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Preface: General Chair

Welcome to EACL 2012, the 13th Conference of the European Chapter of the Association for
Computational Linguistics. We are happy that despite strong competition from other Computational
Linguistics events and economic turmoil in many European countries, this EACL is comparable to the
successful previous ones, both in terms of the number of papers submitted and in terms of attendance. We
have a strong scientific program, including ten workshops, four tutorials, a demos session and a student
research workshop. I am convinced that you will appreciate our program.

What does a General Chair at EACL have to do? Not much, it turns out. My job was to act as a liaison
between the local organizing team, the scientific committees, and the EACL board, and to give advice
when needed. Looking back at the thousands of e-mails I was copied on reminded me of the Jerome K.
Jerome quote: ”I like work. I can sit and look at it for hours”. It has been an enjoyable experience to
cooperate with the many people who made this conference happen, and to see them work. I have learned
a lot from them.

The Program Committee at an ACL conference is a trained army of Area Chairs, Program Committee
members, and additional reviewers. Mirella Lapata and Lluı́s Màrquez commanded this particular one.
It is thanks to the voluntary peer reviewing work, year after year, of this large group of people, formed by
the top researchers in our field, that you will find a high-quality program. It is thanks to Mirella and Lluı́s
that you will not only find the quality we expect from EACL, but also innovation, coherence, breadth,
and depth. I can’t thank them enough for their work on all aspects of the scientific program and for their
advice on virtually any other aspect of the organization. Many thanks also to Regina Barzilay, Raymond
Mooney, and Martin Cooke for accepting to present an invited lecture and thereby increase the appeal of
this event even more.

As in previous years, the selection of the workshops of all ACL conferences in the same year is
coordinated in a single committee. For EACL, Kristiina Jokinen and Alessandro Moschitti collaborated
with the NAACL and ACL chairs in reviewing and selecting the workshops. As EACL is the first
conference of the three, they had to initiate the call for proposals and activate their colleagues long
before they were planning to. Thanks to their professionalism and efficiency, the process went very
smoothly, and the resulting workshops program reflects the diversity and maturity of the field. For
even more variation during the first two days of the conference, we also have a strong tutorial program.
Tutorial Chairs Lieve Macken and Eneko Agirre managed to attract an impressive list of high-quality
submissions and performed a thorough and thoughtful review and selection. It is truly a pity only four
could be accommodated in the program, but their quality and timeliness is inspiring. Many thanks to
Kristiina, Alessandro, Lieve, and Eneko for making this important part of the scientific program such a
success.

As is previous editions of EACL, the Student Research Workshop was organized by the student members
of the EACL board: Pierre Lison, Mattias Nilsson, and Marta Recasens, with help from faculty advisor
Laurence Danlos. Their task was a huge one: to organize a mini-conference within the conference.
This included finding reviewers, selecting papers, setting up a program for the student session, finding
mentors for the accepted papers, selecting a best paper award, . . . The amount of work they did cannot
be overestimated, and the result is brilliant. Thank you! To round of the scientific program, we
have stimulating demonstration sessions, selected and coordinated by Demonstrations Chair Frédérique
Segond. Thank you for showing so clearly the rapid progress application-oriented computational
linguistics is making.

Thanks also to Gertjan van Noord and Caroline Sporleder for accepting the role of coordinators of the
mentoring service. In the end, they didn’t have to assign mentors, but it is important that such a service
is available when needed.
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For EACL 2012 we decided to switch to digital proceedings only. They were available before the
conference from the website, during the conference on the memory stick you received with your
registration material, and afterwards from the website and the ACL Anthology. An exception was made
for the tutorial notes, which are available to participants on paper as well. I warned the Publications
Chairs, Adrià de Gispert and Fabrice Lefèvre, beforehand that theirs was probably the most demanding
and stressful task of the conference: making sure that huge volumes of material from so many sources are
available in time and in the right format, incorporating last minute corrections, and handling unavoidable
glitches in the publications software. It is a formidable task, but they completed it without flinching. We
all owe them our gratitude.

EACL seems to follow economical crises, let us hope it does not become a habit. Both the previous
conference in 2009 and the current one happened in grim economical times. Being a Sponsorship Chair
is not a happy occasion in such times. Nevertheless, both the international ACL Sponsorship Committee
(with Massimiliano Ciaramita as EACL member) and the local Sponsorship Chairs (Eric SanJuan and
Stéphane Huet) left no stone unturned looking for sponsors. We would have ended up in a much worse
financial situation if it hadn’t been for their efforts. Thank you! And of course also many thanks to our
sponsors who, despite the economic situation, decided to help us financially with the conference. I am
convinced their investment will be rewarded.

Organizing large conferences like this is a complex undertaking, even with the help of extensive material
(the ACL conference handbook). Whenever in doubt, I have had the opportunity to interact with the
EACL Board, and occasionally with the ACL Board and with Priscilla Rasmussen. This has always been
a pleasure. I have learned that the people running our associations are dedicated, know everything, and
never sleep.

Last but not least, the local organizing team has had to carry the largest burden in the organization. The
sheer number of tasks and actions the local organizers of a conference like EACL have to assume is
astonishing. Marc El-Beze has been a wonderful chair and his team (Frederic Bechet, Yann Fernandez,
Stéphane Huet, Tania Jimenez, Fabrice Lefevre, Georges Linares, Alexis Nasr, Eric SanJuan, and Iria
Da Cunha) has done outstanding work. There is no beginning in mentioning the many tasks they had to
fulfill for making this a top conference. I am very grateful for all the work they put in the event and for
the stress-free and friendly cooperation. I am also grateful for the support of the University of Avignon.

I hope you will have many fond memories of EACL 2012, organized in these stunning surroundings
in Avignon, both about the exciting scientific program and about the superb social program and local
arrangements.

Walter Daelemans
General Chair
March 2012
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Preface: Program Chairs

We are delighted to present you with this volume containing the papers accepted for presentation at
the 13th Conference of the European Chapter of the Association for Computational Linguistics, held in
Avignon, France, from April 23 till April 27 2012.

EACL 2012 received 326 submissions. We were able to accept 85 papers in total (an acceptance rate
of 26%). 48 of the papers (14.7%) were accepted for oral presentation, and 34 (10.4%) for poster
presentation. One oral paper was subsequently withdrawn after acceptance. The papers were selected
by a program committee of 28 area chairs, from Asia, Europe, and North America, assisted by a panel
of 471 reviewers. Each submission was reviewed by three reviewers, who were furthermore encouraged
to discuss any divergences they might have, and the papers in each area were ranked by the area chairs.
The final selection was made by the program co-chairs after an independent check of all reviews and
discussions with the area chairs.

This year EACL introduced an author response period. Authors were able to read and respond to the
reviews of their paper before the program committee made a final decision. They were asked to correct
factual errors in the reviews and answer questions raised in the reviewers comments. The intention was
to help produce more accurate reviews. In some cases, reviewers changed their scores in view of the
authors response and the area chairs read all responses carefully prior to making recommendations for
acceptance. Another new feature was to allow authors to include optional supplementary material in
addition to the paper itself (e.g., code, data sets, and resources). Finally, in an attempt to eliminate any
bias from the reviewing process we put in place a double-blind reviewing system where the identity of
the authors was not revealed to the area chairs.

After the program was selected, each of the area chairs was asked to nominate the best paper from his
or her area, or to explicitly decline to nominate any. This resulted in several nominations out of which
three stood out and were further considered in more detail by an dedicated committee chaired by Stephen
Clark. This independent committee selected the best paper of the conference, which will be also awarded
with a prize sponsored by Google. The best paper and the other two finalists will be presented in plenary
sessions at the conference.

In addition to the main conference program, EACL 2012 will feature the now traditional Student
Research Workshop, 10 workshops, 4 tutorials and a demo session with 21 presentations. We are also
fortunate to have three invited speakers, Martin Cooke, Ikerbasque (Basque Foundation for Science),
Regina Barzilay, Massachusetts Institute of Technology, and Raymond Mooney, University of Texas at
Austin. Martin Cooke will speak about “Speech Communication in the Wild”, Regina Barzilay will
discuss the topic of “Learning to Behave by Reading”, and Raymond Mooney will present on “Learning
Language from Perceptual Context”.

First and foremost, we would like to thank the authors who submitted their work to EACL. The sheer
number of submissions reflects how broad and active our field is. We are deeply indebted to the area
chairs and the reviewers for their hard work. They enabled us to select an exciting program and to
provide valuable feedback to the authors. We are grateful to our invited speakers who graciously agreed
to give talks at EACL. Additional thanks to the Publications Chairs, Adrià de Gispert and Fabrice
Lefèvre who put this volume together. We are grateful to Rich Gerber and the START team who
always responded to our questions quickly, and helped us manage the large number of submissions
smoothly. Thanks are due to the local organizing committee chair, Marc El-Beze for his cooperation
with us over many organisational issues. We are also grateful to the Student Research Workshop chairs,
Pierre Lison, Mattias Nilsson, and Marta Recasens, and the NAACL-HLT (Srinivas Bangalore, Eric
Fosler-Lussier and Ellen Riloff) and ACL (Chin-Yew Lin and Miles Osborne) program chairs for their
smooth collaboration in the handling of double submissions. Last but not least, we are indebted to the
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General Chair, Walter Daelemans, for his guidance and support throughout the whole process.

We hope you enjoy the conference!

Mirella Lapata and Lluı́s Márquez

EACL 2012 Program Chairs
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Fabrice Lefèvre, University of Avignon, France

Sponsorship Committee:

Massimiliano Ciaramita

Mentoring service:

Caroline Sporleder, Saarland University, Germany
Gertjan van Noord, University of Groningen, The Netherlands

Local Organising Committee:

Marc El-Beze (Chair), University of Avignon, France
Frederic Bechet (Publicity chair), University Aix-Marseille 2, France
Yann Fernandez, University of Avignon, France
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Jesús González-Rubio, Daniel Ortiz-Martı́nez and Francisco Casacuberta . . . . . . . . . . . . . . . . . . . 245

Adapting Translation Models to Translationese Improves SMT
Gennadi Lembersky, Noam Ordan and Shuly Wintner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Aspectual Type and Temporal Relation Classification
Francisco Costa and António Branco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Automatic generation of short informative sentiment summaries
Andrea Glaser and Hinrich Schütze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276

Bootstrapped Training of Event Extraction Classifiers
Ruihong Huang and Ellen Riloff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Bootstrapping Events and Relations from Text
Ting Liu and Tomek Strzalkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

CLex: A Lexicon for Exploring Color, Concept and Emotion Associations in Language
Svitlana Volkova, William B. Dolan and Theresa Wilson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306

Extending the Entity-based Coherence Model with Multiple Ranks
Vanessa Wei Feng and Graeme Hirst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315

Generalization Methods for In-Domain and Cross-Domain Opinion Holder Extraction
Michael Wiegand and Dietrich Klakow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Skip N-grams and Ranking Functions for Predicting Script Events
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Speech Communication in the Wild

Martin Cooke
Language and Speech Laboratory
University of the Basque Country

Ikerbasque (Basque Science Foundation)
m.cooke@ikerbasque.org

Abstract

Much of what we know about speech perception comes from laboratory studies with clean, canonical
speech, ideal listeners and artificial tasks. But how do interlocutors manage to communicate effec-
tively in the seemingly less-than-ideal conditions of everyday listening, which frequently involve try-
ing to make sense of speech while listening in a non-native language, or in the presence of competing
sound sources, or while multitasking? In this talk I’ll examine the effect of real-world conditions on
speech perception and quantify the contributions made by factors such as binaural hearing, visual in-
formation and prior knowledge to speech communication in noise. I’ll present a computational model
which trades stimulus-related cues with information from learnt speech models, and examine how
well it handles both energetic and informational masking in a two-sentence separation task. Speech
communication also involves listening-while-talking. In the final part of the talk I’ll describe some
ways in which speakers might be making communication easier for their interlocutors, and demon-
strate the application of these principles to improving the intelligibility of natural and synthetic speech
in adverse conditions.
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Abstract

We describe a novel method that extracts
paraphrases from a bitext, for both the
source and target languages. In order
to reduce the search space, we decom-
pose the phrase-table into sub-phrase-tables
and construct separate clusters for source
and target phrases. We convert the clus-
ters into graphs, add smoothing/syntactic-
information-carrier vertices, and compute
the similarity between phrases with a ran-
dom walk-based measure, the commute
time. The resulting phrase-paraphrase
probabilities are built upon the conversion
of the commute times into artificial co-
occurrence counts with a novel technique.
The co-occurrence count distribution be-
longs to the power-law family.

1 Introduction

Paraphrase extraction has emerged as an impor-
tant problem in NLP. Currently, there exists an
abundance of methods for extracting paraphrases
from monolingual, comparable and bilingual cor-
pora (Madnani and Dorr, 2010; Androutsopou-
los and Malakasiotis, 2010); we focus on the lat-
ter and specifically on the phrase-table that is ex-
tracted from a bitext during the training stage of
Statistical Machine Translation (SMT). Bannard
and Callison-Burch (2005) introduced the pivot-
ing approach, which relies on a 2-step transition
from a phrase, via its translations, to a paraphrase
candidate. By incorporating the syntactic struc-
ture of phrases (Callison-Burch, 2005), the qual-
ity of the paraphrases extracted with pivoting can
be improved. Kok and Brockett (2010) (hence-
forth KB) used a random walk framework to de-
termine the similarity between phrases, which

was shown to outperform pivoting with syntac-
tic information, when multiple phrase-tables are
used. In SMT, extracted paraphrases with asso-
ciated pivot-based (Callison-Burch et al., 2006;
Onishi et al., 2010) and cluster-based (Kuhn et
al., 2010) probabilities have been found to im-
prove the quality of translation. Pivoting has also
been employed in the extraction of syntactic para-
phrases, which are a mixture of phrases and non-
terminals (Zhao et al., 2008; Ganitkevitch et al.,
2011).

We develop a method for extracting para-
phrases from a bitext for both the source and tar-
get languages. Emphasis is placed on the qual-
ity of the phrase-paraphrase probabilities as well
as on providing a stepping stone for extracting
syntactic paraphrases with equally reliable prob-
abilities. In line with previous work, our method
depends on the connectivity of the phrase-table,
but the resulting construction treats each side sep-
arately, which can potentially be benefited from
additional monolingual data.

The initial problem in harvesting paraphrases
from a phrase-table is the identification of the
search space. Previous work has relied on breadth
first search from the query phrase with a depth
of 2 (pivoting) and 6 (KB). The former can be
too restrictive and the latter can lead to excessive
noise contamination when taking shallow syntac-
tic information features into account. Instead, we
choose to cluster the phrase-table into separate
source and target clusters and in order to make this
task computationally feasible, we decompose the
phrase-table into sub-phrase-tables. We propose
a novel heuristic algorithm for the decomposition
of the phrase-table (Section 2.1), and use a well-
established co-clustering algorithm for clustering
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each sub-phrase-table (Section 2.2).
The underlying connectivity of the source

and target clusters gives rise to a natural graph
representation for each cluster (Section 3.1).
The vertices of the graphs consist of phrases
and features with a dual smoothing/syntactic-
information-carrier role. The latter allow (a) re-
distribution of the mass for phrases with no appro-
priate paraphrases and (b) the extraction of syn-
tactic paraphrases. The proximity among vertices
of a graph is measured by means of a random walk
distance measure, the commute time (Aldous and
Fill, 2001). This measure is known to perform
well in identifying similar words on the graph of
WordNet (Rao et al., 2008) and a related measure,
the hitting time is known to perform well in har-
vesting paraphrases on a graph constructed from
multiple phrase-tables (KB).

Generally in NLP, power-law distributions are
typically encountered in the collection of counts
during the training stage. The distances of Sec-
tion 3.1 are converted into artificial co-occurrence
counts with a novel technique (Section 3.2). Al-
though they need not be integers, the main chal-
lenge is the type of the underlying distributions;
it should ideally emulate the resulting count dis-
tributions from the phrase extraction stage of a
monolingual parallel corpus (Dolan et al., 2004).
These counts give rise to the desired probability
distributions by means of relative frequencies.

2 Sub-phrase-tables & Clustering

2.1 Extracting Connected Components

For the decomposition of the phrase-table into
sub-phrase-tables it is convenient to view the
phrase-table as an undirected, unweighted graph
P with the vertex set being the source and target
phrases and the edge set being the phrase-table en-
tries. For the rest of this section, we do not distin-
guish between source and target phrases, i.e. both
types are treated equally as vertices of P . When
referring to the size of a graph, we mean the num-
ber of vertices it contains.

A trivial initial decomposition of P is achieved
by identifying all its connected components (com-
ponents for brevity), i.e. the mutually disjoint
connected subgraphs, {P0, P1, ..., Pn}. It turns
out (see Section 4.1) that the largest component,
say P0, is of significant size. We call P0 giant
and it needs to be further decomposed. This is

done by identifying all vertices such that, upon
removal, the component becomes disconnected.
Such vertices are called articulation points or cut-
vertices. Cut-vertices of high connectivity degree
are removed from the giant component (see Sec-
tion 4.1). For the remaining vertices of the giant
component, new components are identified and
we proceed iteratively, while keeping track of the
cut-vertices that are removed at each iteration, un-
til the size of the largest component is less than a
certain threshold θ (see Section 4.1).

Note that at each iteration, when removing cut-
vertices from a giant component, the resulting col-
lection of components may include graphs con-
sisting of a single vertex. We refer to such ver-
tices as residues. They are excluded from the re-
sulting collection and are considered for separate
treatment, as explained later in this section.

The cut-vertices need to be inserted appropri-
ately back to the components: Starting from the
last iteration step, the respective cut-vertices are
added to all the components of P0 which they
used to ‘glue’ together; this process is performed
iteratively, until there are no more cut-vertices to
add. By ‘addition’ of a cut-vertex to a component,
we mean the re-establishment of edges between
the former and other vertices of the latter. The
result is a collection of components whose total
number of unique vertices is less than the number
of vertices of the initial giant component P0.

These remaining vertices are the residues. We
then construct the graph R which consists of
the residues together with all their translations
(even those that are included in components of
the above collection) and then identify its compo-
nents {R0, ..., Rm}. It turns out, that the largest
component, say R0, is giant and we repeat the de-
composition process that was performed on P0.
This results in a new collection of components
as well as new residues: The components need
to be pruned (see Section 4.1) and the residues
give rise to a new graph R′ which is constructed
in the same way as R. We proceed iteratively until
the number of residues stops changing. For each
remaining residue u, we identify its translations,
and for each translation v we identify the largest
component of which v is a member and add u to
that component.

The final result is a collection C = D ∪ F ,
where D is the collection of components emerg-
ing from the entire iterative decomposition of P0
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and R, and F = {P1, ..., Pn}. Figure 1 shows
the decomposition of a connected graph G0; for
simplicity we assume that only one cut-vertex is
removed at each iteration and ties are resolved ar-
bitrarily. In Figure 2 the residue graph is con-
structed and its two components are identified.
The iterative insertion of the cut vertices is also
depicted. The resulting two components together
with those from R form the collection D for G0.

The addition of cut-vertices into multiple com-
ponents, as well as the construction method of the
residue-based graph R, can yield the occurrences
of a vertex in multiple components in D. We ex-
ploit this property in two ways:

(a) In order to mitigate the risk of excessive de-
composition (which implies greater risk of good
paraphrases being in different components), as
well as to reduce the size of D, a conserva-
tive merging algorithm of components is em-
ployed. Suppose that the elements of D are
ranked according to size in ascending order as
D = {D1, ..., Dk, Dk+1, ..., D|D|}, where |Di| ≤
δ, for i = 1, ..., k, and some threshold δ (see Sec-
tion 4.1). Each component Di with i ∈ {1, ..., k}
is examined as follows: For each vertex of Di the
number of its occurrences inD is inspected; this is
done in order to identify an appropriate vertex b to
act as a bridge between Di and other components
of which b is a member. Note that translations of
a vertex b with smaller number of occurrences in
D are less likely to capture their full spectrum of
paraphrases. We thus choose a vertex b from Di

with the smallest number of occurrences in D ,
resolving ties arbitrarily, and proceed with merg-
ing Di with the largest component, say Dj with
j ∈ {1, ..., |D| − 1}, of which b is also a member.
The resulting merged component Dj′ contains all
vertices and edges of Di and Dj and new edges,
which are formed according to the rule: if u is a
vertex of Di and v is a vertex of Dj and (u, v) is
a phrase-table entry, then (u, v) is an edge in Dj′ .
As long as no connected component has identi-
fied Di as the component with which it should be
merged, then Di is deleted from the collection D.

(b) We define an idf -inspired measure for each
phrase pair (x, x′) of the same type (source or tar-
get) as

idf(x, x′) =
1

log |D|
log

(
2c(x, x′)|D|
c(x) + c(x′)

)
, (1)

where c(x, x′) is the number of components in

which the phrases x and x′ co-occur, and equiv-
alently for c(·). The purpose of this measure is
for pruning paraphrase candidates and its use is
explained in Section 3.1. Note that idf(x, x′) ∈
[0, 1].

The merging process and the idf measure are
irrelevant for phrases belonging to the compo-
nents of F , since the vertex set of each compo-
nent of F is mutually disjoint with the vertex set
of any other component in C.
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Figure 1: The decomposition of G0 with vertices
si and tj : The cut-vertex of the ith iteration is de-
noted by ci, and r collects the residues after each
iteration. The task is completed in Figure 2.
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Figure 2: Top: Residue graph with its components
(no further decomposition is required). Bottom:
Adding cut-vertices back to their components.

2.2 Clustering Connected Components
The aim of this subsection is to generate sep-
arate clusters for the source and target phrases
of each sub-phrase-table (component) C ∈ C.
For this purpose the Information-Theoretic Co-
Clustering (ITC) algorithm (Dhillon et al., 2003)
is employed, which is a general principled cluster-
ing algorithm that generates hard clusters (i.e. ev-
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ery element belongs to exactly one cluster) of two
interdependent quantities and is known to per-
form well on high-dimensional and sparse data.
In our case, the interdependent quantities are the
source and target phrases and the sparse data is
the phrase-table.

ITC is a search algorithm similar to K-means,
in the sense that a cost function, is minimized at
each iteration step and the number of clusters for
both quantities are meta-parameters. The number
of clusters is set to the most conservative initial-
ization for both source and target phrases, namely
to as many clusters as there are phrases. At each
iteration, new clusters are constructed based on
the identification of the argmin of the cost func-
tion for each phrase, which gradually reduces the
number of clusters.

We observe that conservative choices for the
meta-parameters often result in good paraphrases
being in different clusters. To overcome this prob-
lem, the hard clusters are converted into soft (i.e.
an element may belong to several clusters): One
step before the stopping criterion is met, we mod-
ify the algorithm so that instead of assigning a
phrase to the cluster with the smallest cost we se-
lect the bottom-X clusters ranked by cost. Addi-
tionally, only a certain number of phrases is cho-
sen for soft clustering. Both selections are done
conservatively with criteria based on the proper-
ties of the cost functions.

The formation of clusters leads to a natural re-
finement of the idf measure defined in eqn. (1):
The quantity c(x, x′) is redefined as the number
of components in which the phrases x and x′ co-
occur in at least one cluster.

3 Monolingual Graphs & Counts

We proceed with converting the clusters into di-
rected, weighted graphs and then extract para-
phrases for both the source and target side. For
brevity we explain the process restricted to the
source clusters of a sub-phrase-table, but the same
method applies for the target side and for all sub-
phrase-tables in the collection C.

3.1 Monolingual graphs
Each source cluster is converted into a graph G as
follows: The vertex set consists of the phrases of
the cluster and an edge between s and s′ exists, if
(a) s and s′ have at least one translation from the
same target cluster, and (b) idf(s, s′) is greater

than some threshold σ (see Section 4.1). If two
phrases that satisfy condition (b) and have trans-
lations in more than one common target cluster,
a distinct such edge is established. All edges are
bi-directional with distinct weights for both direc-
tions.

Figure 3 depicts an example of such a construc-
tion; a link between a phrase si and a target cluster
implies the existence of at least one translation for
si in that cluster. We are not interested in the tar-
get phrases and they are thus not shown. For sim-
plicity we assume that condition (b) is always sat-
isfied and the extracted graph contains the maxi-
mum possible edges. Observe that phrases s3 and
s4 have two edges connecting them, (due to tar-
get clusters Tc and Td) and that the target cluster
Ta is irrelevant to the construction of the graph,
since s1 is the only phrase with translations in it.
This conversion of a source cluster into a graph G
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Figure 3: Top: A source cluster containing
phrases s1,..., s8 and the associated target clusters
Ta,..., Tf . Bottom: The extracted graph from the
source cluster. All edges are bi-directional.

results in the formation of subgraphs in G, where
each subgraph is generated by a target cluster. In
general, if condition (b) is not always satisfied,
then G need not be connected and each connected
component is treated as a distinct graph.

Analogous to KB, we introduce feature vertices
to G: For each phrase vertex s, its part-of-speech
(POS) tag sequence and stem sequence are iden-
tified and inserted into G as new vertices with
bi-directional weighted edges connected to s. If
phrase vertices s and s′ have the same POS tag se-
quence, then they are connected to the same POS
tag feature vertex. Similarly for stem feature ver-
tices. See Figure 4 for an example. Note that we
do not allow edges between POS tag and stem fea-
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ownshas

VBZ

OWN OWNHAVE

i have

I HAVE

PRP VBP

i had

PRP VBD

Figure 4: Adding feature vertices to the extracted
graph (has) ⇀↽ (owns) ⇀↽ (i have) ⇀↽ (i had).
Phrase, POS tag feature and stem feature ver-
tices are drawn in circles, dotted rectangles and
solid rectangles respectively. All edges are bi-
directional.

ture vertices. The purpose of the feature vertices,
unlike KB, is primarily for smoothing and secon-
darily for identifying paraphrases with the same
syntactic information and this will become clear
in the description of the computation of weights.

The set of all phrase vertices that are adja-
cent to s is written as Γ(s), and referred to
as the neighborhood of s. Let n(s, t) denote
the co-occurrence count of a phrase-table entry
(s, t) (Koehn, 2009). We define the strength of
s in the subgraph generated by cluster T as

n(s;T ) =
∑
t∈T

n(s, t), (2)

which is simply a partial occurrence count for s.
We proceed with computing weights for all edges
of G:

Phrase⇀↽phrase weights: Inspired by the
notion of preferential attachment (Yule, 1925),
which is known to produce power-law weight dis-
tributions for evolving weighted networks (Barrat
et al., 2004), we set the weight of a directed
edge from s to s′ to be proportional to the
strengths of s′ in all subgraphs in which both
s and s′ are members. Thus, in the random
walk framework, s is more likely to visit
a stronger (more reliable) neighbor. If Ts,s′ =
{T |s and s′ coexist in subgraph generated by T},
then the weight w(s → s′) of the directed edge
from s to s′ is given by

w(s → s′) =
∑

T∈Ts,s′

n(s′;T ), (3)

if s′ ∈ Γ(s) and 0 otherwise.

Phrase⇀↽feature weights: As mentioned
above, feature vertices have the dual role of car-
rying syntactic information and smoothing. From
eqn. (3) it can be deduced that, if for a phrase
s, the amount of its outgoing weights is close to
the amount of its incoming weights, then this is
an indication that at least a significant part of its
neighborhood is reliable; the larger the strengths,
the more certain the indication. Otherwise, either
s or a significant part of its neighborhood is
unreliable. The amount of weight from s to its
feature vertices should depend on this observation
and we thus let

net(s) =

∣∣∣∣∣∣
∑

s′∈Γ(s)

(w(s → s′)− w(s′ → s))

∣∣∣∣∣∣ + ε,

(4)
where ε prevents net(s) from becoming 0 (see
Section 4.1). The net weight of a phrase vertex
s is distributed over its feature vertices as

w(s → fX) =< w(s → s′) > +net(s), (5)

where the first summand is the average weight
from s to its neighboring phrase vertices and
X = POS, STEM. If s has multiple POS tag
sequences, we distribute the weight of eqn. (5)
relatively to the co-occurrences of s with the re-
spective POS tag feature vertices. The quantity
< w(s → s′) > accounts for the basic smoothing
and is augmented by a value net(s) that measures
the reliability of s’s neighborhood; the more unre-
liable the neighborhood, the larger the net weight
and thus larger the overall weights to the feature
vertices.

The choice for the opposite direction is trivial:

w(fX → s) =
1

|{s′ : (fX , s′) is an edge }|
, (6)

where X = POS, STEM. Note the effect of
eqns. (4)–(6) in the case where the neighborhood
of s has unreliable strengths: In a random walk
the feature vertices of s will be preferred and the
resulting similarities between s and other phrase
vertices will be small, as desired. Nonetheless,
if the syntactic information is the same with any
other phrase vertex in G, then the paraphrases will
be captured.

The transition probability from any vertex u to
any other vertex v in G, i.e., the probability of
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hopping from u to v in one step, is given by

p(u → v) =
w(u → v)∑
v′ w(u → v′)

, (7)

where we sum over all vertices adjacent to u in G.
We can thus compute the similarity between any
two vertices u and v in G by their commute time,
i.e., the expected number of steps in a round trip,
in a random walk from u to v and then back to u,
which is denoted by κ(u, v) (see Section 4.1 for
the method of computation of κ). Since κ(u, v) is
a distance measure, the smaller its value, the more
similar u and v are.

3.2 Counts
We convert the distance κ(u, v) of a vertex pair
u, v in a graph G into a co-occurrence count
nG(u, v) with a novel technique: In order to as-
sess the quality of the pair u, v with respect to G
we compare κ(u, v) with κ(u, x) and κ(v, x) for
all other vertices x in G. We thus consider the av-
erage distance of u with the other vertices of G
other than v, and similarly for v. This quantity is
denoted by κ(u; v) and κ(v;u) respectively, and
by definition it is given by

κ(i; j) =
∑
x∈G
x 6=j

κ(i, x)pG(x|i) (8)

where pG(x|i) ≡ p(x|G, i) is a yet unknown
probability distribution with respect to G. The
quantity (κ(u; v)+κ(v;u))/2 can then be viewed
as the average distance of the pair u, v to the rest
of the graph G. The co-occurrence count of u and
v in G is thus defined by

nG(u, v) =
κ(u; v) + κ(v;u)

2κ(u, v)
. (9)

In order to calculate the probabilities pG(·|·) we
employ the following heuristic: Starting with a
uniform distribution p

(0)
G (·|·) at timestep t = 0,

we iterate

κ(t)(i; j) =
∑
x∈G
x 6=j

κ(i, x)p(t)
G (x|i) (10)

n
(t)
G (u, v) =

κ(t)(u; v) + κ(t)(v;u)
2κ(u, v)

(11)

p
(t+1)
G (v|u) =

n
(t)
G (u, v)∑

x∈G n
(t)
G (u, v)

(12)

for all pairs of vertices u, v in G until conver-
gence. Experimentally, we find that convergence
is always achieved. After the execution of this it-
erative process we divide each count by the small-
est count in order to achieve a lower bound of 1.

A pair u, v may appear in multiple graphs in the
same sub-phrase-table C. The total co-occurrence
count of u and v in C and the associated condi-
tional probabilities are thus given by

nC(u, v) =
∑
G∈C

nG(u, v) (13)

pC(v|u) =
nC(u, v)∑

x∈C nC(u, x)
. (14)

A pair u, v may appear in multiple sub-phrase-
tables and for the calculation of the final count
n(u, v) we need to average over the associated
counts from all sub-phrase-tables. Moreover, we
have to take into account the type of the vertices:
For the simplest case where both u and v repre-
sent phrase vertices, their expected count is, by
definition, given by

n(s, s′) =
∑
C

nC(s, s′)p(C|s, s′). (15)

On the other hand, if at least one of u or v is
a feature vertex, then we have to consider the
phrase vertex that generates this feature: Suppose
that u is the phrase vertex s=‘acquire’ and v the
POS tag vertex f=‘NN’ and they co-occur in two
sub-phrase-tables C and C ′ with positive counts
nC(s, f) and nC′(s, f) respectively; the feature
vertex f is generated by the phrase vertices ‘own-
ership’ in C and by ‘possession’ in C ′. In that
case, an interpolation of the counts nC(s, f) and
nC′(s, f) as in eqn. (15) would be incorrect and
a direct sum nC(s, f) + nC′(s, f) would provide
the true count. As a result we have

n(s, f) =
∑
s′

∑
C

nC(s, f(s′))p(C|s, f(s′)),

(16)
where the first summation is over all phrase ver-
tices s′ such that f(s′) = f . With a similar argu-
ment we can write

n(f, f ′) =
∑
s,s′

∑
C

nC(f(s), f(s′))×

× p(C|f(s), f(s′)). (17)
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For the interpolants, from standard probability we
find

p(C|u, v) =
pC(v|u)p(C|u)∑

C′ pC′(v|u)p(C ′|u)
, (18)

where the probabilities p(C|u) can be computed
by considering the likelihood function

`(u) =
N∏

i=1

p(xi|u) =
N∏

i=1

∑
C

pC(xi|u)p(C|u)

and by maximizing the average log-likelihood
1
N log `(u), where N is the total number of ver-
tices with which u co-occurs with positive counts
in all sub-phrase-tables.

Finally, the desired probability distributions are
given by the relative frequencies

p(v|u) =
n(u, v)∑
x n(u, x)

, (19)

for all pairs of vertices u, v.

4 Experiments

4.1 Setup
The data for building the phrase-table P
is drawn from DE-EN bitexts crawled from
www.project-syndicate.org, which is
a standard resource provider for the WMT
campaigns (News Commentary bitexts, see,
e.g. (Callison-Burch et al., 2007) ). The filtered
bitext consists of 125K sentences; word align-
ment was performed running GIZA++ in both di-
rections and generating the symmetric alignments
using the ‘grow-diag-final-and’ heuristics. The
resulting P has 7.7M entries, 30% of which are
‘1-1’, i.e. entries (s, t) that satisfy p(s|t) =
p(t|s) = 1. These entries are irrelevant for para-
phrase harvesting for both the baseline and our
method, and are thus excluded from the process.

The initial giant component P0 contains 1.7M
vertices (Figure 5), of which 30% become
residues and are used to construct R. At each it-
eration of the decomposition of a giant compo-
nent, we remove the top 0.5% · size cut-vertices
ranked by degree of connectivity, where size is
the number of vertices of the giant component and
set θ = 2500 as the stopping criterion. The latter
choice is appropriate for the subsequent step of
co-clustering the components, for both time com-
plexity and performance of the ITC algorithm.
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Figure 5: Log-log plot of ranked components ac-
cording to their size (number of source and target
phrases) for: (a) Components extracted from P .
‘1-1’ components are not shown. (b) Components
extracted from the decomposition of P0.

In the components emerging from the decompo-
sition of R0, we observe an excessive number
of cut-vertices. Note that vertices that consist
these components can be of two types: i) for-
mer residues, i.e., residues that emerged from the
decomposition of P0, and ii) other vertices of
P0. Cut-vertices can be of either type. For each
component, we remove cut-vertices that are not
translations of the former residues of that com-
ponent. Following this pruning strategy, the de-
generacy of excessive cut-vertices does not reap-
pear in the subsequent iterations of decompos-
ing components generated by new residues, but
the emergence of two giant components was ob-
served: One consisting mostly of source type ver-
tices and one of target type vertices. Without go-
ing into further details, the algorithm can extend
to multiple giant components straightforwardly.
For the merging process of the collection D we
set δ = 5000, to avoid the emergence of a giant
component. The sizes of the resulting sub-phrase-
tables are shown in Figure 6. For the ITC algo-
rithm we use the smoothing technique discussed
in (Dhillon and Guan, 2003) with α = 106.

For the monolingual graphs, we set σ = 0.65
and discard graphs with more than 20 phrase ver-
tices, as they contain mostly noise. Thus, the sizes
of the graphs allow us to use analytical methods
to compute the commute times: For a graph G,
we form the transition matrix P , whose entries
P (u, v) are given by eqn. (7), and the fundamen-

8



10
0

10
2

10
4

10
610

0

10
1

10
2

10
3

10
4

10
5

10
6

rank

s
i
z
e

 

 

before merging
after merging

Figure 6: Log-log plot of ranked sub-phrase-
tables according to their size (number of source
and target phrases).

tal matrix (Grinstead and Snell, 2006; Boley et al.,
2011) Z = (I−P +1πT )−1, where I is the iden-
tity matrix, 1 denotes the vector of all ones and π
is the vector of stationary probabilities (Aldous
and Fill, 2001) which is such that πT P = πT

and πT1 = 1 and can be computed as in (Hunter,
2000). The commute time between any vertices u
and v in G is then given by (Grinstead and Snell,
2006)

κ(u, v) = (Z(v, v)− Z(u, v))/π(v) +
+ (Z(u, u)− Z(v, u))/π(u). (20)

For the parameter of eqn. (4), an appropriate
choice is ε = |Γ(s)| + 1; for reliable neighbor-
hoods, this quantity is insignificant. POS tags and
lemmata are generated with TreeTagger1.

Figure 7 depicts the most basic type of graph
that can be extracted from a cluster; it includes
two source phrase vertices a, b, of different syn-
tactic information. Suppose that both a and
b are highly reliable with strengths n(a;T ) =
n(b;T ) = 40, for some target cluster T . The re-
sulting conditional probabilities adequately repre-
sent the proximity of the involved vertices. On
the other hand, the range of the co-occurrence
counts is not compatible with that of the strengths.
This is because i) there are no phrase vertices with
small strength in the graph, and ii) eqn. (9) is es-
sentially a comparison between a pair of vertices
and the rest of the graph. To overcome this prob-
lem inflation vertices ia and ib of strength 1 with
accompanying feature vertices are introduced to

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

the graph. Figure 8 depicts the new graph, where
the lengths of the edges represent the magnitude
of commute times. Observe that the quality of
the probabilities is preserved but the counts are
inflated, as required.

In general, if a source phrase vertex s has at
least one translation t such that n(s, t) ≥ 3, then a
triplet (is, f(is), g(is)) is added to the graph as in
Figure 8. The inflation vertex is establishes edges
with all other phrase and inflation vertices in the
graph and weights are computed as in Section 3.1.
The pipeline remains the same up to eqn. (13),
where all counts that include inflation vertices are
ignored.
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Figure 7: Top: A graph with source phrase ver-
tices a and b, both of strength 40, with accom-
panying distinct POS sequence vertices f(·) and
stem sequence vertices g(·). Bottom: The result-
ing co-occurrence counts and conditional proba-
bilities for a.
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Figure 8: The inflated version of Figure 7.
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4.2 Results
Our method generates conditional probabilities
for any pair chosen from {phrase, POS sequence,
stem sequence}, but for this evaluation we restrict
ourselves to phrase pairs. For a phrase s, the qual-
ity of a paraphrase s′ is assessed by

P (s′|s) ∝ p(s′|s) + p(f1(s′)|s) + p(f2(s′)|s),
(21)

where f1(s′) and f2(s′) denote the POS tag se-
quence and stem sequence of s′ respectively. All
three summands of eqn. (21) are computed from
eqn. (19). The baseline is given by pivoting (Ban-
nard and Callison-Burch, 2005),

P (s′|s) =
∑

t

p(t|s)p(s′|t), (22)

where p(t|s) and p(s′|t) are the phrase-based rel-
ative frequencies of the translation model.

We select 150 phrases (an equal number for
unigrams, bigrams and trigrams), for which we
expect to see paraphrases, and keep the top-10
paraphrases for each phrase, ranked by the above
measures. We follow (Kok and Brockett, 2010;
Metzler et al., 2011) in the evaluation of the ex-
tracted paraphrases: Each phrase-paraphrase pair
is manually annotated with the following options:
0) Different meaning; 1) (i) Same meaning, but
potential replacement of the phrase with the para-
phrase in a sentence ruins the grammatical struc-
ture of the sentence. (ii) Tokens of the paraphrase
are morphological inflections of the phrase’s to-
kens. 2) Same meaning. Although useful for SMT
purposes, ‘super/substrings of’ are annotated with
0 to achieve an objective evaluation.

Both methods are evaluated in terms of the
Mean Expected Precision (MEP) at k; the Ex-
pected Precision for each selected phrase s at
rank k is computed by Es[p@k] = 1

k

∑k
i=1 pi,

where pi is the proportion of positive annotations
for item i. The desired metric is thus given by
MEP@k = 1

150

∑
s Es[p@k]. The contribution

to pi can be restricted to perfect paraphrases only,
which leads to a strict strategy for harvesting para-
phrases. Table 1 summarizes the results of our
evaluation and

we deduce that our method can lead to improve-
ments over the baseline.

An important accomplishment of our method
is that the distribution of counts n(u, v), (as given

Method
Lenient MEP Strict MEP

@1 @5 @10 @1 @5 @10
Baseline .58 .47 .41 .43 .33 .28
Graphs .72 .61 .52 .53 .40 .33

Table 1: Mean Expected Precision (MEP) at k un-
der lenient and strict evaluation criteria.

by eqns. (15)–(17)) for all vertices u and v, be-
longs to the power-law family (Figure 9). This is
evidence that the monolingual graphs can simu-
late the phrase extraction process of a monolin-
gual parallel corpus. Intuitively, we may think of
the German side of the DE–EN parallel corpus as
the ‘English’ approximation to a ‘EN’–EN par-
allel corpus, and the monolingual graphs as the
word alignment process.
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Figure 9: Log-log plot of ranked pairs of English
vertices according to their counts

5 Conclusions & Future Work

We have described a new method that harvests
paraphrases from a bitext, generates artificial
co-occurrence counts for any pair chosen from
{phrase, POS sequence, stem sequence}, and po-
tentially identifies patterns for the syntactic infor-
mation of the phrases. The quality of the para-
phrases’ ranked lists outperforms that of a stan-
dard baseline. The quality of the resulting condi-
tional probabilities is promising and will be eval-
uated implicitly via an application to SMT.

This research was funded by the European
Commission through the CoSyne project FP7-
ICT- 4-248531.
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Abstract

We introduce two Bayesian models for un-
supervised semantic role labeling (SRL)
task. The models treat SRL as clustering
of syntactic signatures of arguments with
clusters corresponding to semantic roles.
The first model induces these clusterings
independently for each predicate, exploit-
ing the Chinese Restaurant Process (CRP)
as a prior. In a more refined hierarchical
model, we inject the intuition that the clus-
terings are similar across different predi-
cates, even though they are not necessar-
ily identical. This intuition is encoded as
a distance-dependent CRP with a distance
between two syntactic signatures indicating
how likely they are to correspond to a single
semantic role. These distances are automat-
ically induced within the model and shared
across predicates. Both models achieve
state-of-the-art results when evaluated on
PropBank, with the coupled model consis-
tently outperforming the factored counter-
part in all experimental set-ups.

1 Introduction

Semantic role labeling (SRL) (Gildea and Juraf-
sky, 2002), a shallow semantic parsing task, has
recently attracted a lot of attention in the com-
putational linguistic community (Carreras and
Màrquez, 2005; Surdeanu et al., 2008; Hajič et
al., 2009). The task involves prediction of predi-
cate argument structure, i.e. both identification of
arguments as well as assignment of labels accord-
ing to their underlying semantic role. For exam-
ple, in the following sentences:

(a) [A0 Mary] opened [A1 the door].

(b) [A0 Mary] is expected to open [A1 the door].

(c) [A1 The door] opened.

(d) [A1 The door] was opened [A0 by Mary].

Mary always takes an agent role (A0) for the pred-
icate open, and door is always a patient (A1).
SRL representations have many potential appli-
cations in natural language processing and have
recently been shown to be beneficial in question
answering (Shen and Lapata, 2007; Kaisser and
Webber, 2007), textual entailment (Sammons et
al., 2009), machine translation (Wu and Fung,
2009; Liu and Gildea, 2010; Wu et al., 2011; Gao
and Vogel, 2011), and dialogue systems (Basili et
al., 2009; van der Plas et al., 2011), among others.
Though syntactic representations are often predic-
tive of semantic roles (Levin, 1993), the interface
between syntactic and semantic representations is
far from trivial. The lack of simple determinis-
tic rules for mapping syntax to shallow semantics
motivates the use of statistical methods.

Although current statistical approaches have
been successful in predicting shallow seman-
tic representations, they typically require large
amounts of annotated data to estimate model pa-
rameters. These resources are scarce and ex-
pensive to create, and even the largest of them
have low coverage (Palmer and Sporleder, 2010).
Moreover, these models are domain-specific, and
their performance drops substantially when they
are used in a new domain (Pradhan et al., 2008).
Such domain specificity is arguably unavoidable
for a semantic analyzer, as even the definitions
of semantic roles are typically predicate specific,
and different domains can have radically different
distributions of predicates (and their senses). The
necessity for a large amounts of human-annotated
data for every language and domain is one of the
major obstacles to the wide-spread adoption of se-
mantic role representations.

These challenges motivate the need for unsu-
pervised methods which, instead of relying on la-
beled data, can exploit large amounts of unlabeled
texts. In this paper, we propose simple and effi-
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cient hierarchical Bayesian models for this task.
It is natural to split the SRL task into two

stages: the identification of arguments (the iden-
tification stage) and the assignment of semantic
roles (the labeling stage). In this and in much
of the previous work on unsupervised techniques,
the focus is on the labeling stage. Identification,
though an important problem, can be tackled with
heuristics (Lang and Lapata, 2011a; Grenager and
Manning, 2006) or, potentially, by using a super-
vised classifier trained on a small amount of data.
We follow (Lang and Lapata, 2011a), and regard
the labeling stage as clustering of syntactic sig-
natures of argument realizations for every predi-
cate. In our first model, as in most of the previous
work on unsupervised SRL, we define an indepen-
dent model for each predicate. We use the Chi-
nese Restaurant Process (CRP) (Ferguson, 1973)
as a prior for the clustering of syntactic signatures.
The resulting model achieves state-of-the-art re-
sults, substantially outperforming previous meth-
ods evaluated in the same setting.

In the first model, for each predicate we inde-
pendently induce a linking between syntax and se-
mantics, encoded as a clustering of syntactic sig-
natures. The clustering implicitly defines the set
of permissible alternations, or changes in the syn-
tactic realization of the argument structure of the
verb. Though different verbs admit different alter-
nations, some alternations are shared across mul-
tiple verbs and are very frequent (e.g., passiviza-
tion, example sentences (a) vs. (d), or dativiza-
tion: John gave a book to Mary vs. John gave
Mary a book) (Levin, 1993). Therefore, it is nat-
ural to assume that the clusterings should be sim-
ilar, though not identical, across verbs.

Our second model encodes this intuition by re-
placing the CRP prior for each predicate with
a distance-dependent CRP (dd-CRP) prior (Blei
and Frazier, 2011) shared across predicates. The
distance between two syntactic signatures en-
codes how likely they are to correspond to a sin-
gle semantic role. Unlike most of the previous
work exploiting distance-dependent CRPs (Blei
and Frazier, 2011; Socher et al., 2011; Duan et al.,
2007), we do not encode prior or external knowl-
edge in the distance function but rather induce it
automatically within our Bayesian model. The
coupled dd-CRP model consistently outperforms
the factored CRP counterpart across all the experi-
mental settings (with gold and predicted syntactic

parses, and with gold and automatically identified
arguments).

Both models admit efficient inference: the es-
timation time on the Penn Treebank WSJ corpus
does not exceed 30 minutes on a single proces-
sor and the inference algorithm is highly paral-
lelizable, reducing inference time down to sev-
eral minutes on multiple processors. This sug-
gests that the models scale to much larger corpora,
which is an important property for a successful
unsupervised learning method, as unlabeled data
is abundant.

The rest of the paper is structured as follows.
Section 2 begins with a definition of the seman-
tic role labeling task and discuss some specifics
of the unsupervised setting. In Section 3, we de-
scribe CRPs and dd-CRPs, the key components
of our models. In Sections 4 – 6, we describe
our factored and coupled models and the infer-
ence method. Section 7 provides both evaluation
and analysis. Finally, additional related work is
presented in Section 8.

2 Task Definition

In this work, instead of assuming the availabil-
ity of role annotated data, we rely only on auto-
matically generated syntactic dependency graphs.
While we cannot expect that syntactic structure
can trivially map to a semantic representation
(Palmer et al., 2005)1, we can use syntactic cues
to help us in both stages of unsupervised SRL.
Before defining our task, let us consider the two
stages separately.

In the argument identification stage, we imple-
ment a heuristic proposed in (Lang and Lapata,
2011a) comprised of a list of 8 rules, which use
nonlexicalized properties of syntactic paths be-
tween a predicate and a candidate argument to it-
eratively discard non-arguments from the list of
all words in a sentence. Note that inducing these
rules for a new language would require some lin-
guistic expertise. One alternative may be to an-
notate a small number of arguments and train a
classifier with nonlexicalized features instead.

In the argument labeling stage, semantic roles
are represented by clusters of arguments, and la-
beling a particular argument corresponds to decid-
ing on its role cluster. However, instead of deal-

1Although it provides a strong baseline which is diffi-
cult to beat (Grenager and Manning, 2006; Lang and Lapata,
2010; Lang and Lapata, 2011a).
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ing with argument occurrences directly, we rep-
resent them as predicate specific syntactic signa-
tures, and refer to them as argument keys. This
representation aids our models in inducing high
purity clusters (of argument keys) while reducing
their granularity. We follow (Lang and Lapata,
2011a) and use the following syntactic features to
form the argument key representation:

• Active or passive verb voice (ACT/PASS).
• Argument position relative to predicate

(LEFT/RIGHT).
• Syntactic relation to its governor.
• Preposition used for argument realization.

In the example sentences in Section 1, the argu-
ment keys for candidate arguments Mary for sen-
tences (a) and (d) would be ACT:LEFT:SBJ and
PASS:RIGHT:LGS->by,2 respectively. While
aiming to increase the purity of argument key
clusters, this particular representation will not al-
ways produce a good match: e.g. the door in
sentence (c) will have the same key as Mary in
sentence (a). Increasing the expressiveness of the
argument key representation by flagging intransi-
tive constructions would distinguish that pair of
arguments. However, we keep this particular rep-
resentation, in part to compare with the previous
work.

In this work, we treat the unsupervised seman-
tic role labeling task as clustering of argument
keys. Thus, argument occurrences in the corpus
whose keys are clustered together are assigned the
same semantic role. Note that some adjunct-like
modifier arguments are already explicitly repre-
sented in syntax and thus do not need to be clus-
tered (modifiers AM-TMP, AM-MNR, AM-LOC, and
AM-DIR are encoded as ‘syntactic’ relations TMP,
MNR, LOC, and DIR, respectively (Surdeanu et al.,
2008)); instead we directly use the syntactic labels
as semantic roles.

3 Traditional and Distance-dependent
CRPs

The central components of our non-parametric
Bayesian models are the Chinese Restaurant Pro-
cesses (CRPs) and the closely related Dirichlet
Processes (DPs) (Ferguson, 1973).

CRPs define probability distributions over par-
titions of a set of objects. An intuitive metaphor

2LGS denotes a logical subject in a passive construction
(Surdeanu et al., 2008).

for describing CRPs is assignment of tables to
restaurant customers. Assume a restaurant with a
sequence of tables, and customers who walk into
the restaurant one at a time and choose a table to
join. The first customer to enter is assigned the
first table. Suppose that when a client number i
enters the restaurant, i − 1 customers are sitting
at each of the k ∈ (1, . . . ,K) tables occupied so
far. The new customer is then either seated at one
of theK tables with probability Nk

i−1+α , whereNk

is the number customers already sitting at table
k, or assigned to a new table with the probability

α
i−1+α . The concentration parameter α encodes
the granularity of the drawn partitions: the larger
α, the larger the expected number of occupied ta-
bles. Though it is convenient to describe CRP in a
sequential manner, the probability of a seating ar-
rangement is invariant of the order of customers’
arrival, i.e. the process is exchangeable. In our
factored model, we use CRPs as a prior for clus-
tering argument keys, as we explain in Section 4.

Often CRP is used as a part of the Dirich-
let Process mixture model where each subset in
the partition (each table) selects a parameter (a
meal) from some base distribution over parame-
ters. This parameter is then used to generate all
data points corresponding to customers assigned
to the table. The Dirichlet processes (DP) are
closely connected to CRPs: instead of choosing
meals for customers through the described gener-
ative story, one can equivalently draw a distribu-
tion G over meals from DP and then draw a meal
for every customer from G. We refer the reader
to Teh (2010) for details on CRPs and DPs. In
our method, we use DPs to model distributions of
arguments for every role.

In order to clarify how similarities between
customers can be integrated in the generative pro-
cess, we start by reformulating the traditional
CRP in an equivalent form so that distance-
dependent CRP (dd-CRP) can be seen as its gen-
eralization. Instead of selecting a table for each
customer as described above, one can equiva-
lently assume that a customer i chooses one of
the previous customers ci as a partner with prob-
ability 1

i−1+α and sits at the same table, or occu-
pies a new table with the probability α

i−1+α . The
transitive closure of this seating-with relation de-
termines the partition.

A generalization of this view leads to the defini-
tion of the distance-dependent CRP. In dd-CRPs,
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a customer i chooses a partner ci = j with
the probability proportional to some non-negative
score di,j (di,j = dj,i) which encodes a similarity
between the two customers.3 More formally,

p(ci = j|D,α) ∝
{
di,j , i 6= j
α, i = j

(1)

where D is the entire similarity graph. This pro-
cess lacks the exchangeability property of the tra-
ditional CRP but efficient approximate inference
with dd-CRP is possible with Gibbs sampling.
For more details on inference with dd-CRPs, we
refer the reader to Blei and Frazier (2011).

Though in previous work dd-CRP was used ei-
ther to encode prior knowledge (Blei and Fra-
zier, 2011) or other external information (Socher
et al., 2011), we treat D as a latent variable
drawn from some prior distribution over weighted
graphs. This view provides a powerful approach
for coupling a family of distinct but similar clus-
terings: the family of clusterings can be drawn by
first choosing a similarity graph D for the entire
family and then re-usingD to generate each of the
clusterings independently of each other as defined
by equation (1). In Section 5, we explain how we
use this formalism to encode relatedness between
argument key clusterings for different predicates.

4 Factored Model

In this section we describe the factored method
which models each predicate independently. In
Section 2 we defined our task as clustering of ar-
gument keys, where each cluster corresponds to a
semantic role. If an argument key k is assigned
to a role r (k ∈ r), all of its occurrences are la-
beled r.

Our Bayesian model encodes two common as-
sumptions about semantic roles. First, we enforce
the selectional restriction assumption: we assume
that the distribution over potential argument fillers
is sparse for every role, implying that ‘peaky’ dis-
tributions of arguments for each role r are pre-
ferred to flat distributions. Second, each role nor-
mally appears at most once per predicate occur-
rence. Our inference will search for a clustering
which meets the above requirements to the maxi-
mal extent.

3It may be more standard to use a decay function f :
R → R and choose a partner with the probability propor-
tional to f(−di,j). However, the two forms are equivalent
and using scores di,j directly is more convenient for our in-
duction purposes.

Our model associates two distributions with
each predicate: one governs the selection of argu-
ment fillers for each semantic role, and the other
models (and penalizes) duplicate occurrence of
roles. Each predicate occurrence is generated in-
dependently given these distributions. Let us de-
scribe the model by first defining how the set of
model parameters and an argument key clustering
are drawn, and then explaining the generation of
individual predicate and argument instances. The
generative story is formally presented in Figure 1.

We start by generating a partition of argument
keys Bp with each subset r ∈ Bp representing
a single semantic role. The partitions are drawn
from CRP(α) (see the Factored model section of
Figure 1) independently for each predicate. The
crucial part of the model is the set of selectional
preference parameters θp,r, the distributions of ar-
guments x for each role r of predicate p. We
represent arguments by their syntactic heads,4 or
more specifically, by either their lemmas or word
clusters assigned to the head by an external clus-
tering algorithm, as we will discuss in more detail
in Section 7.5 For the agent role A0 of the pred-
icate open, for example, this distribution would
assign most of the probability mass to arguments
denoting sentient beings, whereas the distribution
for the patient role A1 would concentrate on ar-
guments representing “openable” things (doors,
boxes, books, etc).

In order to encode the assumption about sparse-
ness of the distributions θp,r, we draw them from
the DP prior DP (β,H(A)) with a small concen-
tration parameter β, the base probability distribu-
tionH(A) is just the normalized frequencies of ar-
guments in the corpus. The geometric distribution
ψp,r is used to model the number of times a role
r appears with a given predicate occurrence. The
decision whether to generate at least one role r is
drawn from the uniform Bernoulli distribution. If
0 is drawn then the semantic role is not realized
for the given occurrence, otherwise the number
of additional roles r is drawn from the geometric
distribution Geom(ψp,r). The Beta priors over ψ

4For prepositional phrases, we take as head the head noun
of the object noun phrase as it encodes crucial lexical infor-
mation. However, the preposition is not ignored but rather
encoded in the corresponding argument key, as explained
in Section 2.

5Alternatively, the clustering of arguments could be in-
duced within the model, as done in (Titov and Klementiev,
2011).
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Clustering of argument keys:

Factored model:
for each predicate p = 1, 2, . . . :
Bp ∼ CRP (α) [partition of arg keys]

Coupled model:
D ∼ NonInform [similarity graph]
for each predicate p = 1, 2, . . . :
Bp ∼ dd-CRP (α,D) [partition of arg keys]

Parameters:

for each predicate p = 1, 2, . . . :
for each role r ∈ Bp:
θp,r ∼ DP (β,H(A)) [distrib of arg fillers]
ψp,r ∼ Beta(η0, η1) [geom distr for dup roles]

Data Generation:

for each predicate p = 1, 2, . . . :
for each occurrence l of p:

for every role r ∈ Bp:
if [n ∼ Unif(0, 1)] = 1: [role appears at least once]
GenArgument(p, r) [draw one arg]
while [n ∼ ψp,r] = 1: [continue generation]

GenArgument(p, r) [draw more args]

GenArgument(p, r):
kp,r ∼ Unif(1, . . . , |r|) [draw arg key]
xp,r ∼ θp,r [draw arg filler]

Figure 1: Generative stories for the factored and cou-
pled models.

can indicate the preference towards generating at
most one argument for each role. For example,
it would express the preference that a predicate
open typically appears with a single agent and a
single patient arguments.

Now, when parameters and argument key clus-
terings are chosen, we can summarize the re-
mainder of the generative story as follows. We
begin by independently drawing occurrences for
each predicate. For each predicate role we in-
dependently decide on the number of role occur-
rences. Then we generate each of the arguments
(see GenArgument) by generating an argument
key kp,r uniformly from the set of argument keys
assigned to the cluster r, and finally choosing its
filler xp,r, where the filler is either a lemma or a
word cluster corresponding to the syntactic head
of the argument.

5 Coupled Model

As we argued in Section 1, clusterings of argu-
ment keys implicitly encode the pattern of alter-

nations for a predicate. E.g., passivization can be
roughly represented with the clustering of the key
ACT:LEFT:SBJ with PASS:RIGHT:LGS->by

and ACT:RIGHT:OBJ with PASS:LEFT:SBJ.
The set of permissible alternations is predicate-
specific,6 but nevertheless they arguably repre-
sent a small subset of all clusterings of argu-
ment keys. Also, some alternations are more
likely to be applicable to a verb than others: for
example, passivization and dativization alterna-
tions are both fairly frequent, whereas, locative-
preposition-drop alternation (Mary climbed up the
mountain vs. Mary climbed the mountain) is less
common and applicable only to several classes
of predicates representing motion (Levin, 1993).
We represent this observation by quantifying how
likely a pair of keys is to be clustered. These
scores (di,j for every pair of argument keys i and
j) are induced automatically within the model,
and treated as latent variables shared across pred-
icates. Intuitively, if data for several predicates
strongly suggests that two argument keys should
be clustered (e.g., there is a large overlap be-
tween argument fillers for the two keys) then the
posterior will indicate that di,j is expected to be
greater for the pair {i, j} than for some other pair
{i′, j′} for which the evidence is less clear. Con-
sequently, argument keys i and j will be clustered
even for predicates without strong evidence for
such a clustering, whereas i′ and j′ will not.

One argument against coupling predicates may
stem from the fact that we are using unlabeled
data and may be able to obtain sufficient amount
of learning material even for less frequent pred-
icates. This may be a valid observation, but an-
other rationale for sharing this similarity structure
is the hypothesis that alternations may be easier
to detect for some predicates than for others. For
example, argument key clustering of predicates
with very restrictive selectional restrictions on ar-
gument fillers is presumably easier than clustering
for predicates with less restrictive and overlap-
ping selectional restriction, as compactness of se-
lectional preferences is a central assumption driv-
ing unsupervised learning of semantic roles. E.g.,
predicates change and defrost belong to the same
Levin class (change-of-state verbs) and therefore
admit similar alternations. However, the set of po-
tential patients of defrost is sufficiently restricted,

6Or, at least specific to a class of predicates (Levin,
1993).
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whereas the selectional restrictions for the patient
of change are far less specific and they overlap
with selectional restrictions for the agent role, fur-
ther complicating the clustering induction task.
This observation suggests that sharing clustering
preferences across verbs is likely to help even if
the unlabeled data is plentiful for every predicate.

More formally, we generate scores di,j , or
equivalently, the full labeled graph D with ver-
tices corresponding to argument keys and edges
weighted with the similarity scores, from a prior.
In our experiments we use a non-informative prior
which factorizes over pairs (i.e. edges of the
graph D), though more powerful alternatives can
be considered. Then we use it, in a dd-CRP(α,
D), to generate clusterings of argument keys for
every predicate. The rest of the generative story is
the same as for the factored model. The part rele-
vant to this model is shown in the Coupled model
section of Figure 1.

Note that this approach does not assume that
the frequencies of syntactic patterns correspond-
ing to alternations are similar, and a large value
for di,j does not necessarily mean that the corre-
sponding syntactic frames i and j are very fre-
quent in a corpus. What it indicates is that a large
number of different predicates undergo the corre-
sponding alternation; the frequency of the alterna-
tion is a different matter. We believe that this is an
important point, as we do not make a restricting
assumption that an alternation has the same dis-
tributional properties for all verbs which undergo
this alternation.

6 Inference

An inference algorithm for an unsupervised
model should be efficient enough to handle vast
amounts of unlabeled data, as it can easily be ob-
tained and is likely to improve results. We use
a simple approximate inference algorithm based
on greedy MAP search. We start by discussing
MAP search for argument key clustering with the
factored model and then discuss its extension ap-
plicable to the coupled model.

6.1 Role Induction

For the factored model, semantic roles for every
predicate are induced independently. Neverthe-
less, search for a MAP clustering can be expen-
sive, as even a move involving a single argument

key implies some computations for all its occur-
rences in the corpus. Instead of more complex
MAP search algorithms (see, e.g., (Daume III,
2007)), we use a greedy procedure where we start
with each argument key assigned to an individual
cluster, and then iteratively try to merge clusters.
Each move involves (1) choosing an argument key
and (2) deciding on a cluster to reassign it to. This
is done by considering all clusters (including cre-
ating a new one) and choosing the most probable
one.

Instead of choosing argument keys randomly at
the first stage, we order them by corpus frequency.
This ordering is beneficial as getting clustering
right for frequent argument keys is more impor-
tant and the corresponding decisions should be
made earlier.7 We used a single iteration in our
experiments, as we have not noticed any benefit
from using multiple iterations.

6.2 Similarity Graph Induction
In the coupled model, clusterings for different
predicates are statistically dependent, as the simi-
larity structureD is latent and shared across pred-
icates. Consequently, a more complex inference
procedure is needed. For simplicity here and in
our experiments, we use the non-informative prior
distribution over D which assigns the same prior
probability to every possible weight di,j for every
pair {i, j}.

Recall that the dd-CRP prior is defined in terms
of customers choosing other customers to sit with.
For the moment, let us assume that this relation
among argument keys is known, that is, every ar-
gument key k for predicate p has chosen an argu-
ment key cp,k to ‘sit’ with. We can compute the
MAP estimate for all di,j by maximizing the ob-
jective:

arg max
di,j , i 6=j

∑
p

∑
k∈Kp

log
dk,cp,k∑
k′∈Kp

dk,k′
,

where Kp is the set of all argument keys for the
predicate p. We slightly abuse the notation by us-
ing di,i to denote the concentration parameter α
in the previous expression. Note that we also as-
sume that similarities are symmetric, di,j = dj,i.
If the set of argument keys Kp would be the same
for every predicate, then the optimal di,j would

7This idea has been explored before for shallow semantic
representations (Lang and Lapata, 2011a; Titov and Klemen-
tiev, 2011).
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be proportional to the number of times either i se-
lects j as a partner, or j chooses i as a partner.8

This no longer holds if the sets are different, but
the solution can be found efficiently using a nu-
meric optimization strategy; we use the gradient
descent algorithm.

We do not learn the concentration parameter
α, as it is used in our model to indicate the de-
sired granularity of semantic roles, but instead
only learn di,j (i 6= j). However, just learning
the concentration parameter would not be suffi-
cient as the effective concentration can be reduced
or increased arbitrarily by scaling all the similar-
ities di,j (i 6= j) at once, as follows from expres-
sion (1). Instead, we enforce the normalization
constraint on the similarities di,j . We ensure that
the prior probability of choosing itself as a part-
ner, averaged over predicates, is the same as it
would be with uniform di,j (di,j = 1 for every
key pair {i, j}, i 6= j). This roughly says that
we want to preserve the same granularity of clus-
tering as it was with the uniform similarities. We
accomplish this normalization in a post-hoc fash-
ion by dividing the weights after optimization by∑

p

∑
k,k′∈Kp, k′ 6=k dk,k′/

∑
p |Kp|(|Kp| − 1).

If D is fixed, partners for every predicate p and
every k can be found using virtually the same al-
gorithm as in Section 6.1: the only difference is
that, instead of a cluster, each argument key itera-
tively chooses a partner.

Though, in practice, both the choice of partners
and the similarity graphs are latent, we can use an
iterative approach to obtain a joint MAP estimate
of ck (for every k) and the similarity graph D by
alternating the two steps.9

Notice that the resulting algorithm is again
highly parallelizable: the graph induction stage
is fast, and induction of the seat-with relation
(i.e. clustering argument keys) is factorizable over
predicates.

One shortcoming of this approach is typical
for generative models with multiple ‘features’:
when such a model predicts a latent variable, it
tends to ignore the prior class distribution and re-
lies solely on features. This behavior is due to
the over-simplifying independence assumptions.
It is well known, for instance, that the poste-

8Note that weights di,j are invariant under rescaling
when the rescaling is also applied to the concentration pa-
rameter α.

9In practice, two iterations were sufficient.

rior with Naive Bayes tends to be overconfident
due to violated conditional independence assump-
tions (Rennie, 2001). The same behavior is ob-
served here: the shared prior does not have suf-
ficient effect on frequent predicates.10 Though
different techniques have been developed to dis-
count the over-confidence (Kolcz and Chowdhury,
2005), we use the most basic one: we raise the
likelihood term in power 1

T , where the parameter
T is chosen empirically.

