization).

In total, the package computes 22 metrics for a
pair of strings. The metrics were run on both case-
folded and original versions as well as on word
tokens and characters, yielding 88 string similar-
ity features. Some of the metrics are not symmet-
ric, so they were run both forward and reversed
based on presentation in the dataset yielding 176
features. Finally, for each feature value x, log(x)
was added as a feature, producing a final count of
352 string similarity features. LIBLINEAR used
these features to build a L1-regularized logistic re-
gression model. This system was unchanged, ex-
cept for retraining, from the system described in
Zarrella et al. (2015)

Simple Alignment Measures Section 3.4 de-
scribes methods we used for aligning two strings.
L2-regularized logistic regression was used to
combine 16 simple features calculated as side-
effects of alignment. Details are described in
Zarrella et al. (2015).

Enhanced BiLSTM Inference Model (EBIM)
We recreated the neural model described in Chen
et al. (2016) which reports state-of-the-art perfor-
mance on the task of finding entailment in the
SNLI corpus. The model encodes each sentence
with a bidirectional LSTM over word embeddings,
uses a parameter-less attention mechanism to pro-
duce a soft alignment matrix for the two sentences,
and then does inference over each timestep and
its alignment using another LSTM. Two fully-
connected layers complete the prediction. Chen
et al. (2016) improves performance by concate-
nating the final LSTM representation from EBIM
with that of a similar model where a modified
LSTM operates over a syntax tree; we did not in-
clude this extension in our submission.

Our implementation kept most hyperparameters
described in the paper. However, we used the
word2vec embeddings described above and found
that freezing the embeddings produced better per-
formance for this small dataset. We also found our
models worked better without dropout on the em-
bedding layer. Where the original model chooses a
class via softmax, we output a semantic similarity
score trained to minimize mean squared error.



Primary | Track 1 Track2 Track3 Track 4a Track4b  Track5 Track 6

AR-AR AR-EN  ES-ES ES-EN ES-ENnews EN-EN TR-EN

Official Score | 0.6590 | 0.7294  0.6753  0.8202 0.7802 0.1598  0.8053  0.6430
Corrected Score | 0.6687 | 0.7294  0.6753  0.8202 0.7802 0.1598  0.8329  0.6831

Table 1: Pearson correlations on official test set. Corrected ensemble effects in bold.

Factored Ablated

Component  dev test dev test

TakeLab 8724 6503 8739 .6454
CRNNs-8 8621 .6379 8846  .6551
Paris .8074 5524 8891 .6666
EBIM 7742 4760 8886  .6687
Align 7607 5037  .8910 .6722
All In .8900 .6687

Table 2: Factored and ablated system components
evaluated on our dev set and the official test set.

3.6 Ensemble

The semantic similarity estimates of the predictors
described above contributed to the final prediction
with a weighting determined by L2-regularized lo-
gistic regression.

4 Experiment Details

We used as training data a selection of English
monolingual sentence pairs released during prior
SemEval STS evaluations. Specifically, we trained
on 6,898 pairs of news and caption genre data from
the 2012-2014 and 2016 evaluations. We used an
additional 400 and 350 captions from the 2015
evaluation as development and tuning sets, respec-
tively. We did not use out-of-genre data (e.g. dic-
tionary definitions, Europarl, web forums, student
essays) or the newly-released multilingual 2017
training data. The dev set was used to select hyper-
parameters for individual components, while the
tuning set was used to select the hyperparameters
for the final ensemble.

5 Results

The evaluation of our components on the competi-
tion test set is shown in Table 1. The official sim-
ilarity score produced by this approach achieved
0.6590 correlation with expert judgment averaged
across all tracks. A misfiling during construction
of the ensemble submission for tracks 5 and 6 re-
duced the official score from 0.6687.

The dev columns of Table 2 show the ability
of each individual system in isolation on the dev
data (“Factored”) as well as the performance of
the ensemble when the individual system was re-
moved ("Ablated”). Note that the Align system
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should have been ablated from the final system to
achieve a higher score. Presumably its capability
was strictly dominated by the CRNNs that used
many of the same features.

The test scores for individual CRNN mod-
els ranged from 0.605 to 0.636, highlighting the
volatility inherent in the process. The CRNN-
ensemble improved slightly over the best single
model, with a score of 0.638.

6 Conclusion

Five models of semantic similarity constructed
from 2004 to 2016 were combined for paraphrase
detection in image captions. The TakelLab bag-
of-features SVM developed and open-sourced in
2012, when trained on our selection of in-genre
data and evaluated on a machine translated ver-
sion of the test set, performed well enough in
isolation to place fourth out of seventeen in the
Primary Track of the Semantic Textual Similarity
competition organized within SemEval-2017 Task
1, which had submissions from 31 teams in total.