7 Empirical Evaluation

7.1 Data and Evaluation
We keep the general setup of (Lang and Lapata,
2011a), to evaluate our models and compare them
to the current state of the art. We run all of our
experiments on the standard CoNLL 2008 shared
task (Surdeanu et al., 2008) version of Penn Tree-
bank WSJ and PropBank. In addition to gold
dependency analyses and gold PropBank annota-
tions, it has dependency structures generated au-
tomatically by the MaltParser (Nivre et al., 2007).
We vary our experimental setup as follows:

• We evaluate our models on gold and auto-
matically generated parses, and use either
gold PropBank annotations or the heuristic
from Section 2 to identify arguments, result-
ing in four experimental regimes.

• In order to reduce the sparsity of predicate
argument fillers we consider replacing lem-
mas of their syntactic heads with word clus-
ters induced by a clustering algorithm as a
preprocessing step. In particular, we use
Brown (Br) clustering (Brown et al., 1992)
induced over RCV1 corpus (Turian et al.,
2010). Although the clustering is hierarchi-
cal, we only use a cluster at the lowest level
of the hierarchy for each word.

We use the purity (PU) and collocation (CO) met-
rics as well as their harmonic mean (F1) to mea-
sure the quality of the resulting clusters. Purity
measures the degree to which each cluster con-
tains arguments sharing the same gold role:

PU =
1
N

∑
i

max
j
|Gj ∩ Ci|

where if Ci is the set of arguments in the i-th in-
duced cluster,Gj is the set of arguments in the jth

10The coupled model without discounting still outper-
forms the factored counterpart in our experiments.
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gold cluster, and N is the total number of argu-
ments. Collocation evaluates the degree to which
arguments with the same gold roles are assigned
to a single cluster. It is computed as follows:

CO =
1
N

∑
j

max
i
|Gj ∩ Ci|

We compute the aggregate PU, CO, and F1
scores over all predicates in the same way as
(Lang and Lapata, 2011a) by weighting the scores
of each predicate by the number of its argument
occurrences. Note that since our goal is to evalu-
ate the clustering algorithms, we do not include
incorrectly identified arguments (i.e. mistakes
made by the heuristic defined in Section 2) when
computing these metrics.

We evaluate both factored and coupled models
proposed in this work with and without Brown
word clustering of argument fillers (Factored,
Coupled, Factored+Br, Coupled+Br). Our mod-
els are robust to parameter settings, they were
tuned (to an order of magnitude) on the develop-
ment set and were the same for all model variants:
α = 1.e-3, β = 1.e-3, η0 = 1.e-3, η1 = 1.e-10,
T = 5. Although they can be induced within the
model, we set them by hand to indicate granular-
ity preferences. We compare our results with the
following alternative approaches. The syntactic
function baseline (SyntF) simply clusters predi-
cate arguments according to the dependency re-
lation to their head. Following (Lang and Lapata,
2010), we allocate a cluster for each of 20 most
frequent relations in the CoNLL dataset and one
cluster for all other relations. We also compare
our performance with the Latent Logistic classifi-
cation (Lang and Lapata, 2010), Split-Merge clus-
tering (Lang and Lapata, 2011a), and Graph Parti-
tioning (Lang and Lapata, 2011b) approaches (la-
beled LLogistic, SplitMerge, and GraphPart, re-
spectively) which achieve the current best unsu-
pervised SRL results in this setting.

7.2 Results

7.2.1 Gold Arguments
Experimental results are summarized in Ta-

ble 1. We begin by comparing our models to the
three existing clustering approaches on gold syn-
tactic parses, and using gold PropBank annota-
tions to identify predicate arguments. In this set of
experiments we measure the relative performance
of argument clustering, removing the identifica-

gold parses auto parses
PU CO F1 PU CO F1

LLogistic 79.5 76.5 78.0 77.9 74.4 76.2
SplitMerge 88.7 73.0 80.1 86.5 69.8 77.3
GraphPart 88.6 70.7 78.6 87.4 65.9 75.2
Factored 88.1 77.1 82.2 85.1 71.8 77.9
Coupled 89.3 76.6 82.5 86.7 71.2 78.2
Factored+Br 86.8 78.8 82.6 83.8 74.1 78.6
Coupled+Br 88.7 78.1 83.0 86.2 72.7 78.8
SyntF 81.6 77.5 79.5 77.1 70.9 73.9

Table 1: Argument clustering performance with gold
argument identification. Bold-face is used to highlight
the best F1 scores.

tion stage, and minimize the noise due to auto-
matic syntactic annotations. All four variants of
the models we propose substantially outperform
other models: the coupled model with Brown
clustering of argument fillers (Coupled+Br) beats
the previous best model SplitMerge by 2.9% F1
score. As mentioned in Section 2, our approach
specifically does not cluster some of the modifier
arguments. In order to verify that this and argu-
ment filler clustering were not the only aspects
of our approach contributing to performance im-
provements, we also evaluated our coupled model
without Brown clustering and treating modifiers
as regular arguments. The model achieves 89.2%
purity, 74.0% collocation, and 80.9% F1 scores,
still substantially outperforming all of the alter-
native approaches. Replacing gold parses with
MaltParser analyses we see a similar trend, where
Coupled+Br outperforms the best alternative ap-
proach SplitMerge by 1.5%.

7.2.2 Automatic Arguments
Results are summarized in Table 2.11 The

precision and recall of our re-implementation of
the argument identification heuristic described in
Section 2 on gold parses were 87.7% and 88.0%,
respectively, and do not quite match 88.1% and
87.9% reported in (Lang and Lapata, 2011a).
Since we could not reproduce their argument
identification stage exactly, we are omitting their
results for the two regimes, instead including the
results for our two best models Factored+Br and
Coupled+Br. We see a similar trend, where the
coupled system consistently outperforms its fac-
tored counterpart, achieving 85.8% and 83.9% F1

11Note, that the scores are computed on correctly iden-
tified arguments only, and tend to be higher in these ex-
periments probably because the complex arguments get dis-
carded by the heuristic.
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gold parses auto parses
PU CO F1 PU CO F1

Factored+Br 87.8 82.9 85.3 85.8 81.1 83.4
Coupled+Br 89.2 82.6 85.8 87.4 80.7 83.9
SyntF 83.5 81.4 82.4 81.4 79.1 80.2

Table 2: Argument clustering performance with auto-
matic argument identification.

for gold and MaltParser analyses, respectively.

We observe that consistently through the four
regimes, sharing of alternations between predi-
cates captured by the coupled model outperforms
the factored version, and that reducing the argu-
ment filler sparsity with clustering also has a sub-
stantial positive effect. Due to the space con-
straints we are not able to present detailed anal-
ysis of the induced similarity graph D, however,
argument-key pairs with the highest induced sim-
ilarity encode, among other things, passivization,
benefactive alternations, near-interchangeability
of some subordinating conjunctions and preposi-
tions (e.g., if and whether), as well as, restoring
some of the unnecessary splits introduced by the
argument key definition (e.g., semantic roles for
adverbials do not normally depend on whether the
construction is passive or active).

8 Related Work

Most of SRL research has focused on the super-
vised setting (Carreras and Màrquez, 2005; Sur-
deanu et al., 2008), however, lack of annotated re-
sources for most languages and insufficient cover-
age provided by the existing resources motivates
the need for using unlabeled data or other forms
of weak supervision. This work includes methods
based on graph alignment between labeled and
unlabeled data (Fürstenau and Lapata, 2009), us-
ing unlabeled data to improve lexical generaliza-
tion (Deschacht and Moens, 2009), and projection
of annotation across languages (Pado and Lapata,
2009; van der Plas et al., 2011). Semi-supervised
and weakly-supervised techniques have also been
explored for other types of semantic representa-
tions but these studies have mostly focused on re-
stricted domains (Kate and Mooney, 2007; Liang
et al., 2009; Titov and Kozhevnikov, 2010; Gold-
wasser et al., 2011; Liang et al., 2011).

Unsupervised learning has been one of the cen-
tral paradigms for the closely-related area of re-
lation extraction, where several techniques have
been proposed to cluster semantically similar ver-

balizations of relations (Lin and Pantel, 2001;
Banko et al., 2007). Early unsupervised ap-
proaches to the SRL problem include the work
by Swier and Stevenson (2004), where the Verb-
Net verb lexicon was used to guide unsupervised
learning, and a generative model of Grenager and
Manning (2006) which exploits linguistic priors
on syntactic-semantic interface.

More recently, the role induction problem has
been studied in Lang and Lapata (2010) where
it has been reformulated as a problem of detect-
ing alterations and mapping non-standard link-
ings to the canonical ones. Later, Lang and La-
pata (2011a) proposed an algorithmic approach
to clustering argument signatures which achieves
higher accuracy and outperforms the syntactic
baseline. In Lang and Lapata (2011b), the role
induction problem is formulated as a graph parti-
tioning problem: each vertex in the graph corre-
sponds to a predicate occurrence and edges repre-
sent lexical and syntactic similarities between the
occurrences. Unsupervised induction of seman-
tics has also been studied in Poon and Domin-
gos (2009) and Titov and Klementiev (2010) but
the induced representations are not entirely com-
patible with the PropBank-style annotations and
they have been evaluated only on a question an-
swering task for the biomedical domain. Also, the
related task of unsupervised argument identifica-
tion was considered in Abend et al. (2009).

9 Conclusions

In this work we introduced two Bayesian models
for unsupervised role induction. They treat the
task as a family of related clustering problems,
one for each predicate. The first factored model
induces each clustering independently, whereas
the second model couples them by exploiting a
novel technique for sharing clustering preferences
across a family of clusterings. Both methods
achieve state-of-the-art results with the coupled
model outperforming the factored counterpart in
all regimes.
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Abstract

We introduce two ways to detect entail-
ment using distributional semantic repre-
sentations of phrases. Our first experiment
shows that the entailment relation between
adjective-noun constructions and their head
nouns (big cat |= cat), once represented as
semantic vector pairs, generalizes to lexical
entailment among nouns (dog |= animal).
Our second experiment shows that a classi-
fier fed semantic vector pairs can similarly
generalize the entailment relation among
quantifier phrases (many dogs|=some dogs)
to entailment involving unseen quantifiers
(all cats|=several cats). Moreover, nominal
and quantifier phrase entailment appears to
be cued by different distributional corre-
lates, as predicted by the type-based view
of entailment in formal semantics.

1 Introduction

Distributional semantics (DS) approximates lin-
guistic meaning with vectors summarizing the
contexts where expressions occur. The success
of DS in lexical semantics has validated the hy-
pothesis that semantically similar expressions oc-
cur in similar contexts (Landauer and Dumais,
1997; Lund and Burgess, 1996; Sahlgren, 2006;
Schütze, 1997; Turney and Pantel, 2010). For-
mal semantics (FS) represents linguistic mean-
ings as symbolic formulas and assemble them via
composition rules. FS has successfully modeled
quantification and captured inferential relations
between phrases and between sentences (Mon-
tague, 1970; Thomason, 1974; Heim and Kratzer,
1998). The strengths of DS and FS have been
complementary to date: On one hand, DS has in-
duced large-scale semantic representations from
corpora, but it has been largely limited to the

lexical domain. On the other hand, FS has pro-
vided sophisticated models of sentence meaning,
but it has been largely limited to hand-coded mod-
els that do not scale up to real-life challenges by
learning from data.

Given these complementary strengths, we nat-
urally ask if DS and FS can address each other’s
limitations. Two recent strands of research are
bringing DS closer to meeting core FS chal-
lenges. One strand attempts to model compo-
sitionality with DS methods, representing both
primitive and composed linguistic expressions
as distributional vectors (Baroni and Zamparelli,
2010; Grefenstette and Sadrzadeh, 2011; Gue-
vara, 2010; Mitchell and Lapata, 2010). The
other strand attempts to reformulate FS’s notion
of logical inference in terms that DS can cap-
ture (Erk, 2009; Geffet and Dagan, 2005; Kotler-
man et al., 2010; Zhitomirsky-Geffet and Dagan,
2010). In keeping with the lexical emphasis of
DS, this strand has focused on inference at the
word level, or lexical entailment, that is, discover-
ing from distributional vectors of hyponyms (dog)
that they entail their hypernyms (animal).

This paper brings these two strands of research
together by demonstrating two ways in which the
distributional vectors of composite expressions
bear on inference. Here we focus on phrasal vec-
tors harvested directly from the corpus rather than
obtained compositionally. In a first experiment,
we exploit the entailment properties of a class
of composite expressions, namely adjective-noun
constructions (ANs), to harvest training data for
an entailment recognizer. The recognizer is then
successfully applied to detect lexical entailment.
In short, since almost all ANs entail the noun they
contain (red car entails car), the distributional
vectors of AN-N pairs can train a classifier to de-
tect noun pairs that stand in the same relation (dog
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entails animal). With almost no manual effort,
we achieve performance nearly identical with the
state-of-the-art balAPinc measure that Kotlerman
et al. (2010) crafted, which detects feature inclu-
sion between the two nouns’ occurrence contexts.

Our second experiment goes beyond lexical in-
ference. We look at phrases built from a quanti-
fying determiner1 and a noun (QNs) and use their
distributional vectors to recognize entailment re-
lations of the form many dogs |= some dogs, be-
tween two QNs sharing the same noun. It turns
out that a classifier trained on a set of Q1N |=Q2N
pairs can recognize entailment in pairs with a new
quantifier configuration. For example, we can
train on many dogs |= some dogs then correctly
predict all cats|=several cats. Interestingly, on the
QN entailment task, neither our classifier trained
on AN-N pairs nor the balAPinc method beat
baseline methods. This suggests that our success-
ful QN classifiers tap into vector properties be-
yond such relations as feature inclusion that those
methods for nominal entailment rely upon.

Together, our experiments show that corpus-
harvested DS representations of composite ex-
pressions such as ANs and QNs contain suffi-
cient information to capture and generalize their
inference patterns. This result brings DS closer
to the central concerns of FS. In particular, the
QN study is the first to our knowledge to show
that DS vectors capture semantic properties not
only of content words, but of an important class of
function words (quantifying determiners) deeply
studied in FS but of little interest until now in DS.

Besides these theoretical implications, our re-
sults are of practical import. First, our AN study
presents a novel, practical method for detect-
ing lexical entailment that reaches state-of-the-
art performance with little or no manual interven-
tion. Lexical entailment is in turn fundamental
for constructing ontologies and other lexical re-
sources (Buitelaar and Cimiano, 2008). Second,
our QN study demonstrates that phrasal entail-
ment can be automatically detected and thus paves
the way to apply DS to advanced NLP tasks such
as recognizing textual entailment (Dagan et al.,
2009).

1In the sequel we will simply refer to a “quantifying de-
terminer” as a “quantifier”.

2 Background

2.1 Distributional semantics above the word
level

DS models such as LSA (Landauer and Dumais,
1997) and HAL (Lund and Burgess, 1996) ap-
proximate the meaning of a word by a vector that
summarizes its distribution in a corpus, for exam-
ple by counting co-occurrences of the word with
other words. Since semantically similar words
tend to share similar contexts, DS has been very
successful in tasks that require quantifying se-
mantic similarity among words, such as synonym
detection and concept clustering (Turney and Pan-
tel, 2010).

Recently, there has been a flurry of interest
in DS to model meaning composition: How can
we derive the DS representation of a composite
phrase from that of its constituents? Although the
general focus in the area is to perform algebraic
operations on word semantic vectors (Mitchell
and Lapata, 2010), some researchers have also di-
rectly examined the corpus contexts of phrases.
For example, Baldwin et al. (2003) studied vec-
tor extraction for phrases because they were inter-
ested in the decomposability of multiword expres-
sions. Baroni and Zamparelli (2010) and Gue-
vara (2010) look at corpus-harvested phrase vec-
tors to learn composition functions that should de-
rive such composite vectors automatically. Ba-
roni and Zamparelli, in particular, showed qual-
itatively that directly corpus-harvested vectors for
AN constructions are meaningful; for example,
the vector of young husband has nearest neigh-
bors small son, small daughter and mistress. Fol-
lowing up on this approach, we show here quanti-
tatively that corpus-harvested AN vectors are also
useful for detecting entailment. We find moreover
distributional vectors informative and useful not
only for phrases made of content words (such as
ANs) but also for phrases containing functional
elements, namely quantifying determiners.

2.2 Entailment from formal to distributional
semantics

Entailment in FS To characterize the condi-
tions under which a sentence is true, FS begins
with the lexical meanings of the words in the sen-
tence and builds up the meanings of larger and
larger phrases until it arrives at the meaning of the
whole sentence. The meanings throughout this
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compositional process inhabit a variety of seman-
tic domains, depending on the syntactic category
of the expressions: typically, a sentence denotes a
truth value (true or false) or truth conditions,
a noun such as cat denotes a set of entities, and a
quantifier phrase (QP) such as all cats denotes a
set of sets of entities.

The entailment relation (|=) is a core notion of
logic: it holds between one or more sentences and
a sentence such that it cannot be that the former
(antecedent) are true and the latter (consequent)
is false. FS extends this notion from formal-logic
sentences to natural-language expressions. By as-
signing meanings to parts of a sentence, FS allows
defining entailment not only among sentences but
also among words and phrases. Each semantic
domain A has its own entailment relation |=A.
The entailment relation |=S among sentences is
the logical notion just described, whereas the en-
tailment relations |=N and |=QP among nouns
and quantifier phrases are the inclusion relations
among sets of entities and sets of sets of entities
respectively. Our results in Section 5 show that
DS needs to treat |=N and |=QP differently as well.

Empirical, corpus-based perspectives on en-
tailment Until recently, the corpus-based re-
search tradition has studied entailment mostly at
the word level, with applied goals such as clas-
sifying lexical relations and building taxonomic
WordNet-like resources automatically. The most
popular approach, first adopted by Hearst (1992),
extracts lexical relations from patterns in large
corpora. For instance, from the pattern N1 such
as N2 one learns that N2 |=N1 (from insects such
as beetles, derive beetles |= insects). Several stud-
ies have refined and extended this approach (Pan-
tel and Ravichandran, 2004; Snow et al., 2005;
Snow et al., 2006; Turney, 2008).

While empirically very successful, the pattern-
based method is mostly limited to single content
words (or frequent content-word phrases). We are
interested in entailment between phrases, where it
is not obvious how to use lexico-syntactic patterns
and cope with data sparsity. For instance, it seems
hard to find a pattern that frequently connects one
QP to another it entails, as in all beetles PATTERN
many beetles. Hence, we aim to find a more gen-
eral method and investigate whether DS vectors
(whether corpus-harvested or compositionally de-
rived) encode the information needed to account

for phrasal entailment in a way that can be cap-
tured and generalized to unseen phrase pairs.

Rather recently, the study of sentential entail-
ment has taken an empirical turn, thanks to the de-
velopment of benchmarks for entailment systems.
The FS definition of entailment has been modified
by taking common sense into account. Instead of
a relation from the truth of the consequent to the
truth of the antecedent in any circumstance, the
applied view looks at entailment in terms of plau-
sibility: φ |= ψ if a human who reads (and trusts)
φ would most likely infer that ψ is also true. En-
tailment systems have been compared under this
new perspective in various evaluation campaigns,
the best known being the Recognizing Textual En-
tailment (RTE) initiative (Dagan et al., 2009).

Most RTE systems are based on advanced NLP
components, machine learning techniques, and/or
syntactic transformations (Zanzotto et al., 2007;
Kouleykov and Magnini, 2005). A few systems
exploit deep FS analysis (Bos and Markert, 2006;
Chambers et al., 2007). In particular, the FS re-
sults about QP properties that affect entailment
have been exploited by Chambers et al, who com-
plement a core broad-coverage system with a Nat-
ural Logic module to trade lower recall for higher
precision. For instance, they exploit the mono-
tonicity properties of no that cause the follow-
ing reversal in entailment direction: some bee-
tles |= some insects but no insects |= no beetles.

To investigate entailment step by step, we ad-
dress here a much simpler and clearer type of
entailment than the more complex notion taken
up by the RTE community. While RTE is out-
side our present scope, we do focus on QP entail-
ment as Natural Logic does. However, our eval-
uation differs from Chambers et al.’s, since we
rely on general-purpose DS vectors as our only
resource, and we look at phrase pairs with differ-
ent quantifiers but the same noun. For instance,
we aim to predict that all beetles |= many beetles
but few beetles 6|=all beetles. QPs, of course, have
many well-known semantic properties besides en-
tailment; we leave their analysis to future study.

Entailment in DS Erk (2009) suggests that it
may not be possible to induce lexical entailment
directly from a vector space representation, but it
is possible to encode the relation in this space af-
ter it has been derived through other means. On
the other hand, recent studies (Geffet and Dagan,
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2005; Kotlerman et al., 2010; Weeds et al., 2004)
have pursued the intuition that entailment is the
asymmetric ability of one term to “substitute” for
another. For example, baseball contexts are also
sport contexts but not vice versa, hence baseball
is “narrower” than sport and baseball |=sport. On
this view, entailment between vectors corresponds
to inclusion of contexts or features, and can be
captured by asymmetric measures of distribution
similarity. In particular, Kotlerman et al. (2010)
carefully crafted the balAPinc measure (see Sec-
tion 3.5 below). We adopt this measure because
it has been shown to outperform others in several
tasks that require lexical entailment information.

Like Kotlerman et al., we want to capture the
entailment relation between vectors of features.
However, we are interested in entailment not only
between words but also between phrases, and we
ask whether the DS view of entailment as fea-
ture inclusion, which captures entailment between
nouns, also captures entailment between QPs. To
this end, we complement balAPinc with a more
flexible supervised classifier.

3 Data and methods

3.1 Semantic space

We construct distributional semantic vectors from
the 2.83-billion-token concatenation of the British
National Corpus (http://www.natcorp.
ox.ac.uk/), WackyPedia and ukWaC (http:
//wacky.sslmit.unibo.it/). We tok-
enize and POS-tag this corpus, then lemmatize
it with TreeTagger (Schmid, 1995) to merge sin-
gular and plural instances of words and phrases
(some dogs is mapped to some dog).

We process the corpus in two steps to compute
semantic vectors representing our phrases of in-
terest. We use phrases of interest as a general
term to refer to both multiword phrases and sin-
gle words, and more precisely to: those AN and
QN sequences that are in the data sets (see next
subsections), the adjectives, quantifiers and nouns
contained in those sequences, and the most fre-
quent (9.8K) nouns and (8.1K) adjectives in the
corpus. The first step is to count the content
words (more precisely, the most frequent 9.8K
nouns, 8.1K adjectives, and 9.6K verbs in the cor-
pus) that occur in the same sentence as phrases
of interest. In the second step, following standard
practice, the co-occurrence counts are converted

into pointwise mutual information (PMI) scores
(Church and Hanks, 1990). The result of this step
is a sparse matrix (with both positive and negative
entries) with 48K rows (one per phrase of interest)
and 27K columns (one per content word).

3.2 The AN |= N data set

To characterize entailment between nouns using
their semantic vectors, we need data exemplifying
which noun entails which. This section introduces
one cheap way to collect such a training data set
exploiting semantic vectors for composed expres-
sions, namely AN sequences. We rely on the lin-
guistic fact that ANs share a syntactic category
and semantic type with plain common nouns (big
cat shares syntactic category and semantic type
with cat). Furthermore, most adjectives are re-
strictive in the sense that, for every noun N, the
AN sequence entails the N alone (every big cat
is a cat). From a distributional point of view, the
vector for an N should by construction include the
information in the vector for an AN, given that the
contexts where the AN occurs are a subset of the
contexts where the N occurs (cat occurs in all the
contexts where big cat occurs). This ideal inclu-
sion suggests that the DS notion of lexical entail-
ment as feature inclusion (see Section 2.2 above)
should be reflected in the AN |= N pattern.

Because most ANs entail their head Ns, we can
create positive examples of AN |= N without any
manual inspection of the corpus: simply pair up
the semantic vectors of ANs and Ns. Furthermore,
because an AN usually does not entail another N,
we can create negative examples (AN1 6|= N2) just
by randomly permuting the Ns. Of course, such
unsupervised data would be slightly noisy, espe-
cially because some of the most frequent adjec-
tives are not restrictive.

To collect cleaner data and to be sure that we
are really examining the phenomenon of entail-
ment, we took a mere few moments of man-
ual effort to select the 256 restrictive adjectives
from the most frequent 300 adjectives in the cor-
pus. We then took the Cartesian product of these
256 adjectives with the 200 concrete nouns in the
BLESS data set (Baroni and Lenci, 2011). Those
nouns were chosen to avoid highly polysemous
words. From the Cartesian product, we obtain a
total of 1246 AN sequences, such as big cat, that
occur more than 100 times in the corpus. These
AN sequences encompass 190 of the 256 adjec-
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tives and 128 of the 200 nouns.
The process results in 1246 positive instances

of AN |= N entailment, which we use as training
data. To create a comparable amount of negative
data, we randomly permuted the nouns in the pos-
itive instances to obtain pairs of AN1 6|= N2 (e.g.,
big cat 6|=dog). We manually double-checked that
all positive and negative examples are correctly
classified (2 of 1246 negative instances were re-
moved, leaving 1244 negative training examples).

3.3 The lexical entailment N1 |= N2 data set

For testing data, we first listed all WordNet nouns
in our corpus, then extracted hyponym-hypernym
chains linking the first synsets of these nouns. For
example, pope is found to entail leader because
WordNet contains the chain pope → spiritual
leader → leader. Eliminating the 20 hypernyms
with more than 180 hyponyms (mostly very ab-
stract nouns such as entity, object, and quality)
yields 9734 hyponym-hypernym pairs, encom-
passing 6402 nouns. Manually double-checking
these pairs leaves us with 1385 positive instances
of N1 |= N2 entailment.

We created the negative instances of again 1385
pairs by inverting 33% of the positive instances
(from pope|=leader to leader 6|=pope), and by ran-
domly shuffling the words across the positive in-
stances. We also manually double-checked these
pairs to make sure that they are not hyponym-
hypernym pairs.

3.4 The Q1N |= Q2N data set

We study 12 quantifiers: all, both, each, either,
every, few, many, most, much, no, several, some.
We took the Cartesian product of these quantifiers
with the 6402 WordNet nouns described in Sec-
tion 3.3. From this Cartesian product, we obtain
a total of 28926 QN sequences, such as every cat,
that occur at least 100 times in the corpus. These
are our QN phrases of interest to which the proce-
dure in Section 3.1 assigns a semantic vector.

Also, from the set of quantifier pairs (Q1,Q2)
where Q1 6= Q2, we identified 13 clear cases
where Q1 |=Q2 and 17 clear cases where Q1 6|=Q2.
These 30 cases are listed in the first column of
Table 1. For each of these 30 quantifier pairs
(Q1,Q2), we enumerate those WordNet nouns N
such that semantic vectors are available for both
Q1N and Q2N (that is, both sequences occur in
at least 100 times). Each such noun then gives

Quantifier pair Instances Correct

all |= some 1054 1044 (99%)
all |= several 557 550 (99%)

each |= some 656 647 (99%)
all |= many 873 772 (88%)

much |= some 248 217 (88%)
every |= many 460 400 (87%)
many |= some 951 822 (86%)

all |= most 465 393 (85%)
several |= some 580 439 (76%)

both |= some 573 322 (56%)
many |= several 594 113 (19%)
most |= many 463 84 (18%)
both |= either 63 1 (2%)

Subtotal 7537 5804 (77%)

some 6|= every 484 481 (99%)
several 6|= all 557 553 (99%)
several 6|= every 378 375 (99%)

some 6|= all 1054 1043 (99%)
many 6|= every 460 452 (98%)
some 6|= each 656 640 (98%)

few 6|= all 157 153 (97%)
many 6|= all 873 843 (97%)
both 6|= most 369 347 (94%)

several 6|= few 143 134 (94%)
both 6|= many 541 397 (73%)

many 6|= most 463 300 (65%)
either 6|= both 63 39 (62%)
many 6|= no 714 369 (52%)
some 6|= many 951 468 (49%)

few 6|= many 161 33 (20%)
both 6|= several 431 63 (15%)

Subtotal 8455 6690 (79%)

Total 15992 12494 (78%)

Table 1: Entailing and non-entailing quantifier pairs
with number of instances per pair (Section 3.4) and
SVMpair-out performance breakdown (Section 5).

rise to an instance of entailment (Q1N |= Q2N if
Q1 |= Q2; example: many dogs |= several dogs) or
non-entailment (Q1N 6|=Q2N if Q1 6|=Q2; example:
many dogs 6|=most dogs). The number of QN pairs
that each quantifier pair gives rise to in this way is
listed in the second column of Table 1. As shown
there, we have a total of 7537 positive instances
and 8455 negative instances of QN entailment.

3.5 Classification methods

We consider two methods to classify candidate
pairs as entailing or non-entailing, the balAPinc
measure of Kotlerman et al. (2010) and a standard
Support Vector Machine (SVM) classifier.
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balAPinc As discussed in Section 2.2, balAP-
inc is optimized to capture a relation of feature
inclusion between the narrower (entailing) and
broader (entailed) terms, while capturing other in-
tuitions about the relative relevance of features.
balAPinc averages two terms, APinc and LIN.
APinc is given by:

APinc(u |= v) =

∑|Fu|
r=1

(
P (r) · rel′(fr)

)
|Fu|

APinc is a version of the Average Precision
measure from Information Retrieval tailored to
lexical inclusion. Given vectors Fu and Fv rep-
resenting the dimensions with positive PMI val-
ues in the semantic vectors of the candidate pair
u |= v, the idea is that we want the features (that
is, vector dimensions) that have larger values in
Fu to also have large values in Fv (the opposite
does not matter because it is u that should be in-
cluded in v, not vice versa). The Fu features are
ranked according to their PMI value so that fr

is the feature in Fu with rank r, i.e., r-th high-
est PMI. Then the sum of the product of the two
terms P (r) and rel′(fr) across the features in Fu

is computed. The first term is the precision at r,
which is higher when highly ranked u features are
present in Fv as well. The relevance term rel′(fr)
is higher when the feature fr in Fu also appears
in Fv with a high rank. (See Kotlerman et al. for
how P (r) and rel′(fr) are computed.) The result-
ing score is normalized by dividing by the entail-
ing vector size |Fu| (in accordance with the idea
that having more v features should not hurt be-
cause the u features should be included in the v
features, not vice versa).

To balance the potentially excessive asymmetry
of APinc towards the features of the antecedent,
Kotlerman et al. average it with LIN, the widely
used symmetric measure of distributional similar-
ity proposed by Lin (1998):

LIN(u, v) =

∑
f∈Fu∩Fv

[wu(f) + wv(f)]∑
f∈Fu

wu(f) +
∑

f∈Fv
wv(f)

LIN essentially measures feature vector overlap.
The positive PMI values wu(f) and wv(f) of a
feature f in Fu and Fv are summed across those
features that are positive in both vectors, normal-
izing by the cumulative positive PMI mass in both
vectors. Finally, balAPinc is the geometric aver-
age of APinc and LIN:

balAPinc(u|=v) =
√

APinc(u |= v) · LIN(u, v)

To adapt balAPinc to recognize entailment, we
must select a threshold t above which we classify
a pair as entailing. In the experiments below, we
explore two approaches. In balAPincupper, we op-
timize the threshold directly on the test data, by
setting t to maximize the F-measure on the test
set. This gives us an upper bound on how well bal-
APinc could perform on the test set (but note that
optimizing F does not necessarily translate into a
good accuracy performance, as clearly illustrated
by Table 3 below). In balAPincAN |= N, we use the
AN |= N data set as training data and pick the t
that maximizes F on this training set.

We use the balAPinc measure as a refer-
ence point because, on the evidence provided by
Kotlerman et al., it is the state of the art in various
tasks related to lexical entailment. We recognize
however that it is somewhat complex and specifi-
cally tuned to capturing the relation of feature in-
clusion. Consequently, we also experiment with
a more flexible classifier, which can detect other
systematic properties of vectors in an entailment
relation. We present this classifier next.

SVM Support vector machines are widely used
high-performance discriminative classifiers that
find the hyperplane providing the best separation
between negative and positive instances (Cristian-
ini and Shawe-Taylor, 2000). Our SVM classifiers
are trained and tested using Weka 3 and LIBSVM
2.8 (Chang and Lin, 2011). We use the default
polynomial kernel ((u ·v/600)3) with ε (tolerance
of termination criterion) set to 1.6. This value was
tuned on the AN |=N data set, which we never use
for testing. In the same initial tuning experiments
on the AN |=N data set, SVM outperformed deci-
sion trees, naive Bayes, and k-nearest neighbors.

We feed each potential entailment pair to SVM
by concatenating the two vectors representing the
antecedent and consequent expressions.2 How-
ever, for efficiency and to mitigate data sparse-
ness, we reduce the dimensionality of the seman-
tic vectors to 300 columns using Singular Value
Decomposition (SVD) before feeding them to the
classifier.3 Because the SVD-reduced semantic

2We have tried also to represent a pair by subtracting and
by dividing the two vectors. The concatenation operation
gave more successful results.

3To keep a manageable parameter space, we picked 300
columns without tuning. This is the best value reported in
many earlier studies, including classic LSA. Since SVD
sometimes improves the semantic space (Landauer and Du-
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vectors occupy a 300-dimensional space, the en-
tailment pairs occupy a 600-dimensional space.

An SVM with a polynomial kernel takes into
account not only individual input features but also
their interactions (Manning et al., 2008, chapter
15). Thus, our classifier can capture not just prop-
erties of individual dimensions of the antecedent
and consequent pairs, but also properties of their
combinations (e.g., the product of the first dimen-
sions of the antecedent and the consequent). We
conjecture that this property of SVMs is funda-
mental to their success at detecting entailment,
where relations between the antecedent and the
consequent should matter more than their inde-
pendent characteristics.

4 Predicting lexical entailment from
AN |= N evidence

Since the contexts of AN must be a subset of the
contexts of N, semantic vectors harvested from
AN phrases and their head Ns are by construc-
tion in an inclusion relation. The first experiment
shows that these vectors constitute excellent train-
ing data to discover entailment between nouns.
This suggests that the vector pairs representing
entailment between nouns are also in an inclusion
relation, supporting the conjectures of Kotlerman
et al. (2010) and others.

Table 2 reports the results we obtained with
balAPincupper, balAPincAN |= N (Section 3.5) and
SVMAN |= N (the SVM classifier trained on the
AN |= N data). As an upper bound for meth-
ods that generalize from AN |= N, we also re-
port the performance of SVM trained with 10-fold
cross-validation on the N1 |= N2 data themselves
(SVMupper). Finally, we tried two baseline classi-
fiers. The first baseline (fq(N1)< fq(N2)) guesses
entailment if the first word is less frequent than
the second. The second (cos(N1, N2)) applies a
threshold (determined on the test set) to the co-
sine similarity of the pair. The results of these
baselines shown in Table 2 use SVD; those with-
out SVD are similar. Both baselines outperformed
more trivial methods such as random guessing or
fixed response, but they performed significantly
worse than SVM and balAPinc.

Both methods that generalize entailment from
AN |= N to N1 |= N2 perform well, with 70%

mais, 1997; Rapp, 2003; Schütze, 1997), we tried balAPinc
on the SVD-reduced vectors as well, but results were consis-
tently worse than with PMI vectors.

P R F Accuracy
(95% C.I.)

SVMupper 88.6 88.6 88.5 88.6 (87.3–89.7)
balAPincAN |= N 65.2 87.5 74.7 70.4 (68.7–72.1)
balAPincupper 64.4 90.0 75.1 70.1 (68.4–71.8)
SVMAN |= N 69.3 69.3 69.3 69.3 (67.6–71.0)
cos(N1, N2) 57.7 57.6 57.5 57.6 (55.8–59.5)
fq(N1)< fq(N2) 52.1 52.1 51.8 53.3 (51.4–55.2)

Table 2: Detecting lexical entailment. Results ranked
by accuracy and expressed as percentages. 95% con-
fidence intervals around accuracy calculated by bino-
mial exact tests.

accuracy on the test set, which is balanced be-
tween positive and negative instances. Interest-
ingly, the balAPinc decision thresholds tuned on
the AN |= N set and on the test data are very
close (0.26 vs. 0.24), resulting in very similar per-
formance for balAPincAN |= N and balAPincupper.
This suggests that the relation captured by bal-
APinc on the phrasal entailment training data is
indeed the same that the measure captures when
applied to lexical entailment data.

The success of this first experiment shows that
the entailment relation present in the distribu-
tional representation of AN phrases and their
head Ns transfers to lexical entailment (entailment
among Ns). Most importantly, this result demon-
strates that the semantic vectors of composite ex-
pressions (such as ANs) are useful for lexical en-
tailment. Moreover, the result is in accordance
with the view of FS, that ANs and Ns have the
same semantic type, and thus they enter entail-
ment relations of the same kind. Finally, the hy-
pothesis that entailment among nouns is reflected
by distributional inclusion among their semantic
vectors (Kotlerman et al., 2010) is supported both
by the successful generalization of the SVM clas-
sifier trained on AN |= N pairs and by the good
performance of the balAPinc measure.

5 Generalizing QN entailment

The second study is somewhat more ambitious,
as it aims to capture and generalize the entailment
relation between QPs (of shape QN) using only
the corpus-harvested semantic vectors represent-
ing these phrases as evidence. We are thus first
and foremost interested in testing whether these
vectors encode information that can help a power-
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P R F Accuracy
(95% C.I.)

SVMpair-out 76.7 77.0 76.8 78.1 (77.5–78.8)
SVMquantifier-out 70.1 65.3 68.0 71.0 (70.3–71.7)

SVMQ
pair-out 67.9 69.8 68.9 70.2 (69.5–70.9)

SVMQ
quantifier-out 53.3 52.9 53.1 56.0 (55.2–56.8)

cos(QN1, QN2) 52.9 52.3 52.3 53.1 (52.3–53.9)
balAPincAN |= N 46.7 5.6 10.0 52.5 (51.7–53.3)
SVMAN |= N 2.8 42.9 5.2 52.4 (51.7–53.2)
fq(QN1)<fq(QN2) 51.0 47.4 49.1 50.2 (49.4–51.0)
balAPincupper 47.1 100 64.1 47.2 (46.4–47.9)

Table 3: Detecting quantifier entailment. Results
ranked by accuracy and expressed as percentages.
95% confidence intervals around accuracy calculated
by binomial exact tests.

ful classifier, such as SVM, to detect entailment.
To abstract away from lexical or other effects

linked to a specific quantifier, we consider two
challenging training and testing regimes. In the
first (SVMpair-out), we hold out one quantifier pair
as testing data and use the other 29 pairs in Table 1
as training data. Thus, for example, the classifier
must discover all dogs |= some dogs without see-
ing any all N |= some N instance in the training
data. In the second (SVMquantifier-out), we hold out
one of the 12 quantifiers as testing data (that is,
hold out every pair involving a certain quantifier)
and use the rest as training data. For example,
the quantifier must guess all dogs |= some dogs
without ever seeing all in the training data. We
expect the second training regime to be more dif-
ficult, not just because there is less training data,
but also because the trained classifier is tested on
a quantifier that it has never encountered within
any training QN sequence.4

Table 3 reports the results for SVMpair-out and
SVMquantifier-out, as well as for the methods we
tried in the lexical entailment experiments. (As
in the first study, the frequency- and cosine-based

4In our initial experiments, we added negative entail-
ment instances by blindly permuting the nouns, under the
assumption that Q1N1 typically does not entail Q2N2 when
Q1 6= Q2 and N1 6= N2. These additional instances turned
out to be much easier to classify: adding an equal proportion
of them to the training data and testing data, such that the
number of instances where N1 = N2 and where N1 6= N2

is equal, reduced every error rate roughly by half. The re-
ported results do not involve these additional instances.

baselines are only slightly better overall than more
trivial baselines.) We consider moreover an alter-
native approach that ignores the noun altogether
and uses vectors for the quantifiers only (e.g., the
decision about all dogs |=some dogs considers the
corpus-derived all and some vectors only). The
models resulting from this Q-only strategy are
marked with the superscript Q in the table.

The results confirm clearly that semantic vec-
tors for QNs contain enough information to allow
a classifier to detect entailment: SVMquantifier-out
performs as well as the lexical entailment classi-
fiers of our first study, and SVMpair-out does even
better. This success is especially impressive given
our challenging training and testing regimes.

In contrast to the first study, now SVMAN |= N,
the classifier trained on the AN |= N data set,
and balAPinc perform no better than the base-
lines. (Here balAPincupper and balAPincAN |= N
pick very different thresholds: the first settling
on a very low t = 0.01, whereas for the sec-
ond t = 0.26.) As predicted by FS (see Section
2.2 above), noun-level entailment does not gen-
eralize to quantifier phrase entailment, since the
two structures have different semantic types, cor-
responding to different kinds of entailment rela-
tions. Moreover, the failure of balAPinc suggests
that, whatever evidence the SVMs rely upon, it is
not simple feature inclusion.

Interestingly, even the Q vectors alone encode
enough information to capture entailment above
chance. Still, the huge drop in performance from
SVMQ

pair-out to SVMQ
quantifier-out suggests that the Q-

only method learned ad-hoc properties that do not
generalize (e.g., “all entails every Q2”).

Tables 1 and 4 break down the SVM results by
(pairs of) quantifiers. We highlight the remark-
able dichotomy in Table 4 between the good per-
formance on the universal-like quantifiers (each,
every, all, much) and the poor performance on the
existential-like ones (some, no, both, either).

In sum, the QN experiments show that seman-
tic vectors contain enough information to detect
a logical relation such as entailment not only be-
tween words, but also between phrases contain-
ing quantifiers that determine their entailment re-
lation. While a flexible classifier such as SVM
performs this task well, neither measuring fea-
ture inclusion nor generalizing nominal entail-
ment works. SVMs are evidently tapping into
other properties of the vectors.
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Quantifier Instances Correct
|= 6|= |= 6|=

each 656 656 649 637 (98%)
every 460 1322 402 1293 (95%)
much 248 0 216 0 (87%)
all 2949 2641 2011 2494 (81%)
several 1731 1509 1302 1267 (79%)
many 3341 4163 2349 3443 (77%)
few 0 461 0 311 (67%)
most 928 832 549 511 (60%)
some 4062 3145 1780 2190 (55%)
no 0 714 0 380 (53%)
both 636 1404 589 303 (44%)
either 63 63 2 41 (34%)

Total 15074 16910 9849 12870 (71%)

Table 4: Breakdown of results with leaving-one-
quantifier-out (SVMquantifier-out) training regime.

6 Conclusion

Our main results are as follows.

1. Corpus-harvested semantic vectors repre-
senting adjective-noun constructions and
their heads encode a relation of entailment
that can be exploited to train a classifier
to detect lexical entailment. In particular,
a relation of feature inclusion between the
narrower antecedent and broader consequent
terms captures both AN |= N and N1 |= N2

entailment.

2. The semantic vectors of quantifier-noun con-
structions also encode information sufficient
to learn an entailment relation that general-
izes to QNs containing quantifiers that were
not seen during training.

3. Neither the entailment information encoded
in AN |= N vectors nor the balAPinc mea-
sure generalizes well to entailment detection
in QNs. This result suggests that QN vectors
encode a different kind of entailment, as also
suggested by type distinctions in Formal Se-
mantics.

In future work, we want first of all to conduct
an analysis of the features in the Q1N |=Q2N vec-
tors that are crucially exploited by our success-
ful entailment recognizers, in order to understand
which characteristics of entailment are encoded in
these vectors.

Very importantly, instead of extracting vectors
representing phrases directly from the corpus, we
intend to derive them by compositional operations
proposed in the literature (see Section 2.1 above).
We will look for composition methods producing
vector representations of composite expressions
that are as good as (or better than) vectors directly
extracted from the corpus at encoding entailment.

Finally, we would like to evaluate our entail-
ment detection strategies for larger phrases and
sentences, possibly containing multiple quanti-
fiers, and eventually embed them as core compo-
nents of an RTE system.
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Abstract

A major focus of current work in distri-
butional models of semantics is to con-
struct phrase representations composition-
ally from word representations. However,
the syntactic contexts which are modelled
are usually severely limited, a fact which
is reflected in the lexical-level WSD-like
evaluation methods used. In this paper, we
broaden the scope of these models to build
sentence-level representations, and argue
that phrase representations are best eval-
uated in terms of the inference decisions
that they support, invariant to the partic-
ular syntactic constructions used to guide
composition. We propose two evaluation
methods in relation classification and QA
which reflect these goals, and apply several
recent compositional distributional models
to the tasks. We find that the models out-
perform a simple lemma overlap baseline
slightly, demonstrating that distributional
approaches can already be useful for tasks
requiring deeper inference.

1 Introduction

A number of unsupervised semantic models
(Mitchell and Lapata, 2008, for example) have re-
cently been proposed which are inspired at least
in part by the distributional hypothesis (Harris,
1954)—that a word’s meaning can be character-
ized by the contexts in which it appears. Such
models represent word meaning as one or more
high-dimensional vectors which capture the lex-
ical and syntactic contexts of the word’s occur-
rences in a training corpus.

Much of the recent work in this area has, fol-
lowing Mitchell and Lapata (2008), focused on

the notion of compositionality as the litmus test of
a truly semantic model. Compositionality is a nat-
ural way to construct representations of linguistic
units larger than a word, and it has a long history
in Montagovian semantics for dealing with argu-
ment structure and assembling rich semantical ex-
pressions of the kind found in predicate logic.

While compositionality may thus provide a
convenient recipe for producing representations
of propositionally typed phrases, it is not a nec-
essary condition for a semantic representation.
Rather, that distinction still belongs to the crucial
ability to support inference. It is not the inten-
tion of this paper to argue for or against composi-
tionality in semantic representations. Rather, our
interest is in evaluating semantic models in order
to determine their suitability for inference tasks.
In particular, we contend that it is desirable and
arguably necessary for a compositional semantic
representation to support inferenceinvariantly, in
the sense that the particular syntactic construction
that guided the composition should not matter rel-
ative to the representations of syntactically differ-
ent phrases with the same meanings. For example,
we can assert thatJohn threw the ballandThe ball
was thrown by Johnhave the same meaning for
the purposes of inference, even though they differ
syntactically.

An analogy can be drawn to research in image
processing, in which it is widely regarded as im-
portant for the representations of images to be in-
variant to rotation and scaling. What we should
want is a representation of sentence meaning that
is invariant to diathesis, other regular syntactic al-
ternations in the assignment of argument struc-
ture, and, ideally, even invariant to other meaning-
preserving or near-preserving paraphrases.
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Existing evaluations of distributional semantic
models fall short of measuring this. One evalua-
tion approach consists of lexical-level word sub-
stitution tasks which primarily evaluate a sys-
tem’s ability to disambiguate word senses within a
controlled syntactic environment (McCarthy and
Navigli, 2009, for example). Another approach is
to evaluate parsing accuracy (Socher et al., 2010,
for example), which is really a formalism-specific
approximation to argument structure analysis.
These evaluations may certainly be relevant to
specific components of, for example, machine
translation or natural language generation sys-
tems, but they tell us little about a semantic
model’s ability to support inference.

In this paper, we propose a general framework
for evaluating distributional semantic models that
build sentence representations, and suggest two
evaluation methods that test the notion of struc-
turally invariant inference directly. Both rely on
determining whether sentences express the same
semantic relation between entities, a crucial step
in solving a wide variety of inference tasks like
recognizing textual entailment, information re-
trieval, question answering, and summarization.

The first evaluation is a relation classification
task, where a semantic model is tested on its abil-
ity to recognize whether a pair of sentences both
contain a particular semantic relation, such as
Company X acquires Company Y. The second task
is a question answering task, the goal of which is
to locate the sentence in a document that contains
the answer. Here, the semantic model must match
the question, which expresses a proposition with a
missing argument, to the answer-bearing sentence
which contains the full proposition.

We apply these new evaluation protocols to
several recent distributional models, extending
several of them to build sentence representa-
tions. We find that the models outperform a sim-
ple lemma overlap model only slightly, but that
combining these models with the lemma overlap
model can improve performance. This result is
likely due to weaknesses in current models’ abil-
ity to deal with issues such as named entities,
coreference, and negation, which are not empha-
sized by existing evaluation methods, but it does
suggest that distributional models of semantics
can play a more central role in systems that re-
quire deep, precise inference.

2 Compositionality and Distributional
Semantics

The idea of compositionality has been central to
understanding contemporary natural language se-
mantics from an historiographic perspective. The
idea is often credited to Frege, although in fact
Frege had very little to say about compositional-
ity that had not already been repeated since the
time of Aristotle (Hodges, 2005). Our modern
notion of compositionality took shape primarily
with the work of Tarski (1956), who was actu-
ally arguing that a central difference between for-
mal languages and natural languages is that nat-
ural language is not compositional. This in turn
was the “the contention that an important theo-
retical difference exists between formal and nat-
ural languages,” that Richard Montague so fa-
mously rejected (Montague, 1974). Composi-
tionality also features prominently in Fodor and
Pylyshyn’s (1988) rejection of early connection-
ist representations of natural language semantics,
which seems to have influenced Mitchell and La-
pata (2008) as well.

Logic-based forms of compositional semantics
have long strived for syntactic invariance in mean-
ing representations, which is known as the doc-
trine of the canonical form. The traditional justifi-
cation for canonical forms is that they allow easy
access to a knowledge base to retrieve some de-
sired information, which amounts to a form of in-
ference. Our work can be seen as an extension of
this notion to distributional semantic models with
a more general notion of representational similar-
ity and inference.

There are many regular alternations that seman-
tics models have tried to account for such as pas-
sive or dative alternations. There are also many
lexical paraphrases which can take drastically dif-
ferent syntactic forms. Take the following exam-
ple from Poon and Domingos (2009), in which the
same semantic relation can be expressed by a tran-
sitive verb or an attributive prepositional phrase:

(1) Utah bordersIdaho.
Utah is next toIdaho.

In distributional semantics, the original sen-
tence similarity test proposed by Kintsch (2001)
served as the inspiration for the evaluation per-
formed by Mitchell and Lapata (2008) and most
later work in the area. Intransitive verbs are given
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in the context of their syntactic subject, and can-
didate synonyms are ranked for their appropri-
ateness. This method targets the fact that a syn-
onym is appropriate for only some of the verb’s
senses, and the intended verb sense depends on
the surrounding context. For example,burn and
beamare both synonyms ofglow, but given a par-
ticular subject, one of the synonyms (called the
High similarity landmark) may be a more appro-
priate substitution than the other (the Low similar-
ity landmark). So, ifthe fireis the subject,glowed
is the High similarity landmark, andbeamedthe
Low similarity landmark.

Fundamentally, this method was designed as
a demonstration that compositionality in com-
puting phrasal semantic representations does not
interfere with the ability of a representation to
synthesize non-compositional collocation effects
that contribute to the disambiguation of homo-
graphs. Here, word-sense disambiguation is im-
plicitly viewed as a very restricted, highly lexi-
calized case of inference for selecting the appro-
priate disjunct in the representation of a word’s
meaning.

Kintsch (2001) was interested in sentence sim-
ilarity, but he only conducted his evaluation on
a few hand-selected examples. Mitchell and La-
pata (2008) conducted theirs on a much larger
scale, but chose to focus only on this single case
of syntactic combination, intransitive verbs and
their subjects, in order to “factor out inessential
degrees of freedom” to compare their various al-
ternative models more equitably. This was not
necessary—using the same, sufficiently large, un-
biased but syntactically heterogeneous sample of
evaluation sentences would have served as an ade-
quate control—and this decision furthermore pre-
vents the evaluation from testing the desired in-
variance of the semantic representation.

Other lexical evaluations suffer from the same
problem. One uses the WordSim-353 dataset
(Finkelstein et al., 2002), which contains hu-
man word pair similarity judgments that seman-
tic models should reproduce. However, the word
pairs are given without context, and homography
is unaddressed. Also, it is unclear how reliable
the similarity scores are, as different annotators
may interpret the integer scale of similarity scores
differently. Recent work uses this dataset mostly
for parameter tuning. Another is the lexical para-
phrase task of McCarthy and Navigli (2009), in

which words are given in the context of the sur-
rounding sentence, and the task is to rank a given
list of proposed substitutions for that word. The
list of substitutions as well as the correct rankings
are elicited from annotators. This task was origi-
nally conceived as an applied evaluation of WSD
systems, not an evaluation of phrase representa-
tions.

Parsing accuracy has been used as a prelimi-
nary evaluation of semantic models that produce
syntactic structure (Socher et al., 2010; Wu and
Schuler, 2011). However, syntax does not always
reflect semantic content, and we are specifically
interested in supporting syntactic invariance when
doing semantic inference. Also, this type of eval-
uation is tied to a particular grammar formalism.

The existing evaluations that are most similar in
spirit to what we propose are paraphrase detection
tasks that do not assume a restricted syntactic con-
text. Washtell (2011) collected human judgments
on the general meaning similarity of candidate
phrase pairs. Unfortunately, no additional guid-
ance on the definition of “most similar in mean-
ing” was provided, and it appears likely that sub-
jects conflated lexical, syntactic, and semantic re-
latedness. Dolan and Brockett (2005) define para-
phrase detection as identifying sentences that are
in a bidirectional entailment relation. While such
sentences do support exactly the same inferences,
we are also interested in the inferences that can
be made from similar sentences that are not para-
phrases according to this strict definition — a sit-
uation that is more often encountered in end ap-
plications. Thus, we adopt a less restricted notion
of paraphrasis.

3 An Evaluation Framework

We now describe a simple, general framework
for evaluating semantic models. Our framework
consists of the following components: a seman-
tic model to be evaluated, pairs of sentences that
are considered to have high similarity, and pairs
of sentences that are considered to have low simi-
larity.

In particular, the semantic model is a binary
function, s = M(x, x′), which returns a real-
valued similarity score,s, given a pair of arbitrary
linguistic units (that is, words, phrases, sentences,
etc.),x andx′. Note that this formulation of the
semantic model is agnostic to whether the models
use compositionality to build a phrase represen-
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tation from constituent representations, and even
to the actual representation used. The model is
tested by applying it to each element in the fol-
lowing two sets:

H = {(h, h′)|h andh′ are linguistic units (2)

with high similarity}

L = {(l, l′)|l andl′ are linguistic units (3)

with low similarity}

The resulting sets of similarity scores are:

SH =
{

M(h, h′)|(h, h′) ∈ H
}

(4)

SL =
{

M(l, l′)|(l, l′) ∈ L
}

(5)

The semantic model is evaluated according to
its ability to separateSH andSL. We will de-
fine specific measures of separation for the tasks
that we propose shortly. While the particular def-
initions of “high similarity” and “low similarity”
depend on the task, at the crux of both our evalu-
ations is that two sentences are similar if they ex-
press the same semantic relation between a given
entity pair, and dissimilar otherwise. This thresh-
old for similarity is closely tied to the argument
structure of the sentence, and allows considerable
flexibility in the other semantic content that may
be contained in the sentence, unlike the bidirec-
tional paraphrase detection task. Yet it ensures
that a consistent and useful distinction for infer-
ence is being detected, unlike unconstrained sim-
ilarity judgments.

Also, compared to word similarity assessments
or paraphrase elicitation, determining whether a
sentence expresses a semantic relation is a much
easier task cognitively for human judges. This bi-
nary judgment does not involve interpreting a nu-
merical scale or coming up with an open-ended
set of alternative paraphrases. It is thus easier to
get reliable annotated data.

Below, we present two tasks that instantiate
this evaluation framework and choice of similar-
ity threshold. They differ in that the first is tar-
geted towards recognizing declarative sentences
or phrases, while the second is targeted towards a
question answering scenario, where one argument
in the semantic relation is queried.

3.1 Task 1: Relation Classification

The first task is a relation classification task. Rela-
tion extraction and recognition are central to a va-
riety of other tasks, such as information retrieval,

ontology construction, recognizing textual entail-
ment and question answering.

In this task, the high and the low similarity sen-
tence pairs are constructed in the following man-
ner. First, a target semantic relation, such asCom-
pany X acquires Company Yis chosen, and enti-
ties are chosen for each slot in the relation, such as
Company X=PfizerandCompany Y=Rinat Neu-
roscience. Then, sentences containing these enti-
ties are extracted and divided into two subsets. In
one of them,E, the entities are in the target se-
mantic relation, while in the other,NE, they are
not. The evaluation setsH andL are then con-
structed as follows:

H = E × E \ {(e, e)|e ∈ E} (6)

L = E ×NE (7)

In other words, the high similarity sentence
pairs are all the pairs where both express the tar-
get semantic relation, except the pairs between a
sentence and itself, while the low similarity pairs
are all the pairs where exactly one of the two sen-
tences expresses the target relation.

Several sentences expressing the relationPfizer
acquires Rinat Neuroscienceare shown in Exam-
ples 8 to 10. These sentences illustrate the amount
of syntactic and lexical variation that the semantic
model must recognize as expressing the same se-
mantic relation. In particular, besides recognizing
synonymy or near-synonymy at the lexical level,
models must also account for subcategorization
differences, extra arguments or adjuncts, and part-
of-speech differences due to nominalization.

(8) Pfizer buysRinat Neuroscience to extend
neuroscience research and in doing so
acquires a product candidate for OA.
(lexical difference)

(9) A month earlier, Pfizer paidan estimated
several hundred million dollars forbiotech
firm Rinat Neuroscience.(extra argument,
subcategorization)

(10) Pfizer to Expand Neuroscience Research
With Acquisition ofBiotech Company Rinat
Neuroscience(nominalization)

Since our interest is to measure the models’
ability to separateSH and SL in an unsuper-
vised setting, standard supervised classification
accuracy is not applicable. Instead, we employ
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the area under a ROC curve (AUC), which does
not depend on choosing an arbitrary classification
threshold. A ROC curve is a plot of the true pos-
itive versus false positive rate of a binary classi-
fier as the classification threshold is varied. The
area under a ROC curve can thus be seen as the
performance of linear classifiers over the scores
produced by the semantic model. The AUC can
also be interpreted as the probability that a ran-
domly chosen positive instance will have a higher
similarity score than a randomly chosen negative
instance. A random classifier is expected to have
an AUC of 0.5.

3.2 Task 2: Restricted QA

The second task that we propose is a restricted
form of question answering. In this task, the sys-
tem is given a questionq and a documentD con-
sisting of a list of sentences, in which one of the
sentences contains the answer to the question. We
define:

H = {(q, d)|d ∈ D andd answersq} (11)

L = {(q, d)|d ∈ D andd does not answerq}
(12)

In other words, the sentences are divided into two
subsets; those that contain the answer toq should
be similar toq, while those that do not should be
dissimilar. We also assume that only one sentence
in each document contains the answer, soH con-
tains only one sentence.

Unrestricted question answering is a difficult
problem that forces a semantic representation to
deal sensibly with a number of other semantic is-
sues such as coreference and information aggre-
gation which still seem to be out of reach for
contemporary distributional models of meaning.
Since our focus in this work is on argument struc-
ture semantics, we restrict the question-answer
pairs to those that only require dealing with para-
phrases of this type.

To do so, we semi-automatically restrict the
question-answer pairs by using the output of an
unsupervised clustering semantic parser (Poon
and Domingos, 2009). The semantic parser clus-
ters semantic sub-expressions derived from a de-
pendency parse of the sentence, so that those sub-
expressions that express the same semantic re-
lations are clustered. The parser is used to an-
swer questions, and the output of the parser is

manually checked. We use only those cases that
have thus been determined to be correct question-
answer pairs. As a result of this restriction, this
task is rather more like Task 1 in how it tests a
model’s ability to recognize lexical and syntac-
tic paraphrases. This task also involves recog-
nizing voicing alternations, which were automati-
cally extracted by the semantic parser.

An example of a question-answer pair involv-
ing a voicing alternation that is used in this task is
presented in Example 13.

(13) Q:What does il-2 activate?
A: PI3K
Sentence:Phosphatidyl inositol 3-kinase
(PI3K) is activated by IL-2.

Since there is only one element inH and hence
SH for each question and document, we measure
the separation betweenSH andSL using the rank
of the score of answer-bearing sentence among
the scores of all the sentences in the document.
We normalize the rank so that it is between 0
(ranked least similar) and 1 (ranked most simi-
lar). Where ties occur, the sentence is ranked as
if it were in the median position among the tied
sentences. If the question-answer pairs are zero-
indexed byi, answer(i) is the index of the sen-
tence containing the answer for theith pair, and
length(i) is the number of sentences in the doc-
ument, then the mean normalized rank score of a
system is:

norm rank = E
i

[

1−
answer(i)

length(i) − 1

]

(14)

4 Experiments

We drew a number of recent distributional seman-
tic models to compare in this paper. We first de-
scribe the models and our reimplementation of
them, before describing the tasks and the datasets
used in detail and the results.

4.1 Distributional Semantic Models

We tested four recent distributional models and a
lemma overlap baseline, which we now describe.
We extended several of the models to compo-
sitionally construct phrase representations using
component-wise vector addition and multiplica-
tion, as we note below. Since the focus of this pa-
per is on evaluation methods for such models, we
did not experiment with other compositionality
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operators. We do note, however, that component-
wise operators have been popular in recent liter-
ature, and have been applied across unrestricted
syntactic contexts (Mitchell and Lapata, 2009),
so there is value in evaluating the performance of
these operators in itself. The models were trained
on the Gigaword corpus (2nd ed., ~2.3B words).
All models use cosine similarity to measure the
similarity between representations, except for the
baseline model.

Lemma Overlap This baseline simply repre-
sents a sentence as the counts of each lemma
present in the sentence after removing stop
words. Let a sentencex consist of lemma-tokens
m1, . . . ,m|x|. The similarity between two sen-
tences is then defined as

M(x, x′) = #In(x, x′) + #In(x′, x) (15)

#In(x, x′) =

|x|
∑

i=1

1x′(mi) (16)

where1x′(mi) is an indicator function that returns
1 if mi ∈ x′, and0 otherwise. This definition
accounts for multiple occurrences of a lemma.

M&L Mitchell and Lapata (2008) propose a
framework for compositional distributional se-
mantics using a standard term-context vector
space word representation. A phrase is repre-
sented as a vector of context-word counts (actu-
ally, pmi-scaled values), which is derived compo-
sitionally by a function over constituent vectors,
such as component-wise addition or multiplica-
tion. This model ignores syntactic relations and
is insensitive to word-order.

E&P Erk and Padó (2008) introduce a struc-
tured vector space model which uses syntactic de-
pendencies to model the selectional preferences
of words. The vector representation of a word in
context depends on the inverse selectional prefer-
ences of its dependents, and the selectional pref-
erences of its head. For example, supposecatch
occurs with a dependentball in a direct object
relation. The vector forcatchwould then be in-
fluenced by the inverse direct object preferences
of ball (e.g. throw, organize), and the vector for
ball would be influenced by the selectional pref-
erences ofcatch(e.g.cold, drift). More formally,
given wordsa andb in a dependency relationr,

a distributional representation ofa, va, the repre-
sentation ofa in context,a′, is given by

a′ = va ⊙Rb(r
−1) (17)

Rb(r) =
∑

c:f(c,r,b)>θ

f(c, r, b) · vc, (18)

whereRb(r) is the vector describing the selec-
tional preference of wordb in relationr, f(c, r, b)
is the frequency of this dependency triple,θ is a
frequency threshold to weed out uncommon de-
pendency triples (10 in our experiments), and⊙
is a vector combination operator, here component-
wise multiplication. We extend the model to com-
pute sentence representations from the contextu-
alized word vectors using component-wise addi-
tion and multiplication.

TFP Thater et al. (2010)’s model is also sensi-
tive to selectional preferences, but to two degrees.
For example, the vector forcatch might contain
a dimension labelled (OBJ,OBJ-1,throw),
which indicates the strength of connection be-
tween the two verbs through all of the co-
occurring direct objects which they share. Unlike
E&P, TFP’s model encodes the selectional prefer-
ences in a single vector using frequency counts.
We extend the model to the sentence level with
component-wise addition and multiplication, and
word vectors are contextualized by the depen-
dency neighbours. We use a frequency threshold
of 10 and a pmi threshold of 2 to prune infrequent
word and dependencies.

D&L Dinu and Lapata (2010) (D&L) assume
a global set of latent senses for all words, and
models each word as a mixture over these latent
senses. The vector for a wordti in the context of
a wordcj is modelled by

v(ti, cj) = P (z1|ti, cj), ...P (zK |ti, cj) (19)

where z1...K are the latent senses. By mak-
ing independence assumptions and decomposing
probabilities, training becomes a matter of esti-
mating the probability distributionsP (zk|ti) and
P (cj |zk) from data. While Dinu and Lapata
(2010) describe two methods to do so, based
on non-negative matrix factorization and latent
Dirichlet allocation, the performances are similar,
so we tested only the latent Dirichlet allocation
method. Like the two previous models, we ex-
tend the model to build sentence representations
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Pfizer/Rinat N. Yahoo/Inktomi Besson/Paris Antoinette/Vienna Average
Overlap 0.7393 0.6007 0.7395 0.8914 0.7427
Models trained on the entire GigaWord
M&L add 0.6196 0.5387 0.5259 0.7275 0.6029
M&L mult 0.9036 0.6099 0.6443 0.8467 0.7511
D&L add 0.9214 0.8168 0.6989 0.8932 0.8326
D&L mult 0.7732 0.6734 0.6527 0.7659 0.7163
Models trained on the AFP section
E&P add 0.7536 0.4933 0.2780 0.6408 0.5414
E&P mult 0.5268 0.5328 0.5252 0.8421 0.6067
TFP add 0.4357 0.5325 0.8725 0.7183 0.6398
TFP mult 0.5554 0.5524 0.7283 0.6917 0.6320
M&L add 0.5643 0.5504 0.4594 0.7640 0.5845
M&L mult 0.8679 0.6324 0.4356 0.8258 0.6904
D&L add 0.8143 0.9062 0.6373 0.8664 0.8061
D&L mult 0.8429 0.7461 0.645 0.5948 0.7072

Table 1: Task 1 results in AUC scores. The values in bold indicate the best performing model for a particular
training corpus. The expected random baseline performanceis 0.5.

Entities: {X, Y} + N
Relation: acquires
{Pfizer, Rinat Neuroscience} 41 50
{Yahoo, Inktomi} 115 433
Relation: was born in
{Luc Besson, Paris} 6 126
{Marie Antoinette, Vienna} 39 105

Table 2: Task 1 dataset characteristics.N is the total
number of sentences.+ is the number of sentences
that express the relation.

from the contextualized representations. We set
the number of latent senses to 1200, and train for
600 Gibbs sampling iterations.

4.2 Training and Parameter Settings

We reimplemented these four models, following
the parameter settings described by previous work
where possible, though we also aimed for consis-
tency in parameter settings between models (for
example, in the number of context words). For the
non-baseline models, we followed previous work
and model only the 30000 most frequent lemmata.
Context vectors are constructed using a symmet-
ric window of 5 words, and their dimensions rep-
resent the 3000 most frequent lemmatized context
words excluding stop words. Due to resource lim-
itations, we trained the syntactic models over the
AFP subset of Gigaword (~338M words). We also
trained the other two models on just the AFP por-

tion for comparison. Note that the AFP portion
of Gigaword is three times larger than the BNC
corpus (~100M words), on which several previ-
ous syntactic models were trained. Because our
main goal is to test the general performance of the
models and to demonstrate the feasibility of our
evaluation methods, we did not further tune the
parameter settings to each of the tasks, as doing
so would likely only yield minor improvements.

4.3 Task 1

We used the dataset by Bunescu and Mooney
(2007), which we selected because it contains
multiple realizations of an entity pair in a target
semantic relation, unlike similar datasets such as
the one by Roth and Yih (2002). Controlling for
the target entity pair in this manner makes the task
more difficult, because the semantic model cannot
make use of distributional information about the
entity pair in inference. The dataset is separated
into subsets depending on the target binary rela-
tion (Company X acquires Company Yor Person
X was born in Place Y) and the entity pair (e.g.,
YahooandInktomi) (Table 2).

The dataset was constructed semi-
automatically using a Google search for the
two entities in order with up to seven content
words in between. Then, the extracted sentences
were hand-labelled with whether they express the
target relation. Because the order of the entities
has been fixed, passive alternations do not appear
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Pure models Mixed models
All Subset All Subset

Overlap 0.8770 0.7291 0.8770 0.7291
Models trained on the entire GigaWord
M&L add 0.7467 0.6106 0.8782 0.7523
M&L mult 0.5331 0.5690 0.8841 0.7678
D&L add 0.6552 0.5716 0.8791 0.7539
D&L mult 0.5488 0.5255 0.8841 0.7466
Models trained on the AFP section
E&P add 0.4589 0.4516 0.8748 0.7375
E&P mult 0.5201 0.5584 0.8882 0.7719
TFP add 0.6887 0.6443 0.8940 0.7871
TFP mult 0.5210 0.5199 0.8785 0.7432
M&L add 0.7588 0.6206 0.8710 0.7371
M&L mult 0.5710 0.5540 0.8801 0.7540
D&L add 0.6358 0.5402 0.8713 0.7305
D&L mult 0.5647 0.5461 0.8856 0.7683

Table 3: Task 2 results, in normalized rank scores.
Subsetis the cases where lemma overlap does not
achieve a perfect score. The two columns on the right
indicate performance using the sum of the scores from
the lemma overlap and the semantic model. The ex-
pected random baseline performance is 0.5.

in this dataset.
The results for Task 1 indicate that the D&L ad-

dition model performs the best (Table 1), though
the lemma overlap model presents a surprisingly
strong baseline. The syntax-modulated E&P and
TFP models perform poorly on this task, even
when compared to the other models trained on the
AFP subset. The M&L multiplication model out-
performs the addition model, a result which cor-
roborates previous findings on the lexical substi-
tution task. The same does not hold in the D&L
latent sense space. Overall, some of the datasets
(YahooandAntoinette) appear to be easier for the
models than others (PfizerandBesson), but more
entity pairs and relations would be needed to in-
vestigate the models’ variance across datasets.

4.4 Task 2

We used the question-answer pairs extracted by
the Poon and Domingos (2009) semantic parser
from the GENIA biomedical corpus that have
been manually checked to be correct (295 pairs).
Because our models were trained on newspaper
text, they required adaptation to this specialized
domain. Thus, we also trained the M&L, E&P
and TFP models on the GENIA corpus, back-

ing off to word vectors from the GENIA corpus
when a word vector could not be found in the
Gigaword-trained model. We could not do this
for the D&L model, since the global latent senses
that are found by latent Dirichlet allocation train-
ing do not have any absolute meaning that holds
across multiple runs. Instead, we found the 5
words in the Gigaword-trained D&L model that
were closest to each novel word in the GENIA
corpus according to cosine similarity over the co-
occurrence vectors of the words in the GENIA
corpus, and took their average latent sense distri-
butions as the vector for that word.

Unlike in Task 1, there is no control for the
named entities in a sentence, because one of the
entities in the semantic relation is missing. Also,
distributional models have problems in dealing
with named entities which are common in this
corpus, such as the names of genes and proteins.
To address these issues, we tested hybrid models
where the similarity score from a semantic model
is added to the similarity score from the lemma
overlap model.

The results are presented in Table 3. Lemma
overlap again presents a strong baseline, but the
hybridized models are able to outperform simple
lemma overlap. Unlike in Task 1, the E&P and
TFP models are comparable to the D&L model,
and the mixed TFP addition model achieves the
best result, likely due to the need to more pre-
cisely distinguish syntactic roles in this task. The
D&L addition model, which achieved the best
performance in Task 1, does not perform as well
in this task. This could be due to the domain adap-
tation procedure for the D&L model, which could
not be reasonably trained on such a small, special-
ized corpus.

5 Related Work

Turney and Pantel (2010) survey various types of
vector space models and applications thereof in
computational linguistics. We summarize below
a number of other word- or phrase-level distribu-
tional models.

Several approaches are specialized to deal with
homography. The top-downmulti-prototypeap-
proach determines a number of senses for each
word, and then clusters the occurrences of the
word (Reisinger and Mooney, 2010) into these
senses. A prototype vector is created for each
of these sense clusters. When a new occurrence
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of a word is encountered, it is represented as a
combination of the prototype vectors, with the de-
gree of influence from each prototype determined
by the similarity of the new context to the exist-
ing sense contexts. In contrast, the bottom-upex-
emplar-based approach assumes that each occur-
rence of a word expresses a different sense of the
word. The most similar senses of the word are ac-
tivated when a new occurrence of it is encountered
and combined, for example with a kNN algorithm
(Erk and Padó, 2010).

The models we compared and the above work
assume each dimension in the feature vector cor-
responds to a context word. In contrast, Washtell
(2011) uses potential paraphrases directly as di-
mensions in hisexpectation vectors. Unfortu-
nately, this approach does not outperform vari-
ous context word-based approaches in two phrase
similarity tasks.

In terms of the vector composition function,
component-wise addition and multiplication are
the most popular in recent work, but there ex-
ist a number of other operators such as tensor
product and convolution product, which are re-
viewed by Widdows (2008). Instead of vector
space representations, one could also use a matrix
space representation with its much more expres-
sive matrix operators (Rudolph and Giesbrecht,
2010). So far, however, this has only been ap-
plied to specific syntactic contexts (Baroni and
Zamparelli, 2010; Guevara, 2010; Grefenstette
and Sadrzadeh, 2011), or tasks (Yessenalina and
Cardie, 2011).

Neural networks have been used to learn both
phrase structure and representations. In Socher et
al. (2010), word representations learned by neu-
ral network models such as (Bengio et al., 2006;
Collobert and Weston, 2008) are fed as input into
a recursive neural network whose nodes represent
syntactic constituents. Each node models both the
probability of the input forming a constituent and
the phrase representation resulting from composi-
tion.

6 Conclusions

We have proposed an evaluation framework for
distributional models of semantics which build
phrase- and sentence-level representations, and
instantiated two evaluation tasks which test for
the crucial ability to recognize whether sen-
tences express the same semantic relation. Our

results demonstrate that compositional distribu-
tional models of semantics already have some
utility in the context of more empirically complex
semantic tasks than WSD-like lexical substitution
tasks, in which compositional invariance is a req-
uisite property. Simply computing lemma over-
lap, however, is a very competitive baseline, due
to issues in these protocols with named entities
and domain adaptivity. The better performance
of the mixture models in Task 2 shows that such
weaknesses can be addressed by hybrid seman-
tic models. Future work should investigate more
refined versions of such hybridization, as well as
extend this idea to other semantic phenomena like
coreference, negation and modality.

We also observe that no single model or com-
position operator performs best for all tasks and
datasets. The latent sense mixture model of Dinu
and Lapata (2010) performs well in recognizing
semantic relations in general web text. Because
of the difficulty of adapting it to a specialized
domain, however, it does less well in biomedi-
cal question answering, where the syntax-based
model of Thater et al. (2010) performs the best.
A more thorough investigation of the factors that
can predict the performance and/or invariance of
a given composition operator is warranted.

In the future, we would like to evaluate other
models of compositional semantics that have been
recently proposed. We would also like to collect
more comprehensive test data, to increase the ex-
ternal validity of our evaluations.

Acknowledgments

We would like to thank Georgiana Dinu and Ste-
fan Thater for help with reimplementing their
models. Saif Mohammad, Peter Turney, and
the anonymous reviewers provided valuable com-
ments on drafts of this paper. This project was
supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

References

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1193.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
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Abstract

A serious bottleneck of comparative parser
evaluation is the fact that different parsers
subscribe to different formal frameworks
and theoretical assumptions. Converting
outputs from one framework to another is
less than optimal as it easily introduces
noise into the process. Here we present a
principled protocol for evaluating parsing
results across frameworks based on func-
tion trees, tree generalization and edit dis-
tance metrics. This extends a previously
proposed framework for cross-theory eval-
uation and allows us to compare a wider
class of parsers. We demonstrate the useful-
ness and language independence of our pro-
cedure by evaluating constituency and de-
pendency parsers on English and Swedish.

1 Introduction

The goal of statistical parsers is to recover a for-
mal representation of the grammatical relations
that constitute the argument structure of natural
language sentences. The argument structure en-
compasses grammatical relationships between el-
ements such as subject, predicate, object, etc.,
which are useful for further (e.g., semantic) pro-
cessing. The parses yielded by different parsing
frameworks typically obey different formal and
theoretical assumptions concerning how to rep-
resent the grammatical relationships in the data
(Rambow, 2010). For example, grammatical rela-
tions may be encoded on top of dependency arcs
in a dependency tree (Mel’čuk, 1988), they may
decorate nodes in a phrase-structure tree (Marcus
et al., 1993; Maamouri et al., 2004; Sima’an et
al., 2001), or they may be read off of positions in

a phrase-structure tree using hard-coded conver-
sion procedures (de Marneffe et al., 2006). This
diversity poses a challenge to cross-experimental
parser evaluation, namely: How can we evaluate
the performance of these different parsers relative
to one another?

Current evaluation practices assume a set of
correctly annotated test data (or gold standard)
for evaluation. Typically, every parser is eval-
uated with respect to its own formal representa-
tion type and the underlying theory which it was
trained to recover. Therefore, numerical scores
of parses across experiments are incomparable.
When comparing parses that belong to different
formal frameworks, the notion of a single gold
standard becomes problematic, and there are two
different questions we have to answer. First, what
is an appropriate gold standard for cross-parser
evaluation? And secondly, how can we alle-
viate the differences between formal representa-
tion types and theoretical assumptions in order to
make our comparison sound – that is, to make sure
that we are not comparing apples and oranges?

A popular way to address this has been to
pick one of the frameworks and convert all
parser outputs to its formal type. When com-
paring constituency-based and dependency-based
parsers, for instance, the output of constituency
parsers has often been converted to dependency
structures prior to evaluation (Cer et al., 2010;
Nivre et al., 2010). This solution has vari-
ous drawbacks. First, it demands a conversion
script that maps one representation type to another
when some theoretical assumptions in one frame-
work may be incompatible with the other one.
In the constituency-to-dependency case, some
constituency-based structures (e.g., coordination
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and ellipsis) do not comply with the single head
assumption of dependency treebanks. Secondly,
these scripts may be labor intensive to create, and
are available mostly for English. So the evalua-
tion protocol becomes language-dependent.

In Tsarfaty et al. (2011) we proposed a gen-
eral protocol for handling annotation discrepan-
cies when comparing parses across different de-
pendency theories. The protocol consists of three
phases: converting all structures into function
trees, for each sentence, generalizing the different
gold standard function trees to get their common
denominator, and employing an evaluation mea-
sure based on tree edit distance (TED) which dis-
cards edit operations that recover theory-specific
structures. Although the protocol is potentially
applicable to a wide class of syntactic represen-
tation types, formal restrictions in the procedures
effectively limit its applicability only to represen-
tations that are isomorphic to dependency trees.

The present paper breaks new ground in the
ability to soundly compare the accuracy of differ-
ent parsers relative to one another given that they
employ different formal representation types and
obey different theoretical assumptions. Our solu-
tion generally confines with the protocol proposed
in Tsarfaty et al. (2011) but is re-formalized to
allow for arbitrary linearly ordered labeled trees,
thus encompassing constituency-based as well as
dependency-based representations. The frame-
work in Tsarfaty et al. (2011) assumes structures
that are isomorphic to dependency trees, bypass-
ing the problem of arbitrary branching. Here we
lift this restriction, and define a protocol which
is based on generalization and TED measures to
soundly compare the output of different parsers.

We demonstrate the utility of this protocol by
comparing the performance of different parsers
for English and Swedish. For English, our
parser evaluation across representation types al-
lows us to analyze and precisely quantify previ-
ously encountered performance tendencies. For
Swedish we show the first ever evaluation be-
tween dependency-based and constituency-based
parsing models, all trained on the Swedish tree-
bank data. All in all we show that our ex-
tended protocol, which can handle linearly-
ordered labeled trees with arbitrary branch-
ing, can soundly compare parsing results across
frameworks in a representation-independent and
language-independent fashion.

2 Preliminaries: Relational Schemes for
Cross-Framework Parse Evaluation

Traditionally, different statistical parsers have
been evaluated using specially designated evalu-
ation measures that are designed to fit their repre-
sentation types. Dependency trees are evaluated
using attachment scores (Buchholz and Marsi,
2006), phrase-structure trees are evaluated using
ParsEval (Black et al., 1991), LFG-based parsers
postulate an evaluation procedure based on f-
structures (Cahill et al., 2008), and so on. From a
downstream application point of view, there is no
significance as to which formalism was used for
generating the representation and which learning
methods have been utilized. The bottom line is
simply which parsing framework most accurately
recovers a useful representation that helps to un-
ravel the human-perceived interpretation.

Relational schemes, that is, schemes that en-
code the set of grammatical relations that con-
stitute the predicate-argument structures of sen-
tences, provide an interface to semantic interpre-
tation. They are more intuitively understood than,
say, phrase-structure trees, and thus they are also
more useful for practical applications. For these
reasons, relational schemes have been repeatedly
singled out as an appropriate level of representa-
tion for the evaluation of statistical parsers (Lin,
1995; Carroll et al., 1998; Cer et al., 2010).

The annotated data which statistical parsers are
trained on encode these grammatical relationships
in different ways. Dependency treebanks provide
a ready-made representation of grammatical rela-
tions on top of arcs connecting the words in the
sentence (Kübler et al., 2009). The Penn Tree-
bank and phrase-structure annotated resources en-
code partial information about grammatical rela-
tions as dash-features decorating phrase structure
nodes (Marcus et al., 1993). Treebanks like Tiger
for German (Brants et al., 2002) and Talbanken
for Swedish (Nivre and Megyesi, 2007) explic-
itly map phrase structures onto grammatical rela-
tions using dedicated edge labels. The Relational-
Realizational structures of Tsarfaty and Sima’an
(2008) encode relational networks (sets of rela-
tions) projected and realized by syntactic cate-
gories on top of ordinary phrase-structure nodes.

Function trees, as defined in Tsarfaty et al.
(2011), are linearly ordered labeled trees in which
every node is labeled with the grammatical func-
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(a) -ROOT- John loves Mary
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NN
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⇒ root
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Figure 1: Deterministic conversion into function trees.
The algorithm for extracting a function tree from a de-
pendency tree as in (a) is provided in Tsarfaty et al.
(2011). For a phrase-structure tree as in (b) we can re-
place each node label with its function (dash-feature).
In a relational-realizational structure like (c) we can re-
move the projection nodes (sets) and realization nodes
(phrase labels), which leaves the function nodes intact.

tion of the dominated span. Function trees ben-
efit from the same advantages as other relational
schemes, namely that they are intuitive to under-
stand, they provide the interface for semantic in-
terpretation, and thus may be useful for down-
stream applications. Yet they do not suffer from
formal restrictions inherent in dependency struc-
tures, for instance, the single head assumption.

For many formal representation types there ex-
ists a fully deterministic, heuristics-free, proce-
dure mapping them to function trees. In Figure 1
we illustrate some such procedures for a simple
transitive sentence. Now, while all the structures
at the right hand side of Figure 1 are of the same
formal type (function trees), they have different
tree structures due to different theoretical assump-
tions underlying the original formal frameworks.

(t1) root

f1

f2

w

(t2) root

f2

f1

w

(t3) root

{f1,f2}

w

Figure 2: Unary chains in function trees

Once we have converted framework-specific
representations into function trees, the problem of
cross-framework evaluation can potentially be re-
duced to a cross-theory evaluation following Tsar-
faty et al. (2011). The main idea is that once
all structures have been converted into function
trees, one can perform a formal operation called
generalization in order to harmonize the differ-
ences between theories, and measure accurately
the distance of parse hypotheses from the gener-
alized gold. The generalization operation defined
in Tsarfaty et al. (2011), however, cannot handle
trees that may contain unary chains, and therefore
cannot be used for arbitrary function trees.

Consider for instance (t1) and (t2) in Figure 2.
According to the definition of subsumption in
Tsarfaty et al. (2011), (t1) is subsumed by (t2)
and vice versa, so the two trees should be identi-
cal – but they are not. The interpretation we wish
to give to a function tree such as (t1) is that the
word w has both the grammatical function f1 and
the grammatical function f2. This can be graphi-
cally represented as a set of labels dominating w,
as in (t3). We call structures such as (t3) multi-
function trees. In the next section we formally de-
fine multi-function trees, and then use them to de-
velop our protocol for cross-framework and cross-
theory evaluation.

3 The Proposal: Cross-Framework
Evaluation with Multi-Function Trees

Our proposal is a three-phase evaluation proto-
col in the spirit of Tsarfaty et al. (2011). First,
we obtain a formal common ground for all frame-
works in terms of multi-function trees. Then we
obtain a theoretical common ground by means
of tree-generalization on gold trees. Finally, we
calculate TED-based scores that discard the cost
of annotation-specific edits. In this section, we
define multi-function trees and update the tree-
generalization and TED-based metrics to handle
multi-function trees that reflect different theories.
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Figure 3: The Evaluation Protocol. Different formal frameworks yield different parse and gold formal types.
All types are transformed into multi-function trees. All gold trees enter generalization to yield a new gold for
each sentence. The different δ arcs represent the different edit scripts used for calculating the TED-based scores.

3.1 Defining Multi-Function Trees

An ordinary function tree is a linearly ordered tree
T = (V,A) with yield w1, ..., wn, where internal
nodes are labeled with grammatical function la-
bels drawn from some set L. We use span(v)
and label(v) to denote the yield and label, respec-
tively, of an internal node v. A multi-function tree
is a linearly ordered tree T = (V,A) with yield
w1, ..., wn, where internal nodes are labeled with
sets of grammatical function labels drawn from L
and where v 6= v′ implies span(v) 6= span(v′)
for all internal nodes v, v′. We use labels(v) to
denote the label set of an internal node v.

We interpret multi-function trees as encoding
sets of functional constraints over spans in func-
tion trees. Each node v in a multi-function tree
represents a constraint of the form: for each
l ∈ labels(v), there should be a node v′ in the
function tree such that span(v) = span(v′) and
label(v′) = l. Whenever we have a conversion for
function trees, we can efficiently collapse them
into multi-function trees with no unary produc-
tions, and with label sets labeling their nodes.
Thus, trees (t1) and (t2) in Figure 2 would both
be mapped to tree (t3), which encodes the func-
tional constraints encoded in either of them.

For dependency trees, we assume the conver-
sion to function trees defined in Tsarfaty et al.
(2011), where head daughters always get the la-
bel ‘hd’. For PTB style phrase-structure trees, we
replace the phrase-structure labels with functional
dash-features. In relational-realization structures
we remove projection and realization nodes. De-
terministic conversions exist also for Tiger style
treebanks and frameworks such as LFG, but we
do not discuss them here.1

1All the conversions we use are deterministic and are
defined in graph-theoretic and language-independent terms.
We make them available at http://stp.lingfil.uu.
se/˜tsarfaty/unipar/index.html.

3.2 Generalizing Multi-Function Trees
Once we obtain multi-function trees for all the
different gold standard representations in the sys-
tem, we feed them to a generalization operation
as shown in Figure 3. The goal of this opera-
tion is to provide a consensus gold standard that
captures the linguistic structure that the different
gold theories agree on. The generalization struc-
tures are later used as the basis for the TED-based
evaluation. Generalization is defined by means of
subsumption. A multi-function tree subsumes an-
other one if and only if all the constraints defined
by the first tree are also defined by the second tree.
So, instead of demanding equality of labels as in
Tsarfaty et al. (2011), we demand set inclusion:

T-Subsumption, denoted vt, is a relation
between multi-function trees that indicates
that a tree π1 is consistent with and more
general than tree π2. Formally: π1 vt π2

iff for every node n ∈ π1 there exists a node
m ∈ π2 such that span(n) = span(m) and
labels(n) ⊆ labels(m).

T-Unification, denoted tt, is an operation
that returns the most general tree structure
that contains the information from both input
trees, and fails if such a tree does not exist.
Formally: π1 tt π2 = π3 iff π1 vt π3 and
π2 vt π3, and for all π4 such that π1 vt π4

and π2 vt π4 it holds that π3 vt π4.

T-Generalization, denoted ut, is an opera-
tion that returns the most specific tree that
is more general than both trees. Formally,
π1utπ2 = π3 iff π3 vt π1 and π3 vt π2, and
for every π4 such that π4 vt π1 and π4 vt π2

it holds that π4 vt π3.

The generalization tree contains all nodes that ex-
ist in both trees, and for each node it is labeled by
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the intersection of the label sets dominating the
same span in both trees. The unification tree con-
tains nodes that exist in one tree or another, and
for each span it is labeled by the union of all label
sets for this span in either tree. If we generalize
two trees and one tree has no specification for la-
bels over a span, it does not share anything with
the label set dominating the same span in the other
tree, and the label set dominating this span in the
generalized tree is empty. If the trees do not agree
on any label for a particular span, the respective
node is similarly labeled with an empty set. When
we wish to unify theories, then an empty set over
a span is unified with any other set dominating the
same span in the other tree, without altering it.

Digression: Using Unification to Merge Infor-
mation From Different Treebanks In Tsarfaty
et al. (2011), only the generalization operation
was used, providing the common denominator of
all the gold structures and serving as a common
ground for evaluation. The unification operation
is useful for other NLP tasks, for instance, com-
bining information from two different annotation
schemes or enriching one annotation scheme with
information from a different one. In particular,
we can take advantage of the new framework to
enrich the node structure reflected in one theory
with grammatical functions reflected in an anno-
tation scheme that follows a different theory. To
do so, we define the Tree-Labeling-Unification
operation on multi-function trees.

TL-Unification, denoted ttl, is an opera-
tion that returns a tree that retains the struc-
ture of the first tree and adds labels that ex-
ist over its spans in the second tree. For-
mally: π1 ttl π2 = π3 iff for every node
n ∈ π1 there exists a node m ∈ π3 such
that span(m) = span(n) and labels(m) =
labels(n) ∪ labels(π2, span(n)).

Where labels(π2, span(n)) is the set of labels of
the node with yield span(n) in π2 if such a node
exists and ∅ otherwise. We further discuss the TL-
Unification and its use for data preparation in §4.

3.3 TED Measures for Multi-Function Trees

The result of the generalization operation pro-
vides us with multi-function trees for each of the
sentences in the test set representing sets of con-
straints on which the different gold theories agree.

We would now like to use distance-based met-
rics in order to measure the gap between the gold
and predicted theories. The idea behind distance-
based evaluation in Tsarfaty et al. (2011) is that
recording the edit operations between the native
gold and the generalized gold allows one to dis-
card their cost when computing the cost of a parse
hypothesis turned into the generalized gold. This
makes sure that different parsers do not get penal-
ized, or favored, due to annotation specific deci-
sions that are not shared by other frameworks.

The problem is now that TED is undefined with
respect to multi-function trees because it cannot
handle complex labels. To overcome this, we
convert multi-function trees into sorted function
trees, which are simply function trees in which
any label set is represented as a unary chain of
single-labeled nodes, and the nodes are sorted ac-
cording to the canonical order of their labels.2 In
case of an empty set, a 0-length chain is created,
that is, no node is created over this span. Sorted
function trees prevent reordering nodes in a chain
in one tree to fit the order in another tree, since it
would violate the idea that the set of constraints
over a span in a multi-function tree is unordered.

The edit operations we assume are add-
node(l, i, j) and delete-node(l, i, j) where l ∈ L
is a grammatical function label and i < j define
the span of a node in the tree. Insertion into a
unary chain must confine with the canonical order
of the labels. Every operation is assigned a cost.
An edit script is a sequence of edit operations that
turns a function tree π1 into π2, that is:

ES(π1, π2) = 〈e1, . . . , ek〉

Since all operations are anchored in spans, the se-
quence can be determined to have a unique order
of traversing the tree (say, DFS). Different edit
scripts then only differ in their set of operations
on spans. The edit distance problem is finding the
minimal cost script, that is, one needs to solve:

ES∗(π1, π2) = min
ES(π1,π2)

∑
e∈ES(π1,π2)

cost(e)

In the current setting, when using only add and
delete operations on spans, there is only one edit
script that corresponds to the minimal edit cost.
So, finding the minimal edit script entails finding
a single set of operations turning π1 into π2.

2The ordering can be alphabetic, thematic, etc.
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We can now define δ for the ith framework, as
the error of parsei relative to its native gold stan-
dard goldi and to the generalized gold gen. This
is the edit cost minus the cost of the script turning
parsei into gen intersected with the script turning
goldi into gen. The underlying intuition is that
if an operation that was used to turn parsei into
gen is used to discard theory-specific information
from goldi, its cost should not be counted as error.

δ(parsei, goldi, gen) = cost(ES∗(parsei, gen))

−cost(ES∗(parsei, gen) ∩ ES∗(goldi, gen))

In order to turn distance measures into parse-
scores we now normalize the error relative to the
size of the trees and subtract it from a unity. So
the Sentence Score for parsing with framework i
is:

score(parsei, goldi, gen) =

1− δ(parsei, goldi,gen)

|parsei|+ |gen|
Finally, Test-Set Average is defined by macro-
avaraging over all sentences in the test-set:

1−
∑|testset|

j=1 δ(parseij , goldij , genj)∑|testset|
j=1 |parseij |+ |genj |

This last formula represents the TEDEVAL metric
that we use in our experiments.

A Note on System Complexity Conversion of
a dependency or a constituency tree into a func-
tion tree is linear in the size of the tree. Our
implementation of the generalization and unifica-
tion operation is an exact, greedy, chart-based al-
gorithm that runs in polynomial time (O(n2) in
n the number of terminals). The TED software
that we utilize builds on the TED efficient algo-
rithm of Zhang and Shasha (1989) which runs in
O(|T1||T2|min(d1, n1) min(d2, n2)) time where
di is the tree degree (depth) and ni is the number
of terminals in the respective tree (Bille, 2005).

4 Experiments

We validate our cross-framework evaluation pro-
cedure on two languages, English and Swedish.
For English, we compare the performance of
two dependency parsers, MaltParser (Nivre et al.,
2006) and MSTParser (McDonald et al., 2005),
and two constituency-based parsers, the Berkeley

parser (Petrov et al., 2006) and the Brown parser
(Charniak and Johnson, 2005). All experiments
use Penn Treebank (PTB) data. For Swedish,
we compare MaltParser and MSTParser with two
variants of the Berkeley parser, one trained on
phrase structure trees, and one trained on a vari-
ant of the Relational-Realizational representation
of Tsarfaty and Sima’an (2008). All experiments
use the Talbanken Swedish Treebank (STB) data.

4.1 English Cross-Framework Evaluation
We use sections 02–21 of the WSJ Penn Tree-
bank for training and section 00 for evaluation and
analysis. We use two different native gold stan-
dards subscribing to different theories of encoding
grammatical relations in tree structures:

◦ THE DEPENDENCY-BASED THEORY is the
theory encoded in the basic Stanford Depen-
dencies (SD) scheme. We obtain the set of
basic stanford dependency trees using the
software of de Marneffe et al. (2006) and
train the dependency parsers directly on it.

◦ THE CONSTITUENCY-BASED THEORY is
the theory reflected in the phrase-structure
representation of the PTB (Marcus et al.,
1993) enriched with function labels compat-
ible with the Stanford Dependencies (SD)
scheme. We obtain trees that reflect this
theory by TL-Unification of the PTB multi-
function trees with the SD multi-function
trees (PTBttlSD) as illustrated in Figure 4.

The theory encoded in the multi-function trees
corresponding to SD is different from the one
obtained by our TL-Unification, as may be seen
from the difference between the flat SD multi-
function tree and the result of the PTBttlSD in
Figure 4. Another difference concerns coordina-
tion structures, encoded as binary branching trees
in SD and as flat productions in the PTBttlSD.
Such differences are not only observable but also
quantifiable, and using our redefined TED metric
the cross-theory overlap is 0.8571.

The two dependency parsers were trained using
the same settings as in Tsarfaty et al. (2011), using
SVMTool (Giménez and Màrquez, 2004) to pre-
dict part-of-speech tags at parsing time. The two
constituency parsers were used with default set-
tings and were allowed to predict their own part-
of-speech tags. We report three different evalua-
tion metrics for the different experiments:
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Figure 4: Conversion of PTB and SD tree to multi-
function trees, followed by TL-Unification of the trees.
Note that some PTB nodes remain without an SD label.

◦ LAS/UAS (Buchholz and Marsi, 2006)
◦ PARSEVAL (Black et al., 1991)
◦ TEDEVAL as defined in Section 3

We use LAS/UAS for dependency parsers that
were trained on the same dependency theory. We
use ParseEval to evaluate phrase-structure parsers
that were trained on PTB trees in which dash-
features and empty traces are removed. We
use our implementation of TEDEVAL to evaluate
parsing results across all frameworks under two
different scenarios:3 TEDEVAL SINGLE evalu-
ates against the native gold multi-function trees.
TEDEVAL MULTIPLE evaluates against the gen-
eralized (cross-theory) multi-function trees. Un-
labeled TEDEVAL scores are obtained by sim-
ply removing all labels from the multi-function
nodes, and using unlabeled edit operations. We
calculate pairwise statistical significance using a
shuffling test with 10K iterations (Cohen, 1995).

Tables 1 and 2 present the results of our cross-
framework evaluation for English Parsing. In the
left column of Table 1 we report ParsEval scores
for constituency-based parsers. As expected, F-
Scores for the Brown parser are higher than the
F-Scores of the Berkeley parser. F-Scores are
however not applicable across frameworks. In
the rightmost column of Table 1 we report the
LAS/UAS results for all parsers. If a parser yields

3Our TedEval software can be downloaded at
http://stp.lingfil.uu.se/˜tsarfaty/
unipar/download.html.

a constituency tree, it is converted to and evalu-
ated on SD. Here we see that MST outperforms
Malt, though the differences for labeled depen-
dencies are insignificant. We also observe here a
familiar pattern from Cer et al. (2010) and others,
where the constituency parsers significantly out-
perform the dependency parsers after conversion
of their output into dependencies.

The conversion to SD allows one to compare
results across formal frameworks, but not with-
out a cost. The conversion introduces a set of an-
notation specific decisions which may introduce
a bias into the evaluation. In the middle column
of Table 1 we report the TEDEVAL metrics mea-
sured against the generalized gold standard for all
parsing frameworks. We can now confirm that
the constituency-based parsers significantly out-
perform the dependency parsers, and that this is
not due to specific theoretical decisions which are
seen to affect LAS/UAS metrics (Schwartz et al.,
2011). For the dependency parsers we now see
that Malt outperforms MST on labeled dependen-
cies slightly, but the difference is insignificant.

The fact that the discrepancy in theoretical as-
sumptions between different frameworks indeed
affects the conversion-based evaluation procedure
is reflected in the results we report in Table 2.
Here the leftmost and rightmost columns report
TEDEVAL scores against the own native gold
(SINGLE) and the middle column against the gen-
eralized gold (MULTIPLE). Had the theories
for SD and PTBttlSD been identical, TEDEVAL

SINGLE and TEDEVAL MULTIPLE would have
been equal in each line. Because of theoretical
discrepancies, we see small gaps in parser perfor-
mance between these cases. Our protocol ensures
that such discrepancies do not bias the results.

4.2 Cross-Framework Swedish Parsing
We use the standard training and test sets of the
Swedish Treebank (Nivre and Megyesi, 2007)
with two gold standards presupposing different
theories:

• THE DEPENDENCY-BASED THEORY is the
dependency version of the Swedish Tree-
bank. All trees are projectivized (STB-Dep).

• THE CONSTITUENCY-BASED THEORY is
the standard Swedish Treebank with gram-
matical function labels on the edges of con-
stituency structures (STB).
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Formalism PS Trees MF Trees Dep Trees
Theory PTB tlt SD (PTB tlt SD) SD

ut SD
Metrics PARSEVAL TEDEVAL ATTSCORES

MALT N/A
U: 0.9525
L: 0.9088

U: 0.8962
L: 0.8772

MST N/A
U: 0.9549
L: 0.9049

U: 0.9059
L: 0.8795

BERKELEY
F-Scores
0.9096

U: 0.9677
L: 0.9227

U: 0.9254
L: 0.9031

BROWN
F-Scores
0.9129

U: 0.9702
L: 0.9264

U: 0.9289
L: 0.9057

Table 1: English cross-framework evaluation: Three
measures as applicable to the different schemes. Bold-
face scores are highest in their column. Italic scores
are the highest for dependency parsers in their column.

Formalism PS Trees MF Trees Dep Trees
Theory PTB tlt SD (PTB tlt SD) SD

ut SD
Metrics TEDEVAL TEDEVAL TEDEVAL

SINGLE MULTIPLE SINGLE

MALT N/A
U: 0.9525
L: 0.9088

U: 0.9524
L: 0.9186

MST N/A
U: 0.9549
L: 0.9049

U: 0.9548
L: 0.9149

BERKELEY
U: 0.9645
L: 0.9271

U: 0.9677
L: 0.9227

U: 0.9649
L: 0.9324

BROWN
U: 0.9667
L: 0.9301

U: 9702
L: 9264

U: 0.9679
L: 0.9362

Table 2: English cross-framework evaluation: TEDE-
VAL scores against gold and generalized gold. Bold-
face scores are highest in their column. Italic scores
are highest for dependency parsers in their column.

Because there are no parsers that can out-
put the complete STB representation including
edge labels, we experiment with two variants of
this theory, one which is obtained by simply re-
moving the edge labels and keeping only the
phrase-structure labels (STB-PS) and one which
is loosely based on the Relational-Realizational
scheme of Tsarfaty and Sima’an (2008) but ex-
cludes the projection set nodes (STB-RR). RR
trees only add function nodes to PS trees, and
it holds that STB-PSutSTB-RR=STB-PS. The
overlap between the theories expressed in multi-
function trees originating from STB-Dep and
STB-RR is 0.7559. Our evaluation protocol takes
into account such discrepancies while avoiding
biases that may be caused due to these differences.

We evaluate MaltParser, MSTParser and two
versions of the Berkeley parser, one trained on
STB-PS and one trained on STB-RR. We use
predicted part-of-speech tags for the dependency

Formalism PS Trees MF Trees Dep Trees
Theory STB STB ut Dep Dep
Metrics PARSEVAL TEDEVAL ATTSCORE

MALT N/A
U: 0.9266
L: 0.8225

U: 0.8298
L: 0.7782

MST N/A
U: 0.9275
L: 0.8121

U: 0.8438
L: 0.7824

BKLY/STB-RR
F-Score
0.7914

U: 0.9281
L: 0.7861

N/A

BKLY/STB-PS
F-Score
0.7855

N/A N/A

Table 3: Swedish cross-framework evaluation: Three
measures as applicable to the different schemes. Bold-
face scores are the highest in their column.

Formalism PS Trees MF Trees Dep Trees
Theory STB STB ut Dep Dep
Metrics TEDEVAL TEDEVAL TEDEVAL

SINGLE MULTIPLE SINGLE

MALT N/A
U: 0.9266
L: 0.8225

U: 0.9264
L: 0.8372

MST N/A
U: 0.9275
L: 0.8121

U: 0.9272
L: 0.8275

BKLY-STB-RR
U: 0.9239
L: 0.7946

U: 0.9281
L: 0.7861

N/A

Table 4: Swedish cross-framework evaluation: TEDE-
VAL scores against the native gold and the generalized
gold. Boldface scores are the highest in their column.

parsers, using the HunPoS tagger (Megyesi,
2009), but let the Berkeley parser predict its own
tags. We use the same evaluation metrics and pro-
cedures as before. Prior to evaluating RR trees
using ParsEval we strip off the added function
nodes. Prior to evaluating them using TedEval we
strip off the phrase-structure nodes.

Tables 3 and 4 summarize the parsing results
for the different Swedish parsers. In the leftmost
column of table 3 we present the constituency-
based evaluation measures. Interestingly, the
Berkeley RR instantiation performs better than
when training the Berkeley parser on PS trees.
These constituency-based scores however have a
limited applicability, and we cannot use them to
compare constituency and dependency parsers. In
the rightmost column of Table 3 we report the
LAS/UAS results for the two dependency parsers.
Here we see higher performance demonstrated by
MST on both labeled and unlabeled dependen-
cies, but the differences on labeled dependencies
are insignificant. Since there is no automatic pro-
cedure for converting bare-bone phrase-structure
Swedish trees to dependency trees, we cannot use
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LAS/UAS to compare across frameworks, and we
use TEDEVAL for cross-framework evaluation.

Training the Berkeley parser on RR trees which
encode a mapping of PS nodes to grammatical
functions allows us to compare parse results for
trees belonging to the STB theory with trees obey-
ing the STB-Dep theory. For unlabeled TEDE-
VAL scores, the dependency parsers perform at the
same level as the constituency parser, though the
difference is insignificant. For labeled TEDEVAL

the dependency parsers significantly outperform
the constituency parser. When considering only
the dependency parsers, there is a small advantage
for Malt on labeled dependencies, and an advan-
tage for MST on unlabeled dependencies, but the
latter is insignificant. This effect is replicated in
Table 4 where we evaluate dependency parsers us-
ing TEDEVAL against their own gold theories. Ta-
ble 4 further confirms that there is a gap between
the STB and the STB-Dep theories, reflected in
the scores against the native and generalized gold.

5 Discussion

We presented a formal protocol for evaluating
parsers across frameworks and used it to soundly
compare parsing results for English and Swedish.
Our approach follows the three-phase protocol of
Tsarfaty et al. (2011), namely: (i) obtaining a for-
mal common ground for the different representa-
tion types, (ii) computing the theoretical common
ground for each test sentence, and (iii) counting
only what counts, that is, measuring the distance
between the common ground and the parse tree
while discarding annotation-specific edits.

A pre-condition for applying our protocol is the
availability of a relational interpretation of trees in
the different frameworks. For dependency frame-
works this is straightforward, as these relations
are encoded on top of dependency arcs. For con-
stituency trees with an inherent mapping of nodes
onto grammatical relations (Merlo and Musillo,
2005; Gabbard et al., 2006; Tsarfaty and Sima’an,
2008), a procedure for reading relational schemes
off of the trees is trivial to implement.

For parsers that are trained on and parse into
bare-bones phrase-structure trees this is not so.
Reading off the relational structure may be more
costly and require interjection of additional theo-
retical assumptions via manually written scripts.
Scripts that read off grammatical relations based
on tree positions work well for configurational

languages such as English (de Marneffe et al.,
2006) but since grammatical relations are re-
flected differently in different languages (Postal
and Perlmutter, 1977; Bresnan, 2000), a proce-
dure to read off these relations in a language-
independent fashion from phrase-structure trees
does not, and should not, exist (Rambow, 2010).

The crucial point is that even when using ex-
ternal scripts for recovering a relational scheme
for phrase-structure trees, our protocol has a clear
advantage over simply scoring converted trees.
Manually created conversion scripts alter the the-
oretical assumptions inherent in the trees and thus
may bias the results. Our generalization operation
and three-way TED make sure that theory-specific
idiosyncrasies injected through such scripts do
not lead to over-penalizing or over-crediting
theory-specific structural variations.

Certain linguistic structures cannot yet be eval-
uated with our protocol because of the strict as-
sumption that the labeled spans in a parse form a
tree. In the future we plan to extend the protocol
for evaluating structures that go beyond linearly-
ordered trees in order to allow for non-projective
trees and directed acyclic graphs. In addition, we
plan to lift the restriction that the parse yield is
known in advance, in order to allow for evalua-
tion of joint parse-segmentation hypotheses.

6 Conclusion

We developed a protocol for comparing parsing
results across different theories and representa-
tion types which is framework-independent in the
sense that it can accommodate any formal syntac-
tic framework that encodes grammatical relations,
and it is language-independent in the sense that
there is no language specific knowledge encoded
in the procedure. As such, this protocol is ad-
equate for parser evaluation in cross-framework
and cross-language tasks and parsing competi-
tions, and using it across the board is expected
to open new horizons in our understanding of the
strengths and weaknesses of different parsers in
the face of different theories and different data.
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Abstract

Hungarian is a stereotype of morpholog-
ically rich and non-configurational lan-
guages. Here, we introduce results on de-
pendency parsing of Hungarian that em-
ploy a 80K, multi-domain, fully manu-
ally annotated corpus, the Szeged Depen-
dency Treebank. We show that the results
achieved by state-of-the-art data-driven
parsers on Hungarian and English (which is
at the other end of the configurational-non-
configurational spectrum) are quite simi-
lar to each other in terms of attachment
scores. We reveal the reasons for this and
present a systematic and comparative lin-
guistically motivated error analysis on both
languages. This analysis highlights that ad-
dressing the language-specific phenomena
is required for a further remarkable error re-
duction.

1 Introduction

From the viewpoint of syntactic parsing, the lan-
guages of the world are usually categorized ac-
cording to their level of configurationality. At one
end, there is English, a strongly configurational
language while Hungarian is at the other end of
the spectrum. It has very few fixed structures
at the sentence level. Leaving aside the issue of
the internal structure of NPs, most sentence-level
syntactic information in Hungarian is conveyed
by morphology, not by configuration (É. Kiss,
2002).

A large part of the methodology for syntactic
parsing has been developed for English. How-
ever, parsing non-configurational and less config-
urational languages requires different techniques.

In this study, we present results on Hungarian de-
pendency parsing and we investigate this general
issue in the case of English and Hungarian.

We employed three state-of-the-art data-driven
parsers (Nivre et al., 2004; McDonald et al., 2005;
Bohnet, 2010), which achieved (un)labeled at-
tachment scores on Hungarian not so different
from the corresponding English scores (and even
higher on certain domains/subcorpora). Our in-
vestigations show that the feature representation
used by the data-driven parsers is so rich that they
can – without any modification – effectively learn
a reasonable model for non-configurational lan-
guages as well.

We also conducted a systematic and compar-
ative error analysis of the system’s outputs for
Hungarian and English. This analysis highlights
the challenges of parsing Hungarian and sug-
gests that the further improvement of parsers re-
quires special handling of language-specific phe-
nomena. We believe that some of our findings
can be relevant for intermediate languages on the
configurational-non-configurational spectrum.

2 Chief Characteristics of the
Hungarian Morphosyntax

Hungarian is an agglutinative language, which
means that a word can have hundreds of word
forms due to inflectional or derivational affixa-
tion. A lot of grammatical information is encoded
in morphology and Hungarian is a stereotype of
morphologically rich languages. The Hungarian
word order is free in the sense that the positions
of the subject, the object and the verb are not fixed
within the sentence, but word order is related to
information structure, e.g. new (or emphatic) in-
formation (the focus) always precedes the verb
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and old information (the topic) precedes the focus
position. Thus, the position relative to the verb
has no predictive force as regards the syntactic
function of the given argument: while in English,
the noun phrase before the verb is most typically
the subject, in Hungarian, it is the focus of the
sentence, which itself can be the subject, object
or any other argument (É. Kiss, 2002).

The grammatical function of words is deter-
mined by case suffixes as in gyerek “child” – gye-
reknek (child-DAT) “for (a/the) child”. Hungarian
nouns can have about 20 cases1 which mark the
relationship between the head and its arguments
and adjuncts. Although there are postpositions
in Hungarian, case suffixes can also express re-
lations that are expressed by prepositions in En-
glish.

Verbs are inflected for person and number and
the definiteness of the object. Since conjugational
information is sufficient to deduce the pronominal
subject or object, they are typically omitted from
the sentence: Várlak (wait-1SG2OBJ) “I am wait-
ing for you”. This pro-drop feature of Hungar-
ian leads to the fact that there are several clauses
without an overt subject or object.

Another peculiarity of Hungarian is that the
third person singular present tense indicative form
of the copula is phonologically empty, i.e. there
are apparently verbless sentences in Hungarian:
A ház nagy (the house big) “The house is big”.
However, in other tenses or moods, the copula
is present as in A ház nagy lesz (the house big
will.be) “The house will be big”.

There are two possessive constructions in
Hungarian. First, the possessive relation is only
marked on the possessed noun (in contrast, it is
marked only on the possessor in English): a fiú
kutyája (the boy dog-POSS) “the boy’s dog”. Sec-
ond, both the possessor and the possessed bear a
possessive marker: a fiúnak a kutyája (the boy-
DAT the dog-POSS) “the boy’s dog”. In the latter
case, the possessor and the possessed may not be
adjacent within the sentence as in A fiúnak látta a
kutyáját (the boy-DAT see-PAST3SGOBJ the dog-
POSS-ACC) “He saw the boy’s dog”, which results
in a non-projective syntactic tree. Note that in
the first case, the form of the possessor coincides

1Hungarian grammars and morphological coding sys-
tems do not agree on the exact number of cases, some rare
suffixes are treated as derivational suffixes in one grammar
and as case suffixes in others; see e.g. Farkas et al. (2010).

with that of a nominative noun while in the second
case, it coincides with a dative noun.

According to these facts, a Hungarian parser
must rely much more on morphological analysis
than e.g. an English one since in Hungarian it
is morphemes that mostly encode morphosyntac-
tic information. One of the consequences of this
is that Hungarian sentences are shorter in terms
of word numbers than English ones. Based on
the word counts of the Hungarian–English paral-
lel corpus Hunglish (Varga et al., 2005), an En-
glish sentence contains 20.5% more words than its
Hungarian equivalent. These extra words in En-
glish are most frequently prepositions, pronomi-
nal subjects or objects, whose parent and depen-
dency label are relatively easy to identify (com-
pared to other word classes). This train of thought
indicates that the cross-lingual comparison of fi-
nal parser scores should be conducted very care-
fully.

3 Related work

We decided to focus on dependency parsing in
this study as it is a superior framework for non-
configurational languages. It has gained inter-
est in natural language processing recently be-
cause the representation itself does not require
the words inside of constituents to be consecu-
tive and it naturally represent discontinuous con-
structions, which are frequent in languages where
grammatical relations are often signaled by mor-
phology instead of word order (McDonald and
Nivre, 2011). The two main efficient approaches
for dependency parsing are the graph-based and
the transition-based parsers. The graph-based
models look for the highest scoring directed span-
ning tree in the complete graph whose nodes are
the words of the sentence in question. They solve
the machine learning problem of finding the opti-
mal scoring function of subgraphs (Eisner, 1996;
McDonald et al., 2005). The transition-based ap-
proaches parse a sentence in a single left-to-right
pass over the words. The next transition in these
systems is predicted by a classifier that is based
on history-related features (Kudo and Matsumoto,
2002; Nivre et al., 2004).

Although the available treebanks for Hungar-
ian are relatively big (82K sentences) and fully
manually annotated, the studies on parsing Hun-
garian are rather limited. The Szeged (Con-
stituency) Treebank (Csendes et al., 2005) con-
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sists of six domains – namely, short business
news, newspaper, law, literature, compositions
and informatics – and it is manually annotated
for the possible alternatives of words’ morpho-
logical analyses, the disambiguated analysis and
constituency trees. We are aware of only two
articles on phrase-structure parsers which were
trained and evaluated on this corpus (Barta et al.,
2005; Iván et al., 2007) and there are a few studies
on hand-crafted parsers reporting results on small
own corpora (Babarczy et al., 2005; Prószéky et
al., 2004).

The Szeged Dependency Treebank (Vincze et
al., 2010) was constructed by first automatically
converting the phrase-structure trees into depen-
dency trees, then each of them was manually
investigated and corrected. We note that the
dependency treebank contains more information
than the constituency one as linguistic phenom-
ena (like discontinuous structures) were not anno-
tated in the former corpus, but were added to the
dependency treebank. To the best of our knowl-
edge no parser results have been published on this
corpus. Both corpora are available at www.inf.
u-szeged.hu/rgai/SzegedTreebank.

The multilingual track of the CoNLL-2007
Shared Task (Nivre et al., 2007) addressed also
the task of dependency parsing of Hungarian. The
Hungarian corpus used for the shared task con-
sists of automatically converted dependency trees
from the Szeged Constituency Treebank. Several
issues of the automatic conversion tool were re-
considered before the manual annotation of the
Szeged Dependency Treebank was launched and
the annotation guidelines contained instructions
related to linguistic phenomena which could not
be converted from the constituency representa-
tion – for a detailed discussion, see Vincze et al.
(2010). Hence the annotation schemata of the
CoNLL-2007 Hungarian corpus and the Szeged
Dependency Treebank are rather different and the
final scores reported for the former are not di-
rectly comparable with our reported scores here
(see Section 5).

4 The Szeged Dependency Treebank

We utilize the Szeged Dependency Treebank
(Vincze et al., 2010) as the basis of our experi-
ments for Hungarian dependency parsing. It con-
tains 82,000 sentences, 1.2 million words and
250,000 punctuation marks from six domains.

The annotation employs 16 coarse grained POS
tags, 95 morphological feature values and 29 de-
pendency labels. 19.6% of the sentences in the
corpus contain non-projective edges and 1.8% of
the edges are non-projective2, which is almost 5
times more frequent than in English and is the
same as the Czech non-projectivity level (Buch-
holz and Marsi, 2006). Here we discuss two an-
notation principles along with our modifications
in the dataset for this study which strongly influ-
ence the parsers’ accuracies.

Named Entities (NEs) were treated as one to-
ken in the Szeged Dependency Treebank. Assum-
ing a perfect phrase recogniser on the whitespace
tokenised input for them is quite unrealistic. Thus
we decided to split them into tokens for this study.
The new tokens automatically got a proper noun
with default morphological features morphologi-
cal analysis except for the last token – the head of
the phrase –, which inherited the morphological
analysis of the original multiword unit (which can
contain various grammatical information). This
resulted in an N N N N POS sequence for Kovács
és társa kft. “Smith and Co. Ltd.” which would
be annotated as N C N N in the Penn Treebank.
Moreover, we did not annotate any internal struc-
ture of Named Entities. We consider the last word
of multiword named entities as the head because
of morphological reasons (the last word of multi-
word units gets inflected in Hungarian) and all the
previous elements are attached to the succeeding
word, i.e. the penultimate word is attached to the
last word, the antepenultimate word to the penulti-
mate one etc. The reasons for these considerations
are that we believe that there are no downstream
applications which can exploit the information of
the internal structures of Named Entities and we
imagine a pipeline where a Named Entity Recog-
niser precedes the parsing step.

Empty copula: In the verbless clauses (pred-
icative nouns or adjectives) the Szeged Depen-
dency Treebank introduces virtual nodes (16,000
items in the corpus). This solution means that
a similar tree structure is ascribed to the same
sentence in the present third person singular and
all the other tenses / persons. A further argu-
ment for the use of a virtual node is that the vir-
tual node is always present at the syntactic level

2Using the transitive closure definition of Nivre and Nils-
son (2005).
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corpus Malt MST Mate
ULA LAS ULA LAS ULA LAS

Hungarian
dev 88.3 (89.9) 85.7 (87.9) 86.9 (88.5) 80.9 (82.9) 89.7 (91.1) 86.8 (89.0)
test 88.7 (90.2) 86.1 (88.2) 87.5 (89.0) 81.6 (83.5) 90.1 (91.5) 87.2 (89.4)

English
dev 87.8 (89.1) 84.5 (86.1) 89.4 (91.2) 86.1 (87.7) 91.6 (92.7) 88.5 (90.0)
test 88.8 (89.9) 86.2 (87.6) 90.7 (91.8) 87.7 (89.2) 92.6 (93.4) 90.3 (91.5)

Table 1: Results achieved by the three parsers on the (full) Hungarian (Szeged Dependency Treebank) and
English (CoNLL-2009) datasets. The scores in brackets are achieved with gold-standard POS tagging.

since it is overt in all the other forms, tenses and
moods of the verb. Still, the state-of-the-art de-
pendency parsers cannot handle virtual nodes. For
this study, we followed the solution of the Prague
Dependency Treebank (Hajič et al., 2000) and vir-
tual nodes were removed from the gold standard
annotation and all of their dependents were at-
tached to the head of the original virtual node and
they were given a dedicated edge label (Exd).

Dataset splits: We formed training, develop-
ment and test sets from the corpus where each
set consists of texts from each of the domains.
We paid attention to the issue that a document
should not be separated into different datasets be-
cause it could result in a situation where a part of
the test document was seen in the training dataset
(which is unrealistic because of unknown words,
style and frequently used grammatical structures).
As the fiction subcorpus consists of three books
and the law subcorpus consists of two rules, we
took half of one of the documents for the test
and development sets and used the other part(s)
for training there. This principle was followed at
our cross-fold-validation experiments as well ex-
cept for the law subcorpus. We applied 3 folds for
cross-validation for the fiction subcorpus, other-
wise we used 10 folds (splitting at documentary
boundaries would yield a training fold consisting
of just 3000 sentences).3

5 Experiments

We carried out experiments using three state-of-
the-art parsers on the Szeged Dependency Tree-
bank (Vincze et al., 2010) and on the English
datasets of the CoNLL-2009 Shared Task (Hajič
et al., 2009).

3Both the training/development/test and the cross-
validation splits are available at www.inf.u-szeged.
hu/rgai/SzegedTreebank.

Tools: We employed a finite state automata-
based morphological analyser constructed from
the morphdb.hu lexical resource (Trón et al.,
2006) and we used the MSD-style morphological
code system of the Szeged TreeBank (Alexin et
al., 2003). The output of the morphological anal-
yser is a set of possible lemma–morphological
analysis pairs. This set of possible morphologi-
cal analyses for a word form is then used as pos-
sible alternatives – instead of open and closed tag
sets – in a standard sequential POS tagger. Here,
we applied the Conditional Random Fields-based
Stanford POS tagger (Toutanova et al., 2003) and
carried out 5-fold-cross POS training/tagging in-
side the subcorpora.4 For the English experiments
we used the predicted POS tags provided for the
CoNLL-2009 shared task (Hajič et al., 2009).

As the dependency parser we employed three
state-of-the-art data-driven parsers, a transition-
based parser (Malt) and two graph-based parsers
(MST and Mate parsers). The Malt parser (Nivre
et al., 2004) is a transition-based system, which
uses an arc-eager system along with support vec-
tor machines to learn the scoring function for tran-
sitions and which uses greedy, deterministic one-
best search at parsing time. As one of the graph-
based parsers, we employed the MST parser (Mc-
Donald et al., 2005) with a second-order feature
decoder. It uses an approximate exhaustive search
for unlabeled parsing, then a separate arc label
classifier is applied to label each arc. The Mate
parser (Bohnet, 2010) is an efficient second or-
der dependency parser that models the interaction
between siblings as well as grandchildren (Car-
reras, 2007). Its decoder works on labeled edges,
i.e. it uses a single-step approach for obtaining
labeled dependency trees. Mate uses a rich and

4The JAVA implementation of the morphological anal-
yser and the slightly modified POS tagger along with trained
models are available at http://www.inf.u-szeged.
hu/rgai/magyarlanc.
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corpus #sent. length CPOS DPOS ULA all ULA LAS all LAS
newspaper 9189 21.6 97.2 96.5 88.0 (90.0) +0.8 84.7 (87.5) +1.0
short business 8616 23.6 98.0 97.7 93.8 (94.8) +0.3 91.9 (93.4) +0.4
fiction 9279 12.6 96.9 95.8 87.7 (89.4) -0.5 83.7 (86.2) -0.3
law 8347 27.3 98.3 98.1 90.6 (90.7) +0.2 88.9 (89.0) +0.2
computer 8653 21.9 96.4 95.8 91.3 (92.8) -1.2 88.9 (91.2) -1.6
composition 22248 13.7 96.7 95.6 92.7 (93.9) +0.3 88.9 (91.0) +0.3

Table 2: Domain results achieved by the Mate parser in cross-validation settings. The scores in brackets are
achieved with gold-standard POS tagging. The ‘all’ columns contain the added value of extending the training
sets with each of the five out-domain subcorpora.

well-engineered feature set and it is enhanced by
a Hash Kernel, which leads to higher accuracy.

Evaluation metrics: We apply the Labeled At-
tachment Score (LAS) and Unlabeled Attachment
Score (ULA), taking into account punctuation as
well for evaluating dependency parsers and the
accuracy on the main POS tags (CPOS) and a
fine-grained morphological accuracy (DPOS) for
evaluating the POS tagger. In the latter, the analy-
sis is regarded as correct if the main POS tag and
each of the morphological features of the token in
question are correct.

Results: Table 1 shows the results got by the
parsers on the whole Hungarian corpora and on
the English datasets. The most important point
is that scores are not different from the English
scores (although they are not directly compara-
ble). To understand the reasons for this, we man-
ually investigated the set of firing features with
the highest weights in the Mate parser. Although
the assessment of individual feature contributions
to a particular decoder decision is not straightfor-
ward, we observed that features encoding config-
urational information (i.e. the direction or length
of an edge, the words or POS tag sequences/sets
between the governor and the dependent) were
frequently among the highest weighted features
in English but were extremely rare in Hungarian.
For instance, one of the top weighted features for
a subject dependency in English was the ‘there is
no word between the head and the dependent’ fea-
ture while this never occurred among the top fea-
tures in Hungarian.

As a control experiment, we trained the Mate
parser only having access to the gold-standard
POS tag sequences of the sentences, i.e. we
switched off the lexicalization and detailed mor-
phological information. The goal of this experi-

ment was to gain an insight into the performance
of the parsers which can only access configura-
tional information. These parsers achieved worse
results than the full parsers by 6.8 ULA, 20.3 LAS
and 2.9 ULA, 6.4 LAS on the development sets
of Hungarian and English, respectively. As ex-
pected, Hungarian suffers much more when the
parser has to learn from configurational informa-
tion only, especially when grammatical functions
have to be predicted (LAS). Despite this, the re-
sults of Table 1 show that the parsers can practi-
cally eliminate this gap by learning from morpho-
logical features (and lexicalization). This means
that the data-driven parsers employing a very rich
feature set can learn a model which effectively
captures the dependency structures using feature
weights which are radically different from the
ones used for English.

Another cause of the relatively high scores is
that the CPOS accuracy scores on Hungarian
and English are almost equal: 97.2 and 97.3, re-
spectively. This also explains the small differ-
ence between the results got by gold-standard and
predicted POS tags. Moreover, the parser can
also exploit the morphological features as input
in Hungarian.

The Mate parser outperformed the other two
parsers on each of the four datasets. Comparing
the two graph-based parsers Mate and MST, the
gap between them was twice as big in LAS than in
ULA in Hungarian, which demonstrates that the
one-step approach looking for the maximum
labeled spanning tree is more suitable for Hun-
garian than the two-step arc labeling approach of
MST. This probably holds for other morpholog-
ically rich languages too as the decoder can ex-
ploit information from the labels of decoded arcs.
Based on these results, we decided to use only
Mate for our further experiments.
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Table 2 provides an insight into the effect of
domain differences on POS tagging and pars-
ing scores. There is a noticeable difference be-
tween the “newspaper” and the “short business
news” corpora. Although these domains seem to
be close to each other at the first glance (both are
news), they have different characteristics. On the
one hand, short business news is a very narrow
domain consisting of 2-3 sentence long financial
short reports. It frequently uses the same gram-
matical structures (like “Stock indexes rose X per-
cent at the Y Stock on Wednesday”) and the lexi-
con is also limited. On the other hand, the news-
paper subcorpus consists of full journal articles
covering various domains and it has a fancy jour-
nalist style.

The effect of extending the training dataset with
out-of-domain parses is not convincing. In spite
of the ten times bigger training datasets, there
are two subcorpora where they just harmed the
parser, and the improvement on other subcorpora
is less than 1 percent. This demonstrates well the
domain-dependence of parsing.

The parser and the POS tagger react to do-
main difficulties in a similar way, according to
the first four rows of Table 2. This observation
holds for the scores of the parsers working with
gold-standard POS tags, which suggests that do-
main difficulties harm POS tagging and parsing as
well. Regarding the two last subcorpora, the com-
positions consist of very short and usually simple
sentences and the training corpora are twice as big
compared with other subcorpora. Both factors are
probably the reasons for the good parsing perfor-
mance. In the computer corpus, there are many
English terms which are manually tagged with an
“unknown” tag. They could not be accurately pre-
dicted by the POS tagger but the parser could pre-
dict their syntactic role.

Table 2 also tells us that the difference between
CPOS and DPOS is usually less than 1 percent.
This experimentally supports that the ambigu-
ity among alternative morphological analyses
is mostly present at the POS-level and the mor-
phological features are efficiently identified by
our morphological analyser. The most frequent
morphological features which cannot be disam-
biguated at the word level are related to suffixes
with multiple functions or the word itself cannot
be unambiguously segmented into morphemes.
Although the number of such ambiguous cases is

low, they form important features for the parser,
thus we will focus on the more accurate handling
of these cases in future work.

Comparison to CoNLL-2007 results: The
best performing participant of the CoNLL-2007
Shared Task (Nivre et al., 2007) achieved an ULA
of 83.6 and LAS of 80.3 (Hall et al., 2007) on
the Hungarian corpus. The difference between the
top performing English and Hungarian systems
were 8.14 ULA and 9.3 LAS. The results reported
in 2007 were significantly lower and the gap be-
tween English and Hungarian is higher than our
current values. To locate the sources of difference
we carried out other experiments with Mate on
the CoNLL-2007 dataset using the gold-standard
POS tags (the shared task used gold-standard POS
tags for evaluation).

First we trained and evaluated Mate on the
original CoNLL-2007 datasets, where it achieved
ULA 84.3 and LAS 80.0. Then we used the sen-
tences of the CoNLL-2007 datasets but with the
new, manual annotation. Here, Mate achieved
ULA 88.6 and LAS 85.5, which means that the
modified annotation schema and the less erro-
neous/noisy annotation caused an improvement of
ULA 4.3 and LAS 5.5. The annotation schema
changed a lot: coordination had to be corrected
manually since it is treated differently after con-
version, moreover, the internal structure of ad-
jectival/participial phrases was not marked in the
original constituency treebank, so it was also
added manually (Vincze et al., 2010). The im-
provement in the labeled attachment score is prob-
ably due to the reduction of the label set (from 49
to 29 labels), which step was justified by the fact
that some morphosyntactic information was dou-
bly coded in the case of nouns (e.g. házzal (house-
INS) “with the/a house”) in the original CoNLL-
2007 dataset – first, by their morphological case
(Cas=ins) and second, by their dependency label
(INS).

Lastly, as the CoNLL-2007 sentences came
from the newspaper subcorpus, we can compare
these scores with the ULA 90.0 and LAS 87.5
of Table 2. The ULA 1.5 and LAS 2.0 differ-
ences are the result of the bigger training corpus
(9189 sentences on average compared to 6390 in
the CoNLL-2007 dataset).
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Hungarian English
label attachment label attachment

virtual nodes 31.5% 39.5% multiword NEs 15.2% 17.6%
conjunctions and negation – 11.2% PP-attachment – 15.9%
noun attachment – 9.6% non-canonical word order 6.4% 6.5%
more than 1 premodifier – 5.1% misplaced clause – 9.7%
coordination 13.5% 16.5% coordination 8.5% 12.5%
mislabeled adverb 16.3% – mislabeled adverb 40.1% –
annotation errors 10.7% 6.8% annotation errors 9.7% 8.5%
other 28.0% 11.3% other 20.1% 29.3%
TOTAL 100% 100% TOTAL 100% 100%

Table 3: The most frequent corpus-specific and general attachment and labeling error categories (based on a
manual investigation of 200–200 erroneous sentences).

6 A Systematic Error Analysis

In order to discover specialties and challenges of
Hungarian dependency parsing, we conducted an
error analysis of parsed texts from the newspaper
domain both in English and Hungarian. 200 ran-
domly selected erroneous sentences from the out-
put of Mate were investigated in both languages
and we categorized the errors on the basis of the
linguistic phenomenon responsible for the errors
– for instance, when an error occurred because of
the incorrect identification of a multiword Named
Entity containing a conjunction, we treated it as
a Named Entity error instead of a conjunction er-
ror –, i.e. our goal was to reveal the real linguistic
sources of errors rather than deducing from auto-
matically countable attachment/labeling statistics.

We used the parses based on gold-standard
POS tagging for this analysis as our goal was to
identify the challenges of parsing independently
of the challenges of POS tagging. The error cate-
gories are summarized in Table 3 along with their
relative contribution to attachment and labeling
errors. This table contains the categories with
over 5% relative frequency.5

The 200 sentences contained 429/319 and
353/330 attachment/labeling errors in Hungarian
and English, respectively. In Hungarian, attach-
ment errors outnumber label errors to a great ex-
tent whereas in English, their distribution is basi-
cally the same. This might be attributed to the
higher level of non-projectivity (see Section 4)
and to the more fine-grained label set of the En-
glish dataset (36 against 29 labels in English and

5The full tables are available at www.inf.u-szeged.
hu/rgai/SzegedTreebank.

Hungarian, respectively).

Virtual nodes: In Hungarian, the most common
source of parsing errors was virtual nodes. As
there are quite a lot of verbless clauses in Hungar-
ian (see Section 2 on sentences without copula), it
might be difficult to figure out the proper depen-
dency relations within the sentence, since the verb
plays the central role in the sentence, cf. Tesnière
(1959). Our parser was not efficient in identify-
ing the structure of such sentences, probably due
to the lack of information for data-driven parsers
(each edge is labeled as Exd while they have sim-
ilar features to ordinary edges). We also note that
the output of the current system with Exd labels
does not contain too much information for down-
stream applications of parsing. The appropriate
handling of virtual nodes is an important direction
for future work.

Noun attachment: In Hungarian, the nomi-
nal arguments of infinitives and participles were
frequently erroneously attached to the main
verb. Take the following sentence: A Horn-
kabinet idején jól bevált módszerhez próbálnak
meg visszatérni (the Horn-government time-
3SGPOSS-SUP well tried method-ALL try-3PL

PREVERB return-INF) “They are trying to return
to the well-tried method of the Horn government”.
In this sentence, a Horn-kabinet idején “during
the Horn government” is a modifier of the past
participle bevált “well-tried”, however, it is at-
tached to the main verb próbálnak “they are try-
ing” by the parser. Moreover, módszerhez “to the
method” is an argument of the infinitive visszatér-
ni “to return”, but the parser links it to the main
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verb. In free word order languages, the order of
the arguments of the infinitive and the main verb
may get mixed, which is called scrambling (Ross,
1986). This is not a common source of error in
English as arguments cannot scramble.

Article attachment: In Hungarian, if there is
an article before a prenominal modifier, it can be-
long to the head noun and to the modifier as well.
In a szoba ajtaja (the room door-3SGPOSS) “the
door of the room” the article belongs to the modi-
fier but when the prenominal modifier cannot have
an article (e.g. a februárban induló projekt (the
February-INE starting project) “the project start-
ing in February”), it is attached to the head noun
(i.e. to projekt “project”). It was not always clear
for the parser which parent to select for the arti-
cle. In contrast, these cases are not problematic
in English since the modifier typically follows the
head and thus each article precedes its head noun.