Inclusion of explicit word alignments, a neu-
ral attention model, and recurrent networks ac-
counting for sequences of syntactic dependencies
yielded an improvement in Pearson correlation
from 0.650 to 0.672, a modest improvement which
increased the corrected system’s ranking to third.
This surprising result is perhaps an indication that
image captions have few of the complex linguis-
tic dependencies that typically make estimating
semantic similarity a difficult task. Future work
could focus on testing whether this result holds
when performing crosslingual STS without ex-
plicit machine translation.
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A Supplemental Material

These min alignment examples all come from

Track 5.

Example 1: Similarity 5.0.

&0 5
- R= - o)
_?:: 2 .2 é « § = fn’
al 1.69 132 156 136 [200] 126 147 131
boy | 1.30 122 130 132 121 123 141
is | 158  1.22 128 156 124 148 130
at | 1.56 123 148 135 147 125 1.34
school | 1.28 141 130 121 131 124 134
taking | 1.39 130 1.28 136 134 135 121
a 132 156 136 200 126 147 131
test | 1.23 121 124 134 126 [200] 125 124
Example 2: Similarity 2.6.
g -
E 25 s £ E 5 §
a| 141 129 136 1.64 169 120 152 [2.00] 1.28
pair 133 138 135 140 121 134 137 128
of | 142 134 135 179 118 153 160 1.30
men | 1.29 140 135 136 125 127 129 133
walk_along | 126 125 143 125 130 139 129  1.60
the | 147 136 142 1.73 125 157 169 130
beach | 131 133 136 130 130 166 133 128 [2.00]
Example 3: Similarity 0.0.
o >
o %0 g g g >
: ¢ & ¢ § =z & 7 % B
adding | 1.12 121 129 121 [140] 107 118 LI5S 116 LI8
aspirin | 1.16 117 117 123 132 115 111 117 127
to| 133 144 131 134 125 162 1.06 159 135
the | 136 149 126 1.64 123 131 .10 1.79 137
water | 121 132 110 135 121 150 134 1.10 1.36
could | 131 134 [151] 148 136 120 130 1.3 131 118
kill 126 141 135 144 118 127 119 132 1.19
the | 136 149 126 164 123 131 158 1.10 1.37
plant | 1.19 130 1.8 133 126 [147] 129 107 132 141
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Abstract

To model semantic similarity for multilin-
gual and cross-lingual sentence pairs, we
first translate foreign languages into En-
glish, and then build an efficient mono-
lingual English system with multiple NLP
features. Our system is further support-
ed by deep learning models and our best
run achieves the mean Pearson correlation
73.16% in primary track.

1 Introduction

Sentence semantic similarity is the building block
of natural language understanding. Previous Se-
mantic Textual Similarity (STS) tasks in SemEval
focused on judging sentence pairs in English and
achieved great success. In SemEval-2017 STS
shared task concentrates on the evaluation of
sentence semantic similarity in multilingual and
cross-lingual (Agirre et al., 2017). There are t-
wo challenges in modeling multilingual and cross-
lingual sentence similarity. On the one hand, this
task requires human linguistic expertise to design
specific features due to the different characteristic-
s of languages. On the other hand, lack of enough
training data for a particular language would lead
to a poor performance.

The SemEval-2017 STS shared task assesses
the ability of participant systems to estimate the
degree of semantic similarity between monolin-
gual and cross-lingual sentences in Arabic, En-
glish and Spanish, which is organized into a set of
six secondary sub-tracks (Track 1 to Track 6) and
a single combined primary track (Primary Track)
achieved by submitting results for all of the sec-
ondary sub-tracks. Specifically, track 1, 3 and
5 are to determine STS scores for monolingual
sentence pairs in Arabic, Spain and English, re-
spectively. Track 2, 4, and 6 involve estimat-

191

ing STS scores for cross-lingual sentence pairs
from the combination of two particular languages,
i.e., Arabic-English, Spanish-English and surprise
language (here is Turkish)-English cross-lingual
pairs. Given two sentences, a continuous val-
ued similarity score on a scale from 0 to 5 is re-
turned, with O indicating that the semantics of the
sentences are completely independent and 5 sig-
nifying semantic equivalence. The system is as-
sessed by computing the Pearson correlation be-
tween system returned semantic similarity scores
and human judgements.

To address this task, we first translate all sen-
tences into English through the state-of-the-art
machine translation (MT) system, i.e., Google
Translator'. Then we adopt a combination method
to build a universal model to estimate seman-
tic similarity, which consists of traditional natu-
ral language processing (NLP) methods and deep
learning methods. For traditional NLP methods,
we design multiple effective NLP features to de-
pict the semantic matching degree and then su-
pervised machine learning-based regressors are
trained to make prediction. For neural network-
s methods, we first obtain distributed representa-
tions for each sentence in sentence pairs and then
feed these representations into end-to-end neural
networks to output similarity scores. Finally, the
scores returned by the regressors with traditional
NLP methods and by the neural network models
are equally averaged to get a final score to estimate
semantic similarity.