Conjunctions or negation words – most typ-
ically the words is “too”, csak “only/just” and
nem/sem “not” – were much more frequently at-
tached to the wrong node in Hungarian than in
English. In Hungarian, they are ambiguous be-
tween being adverbs and conjunctions and it is
mostly their conjunctive uses which are problem-
atic from the viewpoint of parsing. On the other
hand, these words have an important role in mark-
ing the information structure of the sentence: they
are usually attached to the element in focus posi-
tion, and if there is no focus, they are attached
to the verb. However, sentences with or with-
out focus can have similar word order but their
stress pattern is different. Dependency parsers
obviously cannot recognize stress patterns, hence
conjunctions and negation words are sometimes
erroneously attached to the verb in Hungarian.

English sentences with non-canonical word
order (e.g. questions) were often incorrectly
parsed, e.g. the noun following the main verb is
the object in sentences like Replied a salesman:
‘Exactly.’, where it is the subject that follows the
verb for stylistic reasons. However, in Hungarian,
morphological information is of help in such sen-
tences, as it is not the position relative to the verb
but the case suffix that determines the grammati-
cal role of the noun.

In English, high or low PP-attachment was
responsible for many parsing ambiguities: most

typically, the prepositional complement which
follows the head was attached to the verb instead
of the noun or vice versa. In contrast, Hungarian
is a head-after-dependent language, which means
that dependents most often occur before the head.
Furthermore, there are no prepositions in Hungar-
ian, and grammatical relations encoded by prepo-
sitions in English are conveyed by suffixes or
postpositions. Thus, if there is a modifier before
the nominal head, it requires the presence of a
participle as in: Felvette a kirakatban levő ruhát
(take.on-PAST3SGOBJ the shop.window-INE be-
ing dress-ACC) “She put on the dress in the shop
window”. The English sentence is ambiguous (ei-
ther the event happens in the shop window or the
dress was originally in the shop window) while
the Hungarian has only the latter meaning.6

General dependency parsing difficulties:
There were certain structures that led to typical
label and/or attachment errors in both languages.
The most frequent one among them is coordi-
nation. However, it should be mentioned that
syntactic ambiguities are often problematic even
for humans to disambiguate without contextual
or background semantic knowledge.

In the case of label errors, the relation between
the given node and its parent was labeled incor-
rectly. In both English and Hungarian, one of the
most common errors of this type was mislabeled
adverbs and adverbial phrases, e.g. locative ad-
verbs were labeled as ADV/MODE. However, the
frequency rate of this error type is much higher
in English than in Hungarian, which may be re-
lated to the fact that in the English corpus, there
is a much more balanced distribution of adverbial
labels than in the Hungarian one (where the cat-
egories MODE and TLOCY are responsible for
90% of the occurrences). Assigning the most fre-
quent label of the training dataset to each adverb
yields an accuracy of 82% in English and 93% in
Hungarian, which suggests that there is a higher
level of ambiguity for English adverbial phrases.
For instance, the preposition by may introduce an
adverbial modifier of manner (MNR) in by cre-
ating a bill and the agent in a passive sentence
(LGS). Thus, labeling adverbs seems to be a more

6However, there exists a head-before-dependent version
of the sentence (Felvette a ruhát a kirakatban), whose pre-
ferred reading is “She was in the shop window while dressing
up”, that is, the modifier belongs to the verb.
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difficult task in English.7

Clauses were also often mislabeled in both lan-
guages, most typically when there was no overt
conjunction between clauses. Another source of
error was when more than one modifier occurred
before a noun (5.1% and 4.2% of attachment er-
rors in Hungarian and in English): in these cases,
the first modifier could belong to the noun (a
brown Japanese car) or to the second modifier (a
brown haired girl).

Multiword Named Entities: As we mentioned
in Section 4, members of multiword Named Enti-
ties had a proper noun POS-tag and an NE label
in our dataset. Hence when parsing is based on
gold standard POS-tags, their recognition is al-
most perfect while it is a frequent source or er-
rors in the CoNLL-2009 corpus. We investigated
the parse of our 200 sentences with predicted POS
tags at NEs and found that this introduces several
errors (about 5% of both attachment and labeling
errors) in Hungarian. On the other hand, the re-
sults are only slightly worse in English, i.e. iden-
tifying the inner structure of NEs does not depend
on whether the parser builds on gold standard or
predicted POS-tags since function words like con-
junctions or prepositions – which mark grammat-
ical relations – are tagged in the same way in both
cases. The relative frequency of this error type is
much higher in English even when the Hungar-
ian parser does not have access to the gold proper
noun POS tags. The reason for this is simple: in
the Penn Treebank the correct internal structure of
the NEs has to be identified beyond the “phrase
boundaries” while in Hungarian their members
just form a chain.

Annotation errors: We note that our analysis
took into account only sentences which contained
at least one parsing error and we crawled only
the dependencies where the gold standard anno-
tation and the output of the parser did not match.
Hence, the frequency of annotation errors is prob-
ably higher than we found (about 1% of the en-
tire set of dependencies) during our investigation
as there could be annotation errors in the “error-
free” sentences and also in the investigated sen-
tences where the parser agrees with that error.

7We would nevertheless like to point out that adverbial
labels have a highly semantic nature, i.e. it could be argued
that it is not the syntactic parser that should identify them but
a semantic processor.

7 Conclusions

We showed that state-of-the-art dependency
parsers achieve similar results – in terms of at-
tachment scores – on Hungarian and English. Al-
though the results with this comparison should be
taken with a pinch of salt – as sentence lengths
(and information encoded in single words) differ,
domain differences and annotation schema diver-
gences are uncatchable – we conclude that parsing
Hungarian is just as hard a task as parsing English.
We argued that this is due to the relatively good
POS tagging accuracy (which is a consequence
of the low ambiguity of alternative morphological
analyses of a sentence and the good coverage of
the morphological analyser) and the fact that data-
driven dependency parsers employ a rich feature
representation which enables them to learn differ-
ent kinds of feature weight profiles.

We also discussed the domain differences
among the subcorpora of the Szeged Dependency
Treebank and their effect on parsing results. Our
results support that there can be higher differences
in parsing scores among domains in one language
than among corpora from a similar domain but
different languages (which again marks pitfalls of
inter-language comparison of parsing scores).

Our systematic error analysis showed that han-
dling the virtual nodes (mostly empty copula) is
a frequent source of errors. We identified several
phenomena which are not typically listed as Hun-
garian syntax-specific features but are challeng-
ing for the current data-driven parsers, however,
they are not problematic in English (like the at-
tachment of conjunctions and negation words and
the attachment problem of nouns and articles).
We concluded – based on our quantitative analy-
sis – that a further notable error reduction is only
achievable if distinctive attention is paid to these
language-specific phenomena.

We intend to investigate the problem of vir-
tual nodes in dependency parsing in more depth
and to implement new feature templates for the
Hungarian-specific challenges as future work.
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Vidová-Hladká. 2000. The Prague Dependency
Treebank: A Three-Level Annotation Scenario. In
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Rung, Eszter Simon, and Péter Vajda. 2006. Mor-
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Abstract
We introduce a new approach to transition-
based dependency parsing in which the
parser does not directly construct a depen-
dency structure, but rather an undirected
graph, which is then converted into a di-
rected dependency tree in a post-processing
step. This alleviates error propagation,
since undirected parsers do not need to ob-
serve the single-head constraint.

Undirected parsers can be obtained by sim-
plifying existing transition-based parsers
satisfying certain conditions. We apply this
approach to obtain undirected variants of
the planar and 2-planar parsers and of Cov-
ington’s non-projective parser. We perform
experiments on several datasets from the
CoNLL-X shared task, showing that these
variants outperform the original directed al-
gorithms in most of the cases.

1 Introduction
Dependency parsing has proven to be very use-
ful for natural language processing tasks. Data-
driven dependency parsers such as those by Nivre
et al. (2004), McDonald et al. (2005), Titov and
Henderson (2007), Martins et al. (2009) or Huang
and Sagae (2010) are accurate and efficient, they
can be trained from annotated data without the
need for a grammar, and they provide a simple
representation of syntax that maps to predicate-
argument structure in a straightforward way.

In particular, transition-based dependency
parsers (Nivre, 2008) are a type of dependency
parsing algorithms which use a model that scores
transitions between parser states. Greedy deter-
ministic search can be used to select the transition
to be taken at each state, thus achieving linear or
quadratic time complexity.

0          1          2          3

Figure 1: An example dependency structure where
transition-based parsers enforcing the single-head con-
straint will incur in error propagation if they mistak-
enly build a dependency link 1 → 2 instead of 2 → 1
(dependency links are represented as arrows going
from head to dependent).

It has been shown by McDonald and Nivre
(2007) that such parsers suffer from error prop-
agation: an early erroneous choice can place the
parser in an incorrect state that will in turn lead to
more errors. For instance, suppose that a sentence
whose correct analysis is the dependency graph
in Figure 1 is analyzed by any bottom-up or left-
to-right transition-based parser that outputs de-
pendency trees, therefore obeying the single-head
constraint (only one incoming arc is allowed per
node). If the parser chooses an erroneous transi-
tion that leads it to build a dependency link from
1 to 2 instead of the correct link from 2 to 1, this
will lead it to a state where the single-head con-
straint makes it illegal to create the link from 3 to
2. Therefore, a single erroneous choice will cause
two attachment errors in the output tree.

With the goal of minimizing these sources of
errors, we obtain novel undirected variants of
several parsers; namely, of the planar and 2-
planar parsers by Gómez-Rodrı́guez and Nivre
(2010) and the non-projective list-based parser
described by Nivre (2008), which is based on
Covington’s algorithm (Covington, 2001). These
variants work by collapsing the LEFT-ARC and
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RIGHT-ARC transitions in the original parsers,
which create right-to-left and left-to-right depen-
dency links, into a single ARC transition creating
an undirected link. This has the advantage that
the single-head constraint need not be observed
during the parsing process, since the directed no-
tions of head and dependent are lost in undirected
graphs. This gives the parser more freedom and
can prevent situations where enforcing the con-
straint leads to error propagation, as in Figure 1.

On the other hand, these new algorithms have
the disadvantage that their output is an undirected
graph, which has to be post-processed to recover
the direction of the dependency links and generate
a valid dependency tree. Thus, some complexity
is moved from the parsing process to this post-
processing step; and each undirected parser will
outperform the directed version only if the simpli-
fication of the parsing phase is able to avoid more
errors than are generated by the post-processing.
As will be seen in latter sections, experimental re-
sults indicate that this is in fact the case.

The rest of this paper is organized as follows:
Section 2 introduces some notation and concepts
that we will use throughout the paper. In Sec-
tion 3, we present the undirected versions of the
parsers by Gómez-Rodrı́guez and Nivre (2010)
and Nivre (2008), as well as some considerations
about the feature models suitable to train them. In
Section 4, we discuss post-processing techniques
that can be used to recover dependency trees from
undirected graphs. Section 5 presents an empir-
ical study of the performance obtained by these
parsers, and Section 6 contains a final discussion.

2 Preliminaries

2.1 Dependency Graphs

Let w = w1 . . . wn be an input string. A de-
pendency graph for w is a directed graph G =
(Vw, E), where Vw = {0, . . . , n} is the set of
nodes, and E ⊆ Vw × Vw is the set of directed
arcs. Each node in Vw encodes the position of
a token in w, and each arc in E encodes a de-
pendency relation between two tokens. We write
i → j to denote a directed arc (i, j), which will
also be called a dependency link from i to j.1 We

1In practice, dependency links are usually labeled, but
to simplify the presentation we will ignore labels throughout
most of the paper. However, all the results and algorithms
presented can be applied to labeled dependency graphs and
will be so applied in the experimental evaluation.

say that i is the head of j and, conversely, that j
is a syntactic dependent of i.

Given a dependency graph G = (Vw, E), we
write i →? j ∈ E if there is a (possibly empty)
directed path from i to j; and i ↔? j ∈ E if
there is a (possibly empty) path between i and j in
the undirected graph underlying G (omitting the
references to E when clear from the context).

Most dependency-based representations of syn-
tax do not allow arbitrary dependency graphs, in-
stead, they are restricted to acyclic graphs that
have at most one head per node. Dependency
graphs satisfying these constraints are called de-
pendency forests.

Definition 1 A dependency graph G is said to be
a forest iff it satisfies:

1. Acyclicity constraint: if i →? j, then not
j → i.

2. Single-head constraint: if j → i, then there
is no k 6= j such that k → i.

A node that has no head in a dependency for-
est is called a root. Some dependency frame-
works add the additional constraint that depen-
dency forests have only one root (or, equivalently,
that they are connected). Such a forest is called a
dependency tree. A dependency tree can be ob-
tained from any dependency forest by linking all
of its root nodes as dependents of a dummy root
node, conventionally located in position 0 of the
input.

2.2 Transition Systems

In the framework of Nivre (2008), transition-
based parsers are described by means of a non-
deterministic state machine called a transition
system.

Definition 2 A transition system for dependency
parsing is a tuple S = (C, T, cs, Ct), where

1. C is a set of possible parser configurations,
2. T is a finite set of transitions, which are par-

tial functions t : C → C,
3. cs is a total initialization function mapping

each input string to a unique initial configu-
ration, and

4. Ct ⊆ C is a set of terminal configurations.

To obtain a deterministic parser from a non-
deterministic transition system, an oracle is used
to deterministically select a single transition at
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each configuration. An oracle for a transition sys-
tem S = (C, T, cs, Ct) is a function o : C → T .
Suitable oracles can be obtained in practice by
training classifiers on treebank data (Nivre et al.,
2004).

2.3 The Planar, 2-Planar and Covington
Transition Systems

Our undirected dependency parsers are based
on the planar and 2-planar transition systems
by Gómez-Rodrı́guez and Nivre (2010) and the
version of the Covington (2001) non-projective
parser defined by Nivre (2008). We now outline
these directed parsers briefly, a more detailed de-
scription can be found in the above references.

2.3.1 Planar

The planar transition system by Gómez-
Rodrı́guez and Nivre (2010) is a linear-time
transition-based parser for planar dependency
forests, i.e., forests whose dependency arcs do not
cross when drawn above the words. The set of
planar dependency structures is a very mild ex-
tension of that of projective structures (Kuhlmann
and Nivre, 2006).

Configurations in this system are of the form
c = 〈Σ, B,A〉 where Σ and B are disjoint lists of
nodes from Vw (for some input w), and A is a set
of dependency links over Vw. The list B, called
the buffer, holds the input words that are still to
be read. The list Σ, called the stack, is initially
empty and is used to hold words that have depen-
dency links pending to be created. The system
is shown at the top in Figure 2, where the nota-
tion Σ | i is used for a stack with top i and tail Σ,
and we invert the notation for the buffer for clarity
(i.e., i | B as a buffer with top i and tail B).

The system reads the input sentence and creates
links in a left-to-right order by executing its four
transitions, until it gets to a terminal configura-
tion. A SHIFT transition moves the first (leftmost)
node in the buffer to the top of the stack. Transi-
tions LEFT-ARC and RIGHT-ARC create leftward
or rightward link, respectively, involving the first
node in the buffer and the topmost node in the
stack. Finally, REDUCE transition is used to pop
the top word from the stack when we have fin-
ished building arcs to or from it.

2.3.2 2-Planar

The 2-planar transition system by Gómez-
Rodrı́guez and Nivre (2010) is an extension of

the planar system that uses two stacks, allowing
it to recognize 2-planar structures, a larger set
of dependency structures that has been shown to
cover the vast majority of non-projective struc-
tures in a number of treebanks (Gómez-Rodrı́guez
and Nivre, 2010).

This transition system, shown in Figure 2, has
configurations of the form c = 〈Σ0,Σ1, B,A〉 ,
where we call Σ0 the active stack and Σ1 the in-
active stack. Its SHIFT, LEFT-ARC, RIGHT-ARC

and REDUCE transitions work similarly to those
in the planar parser, but while SHIFT pushes the
first word in the buffer to both stacks; the other
three transitions only work with the top of the ac-
tive stack, ignoring the inactive one. Finally, a
SWITCH transition is added that makes the active
stack inactive and vice versa.

2.3.3 Covington Non-Projective

Covington (2001) proposes several incremen-
tal parsing strategies for dependency representa-
tions and one of them can recover non-projective
dependency graphs. Nivre (2008) implements a
variant of this strategy as a transition system with
configurations of the form c = 〈λ1, λ2, B,A〉,
where λ1 and λ2 are lists containing partially pro-
cessed words and B is the buffer list of unpro-
cessed words.

The Covington non-projective transition sys-
tem is shown at the bottom in Figure 2. At each
configuration c = 〈λ1, λ2, B,A〉, the parser has
to consider whether any dependency arc should
be created involving the top of the buffer and the
words in λ1. A LEFT-ARC transition adds a link
from the first node j in the buffer to the node in the
head of the list λ1, which is moved to the list λ2

to signify that we have finished considering it as a
possible head or dependent of j. The RIGHT-ARC

transition does the same manipulation, but creat-
ing the symmetric link. A NO-ARC transition re-
moves the head of the list λ1 and inserts it at the
head of the list λ2 without creating any arcs: this
transition is to be used where there is no depen-
dency relation between the top node in the buffer
and the head of λ1, but we still may want to cre-
ate an arc involving the top of the buffer and other
nodes in λ1. Finally, if we do not want to create
any such arcs at all, we can execute a SHIFT tran-
sition, which advances the parsing process by re-
moving the first node in the bufferB and inserting
it at the head of a list obtained by concatenating
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λ1 and λ2. This list becomes the new λ1, whereas
λ2 is empty in the resulting configuration.

Note that the Covington parser has quadratic
complexity with respect to input length, while the
planar and 2-planar parsers run in linear time.

3 The Undirected Parsers

The transition systems defined in Section 2.3
share the common property that their LEFT-ARC

and RIGHT-ARC have exactly the same effects ex-
cept for the direction of the links that they create.
We can take advantage of this property to define
undirected versions of these transition systems, by
transforming them as follows:

• Configurations are changed so that the arc set
A is a set of undirected arcs, instead of di-
rected arcs.

• The LEFT-ARC and RIGHT-ARC transitions
in each parser are collapsed into a single ARC

transition that creates an undirected arc.

• The preconditions of transitions that guaran-
tee the single-head constraint are removed,
since the notions of head and dependent are
lost in undirected graphs.

By performing these transformations and leaving
the systems otherwise unchanged, we obtain the
undirected variants of the planar, 2-planar and
Covington algorithms that are shown in Figure 3.

Note that the transformation can be applied
to any transition system having LEFT-ARC and
RIGHT-ARC transitions that are equal except for
the direction of the created link, and thus col-
lapsable into one. The above three transition sys-
tems fulfill this property, but not every transition
system does. For example, the well-known arc-
eager parser of Nivre (2003) pops a node from the
stack when creating left arcs, and pushes a node
to the stack when creating right arcs, so the trans-
formation cannot be applied to it.2

2One might think that the arc-eager algorithm could still
be transformed by converting each of its arc transitions into
an undirected transition, without collapsing them into one.
However, this would result into a parser that violates the
acyclicity constraint, since the algorithm is designed in such
a way that acyclicity is only guaranteed if the single-head
constraint is kept. It is easy to see that this problem cannot
happen in parsers where LEFT-ARC and RIGHT-ARC transi-
tions have the same effect: in these, if a directed graph is not
parsable in the original algorithm, its underlying undirected
graph cannot not be parsable in the undirected variant.

3.1 Feature models

Some of the features that are typically used to
train transition-based dependency parsers depend
on the direction of the arcs that have been built up
to a certain point. For example, two such features
for the planar parser could be the POS tag associ-
ated with the head of the topmost stack node, or
the label of the arc going from the first node in the
buffer to its leftmost dependent.3

As the notion of head and dependent is lost in
undirected graphs, this kind of features cannot be
used to train undirected parsers. Instead, we use
features based on undirected relations between
nodes. We found that the following kinds of fea-
tures worked well in practice as a replacement for
features depending on arc direction:

• Information about the ith node linked to a
given node (topmost stack node, topmost
buffer node, etc.) on the left or on the right,
and about the associated undirected arc, typi-
cally for i = 1, 2, 3,

• Information about whether two nodes are
linked or not in the undirected graph, and
about the label of the arc between them,

• Information about the first left and right
“undirected siblings” of a given node, i.e., the
first node q located to the left of the given node
p such that p and q are linked to some common
node r located to the right of both, and vice
versa. Note that this notion of undirected sib-
lings does not correspond exclusively to sib-
lings in the directed graph, since it can also
capture other second-order interactions, such
as grandparents.

4 Reconstructing the dependency forest
The modified transition systems presented in the
previous section generate undirected graphs. To
obtain complete dependency parsers that are able
to produce directed dependency forests, we will
need a reconstruction step that will assign a direc-
tion to the arcs in such a way that the single-head
constraint is obeyed. This reconstruction step can
be implemented by building a directed graph with
weighted arcs corresponding to both possible di-
rections of each undirected edge, and then finding
an optimum branching to reduce it to a directed

3These example features are taken from the default model
for the planar parser in version 1.5 of MaltParser (Nivre et
al., 2006).
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Planar initial/terminal configurations: cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, Cf = {〈Σ, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ, i|B,A〉 ⇒ 〈Σ|i, B,A〉
REDUCE 〈Σ|i, B,A〉 ⇒ 〈Σ, B,A〉
LEFT-ARC 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {(j, i)}〉

only if @k | (k, i) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARC 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

2-Planar initial/terminal configurations: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈Σ0,Σ1, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ0,Σ1, i|B,A〉 ⇒ 〈Σ0|i,Σ1|i, B,A〉
REDUCE 〈Σ0|i,Σ1, B,A〉 ⇒ 〈Σ0,Σ1, B,A〉
LEFT-ARC 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {j, i)}〉

only if @k | (k, i) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARC 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

SWITCH 〈Σ0,Σ1, B,A〉 ⇒ 〈Σ1,Σ0, B,A〉
Covington initial/term. configurations: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈λ1, λ2, [], A〉 ∈ C}

Transitions: SHIFT 〈λ1, λ2, i|B,A〉 ⇒ 〈λ1 · λ2|i, [], B,A〉
NO-ARC 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
LEFT-ARC 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {(j, i)}〉

only if @k | (k, i) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARC 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {(i, j)}〉
only if @k | (k, j) ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

Figure 2: Transition systems for planar, 2-planar and Covington non-projective dependency parsing.

Undirected Planar initial/term. conf.: cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, Cf = {〈Σ, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ, i|B,A〉 ⇒ 〈Σ|i, B,A〉
REDUCE 〈Σ|i, B,A〉 ⇒ 〈Σ, B,A〉
ARC 〈Σ|i, j|B,A〉 ⇒ 〈Σ|i, j|B,A ∪ {{i, j}}〉

only if i↔∗ j 6∈ A (acyclicity).

Undirected 2-Planar initial/term. conf.: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈Σ0,Σ1, [], A〉 ∈ C}

Transitions: SHIFT 〈Σ0,Σ1, i|B,A〉 ⇒ 〈Σ0|i,Σ1|i, B,A〉
REDUCE 〈Σ0|i,Σ1, B,A〉 ⇒ 〈Σ0,Σ1, B,A〉
ARC 〈Σ0|i,Σ1, j|B,A〉 ⇒ 〈Σ0|i,Σ1, j|B,A ∪ {{i, j}}〉

only if i↔∗ j 6∈ A (acyclicity).

SWITCH 〈Σ0,Σ1, B,A〉 ⇒ 〈Σ1,Σ0, B,A〉
Undirected Covington init./term. conf.: cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, Cf = {〈λ1, λ2, [], A〉 ∈ C}

Transitions: SHIFT 〈λ1, λ2, i|B,A〉 ⇒ 〈λ1 · λ2|i, [], B,A〉
NO-ARC 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
ARC 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {{i, j}}〉

only if i↔∗ j 6∈ A (acyclicity).

Figure 3: Transition systems for undirected planar, 2-planar and Covington non-projective dependency parsing.
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tree. Different criteria for assigning weights to
arcs provide different variants of the reconstruc-
tion technique.

To describe these variants, we first introduce
preliminary definitions. Let U = (Vw, E) be
an undirected graph produced by an undirected
parser for some string w. We define the follow-
ing sets of arcs:

A1(U) = {(i, j) | j 6= 0 ∧ {i, j} ∈ E},
A2(U) = {(0, i) | i ∈ Vw}.

Note that A1(U) represents the set of arcs ob-
tained from assigning an orientation to an edge
in U , except arcs whose dependent is the dummy
root, which are disallowed. On the other hand,
A2(U) contains all the possible arcs originating
from the dummy root node, regardless of whether
their underlying undirected edges are in U or not;
this is so that reconstructions are allowed to link
unattached tokens to the dummy root.

The reconstruction process consists of finding
a minimum branching (i.e. a directed minimum
spanning tree) for a weighted directed graph ob-
tained from assigning a cost c(i, j) to each arc
(i, j) of the following directed graph:

D(U) = {Vw, A(U) = A1(U) ∪A2(U)}.

That is, we will find a dependency tree T =
(Vw, AT ⊆ A(U)) such that the sum of costs of
the arcs in AT is minimal. In general, such a min-
imum branching can be calculated with the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). Since the graph D(U) has O(n)
nodes and O(n) arcs for a string of length n, this
can be done in O(n log n) if implemented as de-
scribed by Tarjan (1977).

However, applying these generic techniques is
not necessary in this case: since our graph U is
acyclic, the problem of reconstructing the forest
can be reduced to choosing a root word for each
connected component in the graph, linking it as
a dependent of the dummy root and directing the
other arcs in the component in the (unique) way
that makes them point away from the root.

It remains to see how to assign the costs c(i, j)
to the arcs of D(U): different criteria for assign-
ing scores will lead to different reconstructions.

4.1 Naive reconstruction

A first, very simple reconstruction technique can
be obtained by assigning arc costs to the arcs in

A(U) as follows:

c(i, j)

{
1 if (i, j) ∈ A1(U),
2 if (i, j) ∈ A2(U) ∧ (i, j) 6∈ A1(U).

This approach gives the same cost to all arcs
obtained from the undirected graph U , while also
allowing (at a higher cost) to attach any node to
the dummy root. To obtain satisfactory results
with this technique, we must train our parser to
explicitly build undirected arcs from the dummy
root node to the root word(s) of each sentence us-
ing arc transitions (note that this implies that we
need to represent forests as trees, in the manner
described at the end of Section 2.1). Under this
assumption, it is easy to see that we can obtain the
correct directed tree T for a sentence if it is pro-
vided with its underlying undirected tree U : the
tree is obtained in O(n) as the unique orientation
of U that makes each of its edges point away from
the dummy root.

This approach to reconstruction has the advan-
tage of being very simple and not adding any com-
plications to the parsing process, while guarantee-
ing that the correct directed tree will be recovered
if the undirected tree for a sentence is generated
correctly. However, it is not very robust, since the
direction of all the arcs in the output depends on
which node is chosen as sentence head and linked
to the dummy root. Therefore, a parsing error af-
fecting the undirected edge involving the dummy
root may result in many dependency links being
erroneous.

4.2 Label-based reconstruction

To achieve a more robust reconstruction, we use
labels to encode a preferred direction for depen-
dency arcs. To do so, for each pre-existing label
X in the training set, we create two labels Xl and
Xr. The parser is then trained on a modified ver-
sion of the training set where leftward links orig-
inally labelled X are labelled Xl, and rightward
links originally labelled X are labelled Xr. Thus,
the output of the parser on a new sentence will be
an undirected graph where each edge has a label
with an annotation indicating whether the recon-
struction process should prefer to link the pair of
nodes with a leftward or a rightward arc. We can
then assign costs to our minimum branching algo-
rithm so that it will return a tree agreeing with as
many such annotations as possible.
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To do this, we call A1+(U) ⊆ A1(U) the set
of arcs in A1(U) that agree with the annotations,
i.e., arcs (i, j) ∈ A1(U) where either i < j and
i, j is labelledXr inU , or i > j and i, j is labelled
Xl in U . We callA1−(U) the set of arcs inA1(U)
that disagree with the annotations, i.e.,A1−(U) =
A1(U)\A1+(U). And we assign costs as follows:

c(i, j)


1 if (i, j) ∈ A1+(U),
2 if (i, j) ∈ A1−(U),
2n if (i, j) ∈ A2(U) ∧ (i, j) 6∈ A1(U).

where n is the length of the string.
With these costs, the minimum branching algo-

rithm will find a tree which agrees with as many
annotations as possible. Additional arcs from the
root not corresponding to any edge in the output
of the parser (i.e. arcs inA2(U) but not inA1(U))
will be used only if strictly necessary to guarantee
connectedness, this is implemented by the high
cost for these arcs.

While this may be the simplest cost assignment
to implement label-based reconstruction, we have
found that better empirical results are obtained if
we give the algorithm more freedom to create new
arcs from the root, as follows:

c(i, j)


1 if (i, j) ∈ A1+(U) ∧ (i, j) 6∈ A2(U),
2 if (i, j) ∈ A1−(U) ∧ (i, j) 6∈ A2(U),
2n if (i, j) ∈ A2(U).

While the cost of arcs from the dummy root is
still 2n, this is now so even for arcs that are in the
output of the undirected parser, which had cost 1
before. Informally, this means that with this con-
figuration the postprocessor does not “trust” the
links from the dummy root created by the parser,
and may choose to change them if it is conve-
nient to get a better agreement with label anno-
tations (see Figure 4 for an example of the dif-
ference between both cost assignments). We be-
lieve that the better accuracy obtained with this
criterion probably stems from the fact that it is bi-
ased towards changing links from the root, which
tend to be more problematic for transition-based
parsers, while respecting the parser output for
links located deeper in the dependency structure,
for which transition-based parsers tend to be more
accurate (McDonald and Nivre, 2007).

Note that both variants of label-based recon-
struction have the property that, if the undirected
parser produces the correct edges and labels for a
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Figure 4: a) An undirected graph obtained by the
parser with the label-based transformation, b) and c)
The dependency graph obtained by each of the variants
of the label-based reconstruction (note how the second
variant moves an arc from the root).

given sentence, then the obtained directed tree is
guaranteed to be correct (as it will simply be the
tree obtained by decoding the label annotations).

5 Experiments

In this section, we evaluate the performance of the
undirected planar, 2-planar and Covington parsers
on eight datasets from the CoNLL-X shared task
(Buchholz and Marsi, 2006).

Tables 1, 2 and 3 compare the accuracy of the
undirected versions with naive and label-based re-
construction to that of the directed versions of
the planar, 2-planar and Covington parsers, re-
spectively. In addition, we provide a comparison
to well-known state-of-the-art projective and non-
projective parsers: the planar parsers are com-
pared to the arc-eager projective parser by Nivre
(2003), which is also restricted to planar struc-
tures; and the 2-planar parsers are compared with
the arc-eager parser with pseudo-projective trans-
formation of Nivre and Nilsson (2005), capable of
handling non-planar dependencies.

We use SVM classifiers from the LIBSVM
package (Chang and Lin, 2001) for all the lan-
guages except Chinese, Czech and German. In
these, we use the LIBLINEAR package (Fan et
al., 2008) for classification, which reduces train-
ing time for these larger datasets; and feature
models adapted to this system which, in the case
of German, result in higher accuracy than pub-
lished results using LIBSVM.
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The LIBSVM feature models for the arc-eager
projective and pseudo-projective parsers are the
same used by these parsers in the CoNLL-X
shared task, where the pseudo-projective version
of MaltParser was one of the two top performing
systems (Buchholz and Marsi, 2006). For the 2-
planar parser, we took the feature models from
Gómez-Rodrı́guez and Nivre (2010) for the lan-
guages included in that paper. For all the algo-
rithms and datasets, the feature models used for
the undirected parsers were adapted from those of
the directed parsers as described in Section 3.1.4

The results show that the use of undirected
parsing with label-based reconstruction clearly
improves the performance in the vast majority of
the datasets for the planar and Covington algo-
rithms, where in many cases it also improves upon
the corresponding projective and non-projective
state-of-the-art parsers provided for comparison.
In the case of the 2-planar parser the results are
less conclusive, with improvements over the di-
rected versions in five out of the eight languages.

The improvements in LAS obtained with label-
based reconstruction over directed parsing are sta-
tistically significant at the .05 level5 for Danish,
German and Portuguese in the case of the pla-
nar parser; and Czech, Danish and Turkish for
Covington’s parser. No statistically significant de-
crease in accuracy was detected in any of the al-
gorithm/dataset combinations.

As expected, the good results obtained by the
undirected parsers with label-based reconstruc-
tion contrast with those obtained by the variants
with root-based reconstruction, which performed
worse in all the experiments.

6 Discussion
We have presented novel variants of the planar
and 2-planar transition-based parsers by Gómez-
Rodrı́guez and Nivre (2010) and of Covington’s
non-projective parser (Covington, 2001; Nivre,
2008) which ignore the direction of dependency
links, and reconstruction techniques that can be
used to recover the direction of the arcs thus pro-
duced. The results obtained show that this idea
of undirected parsing, together with the label-

4All the experimental settings and feature models used
are included in the supplementary material and also available
at http://www.grupolys.org/˜cgomezr/exp/.

5Statistical significance was assessed using Dan Bikel’s
randomized comparator: http://www.cis.upenn.
edu/˜dbikel/software.html

based reconstruction technique of Section 4.2, im-
proves parsing accuracy on most of the tested
dataset/algorithm combinations, and it can out-
perform state-of-the-art transition-based parsers.

The accuracy improvements achieved by re-
laxing the single-head constraint to mitigate er-
ror propagation were able to overcome the er-
rors generated in the reconstruction phase, which
were few: we observed empirically that the dif-
ferences between the undirected LAS obtained
from the undirected graph before the reconstruc-
tion and the final directed LAS are typically be-
low 0.20%. This is true both for the naive and
label-based transformations, indicating that both
techniques are able to recover arc directions accu-
rately, and the accuracy differences between them
come mainly from the differences in training (e.g.
having tentative arc direction as part of feature
information in the label-based reconstruction and
not in the naive one) rather than from the differ-
ences in the reconstruction methods themselves.

The reason why we can apply the undirected
simplification to the three parsers that we have
used in this paper is that their LEFT-ARC and
RIGHT-ARC transitions have the same effect ex-
cept for the direction of the links they create.
The same transformation and reconstruction tech-
niques could be applied to any other transition-
based dependency parsers sharing this property.
The reconstruction techniques alone could po-
tentially be applied to any dependency parser
(transition-based or not) as long as it can be some-
how converted to output undirected graphs.

The idea of parsing with undirected relations
between words has been applied before in the
work on Link Grammar (Sleator and Temperley,
1991), but in that case the formalism itself works
with undirected graphs, which are the final out-
put of the parser. To our knowledge, the idea of
using an undirected graph as an intermediate step
towards obtaining a dependency structure has not
been explored before.
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Planar UPlanarN UPlanarL MaltP
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 66.93 (67.34) 77.56 (77.22) 65.91 (66.33) 77.03 (76.75) 66.75 (67.19) 77.45 (77.22) 66.43 (66.74) 77.19 (76.83)
Chinese 84.23 (84.20) 88.37 (88.33) 83.14 (83.10) 87.00 (86.95) 84.51* (84.50*) 88.37 (88.35*) 86.42 (86.39) 90.06 (90.02)
Czech 77.24 (77.70) 83.46 (83.24) 75.08 (75.60) 81.14 (81.14) 77.60* (77.93*) 83.56* (83.41*) 77.24 (77.57) 83.40 (83.19)
Danish 83.31 (82.60) 88.02 (86.64) 82.65 (82.45) 87.58 (86.67*) 83.87* (83.83*) 88.94* (88.17*) 83.31 (82.64) 88.30 (86.91)
German 84.66 (83.60) 87.02 (85.67) 83.33 (82.77) 85.78 (84.93) 86.32* (85.67*) 88.62* (87.69*) 86.12 (85.48) 88.52 (87.58)
Portug. 86.22 (83.82) 89.80 (86.88) 85.89 (83.82) 89.68 (87.06*) 86.52* (84.83*) 90.28* (88.03*) 86.60 (84.66) 90.20 (87.73)
Swedish 83.01 (82.44) 88.53 (87.36) 81.20 (81.10) 86.50 (85.86) 82.95 (82.66*) 88.29 (87.45*) 82.89 (82.44) 88.61 (87.55)
Turkish 62.70 (71.27) 73.67 (78.57) 59.83 (68.31) 70.15 (75.17) 63.27* (71.63*) 73.93* (78.72*) 62.58 (70.96) 73.09 (77.95)

Table 1: Parsing accuracy of the undirected planar parser with naive (UPlanarN) and label-based (UPlanarL)
postprocessing in comparison to the directed planar (Planar) and the MaltParser arc-eager projective (MaltP)
algorithms, on eight datasets from the CoNLL-X shared task (Buchholz and Marsi, 2006): Arabic (Hajič et al.,
2004), Chinese (Chen et al., 2003), Czech (Hajič et al., 2006), Danish (Kromann, 2003), German (Brants et
al., 2002), Portuguese (Afonso et al., 2002), Swedish (Nilsson et al., 2005) and Turkish (Oflazer et al., 2003;
Atalay et al., 2003). We show labelled (LAS) and unlabelled (UAS) attachment score excluding and including
punctuation tokens in the scoring (the latter in brackets). Best results for each language are shown in boldface,
and results where the undirected parser outperforms the directed version are marked with an asterisk.

2Planar U2PlanarN U2PlanarL MaltPP
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 66.73 (67.19) 77.33 (77.11) 66.37 (66.93) 77.15 (77.09) 66.13 (66.52) 76.97 (76.70) 65.93 (66.02) 76.79 (76.14)
Chinese 84.35 (84.32) 88.31 (88.27) 83.02 (82.98) 86.86 (86.81) 84.45* (84.42*) 88.29 (88.25) 86.42 (86.39) 90.06 (90.02)
Czech 77.72 (77.91) 83.76 (83.32) 74.44 (75.19) 80.68 (80.80) 78.00* (78.59*) 84.22* (84.21*) 78.86 (78.47) 84.54 (83.89)
Danish 83.81 (83.61) 88.50 (87.63) 82.00 (81.63) 86.87 (85.80) 83.75 (83.65*) 88.62* (87.82*) 83.67 (83.54) 88.52 (87.70)
German 86.28 (85.76) 88.68 (87.86) 82.93 (82.53) 85.52 (84.81) 86.52* (85.99*) 88.72* (87.92*) 86.94 (86.62) 89.30 (88.69)
Portug. 87.04 (84.92) 90.82 (88.14) 85.61 (83.45) 89.36 (86.65) 86.70 (84.75) 90.38 (87.88) 87.08 (84.90) 90.66 (87.95)
Swedish 83.13 (82.71) 88.57 (87.59) 81.00 (80.71) 86.54 (85.68) 82.59 (82.25) 88.19 (87.29) 83.39 (82.67) 88.59 (87.38)
Turkish 61.80 (70.09) 72.75 (77.39) 58.10 (67.44) 68.03 (74.06) 61.92* (70.64*) 72.18 (77.46*) 62.80 (71.33) 73.49 (78.44)

Table 2: Parsing accuracy of the undirected 2-planar parser with naive (U2PlanarN) and label-based (U2PlanarL)
postprocessing in comparison to the directed 2-planar (2Planar) and MaltParser arc-eager pseudo-projective
(MaltPP) algorithms. The meaning of the scores shown is as in Table 1.

Covington UCovingtonN UCovingtonL
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 65.17 (65.49) 75.99 (75.69) 63.49 (63.93) 74.41 (74.20) 65.61* (65.81*) 76.11* (75.66)
Chinese 85.61 (85.61) 89.64 (89.62) 84.12 (84.02) 87.85 (87.73) 86.28* (86.17*) 90.16* (90.04*)
Czech 78.26 (77.43) 84.04 (83.15) 74.02 (74.78) 79.80 (79.92) 78.42* (78.69*) 84.50* (84.16*)
Danish 83.63 (82.89) 88.50 (87.06) 82.00 (81.61) 86.55 (85.51) 84.27* (83.85*) 88.82* (87.75*)
German 86.70 (85.69) 89.08 (87.78) 84.03 (83.51) 86.16 (85.39) 86.50 (85.90*) 88.84 (87.95*)
Portug. 84.73 (82.56) 89.10 (86.30) 83.83 (81.71) 87.88 (85.17) 84.95* (82.70*) 89.18* (86.31*)
Swedish 83.53 (82.76) 88.91 (87.61) 81.78 (81.47) 86.78 (85.96) 83.09 (82.73) 88.11 (87.23)
Turkish 64.25 (72.70) 74.85 (79.75) 63.51 (72.08) 74.07 (79.10) 64.91* (73.38*) 75.46* (80.40*)

Table 3: Parsing accuracy of the undirected Covington non-projective parser with naive (UCovingtonN) and
label-based (UCovingtonL) postprocessing in comparison to the directed algorithm (Covington). The meaning
of the scores shown is as in Table 1.
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Sweden. Växjö University Press.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. In Proceed-
ings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 507–514.

Andre Martins, Noah Smith, and Eric Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP), pages 342–350.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 122–131.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Abstract

Transition-based dependency parsers are
often forced to make attachment deci-
sions at a point when only partial infor-
mation about the relevant graph configu-
ration is available. In this paper, we de-
scribe a model that takes into account com-
plete structures as they become available
to rescore the elements of a beam, com-
bining the advantages of transition-based
and graph-based approaches. We also pro-
pose an efficient implementation that al-
lows for the use of sophisticated features
and show that the completion model leads
to a substantial increase in accuracy. We
apply the new transition-based parser on ty-
pologically different languages such as En-
glish, Chinese, Czech, and German and re-
port competitive labeled and unlabeled at-
tachment scores.

1 Introduction

Background. A considerable amount of recent
research has gone into data-driven dependency
parsing, and interestingly throughout the continu-
ous process of improvements, two classes of pars-
ing algorithms have stayed at the centre of at-
tention, the transition-based (Nivre, 2003) vs. the
graph-based approach (Eisner, 1996; McDonald
et al., 2005).1 The two approaches apply funda-
mentally different strategies to solve the task of
finding the optimal labeled dependency tree over
the words of an input sentence (where supervised
machine learning is used to estimate the scoring
parameters on a treebank).

The transition-based approach is based on the
conceptually (and cognitively) compelling idea

1More references will be provided in sec. 2.

that machine learning, i.e., a model of linguis-
tic experience, is used in exactly those situations
when there is an attachment choice in an other-
wise deterministic incremental left-to-right pars-
ing process. As a new word is processed, the
parser has to decide on one out of a small num-
ber of possible transitions (adding a dependency
arc pointing to the left or right and/or pushing or
popping a word on/from a stack representation).
Obviously, the learning can be based on the fea-
ture information available at a particular snapshot
in incremental processing, i.e., only surface in-
formation for the unparsed material to the right,
but full structural information for the parts of the
string already processed. For the completely pro-
cessed parts, there are no principled limitations as
regards the types of structural configurations that
can be checked in feature functions.

The graph-based approach in contrast empha-
sizes the objective of exhaustive search over all
possible trees spanning the input words. Com-
monly, dynamic programming techniques are
used to decide on the optimal tree for each par-
ticular word span, considering all candidate splits
into subspans, successively building longer spans
in a bottom-up fashion (similar to chart-based
constituent parsing). Machine learning drives
the process of deciding among alternative can-
didate splits, i.e., feature information can draw
on full structural information for the entire ma-
terial in the span under consideration. However,
due to the dynamic programming approach, the
features cannot use arbitrarily complex structural
configurations: otherwise the dynamic program-
ming chart would have to be split into exponen-
tially many special states. The typical feature
models are based on combinations of edges (so-
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called second-order factors) that closely follow
the bottom-up combination of subspans in the
parsing algorithm, i.e., the feature functions de-
pend on the presence of two specific dependency
edges. Configurations not directly supported by
the bottom-up building of larger spans are more
cumbersome to integrate into the model (since the
combination algorithm has to be adjusted), in par-
ticular for third-order factors or higher.

Empirically, i.e., when applied in supervised
machine learning experiments based on existing
treebanks for various languages, both strategies
(and further refinements of them not mentioned
here) turn out roughly equal in their capability
of picking up most of the relevant patterns well;
some subtle strengths and weaknesses are com-
plementary, such that stacking of two parsers rep-
resenting both strategies yields the best results
(Nivre and McDonald, 2008): in training and ap-
plication, one of the parsers is run on each sen-
tence prior to the other, providing additional fea-
ture information for the other parser. Another suc-
cessful technique to combine parsers is voting as
carried out by Sagae and Lavie (2006).

The present paper addresses the question if
and how a more integrated combination of the
strengths of the two strategies can be achieved
and implemented efficiently to warrant competi-
tive results.

The main issue and solution strategy. In or-
der to preserve the conceptual (and complexity)
advantages of the transition-based strategy, the
integrated algorithm we are looking for has to
be transition-based at the top level. The advan-
tages of the graph-based approach – a more glob-
ally informed basis for the decision among dif-
ferent attachment options – have to be included
as part of the scoring procedure. As a prerequi-
site, our algorithm will require a memory for stor-
ing alternative analyses among which to choose.
This has been previously introduced in transition-
based approaches in the form of a beam (Johans-
son and Nugues, 2006): rather than representing
only the best-scoring history of transitions, the k
best-scoring alternative histories are kept around.

As we will indicate in the following, the mere
addition of beam search does not help overcome
a representational key issue of transition-based
parsing: in many situations, a transition-based
parser is forced to make an attachment decision

for a given input word at a point where no or only
partial information about the word’s own depen-
dents (and further decendents) is available. Fig-
ure 1 illustrates such a case.

Figure 1: The left set of brackets indicates material
that has been processed or is under consideration; on
the right is the input, still to be processed. Access to in-
formation that is yet unavailable would help the parser
to decide on the correct transition.

Here, the parser has to decide whether to create an
edge between house and with or between bought
and with (which is technically achieved by first
popping house from the stack and then adding the
edge). At this time, no information about the ob-
ject of with is available; with fails to provide what
we call a complete factor for the calculation of the
scores of the alternative transitions under consid-
eration. In other words, the model cannot make
use of any evidence to distinguish between the
two examples in Figure 1, and it is bound to get
one of the two cases wrong.

Figure 2 illustrates the same case from the per-
spective of a graph-based parser.

Figure 2: A second order model as used in graph-based
parsers has access to the crucial information to build
the correct tree. In this case, the parser condsiders the
word friend (as opposed to garden, for instance) as it
introduces the bold-face edge.

Here, the combination of subspans is performed
at a point when their internal structure has been
finalized, i.e., the attachment of with (to bought
or house) is not decided until it is clear that friend
is the object of with; hence, the semantically im-
portant lexicalization of with’s object informs the
higher-level attachment decision through a so-
called second order factor in the feature model.
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Given a suitable amount of training data, the
model can thus learn to make the correct deci-
sion. The dynamic-programming based graph-
based parser is designed in such a way that any
score calculation is based on complete factors for
the subspans that are combined at this point.

Note that the problem for the transition-based
parser cannot be remedied by beam search alone.
If we were to keep the two options for attach-
ing with around in a beam (say, with a slightly
higher score for attachment to house, but with
bought following narrowly behind), there would
be no point in the further processing of the sen-
tence at which the choice could be corrected: the
transition-based parser still needs to make the de-
cision that friend is attached to with, but this will
not lead the parser to reconsider the decision made
earlier on.

The strategy we describe in this paper applies
in this very type of situation: whenever infor-
mation is added in the transition-based parsing
process, the scores of all the histories stored in
the beam are recalculated based on a scoring
model inspired by the graph-based parsing ap-
proach, i.e., taking complete factors into account
as they become incrementally available. As a con-
sequence the beam is reordered, and hence, the
incorrect preference of an attachment of with to
house (based on incomplete factors) can later be
corrected as friend is processed and the complete
second-order factor becomes available.2

The integrated transition-based parsing strategy
has a number of advantages:
(1) We can integrate and investigate a number of
third order factors, without the need to implement
a more complex parsing model each time anew to
explore the properties of such distinct model.
(2) The parser with completion model main-
tains the favorable complexity of transition-based
parsers.
(3) The completion model compensates for the
lower accuracy of cases when only incomplete in-
formation is available.
(4) The parser combines the two leading pars-
ing paradigms in a single efficient parser with-
out stacking the two approaches. Therefore the

2Since search is not exhaustive, there is of course a slight
danger that the correct history drops out of the beam before
complete information becomes available. But as our experi-
ments show, this does not seem to be a serious issue empiri-
cally.

parser requires only one training phase (without
jackknifing) and it uses only a single transition-
based decoder.

The structure of this paper is as follows. In Sec-
tion 2, we discuss related work. In Section 3, we
introduce our transition-based parser and in Sec-
tion 4 the completion model as well as the im-
plementation of third order models. In Section 5,
we describe experiments and provide evaluation
results on selected data sets.

2 Related Work

Kudo and Matsumoto (2002) and Yamada and
Matsumoto (2003) carried over the idea for de-
terministic parsing by chunks from Abney (1991)
to dependency parsing. Nivre (2003) describes
in a more strict sense the first incremental parser
that tries to find the most appropriate dependency
tree by a sequence of local transitions. In order
to optimize the results towards a more globally
optimal solution, Johansson and Nugues (2006)
first applied beam search, which leads to a sub-
stantial improvment of the results (cf. also (Titov
and Henderson, 2007)). Zhang and Clark (2008)
augment the beam-search algorithm, adapting the
early update strategy of Collins and Roark (2004)
to dependency parsing. In this approach, the
parser stops and updates the model when the or-
acle transition sequence drops out of the beam.
In contrast to most other approaches, the training
procedure of Zhang and Clark (2008) takes the
complete transition sequence into account as it is
calculating the update. Zhang and Clark compare
aspects of transition-based and graph-based pars-
ing, and end up using a transition-based parser
with a combined transition-based/second-order
graph-based scoring model (Zhang and Clark,
2008, 567), which is similar to the approach we
describe in this paper. However, their approach
does not involve beam rescoring as the partial
structures built by the transition-based parser are
subsequently augmented; hence, there are cases in
which our approach is able to differentiate based
on higher-order factors that go unnoticed by the
combined model of (Zhang and Clark, 2008, 567).

One step beyond the use of a beam is a dynamic
programming approach to carry out a full search
in the state space, cf. (Huang and Sagae, 2010;
Kuhlmann et al., 2011). However, in this case
one has to restrict the employed features to a set
which fits to the elements composed by the dy-
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namic programming approach. This is a trade-off
between an exhaustive search and a unrestricted
(rich) feature set and the question which provides
a higher accuracy is still an open research ques-
tion, cf. (Kuhlmann et al., 2011).

Parsing of non-projective dependency trees is
an important feature for many languages. At
first most algorithms were restricted to projec-
tive dependency trees and used pseudo-projective
parsing (Kahane et al., 1998; Nivre and Nilsson,
2005). Later, additional transitions were intro-
duced to handle non-projectivity (Attardi, 2006;
Nivre, 2009). The most common strategy uses
the swap transition (Nivre, 2009; Nivre et al.,
2009), an alternative solution uses two planes
and a switch transition to switch between the two
planes (Gómez-Rodrı́guez and Nivre, 2010).

Since we use the scoring model of a graph-
based parser, we briefly review releated work
on graph-based parsing. The most well known
graph-based parser is the MST (maximum span-
ning tree) parser, cf. (McDonald et al., 2005; Mc-
Donald and Pereira, 2006). The idea of the MST
parser is to find the highest scoring tree in a graph
that contains all possible edges. Eisner (1996)
introduced a dynamic programming algorithm to
solve this problem efficiently. Carreras (2007) in-
troduced the left-most and right-most grandchild
as factors. We use the factor model of Carreras
(2007) as starting point for our experiments, cf.
Section 4. We extend Carreras (2007) graph-
based model with factors involving three edges
similar to that of Koo and Collins (2010).

3 Transition-based Parser with a Beam

This section specifies the transition-based beam-
search parser underlying the combined approach
more formally. Sec. 4 will discuss the graph-
based scoring model that we are adding.

The input to the parser is a word string x,
the goal is to find the optimal set y of labeled
edges xi→l xj forming a dependency tree over x
∪{root}. We characterize the state of a transition-
based parser as πi=〈σi, βi, yi, hi〉, πi ∈ Π, the set
of possible states. σi is a stack of words from x
that are still under consideration; βi is the input
buffer, the suffix of x yet to be processed; yi the
set of labeled edges already assigned (a partial la-
beled dependency tree); hi is a sequence record-
ing the history of transitions (from the set of op-
erations Ω = {shift, left-arcl, right-arcl, reduce,

swap}) taken up to this point.
(1) The initial state π0 has an empty stack, the

input buffer is the full input string x, and the edge
set is empty. (2) The (partial) transition function
τ(πi, t) : Π x Ω → Π maps a state and an opera-
tion t to a new state πi+1. (3) Final states πf are
characterized by an empty input buffer and stack;
no further transitions can be taken.

The transition function is informally defined as
follows: The shift transition removes the first ele-
ment of the input buffer and pushes it to the stack.
The left-arcl transition adds an edge with label l
from the first word in the buffer to the word on
top of the stack, removes the top element from
the stack and pushes the first element of the input
buffer to the stack.
The right-arcl transition adds an edge from word
on top of the stack to the first word in the input
buffer and removes the top element of the input
buffer and pushes that element onto the stack.
The reduce transition pops the top word from the
stack.
The swap changes the order of the two top el-
ements on the stack (possibly generating non-
projkective trees).

When more than one operation is applicable, a
scoring function assigns a numerical value (based
on a feature vector and a weight vector trained
by supervised machine learning) to each possi-
ble continuation. When using a beam search ap-
proach with beam size k, the highest-scoring k al-
ternative states with the same length n of transi-
tion history h are kept in a set “beamn”.

In the beam-based parsing algorithm (cf. the
pseudo code in Algorithm 1), all candidate states
for the next set “beamn+1” are determined using
the transition function τ , but based on the scor-
ing function, only the best k are preserved. (Fi-
nal) states to which no more transitions apply are
copied to the next state set. This means that once
all transition paths have reached a final state, the
overall best-scoring states can be read off the fi-
nal “beamn”. The y of the top-scoring state is the
predicted parse.

Under the plain transition-based scoring
regime scoreT , the score for a state π is the sum
of the “local” scores for the transitions ti in the
state’s history sequence:

scoreT (π) =
∑|h|

i=0 w · f(πi, ti)
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Algorithm 1: Transition-based parser
// x is the input sentence, k is the beam size
σ0 = ∅, β0 = x, y0 = ∅, h = ∅
π0 ← 〈σ0, β0, y0, h0〉 // initial parts of a state
beam0← {π0} // create initial state
n← 0 // iteration
repeat
n← n+ 1
for all πj ∈ beamn−1 do

transitions← possible-applicable-transition (πj)
// if no transition is applicable keep state πj :
if transitions = ∅ then beamn ← beamn ∪ {πj}
else for all ti ∈ transitions do

// apply the transition i to state j
π ← τ(πj , ti)
beamn ← beamn ∪ {π}

// end for
// end for
sort beamn due to the score(πj)
beamn ← sublist (beamn, 0, k)

until beamn−1 = beamn // beam changed?

w is the weight vector. Note that the features
f(πi, ti) can take into account all structural and
labeling information available prior to taking tran-
sition ti, i.e., the graph built so far, the words (and
their part of speech etc.) on the stack and in the
input buffer, etc. But if a larger graph configu-
ration involving the next word evolves only later,
as in Figure 1, this information is not taken into
account in scoring. For instance, if the feature
extraction uses the subcategorization frame of a
word under consideration to compute a score, it is
quite possible that some dependents are still miss-
ing and will only be attached in a future transition.

4 Completion Model

We define an augmented scoring function which
can be used in the same beam-search algorithm in
order to ensure that in the scoring of alternative
transition paths, larger configurations can be ex-
ploited as they are completed in the incremental
process. The feature configurations can be largely
taken from graph-based approaches. Here, spans
from the string are assembled in a bottom-up fash-
ion, and the scoring for an edge can be based on
structurally completed subspans (“factors”).

Our completion model for scoring a state πn

incorporates factors for all configurations (match-
ing the extraction scheme that is applied) that are
present in the partial dependency graph yn built

up to this point, which is continuously augmented.
This means if at a given point n in the transition
path, complete information for a particular config-
uration (e.g., a third-order factor involving a head,
its dependent and its grand-child dependent) is
unavailable, scoring will ignore this factor at time
n, but the configuration will inform the scoring
later on, maybe at point n+ 4, when the complete
information for this factor has entered the partial
graph yn+4.

We present results for a number of different
second-order and third-order feature models.

Second Order Factors. We start with the
model introduced by Carreras (2007). Figure 3
illustrates the factors used.

Figure 3: Model 2a. Second order factors of Carreras
(2007). We omit the right-headed cases, which are
mirror images. The model comprises a factoring into
one first order part and three second order factors (2-
4): 1) The head (h) and the dependent (c); 2) the head,
the dependent and the left-most (or right-most) grand-
child in between (cmi); 3) the head, the dependent and
the right-most (or left-most) grandchild away from the
head (cmo). 4) the head, the dependent and between
those words the right-most (or left-most) sibling (ci).

Figure 4: 2b. The left-most dependent of the head or
the right-most dependent in the right-headed case.

Figure 4 illustrates a new type of factor we use,
which includes the left-most dependent in the left-
headed case and symmetricaly the right-most sib-
ling in the right-head case.

Third Order Factors. In addition to the second
order factors, we investigate combinations of third
order factors. Figure 5 and 6 illustrate the third
order factors, which are similar to the factors of
Koo and Collins (2010). They restrict the factor
to the innermost sibling pair for the tri-siblings
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and the outermost pair for the grand-siblings. We
use the first two siblings of the dependent from
the left side of the head for the tri-siblings and
the first two dependents of the child for the grand-
siblings. With these factors, we aim to capture
non-projective edges and subcategorization infor-
mation. Figure 7 illustrates a factor of a sequence
of four nodes. All the right headed variants are
symmetrically and left out for brevity.

Figure 5: 3a. The first two children of the head, which
do not include the edge between the head and the de-
pendent.

Figure 6: 3b. The first two children of the dependent.

Figure 7: 3c. The right-most dependent of the right-
most dependent.

Integrated approach. To obtain an integrated
system for the various feature models, the scoring
function of the transition-based parser from Sec-
tion 3 is augmented by a family of scoring func-
tions scoreGm for the completion model, wherem
is from 2a, 2b, 3a etc., x is the input string, and y
is the (partial) dependency tree built so far:

scoreTm(π) = scoreT (π) + scoreGm(x, y)
The scoring function of the completion model

depends on the selected factor model Gm. The
model G2a comprises the edge factoring of Fig-
ure 3. With this model, we obtain the following
scoring function.

scoreG2a
(x, y) =

∑
(h,c)∈y w · ffirst(x,h,c)

+
∑

(h,c,ci)∈y w · fsib(x,h,c,ci)
+

∑
(h,c,cmo)∈y w · fgra(x,h,c,cmo)

+
∑

(h,c,cmi)∈y w · fgra(x,h,c,cmi)

The function f maps the input sentence x, and
a subtree y defined by the indexes to a feature-
vector. Again, w is the corresponding weight vec-
tor. In order to add the factor of Figure 4 to our

model, we have to add the scoring function (2a)
the sum:

(2b) scoreG2b
(x, y) = scoreG2a(x, y)

+
∑

(h,c,cmi)∈y w · fgra(x,h,c,cmi)

In order to build a scoring function for combi-
nation of the factors shown in Figure 5 to 7, we
have to add to the equation 2b one or more of the
following sums:
(3a)

∑
(h,c,ch1,ch2)∈y w · fgra(x,h,c,ch1,ch2)

(3b)
∑

(h,c,cm1,cm2)∈y w · fgra(x,h,c,cm1,cm2)

(3c)
∑

(h,c,cmo,tmo)∈y w · fgra(x,h,c,cmo,tmo)

Feature Set. The feature set of the transition
model is similar to that of Zhang and Nivre
(2011). In addition, we use the cross product of
morphologic features between the head and the
dependent since we apply also the parser on mor-
phologic rich languages.

The feature sets of the completion model de-
scribed above are mostly based on previous work
(McDonald et al., 2005; McDonald and Pereira,
2006; Carreras, 2007; Koo and Collins, 2010).
The models denoted with + use all combinations
of words before and after the head, dependent,
sibling, grandchilrden, etc. These are respectively
three-, and four-grams for the first order and sec-
ond order. The algorithm includes these features
only the words left and right do not overlap with
the factor (e.g. the head, dependent, etc.). We use
feature extraction procedure for second order, and
third order factors. Each feature extracted in this
procedure includes information about the position
of the nodes relative to the other nodes of the part
and a factor identifier.

Training. For the training of our parser, we use
a variant of the perceptron algorithm that uses the
Passive-Aggressive update function, cf. (Freund
and Schapire, 1998; Collins, 2002; Crammer et
al., 2006). The Passive-Aggressive perceptron
uses an aggressive update strategy by modifying
the weight vector by as much as needed to clas-
sify correctly the current example, cf. (Crammer
et al., 2006). We apply a random function (hash
function) to retrieve the weights from the weight
vector instead of a table. Bohnet (2010) showed
that the Hash Kernel improves parsing speed and
accuracy since the parser uses additionaly nega-
tive features. Ganchev and Dredze (2008) used
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this technique for structured prediction in NLP to
reduce the needed space, cf. (Shi et al., 2009).
We use as weight vector size 800 million. After
the training, we counted 65 millions non zero
weights for English (penn2malt), 83 for Czech
and 87 millions for German. The feature vectors
are the union of features originating from the
transition sequence of a sentence and the features
of the factors over all edges of a dependency tree
(e.g. G2a, etc.). To prevent over-fitting, we use
averaging to cope with this problem, cf. (Freund
and Schapire, 1998; Collins, 2002). We calculate
the error e as the sum of all attachment errors and
label errors both weighted by 0.5. We use the
following equations to compute the update.

loss: lt = e-(scoreT (xg
t , y

g
t )-scoreT (xt, yt))

PA-update: τt = lt
||fg−fp||2

We train the model to select the transitions and
the completion model together and therefore, we
use one parameter space. In order to compute the
weight vector, we employ standard online learn-
ing with 25 training iterations, and carry out early
updates, cf. Collins and Roark (2004; Zhang and
Clark (2008).

Efficient Implementation. Keeping the scoring
with the completion model tractable with millions
of feature weights and for second- and third-order
factors requires careful bookkeeping and a num-
ber of specialized techniques from recent work on
dependency parsing.

We use two variables to store the scores (a)
for complete factors and (b) for incomplete fac-
tors. The complete factors (first-order factors and
higher-order factors for which further augmenta-
tion is structurally excluded) need to be calculated
only once and can then be stored with the tree fac-
tors. The incomplete factors (higher-order factors
whose node elements may still receive additional
descendants) need to be dynamically recomputed
while the tree is built.

The parsing algorithm only has to compute the
scores of the factored model when the transition-
based parser selects a left-arc or right-arc transi-
tion and the beam has to be sorted. The parser
sorts the beam when it exceeds the maximal beam
size, in order to discard superfluous parses or
when the parsing algorithm terminates in order to

select the best parse tree. The complexity of the
transition-based parser is quadratic due to swap
operation in the worse case, which is rare, and
O(n) in the best case, cf. (Nivre, 2009). The
beam size B is constant. Hence, the complexity
is in the worst case O(n2).

The parsing time is to a large degree deter-
mined by the feature extraction, the score calcu-
lation and the implementation, cf. also (Goldberg
and Elhadad, 2010). The transition-based parser
is able to parse 30 sentences per second. The
parser with completion model processes about 5
sentences per second with a beam size of 80.
Note, we use a rich feature set, a completion
model with third order factors, negative features,
and a large beam. 3

We implemented the following optimizations:
(1) We use a parallel feature extraction for the
beam elements. Each process extracts the fea-
tures, scores the possible transitions and computes
the score of the completion model. After the ex-
tension step, the beam is sorted and the best ele-
ments are selected according to the beam size.
(2) The calculation of each score is optimized (be-
yond the distinction of a static and a dynamic
component): We calculate for each location de-
termined by the last element sl ∈ σi and the first
element of b0 ∈ βi a numeric feature representa-
tion. This is kept fix and we add only the numeric
value for each of the edge labels plus a value for
the transition left-arc or right-arc. In this way, we
create the features incrementally. This has some
similarity to Goldberg and Elhadad (2010).
(3) We apply edge filtering as it is used in graph-
based dependency parsing, cf. (Johansson and
Nugues, 2008), i.e., we calculate the edge weights
only for the labels that were found for the part-of-
speech combination of the head and dependent in
the training data.

5 Parsing Experiments and Discussion

The results of different parsing systems are of-
ten hard to compare due to differences in phrase
structure to dependency conversions, corpus ver-
sion, and experimental settings. For better com-
parison, we provide results on English for two
commonly used data sets, based on two differ-
ent conversions of the Penn Treebank. The first
uses the Penn2Malt conversion based on the head-

36 core, 3.33 Ghz Intel Nehalem
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Section Sentences PoS Acc.
Training 2-21 39.832 97.08
Dev 24 1.394 97.18
Test 23 2.416 97.30

Table 1: Overview of the training, development and
test data split converted to dependency graphs with
head-finding rules of (Yamada and Matsumoto, 2003).
The last column shows the accuracy of Part-of-Speech
tags.

finding rules of Yamada and Matsumoto (2003).
Table 1 gives an overview of the properties of the
corpus. The annotation of the corpus does not
contain non-projective links. The training data
was 10-fold jackknifed with our own tagger.4. Ta-
ble 1 shows the tagging accuracy.

Table 2 lists the accuracy of our transition-
based parser with completion model together with
results from related work. All results use pre-
dicted PoS tags. As a baseline, we present in ad-
dition results without the completion model and
a graph-based parser with second order features
(G2a). For the Graph-based parser, we used 10
training iterations. The following rows denoted
with Ta, T2a, T2ab, T2ab3a, T2ab3b, T2ab3bc, and
T2a3abc present the result for the parser with com-
pletion model. The subscript letters denote the
used factors of the completion model as shown
in Figure 3 to 7. The parsers with subscribed plus
(e.g. G2a+) in addition use feature templates that
contain one word left or right of the head, depen-
dent, siblings, and grandchildren. We left those
feature in our previous models out as they may in-
terfere with the second and third order factors. As
in previous work, we exclude punctuation marks
for the English data converted with Penn2Malt in
the evaluation, cf. (McDonald et al., 2005; Koo
and Collins, 2010; Zhang and Nivre, 2011).5 We
optimized the feature model of our parser on sec-
tion 24 and used section 23 for evaluation. We use
a beam size of 80 for our transition-based parser
and 25 training iterations.

The second English data set was obtained by
using the LTH conversion schema as used in the
CoNLL Shared Task 2009, cf. (Hajič et al., 2009).
This corpus preserves the non-projectivity of the
phrase structure annotation, it has a rich edge
label set, and provides automatic assigned PoS

4http://code.google.com/p/mate-tools/
5We follow Koo and Collins (2010) and ignore any token

whose POS tag is one of the following tokens ‘‘ ’’:,.

Parser UAS LAS
(McDonald et al., 2005) 90.9
(McDonald and Pereira, 2006) 91.5
(Huang and Sagae, 2010) 92.1
(Zhang and Nivre, 2011) 92.9
(Koo and Collins, 2010) 93.04
(Martins et al., 2010) 93.26
T (baseline) 92.7
G2a (baseline) 92.89
T2a 92.94 91.87
T2ab 93.16 92.08
T2ab3a 93.20 92.10
T2ab3b 93.23 92.15
T2ab3c 93.17 92.10
T2ab3abc+ 93.39 92.38
G2a+ 93.1
(Koo et al., 2008) † 93.16
(Carreras et al., 2008) † 93.5
(Suzuki et al., 2009) † 93.79

Table 2: English Attachment Scores for the
Penn2Malt conversion of the Penn Treebank for the
test set. Punctuation is excluded from the evaluation.
The results marked with † are not directly comparable
to our work as they depend on additional sources of
information (Brown Clusters).

tags. From the same data set, we selected the
corpora for Czech and German. In all cases, we
used the provided training, development, and test
data split, cf. (Hajič et al., 2009). In contrast
to the evaluation of the Penn2Malt conversion,
we include punctuation marks for these corpora
and follow in that the evaluation schema of the
CoNLL Shared Task 2009. Table 3 presents the
results as obtained for these data set.

The transition-based parser obtains higher ac-
curacy scores for Czech but still lower scores for
English and German. For Czech, the result of T
is 1.59 percentage points higher than the top la-
beled score in the CoNLL shared task 2009. The
reason is that T includes already third order fea-
tures that are needed to determine some edge la-
bels. The transition-based parser with completion
model T2a has even 2.62 percentage points higher
accuracy and it could improve the results of the
parser T by additional 1.03 percentage points.
The results of the parser T are lower for English
and German compared to the results of the graph-
based parser G2a. The completion model T2a can
reach a similar accuracy level for these two lan-
guages. The third order features let the transition-
based parser reach higher scores than the graph-
based parser. The third order features contribute
for each language a relatively small improvement
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Parser Eng. Czech German
(Gesmundo
et al., 2009)† 88.79/- 80.38 87.29
(Bohnet, 2009) 89.88/- 80.11 87.48
T (Baseline) 89.52/92.10 81.97/87.26 87.53/89.86
G2a (Baseline) 90.14/92.36 81.13/87.65 87.79/90.12
T2a 90.20/92.55 83.01/88.12 88.22/90.36
T2ab 90.26/92.56 83.22/88.34 88.31/90.24
T2ab3a 90.20/90.51 83.21.88.30 88.14/90.23
T2ab3b 90.26/92.57 83.22/88.35 88.50/90.59
T2ab3abc 90.31/92.58 83.31/88.30 88.33/90.45
G2a+ 90.39/92.8 81.43/88.0 88.26/90.50
T2ab3ab+ 90.36/92.66 83.48/88.47 88.51/90.62

Table 3: Labeled Attachment Scores of parsers that
use the data sets of the CoNLL shared task 2009. In
line with previous work, punctuation is included. The
parsers marked with † used a joint model for syntactic
parsing and semantic role labelling. We provide more
parsing results for the languages of CoNLL-X Shared
Task at http://code.google.com/p/mate-tools/.

Parser UAS LAS
(Zhang and Clark, 2008) 84.3
(Huang and Sagae, 2010) 85.2
(Zhang and Nivre, 2011) 86.0 84.4
T2ab3abc+ 87.5 85.9

Table 4: Chinese Attachment Scores for the conver-
sion of CTB 5 with head rules of Zhang and Clark
(2008). We take the standard split of CTB 5 and use
in line with previous work gold segmentation, POS-
tags and exclude punctuation marks for the evaluation.

of the score. Small and statistically significant im-
provements provides the additional second order
factor (2b).6 We tried to determine the best third
order factors or set of factors but we cannot denote
such a factor which is the best for all languages.
For German, we obtained a significant improve-
ment with the factor (3b). We believe that this is
due to the flat annotation of PPs in the German
corpus. If we combine all third order factors we
obtain for the Penn2Malt conversion a small im-
provement of 0.2 percentage points over the re-
sults of (2ab). We think that a more deep feature
selection for third order factors may help to im-
prove the actuary further.

In Table 4, we present results on the Chinese
Treebank. To our knowledge, we obtain the best
published results so far.

6The results of the baseline T compared to T2ab3abc are
statistically significant (p < 0.01).

6 Conclusion and Future Work

The parser introduced in this paper combines
advantageous properties from the two major
paradigms in data-driven dependency parsing,
in particular worst case quadratic complexity of
transition-based parsing with a swap operation
and the consideration of complete second and
third order factors in the scoring of alternatives.
While previous work using third order factors, cf.
Koo and Collins (2010), was restricted to unla-
beled and projective trees, our parser can produce
labeled and non-projective dependency trees.

In contrast to parser stacking, which involves
running two parsers in training and application,
we use only the feature model of a graph-based
parser but not the graph-based parsing algorithm.
This is not only conceptually superior, but makes
training much simpler, since no jackknifing has
to be carried out. Zhang and Clark (2008) pro-
posed a similar combination, without the rescor-
ing procedure. Our implementation allows for the
use of rich feature sets in the combined scoring
functions, and our experimental results show that
the “graph-based” completion model leads to an
increase of between 0.4 (for English) and about
1 percentage points (for Czech). The scores go
beyond the current state of the art results for ty-
pologically different languages such as Chinese,
Czech, English, and German. For Czech, English
(Penn2Malt) and German, these are to our knowl-
ege the highest reported scores of a dependency
parser that does not use additional sources of in-
formation (such as extra unlabeled training data
for clustering). Note that the efficient techniques
and implementation such as the Hash Kernel, the
incremental calculation of the scores of the com-
pletion model, and the parallel feature extraction
as well as the parallelized transition-based pars-
ing strategy play an important role in carrying out
this idea in practice.
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Abstract

In Information Retrieval (IR) in general
and Question Answering (QA) in particu-
lar, queries and relevant textual content of-
ten significantly differ in their properties
and are therefore difficult to relate with tra-
ditional IR methods, e.g. key-word match-
ing. In this paper we describe an algorithm
that addresses this problem, but rather than
looking at it on a term matching/term re-
formulation level, we focus on the syntac-
tic differences between questions and rele-
vant text passages. To this end we propose
a novel algorithm that analyzes dependency
structures of queries and known relevant
text passages and acquires transformational
patterns that can be used to retrieve rele-
vant textual content. We evaluate our algo-
rithm in a QA setting, and show that it out-
performs a baseline that uses only depen-
dency information contained in the ques-
tions by 300% and that it also improves per-
formance of a state of the art QA system
significantly.

1 Introduction

It is a well known problem in Information Re-
trieval (IR) and Question Answering (QA) that
queries and relevant textual content often signif-
icantly differ in their properties, and are therefore
difficult to match with traditional IR methods. A
common example is a user entering words to de-
scribe their information need that do not match
the words used in the most relevant indexed doc-
uments. This work addresses this problem, but
shifts focus from words to syntactic structures of
questions and relevant pieces of text. To this end,
we present a novel algorithm that analyses the de-

pendency structures of known valid answer sen-
tence and from these acquires patterns that can be
used to more precisely retrieve relevant text pas-
sages from the underlying document collection.
To achieve this, the position of key phrases in the
answer sentence relative to the answer itself is an-
alyzed and linked to a certain syntactic question
type. Unlike most previous work that uses depen-
dency paths for QA (see Section 2), our approach
does not require a candidate sentence to be similar
to the question in any respect. We learn valid de-
pendency structures from the known answer sen-
tences alone, and therefore are able to link a much
wider spectrum of answer sentences to the ques-
tion.

The work in this paper is presented and eval-
uated in a classical factoid Question Answering
(QA) setting. The main reason for this is that
in QA suitable training and test data is available
in the public domain, e.g. via the Text REtrieval
Conference (TREC), see for example (Voorhees,
1999). The methods described in this paper how-
ever can also be applied to other IR scenarios, e.g.
web search. The necessary condition for our ap-
proach to work is that the user query is somewhat
grammatically well formed; this kind of queries
are commonly referred to as Natural Language
Queries or NLQs.

Table 1 provides evidence that users indeed
search the web with NLQs. The data is based on
two query sets sampled from three months of user
logs from a popular search engine, using two dif-
ferent sampling techniques. The “head” set sam-
ples queries taking query frequency into account,
so that more common queries have a proportion-
ally higher chance of being selected. The “tail”
query set samples only queries that have been is-
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Set Head Tail
Query # 15,665 12,500

how 1.33% 2.42%
what 0.77% 1.89%

define 0.34% 0.18%
is/are 0.25% 0.42%

where 0.18% 0.45%
do/does 0.14% 0.30%

can 0.14% 0.25%
why 0.13% 0.30%
who 0.12% 0.38%

when 0.09% 0.21%
which 0.03% 0.08%
Total 3.55% 6.86%

Table 1: Percentages of Natural Language queries in
head and tail search engine query logs. See text for
details.

sued less that 500 times during a three months pe-
riod and it disregards query frequency. As a result,
rare and frequent queries have the same chance of
being selected. Doubles are excluded from both
sets. Table 1 lists the percentage of queries in
the query sets that start with the specified word.
In most contexts this indicates that the query is a
question, which in turn means that we are dealing
with an NLQ. Of course there are many NLQs that
start with words other than the ones listed, so we
can expect their real percentage to be even higher.

2 Related Work

In IR the problem that queries and relevant tex-
tual content often do not exhibit the same terms is
commonly encountered. Latent Semantic Index-
ing (Deerwester et al., 1900) was an early, highly
influential approach to solve this problem. More
recently, a significant amount of research is ded-
icated to query alteration approaches. (Cui et al.,
2002), for example, assume that if queries con-
taining one term often result in the selection of
documents containing another term, then a strong
relationship between the two terms exist. In their
approach, query terms and document terms are
linked via sessions in which users click on doc-
uments that are presented as results for the query.
(Riezler and Liu, 2010) apply a Statistical Ma-
chine Translation model to parallel data consist-
ing of user queries and snippets from clicked web
documents and in such a way extract contextual
expansion terms from the query rewrites.

We see our work as addressing the same fun-

damental problem, but shifting focus from query
term/document term mismatch to mismatches ob-
served between the grammatical structure of Nat-
ural Language Queries and relevant text pieces. In
order to achieve this we analyze the queries’ and
the relevant contents’ syntactic structure by using
dependency paths.

Especially in QA there is a strong tradition
of using dependency structures: (Lin and Pan-
tel, 2001) present an unsupervised algorithm to
automatically discover inference rules (essentially
paraphrases) from text. These inference rules are
based on dependency paths, each of which con-
nects two nouns. Their paths have the following
form:

N:subj:V←find→V:obj:N→solution→N:to:N

This path represents the relation “X finds a solu-
tion to Y” and can be mapped to another path rep-
resenting e.g. “X solves Y.” As such the approach
is suitable to detect paraphrases that describe the
relation between two entities in documents. How-
ever, the paper does not describe how the mined
paraphrases can be linked to questions, and which
paraphrase is suitable to answer which question
type.

(Attardi et al., 2001) describes a QA system
that, after a set of candidate answer sentences
have been identified, matches their dependency
relations against the question. Questions and
answer sentences are parsed with MiniPar (Lin,
1998) and the dependency output is analyzed in
order to determine whether relations present in a
question also appear in a candidate sentence. For
the question “Who killed John F. Kennedy”, for
example an answer sentence is expected to con-
tain the answer as subject of the verb “kill”, to
which “John F. Kennedy” should be in object re-
lation.

(Cui et al., 2005) describe a fuzzy depen-
dency relation matching approach to passage re-
trieval in QA. Here, the authors present a statis-
tical technique to measure the degree of overlap
between dependency relations in candidate sen-
tences with their corresponding relations in the
question. Question/answer passage pairs from
TREC-8 and TREC-9 evaluations are used as
training data. As in some of the papers mentioned
earlier, a statistical translation model is used, but
this time to learn relatedness between paths. (Cui
et al., 2004) apply the same idea to answer ex-
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traction. In each sentences returned by the IR
module, all named entities of the expected answer
types are treated as answer candidates. For ques-
tions with an unknown answer type, all NPs in
the candidate sentence are considered. Then those
paths in the answer sentence that are connected
to an answer candidate are compared against the
corresponding paths in the question, in a similar
fashion as in (Cui et al., 2005). The candidate
whose paths show the highest matching score is
selected. (Shen and Klakow, 2006) also describe
a method that is primarily based on similarity
scores between dependency relation pairs. How-
ever, their algorithm computes the similarity of
paths between key phrases, not between words.
Furthermore, it takes relations in a path not as in-
dependent from each other, but acknowledges that
they form a sequence, by comparing two paths
with the help of an adaptation of the Dynamic
Time Warping algorithm (Rabiner et al., 1991).

(Molla, 2006) presents an approach for the ac-
quisition of question answering rules by apply-
ing graph manipulation methods. Questions are
represented as dependency graphs, which are ex-
tended with information from answer sentences.
These combined graphs can then be used to iden-
tify answers. Finally, in (Wang et al., 2007), a
quasi-synchronous grammar (Smith and Eisner,
2006) is used to model relations between ques-
tions and answer sentences.

In this paper we describe an algorithm that
learns possible syntactic answer sentence formu-
lations for syntactic question classes from a set of
example question/answer sentence pairs. Unlike
the related work described above, it acknowledges
that a) a valid answer sentence’s syntax might
be very different for the question’s syntax and b)
several valid answer sentence structures, which
might be completely independent from each other,
can exist for one and the same question.

To illustrate this consider the question “When
was Alaska purchased?” The following four sen-
tences all answer the given question, but only the
first sentence is a straightforward reformulation of
the question:

1. The United States purchased Alaska in 1867
from Russia.

2. Alaska was bought from Russia in 1867.

3. In 1867, the Russian Empire sold the Alaska
territory to the USA.

4. The acquisition of Alaska by the United
States of America from Russia in 1867 is
known as “Seward’s Folly”.

The remaining three sentences introduce vari-
ous forms of syntactic and semantic transforma-
tions. In order to capture a wide range of possible
ways on how answer sentences can be formulated,
in our model a candidate sentence is not evalu-
ated according to its similarity with the question.
Instead, its similarity to known answer sentences
(which were presented to the system during train-
ing) is evaluated. This allows to us to capture a
much wider range of syntactic and semantic trans-
formations.

3 Overview of the Algorithm

Our algorithm uses input data containing pairs of
the following:

NLQs/Questions NLQs that describe the users’
information need. For the experiments car-
ried out in this paper we use questions from
the TREC QA track 2002-2006.

Relevant textual content This is a piece of text
that is relevant to the user query in that it
contains the information the user is search-
ing for. In this paper, we use sentences ex-
tracted from the AQUAINT corpus (Graff,
2002) that contain the answer to the given
TREC question.

In total, the data available to us for our experi-
ments consists of 8,830 question/answer sentence
pairs. This data is publicly available, see (Kaisser
and Lowe, 2008). The algorithm described in this
paper has three main steps:

Phrase alignment Key phrases from the ques-
tion are paired with phrases from the answer
sentences.

Pattern creation The dependency structures of
queries and answer sentences are analyzed
and patterns are extracted.

Pattern evaluation The patterns discovered in
the last step are evaluated and a confidence
score is assigned to each.

The acquired patterns can then be used during
retrieval, where a question is matched against the
antecedents describing the syntax of the question.
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Input: (a) Query: “When was Alaska purchased?”
(b) Answer sentence: “The acquisition of Alaska happened in 1867.”

Step 1: Question is segmented into key phrases and stop words:
When[1]+was[2]+NP[3]+VERB[4]

Step 2: Key question phrases are aligned with key answer sentence phrases:
[3]Alaska → Alaska
[4]purchased → acquisition
ANSWER → 1867

Step 3: A pre-computed parse tree of the answer sentence is loaded:
1: The (the, DT, 2) [det]
2: acquisition (acquisition, NN, 5) [nsubj]
3: of (of, IN, 2) [prep]
4: Alaska (Alaska, IN, 2) [pobj]
5: happened (happen, VBD, null) [ROOT]
6: in (in, IN, 5) [prep]
7: 1867 (1867, CD, 6) [pobj]

Step 4: Dependency paths from key question phrases to the answer are computed:
Alaska⇒1867: ⇑pobj⇑prep⇑nsubj⇓prep⇓pobj
acquisition⇒1867: ⇑nsubj⇓prep⇓pobj

Step 5: The resulting pattern is stored:
Query: When[1]+was[2]+NP[3]+VERB[4]
Path 3: ⇑pobj⇑prep⇑nsubj⇓prep⇓pobj
Path 4: ⇑nsubj⇓prep⇓pobj

Figure 1: The pattern creation algorithm exemplified in five key steps for the query “When was Alaska pur-
chased?” and the answer sentence “The acquisition of Alaska happened in 1867.”

Note that one question can potentially match sev-
eral patterns. The consequents contain descrip-
tions of grammatical structures of potential an-
swer sentences that can be used to identify and
evaluate candidate sentences.

4 Phrase Alignment

The goal of this processing step is to align phrases
from the question with corresponding phrases
from the answer sentences in the training data.
Consider the following example:

Query: “When was the Alaska territory pur-
chased?”

Answer sentence: “The acquisition of what
would become the territory of Alaska took place
in 1867.”

The mapping that has to be achieved is:

Query Answer Sentence
phrase phrase

“Alaska territory” “territory of Alaska”
“purchased” “acquisition”
ANSWER “1867”

In our approach, this is a two step process.
First we align on a word level, then the output
of the word alignment process is used to iden-

tify and align phrases. Word Alignment is im-
portant in many fields of NLP, e.g. Machine
Translation (MT) where words in parallel, bilin-
gual corpora need to be aligned, see (Och and
Ney, 2003) for a comparison of various statisti-
cal alignment models. In our case however we
are dealing with a monolingual alignment prob-
lem which enables us to exploit clues not available
for bilingual alignment: First of all, we can expect
many query words to be present in the answer sen-
tence, either with the exact same surface appear-
ance or in some morphological variant. Secondly,
there are tools available that tell us how semanti-
cally related two words are, most notably Word-
Net (Miller et al., 1993). For these reasons we im-
plemented a bespoke alignment strategy, tailored
towards our problem description.

This method is described in detail in (Kaisser,
2009). The processing steps described in the
next sections build on its output. For reasons of
brevity, we skip a detailed explanations in this pa-
per and focus only on its key part: the alignment
of words with very different surface structures.
For more details we would like to point the reader
to the aforementioned work.

In the above example, the alignment of “pur-
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chased” and “acquisition” is the most problem-
atic, because the surface structures of the two
words clearly are very different. For such cases
we experimented with a number of alignment
strategies based on WordNet. These approaches
are similar in that each picks one word that has to
be aligned from the question at a time and com-
pares it to all of the non-stop words in the answer
sentence. Each of the answer sentence words is
assigned a value between zero and one express-
ing its relatedness to the question word. The
highest scoring word, if above a certain thresh-
old, is selected as the closest semantic match.
Most of these approaches make use of Word-
Net::Similarity, a Perl software package that mea-
sures semantic similarity (or relatedness) between
a pair of word senses by returning a numeric value
that represents the degree to which they are sim-
ilar or related (Pedersen et al., 2004). Addition-
ally, we developed a custom-built method that as-
sumes that two words are semantically related if
any kind of pointer exists between any occurrence
of the words root form in WordNet. For details of
these experiments, please refer to (Kaisser, 2009).
In our experiments the custom-built method per-
formed best, and was therefore used for the exper-
iments described in this paper. The main reasons
for this are:

1. Many of the measures in the Word-
Net::Similarity package take only hyponym/
hypernym relations into account. This makes
aligning word of different parts of speech
difficult or even impossible. However, such
alignments are important for our needs.

2. Many of the measures return results, even if
only a weak semantic relationship exists. For
our purposes however, it is beneficial to only
take strong semantic relations into account.

5 Pattern Creation

Figure 1 details our algorithm in its five key steps.
In step 1 and 2 key phrases from the question are
aligned to the corresponding phrases in the an-
swer sentence, see Section 4 of this paper. Step
3 is concerned with retrieving the parse tree for
the answer sentence. In our implementation all
answer sentences in the training set have for per-
formance reasons been parsed beforehand with
the Stanford Parser (Klein and Manning, 2003b;

Klein and Manning, 2003a), so at this point they
are simply loaded from file. Step 4 is the key step
in our algorithm. From the previous steps, we
know where the key constituents from the ques-
tion as well as the answer are located in the an-
swer sentence. This enables us to compute the
dependency paths in the answer sentences’ parse
tree that connect the answer with the key con-
stituents. In our example the answer is “1867”
and the key constituents are “acquisition” and
“Alaska.” Knowing the syntactic relationships
(captured by their dependency paths) between the
answer and the key phrases enables us to capture
one syntactic possibility of how answer sentences
to queries of the form When+was+NP+VERB can
be formulated.

As can be seen in Step 5 a flat syntactic ques-
tion representation is stored, together with num-
bers assigned to each constituent. The num-
bers for those constituents for which alignments
in the answer sentence were sought and found
are listed together with the resulting dependency
paths. Path 3 for example denotes the path from
constituent 3 (the NP “Alaska”) to the answer. If
no alignment could be found for a constituent,
null is stored instead of a path. Should two or
more alternative constituents be identified for one
question constituent, additional patterns are cre-
ated, so that each contains one of the possibilities.
The described procedure is repeated for all ques-
tion/answer sentence pairs in the training set and
for each, one or more patterns are created.

It is worth to note that many TREC ques-
tions are fairly short and grammatically sim-
ple. In our training data we for exam-
ple find 102 questions matching the pattern
When[1]+was[2]+NP[3]+VERB[4], which
together list 382 answer sentences, and thus 382
potentially different answer sentence structures
from which patterns can be gained. As a result,
the amount of training examples we have avail-
able, is sufficient to achieve the performance de-
scribed in Section 7. The algorithm described in
this paper can of course also be used for more
complicated NLQs, although in such a scenario a
significantly larger amount of training data would
have to be used.

6 Pattern Evaluation

For each created pattern, at least one match-
ing example must exists: the sentence that was
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used to create it in the first place. However, we
do not know how precise each pattern is. To
this end, an additional processing step between
pattern creation and application is needed: pat-
tern evaluation. Similar approaches to ours have
been described in the relevant literature, many
of them concerned with bootstrapping, starting
with (Ravichandran and Hovy, 2002). The gen-
eral purpose of this step is to use the available
data about questions and their correct answers to
evaluate how often each created pattern returns a
correct or an incorrect result. This data is stored
with each pattern and the result of the equation,
often called pattern precision, can be used during
retrieval stage. Pattern precision in our case is de-
fined as:

p =
#correct + 1

#correct + #incorrect + 2
(1)

We use Lucene to retrieve the top 100 para-
graphs from the AQUAINT corpus by issuing a
query that consists of the query’s key words and
all non-stop words in the answer. Then, all pat-
terns are loaded whose antecedent matches the
query that is currently being processed. After that,
constituents from all sentences in the retrieved
100 paragraphs are aligned to the query’s con-
stituents in the same way as for the sentences dur-
ing pattern creation, see Section 5. Now, the paths
specified in these patterns are searched for in the
paragraphs’ parse trees. If they are all found,
it is checked whether they all point to the same
node and whether this node’s surface structure is
in some morphological form present in the answer
strings associated with the question in our train-
ing data. If this is the case a variable in the pat-
tern named correct is increased by 1, otherwise
the variable incorrect is increased by 1. After the
evaluation process is finished the final version of
the pattern given as an example in Figure 1 now
is:

Query: When[1]+was[2]+NP[3]+VERB[4]
Path 3: ⇑pobj⇑prep⇑nsubj⇓prep⇓pobj
Path 4: ⇑nsubj⇓prep⇓pobj
Correct: 15
Incorrect: 4

The variables correct and incorrect are used
during retrieval, where the score of an answer can-
didate ac is the sum of all scores of all matching
patterns p:

score(ac) =
n∑

i=1

score(pi) (2)

where

score(pi) =

{
correcti+1

correcti+incorrecti+2 if match

0 no match
(3)

The highest scoring candidate is selected.
We would like to explicitly call out one prop-

erty of our algorithm: It effectively returns two
entities: a) a sentence that constitutes a valid
response to the query, b) the head node of a
phrase in that sentence that constitutes the answer.
Therefore the algorithm can be used for sentence
retrieval or for answer retrieval. It depends on
the application which of the two behaviors is de-
sired. In the next section, we evaluate its answer
retrieval performance.

7 Experiments & Results

This section provides an evaluation of the algo-
rithm described in this paper. The key questions
we seek to answer are the following:

1. How does our method perform when com-
pared to a baseline that extracts dependency
paths from the question?

2. How much does the described algorithm im-
prove performance of a state-of-the-art QA
system?

3. What is the effect of training data size on per-
formance? Can we expect that more training
data would further improve the algorithm’s
performance?

7.1 Evaluation Setup
We use all factoid questions in TREC’s QA test
sets from 2002 to 2006 for evaluation for which
a known answer exists in the AQUAINT corpus.
Additionally, the data in (Lin and Katz, 2005) is
used. In this paper the authors attempt to identify
a much more complete set of relevant documents
for a subset of TREC 2002 questions than TREC
itself. We adopt a cross validation approach for
our evaluation. Table 4 shows how the data is split
into five folds.

In order to evaluate the algorithm’s patterns we
need a set of sentences to which they can be ap-
plied. In a traditional QA system architecture,

93



Test Number of Correct Answer Sentences Mean Medset = 0 <= 1 <= 3 <= 5 <= 10 <= 25 <= 50 >= 75 >= 90 >= 100

2002 0.203 0.396 0.580 0.671 0.809 0.935 0.984 0.0 0.0 0.0 6.86 2.0
2003 0.249 0.429 0.627 0.732 0.828 0.955 0.997 0.003 0.003 0.0 5.67 2.0
2004 0.221 0.368 0.539 0.637 0.799 0.936 0.985 0.0 0.0 0.0 6.51 3.0
2005 0.245 0.404 0.574 0.665 0.777 0.912 0.987 0.0 0.0 0.0 7.56 2.0
2006 0.241 0.389 0.568 0.665 0.807 0.920 0.966 0.006 0.0 0.0 8.04 3.0

Table 2: Fraction of sentences that contain correct answers in Evaluation Set 1 (approximation).

Test Number of Correct Answer Sentences Mean Medset = 0 <= 1 <= 3 <= 5 <= 10 <= 25 <= 50 >= 75 >= 90 >= 100

2002 0.0 0.074 0.158 0.235 0.342 0.561 0.748 0.172 0.116 0.060 33.46 21.0
2003 0.0 0.099 0.203 0.254 0.356 0.573 0.720 0.161 0.090 0.031 32.88 19.0
2004 0.0 0.073 0.137 0.211 0.328 0.598 0.779 0.142 0.069 0.034 30.82 20.0
2005 0.0 0.163 0.238 0.279 0.410 0.589 0.759 0.141 0.097 0.069 30.87 17.0
2006 0.0 0.125 0.207 0.281 0.415 0.596 0.727 0.173 0.122 0.088 32.93 17.5

Table 3: Fraction of sentences that contain correct answers in Evaluation Set 2 (approximation).

Fold Training Data Test Data
sets used # set #

1 T03, T04, T05, T06 4565 T02 1159
2 T02, T04, T05, T06, Lin02 6174 T03 1352
3 T02, T03, T05, T06, Lin02 6700 T04 826
4 T02, T03, T04, T06, Lin02 6298 T05 1228
5 T02, T03, T04, T05, Lin02 6367 T06 1159

Table 4: Splits into training and tests sets of the data
used for evaluation. T02 stands for TREC 2002 data
etc. Lin02 is based on (Lin and Katz, 2005). The #
rows show how many question/answer sentence pairs
are used for training and for testing.

see e.g. (Prager, 2006; Voorhees, 2003), the docu-
ment or passage retrieval step performs this func-
tion. This step is crucial to a QA system’s per-
formance, because it is impossible to locate an-
swers in the subsequent answer extraction step if
the passages returned during passage retrieval do
not contain the answer in the first place. This also
holds true in our case: the patterns cannot be ex-
pected to identify a correct answer if none of the
sentences used as input contains the correct an-
swer. We therefore use two different evaluation
sets to evaluate our algorithm:

1. The first set contains for each question all
sentences in the top 100 paragraphs returned
by Lucene when using simple queries made
up from the question’s key words. It cannot
be guaranteed that answers to every question
are present in this test set.

2. For the second set, the query additionally list
all known correct answers to the question as
parts of one OR operator. This increases the
chance that the evaluation set actually con-
tains valid answer sentences significantly.

In order to provide a quantitative characteriza-
tion of the two evaluation sets we estimated the
number of correct answer sentences they contain.
For each paragraph it was determined whether it
contained one of the known answer strings and
at least of one of the question key words. Ta-
bles 2 and 3 show for each evaluation set how
many answers on average it contains per ques-
tion. The column “= 0” for example shows the
fraction of questions for which no valid answer
sentence is contained in the evaluation set, while
column “>= 90” gives the fraction of questions
with 90 or more valid answer sentences. The last
two columns show mean and median values.

7.2 Comparison with Baseline

As pointed out in Section 2 there is a strong tra-
dition of using dependency paths in QA. Many
relevant papers describe algorithms that analyze
a question’s grammatical structure and expect
to find a similar structure in valid answer sen-
tences, e.g. (Attardi et al., 2001), (Cui et al., 2005)
or (Bouma et al., 2005) to name just a few. As
already pointed out, a major contribution of our
work is that we do not assume this similarity. In
our approach valid answer sentences are allowed
to have grammatical structures that are very dif-
ferent from the question and also very different
from each other. Thus it is natural to compare our
approach against a baseline that compares can-
didate sentences not against patterns that were
gained from question/answer sentence pairs, but
from questions alone. In order to create these pat-
terns, we use a small trick: During the Pattern
Creation step, see Section 5 and Figure 1, we re-
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place the answer sentences in the input file with
the questions, and assume that the question word
indicates the position where the answer should be
located.

Test Q Qs with > 1 Overall Accuracy Acc. if
set number patterns correct correct overall pattern

2002 429 321 147 50 0.117 0.156
2003 354 237 76 22 0.062 0.093
2004 204 142 74 26 0.127 0.183
2005 319 214 97 46 0.144 0.215
2006 352 208 85 31 0.088 0.149

Sum 1658 1122 452 176 0.106 0.156

Table 5: Performance based on evaluation set 1.

Test Q Qs with > 1 Overall Accuracy Acc. if
set number patterns correct correct overall pattern

2002 429 321 239 133 0.310 0.414
2003 354 237 149 88 0.248 0.371
2004 204 142 119 65 0.319 0.458
2005 319 214 161 92 0.288 0.429
2006 352 208 139 84 0.238 0.403

Sum 1658 1122 807 462 0.278 0.411

Table 6: Performance based on evaluation set 2.

Tables 5 and 6 show how our algorithm per-
forms on evaluation sets 1 and 2, respectively. Ta-
bles 7 and 8 show how the baseline performs on
evaluation sets 1 and 2, respectively. The tables’
columns list the year of the TREC test set used,
the number of questions in the set (we only use
questions for which we know that there is an an-
swer in the corpus), the number of questions for
which one or more patterns exist, how often at
least one pattern returned the correct answer, how
often we get an overall correct result by taking
all patterns and their confidence values into ac-
count, accuracy@1 of the overall system, and ac-
curacy@1 computed only for those questions for
which we have at least one pattern available (for
all other questions the system returns no result.)
As can be seen, on evaluation set 1 our method
outperforms the baseline by 300%, on evaluation
set 2 by 311%, taking accuracy if a pattern exists
as a basis.

Test Q Qs with Min one Overall Accuracy Acc. if
set number patterns correct correct overall pattern

2002 429 321 43 14 0.033 0.044
2003 354 237 28 10 0.028 0.042
2004 204 142 19 6 0.029 0.042
2005 319 214 21 7 0.022 0.033
2006 352 208 20 7 0.020 0.034

Sum 1658 1122 131 44 0.027 0.039

Table 7: Baseline performance based on evaluation set
1.

Many of the papers cited earlier that use an ap-
proach similar to our baseline approach of course
report much better results than Tables 7 and 8.
This however is not too surprising as the approach

Test Q Qs with Min one Overall Accuracy Acc. if
set number patterns correct correct overall pattern

2002 429 321 77 37 0.086 0.115
2003 354 237 39 26 0.073 0.120
2004 204 142 25 15 0.074 0.073
2005 319 214 38 18 0.056 0.084
2006 352 208 34 16 0.045 0.077

Sum 1658 1122 213 112 0.068 0.100

Table 8: Baseline performance based on evaluation set
2.

described in this paper and the baseline approach
do not make use of many techniques commonly
used to increase performance of a QA system, e.g.
TF-IDF fallback strategies, fuzzy matching, man-
ual reformulation patterns etc. It was a deliberate
decision from our side not to use any of these ap-
proaches. After all, this would result in an ex-
perimental setup where the performance of our
answer extraction strategy could not have been
observed in isolation. The QA system used as a
baseline in the next section makes use of many of
these techniques and we will see that our method,
as described here, is suitable to increase its per-
formance significantly.

7.3 Impact on an existing QA System

Tables 9 and 10 show how our algorithm in-
creases performance of our QuALiM system, see
e.g. (Kaisser et al., 2006). Section 6 in this pa-
per describes via formulas 2 and 3 how answer
candidates are ranked. This ranking is combined
with the existing QA system’s candidate ranking
by simply using it as an additional feature that
boosts candidates proportionally to their confi-
dence score. The difference between both tables
is that the first uses all 1658 questions in our test
sets for the evaluation, whereas the second con-
siders only those 1122 questions for which our
system was able to learn a pattern. Thus for Table
10 questions which the system had no chance of
answering due to limited training data are omitted.
As can be seen, accuracy@1 increases by 4.9% on
the complete test set and by 11.5% on the partial
set.

Note that the QA system used as a baseline is
at an advantage in at least two respects: a) It has
important web-based components and as such has
access to a much larger body of textual informa-
tion. b) The algorithm described in this paper is an
answer extraction approach only. For paragraph
retrieval we use the same approach as for evalu-
ation set 1, see Section 7.1. However, in more
than 20% of the cases, this method returns not
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a single paragraph that contains both the answer
and at least one question keyword. In such cases,
the simple paragraph retrieval makes it close to
impossible for our algorithm to return the correct
answer.

Test Set QuALiM QASP combined increase

2002 0.503 0.117 0.524 4.2%
2003 0.367 0.062 0.390 6.2%
2004 0.426 0.127 0.451 5.7%
2005 0.373 0.144 0.389 4.2%
2006 0.341 0.088 0.358 5.0%

02-06 0.405 0.106 0.425 4.9%

Table 9: Top-1 accuracy of the QuALiM system on its
own and when combined with the algorithm described
in this paper. All increases are statistically significant
using a sign test (p < 0.05).

Test Set QuALiM QASP combined increase

2002 0.530 0.156 0.595 12.3%
2003 0.380 0.093 0.430 13.3%
2004 0.465 0.183 0.514 10.6%
2005 0.388 0.214 0.421 8.4%
2006 0.385 0.149 0.428 11.3%

02-06 0.436 0.157 0.486 11.5%

Table 10: Top-1 accuracy of the QuALiM system on
its own and when combined with the algorithm de-
scribed in this paper, when only considering questions
for which a pattern could be acquired from the training
data. All increases are statistically significant using a
sign test (p < 0.05).

7.4 Effect of Training Data Size

We now assess the effect of training data size on
performance. Tables 5 and 6 presented earlier
show that an average of 32.2% of the questions
have no matching patterns. This is because the
data used for training contained no examples for a
significant subset of question classes. It can be ex-
pected that, if more training data would be avail-
able, this percentage would decrease and perfor-
mance would increase. In order to test this as-
sumption, we repeated the evaluation procedure
detailed in this section several times, initially us-
ing data from only one TREC test set for train-
ing and then gradually adding more sets until all
available training data had been used. The results
for evaluation set 2 are presented in Figure 2. As
can be seen, every time more data is added, per-
formance increases. This strongly suggests that
the point of diminishing returns, when adding ad-
ditional training data no longer improves perfor-
mance is not yet reached.

Figure 2: Effect of the amount of training data on sys-
tem performance

8 Conclusions

In this paper we present an algorithm that acquires
syntactic information about how relevant textual
content to a question can be formulated from a
collection of paired questions and answer sen-
tences. Other than previous work employing de-
pendency paths for QA, our approach does not as-
sume that a valid answer sentence is similar to the
question and it allows many potentially very dif-
ferent syntactic answer sentence structures. The
algorithm is evaluated using TREC data, and it
is shown that it outperforms an algorithm that
merely uses the syntactic information contained
in the question itself by 300%. It is also shown
that the algorithm improves the performance of a
state-of-the-art QA system significantly.

As always, there are many ways how we could
imagine our algorithm to be improved. Combin-
ing it with fuzzy matching techniques as in (Cui et
al., 2004) or (Cui et al., 2005) is an obvious direc-
tion for future work. We are also aware that in or-
der to apply our algorithm on a larger scale and in
a real world setting with real users, we would need
a much larger set of training data. These could
be acquired semi-manually, for example by using
crowd-sourcing techniques. We are also thinking
about fully automated approaches, or about us-
ing indirect human evidence, e.g. user clicks in
search engine logs. Typically users only see the
title and a short abstract of the document when
clicking on a result, so it is possible to imagine a
scenario where a subset of these abstracts, paired
with user queries, could serve as training data.
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Abstract

In this paper, we examined click patterns
produced by users of Yahoo! search engine
when prompting definition questions. Reg-
ularities across these click patterns are then
utilized for constructing a large and hetero-
geneous training corpus for answer rank-
ing. In a nutshell, answers are extracted
from clicked web-snippets originating from
any class of web-site, including Knowledge
Bases (KBs). On the other hand, non-
answers are acquired from redundant pieces
of text across web-snippets.

The effectiveness of this corpus was as-
sessed via training two state-of-the-art
models, wherewith answers to unseen
queries were distinguished. These test-
ing queries were also submitted by search
engine users, and their answer candidates
were taken from their respective returned
web-snippets. This corpus helped both
techniques to finish with an accuracy higher
than 70%, and to predict over 85% of the
answers clicked by users. In particular, our
results underline the importance of non-KB
training data.

1 Introduction

It is a well-known fact that definition queries are
very popular across users of commercial search
engines (Rose and Levinson, 2004). The essen-
tial characteristic of definition questions is their
aim for discovering as much as possible descrip-
tive information about the concept being defined
(a.k.a. definiendum, pl. definienda). Some exam-
ples of this kind of query include “Who is Ben-
jamin Millepied?” and “Tell me about Bank of
America”.

It is a standard practice of definition ques-
tion answering (QA) systems to mine KBs (e.g.,
online encyclopedias and dictionaries) for reli-
able descriptive information on the definiendum
(Sacaleanu et al., 2008). Normally, these pieces of
information (i.e., nuggets) explain different facets
of the definiendum (e.g., “ballet choreographer”
and “born in Bordeaux”), and the main idea con-
sists in projecting the acquired nuggets into the
set of answer candidates afterwards. However,
the performance of this category of method falls
into sharp decline whenever few or no coverage
is found across KBs (Zhang et al., 2005; Han et
al., 2006). Put differently, this technique usually
succeeds in discovering the most relevant facts
about the most promiment sense of the definien-
dum. But it often misses many pertinent nuggets,
especially those that can be paraphrased in several
ways; and/or those regarding ancillary senses of
the definiendum, which are hardly found in KBs.

As a means of dealing with this, current strate-
gies try to construct general definition models
inferred from a collection of definitions com-
ing from the Internet or KBs (Androutsopoulos
and Galanis, 2005; Xu et al., 2005; Han et al.,
2006). To a great extent, models exploiting non-
KB sources demand considerable annotation ef-
forts, or when the data is obtained automatically,
they benefit from empirical thresholds that ensure
a certain degree of similarity to an array of KB
articles. These thesholds attempt to trade-off the
cleanness of the training material against its cov-
erage. Moreover, gathering negative samples is
also hard as it is not easy to find wide-coverage
authoritative sources of non-descriptive informa-
tion about a particular definiendum.

Our approach has different innovative aspects
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compared to other research in the area of defini-
tion extraction. It is at the crossroads of query
log analysis and QA systems. We study the click
behavior of search engines’ users with regard to
definition questions. Based on this study, we pro-
pose a novel way of acquiring large-scale and het-
erogeneous training material for this task, which
consists of:

• automatically obtaining positive samples in
accordance with click patterns of search en-
gine users. This aids in harvesting a host
of descriptions from non-KB sources in con-
junction with descriptive information from
KBs.

• automatically acquiring negative data in con-
sonance with redundancy patterns across
snippets displayed within search engine re-
sults when processing definition queries.

In brief, our experiments reveal that these pat-
terns can be effectively exploited for devising ef-
ficient models.

Given the huge amount of amassed data, we
additionally contrast the performance of systems
built on top of samples originated solely from
KB, non-KB, and both combined. Our compar-
ison corroborates that KBs yield massive trust-
worthy descriptive knowledge, but they do not
bear enough diversity to discriminate all answer-
ing nuggets within any kind of text. Essentially,
our experiments unveil that non-KB data is richer
and therefore it is useful for discovering more de-
scriptive nuggets than KB material. But its usage
relies on its cleanness and on a negative set. Many
people had these intuitions before, but to the best
of our knowledge, we provide the first empirical
confirmation and quantification.

The road-map of this paper is as follows: sec-
tion 2 touches on related works; section 3 digs
deeper into click patterns for definition questions,
subsequently section 4 explains our corpus con-
struction strategy; section 5 describes our experi-
ments, and section 6 draws final conclusions.

2 Related Work

In recent years, definition QA systems have
shown a trend towards the utilization of several
discriminant and statistical learning techniques
(Androutsopoulos and Galanis, 2005; Chen et al.,
2006; Han et al., 2006; Fahmi and Bouma, 2006;

Katz et al., 2007; Westerhout, 2009; Navigli and
Velardi, 2010). Due to training, there is a press-
ing necessity for large-scale authoritative sources
of descriptive and non-descriptive nuggets. In the
same manner, there is a growing importance of
strategies capable of extracting trustworthy and
negative/positive samples from any type of text.
Conventionally, these methods interpret descrip-
tions as positive examples, whereas contexts pro-
viding non-descriptive information as negative el-
ements. Four representative techniques are:

• centroid vector (Xu et al., 2003; Cui et
al., 2004) collects an array of articles about
the definiendum from a battery of pre-
determined KBs. These articles are then
used to learn a vector of word frequencies,
wherewith answer candidates are rated af-
terwards. Sometimes web-snippets together
with a query reformulation method are ex-
ploited instead of pre-defined KBs (Chen et
al., 2006).

• (Androutsopoulos and Galanis, 2005) gath-
ered articles from KBs to score 250-
characters windows carrying the definien-
dum. These windows were taken from
the Internet, and accordingly, highly sim-
ilar windows were interpreted as positive
examples, while highly dissimilar as nega-
tive samples. For this purpose, two thresh-
olds are used, which ensure the trustwor-
thiness of both sets. However, they also
cause the sets to be less diverse as not all
definienda are widely covered across KBs.
Indeed, many facets outlined within the 250-
characters windows will not be detected.

• (Xu et al., 2005) manually labeled samples
taken from an Intranet. Manual annotations
are constrained to a small amount of exam-
ples, because it requires substantial human
efforts to tag a large corpus, and disagree-
ments between annotators are not uncom-
mon.

• (Figueroa and Atkinson, 2009) capitalized
on abstracts supplied by Wikipedia for build-
ing language models (LMs), thus there was
no need for a negative set.

Our contribution is a novel technique for ob-
taining heterogeneous training material for defi-

100



nitional QA, that is to say, massive examples har-
vested from KBs and non-KBs. Fundamentally,
positive examples are extracted from web snippets
grounded on click patterns of users of a search en-
gine, whereas the negative collection is acquired
via redundancy patterns across web-snippets dis-
played to the user by the search engine. This data
is capitalized by two state-of-the-art definition ex-
tractors, which are different in nature. In addition,
our paper discusses the effect on the performance
of different sorts (KBs and non-KBs) and amount
of training data.

As for user clicks, they provide valuable rele-
vance feedback for a variety of tasks, cf. (Radlin-
ski et al., 2010). For instance, (Ji et al., 2009)
extracted relevance information from clicked and
non-clicked documents within aggregated search
sessions. They modelled sequences of clicks as
a means of learning to globally rank the relative
relevance of all documents with respect to a given
query. (Xu et al., 2010) improved the quality of
training material for learning to rank approaches
via predicting labels using clickthrough data. In
our work, we combine click patterns across Ya-
hoo! search query logs with QA techniques to
build one-sided and two-sided classifiers for rec-
ognizing answers to definition questions.

3 User Click Analysis for Definition QA

In this section, we examine a collection of queries
submitted to Yahoo! search engine during the pe-
riod from December 2010 to March 2011. More
specifically, for this analysis, we considered a
log encompassing a random sample of 69,845,262
(23,360,089 distinct) queries. Basically, this log
comprises the query sent by the user in conjunc-
tion with the displayed URLs and the information
about the sequence of their clicks.

In the first place, we associate each query with
a category in the taxonomy proposed by (Rose
and Levinson, 2004), and in this way definition
queries are selected. Secondly, we investigate
user click patterns observed across these filtered
definition questions.

3.1 Finding Definition Queries
According to (Broder, 2002; Lee et al., 2005;
Dupret and Piwowarski, 2008), the intention of
the user falls into at least two categories: navi-
gational (e.g., “google”) and informational (e.g.,
“maximum entropy models”). The former entails

the desire of going to a specific site that the user
has in mind, and the latter regards the goal of
learning something by reading or viewing some
content (Rose and Levinson, 2004). Navigational
queries are hence of less relevance to definition
questions, and for this reason, these were removed
in congruence with the next three criteria:

• (Lee et al., 2005) pointed out that users will
only visit the web site they bear in mind,
when prompting navigational queries. Thus,
these queries are characterized by clicking
the same URL almost all the time (Lee et al.,
2005). More precisely, we discarded queries
that: a) appear more than four times in the
query log; and which at the same time b) its
most clicked URL represents more than 98%
of all its clicks. Following the same idea, we
additionally eliminated prompted URLs and
queries where the clicked URL is of the form
“www.search-query-without-spaces.”

• By the same token, queries containing key-
words such as “homepage”, “on-line”, and
“sign in” were also removed.

• After the previous steps, many navigational
queries (e.g., “facebook”) still remained in
the query log. We noticed that a substantial
portion was signaled by several frequently
and indistinctly clicked URLs. Take for
instance “facebook”: “www.facebook.com”
and “www.facebook.com/login.php”.

With this in mind, we discarded entries em-
bodied in a manually compiled black list.
This list contains the 600 highest frequent
cases.

A third category in (Rose and Levinson, 2004)
regards resource queries, which we distinguished
via keywords like “image”, “lyrics” and “maps”.
Altogether, an amount of (35.67%) 24,916,610
(3,576,817 distinct) queries were seen as navi-
gational and resource. Note that in (Rose and
Levinson, 2004) both classes encompassed be-
tween 37%-38% of their query set.

Subsequently, we profited from the remaining
44,928,652 (informational) entries for detecting
queries where the intention of the user is find-
ing descriptive information about a topic (i.e.,
definiendum). In the taxonomy delineated by

101



(Rose and Levinson, 2004), informational queries
are sub-categorized into five groups including list,
locate, and definitional (directed and undirected).
In practice, we filtered definition questions as fol-
lows:

1. We exploited an array of expressions that
are commonly utilized in query analysis for
classifying definition questions (Figueroa,
2010). E.g., “Who is/was...”, “What is/was
a/an...”, “define...”, and “describe...”. Over-
all, these rules assisted in selecting 332,227
entries.

2. As stated in (Dupret and Piwowarski, 2008),
informational queries are typified by the user
clicking several documents. In light of that,
we say that some definitional queries are
characterized by multiple clicks, where at
least one belongs to a KB. This aids in cap-
turing the intention of the user when look-
ing for descriptive knowledge and only en-
tering noun phrases like “thoracic outlet syn-
drome”:

www.medicinenet.com
en.wikipedia.org
health.yahoo.net
www.livestrong.com
health.yahoo.net
en.wikipedia.org
www.medicinenet.com
www.mayoclinic.com
en.wikipedia.org
www.nismat.org
en.wikipedia.org

Table 1: Four distinct sequences of hosts clicked by
users given the search query: “thoracic outlet syn-
drome”.

In so doing, we manually compiled a list
of 36 frequently clicked KB hosts (e.g.,
Wikipedia and Britannica encyclopedia).
This filter produced 567,986 queries.

Unfortunately, since query logs stored by
search engines are not publicly available due to
privacy and legal concerns, there is no accessible
training material to build models on top of anno-
tated data. Thus, we exploited the aforementioned
hand-crafted rules to connect queries to their re-
spective category in this taxonomy.

3.2 User Click Patterns
In substance, the first filter recognizes the inten-
tion of the user by means of the formulation given
by the user (e.g., “What is a/the/an...”). With re-
gard to this filter, some interesting observations
are as follows:

• In 40.27% of the entries, users did not visit
any of the displayed web-sites. Conse-
quently, we concluded that the information
conveyed within the multiple snippets was
often enough to answer the respective def-
inition question. In other words, a signifi-
cant fraction of the users were satisfied with
a small set of brief, but quickly generated de-
scriptions.

• In 2.18% of these cases, the search engine re-
turned no results, and a few times users tried
another paraphrase or query, due to useless
results or misspellings.

• We also noticed that definition questions
matched by these expressions are seldom re-
lated to more than one click, although infor-
mational queries produce several clicks, in
general. In 46.44% of the cases, the user
clicked a sole document, and more surpris-
ingly, we observed that users are likely to
click sources different from KBs, in con-
trast to the widespread belief in definition
QA research. Users pick hits originating
from small but domain-specific web-sites as
a result of at least two effects: a) they are
looking for minor or ancillary senses of the
definiendum (e.g., “ETA” in “www.travel-
industry-dictionary.com”); and more perti-
nent b) the user does not trust the information
yielded by KBs and chooses more authorita-
tive resources, for instance, when looking for
reliable medical information (e.g., “What is
hypothyroidism?”, and “What is mrsa infec-
tion?”).

While the first filter infers the intention of the
user from the query itself, the second deduces it
from the origin of the clicked documents. With
regard to this second filter, clicking patterns are
more disperse. Here, the first two clicks normally
correspond to the top two/three ranked hits re-
turned by the search engine, see also (Ji et al.,
2009). Also, sequences of clicks signal that users
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normally visit only one site belonging to a KB,
and at least one coming from a non-KB (see Ta-
ble 1).

All in all, the insight gained in this analysis al-
lows the construction of an heterogeneous corpus
for definition question answering. Put differently,
these user click patterns offer a way to obtain huge
amounts of heterogeneous training material. In
this way the heavy dependence of open-domain
description identifiers on KB data can be allevi-
ated.

4 Click-Based Corpus Acquisition

Since queries obtained by the previous two filters
are not associated with the actual snippets seen
by the users (due to storage limitations), snip-
pets were recovered by means of submitting the
queries to Yahoo! search engine.

After retrieval, we benefited from OpenNLP1

for detecting sentence boundaries, tokenization
and part-of-speech (POS) information. Here, we
additionally interpreted truncations (“. . .”) as sen-
tence delimiters. POS tags were used to recognize
and replace numbers with a placeholder (#CD#)
as a means of creating sentence templates. We
modified numbers as their value is just as of-
ten confusing as useful (Baeza-Yates and Ribeiro-
Neto, 1999).

Along with numbers, sequences of full
and partial matches of the definiendum were
also substituted with placeholders, “#Q#” and
“#QT#”, respectively. To exemplify, consider
this pre-processed snippet regarding “Benjamin
Millepied” from “www.mashceleb.com”:

#Q# / News &amp; Biography - MashCeleb
Latest news coverage of #Q#
#Q# ( born #CD# ) is a principal dancer
at New York City Ballet and a ballet
choreographer...

We benefit from these templates for building
both a positive and a negative training set.

4.1 Negative Set

The negative set comprised templates appearing
across all (clicked and unclicked) web-snippets,
which at the same time, are related to more
than five distinct queries. We hypothesize that
these prominent elements correspond to non-
informative, and thus non-descriptive, content as

1http://opennlp.sourceforge.net

they appear within snippets across several ques-
tions. In other words: “If it seems to answer every
question, it will probably answer no question”.
Take for instance:

Information about #Q# in the Columbia
Encyclopedia , Computer Desktop
Encyclopedia , computing dictionary

Conversely, templates that are more plausible
to be answers are strongly related to their specific
definition questions, and consequently, they are
low in frequency and unlikely to be in the result
set of a large number of queries. This negative set
was expanded with templates coming from titles
of snippets, which at the same time, have a fre-
quency higher than four across all snippets (inde-
pendent on which queries they appear). This pro-
cess cooperated on gathering 1,021,571 different
negative examples. In order to measure the pre-
cision of this process, we randomly selected and
checked 1,000 elements, and we found an error of
1.3%.

4.2 Positive Set

As for the positive set, this was constructed
only from the summary section of web-snippets
clicked by the users. We constrained these snip-
pets to bear a title template associated with at least
two web-snippets clicked for two distinct queries.
Some good examples are:

What is #Q# ? Choices and Consequences.
Biology question : What is an #Q# ?

Since clicks are linked with entire snippets,
it is uncertain which sentences are genuine de-
scriptions (see the previous example). There-
fore, we removed those templates already con-
tained in the negative set, along with those sam-
ples that matched an array of well-known hand-
crafted rules. This set included:

a. sentences containing words such as “ask”,
“report”, “say”, and “unless” (Kil et al.,
2005; Schlaefer et al., 2007);

b. sentences bearing several named entities
(Schlaefer et al., 2006; Schlaefer et al.,
2007), which were recognized by the number
of tokens starting with a capital letter versus
those starting with a lowercase letter;

c. statements of persons (Schlaefer et al.,
2007); and
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d. we also profited from about five hundred
common expressions across web snippets in-
cluding “Picture of ”, and “Jump to : naviga-
tion , search”, as well as “Recent posts”.

This process assisted in acquiring 881,726 dif-
ferent examples, where 673,548 came from KBs.
Here, we also randomly selected 1,000 instances
and manually checked if they were actual descrip-
tions. The error of this set was 12.2%.

To put things into perspective, in contrast to
other corpus acquisition approaches, the present
method generated more than 1,800,000 positive
and negative training samples combined, while
the open-domain strategy of (Miliaraki and An-
droutsopoulos, 2004; Androutsopoulos and Gala-
nis, 2005) ca. 20,000 examples, the close-domain
technique of (Xu et al., 2005) about 3,000 and
(Fahmi and Bouma, 2006) ca. 2,000.

5 Answering New Definition Queries

In our experiments, we checked the effectiveness
of our user click-based corpus acquisition tech-
nique by studying its impact on two state-of-the-
art systems. The first one is based on the bi-term
LMs proposed by (Chen et al., 2006). This sys-
tem requires only positive samples as training ma-
terial. Conversely, our second system capitalizes
on both positive and negative examples, and it is
based on the Maximum Entropy (ME) models
presented by (Fahmi and Bouma, 2006). These
ME2 models amalgamated bigrams and unigrams
as well as two additional syntactic features, which
were not applicable to our task (i.e, sentence posi-
tion). We added to this model the sentence length
as a feature in order to homologate the attributes
used by both systems, therefore offering a good
framework to assess the impact of our negative
set. Note that (Fahmi and Bouma, 2006), unlike
us, applied their models only to sentences observ-
ing some specific syntactic patterns.

With regard to the test set, this was constructed
by manually annotating 113,184 sentence tem-
plates corresponding to 3,162 unseen definienda.
In total, this array of unseen testing instances
encompassed 11,566 different positive samples.
In order to build a balanced testing collection,
the same number of negative examples were ran-
domly selected. Overall, our testing set contains

2http://maxent.sourceforge.net/about.html

23,132 elements, and some illustrative annota-
tions are shown in Table 2. It is worth highlight-
ing that these examples signal that our models
are considering pattern-free descriptions, that is
to say, unlike other systems (Xu et al., 2003; Katz
et al., 2004; Fernandes, 2004; Feng et al., 2006;
Figueroa and Atkinson, 2009; Westerhout, 2009)
which consider definitions aligning an array of
well-known patterns (e.g., “is a” and “also known
as”), our models disregard any class of syntactic
constraint.

As to a baseline system, we accounted for the
centroid vector (Xu et al., 2003; Cui et al., 2004).
When implementing, we followed the blueprint
in (Chen et al., 2006), and it was built for each
definiendum from a maximum of 330 web snip-
pets fetched by means of Bing Search. This base-
line achieved a modest performance as it correctly
classified 43.75% of the testing examples. In de-
tail, 47.75% out of the 56.25% of the misclas-
sified elements were a result of data-sparseness.
This baseline has been widely used as a starting
point for comparison purposes, however it is hard
for this technique to discover diverse descriptive
nuggets. This problem stems from the narrow-
coverage of the centroid vector learned for the re-
spective definienda (Zhang et al., 2005). In short,
these figures support the necessity for more robust
methods based on massive training material.

Experiments. We trained both models by sys-
tematically increasing the size of the training ma-
terial by 1%. For this, we randomly split the train-
ing data into 100 equally sized packs, and system-
atically added one to the previously selected sets
(i. e., 1%, 2%, 3%, . . ., 99%, 100%). We also ex-
perimented with: 1) positive examples originated
solely from KBs; 2) positive samples harvested
only from non-KBs; and eventually 3) all positive
examples combined.

Figure 1 juxtaposes the outcomes accom-
plished by both techniques under the different
configurations. These figures, compared with re-
sults obtained by the baseline, indicate the im-
portant contribution of our corpus to tackle data-
sparseness. This contrast substantiates our claim
that click patterns can be utilized as indicators of
answers to definition questions. Since our models
ignore definition patterns, they have the potential
of detecting a wide diversity of descriptive infor-
mation.

Further, the improvement of about 9%-10% by
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Label Example/Template
+ Propylene #Q# is a type of alcohol made from fermented yeast and carbohydrates and

is commonly used in a wide variety of products .
+ #Q# is aggressive behavior intended to achieve a goal .
+ In Hispanic culture , when a girl turns #CD# , a celebration is held called the #Q#,

symbolizing the girl ’s passage to womanhood .
+ Kirschwasser , German for ” cherry water ” and often shortened to #Q# in English-speaking

countries , is a colorless brandy made from black ...
+ From the Gaelic ’dubhglas ’ meaning #Q#, #QT# stream , or from the #QT# river .
+ Council Bluffs Orthopedic Surgeon Doctors physician directory - Read about #Q#, damage

to any of the #CD# tendons that stabilize the shoulder joint .
+ It also occurs naturally in our bodies in fact , an average size adult manufactures up to

#CD# grams of #Q# daily during normal metabolism .
- Sterling Silver #Q# Hoop Earrings Overstockjeweler.com
- I know V is the rate of reaction and the #Q# is hal ...
- As sad and mean as that sounds , there is some truth to it , as #QT# as age their bodies do

not function as well as they used to ( in all respects ) so there is a ...
- If you ’re new to the idea of Christian #Q#, what I call ” the wild things of God ,
- A look at the Biblical doctrine of the #QT# , showing the biblical basis for the teaching and

including a discussion of some of the common objections .
- #QT# is Users Choice ( application need to be run at #QT# , but is not system critical ) ,

this page shows you how it affects your Windows operating system .
- Your doctor may recommend that you use certain drugs to help you control your #Q# .
- Find out what is the full meaning of #Q# on Abbreviations.com !

Table 2: Samples of manual annotations (testing set).

means of exploiting our negative set makes its
positive contribution clear. In particular, this sup-
ports our hypothesis that redundancy across web-
snippets pertaining to several definition questions
can be exploited as negative evidence. On the
whole, this enhancement also suggests that ME
models are a better option than LMs.

Furthermore, in the case of ME models, putting
together evidence from KB and non-KBs bet-
ters the performance. Conversely, in the case of
LMs, we do not observe a noticeable improve-
ment when unifying both sources. We attribute
this difference to the fact that non-KB data is nois-
ier, and thus negative examples are necessary to
cushion this noise. By and large, the outcomes
show that the usage of descriptive information de-
rived exclusively from KBs is not the best, but a
cost-efficient solution.

Incidentally, Figure 1 reveals that more training
data does not always imply better results. Overall,
the best performance (ME-combined→ 80.72%)
was reaped when considering solely 32% of the
training material. Hence, ME-KB finished with
the best performance when accounting for about
215,500 positive examples (see Table 3). Adding
more examples brought about a decline in accu-

Best True Positive
Conf. of Accuracy positives examples
ME-combined 80.72% 88% 881,726
ME-KB 80.33% 89.37% 673,548
ME-N-KB 78.99% 93.38% 208,178

Table 3: Comparison of performance, the total amount
and origin of training data, and the number of recog-
nized descriptions.

racy. Nevertheless, this fraction (32%) is still
larger than the data-sets considered by other open-
domain Machine Learning approaches (Miliaraki
and Androutsopoulos, 2004; Androutsopoulos
and Galanis, 2005).

In detail, when contrasting the confusion ma-
trices of the best configurations accomplished
by ME-combined (80.72%), ME-KB (80.33%)
and ME-N-KB (78.99%), one can find that ME-
combined correctly identified 88% of the answers
(true positives), while ME-KB 89.37% and ME-
N-KB 93.38% (see Table 3).

Interestingly enough, non-KB data only em-
bodies 23.61% of all positive training material,
but it still has the ability to recognize more an-
swers. Despite of that, the other two strate-
gies outperform ME-N-KB, because they are able

105



Figure 1: Results for each configuration (accuracy).

to correctly label more negative test examples.
Given these figures, we can conclude that this is
achieved by mitigating the impact of the noise in
the training corpus by means of cleaner (KB) data.

We verified this synergy by inspecting the num-
ber of answers from non-KBs detected by the
three top configurations in Table 3: ME-combined
(9,086), ME-KB (9,230) and ME-N-KB (9,677).
In like manner, we examined the confusion ma-
trix for the best configuration (ME-combined →
80.72%): 1,388 (6%) positive examples were mis-
labeled as negative, while 3,071 (13.28%) nega-
tive samples were mistagged as positive.

In addition, we performed significance tests uti-
lizing two-tailed paired t-test at 95% confidence
interval on twenty samples. For this, we used
only the top three configurations in Table 3 and
each sample was determined by using boostrap-
ping resampling. Each sample has the same size
of the original test corpus. Overall, the tests im-
plied that all pairs were statistically different from
each other.

In summary, the results show that both negative
examples and combining positive examples from
heterogeneous sources are indispensable to tackle
any class of text. However, it is vital to lessen the
noise in non-KB data, since this causes a more
adverse effect on the performance. Given the up-
perbound in accuracy, our outcomes indicate that
cleanness and quality are more important than the

size of the corpus. Our figures additionally sug-
gest that more effort should go into increasing di-
versity than the number of training instances. In
light of these observations, we also conjecture that
a more reduced, but diverse and manually anno-
tated, corpus might be more effective. In partic-
ular, a manually checked corpus distilled by in-
specting click patterns across query logs of search
engines.

Lastly, in order to evaluate how good a click
predictor the three top ME-configurations are,
we focused our attention only on the manu-
ally labeled positive samples (answers) that were
clicked by the users. Overall, 86.33% (ME-
combined), 88.85% (ME-KB) and 92.45% (ME-
N-KB) of these responses were correctly pre-
dicted. In light of that, one can conclude that
(clicked and non-clicked) answers to definition
questions can be identified/predicted on the basis
of user’s click patterns across query logs.

From the viewpoint of search engines, web
snippets are computed off-line, in general. In
so doing, some methods select the spans of text
bearing query terms with the potential of putting
the document on top of the rank (Turpin et al.,
2007; Tsegay et al., 2009). This helps to create an
abridged version of the document that can quickly
produce the snippet. This has to do with the trade-
off between storage capacity, indexing, and re-
trieval speed. Ergo, our technique can help to de-
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termine whether or not a span of text is worth ex-
panding, or in some cases whether or not it should
be included in the snippet view of the document.
In our instructive snippet, we now might have:

Benjamin Millepied / News &amp;
Biography - MashCeleb
Benjamin Millepied (born 1977) is a
principal dancer at New York City Ballet
and a ballet choreographer of
international reputation. Millepied was
born in Bordeaux, France. His...

Improving the results of informational (e.g.,
definition) queries, especially of less frequent
ones, is key for competing commercial search
engines as they are embodied in the non-
navigational tail where these engines differ the
most (Zaragoza et al., 2010).

6 Conclusions

This work investigates into the click behavior of
commercial search engine users regarding defi-
nition questions. These behaviour patterns are
then exploited as a corpus acquisition technique
for definition QA, which offers the advantage of
encompassing positive samples from heterogo-
neous sources. In contrast, negative examples
are obtained in conformity to redundancy pat-
terns across snippets, which are returned by the
search engine when processing several definition
queries. The effectiveness of these patterns, and
hence of the obtained corpus, was tested by means
of two models different in nature, where both
were capable of achieving an accuracy higher than
70%.

As a future work, we envision that answers de-
tected by our strategy can aid in determining some
query expansion terms, and thus to devise some
relevance feedback methods that can bring about
an improvement in terms of the recall of answers.
Along the same lines, it can cooperate on the vi-
sualization of the results by highlighting and/or
extending truncated answers, that is more infor-
mative snippets, which is one of the holy grail of
search operators, especially when processing in-
formational queries.

NLP tools (e.g., parsers and name entity recog-
nizers) can also be exploited for designing better
training data filters and more discriminative fea-
tures for our models that can assist in enhanc-
ing the performance, cf. (Surdeanu et al., 2008;
Figueroa, 2010; Surdeanu et al., 2011). However,

this implies that these tools have to be re-trained
to cope with web-snippets.
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Abstract

This work proposes to adapt an existing
general SMT model for the task of translat-
ing queries that are subsequently going to
be used to retrieve information from a tar-
get language collection. In the scenario that
we focus on access to the document collec-
tion itself is not available and changes to
the IR model are not possible. We propose
two ways to achieve the adaptation effect
and both of them are aimed at tuning pa-
rameter weights on a set of parallel queries.
The first approach is via a standard tuning
procedure optimizing for BLEU score and
the second one is via a reranking approach
optimizing for MAP score. We also extend
the second approach by using syntax-based
features. Our experiments show improve-
ments of 1-2.5 in terms of MAP score over
the retrieval with the non-adapted transla-
tion. We show that these improvements are
due both to the integration of the adapta-
tion and syntax-features for the query trans-
lation task.