2 System Description
Figure 1 shows the overall architecture of our sys-
tem, which consists of the following three mod-

ules:

"https://cloud.google.com/translate/

Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 191-197,
Vancouver, Canada, August 3 - 4,2017. (©2017 Association for Computational Linguistics
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Figure 1: The system architecture

Traditional NLP Module is to extracts two
kinds of NLP features. The sentence pair match-
ing features are to directly calculate the similarity
of two sentences from several aspects and the s-
ingle sentence features are to first represent each
sentence in NLP method and then to adopt kernel-
based method to calculate the similarity of two
sentences. All these NLP-based similarity scores
act as features to build regressors to make predic-
tion.

Deep Learning Module is to encode input sen-
tence pairs into distributed vector representations
and then to train end-to-end neural networks to ob-
tain similarity scores.

Ensemble Module is to equally average the
above two modules to get a final score.

Next, we will describe the system in detail.

2.1 Traditional NLP Module

In this section, we give the details of feature engi-
neering and learning algorithms.

2.1.1 Sentence Pair Matching Features

Five types of sentence pair matching features are
designed to directly calculate the similarity of t-
wo sentences based on the overlaps of charac-
ter/word/sequence, syntactic structure, alignment
and even MT metrics.
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N-gram Overlaps: Let S; be the sets of consec-
utive n-grams, and the n-gram overlap (denoted as
ngo) is defined as (Sarié et al., 2012):

|51
’Sl M SQ|

|52
|Sl ﬂSQ‘

ngo(S1, 92) =2 ( )t
We obtain n-grams at three different levels (i.e.,
the original and lemmatized word, the character
level), where n = {1, 2, 3} are used for word level
and n = {2,3,4,5} are used for character level.
Finally, we collect 10 features.

Sequence Features: Sequence features are de-
signed to capture more enhanced sequence infor-
mation besides the n-gram overlaps. We compute
the longest common prefix / suffix / substring /
sequence and levenshtein distance for each sen-
tence pair. Note that the stopwords are removed
and each word is lemmatized so as to estimate se-
quence similarity more accurately. As a result, we
get 5 features.

Syntactic Parse Features: In order to model
tree structured similarity between two sentences
rather than sequence-based similarity, inspired by
Moschitti (2006), we adopt tree kernels to cal-
culate the similarity between two syntactic parse
trees. In particular, we calculate the number of
common substructures in three different kernel s-
paces, i.e., subtree (ST), subset tree (SST), partial
tree (PT). Thus we get 3 features.

Alignment Features: Sultan et al. (2015) used
word aligner to align matching words across a pair
of sentences, and then computes the proportion of
aligned words as follows:

na(S1) + na(S2)
’I’L(Sl) + n(SQ)

sim(S1,S2) =

where n,(5) and n(S) is the number of aligned
and non-repeated words in sentence .S.

To assign appropriate weights to different word-
s, we adopt two weighting methods: i) weighted
by five POS tags (i.e., noun, verb, adjective, adver-
b and others; we first group words in two sentences
into 5 POS categories, then for each POS category
we compute the proportion of aligned words, and
we get b features as a result. ii) weighted by IDF
values (calculated in each dataset separately). To-
tally, we collect 7 alignment features.

MT based Features: Following previous work
in (Zhao et al., 2014) and (Zhao et al., 2015), we
use MT evaluation metrics to measure the seman-
tic equivalence of the given sentence pairs. Nine



MT metrics (i.e., BLEU, GTM-3, NIST, -WER,
-PER, Ol, -TERbase, METEOR-ex, ROUGE-L)
are used to assess the similarity. These 9 MT
based features are calculated using the Asiya Open
Toolkit?.

Finally, we collect a total of 34 sentence pair
matching features.

2.1.2 Single Sentence Features

Unlike above sentence pair matching features to
directly estimate matching score between two sen-
tences, the single sentence features are to repre-
sent each sentence in the same vector space to cal-
culate the sentence similarity. We design the fol-
lowing three types of features.

BOW Features: Each sentence is represented
as a Bag-of-Words (BOW) and each word (i.e., di-
mension) is weighted by its IDF value.

Dependency Features: For each sentence, its
dependency tree is interpreted as a set of triples,
i.e., (dependency-label, governor, subordinate).
Similar to BOW, we treat triples as words and rep-
resent each sentence as Bag-of-Triples.

Word Embedding Features: Each sentence
is represented by concatenating min/max/average
pooling of vector representations of words. Note
that for each word, its vector is weighted by its
IDF value. Table 1 lists four the state-of-the-art
pretrained word embeddings used 