1 Introduction

Cross Lingual Information Retrieval (CLIR) is an
important feature for any digital content provider
in today’s multilingual environment. However,
many of the content providers are not willing to
change existing well-established document index-
ing and search tools, nor to provide access to
their document collection by a third-party exter-
nal service. The work presented in this paper as-
sumes such a context of use, where a query trans-
lation service allows translating queries posed to
the search engine of a content provider into sev-
eral target languages, without requiring changes

to the undelying IR system used and without ac-
cessing, at translation time, the content provider’s
document set. Keeping in mind these constraints,
we present two approaches on query translation
optimisation.

One of the important observations done dur-
ing the CLEF 2009 campaign (Ferro and Peters,
2009) related to CLIR was that the usage of Sta-
tistical Machine Translation (SMT) systems (eg.
Google Translate) for query translation led to
important improvements in the cross-lingual re-
trieval performance (the best CLIR performance
increased from ˜55% of the monolingual baseline
in 2008 to more than 90% in 2009 for French
and German target languages). However, general-
purpose SMT systems are not necessarily adapted
for query translation. That is because SMT sys-
tems trained on a corpus of standard parallel
phrases take into account the phrase structure im-
plicitly. The structure of queries is very differ-
ent from the standard phrase structure: queries are
very short and the word order might be different
than the typical full phrase one. This problem can
be seen as a problem of genre adaptation for SMT,
where the genre is “query”.

To our knowledge, no suitable corpora of par-
allel queries is available to train an adapted SMT
system. Small corpora of parallel queries1 how-
ever can be obtained (eg. CLEF tracks) or man-
ually created. We suggest to use such corpora
in order to adapt the SMT model parameters for
query translation. In our approach the parameters
of the SMT models are optimized on the basis of
the parallel queries set. This is achieved either di-
rectly in the SMT system using the MERT (Mini-
mum Error Rate Training) algorithm and optimiz-

1Insufficient for a full SMT system training (˜500 entries)
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ing according to the BLEU2(Papineni et al., 2001)
score, or via reranking the Nbest translation can-
didates generated by a baseline system based on
new parameters (and possibly new features) that
aim to optimize a retrieval metric.

It is important to note that both of the pro-
posed approaches allow keeping the MT system
independent of the document collection and in-
dexing, and thus suitable for a query translation
service. These two approaches can also be com-
bined by using the model produced with the first
approach as a baseline that produces the Nbest list
of translations that is then given to the reranking
approach.

The remainder of this paper is organized as fol-
lows. We first present related work addressing the
problem of query translation. We then describe
two approaches towards adapting an SMT system
to the query-genre: tuning the SMT system on a
parallel set of queries (Section 3.1) and adapting
machine translation via the reranking framework
(Section 3.2). We then present our experimental
settings and results (Section 4) and conclude in
section 5.

2 Related work

We may distinguish two main groups of ap-
proaches to CLIR: document translation and
query translation. We concentrate on the second
group which is more relevant to our settings. The
standard query translation methods use different
translation resources such as bilingual dictionar-
ies, parallel corpora and/or machine translation.
The aspect of disambiguation is important for the
first two techniques.

Different methods were proposed to deal with
disambiguation issues, often relying on the docu-
ment collection or embedding the translation step
directly into the retrieval model (Hiemstra and
Jong, 1999; Berger et al., 1999; Kraaij et al.,
2003). Other methods rely on external resources
like query logs (Gao et al., 2010), Wikipedia (Ja-
didinejad and Mahmoudi, 2009) or the web (Nie
and Chen, 2002; Hu et al., 2008). (Gao et al.,
2006) proposes syntax-based translation models
to deal with the disambiguation issues (NP-based,
dependency-based). The candidate translations
proposed by these models are then reranked with
the model learned to minimize the translation er-

2Standard MT evaluation metric

ror on the training data.
To our knowledge, existing work that use MT-

based techniques for query translation use an out-
of-the-box MT system, without adapting it for
query translation in particular (Jones et al., 1999;
Wu et al., 2008) (although some query expan-
sion techniques might be applied to the produced
translation afterwards (Wu and He, 2010)).

There is a number of works done for do-
main adaptation in Statistical Machine Transla-
tion. However, we want to distinguish between
genre and domain adaptation in this work. Gen-
erally, genre can be seen as a sub-problem of do-
main. Thus, we consider genre to be the general
style of the text e.g. conversation, news, blog,
query (responsible mostly for the text structure)
while the domain reflects more what the text is
about – eg. social science, healthcare, history, so
domain adaptation involves lexical disambigua-
tion and extra lexical coverage problems. To our
knowledge, there is not much work addressing ex-
plicitly the problem of genre adaptation for SMT.
Some work done on domain adaptation could be
applied to genre adaptation, such as incorporating
available in-domain corpora in the SMT model:
either monolingual (Bertoldi and Federico, 2009;
Wu et al., 2008; Zhao et al., 2004; Koehn and
Schroeder, 2007), or small parallel data used for
tuning the SMT parameters (Zheng et al., 2010;
Pecina et al., 2011).

3 Our approach

This work is based on the hypothesis that the
general-purpose SMT system needs to be adapted
for query translation. Although in (Ferro and
Peters, 2009) it has been mentioned that using
Google translate (general-purpose MT) for query
translation allowed to CLEF participants to obtain
the best CLIR performance, there is still 10% gap
between monolingual and cross-lingual IR. We
believe that, as in (Clinchant and Renders, 2007),
more adapted query translation, possibly further
combined with query expansion techniques, can
lead to improved retrieval.

The problem of the SMT adaptation for query-
genre translation has different quality aspects.
On the one hand, we want our model to pro-
duce a “good” translation (well-formed and trans-
mitting the information contained in the source
query) of an input query. On the other hand, we
want to obtain good retrieval performance using
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the proposed translation. These two aspects are
not necessarily correlated: a bag-of-word transla-
tion can lead to good retrieval performance, even
though it won’t be syntactically well-formed; at
the same time a well-formed translation can lead
to worse retrieval if the wrong lexical choice is
done. Moreover, often the retrieval demands some
linguistic preprocessing (eg. lemmatisation, PoS
tagging) which in interaction with badly-formed
translations might bring some noise.

A couple of works studied the correlation be-
tween the standard MT evaluation metrics and
the retrieval precision. Thus, (Fujii et al., 2009)
showed a good correlation of the BLEU scores
with the MAP scores for Cross-Lingual Patent
Retrieval. However, the topics in patent search
(long and well structured) are very different from
standard queries. (Kettunen, 2009) also found a
pretty high correlation ( 0.8 − 0.9) between stan-
dard MT evaluation metrics (METEOR(Banerjee
and Lavie, 2005), BLEU, NIST(Doddington,
2002)) and retrieval precision for long queries.
However, the same work shows that the correla-
tion decreases ( 0.6− 0.7) for short queries.

In this paper we propose two approaches to
SMT adaptation for queries. The first one op-
timizes BLEU, while the second one optimizes
Mean Average Precision (MAP), a standard met-
ric in information retrieval. We’ll address the is-
sue of the correlation between BLEU and MAP in
Section 4.

Both of the proposed approaches rely on the
phrase-based SMT (PBMT) model (Koehn et al.,
2003) implemented in the Open Source SMT
toolkit MOSES (Koehn et al., 2007).

3.1 Tuning for genre adaptation

First, we propose to adapt the PBMT model by
tuning the model’s weights on a parallel set of
queries. This approach addresses the first as-
pect of the problem, which is producing a “good”
translation. The PBMT model combines differ-
ent types of features via a log-linear model. The
standard features include (Koehn, 2010, Chapter
5): language model, word penalty, distortion, dif-
ferent translation models, etc. The weights of
these features are learned during the tuning step
with the MERT (Och, 2003) algorithm. Roughly
the MERT algorithm tunes feature weights one by
one and optimizes them according to the BLEU
score obtained.

Our hypothesis is that the impact of different
features should be different depending on whether
we translate a full sentence, or a query-genre en-
try. Thus, one would expect that in the case
of query-genre the language model or the distor-
tion features should get less importance than in
the case of the full-sentence translation. MERT
tuning on a genre-adapted parallel corpus should
leverage this information from the data, adapting
the SMT model to the query-genre. We would
also like to note that the tuning approach (pro-
posed for domain adaptation by (Zheng et al.,
2010)) seems to be more appropriate for genre
adaptation than for domain adaptation where the
problem of lexical ambiguity is encoded in the
translation model and re-weighting the main fea-
tures might not be sufficient.

We use the MERT implementation provided
with the Moses toolkit with default settings. Our
assumption is that this procedure although not ex-
plicitly aimed at improving retrieval performance
will nevertheless lead to “better” query transla-
tions when compared to the baseline. The results
of this apporach allow us also to observe whether
and to what extent changes in BLEU scores are
correlated to changes in MAP scores.

3.2 Reranking framework for query
translation

The second approach addresses the retrieval qual-
ity problem. An SMT system is usually trained to
optimize the quality of the translation (eg. BLEU
score for SMT), which is not necessarily corre-
lated with the retrieval quality (especially for the
short queries). Thus, for example, the word or-
der which is crucial for translation quality (and is
taken into account by most MT evaluation met-
rics) is often ignored by IR models. Our second
approach follows (Nie, 2010, pp.106) argument
that “the translation problem is an integral part
of the whole CLIR problem, and unified CLIR
models integrating translation should be defined”.
We propose integrating the IR metric (MAP) into
the translation model optimisation step via the
reranking framework.

Previous attempts to apply the reranking ap-
proach to SMT did not show significant improve-
ments in terms of MT evaluation metrics (Och
et al., 2003; Nikoulina and Dymetman, 2008).
One of the reasons being the poor diversity of the
Nbest list of the translations. However, we be-
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lieve that this approach has more potential in the
context of query translation.

First of all the average query length is ˜5 words,
which means that the Nbest list of the translations
is more diverse than in the case of general phrase
translation (average length 25-30 words).

Moreover, the retrieval precision is more natu-
rally integrated into the reranking framework than
standard MT evaluation metrics such as BLEU.
The main reason is that the notion of Average Re-
trieval Precision is well defined for a single query
translation, while BLEU is defined on the corpus
level and correlates poorly with human quality
judgements for the individual translations (Specia
et al., 2009; Callison-Burch et al., 2009).

Finally, the reranking framework allows a lot
of flexibility. Thus, it allows enriching the base-
line translation model with new complex features
which might be difficult to introduce into the
translation model directly.

Other works applied the reranking framework
to different NLP tasks such as Named Entities
Extraction (Collins, 2001), parsing (Collins and
Roark, 2004), and language modelling (Roark et
al., 2004). Most of these works used the reranking
framework to combine generative and discrimina-
tive methods when both approaches aim at solv-
ing the same problem: the generative model pro-
duces a set of hypotheses, and the best hypoth-
esis is chosen afterwards via the discriminative
reranking model, which allows to enrich the base-
line model with the new complex and heteroge-
neous features. We suggest using the reranking
framework to combine two different tasks: Ma-
chine Translation and Cross-lingual Information
Retrieval. In this context the reranking framework
doesn’t only allow enriching the baseline transla-
tion model but also performing training using a
more appropriate evaluation metric.

3.2.1 Reranking training
Generally, the reranking framework can be re-

sumed in the following steps :

1. The baseline (generic-purpose) MT system
generates a list of candidate translations
GEN(q) for each query q;

2. A vector of features F (t) is assigned to each
translation t ∈ GEN(q);

3. The best translation t̂ is chosen as the one
maximizing the translation score, which is

defined as a weighted linear combination of
features: t̂(λ) = arg maxt∈GEN(q) λ·F (t)

As shown above the best translation is selected ac-
cording to features’ weights λ. In order to learn
the weights λ maximizing the retrieval perfor-
mance, an appropriate annotated training set has
to be created. We use the CLEF tracks to create
the training set. The retrieval scores annotations
are based on the document relevance annotations
performed by human annotators during the CLEF
campaign.

The annotated training set is created out of
queries {q1, ..., qK} with an Nbest list of trans-
lations GEN(qi) of each query qi, i ∈ {1..K} as
follows:

• A list of N (we take N = 1000) translations
(GEN(qi)) is produced by the baseline MT
model for each query qi, i = 1..K.

• Each translation t ∈ GEN(qi) is used
to perform a retrieval from a target docu-
ment collection, and an Average Precision
score (AP (t)) is computed for each t ∈
GEN(qi) by comparing its retrieval to the
relevance annotations done during the CLEF
campaign.

The weights λ are learned with the objective of
maximizing MAP for all the queries of the train-
ing set, and, therefore, are optimized for retrieval
quality.

The weights optimization is done with
the Margin Infused Relaxed Algorithm
(MIRA)(Crammer and Singer, 2003), which
was applied to SMT by (Watanabe et al., 2007;
Chiang et al., 2008). MIRA is an online learning
algorithm where each weights update is done to
keep the new weights as close as possible to the
old weights (first term), and score oracle trans-
lation (the translation giving the best retrieval
score : t∗i = arg maxtAP (t)) higher than each
non-oracle translation (tij) by a margin at least as
wide as the loss lij (second term):

λ = minλ′ 1
2‖λ

′ − λ‖2 +

C
∑K

i=1 maxj=1..N

(
lij − λ

′ · (F (t∗i )− F (tij)
)

The loss lij is defined as the difference in the re-
trieval average precision between the oracle and
non-oracle translations: lij = AP (t∗i )−AP (tij).
C is the regularization parameter which is chosen
via 5-fold cross-validation.
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3.2.2 Features

One of the advantages of the reranking frame-
work is that new complex features can be easily
integrated. We suggest to enrich the reranking
model with different syntax-based features, such
as:

• features relying on dependency structures:
called therein coupling features (proposed by
(Nikoulina and Dymetman, 2008));

• features relying on Part of Speech Tagging:
called therein PoS mapping features.

By integrating the syntax-based features we
have a double goal: showing the potential of
the reranking framework with more complex fea-
tures, and examining whether the integration of
syntactic information could be useful for query
translation.

Coupling features. The goal of the coupling
features is to measure the similarity between
source and target dependency structures. The ini-
tial hypothesis is that a better translation should
have a dependency structure closer to the one of
the source query.

In this work we experiment with two dif-
ferent coupling variants proposed in (Nikoulina
and Dymetman, 2008), namely, Lexicalised and
Label-specific coupling features.

The generic coupling features are based on
the notion of “rectangles” that are of the follow-
ing type : ((s1, ds12, s2), (t1, dt12, t2)), where
ds12 is an edge between source words s1 and s2,
dt12 is an edge between target words t1 and t2,
s1 is aligned with t1 and s2 is aligned with t2.
Lexicalised features take into account the qual-
ity of lexical alignment, by weighting each rect-
angle (s1, s2, t1, t2) by a probability of align-
ing s1 to t1 and s2 to t2 (eg. p(s1|t1)p(s2|t2) or
p(t1|s1)p(t2|s2)).

The Label-Specific features take into account
the nature of the aligned dependencies. Thus, the
rectangles of the form ((s1, subj, s2), (t1, subj,
t2)) will get more weight than a rectangle ((s1,
subj, s2), (t1, nmod, t2)). The importance of
each “rectangle” is learned on the parallel anno-
tated corpus by introducing a collection of Label-
Specific coupling features, each for a specific pair
of source label and target label.

PoS mapping features. The goal of the PoS
mapping features is to control the correspondence
of Part Of Speech Tags between an input query
and its translation. As the coupling features, the
PoS mapping features rely on the word align-
ments between the source sentence and its trans-
lation3. A vector of sparse features is introduced
where each component corresponds to a pair of
PoS tags aligned in the training data. We intro-
duce a generic PoS map variant, which counts a
number of occurrences of a specific pair of PoS
tags, and lexical PoS map variant, which weights
down these pairs by a lexical alignment score
(p(s|t) or p(t|s)).

4 Experiments

4.1 Experimental basis

4.1.1 Data
To simulate parallel query data we used trans-

lation equivalent CLEF topics. The data set used
for the first approach consists of the CLEF topic
data from the following years and tasks: AdHoc-
main track from 2000 to 2008; CLEF AdHoc-
TEL track 2008; Domain Specific tracks from
2000 to 2008; CLEF robust tracks 2007 and 2008;
GeoCLEf tracks 2005-2007. To avoid the issue of
overlapping topics we removed duplicates. The
created parallel queries set contained 500 − 700
parallel entries (depending on the language pair,
Table 1) and was used for Moses parameters tun-
ing.

In order to create the training set for the rerank-
ing approach, we need to have access to the rele-
vance judgements. We didn’t have access to all
relevance judgements of the previously desribed
tracks. Thus we used only a subset of the previ-
ously extracted parallel set, which includes CLEF
2000-2008 topics from the AdHoc-main, AdHoc-
TEL and GeoCLEF tracks.

The number of queries obtained altogether is
shown in (Table 1).

4.1.2 Baseline
We tested our approaches on the CLEF AdHoc-

TEL 2009 task (50 topics). This task dealt
with monolingual and cross-lingual search in a
library catalog. The monolingual retrieval is

3This alignment can be either produced by a toolkit like
GIZA++(Och and Ney, 2003) or obtained directly by a sys-
tem that produced the Nbest list of the translations (Moses).
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Language pair Number of queries
Total queries

En - Fr, Fr - En 470
En - De, De - En 714

Annotated queries
En - Fr, Fr - En 400

En - De, De - En 350

Table 1: Top: total number of parallel queries gathered
from all the CLEF tasks (size of the tuning set). Bot-
tom: number of queries extracted from the tasks for
which the human relevance judgements were availble
(size of the reranking training set).

performed with the lemur4 toolkit (Ogilvie and
Callan, 2001). The preprocessing includes lem-
matisation (with the Xerox Incremental Parser-
XIP (Aı̈t-Mokhtar et al., 2002)) and filtering out
the function words (based on XIP PoS tagging).
Table 2 shows the performance of the monolin-
gual retrieval model for each collection. The
monolingual retrieval results are comparable to
the CLEF AdHoc-TEL 2009 participants (Ferro
and Peters, 2009). Let us note here that it is not
the case for our CLIR results since we didn’t ex-
ploit the fact that each of the collections could ac-
tually contain the entries in a language other than
the official language of the collection.

The cross-lingual retrieval is performed as fol-
lows :

• the input query (eg. in English) is first trans-
lated into the language of the collection (eg.
German);

• this translation is used to search the target
collection (eg. Austrian National Library for
German ) .

The baseline translation is produced with
Moses trained on Europarl. Table 2 reports the
baseline performance both in terms of MT evalu-
ation metrics (BLEU) and Information Retrieval
evaluation metric MAP (Mean Average Preci-
sion).

The 1best MAP score corresponds to the case
when the single translation is proposed for the
retrieval by the query translation model. 5best
MAP score corresponds to the case when the 5
top translations proposed by the translation ser-
vice are concatenated and used for the retrieval.

4http://www.lemurproject.org/

The 5best retrieval can be seen as a sort of query
expansion, without accessing the document col-
lection or any external resources.

Given that the query length is shorter than for a
standard sentence, the 4-gramm BLEU (used for
standart MT evaluation) might not be able to cap-
ture the difference between the translations (eg.
English-German 4-gramm BLEU is equal to 0 for
our task). For that reason we report both 3- and
4-gramm BLEU scores.

Note, that the French-English baseline retrieval
quality is much better than the German-English.
This is probably due to the fact that our German-
English translation system doesn’t use any de-
coumpounding, which results into many non-
translated words.

4.2 Results

We performed the query-genre adaptation ex-
periments for English-French, French-English,
German-English and English-German language
pairs.

Ideally, we would have liked to combine the
two approaches we proposed: use the query-
genre-tuned model to produce the Nbest list
which is then reranked to optimize the MAP
score. However, it was not possible in our exper-
imental settings due to the small amount of train-
ing data available. We thus simply compare these
two approaches to a baseline approach and com-
ment on their respective performance.

4.2.1 Query-genre tuning approach
For the CLEF-tuning experiments we used the

same translation model and language model as for
the baseline (Europarl-based). The weights were
then tuned on the CLEF topics described in sec-
tion 4.1.1. We then tested the system obtained on
50 parallel queries from the CLEF AdHoc-TEL
2009 task.

Table 3 describes the results of the evalua-
tion. We observe consistent 1-best MAP improve-
ments, but unstable BLEU (3-gramm) (improve-
ments for English-German, and degradation for
other language pairs), although one would have
expected BLEU to be improved in this experi-
mental setting given that BLEU was the objective
function for MERT. These results, on one side,
confirm the remark of (Kettunen, 2009) that there
is a correlation (although low) between BLEU
and MAP scores. The unstable BLEU scores
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MAP
MAP MAP BLEU BLEU
1-best 5-best 4-gramm 3-gramm

Monolingual IR Bilingual IR

English 0.3159
French-English 0.1828 0.2186 0.1199 0.1568
German-English 0.0941 0.0942 0.2351 0.2923

French 0.2386 English-French 0.1504 0.1543 0.2863 0.3423
German 0.2162 English-German 0.1009 0.1157 0.0000 0.1218

Table 2: Baseline MAP scores for monolingual and bilingual CLEF AdHoc TEL 2009 task.

MAP MAP BLEU BLEU
1-best 5-best 4-gramm 3-gramm

Fr-En 0.1954 0.2229 0.1062 0.1489
De-En 0.1018 0.1078 0.2240 0.2486
En-Fr 0.1611 0.1516 0.2072 0.2908
En-De 0.1062 0.1132 0.0000 0.1924

Table 3: BLEU and MAP performance on CLEF AdHoc TEL 2009 task for the genre-tuned model.

might also be explained by the small size of the
test set (compared to a standard test set of 1000
full-sentences).

Secondly, we looked at the weights of the fea-
tures both in the baseline model (Europarl-tuned)
and in the adapted model (CLEF-tuned), shown in
Table 4. We are unsure how suitable the sizes of
the CLEF tuning sets are, especially for the pairs
involving English and French. Nevertheless we
do observe and comment on some patterns.

For the pairs involving English and German
the distortion weight is much higher when tuning
with CLEF data compared to tuning with Europarl
data. The picture is reversed when looking at the
two pairs involving English and French. This is
to be expected if we interpret a high distortion
weight as follows: “it is not encouraged to place
source words that are near to each other far away
from each other in the translation”. Indeed, the lo-
cal reorderings are much more frequent between
English and French (e.g. white house = maison
blanche), while the long-distance reorderings are
more typcal between English and German.

The word penalty is consistenly higher over all
pairs when tuning with CLEF data compared to
tuning with Europarl data. We could see an ex-
planation for this pattern in the smaller size of
the CLEF sentences if we interpret higher word
penalty as a preference for shorter translations.
This can be explained both with the smaller aver-
age size of the queries and with the specific query

structure: mostly content words and fewer func-
tion words when compared to the full sentence.

The language model weight is consistently
though not drastically smaller when tuning with
CLEF data. We suppose that this is due to the
fact that a Europarl-base language model is not
the best choice for translating query data.

4.2.2 Reranking approach
The reranking experiments include different

features combinations. First, we experiment with
the Moses features only in order to make this ap-
proach comparable with the first one. Secondly,
we compare different syntax-based features com-
binations, as described in section 3.2.2. Thus, we
compare the following reranking models (defined
by the feature set): moses, lex (lexical coupling
+ moses features), lab (label-specific coupling +
moses features), posmaplex (lexical PoS mapping
+ moses features ), lab-lex (label-specific cou-
pling + lexical coupling + moses features), lab-
lex-posmap (label-specific coupling + lexical cou-
pling features + generic PoS mapping). To reduce
the size of feature-functions vectors we take only
the 20 most frequent features in the training data
for Label-specific coupling and PoS mapping fea-
tures. The computation of the syntax features is
based on the rule-based XIP parser, where some
heuristics specific to query processing have been
integrated into English and French (but not Ger-
man) grammars (Brun et al., 2012).

The results of these experiments are illustrated
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Lng pair Tune set DW LM φ(f |e) lex(f |e) φ(e|f) lex(e|f) PP WP

Fr-En Europarl 0.0801 0.1397 0.0431 0.0625 0.1463 0.0638 -0.0670 -0.3975
CLEF 0.0015 0.0795 -0.0046 0.0348 0.1977 0.0208 -0.2904 0.3707

De-En Europarl 0.0588 0.1341 0.0380 0.0181 0.1382 0.0398 -0.0904 -0.4822
CLEF 0.3568 0.1151 0.1168 0.0549 0.0932 0.0805 0.0391 -0.1434

En-Fr Europarl 0.0789 0.1373 0.0002 0.0766 0.1798 0.0293 -0.0978 -0.4002
CLEF 0.0322 0.1251 0.0350 0.1023 0.0534 0.0365 -0.3182 -0.2972

En-De Europarl 0.0584 0.1396 0.0092 0.0821 0.1823 0.0437 -0.1613 -0.3233
CLEF 0.3451 0.1001 0.0248 0.0872 0.2629 0.0153 -0.0431 0.1214

Table 4: Feature weights for the query-genre tuned model. Abbreviations: DW - distortion weight, LM - language
model weight, PP - phrase penalty, WP - word penalty, φ-phrase translation probability, lex-lexical weighting.

Query Example MAP bleu1
Src1 Weibliche Märtyrer
Ref Female Martyrs
T1 female martyrs 0.07 1
T2 Women martyr 0.4 0

Src 2 Genmanipulation am
Menschen

Ref Human Gene Manipula-
tion

T1 On the genetic manipula-
tion of people

0.044 0.167

T2 genetic manipulation of
the human being

0.069 0.286

Src 3 Arbeitsrecht in der Eu-
ropäischen Union

Ref European Union Labour
Laws

T1 Labour law in the Euro-
pean Union

0.015 0.5

T2 labour legislation in the
European Union

0.036 0.5

Table 5: Some examples of queries translations (T1:
baseline, T2: after reranking with lab-lex), MAP and
1-gramm BLEU scores for German-English.

in Figure 1. To keep the figure more readable,
we report only on 3-gramm BLEU scores. When
computing the 5best MAP score, the order in the
Nbest list is defined by a corresponding reranking
model. Each reranking model is illustrated by a
single horizontal red bar. We compare the rerank-
ing results to the baseline model (vertical line) and
also to the results of the first approach (yellow bar
labelled MERT:moses) on the same figure.

First, we remark that the adapted models
(query-genre tuning and reranking) outperform
the baseline in terms of MAP (1best and 5 best)
for French-English and German-English transla-
tions for most of the models. The only exception
is posmaplex model (based on PoS tagging) for

German which can be explained by the fact that
the German grammar used for query processing
was not adapted for queries as opposed to English
and French grammars. However, we do not ob-
serve the same tendency for BLEU score, where
only a few of the adapted models outperform the
baseline, which confirms the hypothesis of the
low correlation between BLEU and MAP scores
in these settings. Table 5 gives some examples of
the queries translations before (T1) and after (T2)
reranking. These examples also illustrate differ-
ent types of disagreement between MAP and 1-
gramm BLEU5 score.

The results for English-German and English-
French look more confusing. This can be partly
due to the more rich morphology of the target lan-
guages which may create more noise in the syn-
tax structure. Reranking however improves over
the 1-best MAP baseline for English-German, and
5-best MAP is also improved excluding the mod-
els involving PoS tagging for German (posmap,
posmaplex, lab-lex-posmap). The results for
English-French are more difficult to interpret. To
find out the reason of such a behavior, we looked
at the translations. We observed the following to-
kenization problem for French: the apostrophe is
systematically separated, e.g. “d ’ aujourd ’ hui”.
This leads to both noisy pre-retrieval preprocess-
ing (eg. d is tagged as a NOUN) and noisy syntax-
based feature values, which might explain the un-
stable results.

Finally, we can see that the syntax-based fea-
tures can be beneficial for the final retrieval qual-
ity: the models with syntax features can outper-
form the model basd on the moses features only.
The syntax-based features leading to the most sta-

5The higher order BLEU scores are equal to 0 for most
of the individual translations.
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Figure 1: Reranking results. The vertical line corresponds to the baseline scores. The lowest bar (MERT:moses,
in yellow): the results of the tuning approach, other bars(in red): the results of the reranking approach.

ble results seem to be lab-lex (combination of lex-
ical and label-specific coupling): it leads to the
best gains over 1-best and 5-best MAP for all lan-
guage pairs excluding English-French. This is a
surprising result given the fact that the underlying
IR model doesn’t take syntax into account in any
way. In our opinion, this is probably due to the
interaction between the pre-retrieval preprocess-
ing (lemmatisation, PoS tagging) done with the
linguistic tools which might produce noisy results
when applied to the SMT outputs. The rerank-
ing with syntax-based features allows to choose
a better-formed query for which the PoS tagging
and lemmatisation tools produce less noise which
leads to a better retrieval.

5 Conclusion

In this work we proposed two methods for query-
genre adaptation of an SMT model: the first
method addressing the translation quality aspect
and the second one the retrieval precision aspect.
We have shown that CLIR performance in terms

of MAP is improved between 1-2.5 points. We
believe that the combination of these two meth-
ods would be the most beneficial setting, although
we were not able to prove this experimentally
(due to the lack of training data). None of these
methods require access to the document collec-
tion at test time, and can be used in the context
of a query translation service. The combination
of our adapted SMT model with other state-of-the
art CLIR techniques (eg. query expansion with
PRF) will be explored in future work.
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Abstract

The search space of Phrase-Based Statisti-
cal Machine Translation (PBSMT) systems
can be represented under the form of a di-
rected acyclic graph (lattice). The quality
of this search space can thus be evaluated
by computing the best achievable hypoth-
esis in the lattice, the so-called oracle hy-
pothesis. For common SMT metrics, this
problem is however NP-hard and can only
be solved using heuristics. In this work,
we present two new methods for efficiently
computing BLEU oracles on lattices: the
first one is based on a linear approximation
of the corpus BLEU score and is solved us-
ing the FST formalism; the second one re-
lies on integer linear programming formu-
lation and is solved directly and using the
Lagrangian relaxation framework. These
new decoders are positively evaluated and
compared with several alternatives from the
literature for three language pairs, using lat-
tices produced by two PBSMT systems.

1 Introduction

The search space of Phrase-Based Statistical Ma-
chine Translation (PBSMT) systems has the form
of a very large directed acyclic graph. In several
softwares, an approximation of this search space
can be outputted, either as a n-best list contain-
ing the n top hypotheses found by the decoder, or
as a phrase or word graph (lattice) which com-
pactly encodes those hypotheses that have sur-
vived search space pruning. Lattices usually con-
tain much more hypotheses than n-best lists and
better approximate the search space.

Exploring the PBSMT search space is one of
the few means to perform diagnostic analysis and

to better understand the behavior of the system
(Turchi et al., 2008; Auli et al., 2009). Useful
diagnostics are, for instance, provided by look-
ing at the best (oracle) hypotheses contained in
the search space, i.e, those hypotheses that have
the highest quality score with respect to one or
several references. Such oracle hypotheses can
be used for failure analysis and to better under-
stand the bottlenecks of existing translation sys-
tems (Wisniewski et al., 2010). Indeed, the in-
ability to faithfully reproduce reference transla-
tions can have many causes, such as scantiness
of the translation table, insufficient expressiveness
of reordering models, inadequate scoring func-
tion, non-literal references, over-pruned lattices,
etc. Oracle decoding has several other applica-
tions: for instance, in (Liang et al., 2006; Chi-
ang et al., 2008) it is used as a work-around to
the problem of non-reachability of the reference
in discriminative training of MT systems. Lattice
reranking (Li and Khudanpur, 2009), a promising
way to improve MT systems, also relies on oracle
decoding to build the training data for a reranking
algorithm.

For sentence level metrics, finding oracle hy-
potheses in n-best lists is a simple issue; how-
ever, solving this problem on lattices proves much
more challenging, due to the number of embed-
ded hypotheses, which prevents the use of brute-
force approaches. When using BLEU, or rather
sentence-level approximations thereof, the prob-
lem is in fact known to be NP-hard (Leusch et
al., 2008). This complexity stems from the fact
that the contribution of a given edge to the total
modified n-gram precision can not be computed
without looking at all other edges on the path.
Similar (or worse) complexity result are expected
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for other metrics such as METEOR (Banerjee and
Lavie, 2005) or TER (Snover et al., 2006). The
exact computation of oracles under corpus level
metrics, such as BLEU, poses supplementary com-
binatorial problems that will not be addressed in
this work.

In this paper, we present two original methods
for finding approximate oracle hypotheses on lat-
tices. The first one is based on a linear approxima-
tion of the corpus BLEU, that was originally de-
signed for efficient Minimum Bayesian Risk de-
coding on lattices (Tromble et al., 2008). The sec-
ond one, based on Integer Linear Programming, is
an extension to lattices of a recent work on failure
analysis for phrase-based decoders (Wisniewski
et al., 2010). In this framework, we study two
decoding strategies: one based on a generic ILP
solver, and one, based on Lagrangian relaxation.

Our contribution is also experimental as we
compare the quality of the BLEU approxima-
tions and the time performance of these new ap-
proaches with several existing methods, for differ-
ent language pairs and using the lattice generation
capacities of two publicly-available state-of-the-
art phrase-based decoders: Moses1 and N-code2.

The rest of this paper is organized as follows.
In Section 2, we formally define the oracle decod-
ing task and recall the formalism of finite state
automata on semirings. We then describe (Sec-
tion 3) two existing approaches for solving this
task, before detailing our new proposals in sec-
tions 4 and 5. We then report evaluations of the
existing and new oracles on machine translation
tasks.

2 Preliminaries

2.1 Oracle Decoding Task

We assume that a phrase-based decoder is able
to produce, for each source sentence f , a lattice
Lf = 〈Q,Ξ〉, with # {Q} vertices (states) and
# {Ξ} edges. Each edge carries a source phrase
fi, an associated output phrase ei as well as a fea-
ture vector h̄i, the components of which encode
various compatibility measures between fi and ei.

We further assume that Lf is a word lattice,
meaning that each ei carries a single word3 and

1http://www.statmt.org/moses/
2http://ncode.limsi.fr/
3Converting a phrase lattice to a word lattice is a simple

matter of redistributing a compound input or output over a

that it contains a unique initial state q0 and a
unique final state qF . Let Πf denote the set of all
paths from q0 to qF in Lf . Each path π ∈ Πf cor-
responds to a possible translation eπ. The job of
a (conventional) decoder is to find the best path(s)
in Lf using scores that combine the edges’ fea-
ture vectors with the parameters λ̄ learned during
tuning.

In oracle decoding, the decoder’s job is quite
different, as we assume that at least a reference
rf is provided to evaluate the quality of each indi-
vidual hypothesis. The decoder therefore aims at
finding the path π∗ that generates the hypothesis
that best matches rf . For this task, only the output
labels ei will matter, the other informations can be
left aside.4

Oracle decoding assumes the definition of a
measure of the similarity between a reference
and a hypothesis. In this paper we will con-
sider sentence-level approximations of the popu-
lar BLEU score (Papineni et al., 2002). BLEU is
formally defined for two parallel corpora, E =
{ej}Jj=1 and R = {rj}Jj=1, each containing J
sentences as:

n-BLEU(E ,R) = BP ·
( n∏
m=1

pm

)1/n

, (1)

where BP = min(1, e1−c1(R)/c1(E)) is the
brevity penalty and pm = cm(E ,R)/cm(E) are
clipped or modified m-gram precisions: cm(E) is
the total number of wordm-grams in E ; cm(E ,R)
accumulates over sentences the number of m-
grams in ej that also belong to rj . These counts
are clipped, meaning that a m-gram that appears
k times in E and l times in R, with k > l, is only
counted l times. As it is well known, BLEU per-
forms a compromise between precision, which is
directly appears in Equation (1), and recall, which
is indirectly taken into account via the brevity
penalty. In most cases, Equation (1) is computed
with n = 4 and we use BLEU as a synonym for
4-BLEU.

BLEU is defined for a pair of corpora, but, as an
oracle decoder is working at the sentence-level, it
should rely on an approximation of BLEU that can

linear chain of arcs.
4The algorithms described below can be straightfor-

wardly generalized to compute oracle hypotheses under
combined metrics mixing model scores and quality measures
(Chiang et al., 2008), by weighting each edge with its model
score and by using these weights down the pipe.
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evaluate the similarity between a single hypoth-
esis and its reference. This approximation intro-
duces a discrepancy as gathering sentences with
the highest (local) approximation may not result
in the highest possible (corpus-level) BLEU score.
Let BLEU′ be such a sentence-level approximation
of BLEU. Then lattice oracle decoding is the task
of finding an optimal path π∗(f) among all paths
Πf for a given f , and amounts to the following
optimization problem:

π∗(f) = arg max
π∈Πf

BLEU′(eπ, rf ). (2)

2.2 Compromises of Oracle Decoding

As proved by Leusch et al. (2008), even with
brevity penalty dropped, the problem of deciding
whether a confusion network contains a hypoth-
esis with clipped uni- and bigram precisions all
equal to 1.0 is NP-complete (and so is the asso-
ciated optimization problem of oracle decoding
for 2-BLEU). The case of more general word and
phrase lattices and 4-BLEU score is consequently
also NP-complete. This complexity stems from
chaining up of local unigram decisions that, due
to the clipping constraints, have non-local effect
on the bigram precision scores. It is consequently
necessary to keep a possibly exponential num-
ber of non-recombinable hypotheses (character-
ized by counts for each n-gram in the reference)
until very late states in the lattice.

These complexity results imply that any oracle
decoder has to waive either the form of the objec-
tive function, replacing BLEU with better-behaved
scoring functions, or the exactness of the solu-
tion, relying on approximate heuristic search al-
gorithms.

In Table 1, we summarize different compro-
mises that the existing (section 3), as well as
our novel (sections 4 and 5) oracle decoders,
have to make. The “target” and “target level”
columns specify the targeted score. None of
the decoders optimizes it directly: their objec-
tive function is rather the approximation of BLEU

given in the “target replacement” column. Col-
umn “search” details the accuracy of the target re-
placement optimization. Finally, columns “clip-
ping” and “brevity” indicate whether the corre-
sponding properties of BLEU score are considered
in the target substitute and in the search algorithm.

2.3 Finite State Acceptors
The implementations of the oracles described in
the first part of this work (sections 3 and 4) use the
common formalism of finite state acceptors (FSA)
over different semirings and are implemented us-
ing the generic OpenFST toolbox (Allauzen et al.,
2007).

A (⊕,⊗)-semiring K over a set K is a system
〈K,⊕,⊗, 0̄, 1̄〉, where 〈K,⊕, 0̄〉 is a commutative
monoid with identity element 0̄, and 〈K,⊗, 1̄〉 is
a monoid with identity element 1̄. ⊗ distributes
over ⊕, so that a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)
and (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a) and element
0̄ annihilates K (a⊗ 0̄ = 0̄⊗ a = 0̄).

Let A = (Σ, Q, I, F,E) be a weighted finite-
state acceptor with labels in Σ and weights in K,
meaning that the transitions (q, σ, q′) in A carry a
weight w ∈ K. Formally, E is a mapping from
(Q × Σ × Q) into K; likewise, initial I and fi-
nal weight F functions are mappings from Q into
K. We borrow the notations of Mohri (2009):
if ξ = (q, a, q′) is a transition in domain(E),
p(ξ) = q (resp. n(ξ) = q′) denotes its origin
(resp. destination) state, w(ξ) = σ its label and
E(ξ) its weight. These notations extend to paths:
if π is a path in A, p(π) (resp. n(π)) is its initial
(resp. ending) state and w(π) is the label along
the path. A finite state transducer (FST) is an FSA
with output alphabet, so that each transition car-
ries a pair of input/output symbols.

As discussed in Sections 3 and 4, several oracle
decoding algorithms can be expressed as shortest-
path problems, provided a suitable definition of
the underlying acceptor and associated semiring.
In particular, quantities such as:⊕

π∈Π(A)

E(π), (3)

where the total weight of a successful path π =
ξ1 . . . ξl in A is computed as:

E(π) =I(p(ξ1))⊗
[ l⊗
i=1

E(ξi)
]
⊗ F (n(ξl))

can be efficiently found by generic shortest dis-
tance algorithms over acyclic graphs (Mohri,
2002). For FSA-based implementations over
semirings where ⊕ = max, the optimization
problem (2) is thus reduced to Equation (3), while
the oracle-specific details can be incorporated into
in the definition of ⊗.
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oracle target target level target replacement search clipping brevity
ex

is
tin

g LM-2g/4g 2/4-BLEU sentence P2(e; r) or P4(e; r) exact no no
PB 4-BLEU sentence partial log BLEU (4) appr. no no
PB` 4-BLEU sentence partial log BLEU (4) appr. no yes

th
is

pa
pe

r LB-2g/4g 2/4-BLEU corpus linear appr. lin BLEU (5) exact no yes
SP 1-BLEU sentence unigram count exact no yes
ILP 2-BLEU sentence uni/bi-gram counts (7) appr. yes yes

RLX 2-BLEU sentence uni/bi-gram counts (8) exact yes yes

Table 1: Recapitulative overview of oracle decoders.

3 Existing Algorithms

In this section, we describe our reimplementation
of two approximate search algorithms that have
been proposed in the literature to solve the oracle
decoding problem for BLEU. In addition to their
approximate nature, none of them accounts for the
fact that the count of each matching word has to
be clipped.

3.1 Language Model Oracle (LM)

The simplest approach we consider is introduced
in (Li and Khudanpur, 2009), where oracle decod-
ing is reduced to the problem of finding the most
likely hypothesis under a n-gram language model
trained with the sole reference translation.

Let us suppose we have a n-gram language
model that gives a probability P (en|e1 . . . en−1)
of word en given the n− 1 previous words.
The probability of a hypothesis e is then
Pn(e|r) =

∏
i=1 P (ei+n|ei . . . ei+n−1). The lan-

guage model can conveniently be represented as a
FSA ALM , with each arc carrying a negative log-
probability weight and with additional ρ-type fail-
ure transitions to accommodate for back-off arcs.

If we train, for each source sentence f , a sepa-
rate language model ALM (rf ) using only the ref-
erence rf , oracle decoding amounts to finding a
shortest (most probable) path in the weighted FSA
resulting from the composition L ◦ALM (rf ) over
the (min,+)-semiring:

π∗LM (f) = ShortestPath(L ◦ALM (rf )).

This approach replaces the optimization of n-
BLEU with a search for the most probable path
under a simplistic n-gram language model. One
may expect the most probable path to select fre-
quent n-gram from the reference, thus augment-
ing n-BLEU.

3.2 Partial BLEU Oracle (PB)

Another approach is put forward in (Dreyer et
al., 2007) and used in (Li and Khudanpur, 2009):
oracle translations are shortest paths in a lattice
L, where the weight of each path π is the sen-
tence level log BLEU(π) score of the correspond-
ing complete or partial hypothesis:

log BLEU(π) =
1
4

∑
m=1...4

log pm. (4)

Here, the brevity penalty is ignored and n-
gram precisions are offset to avoid null counts:
pm = (cm(eπ, r) + 0.1)/(cm(eπ) + 0.1).

This approach has been reimplemented using
the FST formalism by defining a suitable semir-
ing. Let each weight of the semiring keep a set
of tuples accumulated up to the current state of
the lattice. Each tuple contains three words of re-
cent history, a partial hypothesis as well as current
values of the length of the partial hypothesis, n-
gram counts (4 numbers) and the sentence-level
log BLEU score defined by Equation (4). In the
beginning each arc is initialized with a singleton
set containing one tuple with a single word as the
partial hypothesis. For the semiring operations we
define one common⊗-operation and two versions
of the ⊕-operation:
• L1 ⊗PB L2 – appends a word on the edge of
L2 to L1’s hypotheses, shifts their recent histories
and updates n-gram counts, lengths, and current
score; • L1 ⊕PB L2 – merges all sets from L1

and L2 and recombinates those having the same
recent history; • L1 ⊕PB` L2 – merges all sets
from L1 and L2 and recombinates those having
the same recent history and the same hypothesis
length.

If several hypotheses have the same recent
history (and length in the case of ⊕PB`), re-
combination removes all of them, but the one
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Figure 1: Examples of the ∆n automata for Σ = {0, 1} and n = 1 . . . 3. Initial and final states are marked,
respectively, with bold and with double borders. Note that arcs between final states are weighted with 0, while in
reality they will have this weight only if the corresponding n-gram does not appear in the reference.

with the largest current BLEU score. Optimal
path is then found by launching the generic
ShortestDistance(L) algorithm over one of
the semirings above.

The (⊕PB`,⊗PB)-semiring, in which the
equal length requirement also implies equal
brevity penalties, is more conservative in recom-
bining hypotheses and should achieve final BLEU

that is least as good as that obtained with the
(⊕PB,⊗PB)-semiring5.

4 Linear BLEU Oracle (LB)

In this section, we propose a new oracle based on
the linear approximation of the corpus BLEU in-
troduced in (Tromble et al., 2008). While this ap-
proximation was earlier used for Minimum Bayes
Risk decoding in lattices (Tromble et al., 2008;
Blackwood et al., 2010), we show here how it can
also be used to approximately compute an oracle
translation.

Given five real parameters θ0...4 and a word vo-
cabulary Σ, Tromble et al. (2008) showed that one
can approximate the corpus-BLEU with its first-
order (linear) Taylor expansion:

lin BLEU(π) = θ0 |eπ|+
4∑

n=1

θn
∑
u∈Σn

cu(eπ)δu(r),

(5)
where cu(e) is the number of times the n-gram
u appears in e, and δu(r) is an indicator variable
testing the presence of u in r.

To exploit this approximation for oracle decod-
ing, we construct four weighted FSTs ∆n con-
taining a (final) state for each possible (n − 1)-

5See, however, experiments in Section 6.

gram, and all weighted transitions of the kind
(σn−1

1 , σn : σn1 /θn × δσn
1
(r), σn2 ), where σs are

in Σ, input word sequence σn−1
1 and output se-

quence σn2 , are, respectively, the maximal prefix
and suffix of an n-gram σn1 .

In supplement, we add auxiliary states corre-
sponding to m-grams (m < n − 1), whose func-
tional purpose is to help reach one of the main
(n − 1)-gram states. There are |Σ|

n−1−1
|Σ|−1 , n > 1,

such supplementary states and their transitions are
(σk1 , σk+1 : σk+1

1 /0, σk+1
1 ), k = 1 . . . n−2. Apart

from these auxiliary states, the rest of the graph
(i.e., all final states) reproduces the structure of
the well-known de Bruijn graphB(Σ, n) (see Fig-
ure 1).

To actually compute the best hypothesis, we
first weight all arcs in the input FSA L with θ0 to
obtain ∆0. This makes each word’s weight equal
in a hypothesis path, and the total weight of the
path in ∆0 is proportional to the number of words
in it. Then, by sequentially composing ∆0 with
other ∆ns, we discount arcs whose output n-gram
corresponds to a matching n-gram. The amount
of discount is regulated by the ratio between θn’s
for n > 0.

With all operations performed over the
(min,+)-semiring, the oracle translation is then
given by:

π∗LB = ShortestPath(∆0◦∆1◦∆2◦∆3◦∆4).

We set parameters θn as in (Tromble et al.,
2008): θ0 = 1, roughly corresponding to the
brevity penalty (each word in a hypothesis adds
up equally to the final path length) and θn =
−(4p · rn−1)−1, which are increasing discounts
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Figure 2: Performance of the LB-4g oracle for differ-
ent combinations of p and r on WMT11 de2en task.

for matching n-grams. The values of p and r were
found by grid search with a 0.05 step value. A
typical result of the grid evaluation of the LB or-
acle for German to English WMT’11 task is dis-
played on Figure 2. The optimal values for the
other pairs of languages were roughly in the same
ballpark, with p ≈ 0.3 and r ≈ 0.2.

5 Oracles with n-gram Clipping

In this section, we describe two new oracle de-
coders that take n-gram clipping into account.
These oracles leverage on the well-known fact
that the shortest path problem, at the heart of
all the oracles described so far, can be reduced
straightforwardly to an Integer Linear Program-
ming (ILP) problem (Wolsey, 1998). Once oracle
decoding is formulated as an ILP problem, it is
relatively easy to introduce additional constraints,
for instance to enforce n-gram clipping. We will
first describe the optimization problem of oracle
decoding and then present several ways to effi-
ciently solve it.

5.1 Problem Description

Throughout this section, abusing the notations,
we will also think of an edge ξi as a binary vari-
able describing whether the edge is “selected” or
not. The set {0, 1}#{Ξ} of all possible edge as-
signments will be denoted by P . Note that Π, the
set of all paths in the lattice is a subset of P: by
enforcing some constraints on an assignment ξ in
P , it can be guaranteed that it will represent a path
in the lattice. For the sake of presentation, we as-
sume that each edge ξi generates a single word
w(ξi) and we focus first on finding the optimal
hypothesis with respect to the sentence approxi-
mation of the 1-BLEU score.

As 1-BLEU is decomposable, it is possible to

define, for every edge ξi, an associated reward, θi
that describes the edge’s local contribution to the
hypothesis score. For instance, for the sentence
approximation of the 1-BLEU score, the rewards
are defined as:

θi =

{
Θ1 if w(ξi) is in the reference,
−Θ2 otherwise,

where Θ1 and Θ2 are two positive constants cho-
sen to maximize the corpus BLEU score6. Con-
stant Θ1 (resp. Θ2) is a reward (resp. a penalty)
for generating a word in the reference (resp. not in
the reference). The score of an assignment ξ ∈ P
is then defined as: score(ξ) =

∑#{Ξ}
i=1 ξi · θi. This

score can be seen as a compromise between the
number of common words in the hypothesis and
the reference (accounting for recall) and the num-
ber of words of the hypothesis that do not appear
in the reference (accounting for precision).

As explained in Section 2.3, finding the or-
acle hypothesis amounts to solving the shortest
distance (or path) problem (3), which can be re-
formulated by a constrained optimization prob-
lem (Wolsey, 1998):

arg max
ξ∈P

#{Ξ}∑
i=1

ξi · θi (6)

s.t.
∑

ξ∈Ξ−(qF )

ξ = 1,
∑

ξ∈Ξ+(q0)

ξ = 1

∑
ξ∈Ξ+(q)

ξ −
∑

ξ∈Ξ−(q)

ξ = 0, q ∈ Q\{q0, qF }

where q0 (resp. qF ) is the initial (resp. final) state
of the lattice and Ξ−(q) (resp. Ξ+(q)) denotes the
set of incoming (resp. outgoing) edges of state q.
These path constraints ensure that the solution of
the problem is a valid path in the lattice.

The optimization problem in Equation (6) can
be further extended to take clipping into account.
Let us introduce, for each word w, a variable γw
that denotes the number of times w appears in the
hypothesis clipped to the number of times, it ap-
pears in the reference. Formally, γw is defined by:

γw = min

 ∑
ξ∈Ω(w)

ξ, cw(r)


6We tried several combinations of Θ1 and Θ2 and kept

the one that had the highest corpus 4-BLEU score.
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where Ω (w) is the subset of edges generating w,
and

∑
ξ∈Ω(w) ξ is the number of occurrences of

w in the solution and cw(r) is the number of oc-
currences of w in the reference r. Using the γ
variables, we define a “clipped” approximation of
1-BLEU:

Θ1 ·
∑
w

γw −Θ2 ·

#{Ξ}∑
i=1

ξi −
∑
w

γw


Indeed, the clipped number of words in the hy-
pothesis that appear in the reference is given by∑

w γw, and
∑#{Ξ}

i=1 ξi −
∑

w γw corresponds to
the number of words in the hypothesis that do not
appear in the reference or that are surplus to the
clipped count.

Finally, the clipped lattice oracle is defined by
the following optimization problem:

arg max
ξ∈P,γw

(Θ1 + Θ2) ·
∑
w

γw −Θ2 ·
#{Ξ}∑
i=1

ξi

(7)

s.t. γw ≥ 0, γw ≤ cw(r), γw ≤
∑

ξ∈Ω(w)

ξ

∑
ξ∈Ξ−(qF )

ξ = 1,
∑

ξ∈Ξ+(q0)

ξ = 1

∑
ξ∈Ξ+(q)

ξ −
∑

ξ∈Ξ−(q)

ξ = 0, q ∈ Q \ {q0, qF }

where the first three sets of constraints are the lin-
earization of the definition of γw, made possible
by the positivity of Θ1 and Θ2, and the last three
sets of constraints are the path constraints.

In our implementation we generalized this op-
timization problem to bigram lattices, in which
each edge is labeled by the bigram it generates.
Such bigram FSAs can be produced by compos-
ing the word lattice with ∆2 from Section 4. In
this case, the reward of an edge will be defined as
a combination of the (clipped) number of unigram
matches and bigram matches, and solving the op-
timization problem yields a 2-BLEU optimal hy-
pothesis. The approach can be further generalized
to higher-order BLEU or other metrics, as long as
the reward of an edge can be computed locally.

The constrained optimization problem (7) can
be solved efficiently using off-the-shelf ILP
solvers7.

7In our experiments we used Gurobi (Optimization,
2010) a commercial ILP solver that offers free academic li-
cense.

5.2 Shortest Path Oracle (SP)
As a trivial special class of the above formula-
tion, we also define a Shortest Path Oracle (SP)
that solves the optimization problem in (6). As
no clipping constraints apply, it can be solved ef-
ficiently using the standard Bellman algorithm.

5.3 Oracle Decoding through Lagrangian
Relaxation (RLX)

In this section, we introduce another method to
solve problem (7) without relying on an exter-
nal ILP solver. Following (Rush et al., 2010;
Chang and Collins, 2011), we propose an original
method for oracle decoding based on Lagrangian
relaxation. This method relies on the idea of re-
laxing the clipping constraints: starting from an
unconstrained problem, the counts clipping is en-
forced by incrementally strengthening the weight
of paths satisfying the constraints.

The oracle decoding problem with clipping
constraints amounts to solving:

arg min
ξ∈Π

−
#{Ξ}∑
i=1

ξi · θi (8)

s.t.
∑

ξ∈Ω(w)

ξ ≤ cw(r), w ∈ r

where, by abusing the notations, r also denotes
the set of words in the reference. For sake of clar-
ity, the path constraints are incorporated into the
domain (the arg min runs over Π and not over P).
To solve this optimization problem we consider its
dual form and use Lagrangian relaxation to deal
with clipping constraints.

Let λ = {λw}w∈r be positive Lagrange mul-
tipliers, one for each different word of the refer-
ence, then the Lagrangian of the problem (8) is:

L(λ, ξ) = −
#{Ξ}∑
i=1

ξiθi+
∑
w∈r

λw

 ∑
ξ∈Ω(w)

ξ − cw(r)


The dual objective is L(λ) = minξ L(λ, ξ)

and the dual problem is: maxλ,λ�0 L(λ). To
solve the latter, we first need to work out the dual
objective:

ξ∗ = arg min
ξ∈Π

L(λ, ξ)

= arg min
ξ∈Π

#{Ξ}∑
i=1

ξi
(
λw(ξi) − θi

)
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where we assume that λw(ξi) is 0 when word
w(ξi) is not in the reference. In the same way
as in Section 5.2, the solution of this problem can
be efficiently retrieved with a shortest path algo-
rithm.

It is possible to optimize L(λ) by noticing that
it is a concave function. It can be shown (Chang
and Collins, 2011) that, at convergence, the clip-
ping constraints will be enforced in the optimal
solution. In this work, we chose to use a simple
gradient descent to solve the dual problem. A sub-
gradient of the dual objective is:

∂L(λ)
∂λw

=
∑

ξ∈Ω(w)∩ξ∗
ξ − cw(r).

Each component of the gradient corresponds to
the difference between the number of times the
word w appears in the hypothesis and the num-
ber of times it appears in the reference. The algo-
rithm below sums up the optimization of task (8).
In the algorithm α(t) corresponds to the step size
at the tth iteration. In our experiments we used a
constant step size of 0.1. Compared to the usual
gradient descent algorithm, there is an additional
projection step of λ on the positive orthant, which
enforces the constraint λ � 0.

∀w, λ(0)
w ← 0

for t = 1→ T do
ξ∗(t) = arg minξ

∑
i ξi ·

(
λw(ξi) − θi

)
if all clipping constraints are enforced
then optimal solution found
else for w ∈ r do

nw ← n. of occurrences of w in ξ∗(t)

λ
(t)
w ← λ

(t)
w + α(t) · (nw − cw(r))

λ
(t)
w ← max(0, λ(t)

w )

6 Experiments

For the proposed new oracles and the existing ap-
proaches, we compare the quality of oracle trans-
lations and the average time per sentence needed
to compute them8 on several datasets for 3 lan-
guage pairs, using lattices generated by two open-
source decoders: N-code and Moses9 (Figures 3

8Experiments were run in parallel on a server with 64G
of RAM and 2 Xeon CPUs with 4 cores at 2.3 GHz.

9As the ILP (and RLX) oracle were implemented in
Python, we pruned Moses lattices to accelerate task prepa-
ration for it.

decoder fr2en de2en en2de

te
st N-code 27.88 22.05 15.83

Moses 27.68 21.85 15.89

or
ac

le N-code 36.36 29.22 21.18
Moses 35.25 29.13 22.03

Table 2: Test BLEU scores and oracle scores on
100-best lists for the evaluated systems.

and 4). Systems were trained on the data provided
for the WMT’11 Evaluation task10, tuned on the
WMT’09 test data and evaluated on WMT’10 test
set11 to produce lattices. The BLEU test scores
and oracle scores on 100-best lists with the ap-
proximation (4) for N-code and Moses are given
in Table 2. It is not until considering 10,000-best
lists that n-best oracles achieve performance com-
parable to the (mediocre) SP oracle.

To make a fair comparison with the ILP and
RLX oracles which optimize 2-BLEU, we in-
cluded 2-BLEU versions of the LB and LM ora-
cles, identified below with the “-2g” suffix. The
two versions of the PB oracle are respectively
denoted as PB and PB`, by the type of the ⊕-
operation they consider (Section 3.2). Parame-
ters p and r for the LB-4g oracle for N-code were
found with grid search and reused for Moses:
p = 0.25, r = 0.15 (fr2en); p = 0.175, r = 0.575
(en2de) and p = 0.35, r = 0.425 (de2en). Cor-
respondingly, for the LB-2g oracle: p = 0.3, r =
0.15; p = 0.3, r = 0.175 and p = 0.575, r = 0.1.

The proposed LB, ILP and RLX oracles were
the best performing oracles, with the ILP and
RLX oracles being considerably faster, suffering
only a negligible decrease in BLEU, compared to
the 4-BLEU-optimized LB oracle. We stopped
RLX oracle after 20 iterations, as letting it con-
verge had a small negative effect (∼1 point of the
corpus BLEU), because of the sentence/corpus dis-
crepancy ushered by the BLEU score approxima-
tion.

Experiments showed consistently inferior per-
formance of the LM-oracle resulting from the op-
timization of the sentence probability rather than
BLEU. The PB oracle often performed compara-
bly to our new oracles, however, with sporadic
resource-consumption bursts, that are difficult to

10http://www.statmt.org/wmt2011
11All BLEU scores are reported using the multi-bleu.pl

script.
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Figure 3: Oracles performance for N-code lattices.
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Figure 4: Oracles performance for Moses lattices pruned with parameter -b 0.5.

avoid without more cursory hypotheses recom-
bination strategies and the induced effect on the
translations quality. The length-aware PB` oracle
has unexpectedly poorer scores compared to its
length-agnostic PB counterpart, while it should,
at least, stay even, as it takes the brevity penalty
into account. We attribute this fact to the com-
plex effect of clipping coupled with the lack of
control of the process of selecting one hypothe-
sis among several having the same BLEU score,
length and recent history. Anyhow, BLEU scores
of both of PB oracles are only marginally differ-
ent, so the PB`’s conservative policy of pruning
and, consequently, much heavier memory con-
sumption makes it an unwanted choice.

7 Conclusion

We proposed two methods for finding oracle
translations in lattices, based, respectively, on a
linear approximation to the corpus-level BLEU

and on integer linear programming techniques.
We also proposed a variant of the latter approach
based on Lagrangian relaxation that does not rely
on a third-party ILP solver. All these oracles have
superior performance to existing approaches, in
terms of the quality of the found translations, re-
source consumption and, for the LB-2g oracles,
in terms of speed. It is thus possible to use bet-

ter approximations of BLEU than was previously
done, taking the corpus-based nature of BLEU, or
clipping constrainst into account, delivering better
oracles without compromising speed.

Using 2-BLEU and 4-BLEU oracles yields com-
parable performance, which confirms the intuition
that hypotheses sharing many 2-grams, would
likely have many common 3- and 4-grams as well.
Taking into consideration the exceptional speed of
the LB-2g oracle, in practice one can safely opti-
mize for 2-BLEU instead of 4-BLEU, saving large
amounts of time for oracle decoding on long sen-
tences.

Overall, these experiments accentuate the
acuteness of scoring problems that plague modern
decoders: very good hypotheses exist for most in-
put sentences, but are poorly evaluated by a linear
combination of standard features functions. Even
though the tuning procedure can be held respon-
sible for part of the problem, the comparison be-
tween lattice and n-best oracles shows that the
beam search leaves good hypotheses out of the n-
best list until very high value of n, that are never
used in practice.
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Abstract

We estimate the parameters of a phrase-
based statistical machine translation sys-
tem from monolingual corpora instead of a
bilingual parallel corpus. We extend exist-
ing research on bilingual lexicon induction
to estimate both lexical and phrasal trans-
lation probabilities for MT-scale phrase-
tables. We propose a novel algorithm to es-
timate reordering probabilities from mono-
lingual data. We report translation results
for an end-to-end translation system us-
ing these monolingual features alone. Our
method only requires monolingual corpora
in source and target languages, a small
bilingual dictionary, and a small bitext for
tuning feature weights. In this paper, we ex-
amine an idealization where a phrase-table
is given. We examine the degradation in
translation performance when bilingually
estimated translation probabilities are re-
moved and show that 80%+ of the loss can
be recovered with monolingually estimated
features alone. We further show that our
monolingual features add 1.5 BLEU points
when combined with standard bilingually
estimated phrase table features.

1 Introduction

The parameters of statistical models of transla-
tion are typically estimated from large bilingual
parallel corpora (Brown et al., 1993). However,
these resources are not available for most lan-
guage pairs, and they are expensive to produce in
quantities sufficient for building a good transla-
tion system (Germann, 2001). We attempt an en-
tirely different approach; we use cheap and plen-
tiful monolingual resources to induce an end-to-
end statistical machine translation system. In par-
ticular, we extend the long line of work on in-
ducing translation lexicons (beginning with Rapp
(1995)) and propose to use multiple independent
cues present in monolingual texts to estimate lex-
ical and phrasal translation probabilities for large,
MT-scale phrase-tables. We then introduce a

novel algorithm to estimate reordering features
from monolingual data alone, and we report the
performance of a phrase-based statistical model
(Koehn et al., 2003) estimated using these mono-
lingual features.

Most of the prior work on lexicon induction
is motivated by the idea that it could be applied
to machine translation but stops short of actu-
ally doing so. Lexicon induction holds the po-
tential to create machine translation systems for
languages which do not have extensive parallel
corpora. Training would only require two large
monolingual corpora and a small bilingual dictio-
nary, if one is available. The idea is that intrin-
sic properties of monolingual data (possibly along
with a handful of bilingual pairs to act as exam-
ple mappings) can provide independent but infor-
mative cues to learn translations because words
(and phrases) behave similarly across languages.
This work is the first attempt to extend and apply
these ideas to an end-to-end machine translation
pipeline. While we make an explicit assumption
that a table of phrasal translations is given a priori,
we induce every other parameter of a full phrase-
based translation system from monolingual data
alone. The contributions of this work are:

• In Section 2.2 we analyze the challenges
of using bilingual lexicon induction for sta-
tistical MT (performance on low frequency
items, and moving from words to phrases).

• In Sections 3.1 and 3.2 we use multiple cues
present in monolingual data to estimate lexi-
cal and phrasal translation scores.

• In Section 3.3 we propose a novel algo-
rithm for estimating phrase reordering fea-
tures from monolingual texts.

• Finally, in Section 5 we systematically drop
feature functions from a phrase table and
then replace them with monolingually es-
timated equivalents, reporting end-to-end
translation quality.
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2 Background

We begin with a brief overview of the stan-
dard phrase-based statistical machine translation
model. Here, we define the parameters which
we later replace with monolingual alternatives.
We continue with a discussion of bilingual lex-
icon induction; we extend these methods to es-
timate the monolingual parameters in Section 3.
This approach allows us to replace expensive/rare
bilingual parallel training data with two large
monolingual corpora, a small bilingual dictionary,
and ≈2,000 sentence bilingual development set,
which are comparatively plentiful/inexpensive.

2.1 Parameters of phrase-based SMT
Statistical machine translation (SMT) was first
formulated as a series of probabilistic mod-
els that learn word-to-word correspondences
from sentence-aligned bilingual parallel corpora
(Brown et al., 1993). Current methods, includ-
ing phrase-based (Och, 2002; Koehn et al., 2003)
and hierarchical models (Chiang, 2005), typically
start by word-aligning a bilingual parallel cor-
pus (Och and Ney, 2003). They extract multi-
word phrases that are consistent with the Viterbi
word alignments and use these phrases to build
new translations. A variety of parameters are es-
timated using the bitexts. Here we review the pa-
rameters of the standard phrase-based translation
model (Koehn et al., 2007). Later we will show
how to estimate them using monolingual texts in-
stead. These parameters are:

• Phrase pairs. Phrase extraction heuristics
(Venugopal et al., 2003; Tillmann, 2003;
Och and Ney, 2004) produce a set of phrase
pairs (e, f) that are consistent with the word
alignments. In this paper we assume that the
phrase pairs are given (without any scores),
and we induce every other parameter of the
phrase-based model from monolingual data.

• Phrase translation probabilities. Each
phrase pair has a list of associated fea-
ture functions (FFs). These include phrase
translation probabilities, φ(e|f) and φ(f |e),
which are typically calculated via maximum
likelihood estimation.

• Lexical weighting. Since MLE overestimates
φ for phrase pairs with sparse counts, lexi-
cal weighting FFs are used to smooth. Aver-
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Figure 1: The reordering probabilities from the phrase-
based models are estimated from bilingual data by cal-
culating how often in the parallel corpus a phrase pair
(f, e) is orientated with the preceding phrase pair in
the 3 types of orientations (monotone, swapped, and
discontinuous).

age word translation probabilities, w(ei|fj),
are calculated via phrase-pair-internal word
alignments.

• Reordering model. Each phrase pair (e, f)
also has associated reordering parameters,
po(orientation|f, e), which indicate the dis-
tribution of its orientation with respect to the
previously translated phrase. Orientations
are monotone, swap, discontinuous (Tillman,
2004; Kumar and Byrne, 2004), see Figure 1.

• Other features. Other typical features are
n-gram language model scores and a phrase
penalty, which governs whether to use fewer
longer phrases or more shorter phrases.
These are not bilingually estimated, so we
can re-use them directly without modifica-
tion.

The features are combined in a log linear model,
and their weights are set through minimum error
rate training (Och, 2003). We use the same log
linear formulation and MERT but propose alterna-
tives derived directly from monolingual data for
all parameters except for the phrase pairs them-
selves. Our pipeline still requires a small bitext of
approximately 2,000 sentences to use as a devel-
opment set for MERT parameter tuning.

131



2.2 Bilingual lexicon induction for SMT

Bilingual lexicon induction describes the class of
algorithms that attempt to learn translations from
monolingual corpora. Rapp (1995) was the first
to propose using non-parallel texts to learn the
translations of words. Using large, unrelated En-
glish and German corpora (with 163m and 135m
words) and a small German-English bilingual dic-
tionary (with 22k entires), Rapp (1999) demon-
strated that reasonably accurate translations could
be learned for 100 German nouns that were not
contained in the seed bilingual dictionary. His al-
gorithm worked by (1) building a context vector
representing an unknown German word by count-
ing its co-occurrence with all the other words
in the German monolingual corpus, (2) project-
ing this German vector onto the vector space of
English using the seed bilingual dictionary, (3)
calculating the similarity of this sparse projected
vector to vectors for English words that were con-
structed using the English monolingual corpus,
and (4) outputting the English words with the
highest similarity as the most likely translations.

A variety of subsequent work has extended the
original idea either by exploring different mea-
sures of vector similarity (Fung and Yee, 1998)
or by proposing other ways of measuring simi-
larity beyond co-occurence within a context win-
dow. For instance, Schafer and Yarowsky (2002)
demonstrated that word translations tend to co-
occur in time across languages. Koehn and Knight
(2002) used similarity in spelling as another kind
of cue that a pair of words may be translations of
one another. Garera et al. (2009) defined context
vectors using dependency relations rather than ad-
jacent words. Bergsma and Van Durme (2011)
used the visual similarity of labeled web images
to learn translations of nouns. Additional related
work on learning translations from monolingual
corpora is discussed in Section 6.

In this paper, we apply bilingual lexicon in-
duction methods to statistical machine translation.
Given the obvious benefits of not having to rely
on scarce bilingual parallel training data, it is sur-
prising that bilingual lexicon induction has not
been used for SMT before now. There are sev-
eral open questions that make its applicability to
SMT uncertain. Previous research on bilingual
lexicon induction learned translations only for a
small number of high frequency words (e.g. 100
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Figure 2: Accuracy of single-word translations in-
duced using contextual similarity as a function of the
source word corpus frequency. Accuracy is the pro-
portion of the source words with at least one correct
(bilingual dictionary) translation in the top 1 and top
10 candidate lists.

nouns in Rapp (1995), 1,000 most frequent words
in Koehn and Knight (2002), or 2,000 most fre-
quent nouns in Haghighi et al. (2008)). Although
previous work reported high translation accuracy,
it may be misleading to extrapolate the results to
SMT, where it is necessary to translate a much
larger set of words and phrases, including many
low frequency items.

In a preliminary study, we plotted the accuracy
of translations against the frequency of the source
words in the monolingual corpus. Figure 2 shows
the result for translations induced using contex-
tual similarity (defined in Section 3.1). Unsur-
prisingly, frequent terms have a substantially bet-
ter chance of being paired with a correct transla-
tion, with words that only occur once having a low
chance of being translated accurately.1 This prob-
lem is exacerbated when we move to multi-token
phrases. As with phrase translation features esti-
mated from parallel data, longer phrases are more
sparse, making similarity scores less reliable than
for single words.

Another impediment (not addressed in this
paper) for using lexicon induction for SMT is
the number of translations that must be learned.
Learning translations for all words in the source
language requires n2 vector comparisons, since
each word in the source language vocabulary must

1For a description of the experimental setup used to pro-
duce these translations, see Experiment 8 in Section 5.2.

132



s1

s2

s3

sN-1

sN

✓

✓

✓

t1
t2
t3

tM-1

tM
✓

✓

dict.

project
✓

✓

✓

✓

✓

✓

compare

para crecer
to expand

activity of

economic
activity

policy
growth
foreign

economico

tasa
planeta

empleo
extranjero

policy
para crecer
(projected)

ES Context
Vector

Projected ES
Context Vector

EN Context
Vectors

Figure 3: Scoring contextual similarity of phrases:
first, contextual vectors are projected using a small
seed dictionary and then compared with the target lan-
guage candidates.

be compared against the vectors for all words in
the target language vocabulary. The size of the n2

comparisons hugely increases if we compare vec-
tors for multi-word phrases instead of just words.
In this work, we avoid this problem by assuming
that a limited set of phrase pairs is given a pri-
ori (but without scores). By limiting ourselves
to phrases in a phrase table, we vastly limit the
search space of possible translations. This is an
idealization because high quality translations are
guaranteed to be present. However, as our lesion
experiments in Section 5.1 show, a phrase table
without accurate translation probability estimates
is insufficient to produce high quality translations.
We show that lexicon induction methods can be
used to replace bilingual estimation of phrase- and
lexical-translation probabilities, making a signifi-
cant step towards SMT without parallel corpora.

3 Monolingual Parameter Estimation

We use bilingual lexicon induction methods to es-
timate the parameters of a phrase-based transla-
tion model from monolingual data. Instead of
scores estimated from bilingual parallel data, we
make use of cues present in monolingual data to
provide multiple orthogonal estimates of similar-
ity between a pair of phrases.

3.1 Phrasal similarity features

Contextual similarity. We extend the vector
space approach of Rapp (1999) to compute sim-
ilarity between phrases in the source and tar-
get languages. More formally, assume that
(s1, s2, . . . sN ) and (t1, t2, . . . tM ) are (arbitrarily
indexed) source and target vocabularies, respec-
tively. A source phrase f is represented with an
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Figure 4: Temporal histograms of the English phrase
terrorist, its Spanish translation terrorista, and riqueza
(wealth) collected from monolingual texts spanning a
13 year period. While the correct translation has a
good temporal match, the non-translation riqueza has
a distinctly different signature.

N - and target phrase e with an M -dimensional
vector (see Figure 3). The component values of
the vector representing a phrase correspond to
how often each of the words in that vocabulary
appear within a two word window on either side
of the phrase. These counts are collected using
monolingual corpora. After the values have been
computed, a contextual vector f is projected onto
the English vector space using translations in a
seed bilingual dictionary to map the component
values into their appropriate English vector posi-
tions. This sparse projected vector is compared
to the vectors representing all English phrases e.
Each phrase pair in the phrase table is assigned
a contextual similarity score c(f, e) based on the
similarity between e and the projection of f .

Various means of computing the component
values and vector similarity measures have been
proposed in literature (e.g. Rapp (1999), Fung and
Yee (1998)). Following Fung and Yee (1998), we
compute the value of the k-th component of f ’s
contextual vector as follows:

wk = nf,k × (log(n/nk) + 1)

where nf,k and nk are the number of times sk ap-
pears in the context of f and in the entire corpus,
and n is the maximum number of occurrences of
any word in the data. Intuitively, the more fre-
quently sk appears with f and the less common
it is in the corpus in general, the higher its com-
ponent value. Similarity between two vectors is
measured as the cosine of the angle between them.

Temporal similarity. In addition to contex-
tual similarity, phrases in two languages may
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be scored in terms of their temporal similarity
(Schafer and Yarowsky, 2002; Klementiev and
Roth, 2006; Alfonseca et al., 2009). The intu-
ition is that news stories in different languages
will tend to discuss the same world events on the
same day. The frequencies of translated phrases
over time give them particular signatures that will
tend to spike on the same dates. For instance, if
the phrase asian tsunami is used frequently dur-
ing a particular time span, the Spanish transla-
tion maremoto asiático is likely to also be used
frequently during that time. Figure 4 illustrates
how the temporal distribution of terrorist is more
similar to Spanish terrorista than to other Span-
ish phrases. We calculate the temporal similar-
ity between a pair of phrases t(f, e) using the
method defined by Klementiev and Roth (2006).
We generate a temporal signature for each phrase
by sorting the set of (time-stamped) documents in
the monolingual corpus into a sequence of equally
sized temporal bins and then counting the number
of phrase occurrences in each bin. In our exper-
iments, we set the window size to 1 day, so the
size of temporal signatures is equal to the num-
ber of days spanned by our corpus. We use cosine
distance to compare the normalized temporal sig-
natures for a pair of phrases (f, e).
Topic similarity. Phrases and their translations
are likely to appear in articles written about the
same topic in two languages. Thus, topic or cat-
egory information associated with monolingual
data can also be used to indicate similarity be-
tween a phrase and its candidate translation. In
order to score a pair of phrases, we collect their
topic signatures by counting their occurrences in
each topic and then comparing the resulting vec-
tors. We again use the cosine similarity mea-
sure on the normalized topic signatures. In our
experiments, we use interlingual links between
Wikipedia articles to estimate topic similarity. We
treat each linked article pair as a topic and collect
counts for each phrase across all articles in its cor-
responding language. Thus, the size of a phrase
topic signature is the number of article pairs with
interlingual links in Wikipedia, and each compo-
nent contains the number of times the phrase ap-
pears in (the appropriate side of) the correspond-
ing pair. Our Wikipedia-based topic similarity
feature, w(f, e), is similar in spirit to polylingual
topic models (Mimno et al., 2009), but it is scal-
able to full bilingual lexicon induction.

3.2 Lexical similarity features

In addition to the three phrase similarity features
used in our model – c(f, e), t(f, e) and w(f, e) –
we include four additional lexical similarity fea-
tures for each of phrase pair. The first three lex-
ical features clex(f, e), tlex(f, e) and wlex(f, e)
are the lexical equivalents of the phrase-level con-
textual, temporal and wikipedia topic similarity
scores. They score the similarity of individual
words within the phrases. To compute these
lexical similarity features, we average similarity
scores over all possible word alignments across
the two phrases. Because individual words are
more frequent than multiword phrases, the accu-
racy of clex, tlex, and wlex tends to be higher than
their phrasal equivalents (this is similar to the ef-
fect observed in Figure 2).

Orthographic / phonetic similarity. The final
lexical similarity feature that we incorporate is
o(f, e), which measures the orthographic similar-
ity between words in a phrase pair. Etymolog-
ically related words often retain similar spelling
across languages with the same writing system,
and low string edit distance sometimes signals
translation equivalency. Berg-Kirkpatrick and
Klein (2011) present methods for learning cor-
respondences between the alphabets of two lan-
guages. We can also extend this idea to language
pairs not sharing the same writing system since
many cognates, borrowed words, and names re-
main phonetically similar. Transliterations can be
generated for tokens in a source phrase (Knight
and Graehl, 1997), with o(f, e) calculating pho-
netic similarity rather than orthographic.

The three phrasal and four lexical similarity
scores are incorporated into the log linear trans-
lation model as feature functions, replacing the
bilingually estimated phrase translation probabil-
ities φ and lexical weighting probabilities w. Our
seven similarity scores are not the only ones that
could be incorporated into the translation model.
Various other similarity scores can be computed
depending on the available monolingual data and
its associated metadata (see, e.g. Schafer and
Yarowsky (2002)).

3.3 Reordering

The remaining component of the phrase-based
SMT model is the reordering model. We
introduce a novel algorithm for estimating
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Input: Source and target phrases f and e,
Source and target monolingual corpora Cf and Ce,
Phrase table pairs T = {(f (i), e(i))}Ni=1.

Output: Orientation features (pm, ps, pd).

Sf ← sentences containing f in Cf ;
Se ← sentences containing e in Ce;
(Bf ,−,−)← CollectOccurs(f,∪N

i=1f (i), Sf );
(Be, Ae, De)← CollectOccurs(e,∪N

i=1e(i), Se);
cm = cs = cd = 0;

foreach unique f ′ in Bf do
foreach translation e′ of f ′ in T do

cm = cm + #Be (e′);
cs = cs + #Ae (e′);
cd = cd + #De (e′);

c← cm + cs + cd;
return ( cm

c
, cs

c
, cd

c
)

CollectOccurs(r, R, S)
B ← (); A← (); D ← ();
foreach sentence s ∈ S do

foreach occurrence of phrase r in s do
B ← B + (longest preceding r and in R);
A← A + (longest following r and in R);
D ← D + (longest discontinuous w/ r and in
R);

return (B, A, D);

Figure 5: Algorithm for estimating reordering
probabilities from monolingual data.

po(orientation|f, e) from two monolingual cor-
pora instead a bitext.

Figure 1 illustrates how the phrase pair orienta-
tion statistics are estimated in the standard phrase-
based SMT pipeline. For a phrase pair like (f =
“Profils”, e = “profile”), we count its orien-
tation with the previously translated phrase pair
(f ′ = “in Facebook”, e′ = “Facebook”) across
all translated sentence pairs in the bitext.

In our pipeline we do not have translated sen-
tence pairs. Instead, we look for monolingual
sentences in the source corpus which contain
the source phrase that we are interested in, like
f = “Profils”, and at least one other phrase
that we have a translation for, like f ′ = “in
Facebook”. We then look for all target lan-
guage sentences in the target monolingual cor-
pus that contain the translation of f (here e =
“profile”) and any translation of f ′. Figure 6 il-
lustrates that it is possible to find evidence for
po(swapped|Profils, profile), even from the non-
parallel, non-translated sentences drawn from two
independent monolingual corpora. By looking for
foreign sentences containing pairs of adjacent for-
eign phrases (f, f ′) and English sentences con-
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Figure 6: Collecting phrase orientation statistics for
a English-German phrase pair (“profile”, “Profils”)
from non-parallel sentences (the German sentence
translates as “Creating a Facebook profile is easy”).

taining their corresponding translations (e, e′), we
are able to increment orientation counts for (f, e)
by looking at whether e and e′ are adjacent,
swapped, or discontinuous. The orientations cor-
respond directly to those shown in Figure 1.

One subtly of our method is that shorter and
more frequent phrases (e.g. punctuation) are more
likely to appear in multiple orientations with a
given phrase, and therefore provide poor evi-
dence of reordering. Therefore, we (a) collect
the longest contextual phrases (which also appear
in the phrase table) for reordering feature estima-
tion, and (b) prune the set of sentences so that
we only keep a small set of least frequent contex-
tual phrases (this has the effect of dropping many
function words and punctuation marks and and re-
lying more heavily on multi-word content phrases
to estimate the reordering).2

Our algorithm for learning the reordering pa-
rameters is given in Figure 5. The algorithm
estimates a probability distribution over mono-
tone, swap, and discontinuous orientations (pm,
ps, pd) for a phrase pair (f, e) from two mono-
lingual corpora Cf and Ce. It begins by calling
CollectOccurs to collect the longest match-
ing phrase table phrases that precede f in source
monolingual data (Bf ), as well as those that pre-
cede (Be), follow (Ae), and are discontinuous
(De) with e in the target language data. For each
unique phrase f ′ preceding f , we look up transla-
tions in the phrase table T. Next, we count3 how

2The pruning step has an additional benefit of minimizing
the memory needed for orientation feature estimations.

3#L(x) returns the count of object x in list L.
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Monolingual training corpora
Europarl Gigaword Wikipedia

date range 4/96-10/09 5/94-12/08 n/a
uniq shared dates 829 5,249 n/a
Spanish articles n/a 3,727,954 59,463
English articles n/a 4,862,876 59,463
Spanish lines 1,307,339 22,862,835 2,598,269
English lines 1,307,339 67,341,030 3,630,041
Spanish words 28,248,930 774,813,847 39,738,084
English words 27,335,006 1,827,065,374 61,656,646

Spanish-English phrase table
Phrase pairs 3,093,228
Spanish phrases 89,386
English phrases 926,138
Spanish unigrams 13,216
Avg # translations 98.7
Spanish bigrams 41,426
Avg # translations 31.9
Spanish trigrams 34,744
Avg # translations 13.5

Table 1: Statistics about the monolingual training data and the phrase table that was used in all of the experiments.

many translations e′ of f ′ appeared before, after
or were discontinuous with e in the target lan-
guage data. Finally, the counts are normalized and
returned. These normalized counts are the values
we use as estimates of po(orientation|f, e).

4 Experimental Setup

We use the Spanish-English language pair to test
our method for estimating the parameters of an
SMT system from monolingual corpora. This al-
lows us to compare our method against the nor-
mal bilingual training procedure. We expect bilin-
gual training to result in higher translation qual-
ity because it is a more direct method for learn-
ing translation probabilities. We systematically
remove different parameters from the standard
phrase-based model, and then replace them with
our monolingual equivalents. Our goal is to re-
cover as much of the loss as possible for each of
the deleted bilingual components.

The standard phrase-based model that we use
as our top-line is the Moses system (Koehn et
al., 2007) trained over the full Europarl v5 par-
allel corpus (Koehn, 2005). With the exception
of maximum phrase length (set to 3 in our ex-
periments), we used default values for all of the
parameters. All experiments use a trigram lan-
guage model trained on the English side of the
Europarl corpus using SRILM with Kneser-Ney
smoothing. To tune feature weights in minimum
error rate training, we use a development bitext
of 2,553 sentence pairs, and we evaluate per-
formance on a test set of 2,525 single-reference
translated newswire articles. These development
and test datasets were distributed in the WMT
shared task (Callison-Burch et al., 2010).4 MERT

4Specifcially, news-test2008 plus news-syscomb2009 for
dev and newstest2009 for test.

was re-run for every experiment.
We estimate the parameters of our model from

two sets of monolingual data, detailed in Table 1:

• First, we treat the two sides of the Europarl
parallel corpus as independent, monolingual
corpora. Haghighi et al. (2008) also used
this method to show how well translations
could be learned from monolingual corpora
under ideal conditions, where the contextual
and temporal distribution of words in the two
monolingual corpora are nearly identical.

• Next, we estimate the features from truly
monolingual corpora. To estimate the con-
textual and temporal similarity features, we
use the Spanish and English Gigaword cor-
pora.5 These corpora are substantially larger
than the Europarl corpora, providing 27x as
much Spanish and 67x as much English for
contextual similarity, and 6x as many paired
dates for temporal similarity. Topical simi-
larity is estimated using Spanish and English
Wikipedia articles that are paired with inter-
language links.

To project context vectors from Spanish to En-
glish, we use a bilingual dictionary containing en-
tries for 49,795 Spanish words. Note that end-to-
end translation quality is robust to substantially
reducing dictionary size, but we omit these ex-
periments due to space constraints. The con-
text vectors for words and phrases incorporate co-
occurrence counts using a two-word window on
either side.

The title of our paper uses the word towards be-
cause we assume that an inventory of phrase pairs
is given. Future work will explore inducing the

5We use the afp, apw and xin sections of the corpora.
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Figure 7: Much of the loss in BLEU score when bilingually estimated features are removed from a Spanish-
English translation system (experiments 1-4) can be recovered when they are replaced with monolingual equiva-
lents estimated from monolingual Europarl data (experiments 5-10). The labels indicate how the different types
of parameters are estimated, the first part is for phrase-table features, the second is for reordering probabilities.
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Figure 8: Performance of monolingual features de-
rived from truly monolingual corpora. Over 82% of
the BLEU score loss can be recovered.

phrase table itself from monolingual texts. Across
all of our experiments, we use the phrase table
that the bilingual model learned from the Europarl
parallel corpus. We keep its phrase pairs, but we
drop all of its scores. Table 1 gives details of the
phrase pairs. In our experiments, we estimated
similarity and reordering scores for more than 3
million phrase pairs. For each source phrase, the
set of possible translations was constrained and
likely to contain good translations. However, the
average number of possible translations was high
(ranging from nearly 100 translations for each un-
igram to 14 for each trigram). These contain a
lot of noise and result in low end-to-end transla-
tion quality without good estimates of translation
quality, as the experiments in Section 5.1 show.

Software. Because many details of our estima-
tion procedures must be omitted for space, we dis-
tribute our full set of code along with scripts for
running our experiments and output translations.
These may be downed from http://www.cs.
jhu.edu/˜anni/papers/lowresmt/

5 Experimental Results

Figures 7 and 8 give experimental results. Figure
7 shows the performance of the standard phrase-
based model when each of the bilingually esti-
mated features are removed. It shows how much
of the performance loss can be recovered using
our monolingual features when they are estimated
from the Europarl training corpus but treating
each side as an independent, monolingual cor-
pus. Figure 8 shows the recovery when using truly
monolingual corpora to estimate the parameters.

5.1 Lesion experiments

Experiments 1-4 remove bilingually estimated pa-
rameters from the standard model. For Spanish-
English, the relative contribution of the phrase-
table features (which include the phrase transla-
tion probabilities φ and the lexical weights w) is
greater than the reordering probabilities. When
the reordering probability po(orientation|f, e) is
eliminated and replaced with a simple distance-
based distortion feature that does not require a
bitext to estimate, the score dips only marginally
since word order in English and Spanish is simi-
lar. However, when both the reordering and the
phrase table features are dropped, leaving only
the LM feature and the phrase penalty, the result-
ing translation quality is abysmal, with the score
dropping a total of over 17 BLEU points.

5.2 Adding equivalent monolingual features
estimated using Europarl

Experiments 5-10 show how much our monolin-
gual equivalents could recover when the monolin-
gual corpora are drawn from the two sides of the
bitext. For instance, our algorithm for estimating
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reordering probabilities from monolingual data (–
/M) adds 5 BLEU points, which is 73% of the po-
tential recovery going from the model (–/–) to the
model with bilingual reordering features (–/B).

Of the temporal, orthographic, and contextual
monolingual features the temporal feature per-
forms the best. Together (M/–), they recover
more than each individually. Combining mono-
lingually estimated reordering and phrase table
features (M/M) yields a total gain of 13.5 BLEU
points, or over 75% of the BLEU score loss that
occurred when we dropped all features from the
phrase table. However, these results use “mono-
lingual” corpora which have practically identical
phrasal and temporal distributions.

5.3 Estimating features using truly
monolingual corpora

Experiments 12-18 estimate all of the features
from truly monolingual corpora. Our novel al-
gorithm for estimating reordering holds up well
and recovers 69% of the loss, only 0.4 BLEU
points less than when estimated from the Europarl
monolingual texts. The temporal similarity fea-
ture does not perform as well as when it was esti-
mated using Europarl data, but the contextual fea-
ture does. The topic similarity using Wikipedia
performs the strongest of the individual features.

Combining the monolingually estimated re-
ordering features with the monolingually esti-
mated similarity features (M/M) yields a total
gain of 14.8 BLEU points, or over 82% of the
BLEU point loss that occurred when we dropped
all features from the phrase table. This is equiv-
alent to training the standard system on a bi-
text with roughly 60,000 lines or nearly 2 million
words (learning curve omitted for space).

Finally, we supplement the standard bilingually
estimated model parameters with our monolin-
gual features (BM/B), and we see a 1.5 BLEU
point increase over the standard model. There-
fore, our monolingually estimated scores capture
some novel information not contained in the stan-
dard feature set.

6 Additional Related Work

Carbonell et al. (2006) described a data-driven
MT system that used no parallel text. It produced
translation lattices using a bilingual dictionary
and scored them using an n-gram language model.

Their method has no notion of translation similar-
ity aside from a bilingual dictionary. Similarly,
Sánchez-Cartagena et al. (2011) supplement an
SMT phrase table with translation pairs extracted
from a bilingual dictionary and give each a fre-
quency of one for computing translation scores.

Ravi and Knight (2011) treat MT without paral-
lel training data as a decipherment task and learn
a translation model from monolingual text. They
translate corpora of Spanish time expressions and
subtitles, which both have a limited vocabulary,
into English. Their method has not been applied
to broader domains of text.

Most work on learning translations from mono-
lingual texts only examine small numbers of fre-
quent words. Huang et al. (2005) and Daumé and
Jagarlamudi (2011) are exceptions that improve
MT by mining translations for OOV items.

A variety of past research has focused on min-
ing parallel or comparable corpora from the web
(Munteanu and Marcu, 2006; Smith et al., 2010;
Uszkoreit et al., 2010). Others use an existing
SMT system to discover parallel sentences within
independent monolingual texts, and use them to
re-train and enhance the system (Schwenk, 2008;
Chen et al., 2008; Schwenk and Senellart, 2009;
Rauf and Schwenk, 2009; Lambert et al., 2011).
These are complementary but orthogonal to our
research goals.

7 Conclusion

This paper has demonstrated a novel set of tech-
niques for successfully estimating phrase-based
SMT parameters from monolingual corpora, po-
tentially circumventing the need for large bitexts,
which are expensive to obtain for new languages
and domains. We evaluated the performance of
our algorithms in a full end-to-end translation sys-
tem. Assuming that a bilingual-corpus-derived
phrase table is available, we were able utilize our
monolingually-estimated features to recover over
82% of BLEU loss that resulted from removing
the bilingual-corpus-derived phrase-table proba-
bilities. We also showed that our monolingual fea-
tures add 1.5 BLEU points when combined with
standard bilingually estimated features. Thus our
techniques have stand-alone efficacy when large
bilingual corpora are not available and also make
a significant contribution to combined ensemble
performance when they are.
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Abstract

In this paper we investigate the use of
character-level translation models to sup-
port the translation from and to under-
resourced languages and textual domains
via closely related pivot languages. Our ex-
periments show that these low-level models
can be successful even with tiny amounts
of training data. We test the approach on
movie subtitles for three language pairs and
legal texts for another language pair in a do-
main adaptation task. Our pivot translations
outperform the baselines by a large margin.

1 Introduction

Data-driven approaches have been extremely suc-
cessful in most areas of natural language pro-
cessing (NLP) and can be considered the main
paradigm in application-oriented research and de-
velopment. Research in machine translation is a
typical example with the dominance of statisti-
cal models over the last decade. This is even en-
forced due to the availability of toolboxes such as
Moses (Koehn et al., 2007) which make it pos-
sible to build translation engines within days or
even hours for any language pair provided that ap-
propriate training data is available. However, this
reliance on training data is also the most severe
limitation of statistical approaches. Resources in
large quantities are only available for a few lan-
guages and domains. In the case of SMT, the
dilemma is even more apparent as parallel cor-
pora are rare and usually quite sparse. Some lan-
guages can be considered lucky, for example, be-
cause of political situations that lead to the pro-
duction of freely available translated material on
a large scale. A lot of research and development

would not have been possible without the Euro-
pean Union and its language policies to give an
example.

One of the main challenges of current NLP re-
search is to port data-driven techniques to under-
resourced languages, which refers to the major-
ity of the world’s languages. One obvious ap-
proach is to create appropriate data resources even
for those languages in order to enable the use of
similar techniques designed for high-density lan-
guages. However, this is usually too expensive
and often impossible with the quantities needed.
Another idea is to develop new models that can
work with (much) less data but still make use
of resources and techniques developed for other
well-resourced languages.

In this paper, we explore pivot translation tech-
niques for the translation from and to resource-
poor languages with the help of intermediate
resource-rich languages. We explore the fact
that many poorly resourced languages are closely
related to well equipped languages, which en-
ables low-level techniques such as character-
based translation. We can show that these tech-
niques can boost the performance enormously,
tested for several language pairs. Furthermore, we
show that pivoting can also be used to overcome
data sparseness in specific domains. Even high
density languages are under-resourced in most
textual domains and pivoting via in-domain data
of another language can help to adapt statistical
models. In our experiments, we observe that re-
lated languages have the largest impact in such a
setup.

The remaining parts of the paper are organized
as follows: First we describe the pivot translation
approach used in this study. Thereafter, we dis-
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cuss character-based translation models followed
by a detailed presentation of our experimental
results. Finally, we briefly summarize related
work and conclude the paper with discussions and
prospects for future work.

2 Pivot Models

Information from pivot languages can be incorpo-
rated in SMT models in various ways. The main
principle refers to the combination of source-
to-pivot and pivot-to-target translation models.
In our setup, one of these models includes a
resource-poor language (source or target) and the
other one refers to a standard model with ap-
propriate data resources. A condition is that we
have at least some training data for the translation
between pivot and the resource-poor language.
However, for the original task (source-to-target
translation) we do not require any data resources
except for purposes of comparison.

We will explore various models for the transla-
tion between the resource-poor language and the
pivot language and most of them are not compat-
ible with standard phrase-based translation mod-
els. Hence, triangulation methods (Cohn and La-
pata, 2007) for combining phrase tables are not
applicable in our case. Instead, we explore a
cascaded approach (also called “transfer method”
(Wu and Wang, 2009)) in which we translate the
input text in two steps using a linear interpo-
lation for rescoring N-best lists. Following the
method described in (Utiyama and Isahara, 2007)
and (Wu and Wang, 2009), we use the best n hy-
potheses from the translation of source sentences
s to pivot sentences p and combine them with the
top m hypotheses for translating these pivot sen-
tences to target sentences t:

t̂ ≈ argmax
t

L∑
k=1

αλsp
k h

sp
k (s, p) + (1− α)λpt

k h
pt
k (p, t)

where hxy
k are feature functions for model xy

with appropriate weights λxy
k .1 Basically, this

means that we simply add the scores and, sim-
ilar to related work, we assume that the feature
weights can be set independently for each model
using minimum error rate training (MERT) (Och,

1Note, that we do not require the same feature functions
in both models even though the formula above implies this
for simplicity of representation.

2003). In our setup we added the parameter α
that can be used to weight the importance of one
model over the other. This can be useful as we
do not consider the entire hypothesis space but
only a small subset of N-best lists. In the sim-
plest case, this weight is set to 0.5 making both
models equally important. An alternative to fit-
ting the interpolation weight would be to per-
form a global optimization procedure. However,
a straightforward implementation of pivot-based
MERT would be prohibitively slow due to the
expensive two-step translation procedure over n-
best lists.

A general condition for the pivot approach is to
assume independent training sets for both transla-
tion models as already pointed out by (Bertoldi
et al., 2008). In contrast to research presented
in related work (see, for example, (Koehn et al.,
2009)) this condition is met in our setup in which
all data sets represent different samples over the
languages considered (see section 4).2

3 Character-Based SMT

The basic idea behind character-based translation
models is to take advantage of the strong lexi-
cal and syntactic similarities between closely re-
lated languages. Consider, for example, Figure
1. Related languages like Catalan and Spanish or
Danish and Norwegian have common roots and,
therefore, use similar concepts and express them
in similar grammatical structures. Spelling con-
ventions can still be quite different but those dif-
ferences are often very consistent. The Bosnian-
Macedonian example also shows that we do not
have to require any alphabetic overlap in order to
obtain character-level similarities.

Regularities between such closely related lan-
guages can be captured below the word level. We
can also assume a more or less monotonic rela-
tion between the two languages which motivates
the idea of translation models over character N-
grams treating translation as a transliteration task
(Vilar et al., 2007). Conceptually it is straightfor-
ward to think of phrase-based models on the char-
acter level. Sequences of characters can be used
instead of word N-grams for both, translation and
language models. Training can proceed with the
same tools and approaches. The basic task is to

2Note that different samples may still include common
sentences.
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Figure 1: Some examples of movie subtitle transla-
tions between closely related languages (either sharing
parts of the same alphabet or not).

prepare the data to comply with the training pro-
cedures (see Figure 2).

Figure 2: Data pre-processing for training models on
the character level. Spaces are represented by ’ ’ and
each sentence is treated as one sequence of characters.

3.1 Character Alignment
One crucial difference is the alignment of charac-
ters, which is required instead of an alignment of
words. Clearly, the traditional IBM word align-
ment models are not designed for this task es-
pecially with respect to distortion. However, the
same generative story can still be applied in gen-
eral. Vilar et al. (2007) explore a two-step proce-
dure where words are aligned first (with the tradi-
tional IBM models) to divide sentence pairs into
aligned segments of reasonable size and the char-
acters are then aligned with the same algorithm.

An alternative is to use models designed for
transliteration or related character-level transfor-
mation tasks. Many approaches are based on
transducer models that resemble string edit oper-
ations such as insertions, deletions and substitu-
tions (Ristad and Yianilos, 1998). Weighted fi-
nite state transducers (WFST’s) can be trained on
unaligned pairs of character sequences and have
been shown to be very effective for transliteration
tasks or letter-to-phoneme conversions (Jiampoja-
marn et al., 2007). The training procedure usually
employs an expectation maximization (EM) pro-

cedure and the resulting transducer can be used to
find the Viterbi alignment between characters ac-
cording to the best sequence of edit operations ap-
plied to transform one string into the other. Exten-
sions to this model are possible, for example the
use of many-to-many alignments which have been
shown to be very effective in letter-to-phoneme
alignment tasks (Jiampojamarn et al., 2007).

One advantage of the edit-distance-based trans-
ducer models is that the alignments they pre-
dict are strictly monotonic and cannot easily be
confused by spurious relations between charac-
ters over longer distances. Long distance align-
ments are only possible in connection with a se-
ries of insertions and deletions that usually in-
crease the alignment costs in such a way that they
are avoided if possible. On the other hand, IBM
word alignment models also prefer monotonic
alignments over non-monotonic ones if there is no
good reason to do otherwise (i.e., there is frequent
evidence of distorted alignments). However, the
size of the vocabulary in a character-level model
is very small (several orders of magnitude smaller
than on the word level) and this may cause serious
confusion of the word alignment model that very
much relies on context-independent lexical trans-
lation probabilities. Hence, for character align-
ment, the lexical evidence is much less reliable
without their context.

It is certainly possible to find a compromise be-
tween word-level and character-level models in
order to generalize below word boundaries but
avoiding alignment problems as discussed above.
Morpheme-based translation models have been
explored in several studies with similar motiva-
tions as in our approach, a better generalization
from sparse training data (Fishel and Kirik, 2010;
Luong et al., 2010). However, these approaches
have the drawback that they require proper mor-
phological analyses. Data-driven techniques ex-
ist even for morphology, but their use in SMT
still needs to be shown (Fishel, 2009). The sit-
uation is comparable to the problems of integrat-
ing linguistically motivated phrases into phrase-
based SMT (Koehn et al., 2003). Instead we opt
for a more general approach to extend context to
facilitate, especially, the alignment step. Figure 3
shows how we can transform texts into sequences
of bigrams that can be aligned with standard ap-
proaches without making any assumptions about
linguistically motivated segmentations.
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cu ur rs so o c co on nf fi ir rm ma ad do o . .

¿ q qu ué é e es s e es so o ? ?

Figure 3: Two Spanish sentences as sequences of char-
acter bigrams with a final ’ ’ marking the end of a sen-
tence.

In this way we can construct a parallel corpus with
slightly richer contextual information as input to
the alignment program. The vocabulary remains
small (for example, 1267 bigrams in the case of
Spanish compared to 84 individual characters in
our experiments) but lexical translation probabili-
ties become now much more differentiated.

With this, it is now possible to use the align-
ment between bigrams to train a character-level
translation system as we have the same number of
bigrams as we have characters (and the first char-
acter in each bigram corresponds to the charac-
ter at that position). Certainly, it is also possible
to train a bigram translation model (and language
model). This has the (one and only) advantage
that one character of context across phrase bound-
aries (i.e. character N-grams) is used in the se-
lection of translation alternatives from the phrase
table.3

3.2 Tuning Character-Level Models

A final remark on training character-based SMT
models is concerned with feature weight tun-
ing. It certainly makes not much sense to com-
pute character-level BLEU scores for tuning fea-
ture weights especially with the standard settings
of matching relatively short N-grams. Instead
we would still like to measure performance in
terms of word-level BLEU scores (or any other
MT evaluation metric used in minimum error
rate training). Therefore, it is important to post-
process character-translated development sets be-
fore adjusting weights. This is simply done
by merging characters accordingly and replacing
the place-holders with spaces again. Thereafter,
MERT can run as usual.

3.3 Evaluation

Character-level translations can be evaluated in
the same way as other translation hypotheses,
for example using automatic measures such as

3Using larger units (trigrams, for example) led to lower
scores in our experiments (probably due to data sparseness)
and, therefore, are not reported here.

BLEU, NIST, METEOR etc. The same simple
post-processing as mentioned in the previous sec-
tion can be applied to turn the character transla-
tions into “normal” text. However, it can be use-
ful to look at some other measures as well that
consider near matches on the character level in-
stead of matching words and word N-grams only.
Character-level models have the ability to produce
strings that may be close to the reference and still
do not match any of the words contained. They
may generate non-words that include mistakes
which look like spelling-errors or minor gram-
matical mistakes. Those words are usually close
enough to the correct target words to be recog-
nized by the user, which is often more acceptable
than leaving foreign words untranslated. This is
especially true as many unknown words represent
important content words that bear a lot of infor-
mation. The problem of unknown words is even
more severe for morphologically rich language as
many word forms are simply not part of (sparse)
training data sets. Untranslated words are espe-
cially annoying when translating languages that
use different writing systems. Consider, for ex-
ample, the following subtitles in Macedonian (us-
ing Cyrillic letters) that have been translated from
Bosnian (written in Latin characters):

reference: И чаша вино, како и секогаш.

word-based: И čašu vina, како секогаш.

char-based: И чаша вино, како секогаш.

reference: Во старото светилиште.

word-based: Во starom svetilǐstu.

char-based: Во стар светилиштето.

The underlined parts mark examples of character-
level differences with respect to the reference
translation. For the pivot translation approach, it
is important that the translations generated in the
first step can be handled by the second one. This
means, that words generated by a character-based
model should at least be valid input words for the
second step, even though they might refer to er-
roneous inflections in that context. Therefore, we
add another measure to our experimental results
presented below – the number of unknown words
with respect to the input language of the second
step. This applies only to models that are used
as the first step in pivot-based translations. For
other models, we include a string similarity mea-
sure based on the longest common subsequence
ratio (LCSR) (Stephen, 1992) in order to give an
impression about the “closeness” of the system
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output to the reference translations.

4 Experiments

We conducted a series of experiments to test
the ideas of (character-level) pivot translation for
resource-poor languages. We chose to use data
from a collection of translated subtitles com-
piled in the freely available OPUS corpus (Tiede-
mann, 2009b). This collection includes a large
variety of languages and contains mainly short
sentences and sentence fragments, which suits
character-level alignment very well. The selected
settings represent translation tasks between lan-
guages (and domains) for which only very limited
training data is available or none at all.

Below we present results from two general
tasks:4 (i) Translating between English and a
resource-poor language (in both directions) via
a pivot language that is close related to the
resource-poor language. (ii) Translating between
two languages in a domain for which no in-
domain training data is available via a pivot lan-
guage with in-domain data. We will start with
the presentation of the first task and the character-
based translation between closely related lan-
guages.

4.1 Task 1: Pivoting via Related Languages

We decided to look at resource-poor languages
from two language families: Macedonian repre-
senting a Slavic language from the Balkan re-
gion, Catalan and Galician representing two Ro-
mance languages spoken mainly in Spain. There
is only little or no data available for translating
from or to English for these languages. However,
there are related languages with medium or large
amounts of training data. For Macedonian, we
use Bulgarian (which also uses a Cyrillic alpha-
bet) and Bosnian (another related language that
mainly uses Latin characters) as the pivot lan-
guage. For Catalan and Galician, the obvious
choice was Spanish (however, Portuguese would,
for example, have been another reasonable op-
tion for Galician). Table 1 lists the data avail-
able for training the various models. Furthermore,
we reserved 2000 sentences for tuning parameters

4In all experiments we use standard tools like Moses,
Giza++, SRILM, mteval etc. Details about basic settings are
omitted here due to space constraints but can be found in
the supplementary material. The data sets are available from
here: http://stp.lingfil.uu.se/∼joerg/index.php?resources

and another 2000 sentences for testing. For Gali-
cian, we only used 1000 sentences for each set
due to the lack of additional data. We were espe-
cially careful when preparing the data to exclude
all sentences from tuning and test sets that could
be found in any pivot or direct translation model.
Hence, all test sentences are unseen strings for all
models presented in this paper (but they are not
comparable with each other as they are sampled
individually from independent data sets).

language pair #sent’s #words
Galician – English – –
Galician – Spanish 2k 15k
Catalan – English 50k 400k
Catalan – Spanish 64k 500k
Spanish – English 30M 180M
Macedonian – English 220k 1.2M
Macedonian – Bosnian 12k 60k
Macedonian – Bulgarian 155k 800k
Bosnian – English 2.1M 11M
Bulgarian – English 14M 80M

Table 1: Training data for the translation task between
closely related languages in the domain of movie sub-
titles. Number of sentences (#sent’s) and number of
words (#words) in thousands (k) and millions (M) (av-
erages of source and target language).

The data sets represent several interesting test
cases: Galician is the least supported language
with extremely little training data for building our
pivot model. There is no data for the direct model
and, therefore, no explicit baseline for this task.
There is 30 times more data available for Catalan-
English, but still too little for a decent standard
SMT model. Interesting here is that we have more
or less the same amount of data available for the
baseline and for the pivot translation between the
related languages. The data set for Macedonian
– English is by far the largest among the baseline
models and also bigger than the sets available for
the related pivot languages. Especially Macedo-
nian – Bosnian is not well supported. The inter-
esting questions is whether tiny amounts of pivot
data can still be competitive. In all three cases,
there is much more data available for the trans-
lation models between English and the pivot lan-
guage.

In the following section we will look at the
translation between related languages with vari-
ous models and training setups before we con-
sider the actual translation task via the bridge lan-
guages.
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bs-mk bg-mk es-gl es-ca
Model BLEU % ↑LCSR BLEU % ↑LCSR BLEU % ↑LCSR BLEU % ↑LCSR
word-based 15.43 0.5067 14.66 0.6225 41.11 0.7966 62.73 0.8526
char – WFST1:1 21.37++ 0.6903 13.33−− 0.6159 36.94 0.7832 73.17++ 0.8728
char – WFST2:2 19.17++ 0.6737 12.67−− 0.6190 43.39++ 0.8083 70.64++ 0.8684
char – IBMchar 23.17++ 0.6968 14.57 0.6347 45.21++ 0.8171 73.12++ 0.8767
char – IBMbigram 24.84++ 0.7046 15.01++ 0.6374 44.06++ 0.8144 74.21++ 0.8803

Table 2: Translating from a related pivot language to the target language. Bosnian (bs) / Bulgarian (bg) –
Macedonian (mk); Galician (gl) / Catalan (ca) – Spanish (es). Word-based refers to standard phrase-based SMT
models. All other models use phrases over character sequences. The WFSTx:y models use weighted finite state
transducers for character alignment with units that are at most x and y characters long, respectively. Other
models use Viterbi alignments created by IBM model 4 using GIZA++ (Och and Ney, 2003) between characters
(IBMchar) or bigrams (IBMbigram). LCSR refers to the averaged longest common subsequence ratio between
system translations and references. Results are significantly better (p < 0.01++, p < 0.05+) or worse (p <
0.01−−, p < 0.05−) than the word-based baseline.

mk-bs mk-bg gl-es ca-es
Model BLEU % ↓UNK BLEU % ↓UNK BLEU % ↓UNK BLEU % ↓UNK
word-based 14.22 17.83% 14.77 5.29% 43.22 10.18% 59.34 3.80%
char – WFST1:1 21.74++ 1.50% 16.04++ 0.77% 50.24++ 1.17% 62.87++ 0.45%
char – WFST2:2 19.19++ 2.05% 15.32 0.96% 50.59++ 1.28% 59.84 0.47%
char – IBMchar 24.15++ 1.30% 17.12++ 0.80% 51.18++ 1.38% 64.35 ++ 0.59%
char – IBMbigram 24.82++ 1.00% 17.28++ 0.77% 50.70++ 1.36% 65.14++ 0.48%

Table 3: Translating from the source language to a related pivot language. UNK gives the proportion of unknown
words with respect to the translation model from the pivot language to English.

4.1.1 Translating Related Languages
The main challenge for the translation mod-

els between related languages is the restriction to
very limited parallel training data. Character-level
models make it possible to generalize to very ba-
sic translation units leading to robust models in
the sense of models without unknown events. The
basic question is whether they provide reasonable
translations with respect to given accepted refer-
ences. Tables 2 and 3 give a comprehensive sum-
mary of various models for the languages selected
in our experiments.

We can see that at least one character-based
translation model outperforms the standard word-
based model in all cases. This is true (and not very
surprising) for the language pairs with very little
training data but it is also the case for language
pairs with slightly more reasonable data sets like
Bulgarian-Macedonian. The automatic measures
indicate decent translation performances at this
stage which encourages their use in pivot trans-
lation that we will discuss in the next section.

Furthermore, we can also see the influence of
different character alignment algorithms. Some-
what surprisingly, the best results are achieved
with IBM alignment models that are not designed
for this purpose. Transducer-based alignments

produce consistently worse translation models (at
least in terms of BLEU scores). The reason for
this might be that the IBM models can handle
noise in the training data more robustly. How-
ever, in terms of unknown words, WFST-based
alignment is very competitive and often the best
choice (but not much different from the best IBM
based models). The use of character bigrams
leads to further BLEU improvements for all data
sets except Galician-Spanish. However, this data
set is extremely small, which may cause unpre-
dictable results. In any case, the differences
between character-based alignments and bigram-
based ones are rather small and our experiments
do not lead to conclusive results.

4.1.2 Pivot Translation

In this section we now look at cascaded transla-
tions via the related pivot language. Tables 4 and
5 summarize the results for various settings.

As we can see, the pivot translations for Cata-
lan and Galician outperform the baselines by a
large margin. Here, the baselines are, of course,
very weak due to the minimal amount of train-
ing data. Furthermore, the Catalan-English test
set appears to be very easy considering the rela-
tively high BLEU scores achieved even with tiny
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Model (BLEU in %) 1x1 10x10
English – Catalan (baseline) 26.70
English – (Spanish = Catalan) 8.38
English – Spanish -word- Catalan 38.91++ 39.59++

English – Spanish -char- Catalan 44.46++ 46.82++

Catalan – English (baseline) 27.86
(Catalan = Spanish) – English 9.52
Catalan -word- Spanish – English 38.41++ 38.65++

Catalan -char- Spanish – English 40.43++ 40.73++

English – Galician (baseline) —
English – (Spanish = Galician) 7.46
English – Spanish -word- Galician 20.55 20.76
English – Spanish -char- Galician 21.12 21.09
Galician – English (baseline) —
(Galician = Spanish) – English 5.76
Galician -word- Spanish – English 13.16 13.20
Galician -char- Spanish – English 16.04 16.02

Table 4: Translating between Galician/Catalan and En-
glish via Spanish using a standard phrase-based SMT
baseline, Spanish–English SMT models to translate
from/to Catalan/Galician and pivot-based approaches
using word-level models or character-level models
(based on IBMbigram alignments) with either one-best
(1x1) or N-best lists (10x10 with α = 0.85).

amounts of training data for the baseline. Still, no
test sentence appears in any training or develop-
ment set for either direct translation or pivot mod-
els. From the results, we can also see that Catalan
and Galician are quite different from Spanish and
require language-specific treatment. Using a large
Spanish – English model (with over 30% BLEU
in both directions) to translate from or to Cata-
lan or Galician is not an option. The experiments
show that character-based pivot models lead to
better translations than word-based pivot models
(in terms of BLEU scores). This reflects the per-
formance gains presented in Table 2. Rescoring
of N-best lists, on the other hand, does not have
a big impact on our results. However, we did not
spend time optimizing the parameters of N-best
size and interpolation weight.

The results from the Macedonian task are not as
clear. This is especially due to the different setup
in which the baseline uses more training data than
any of the related language pivot models. How-
ever, we can still see that the pivot translation via
Bulgarian clearly outperforms the baseline. For
the case of translating to Macedonian via Bulgar-
ian, the word-based model seems to be more ro-
bust than the character-level model. This may be
due to a larger number of non-words generated
by the character-based pivot model. In general,

Model (BLEU in %) 1x1 10x10
English – Maced. (baseline) 11.04
English – Bosn. -word- Maced. 7.33−− 7.64
English – Bosn. -char- Maced. 9.99 10.34
English – Bulg. -word- Maced. 12.49++ 12.62++

English – Bulg. -char- Maced. 11.57++ 11.59+

Maced. – English (baseline) 20.24
Maced. -word- Bosn. – English 12.36−− 12.48−−
Maced. -char- Bosn. – English 18.73− 18.64−−
Maced. -word- Bulg. – English 19.62 19.74
Maced. -char- Bulg. – English 21.05 21.10

Table 5: Translating between Macedonian (Maced)
and English via Bosnian (Bosn) / Bulgarian (Bulg).

the BLEU scores are much lower for all models
involved (even for the high-density languages),
which indicates larger problems with the gener-
ation of correct output and intermediate transla-
tions.

Interesting is the fact that we can achieve al-
most the same performance as the baseline when
translating via Bosnian even though we had much
less training data at our disposal for the translation
between Macedonian and Bosnian. In this setup,
we can see that a character-based model was nec-
essary in order to obtain the desired abstraction
from the tiny amount of training data.

4.2 Task 2: Pivoting for Domain Adaptation

Sparse resources are not only a problem for spe-
cific languages but also for specific domains.
SMT models are very sensitive to domain shifts
and domain-specific data is often rare. In the fol-
lowing, we investigate a test case of translating
between two languages (English and Norwegian)
with reasonable amounts of data resources but in
the wrong domain (movie subtitles instead of le-
gal texts). Here again, we facilitate the transla-
tion process by a pivot language, this time with
domain-specific data.

The task is to translate legal texts from Norwe-
gian (Bokmål) to English and vice versa. The test
set is taken from the English–Norwegian Parallel
Corpus (ENPC) (Johansson et al., 1996) and con-
tains 1493 parallel sentences (a selection of Eu-
ropean treaties, directives and agreements). Oth-
erwise, there is no training data available in this
domain for English and Norwegian. Table 6 lists
the other data resources we used in our study.

As we can see, there is decent amount of train-
ing data for English – Norwegian, but the domain
is strikingly different. On the other hand, there
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Language pair Domain #sent’s #words
English–Norwegian subtitles 2.4M 18M
Norwegian–Danish subtitles 1.5M 10M
Danish–English DGT-TM 430k 9M

Table 6: Training data available for the domain adapta-
tion task. DGT-TM refers to the translation memories
provided by the JRC (Steinberger et al., 2006)

is in-domain data for other languages like Danish
that may act as an intermediate pivot. Further-
more, we have out-of-domain data for the transla-
tion between pivot and Norwegian. The sizes of
the training data sets for the pivot models are com-
parable (in terms of words). The in-domain pivot
data is controlled and very consistent and, there-
fore, high quality translations can be expected.
The subtitle data is noisy and includes various
movie genres. It is important to mention that the
pivot data still does not contain any sentence in-
cluded in the English–Norwegian test set.

Table 7 summarizes the results of our experi-
ments when using Danish and in-domain data as
a pivot in translations from and to Norwegian.

Model (task: English – Norwegian) BLEU
(step 1) English –dgt– Danish 52.76
(step 2) Danish –subswo– Norwegian 29.87
(step 2) Danish –subsch– Norwegian 29.65
(step 2) Danish –subsbi– Norwegian 25.65
English –subs– Norwegian (baseline) 7.20
English –dgt– (Danish = Norwegian) 9.44++

English –dgt– Danish -subswo- Norwegian 17.49++

English –dgt– Danish -subsch- Norwegian 17.61++

English –dgt– Danish -subsbi- Norwegian 14.07++

Model (task: Norwegian – English) BLEU
(step 1) Norwegian –subswo– Danish 30.15
(step 1) Norwegian –subsch– Danish 27.81
(step 1) Norwegian –subsbi– Danish 28.52
(step 2) Danish –dgt– English 57.23
Norwegian –subs– English (baseline) 11.41
(Norwegian = Danish) –dgt– English 13.21++

Norwegian –subs+dgtLM– English 13.33++

Norwegian –subswo– Danish –dgt– English 25.75++

(Norwegian –subsch– Danish –dgt– English 23.77++

Norwegian –subsbi– Danish –dgt– English 26.29++

Table 7: Translating out-of-domain data via Dan-
ish. Models using in-domain data are marked with
dgt and out-of-domain models are marked with subs.
subs+dgtLM refers to a model with an out-of-domain
translation model and an added in-domain language
model. The subscripts wo, ch and bi refer to word,
character and bigram models, respectively.

The influence of in-domain data in the transla-

tion process is enormous. As expected, the out-
of-domain baseline does not perform well even
though it uses the largest amount of training data
in our setup. It is even outperformed by the in-
domain pivot model when pretending that Norwe-
gian is in fact Danish. For the translation into En-
glish, the in-domain language model helps a lit-
tle bit (similar resources are not available for the
other direction). However, having the strong in-
domain model for translating to (and from) the
pivot language improves the scores dramatically.
The out-of-domain model in the other part of the
cascaded translation does not destroy this advan-
tage completely and the overall score is much
higher than any other baseline.

In our setup, we used again a closely related
language as a pivot. However, this time we
had more data available for training the pivot
translation model. Naturally, the advantages of
the character-level approach diminishes and the
word-level model becomes a better alternative.
However, there can still be a good reason for the
use of a character-based model as we can see in
the success of the bigram model (–subsbi–) in the
translation from Norwegian to English (via Dan-
ish). A character-based model may generalize be-
yond domain-specific terminology which leads to
a reduction of unknown words when applied to
a new domain. Note that using a character-based
model in step two could possibly cause more harm
than using it in step one of the pivot-based pro-
cedure. Using n-best lists for a subsequent word-
based translation in step two may fix errors caused
by character-based translation simply by ignoring
hypotheses containing them, which makes such a
model more robust to noisy input.

Finally, as an alternative, we can also look at
other pivot languages. The domain adaptation
task is not at all restricted to closely related pivot
languages especially considering the success of
word-based models in the experiments above. Ta-
ble 8 lists results for three other pivot languages.

Surprisingly, the results are much worse than
for the Danish test case. Apparently, these mod-
els are strongly influenced by the out-of-domain
translation between Norwegian and the pivot lan-
guage. The only success can be seen with an-
other closely related language, Swedish. Lexical
and syntactic similarity seems to be important to
create models that are robust enough for domain
shifts in the cascaded translation setup.

148



Pivot=xx en–xx xx–no en–xx–no
German 53.09 23.60 3.15−−
French 66.47 17.84 5.03−−
Swedish 52.62 24.79 10.07++

Pivot=xx no–xx xx–en no–xx–en
German 15.02 53.02 5.52−−
French 17.69 65.85 8.78−−
Swedish 19.72 59.55 16.35++

Table 8: Alternative word-based pivot translations be-
tween Norwegian (no) and English (en).

5 Related Work

There is a wide range of pivot language ap-
proaches to machine translation and a number
of strategies have been proposed. One of them
is often called triangulation and usually refers
to the combination of phrase tables (Cohn and
Lapata, 2007). Phrase translation probabilities
are merged and lexical weights are estimated by
bridging word alignment models (Wu and Wang,
2007; Bertoldi et al., 2008). Cascaded translation
via pivot languages are discussed by (Utiyama
and Isahara, 2007) and are frequently used by var-
ious researchers (de Gispert and Mariño, 2006;
Koehn et al., 2009; Wu and Wang, 2009) and
commercial systems such as Google Translate.
A third strategy is to generate or augment data
sets with the help of pivot models. This is, for
example, explored by (de Gispert and Mariño,
2006) and (Wu and Wang, 2009) (who call it the
synthetic method). Pivoting has also been used
for paraphrasing and lexical adaptation (Bannard
and Callison-Burch, 2005; Crego et al., 2010).
(Nakov and Ng, 2009) investigate pivot languages
for resource-poor languages (but only when trans-
lating from the resource-poor language). They
also use transliteration for adapting models to a
new (related) language. Character-level SMT has
been used for transliteration (Matthews, 2007;
Tiedemann and Nabende, 2009) and also for the
translation between closely related languages (Vi-
lar et al., 2007; Tiedemann, 2009a).

6 Conclusions and Discussion

In this paper, we have discussed possibilities to
translate via pivot languages on the character
level. These models are useful to support under-
resourced languages and explore strong lexical
and syntactic similarities between closely related
languages. Such an approach makes it possible
to train reasonable translation models even with

extremely sparse data sets. Moreover, charac-
ter level models introduce an abstraction that re-
duce the number of unknown words dramatically.
In most cases, these unknown words represent
information-rich units that bear large portions of
the meaning to be translated. The following illus-
trates this effect on example translations with and
without pivot model:Example: Catalan � English (via Spanish)Referen
e: I have to grade these papers.Baseline: Tin
que quali�
ar these ex�amens.Pivotword: Tin
que quali�
ar these tests.Pivotchar: I have to grade these papers.Example: Ma
edonian � English (via Bulgarian)Referen
e: It's a simple matter of self-preservation.Baseline: It's simply a question of ñåáåñî÷óâóâà»å.Pivotword: That's a matter of ñåáåñî÷óâóâà»å.Pivotchar: It's just a question of yourself.
Leaving unseen words untranslated is not only an-
noying (especially if the input language uses a
different writing system) but often makes transla-
tions completely incomprehensible. Pivot trans-
lations will still not be perfect (see example
two above), but can at least be more intelli-
gible. Character-based models can even take
care of tokenization errors as the one shown
above (“Tincque” should be two words “Tinc
que”). Fortunately, the generation of non-word
sequences (observed as unknown words) does not
seem to be a big problem and no special treatment
is required to avoid such output. We would still
like to address this issue in future work by adding
a word level LM in character-based SMT. How-
ever, (Vilar et al., 2007) already showed that this
did not have any positive effect in their character-
based system. In a second study, we also showed
that pivot models can be useful for adapting to
a new domain. The use of in-domain pivot data
leads to systems that outperform out-of-domain
translation models by a large margin. Our find-
ings point to many prospects for future work.
For example, we would like to investigate combi-
nations of character-based and word-based mod-
els. Character-based models may also be used for
treating unknown words only. Multiple source ap-
proaches via several pivots is another possibility
to be explored. Finally, we also need to further
investigate the robustness of the approach with re-
spect to other language pairs, data sets and learn-
ing parameters.
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Abstract

Nowadays, there are large amounts of data
available to train statistical machine trans-
lation systems. However, it is not clear
whether all the training data actually help
or not. A system trained on a subset of such
huge bilingual corpora might outperform
the use of all the bilingual data. This paper
studies such issues by analysing two train-
ing data selection techniques: one based
on approximating the probability of an in-
domain corpus; and another based on in-
frequent n-gram occurrence. Experimental
results not only report significant improve-
ments over random sentence selection but
also an improvement over a system trained
with the whole available data. Surprisingly,
the improvements are obtained with just a
small fraction of the data that accounts for
less than 0.5% of the sentences. After-
wards, we show that a much larger room for
improvement exists, although this is done
under non-realistic conditions.

1 Introduction

Globalisation and the popularisation of the Inter-
net have lead to a rapid increase in the amount of
bilingual corpora available. Entities such as the
European Union, the United Nations and other
multinational organisations need to translate all
the documentation they generate. Such transla-
tions happen every day and provide very large
multilingual corpora, which are oftentimes diffi-
cult to process and significantly increase the com-
putational requirements needed to train statistical
machine translation (SMT) systems. For instance,
the corpora made available for recent machine
translation evaluations are in the order of 1 billion
running words (Callison-Burch et al., 2010).

However, two main problems arise when at-
tempting to use this huge pool of sentences for
training SMT systems: firstly, a large portion of
this data is obtained from domains that differ from

that in which the SMT system is to be used or as-
sessed; secondly, the use of all this data for train-
ing the system increases the computational train-
ing requirements. Despite the previous remarks,
the de facto standard consists in training SMT sys-
tems with all the available data. This is due to
the widespread misconception that the more data
a system is trained with, the better its performance
should be. Although the previous statement is the-
oretically true if all the data belongs to the same
domain, this is not the case in the problems tack-
led by most of the SMT systems. For instance,
enterprises often need to build on-demand sys-
tems (Yuste et al., 2010). In this case, since we
are interested in translating some specific text, it
is not clear whether training a system with all data
yields better performance than training it with a
wisely selected subset of bilingual sentences.

The bilingual sentence selection (BSS) task is
stated as the problem of selecting the best sub-
set of bilingual sentences from an available pool
of sentences, with which to train a SMT system.
This paper is concerned to BSS, and mainly two
ideas are developed.

On the one hand, two BSS strategies that at-
tempt to build better translation systems are anal-
ysed. Such strategies are able to improve state-of-
the-art translation quality without the very high
computational resources that are required when
using the complete pool of sentences. Both tech-
niques span through two orthogonal criteria when
selecting bilingual sentences from the available
pool: avoiding to introduce a bias in the original
data distribution, and increasing the informative-
ness of the corpus.

On the other hand, we prove that among all pos-
sible subsets from the sentence pool, there is at
least a small one that yields large improvements
(up to 10 BLEU points) with respect to a system
trained with all the data. In order to retrieve such
subset, we had to use an oracle that employs infor-
mation extracted from the reference translations
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only for the purpose of selecting bilingual sen-
tences. However, references are not used at any
stage within the translation system for obtaining
the hypotheses. Note that although we are not
able to achieve such an improvement without an
oracle, this result restates the BSS problem as an
interesting approach not only for reducing com-
putational effort but also for significantly boost-
ing performance. To our knowledge, no previous
work has quantified the room of improvement in
which BSS techniques could incur.

In order to assess the performance of the dif-
ferent BSS techniques, translation results are ob-
tained by using a standard state-of-the-art SMT
system (Koehn et al., 2007). The most recent lit-
erature defines the SMT problem (Papineni et al.,
1998; Och and Ney, 2002) as follows: given an
input sentence f from a certain source language,
the purpose is to find an output sentence ê in a
certain target language such that

ê = arg max
e

K∑
k=1

λkhk(f , e) (1)

where hk(f , e) is a score function representing an
important feature for the translation of f into e,
as for example the language model of the target
language, a reordering model or several transla-
tion models. λk are the log-linear combination
weights.

The main contributions of this paper are:

• A BSS technique is analysed, which im-
proves the results obtained with a random
bilingual sentence selection strategy when
the specific domain to be translated signifi-
cantly differs from that of the pool of sen-
tences.

• Another BSS technique is analysed that, us-
ing less than 0.5% of the sentences avail-
able, significantly improves over random se-
lection, beating a system trained with all the
pool of sentences.

• We prove, by means of an oracle, that a wise
BSS technique can yield large improvements
when compared with systems trained with all
data available.

The remaining of the paper is structured as fol-
lows. Section 2 summarises the related work.
Sections 3 and 4 present two BSS techniques,
namely, probabilistic sampling and recovery of

infrequent n-grams. In Section 5 experimental re-
sults are reported. Finally, the main results of the
work and several future work directions are dis-
cussed in Section 6.

2 Related Work

Training data selection has been receiving an in-
creasing amount of attention within the SMT
community. For instance, in (Li et al., 2010;
Gascó et al., 2010) several BSS techniques, sim-
ilar to those analysed in this paper, have been
applied for training MT systems when there are
large training corpora available. However, nei-
ther such techniques have been formalised, nor its
performance thoroughly analysed. A similar ap-
proach that gives weights to different subcorpora
was proposed in (Matsoukas et al., 2009).

In (Lu et al., 2007), information retrieval meth-
ods are used in order to produce different sub-
models which are then weighted according to the
sentence to be translated. In such work, authors
define the baseline as the result obtained train-
ing only with the corpus that share the same do-
main of the test. Afterwards they claim that they
are able to improve baseline translation quality by
adding new sentences retrieved with their method.
However, they neither compare their technique
with random sentence selection, nor with a model
trained with all the corpora.

Although the techniques that are applied for
BSS are often very similar to those applied for ac-
tive learning (AL), both problems are essentially
different. Since the AL strategies assume that
the pool of sentences are not translated, they are
usually interested in finding the best monolingual
subset of sentences to be translated by a human
annotator. In contrast, in BSS, it is assumed that a
fairly large amount of bilingual corpora is readily
available, and the main goal consists in selecting
only those sentences which will maximise system
performance.

Some works have applied sentence selection in
small scale AL frameworks. These works extend
the training corpora at most with 5000 sentences.
In (Ananthakrishnan et al., 2010), sentences are
selected by means of discriminative techniques.
In (Haffari et al., 2009) a technique is proposed
for increasing the counts of phrases that are con-
sidered infrequent. Both works significantly dif-
fer from the current work not only on the frame-
work, but also on the scale of the experiments, the
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proposed techniques and the obtained improve-
ments. Similar ideas applied to adaptation prob-
lems have been proposed in (Moore and Lewis,
2010; Axelrod et al., 2011).

3 Probabilistic Sampling

As discussed in Section 2, BSS has inherently
attached many meaningful links with AL tech-
niques. Selecting samples for learning our mod-
els, incurs in a well-known difficulty in AL, the
so-called sample bias problem (Dasgupta, 2009).
This problem, which is spread to the BSS case,
is summarised as the distortion introduced by the
active strategy into the probability distribution un-
derlying the training corpus. This bias forces the
training algorithm to learn a distorted probability
model which can significantly differ from the ac-
tual one.

In order to further analyse the sampling bias
problem, consider the maximum likelihood esti-
mation (MLE) of a probability model, pθ(e, f)
for a given corpus of N data points,{(en, fn)},
sampled from the actual probability distribution,
Pr(e, f). Recall that e denotes a target sen-
tence whereas f stands for its source counter-
part. MLE techniques aims at minimising the
Kullback-Leibler divergence between the actual
unknown probability distribution and the proba-
bility model (Bishop, 2006), defined as

KL(Pr | pθ) =
∑
e,f

Pr(e, f) log

(
Pr(e, f)

pθ(e, f)

)
(2)

When minimising, Eq. (2) is simplified to

θ̂ = arg max
θ

∑
e,f

Pr(e, f) log(pθ(e, f)) (3)

which is approximated by a sufficiently large
dataset under the commonly hold assumption that
it is independently and identically distributed ac-
cording to Pr(e, f) as

θ̂ = arg max
θ

∑
n

log(pθ(en, fn)) (4)

Therefore, by perturbing the sample {(en, fn)}
with an active strategy, we are, in fact, modifying
the approximation to Eq.(3) and learning a differ-
ent underlying probability distribution.

In this section a statistical framework is pro-
posed to build systems with BSS while avoiding

the sample bias. The proposed approach relies in
conserving the probability distribution of the task
domain by wisely selecting the bilingual pairs to
be used from the whole pool of sentences. Hence,
it is mandatory to exclude sentences from the pool
that distort the actual probability. In order to ap-
proximate the probability distribution, we assume
that a small but representative corpus is avail-
able from the task domain. This corpus, referred
henceforth as the in-domain corpus, provides a
way to build an initial model which approximates
the actual probability of the system. The pool of
sentences will be oppositely denoted as the out-
of-domain corpus.

The actual probability of the task domain, the
so called in-domain probability, is approximated
with the following model

p(e, f , |e|, |f |) = p(e, f | |e|, |f |) · p(|e|, |f |) (5)

where p(|e|, |f |) denotes the in-domain length
probability, and p(e, f | |e|, |f |) the in-domain
bilingual probability.

The length probability is estimated by MLE

p(|e|, |f |) =
N(|e|+ |f |)

N
(6)

where N(|e|+|f |) is the number of bilingual pairs
in the in-domain corpus such that their lengths
sum up to |e|+|f | and N denotes the total num-
ber of sentences. Note that no distinction is made
between source and target lengths since the model
is intended for sampling.

The complexity of the in-domain bilingual
probability distribution, p(e, f | |e|, |f |), requires
a more sophisticated approximation

p(e, f/|e|, |f |) =
exp(

∑
k γkfk(e, f))

Z
(7)

being Z a normalisation constant; and where
fk(. . .) and γk are the features of the model and
their respective parametric weights. Specifically,
four logarithmic features were considered for this
sampling technique: a direct and an inverse IBM
model 4 (Brown et al., 1994); and both, source
and target, 5-gram language models. All fea-
ture models are estimated in the in-domain cor-
pus with standard techniques (Brown et al., 1994;
Stolcke, 2002). As a first approach, the parame-
ters of the log-linear model in Eq. (7), γk, were
uniformly fixed to 1.
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Once we have an appropriate model for the
in-domain probability distribution, the proposed
method randomly samples a given number of
bilingual pairs from the out-of-domain corpora
(the pool of sentences). The process of extend-
ing the in-domain corpus with additional bilin-
gual pairs from the out-of-domain corpus is sum-
marised as follows:

• Decide according to the in-domain length
probability in Eq. (6), how many samples
should be drawn for each length, i.e. divide
the number of sentences to add into length
dependent buckets.

• Randomly draw the number of samples
specified in each bucket according to the
in-domain bilingual probability in Eq. (7)
among all the bilingual sentences that share
the current bucket length.

Although the pool of sentences is typically
large, it is not large enough to gather a signifi-
cant amount of probability mass. Consequently,
a small set of sentences accumulate most of the
probability mass and tend to be selected multi-
ple times. To avoid this awkward and undesired
behaviour, the sampling is performed without re-
placement.

4 Infrequent n-gram Recovery

Another criterion when confronting the BSS task
is to increase the informativeness of the training
set. Thus, it seems important to choose sentences
that provide information not seen in the training
corpus. Note that this criterion is sometimes op-
posed to the one presented in Section 3.

The performance of phrase-based machine
translation systems strongly relies in the quality
of the phrases extracted from the training sam-
ples. In most of the cases, the inference of such
phrases or rules is based on word alignments,
which cannot be computed accurately when ap-
pearing rarely in the training corpus. The extreme
case are the out-of-vocabulary words: words that
do not appear in the training set, cannot be trans-
lated. Moreover, this problem can be extended to
sequences of words (n-grams). Consider a 2-gram
fifj appearing few or no times in the training set.
Although fi and fj may appear separately in the
training set, the system might not be able to in-
fer the translation of the 2-gram fifj , which may

be different from the concatenation of the transla-
tions of both words separately.

When selecting sentences from the pool it is
important to choose sentences that contain n-
grams that have never been seen (or have been
seen just a few times) in the training set. Such
n-grams will be henceforth referred to as infre-
quent n-grams . An n-gram is considered infre-
quent when it appears less times than an infre-
quent threshold t. If the source language sen-
tences to be translated are known beforehand, the
set of infrequent n-grams can be reduced to those
present in such sentences. Then, the technique
consists in selecting from the pool those sentences
which contain infrequent n-grams present in the
source sentences to be translated.

Sentences in the pool are sorted by their infre-
quency score in order to select first the most in-
formative. Let X the set of n-grams that appear
in the sentences to be translated and w one of
them; C(w) the counts of w in the source lan-
guage training set; and N(w) the counts of w
in the source sentence f to be scored. The infre-
quency score of f is:

i(f) =
∑
w∈X

min(1, N(w)) max(0, t−C(w)) (8)

In order to avoid giving a high score to noisy
sentences with a lot of occurrences of the same in-
frequent n-gram, only one occurrence of each n-
gram is taken into account to compute the score.
In addition, the score gives more importance to
the n-grams with lowest counts in the training
set. Although it could be possible to select the
highest scored sentences, we updated the scores
each time a sentence is selected. This decision
was taken to avoid the selection of too many sen-
tences with the same infrequent n-gram. First,
sentences in the pool are scored using Equation
(8). Then, in each iteration, the sentence f∗ with
the highest score is selected, added to the training
set and removed from the pool. In addition, the
counts of the n-grams present in f∗ are updated
and, hence, the scores of the rest of the sentences
in the pool. Since rescoring the whole pool would
incur in a very high computational cost, a subop-
timal search strategy was followed, in which the
search was constrained to a given set of highest
scoring sentences. Here it was set to one million.
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t = 1 t = 10 t = 25
tr all tr all tr all

1-gr 11.6 1.3 40.5 3.5 59.9 5.1
2-gr 38 9.8 73.2 21.3 84.9 27.9
3-gr 66.8 33.5 91.1 55.7 96.4 64.9
4-gr 87.1 65.8 98.2 85.5 99.4 90.7

Table 1: Percentage of infrequent n-grams in the TED
test set when considering only the TED training set
(tr), and when adding the out-of-domain pool (all),
for different infrequency thresholds t.

Table 1 shows the percentage of source lan-
guage infrequent n-grams for the test of a rela-
tively small corpus such as the TED corpus (for
details see Section 5) when considering just the
in-domain training set (≈ 40K sentences) and the
same percentage when adding the larger out of do-
main corpora. The percentages in the table have
been computed separately for different values of
the threshold t and for n-grams of order from 1 to
4. Note that the reduction in the number of infre-
quent n-grams is very high for the 1-grams but de-
creases progressively when considering n-grams
of higher order. This indicates that the infrequent
n-grams recovery technique should be very effec-
tive for lower order n-grams, but might have less
effect for higher order n-grams. Therefore, and
in order to lower the computational cost involved,
the experiments carried out for this paper were
performed considering only infrequent 1-grams,
2-grams and 3-grams.

5 Experiments

In the present Section, we first describe the exper-
imental framework employed to assess the perfor-
mance of the BSS techniques described. Then, re-
sults for the probabilistic sentence selection strat-
egy are shown, followed by results obtained with
the infrequent n-grams technique. Some exam-
ple translations are shown and, finally, we also
report experiments using the infrequent n-grams
technique in Oracle mode, in order to establish
the potential improvement for such technique and
for BSS in general.

5.1 Experimental Setup
All experiments were carried out using the
open-source SMT toolkit Moses (Koehn et al.,
2007), in its standard non-monotonic configura-
tion. The phrase tables were generated by means
of symmetrised word alignments obtained with

Subset Language |S| |W | |V |

train English 47.5K 747K 24.6K
French 793K 31.7K

dev English 571 9.2K 1.9K
French 10.3K 2.2K

test English 641 12.6K 2.4K
French 12.8K 2.7K

Table 2: TED corpus main figures. K denotes thou-
sands of elements. |S| stands for number of sentences,
|W | for number of running words, and |V | for vocab-
ulary size.

Subset Language |S| |W | |V |

train English 77.2K 1.71M 29.9K
French 1.99M 48K

dev 08 English 2.1K 49.8K 8.7K
French 55.4K 7.7K

test 09 English 2.5K 65.6K 8.9K
French 72.5K 10.6K

test 10 English 2.5K 62K 8.9K
French 70.5K 10.3K

Table 3: News Commentary corpus main figures.

GIZA++ (Och and Ney, 2003). The language
model used was a 5-gram with modified Kneser-
Ney smoothing (Kneser and Ney, 1995), built
with SRILM toolkit (Stolcke, 2002). The log-
linear combination weights in Eq. (1) were opti-
mised using Minimum Error Rate Training (Och
and Ney, 2002) on the corresponding develop-
ment sets.

Experiments were carried out on two corpora:
TED (Paul et al., 2010) and News Commentary
(NC) (Callison-Burch et al., 2010). TED is an
English-French corpus composed of subtitles for
a collection of public speeches on a variety of top-
ics. The same partitions as in the IWSLT2010
evaluation task (Paul et al., 2010) have been used.
Subtitles have been concatenated into complete
sentences. NC is a slightly larger English-French
corpus in the news domain. Main figures of both
corpora are shown in Tables 2 and 3. As for the
pool of sentences, three large corpora have been
used: Europarl (Euro), United Nations (UN) and
Gigaword (Giga), in the partition established for
the 2010 workshop on SMT of the ACL (Callison-
Burch et al., 2010). Sentences of length greater
than 50 have been pruned. Table 4 shows the main
figures of the tokenised and lowercased corpora.

When translating between some language
pairs, there are words that remain invariable, like
for example numbers or punctuation marks in the
case of European languages. In fact, an easy and
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Corpus Language |S| |W | |V |

Euro English 1.25M 25.6M 81K
French 28.2M 101K

UN English 5M 94.4M 302K
French 107M 283K

Giga English 15.5M 303M 1.6M
French 361M 1.6M

Table 4: Figures of the corpora used as sentence pool.
M stands for millions of elements.

effective technique that is commonly used is to re-
produce out-of-vocabulary words from the source
sentence in the target hypothesis. However, in-
variable n-grams are usually infrequent as well,
which implies that the infrequent n-grams tech-
nique would select sentences containing such n-
grams, even though they do not provide further
information. As a first approach, we exclude n-
grams without any letter.

Baseline experiments have been carried out for
TED and NC corpora using the corresponding
training set. For comparison purposes, we also
included results for a purely random sentence se-
lection without replacement. In the plots, each
point corresponding to random selection represent
the average of 10 repetitions. Experiments using
all data are also reported, although a 64GB ma-
chine was necessary, even with binarized phrase
and distortion tables.

Experiments were conducted by selecting a
fixed amount of sentences according to each one
of the techniques described above. Then, these
sentences were included into the training data and
subsequent SMT systems were built for translat-
ing the test set.

Results are shown in terms of BLEU (Papineni
et al., 2001), which is an accuracy metric that
measures n-gram precision, with a penalty for
sentences that are too short. Although it could
be argued that improvements obtained might be
due to a side effect of the brevity penalty, this
was not found to be true: the BSS techniques (in-
cluding random) and considering all data yielded
very similar brevity penalties (±0.005), within
each corpus. In addition, TER scores (Snover et
al., 2006) were also computed, but are omitted
for clarity purposes and since they were found to
be coherent with BLEU. TER is an error metric
that computes the minimum number of edits re-
quired to modify the system hypotheses so that
they match the references translations.
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5.2 Results for Probabilistic Sampling
In addition to the probabilistic sampling tech-
nique proposed in Section 3, we also analysed the
effect of sampling only according to the combined
source-reference length, with the purpose of es-
tablishing whether potential improvements were
only due to the length component, or rather to the
complete sampling model. Results for the 2009
test set are shown in Figure 1. Several things
should be noted:

• Performing sentence selection only according
to sentence lengths does not achieve better
performance than random selection.

• Selecting sentences according to probabilis-
tic sampling is able to improve random se-
lection in the case of the TED corpus, but
is not able to do so in the case of the NC
corpus. Significance tests for the 500K case
reported that the differences were significant
in the case of the TED corpus, but not in the
case of the NC corpus.

• In the case of the TED corpus, the perfor-
mance achieved with the system built by
sampling 500K sentences is only 0.5 BLEU
points below the performance achieved by
the system built with all the data available.

The explanation to the fact that probabilistic
sampling is able to improve over random sam-
pling only in the case of the TED corpus, but not
in the case of NC, relies in the nature of the cor-
pora. Although both of them belong to a very
generic domain, their characteristics are very dif-
ferent. In fact, the NC data is very similar to the
sentences in the pool, but, in contrast, the sen-
tences present in the TED corpus have a much
more different structure. This difference is illus-
trated in Figure 2, where the relative frequency of
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Figure 1: Effect of adding sentences over the BLEU score using the probabilistic sampling, length sampling and
random selection techniques for the two corpora, TED and News Commentary. Horizontal lines represent the
scores when using just the in domain training set and all the data available.
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Figure 3: Effect of adding sentences over the BLEU score using the infrequent n-grams (with different thresh-
olds) and random selection techniques for the two corpora, TED and News Commentary. Horizontal lines repre-
sent the scores when using just the in domain training set and all the data available.

each combined sentence length is shown. In this
plot, it stands out clearly that the TED corpus has
a very different length distribution than the other
four corpora considered, whereas the NC corpus
presents a very similar distribution. This implies
that, when considering TED, an intelligent data
selection strategy will have better chances to im-
prove random selection than in the case of NC.

5.3 Results for Infrequent n-grams Recovery
Figure 3 shows the effect of adding sentences us-
ing the infrequent n-grams and the random se-
lection techniques on the 2009 test set. Once
all the infrequent n-grams have been covered
t times, the infrequency score for all the sen-
tences remaining in the pool is 0, and none of
them can be selected. Hence, the number of
sentences that can be selected for each t is lim-
ited. Although for clarity we only show results
for t = {10, 25}, experiments have also been car-
ried out for t = {1, 5, 10, 25}. Such results pre-

sented similar curves, although less sentences can
be selected and hence improvements obtained are
slightly lower. Several conclusions can be drawn:

• The translation quality provided by the in-
frequent n-grams technique is significantly
better than the results achieved with random
selection, comparing similar amount of sen-
tences. Specifically, the improvements ob-
tained are in the range of 3 BLEU points.
• Results for the TED corpus are more irreg-

ular. The best performance is achieved for
t = 25 and 50K sentences added. In NC, the
best result is for t = 10 and 112K.
• Selecting sentences with the infrequent n-

grams technique provides better results than
including all the available data. While using
less than 0.5% of the data, improvements be-
tween 0.5 and 1 BLEU points are achieved.

When looking at Figure 3, one might suspect
that t needs to be set specifically for a given test
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set, and that results from one set are not to be ex-
trapolated to other test sets. For this reason, we
selected the best configuration in Figure 3 and
used it to build a new system for translating the
unseen NC 2010 test set. Such experiment, with
t = 10 and including all sentences with score
greater than 0 (≈ 110K), is shown in Table 5 and
evidences that improvements are actually coher-
ent among different test sets.

technique BLEU TER #phrases
in-domain 19.0 65.2 5.1M

all data 22.7 60.8 1236M
infreq. t = 10 23.6 59.2 16.5M

Table 5: Effect of the infrequent n-gram recovery tech-
nique for an unseen test set, when setting t = 10 and
number of phrases (parameters) of the models.

5.4 Oracle Results
In order to analyse the potential of BSS tech-
niques, the infrequent n-grams recovery tech-
nique in Section 4 was implemented in oracle
mode. In this way, sentences from the pool
were selected according to the infrequent n-grams
present in the reference translations of the test set.
Note that test references were not included into
the training data as such, but were rather used
to establish which bilingual sentences within the
pool were best suitable for training the SMT sys-
tem. In this way, we were able to establish the po-
tential for improvement of a BSS technique. In-
terestingly, the SMT system trained in this way
achieved 31 BLEU points on the News Commen-
tary 2009 test set, i.e. an 8 BLEU points improve-
ment over the system trained with all the data
available. This result would have beaten all the
systems that took part in the 2009 Workshop on
Machine translation (Callison-Burch et al., 2009).
This result is really important: although we are
aware that the sentences were selected in a non-
realistic manner, it proves that an appropriate BSS
technique would be able to boost SMT perfor-
mance in a very significant manner. Similar re-
sults were obtained with the TED and NC 2010
test sets, with 10 and 7 points improvement, re-
spectively.

5.5 Example Translations
Example translations are shown in Figure 4. In
the first example, the baseline system is not able

Src the budget has also been criticised by klaus .
Bsl le budget a également été criticised par m. klaus .
Rdm le budget a également été critiquées par m. klaus .
PS le budget a également été critiquée par klaus .
All le budget a également été critiqué par klaus .
Infr le budget a également été critiqué par klaus .
Ref klaus critique également le budget .
Src and one has come from music .
Bsl et un a de la musique .
Rdm et on vient de musique .
PS et on a viennent de musique .
All et de la musique .
Infr et un est venu de la musique .
Ref et un vient du monde de la musique .

Figure 4: Examples of two translations for each of the
SMT systems built: Src (source sentence), Bsl (base-
line), Rdm (random selection), PS (probabilistic sam-
pling), All (all the data available), Infr (Infrequent n-
grams) and Ref (reference).

to translate criticised, which is considered out-of-
vocabulary. Even though random selection is able
to solve this problem (luckily), it does not achieve
to translate it correctly, introducing a concordance
error. A similar thing happens when using prob-
abilistic sampling, where a grammatical error is
also present, and only Infr and All are able
to present a correct translation. This is not only
casual, since, by ensuring that a given n-gram ap-
pears at least a certain number of times t, the odds
of including all possible translations of criticised
are incremented significantly. Note that, even if
the Infr translation is different from the refer-
ence, it is equally correct. In the second example,
the baseline translation is pretty much correct, but
has a different meaning (something like “and one
has music”). Similarly, when including all data
the translation obtained by the system means “and
some music”. In this case, both random and prob-
abilistic selection present grammatically incorrect
sentences, and only Infr is able to provide a cor-
rect translation, although pretty literal and differ-
ent from the reference.

6 Discussion

Bilingual sentence selection (BSS) might be un-
derstood to be closely related to adaptation, even
though both paradigms tackle problems which
are, in essence, different. The goal of an adap-
tation technique is to adapt model parameters,
which have been estimated on a large out-of-
domain (or generic) data set, so that they are
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best suitable for dealing with a domain-specific
test set. This adaptation process is ought to be
achieved by means of a (potentially small) adapta-
tion set, which belongs to the same domain as the
test data. In contrast, BSS tackles with the prob-
lem of how to select samples from a large pool
of training data, regardless of whether such pool
of data is in-domain or out-of-domain. Hence, in
one case we can assume to have a fairly well es-
timated translation model, which is to be adapted,
whereas in BSS we still have full control over the
estimation of such model and need not to aim at a
specific domain, although it might often be so.

BSS is related with instance weighting (Jiang
and Zhai, 2007; Foster et al., 2010). Adapta-
tion and BSS can be considered to be orthogo-
nal (yet complementary) problems under the in-
stance weighting paradigm. In such case, instance
weighting can be considered to span a complete
paradigmatic space between both. At one end,
there is sample selection (BSS for SMT), while at
the other end there is adaptation. For instance, it
is quite common to confront the adaptation prob-
lem by extracting different phrase-tables from dif-
ferent corpora, and then interpolate such tables.
This technique could be also applied to promote
the performance of the system built by means of
BSS. However, this is left out as future work.

We thoroughly analysed two BSS approaches
that obtain competitive results, while using a
small fraction of the training data, although there
is still much to be gained. For instance, oracle re-
sults have also been reported in this work, yield-
ing improvements of up to 10 BLEU points. Even
though the use of an oracle typically implies that
the results obtained are not realistic, recall that
the proposed oracle is special, in the sense that it
only uses the reference sentences for the specific
purpose of selecting training samples, but the ref-
erences are not included into the training data as
such. This is useful for assessing the potential be-
hind BSS: ideally, if we were able to design a BSS
strategy that, without using the references, would
select exactly those training samples, we would be
boosting system performance by 10 BLEU points.
This re-states BSS as a compelling technique that
has not yet received the attention it deserves.

BSS is not aimed at optimising computational
requirements, but does so as a byproduct. This
may seem despicable but it would allow to run
more experiments with the same resources, use

larger corpora or even more complex techniques,
such as synchronous grammars or hierarchical
models. For instance, the infrequent n-grams
technique has beaten all the other systems using
just a small fraction of the corpus, only 0.5%, and
is yet able to outperform a system trained with all
the data by 0.9 BLEU points and the random base-
line by 3 points. This baseline has been proved to
be difficult to beat by other works.

Preliminary experiments were performed in or-
der to analyse the perplexity of the references, the
number of out of vocabulary words (OoVs) and
the ratio of target-source phrases. These exper-
iments revealed that the improvements obtained
are largely correlated with a decrease in perplex-
ity and in the number of OoVs. On the one hand,
reducing the amount of OoVs was mirrored by
an important improvement in BLEU when the
amount of additional data was small, and also
entailed a decrease in perplexity. However, a
reduction in perplexity by itself did not always
imply significant improvements. Moreover, no
real conclusion could be drawn from the analy-
sis of target-source phrase ratio. Hence, we un-
derstand that the improvements obtained are pro-
vided mainly by a more specialised estimation of
the model parameters. However, further experi-
ments should still be conducted in order to verify
this conclusion.
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Jesús González-Rubio, Martha-Alicia Rocha,
Germán Sanchis-Trilles, Francisco Casacuberta,
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Abstract

We consider the problem of NER in Arabic
Wikipedia, a semisupervised domain adap-
tation setting for which we have no labeled
training data in the target domain. To fa-
cilitate evaluation, we obtain annotations
for articles in four topical groups, allow-
ing annotators to identify domain-specific
entity types in addition to standard cate-
gories. Standard supervised learning on
newswire text leads to poor target-domain
recall. We train a sequence model and show
that a simple modification to the online
learner—a loss function encouraging it to
“arrogantly” favor recall over precision—
substantially improves recall and F1. We
then adapt our model with self-training
on unlabeled target-domain data; enforc-
ing the same recall-oriented bias in the self-
training stage yields marginal gains.1

1 Introduction

This paper considers named entity recognition
(NER) in text that is different from most past re-
search on NER. Specifically, we consider Arabic
Wikipedia articles with diverse topics beyond the
commonly-used news domain. These data chal-
lenge past approaches in two ways:

First, Arabic is a morphologically rich lan-
guage (Habash, 2010). Named entities are ref-
erenced using complex syntactic constructions
(cf. English NEs, which are primarily sequences
of proper nouns). The Arabic script suppresses
most vowels, increasing lexical ambiguity, and
lacks capitalization, a key clue for English NER.

Second, much research has focused on the use
of news text for system building and evaluation.
Wikipedia articles are not news, belonging instead
to a wide range of domains that are not clearly

1The annotated dataset and a supplementary document
with additional details of this work can be found at:
http://www.ark.cs.cmu.edu/AQMAR

delineated. One hallmark of this divergence be-
tween Wikipedia and the news domain is a dif-
ference in the distributions of named entities. In-
deed, the classic named entity types (person, or-
ganization, location) may not be the most apt for
articles in other domains (e.g., scientific or social
topics). On the other hand, Wikipedia is a large
dataset, inviting semisupervised approaches.

In this paper, we describe advances on the prob-
lem of NER in Arabic Wikipedia. The techniques
are general and make use of well-understood
building blocks. Our contributions are:

• A small corpus of articles annotated in a new
scheme that provides more freedom for annota-
tors to adapt NE analysis to new domains;
• An “arrogant” learning approach designed to

boost recall in supervised training as well as
self-training; and
• An empirical evaluation of this technique as ap-

plied to a well-established discriminative NER
model and feature set.

Experiments show consistent gains on the chal-
lenging problem of identifying named entities in
Arabic Wikipedia text.

2 Arabic Wikipedia NE Annotation

Most of the effort in NER has been fo-
cused around a small set of domains and
general-purpose entity classes relevant to those
domains—especially the categories PER(SON),
ORG(ANIZATION), and LOC(ATION) (POL),
which are highly prominent in news text. Ara-
bic is no exception: the publicly available NER
corpora—ACE (Walker et al., 2006), ANER (Be-
najiba et al., 2008), and OntoNotes (Hovy et al.,
2006)—all are in the news domain.2 However,

2OntoNotes contains news-related text. ACE includes
some text from blogs. In addition to the POL classes, both
corpora include additional NE classes such as facility, event,
product, vehicle, etc. These entities are infrequent and may
not be comprehensive enough to cover the larger set of pos-
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History Science Sports Technology
dev: Damascus Atom Raúl Gonzáles Linux

Imam Hussein Shrine Nuclear power Real Madrid Solaris

test: Crusades Enrico Fermi 2004 Summer Olympics Computer
Islamic Golden Age Light Christiano Ronaldo Computer Software
Islamic History Periodic Table Football Internet
Ibn Tolun Mosque Physics Portugal football team Richard Stallman
Ummaya Mosque Muhammad al-Razi FIFA World Cup X Window System
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Table 1: Translated titles
of Arabic Wikipedia arti-
cles in our development
and test sets, and some
NEs with standard and
article-specific classes.
Additionally, Prussia and
Amman were reserved
for training annotators,
and Gulf War for esti-
mating inter-annotator
agreement.

appropriate entity classes will vary widely by do-
main; occurrence rates for entity classes are quite
different in news text vs. Wikipedia, for instance
(Balasuriya et al., 2009). This is abundantly
clear in technical and scientific discourse, where
much of the terminology is domain-specific, but it
holds elsewhere. Non-POL entities in the history
domain, for instance, include important events
(wars, famines) and cultural movements (roman-
ticism). Ignoring such domain-critical entities
likely limits the usefulness of the NE analysis.

Recognizing this limitation, some work on
NER has sought to codify more robust invento-
ries of general-purpose entity types (Sekine et al.,
2002; Weischedel and Brunstein, 2005; Grouin
et al., 2011) or to enumerate domain-specific
types (Settles, 2004; Yao et al., 2003). Coarse,
general-purpose categories have also been used
for semantic tagging of nouns and verbs (Cia-
ramita and Johnson, 2003). Yet as the number
of classes or domains grows, rigorously docu-
menting and organizing the classes—even for a
single language—requires intensive effort. Ide-
ally, an NER system would refine the traditional
classes (Hovy et al., 2011) or identify new entity
classes when they arise in new domains, adapting
to new data. For this reason, we believe it is valu-
able to consider NER systems that identify (but
do not necessarily label) entity mentions, and also
to consider annotation schemes that allow annota-
tors more freedom in defining entity classes.

Our aim in creating an annotated dataset is to
provide a testbed for evaluation of new NER mod-
els. We will use these data as development and

sible NEs (Sekine et al., 2002). Nezda et al. (2006) anno-
tated and evaluated an Arabic NE corpus with an extended
set of 18 classes (including temporal and numeric entities);
this corpus has not been released publicly.

testing examples, but not as training data. In §4
we will discuss our semisupervised approach to
learning, which leverages ACE and ANER data
as an annotated training corpus.

2.1 Annotation Strategy

We conducted a small annotation project on Ara-
bic Wikipedia articles. Two college-educated na-
tive Arabic speakers annotated about 3,000 sen-
tences from 31 articles. We identified four top-
ical areas of interest—history, technology, sci-
ence, and sports—and browsed these topics un-
til we had found 31 articles that we deemed sat-
isfactory on the basis of length (at least 1,000
words), cross-lingual linkages (associated articles
in English, German, and Chinese3), and subjec-
tive judgments of quality. The list of these arti-
cles along with sample NEs are presented in ta-
ble 1. These articles were then preprocessed to
extract main article text (eliminating tables, lists,
info-boxes, captions, etc.) for annotation.

Our approach follows ACE guidelines (LDC,
2005) in identifying NE boundaries and choos-
ing POL tags. In addition to this traditional form
of annotation, annotators were encouraged to ar-
ticulate one to three salient, article-specific en-
tity categories per article. For example, names
of particles (e.g., proton) are highly salient in the
Atom article. Annotators were asked to read the
entire article first, and then to decide which non-
traditional classes of entities would be important
in the context of article. In some cases, annotators
reported using heuristics (such as being proper

3These three languages have the most articles on
Wikipedia. Associated articles here are those that have been
manually hyperlinked from the Arabic page as cross-lingual
correspondences. They are not translations, but if the associ-
ations are accurate, these articles should be topically similar
to the Arabic page that links to them.
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Token position agreement rate 92.6% Cohen’s κ: 0.86
Token agreement rate 88.3% Cohen’s κ: 0.86
Token F1 between annotators 91.0%
Entity boundary match F1 94.0%
Entity category match F1 87.4%

Table 2: Inter-annotator agreement measurements.

nouns or having an English translation which is
conventionally capitalized) to help guide their de-
termination of non-canonical entities and entity
classes. Annotators produced written descriptions
of their classes, including example instances.

This scheme was chosen for its flexibility: in
contrast to a scenario with a fixed ontology, anno-
tators required minimal training beyond the POL
conventions, and did not have to worry about
delineating custom categories precisely enough
that they would extend straightforwardly to other
topics or domains. Of course, we expect inter-
annotator variability to be greater for these open-
ended classification criteria.

2.2 Annotation Quality Evaluation

During annotation, two articles (Prussia and Am-
man) were reserved for training annotators on
the task. Once they were accustomed to anno-
tation, both independently annotated a third ar-
ticle. We used this 4,750-word article (Gulf War,
�
éJ


	
K A

�
JË @ i. J
Ê

	
mÌ'@ H. Qk) to measure inter-annotator

agreement. Table 2 provides scores for token-
level agreement measures and entity-level F1 be-
tween the two annotated versions of the article.4

These measures indicate strong agreement for
locating and categorizing NEs both at the token
and chunk levels. Closer examination of agree-
ment scores shows that PER and MIS classes have
the lowest rates of agreement. That the mis-
cellaneous class, used for infrequent or article-
specific NEs, receives poor agreement is unsur-
prising. The low agreement on the PER class
seems to be due to the use of titles and descriptive
terms in personal names. Despite explicit guide-
lines to exclude the titles, annotators disagreed on
the inclusion of descriptors that disambiguate the
NE (e.g., the father in H.

�
B@

�
�ñK. h. Qk. : George

Bush, the father).
4The position and boundary measures ignore the distinc-

tions between the POLM classes. To avoid artificial inflation
of the token and token position agreement rates, we exclude
the 81% of tokens tagged by both annotators as not belong-
ing to an entity.

History: Gulf War, Prussia, Damascus, Crusades
WAR CONFLICT • • •

Science: Atom, Periodic table
THEORY • CHEMICAL • •

NAME ROMAN • PARTICLE • •
Sports: Football, Raúl Gonzáles

SPORT ◦ CHAMPIONSHIP •
AWARD ◦ NAME ROMAN •

Technology: Computer, Richard Stallman
COMPUTER VARIETY ◦ SOFTWARE •

COMPONENT •

Table 3: Custom NE categories suggested by one or
both annotators for 10 articles. Article titles are trans-
lated from Arabic. • indicates that both annotators vol-
unteered a category for an article; ◦ indicates that only
one annotator suggested the category. Annotators were
not given a predetermined set of possible categories;
rather, category matches between annotators were de-
termined by post hoc analysis. NAME ROMAN indi-
cates an NE rendered in Roman characters.

2.3 Validating Category Intuitions

To investigate the variability between annotators
with respect to custom category intuitions, we
asked our two annotators to independently read
10 of the articles in the data (scattered across our
four focus domains) and suggest up to 3 custom
categories for each. We assigned short names to
these suggestions, seen in table 3. In 13 cases,
both annotators suggested a category for an article
that was essentially the same (•); three such cat-
egories spanned multiple articles. In three cases
a category was suggested by only one annotator
(◦).5 Thus, we see that our annotators were gen-
erally, but not entirely, consistent with each other
in their creation of custom categories. Further, al-
most all of our article-specific categories corre-
spond to classes in the extended NE taxonomy of
(Sekine et al., 2002), which speaks to the reason-
ableness of both sets of categories—and by exten-
sion, our open-ended annotation process.

Our annotation of named entities outside of the
traditional POL classes creates a useful resource
for entity detection and recognition in new do-
mains. Even the ability to detect non-canonical
types of NEs should help applications such as QA
and MT (Toral et al., 2005; Babych and Hart-
ley, 2003). Possible avenues for future work
include annotating and projecting non-canonical

5When it came to tagging NEs, one of the two annota-
tors was assigned to each article. Custom categories only
suggested by the other annotator were ignored.
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NEs from English articles to their Arabic coun-
terparts (Hassan et al., 2007), automatically clus-
tering non-canonical types of entities into article-
specific or cross-article classes (cf. Frietag, 2004),
or using non-canonical classes to improve the
(author-specified) article categories in Wikipedia.

Hereafter, we merge all article-specific cate-
gories with the generic MIS category. The pro-
portion of entity mentions that are tagged as MIS,
while varying to a large extent by document, is
a major indication of the gulf between the news
data (<10%) and the Wikipedia data (53% for the
development set, 37% for the test set).

Below, we aim to develop entity detection mod-
els that generalize beyond the traditional POL en-
tities. We do not address here the challenges of
automatically classifying entities or inferring non-
canonical groupings.

3 Data

Table 4 summarizes the various corpora used in
this work.6 Our NE-annotated Wikipedia sub-
corpus, described above, consists of several Ara-
bic Wikipedia articles from four focus domains.7

We do not use these for supervised training data;
they serve only as development and test data. A
larger set of Arabic Wikipedia articles, selected
on the basis of quality heuristics, serves as unla-
beled data for semisupervised learning.

Our out-of-domain labeled NE data is drawn
from the ANER (Benajiba et al., 2007) and
ACE-2005 (Walker et al., 2006) newswire cor-
pora. Entity types in this data are POL cate-
gories (PER, ORG, LOC) and MIS. Portions of the
ACE corpus were held out as development and
test data; the remainder is used in training.

4 Models

Our starting point for statistical NER is a feature-
based linear model over sequences, trained using
the structured perceptron (Collins, 2002).8

In addition to lexical and morphological9 fea-
6Additional details appear in the supplement.
7We downloaded a snapshot of Arabic Wikipedia

(http://ar.wikipedia.org) on 8/29/2009 and pre-
processed the articles to extract main body text and metadata
using the mwlib package for Python (PediaPress, 2010).

8A more leisurely discussion of the structured percep-
tron and its connection to empirical risk minimization can
be found in the supplementary document.

9We obtain morphological analyses from the MADA tool
(Habash and Rambow, 2005; Roth et al., 2008).

Training words NEs

ACE+ANER 212,839 15,796
Wikipedia (unlabeled, 397 docs) 1,110,546 —

Development
ACE 7,776 638
Wikipedia (4 domains, 8 docs) 21,203 2,073

Test
ACE 7,789 621
Wikipedia (4 domains, 20 docs) 52,650 3,781

Table 4: Number of words (entity mentions) in data sets.

tures known to work well for Arabic NER (Be-
najiba et al., 2008; Abdul-Hamid and Darwish,
2010), we incorporate some additional features
enabled by Wikipedia. We do not employ a
gazetteer, as the construction of a broad-domain
gazetteer is a significant undertaking orthogo-
nal to the challenges of a new text domain like
Wikipedia.10 A descriptive list of our features is
available in the supplementary document.

We use a first-order structured perceptron; none
of our features consider more than a pair of con-
secutive BIO labels at a time. The model enforces
the constraint that NE sequences must begin with
B (so the bigram 〈O, I〉 is disallowed).

Training this model on ACE and ANER data
achieves performance comparable to the state of
the art (F1-measure11 above 69%), but fares much
worse on our Wikipedia test set (F1-measure
around 47%); details are given in §5.

4.1 Recall-Oriented Perceptron

By augmenting the perceptron’s online update
with a cost function term, we can incorporate a
task-dependent notion of error into the objective,
as with structured SVMs (Taskar et al., 2004;
Tsochantaridis et al., 2005). Let c(y,y′) denote
a measure of error when y is the correct label se-
quence but y′ is predicted. For observed sequence
x and feature weights (model parameters) w, the
structured hinge loss is `hinge(x,y,w) =

max
y′

(
w>g(x,y′) + c(y,y′)

)
−w>g(x,y)

(1)
The maximization problem inside the parentheses
is known as cost-augmented decoding. If c fac-

10A gazetteer ought to yield further improvements in line
with previous findings in NER (Ratinov and Roth, 2009).

11Though optimizing NER systems for F1 has been called
into question (Manning, 2006), no alternative metric has
achieved widespread acceptance in the community.
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tors similarly to the feature function g(x,y), then
we can increase penalties for y that have more
local mistakes. This raises the learner’s aware-
ness about how it will be evaluated. Incorporat-
ing cost-augmented decoding into the perceptron
leads to this decoding step:

ŷ ← arg max
y′

(
w>g(x,y′) + c(y,y′)

)
, (2)

which amounts to performing stochastic subgradi-
ent ascent on an objective function with the Eq. 1
loss (Ratliff et al., 2006).

In this framework, cost functions can be for-
mulated to distinguish between different types of
errors made during training. For a tag sequence
y = 〈y1, y2, . . . , yM 〉, Gimpel and Smith (2010b)
define word-local cost functions that differently
penalize precision errors (i.e., yi = O ∧ ŷi 6= O
for the ith word), recall errors (yi 6= O∧ ŷi = O),
and entity class/position errors (other cases where
yi 6= ŷi). As will be shown below, a key problem
in cross-domain NER is poor recall, so we will
penalize recall errors more severely:

c(y,y′) =
M∑
i=1


0 if yi = y′i
β if yi 6= O ∧ y′i = O
1 otherwise

(3)

for a penalty parameter β > 1. We call our learner
the “recall-oriented” perceptron (ROP).

We note that Minkov et al. (2006) similarly ex-
plored the recall vs. precision tradeoff in NER.
Their technique was to directly tune the weight
of a single feature—the feature marking O (non-
entity tokens); a lower weight for this feature will
incur a greater penalty for predicting O. Below
we demonstrate that our method, which is less
coarse, is more successful in our setting.12

In our experiments we will show that injecting
“arrogance” into the learner via the recall-oriented
loss function substantially improves recall, espe-
cially for non-POL entities (§5.3).

4.2 Self-Training and Semisupervised
Learning

As we will show experimentally, the differences
between news text and Wikipedia text call for do-
main adaptation. In the case of Arabic Wikipedia,

12The distinction between the techniques is that our cost
function adjusts the whole model in order to perform better
at recall on the training data.

Input: labeled data 〈〈x(n),y(n)〉〉Nn=1; unlabeled
data 〈x̄(j)〉Jj=1; supervised learner L;
number of iterations T ′

Output: w
w← L(〈〈x(n),y(n)〉〉Nn=1)
for t = 1 to T ′ do

for j = 1 to J do
ŷ(j) ← arg maxy w>g(x̄(j),y)

w← L(〈〈x(n),y(n)〉〉Nn=1 ∪ 〈〈x̄(j), ŷ(j)〉〉Jj=1)

Algorithm 1: Self-training.

there is no available labeled training data. Yet
the available unlabeled data is vast, so we turn to
semisupervised learning.

Here we adapt self-training, a simple tech-
nique that leverages a supervised learner (like the
perceptron) to perform semisupervised learning
(Clark et al., 2003; Mihalcea, 2004; McClosky
et al., 2006). In our version, a model is trained
on the labeled data, then used to label the un-
labeled target data. We iterate between training
on the hypothetically-labeled target data plus the
original labeled set, and relabeling the target data;
see Algorithm 1. Before self-training, we remove
sentences hypothesized not to contain any named
entity mentions, which we found avoids further
encouragement of the model toward low recall.

5 Experiments

We investigate two questions in the context of
NER for Arabic Wikipedia:

• Loss function: Does integrating a cost func-
tion into our learning algorithm, as we have
done in the recall-oriented perceptron (§4.1),
improve recall and overall performance on
Wikipedia data?
• Semisupervised learning for domain adap-

tation: Can our models benefit from large
amounts of unlabeled Wikipedia data, in addi-
tion to the (out-of-domain) labeled data? We
experiment with a self-training phase following
the fully supervised learning phase.

We report experiments for the possible combi-
nations of the above ideas. These are summarized
in table 5. Note that the recall-oriented percep-
tron can be used for the supervised learning phase,
for the self-training phase, or both. This leaves us
with the following combinations:

• reg/none (baseline): regular supervised learner.
• ROP/none: recall-oriented supervised learner.
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Figure 1: Tuning the recall-oriented cost parame-
ter for different learning settings. We optimized
for development set F1, choosing penalty β = 200
for recall-oriented supervised learning (in the plot,
ROP/*—this is regardless of whether a stage of
self-training will follow); β = 100 for recall-
oriented self-training following recall-oriented su-
pervised learning (ROP/ROP); and β = 3200 for
recall-oriented self-training following regular super-
vised learning (reg/ROP).

• reg/reg: standard self-training setup.
• ROP/reg: recall-oriented supervised learner, fol-

lowed by standard self-training.
• reg/ROP: regular supervised model as the initial la-

beler for recall-oriented self-training.
• ROP/ROP (the “double ROP” condition): recall-

oriented supervised model as the initial labeler for
recall-oriented self-training. Note that the two
ROPs can use different cost parameters.

For evaluating our models we consider the
named entity detection task, i.e., recognizing
which spans of words constitute entities. This
is measured by per-entity precision, recall, and
F1.13 To measure statistical significance of differ-
ences between models we use Gimpel and Smith’s
(2010) implementation of the paired bootstrap re-
sampler of (Koehn, 2004), taking 10,000 samples
for each comparison.

5.1 Baseline
Our baseline is the perceptron, trained on the
POL entity boundaries in the ACE+ANER cor-
pus (reg/none).14 Development data was used to
select the number of iterations (10). We per-
formed 3-fold cross-validation on the ACE data
and found wide variance in the in-domain entity
detection performance of this model:

P R F1

fold 1 70.43 63.08 66.55
fold 2 87.48 81.13 84.18
fold 3 65.09 51.13 57.27
average 74.33 65.11 69.33

(Fold 1 corresponds to the ACE test set described
in table 4.) We also trained the model to perform
POL detection and classification, achieving nearly
identical results in the 3-way cross-validation of
ACE data. From these data we conclude that our

13Only entity spans that exactly match the gold spans are
counted as correct. We calculated these scores with the
conlleval.pl script from the CoNLL 2003 shared task.

14In keeping with prior work, we ignore non-POL cate-
gories for the ACE evaluation.

baseline is on par with the state of the art for Ara-
bic NER on ACE news text (Abdul-Hamid and
Darwish, 2010).15

Here is the performance of the baseline entity
detection model on our 20-article test set:16

P R F1

technology 60.42 20.26 30.35
science 64.96 25.73 36.86
history 63.09 35.58 45.50
sports 71.66 59.94 65.28
overall 66.30 35.91 46.59

Unsurprisingly, performance on Wikipedia data
varies widely across article domains and is much
lower than in-domain performance. Precision
scores fall between 60% and 72% for all domains,
but recall in most cases is far worse. Miscella-
neous class recall, in particular, suffers badly (un-
der 10%)—which partially accounts for the poor
recall in science and technology articles (they
have by far the highest proportion of MIS entities).

5.2 Self-Training

Following Clark et al. (2003), we applied self-
training as described in Algorithm 1, with the
perceptron as the supervised learner. Our unla-
beled data consists of 397 Arabic Wikipedia ar-
ticles (1 million words) selected at random from
all articles exceeding a simple length threshold
(1,000 words); see table 4. We used only one iter-
ation (T ′ = 1), as experiments on development
data showed no benefit from additional rounds.
Several rounds of self-training hurt performance,

15Abdul-Hamid and Darwish report as their best result a
macroaveraged F1-score of 76. As they do not specify which
data they used for their held-out test set, we cannot perform
a direct comparison. However, our feature set is nearly a
superset of their best feature set, and their result lies well
within the range of results seen in our cross-validation folds.

16Our Wikipedia evaluations use models trained on
POLM entity boundaries in ACE. Per-domain and overall
scores are microaverages across articles.
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SELF-TRAINING
SUPERVISED none reg ROP

reg 66.3 35.9 46.59 66.7 35.6 46.41 59.2 40.3 47.97
ROP 60.9 44.7 51.59 59.8 46.2 52.11 58.0 47.4 52.16

Table 5: Entity detection precision, recall, and F1 for each learning setting, microaveraged across the 24 articles
in our Wikipedia test set. Rows differ in the supervised learning condition on the ACE+ANER data (regular
vs. recall-oriented perceptron). Columns indicate whether this supervised learning phase was followed by self-
training on unlabeled Wikipedia data, and if so which version of the perceptron was used for self-training.

baseline
entities words recall

PER 1081 1743 49.95
ORG 286 637 23.92
LOC 1019 1413 61.43
MIS 1395 2176 9.30
overall 3781 5969 35.91

Figure 2: Recall improve-
ment over baseline in the test
set by gold NER category,
counts for those categories in
the data, and recall scores for
our baseline model. Markers
in the plot indicate different
experimental settings corre-
sponding to cells in table 5.

an effect attested in earlier research (Curran et al.,
2007) and sometimes known as “semantic drift.”

Results are shown in table 5. We find that stan-
dard self-training (the middle column) has very
little impact on performance.17 Why is this the
case? We venture that poor baseline recall and the
domain variability within Wikipedia are to blame.

5.3 Recall-Oriented Learning
The recall-oriented bias can be introduced in ei-
ther or both of the stages of our semisupervised
learning framework: in the supervised learn-
ing phase, modifying the objective of our base-
line (§5.1); and within the self-training algorithm
(§5.2).18 As noted in §4.1, the aim of this ap-
proach is to discourage recall errors (false nega-
tives), which are the chief difficulty for the news
text–trained model in the new domain. We se-
lected the value of the false positive penalty for
cost-augmented decoding, β, using the develop-
ment data (figure 1).

The results in table 5 demonstrate improve-
ments due to the recall-oriented bias in both
stages of learning.19 When used in the super-

17In neither case does regular self-training produce a sig-
nificantly different F1 score than no self-training.

18Standard Viterbi decoding was used to label the data
within the self-training algorithm; note that cost-augmented
decoding only makes sense in learning, not as a prediction
technique, since it deliberately introduces errors relative to a
correct output that must be provided.

19In terms of F1, the worst of the 3 models with the ROP
supervised learner significantly outperforms the best model
with the regular supervised learner (p < 0.005). The im-

vised phase (bottom left cell), the recall gains
are substantial—nearly 9% over the baseline. In-
tegrating this bias within self-training (last col-
umn of the table) produces a more modest im-
provement (less than 3%) relative to the base-
line. In both cases, the improvements to recall
more than compensate for the amount of degra-
dation to precision. This trend is robust: wher-
ever the recall-oriented perceptron is added, we
observe improvements in both recall and F1. Per-
haps surprisingly, these gains are somewhat addi-
tive: using the ROP in both learning phases gives
a small (though not always significant) gain over
alternatives (standard supervised perceptron, no
self-training, or self-training with a standard per-
ceptron). In fact, when the standard supervised
learner is used, recall-oriented self-training suc-
ceeds despite the ineffectiveness of standard self-
training.

Performance breakdowns by (gold) class, fig-
ure 2, and domain, figure 3, further attest to the
robustness of the overall results. The most dra-
matic gains are in miscellaneous class recall—
each form of the recall bias produces an improve-
ment, and using this bias in both the supervised
and self-training phases is clearly most success-
ful for miscellaneous entities. Correspondingly,
the technology and science domains (in which this
class dominates—83% and 61% of mentions, ver-

provements due to self-training are marginal, however: ROP
self-training produces a significant gain only following reg-
ular supervised learning (p < 0.05).
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Figure 3: Supervised
learner precision vs.
recall as evaluated
on Wikipedia test
data in different
topical domains. The
regular perceptron
(baseline model) is
contrasted with ROP.
No self-training is
applied.

sus 6% and 12% for history and sports, respec-
tively) receive the biggest boost. Still, the gaps
between domains are not entirely removed.

Most improvements relate to the reduction of
false negatives, which fall into three groups:
(a) entities occurring infrequently or partially
in the labeled training data (e.g. uranium);
(b) domain-specific entities sharing lexical or con-
textual features with the POL entities (e.g. Linux,
titanium); and (c) words with Latin characters,
common in the science and technology domains.
(a) and (b) are mostly transliterations into Arabic.

An alternative—and simpler—approach to
controlling the precision-recall tradeoff is the
Minkov et al. (2006) strategy of tuning a single
feature weight subsequent to learning (see §4.1
above). We performed an oracle experiment to
determine how this compares to recall-oriented
learning in our setting. An oracle trained with
the method of Minkov et al. outperforms the three
models in table 5 that use the regular perceptron
for the supervised phase of learning, but under-
performs the supervised ROP conditions.20

Overall, we find that incorporating the recall-
oriented bias in learning is fruitful for adapting to
Wikipedia because the gains in recall outpace the
damage to precision.

6 Discussion

To our knowledge, this work is the first sugges-
tion that substantively modifying the supervised
learning criterion in a resource-rich domain can
reap benefits in subsequent semisupervised appli-
cation in a new domain. Past work has looked

20Tuning the O feature weight to optimize for F1 on our
test set, we found that oracle precision would be 66.2, recall
would be 39.0, and F1 would be 49.1. The F1 score of our
best model is nearly 3 points higher than the Minkov et al.–
style oracle, and over 4 points higher than the non-oracle
version where the development set is used for tuning.

at regularization (Chelba and Acero, 2006) and
feature design (Daumé III, 2007); we alter the
loss function. Not surprisingly, the double-ROP
approach harms performance on the original do-
main (on ACE data, we achieve 55.41% F1, far
below the standard perceptron). Yet we observe
that models can be prepared for adaptation even
before a learner is exposed a new domain, sacri-
ficing performance in the original domain.

The recall-oriented bias is not merely encour-
aging the learner to identify entities already seen
in training. As recall increases, so does the num-
ber of new entity types recovered by the model:
of the 2,070 NE types in the test data that were
never seen in training, only 450 were ever found
by the baseline, versus 588 in the reg/ROP condi-
tion, 632 in the ROP/none condition, and 717 in
the double-ROP condition.

We note finally that our method is a simple
extension to the standard structured perceptron;
cost-augmented inference is often no more ex-
pensive than traditional inference, and the algo-
rithmic change is equivalent to adding one addi-
tional feature. Our recall-oriented cost function
is parameterized by a single value, β; recall is
highly sensitive to the choice of this value (fig-
ure 1 shows how we tuned it on development
data), and thus we anticipate that, in general, such
tuning will be essential to leveraging the benefits
of arrogance.

7 Related Work

Our approach draws on insights from work in
the areas of NER, domain adaptation, NLP with
Wikipedia, and semisupervised learning. As all
are broad areas of research, we highlight only the
most relevant contributions here.

Research in Arabic NER has been focused on
compiling and optimizing the gazetteers and fea-
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ture sets for standard sequential modeling algo-
rithms (Benajiba et al., 2008; Farber et al., 2008;
Shaalan and Raza, 2008; Abdul-Hamid and Dar-
wish, 2010). We make use of features identi-
fied in this prior work to construct a strong base-
line system. We are unaware of any Arabic NER
work that has addressed diverse text domains like
Wikipedia. Both the English and Arabic ver-
sions of Wikipedia have been used, however, as
resources in service of traditional NER (Kazama
and Torisawa, 2007; Benajiba et al., 2008). Attia
et al. (2010) heuristically induce a mapping be-
tween Arabic Wikipedia and Arabic WordNet to
construct Arabic NE gazetteers.

Balasuriya et al. (2009) highlight the substan-
tial divergence between entities appearing in En-
glish Wikipedia versus traditional corpora, and
the effects of this divergence on NER perfor-
mance. There is evidence that models trained
on Wikipedia data generalize and perform well
on corpora with narrower domains. Nothman
et al. (2009) and Balasuriya et al. (2009) show
that NER models trained on both automatically
and manually annotated Wikipedia corpora per-
form reasonably well on news corpora. The re-
verse scenario does not hold for models trained
on news text, a result we also observe in Arabic
NER. Other work has gone beyond the entity de-
tection problem: Florian et al. (2004) addition-
ally predict within-document entity coreference
for Arabic, Chinese, and English ACE text, while
Cucerzan (2007) aims to resolve every mention
detected in English Wikipedia pages to a canoni-
cal article devoted to the entity in question.

The domain and topic diversity of NEs has been
studied in the framework of domain adaptation
research. A group of these methods use self-
training and select the most informative features
and training instances to adapt a source domain
learner to the new target domain. Wu et al. (2009)
bootstrap the NER leaner with a subset of unla-
beled instances that bridge the source and target
domains. Jiang and Zhai (2006) and Daumé III
(2007) make use of some labeled target-domain
data to tune or augment the features of the source
model towards the target domain. Here, in con-
trast, we use labeled target-domain data only for
tuning and evaluation. Another important dis-
tinction is that domain variation in this prior
work is restricted to topically-related corpora (e.g.
newswire vs. broadcast news), whereas in our

work, major topical differences distinguish the
training and test corpora—and consequently, their
salient NE classes. In these respects our NER
setting is closer to that of Florian et al. (2010),
who recognize English entities in noisy text, (Sur-
deanu et al., 2011), which concerns information
extraction in a topically distinct target domain,
and (Dalton et al., 2011), which addresses English
NER in noisy and topically divergent text.

Self-training (Clark et al., 2003; Mihalcea,
2004; McClosky et al., 2006) is widely used
in NLP and has inspired related techniques that
learn from automatically labeled data (Liang et
al., 2008; Petrov et al., 2010). Our self-training
procedure differs from some others in that we use
all of the automatically labeled examples, rather
than filtering them based on a confidence score.

Cost functions have been used in non-
structured classification settings to penalize cer-
tain types of errors more than others (Chan and
Stolfo, 1998; Domingos, 1999; Kiddon and Brun,
2011). The goal of optimizing our structured NER
model for recall is quite similar to the scenario ex-
plored by Minkov et al. (2006), as noted above.

8 Conclusion

We explored the problem of learning an NER
model suited to domains for which no labeled
training data are available. A loss function to en-
courage recall over precision during supervised
discriminative learning substantially improves re-
call and overall entity detection performance, es-
pecially when combined with a semisupervised
learning regimen incorporating the same bias.
We have also developed a small corpus of Ara-
bic Wikipedia articles via a flexible entity an-
notation scheme spanning four topical domains
(publicly available at http://www.ark.cs.
cmu.edu/AQMAR).
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Abstract

In this paper we deal with Named En-
tity Recognition (NER) on transcriptions of
French broadcast data. Two aspects make
the task more difficult with respect to previ-
ous NER tasks: i) named entities annotated
used in this work have a tree structure, thus
the task cannot be tackled as a sequence la-
belling task; ii) the data used are more noisy
than data used for previous NER tasks. We
approach the task in two steps, involving
Conditional Random Fields and Probabilis-
tic Context-Free Grammars, integrated in a
single parsing algorithm. We analyse the
effect of using several tree representations.
Our system outperforms the best system of
the evaluation campaign by a significant
margin.

1 Introduction

Named Entity Recognition is a traditinal task of
the Natural Language Processing domain. The
task aims at mapping words in a text into seman-
tic classes, such like persons, organizations or lo-
calizations. While at first the NER task was quite
simple, involving a limited number of classes (Gr-
ishman and Sundheim, 1996), along the years
the task complexity increased as more complex
class taxonomies were defined (Sekine and No-
bata, 2004). The interest in the task is related to
its use in complex frameworks for (semantic) con-
tent extraction, such like Relation Extraction ap-
plications (Doddington et al., 2004).

This work presents research on a Named Entity
Recognition task defined with a new set of named
entities. The characteristic of such set is in that
named entities have a tree structure. As conce-
quence the task cannot be tackled as a sequence

labelling approach. Additionally, the use of noisy
data like transcriptions of French broadcast data,
makes the task very challenging for traditional
NLP solutions. To deal with such problems, we
adopt a two-steps approach, the first being real-
ized with Conditional Random Fields (CRF) (Laf-
ferty et al., 2001), the second with a Probabilistic
Context-Free Grammar (PCFG) (Johnson, 1998).
The motivations behind that are:

• Since the named entities have a tree struc-
ture, it is reasonable to use a solution com-
ing from syntactic parsing. However pre-
liminary experiments using such approaches
gave poor results.

• Despite the tree-structure of the entities,
trees are not as complex as syntactic trees,
thus, before designing an ad-hoc solution for
the task, which require a remarkable effort
and yet it doesn’t guarantee better perfor-
mances, we designed a solution providing
good results and which required a limited de-
velopment effort.

• Conditional Random Fields are models ro-
bust to noisy data, like automatic transcrip-
tions of ASR systems (Hahn et al., 2010),
thus it is the best choice to deal with tran-
scriptions of broadcast data. Once words
have been annotated with basic entity con-
stituents, the tree structure of named entities
is simple enough to be reconstructed with
relatively simple model like PCFG (Johnson,
1998).

The two models are integrated in a single pars-
ing algorithm. We analyze the effect of the use of
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Zahra

name.first

Abouch

name.last

pers.ind

Conseil de Gouvernement

kind

irakien

demonym

org.adm

Figure 1: Examples of structured named entities annotated on the
data used in this work

several tree representations, which result in differ-
ent parsing models with different performances.
We provide a detailed evaluation of our mod-
els. Results can be compared with those obtained
in the evaluation campaign where the same data
were used. Our system outperforms the best sys-
tem of the evaluation campaign by a significant
margin.

The rest of the paper is structured as follows: in
the next section we introduce the extended named
entities used in this work, in section 3 we describe
our two-steps algorithm for parsing entity trees,
in section 4 we detail the second step of our ap-
proach based on syntactic parsing approaches, in
particular we describe the different tree represen-
tations used in this work to encode entity trees
in parsing models. In section 6 we describe and
comment experiments, and finally, in section 7,
we draw some conclusions.

2 Extended Named Entities

The most important aspect of the NER task we
investigated is provided by the tree structure of
named entities. Examples of such entities are
given in figure 1 and 2, where words have been re-
move for readability issues and are: (“90 persons
are still present at Atambua. It’s there that 3 employ-
ees of the High Conseil of United Nations for refugees
have been killed yesterday morning”):

90 personnes toujours présentes à
Atambua c’ est là qu’ hier matin ont
été tués 3 employés du haut commis-
sariat des Nations unies aux réfugiés ,
le HCR

Words realizing entities in figure 2 are in bold,
and they correspond to the tree leaves in the
picture. As we see in the figures, entities
can have complex structures. Beyond the use
of subtypes, like individual in person (to give
pers.ind), or administrative in organization
(to give org.adm), entities with more specific con-
tent can be constituents of more general enti-
ties to form tree structures, like name.first and

val object

amount

loc.adm.town name time-modifier

time.date.rel

val kind name

org.adm

func.coll

object

amount

S

Figure 2: An example of named entity tree corresponding to en-
tities of a whole sentence. Tree leaves, corresponding to sentence
words have been removed to keep readability

Quaero training dev
# sentences 43,251 112

words entities words entities
# tokens 1,251,432 245,880 2,659 570
# vocabulary 39,631 134 891 30
# components – 133662 – 971
# components dict. – 28 – 18
# OOV rate [%] – – 17.15 0

Table 1: Statistics on the training and development sets of the
Quaero corpus

name.last for pers.ind or val (for value) and ob-
ject for amount.

These named entities have been annotated on
transcriptions of French broadcast news coming
from several radio channels. The transcriptions
constitute a corpus that has been split into train-
ing, development and evaluation sets.The evalu-
ation set, in particular, is composed of two set
of data, Broadcast News (BN in the table) and
Broadcast Conversations (BC in the table). The
evaluation of the models presented in this work
is performed on the merge of the two data types.
Some statistics of the corpus are reported in ta-
ble 1 and 2. This set of named entities has been
defined in order to provide more fine semantic in-
formation for entities found in the data, e.g. a
person is better specified by first and last name,
and is fully described in (Grouin, 2011) . In or-
der to avoid confusion, entities that can be associ-
ated directly to words, like name.first, name.last,
val and object, are called entity constituents, com-
ponents or entity pre-terminals (as they are pre-
terminals nodes in the trees). The other entities,
like pers.ind or amount, are called entities or non-
terminal entities, depending on the context.

3 Models Cascade for Extended Named
Entities

Since the task of Named Entity Recognition pre-
sented here cannot be modeled as sequence la-
belling and, as mentioned previously, an approach
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Quaero test BN test BC
# sentences 1704 3933

words entities words entities
# tokens 32945 2762 69414 2769
# vocabulary 28 28
# components – 4128 – 4017
# components dict. – 21 – 20
# OOV rate [%] 3.63 0 3.84 0

Table 2: Statistics on the test set of the Quaero corpus, divided in
Broadcast News (BN) and Broadcast Conversations (BC)

Figure 3: Processing schema of the two-steps approach proposed
in this work: CRF plus PCFG

coming from syntactic parsing to perform named
entity annotation in “one-shot” is not robust on
the data used in this work, we adopt a two-steps.
The first is designed to be robust to noisy data and
is used to annotate entity components, while the
second is used to parse complete entity trees and
is based on a relatively simple model. Since we
are dealing with noisy data, the hardest part of the
task is indeed to annotate components on words.
On the other hand, since entity trees are relatively
simple, at least much simpler than syntactic trees,
once entity components have been annotated in a
first step, for the second step, a complex model is
not required, which would also make the process-
ing slower. Taking all these issues into account,
the two steps of our system for tree-structured
named entity recognition are performed as fol-
lows:

1. A CRF model (Lafferty et al., 2001) is used
to annotate components on words.

2. A PCFG model (Johnson, 1998) is used
to parse complete entity trees upon compo-
nents, i.e. using components annotated by
CRF as starting point.

This processing schema is depicted in figure 3.
Conditional Random Fields are described shortly
in the next subsection. PCFG models, constituting
the main part of this work together with the analy-
sis over tree representations, is described more in
details in the next sections.

3.1 Conditional Random Fields

CRFs are particularly suitable for sequence la-
belling tasks (Lafferty et al., 2001). Beyond the
possibility to include a huge number of features
using the same framework as Maximum Entropy
models (Berger et al., 1996), CRF models en-
code global conditional probabilities normalized
at sentence level.

Given a sequence of N words WN
1 =

w1, ..., wN and its corresponding components se-
quence EN1 = e1, ..., eN , CRF trains the condi-
tional probabilities

P (EN1 |WN
1 ) =

1

Z

NY
n=1

exp

 
MX
m=1

λm · hm(en−1, en, w
n+2
n−2)

!
(1)

where λm are the training parameters.
hm(en−1, en, w

n+2
n−2) are the feature functions

capturing dependencies of entities and words. Z
is the partition function:

Z =
X
ẽN1

NY
n=1

H(ẽn−1, ẽn, w
n+2
n−2) (2)

which ensures that probabilities sum up to one.
ẽn−1 and ẽn are components for previous and cur-
rent words, H(ẽn−1, ẽn, w

n+2
n−2) is an abbreviation

for
∑M

m=1 λm · hm(en−1, en, w
n+2
n−2), i.e. the set

of active feature functions at current position in
the sequence.

In the last few years different CRF implemen-
tations have been realized. The implementation
we refer in this work is the one described in
(Lavergne et al., 2010), which optimize the fol-
lowing objective function:

−log(P (EN1 |WN
1 )) + ρ1‖λ‖1 +

ρ2

2
‖λ‖22 (3)

‖λ‖1 and ‖λ‖22 are the l1 and l2 regulariz-
ers (Riezler and Vasserman, 2004), and together
in a linear combination implement the elastic net
regularizer (Zou and Hastie, 2005). As mentioned
in (Lavergne et al., 2010), this kind of regulariz-
ers are very effective for feature selection at train-
ing time, which is a very good point when dealing
with noisy data and big set of features.
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4 Models for Parsing Trees

The models used in this work for parsing en-
tity trees refer to the models described in (John-
son, 1998), in (Charniak, 1997; Caraballo and
Charniak, 1997) and (Charniak et al., 1998), and
which constitutes the basis of the maximum en-
tropy model for parsing described in (Charniak,
2000). A similar lexicalized model has been pro-
posed also by Collins (Collins, 1997). All these
models are based on a PCFG trained from data
and used in a chart parsing algorithm to find the
best parse for the given input. The PCFG model
of (Johnson, 1998) is made of rules of the form:

• Xi ⇒ XjXk

• Xi ⇒ w

where X are non-terminal entities and w are
terminal symbols (words in our case).1 The prob-
ability associated to these rules are:

pi→j,k =
P (Xi ⇒ Xj , Xk)

P (Xi)
(4)

pi→w =
P (Xi ⇒ w)

P (Xi)
(5)

The models described in (Charniak, 1997;
Caraballo and Charniak, 1997) encode probabil-
ities involving more information, such as head
words. In order to have a PCFG model made of
rules with their associated probabilities, we ex-
tract rules from the entity trees of our corpus. This
processing is straightforward, for example from
the tree depicted in figure 2, the following rules
are extracted:

S⇒ amount loc.adm.town time.dat.rel amount
amount⇒ val object
time.date.rel⇒ name time-modifier
object⇒ func.coll
func.coll⇒ kind org.adm
org.adm⇒ name

Using counts of these rules we then compute
maximum likelihood probabilities of the Right
Hand Side (RHS) of the rule given its Left Hand
Side (LHS). Also binarization of rules, applied to

1These rules are actually in Chomsky Normal Form, i.e.
unary or binary rules only. A PCFG, in general, can have any
rule, however, the algorithm we are discussing convert the
PCFG rules into Chomsky Normal Form, thus for simplicity
we provide directly such formulation.

Figure 4: Baseline tree representations used in the PCFG parsing
model

Figure 5: Filler-parent tree representations used in the PCFG pars-
ing model

have all rules in the form of 4 and 5, is straight-
forward and can be done with simple algorithms
not discussed here.

4.1 Tree Representations for Extended
Named Entities

As discussed in (Johnson, 1998), an important
point for a parsing algorithm is the representation
of trees being parsed. Changing the tree represen-
tation can change significantly the performances
of the parser. Since there is a large difference be-
tween entity trees used in this work and syntac-
tic trees, from both meaning and structure point
of view, it is worth performing an analysis with
the aim of finding the most suitable representa-
tion for our task. In order to perform this analy-
sis, we start from a named entity annotated on the
words de notre president , M. Nicolas Sarkozy(of
our president, Mr. Nicolas Sarkozy). The corre-
sponding named entity is shown in figure 4. As
decided in the annotation guidelines, fillers can be
part of a named entity. This can happen for com-
plex named entities involving several words. The
representation shown in figure 4 is the default rep-
resentation and will be referred to as baseline. A
problem created by this representation is the fact
that fillers are present also outside entities. Fillers
of named entities should be, in principle, distin-
guished from any other filler, since they may be
informative to discriminate entities.

Following this intuition, we designed two dif-
ferent representations where entity fillers are con-
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Figure 6: Parent-context tree representations used in the PCFG
parsing model

Figure 7: Parent-node tree representations used in the PCFG pars-
ing model

textualized so that to be distinguished from the
other fillers. In the first representation we give to
the filler the same label of the parent node, while
in the second representation we use a concatena-
tion of the filler and the label of the parent node.
These two representations are shown in figure 5
and 6, respectively. The first one will be referred
to as filler-parent, while the second will be re-
ferred as parent-context. A problem that may be
introduced by the first representation is that some
entities that originally were used only for non-
terminal entities will appear also as components,
i.e. entities annotated on words. This may intro-
duce some ambiguity.

Another possible contextualization can be to
annotate each node with the label of the parent
node. This representation is shown in figure 7
and will be referred to as parent-node. Intuitively,
this representation is effective since entities an-
notated directly on words provide also the en-
tity of the parent node. However this representa-
tion increases drastically the number of entities,
in particular the number of components, which
in our case are the set of labels to be learned by
the CRF model. For the same reason this repre-
sentation produces more rigid models, since label
sequences vary widely and thus is not likely to
match sequences not seen in the training data.

Finally, another interesting tree representation
is a variation of the parent-node tree, where en-
tity fillers are only distinguished from fillers not
in an entity, using the label ne-filler, but they are
not contextualized with entity information. This
representation is shown in figure 8 and it will be

Figure 8: Parent-node-filler tree representations used in the PCFG
parsing model

referred to as parent-node-filler. This representa-
tion is a good trade-off between contextual infor-
mation and rigidity, by still representing entities
as concatenation of labels, while using a common
special label for entity fillers. This allows to keep
lower the number of entities annotated on words,
i.e. components.

Using different tree representations affects both
the structure and the performance of the parsing
model. The structure is described in the next sec-
tion, the performance in the evaluation section.

4.2 Structure of the Model
Lexicalized models for syntactic parsing de-
scribed in (Charniak, 2000; Charniak et al., 1998)
and (Collins, 1997), integrate more information
than what is used in equations 4 and 5. Consider-
ing a particular node in the entity tree, not includ-
ing terminals, the information used is:

• s: the head word of the node, i.e. the most
important word of the chunk covered by the
current node

• h: the head word of the parent node

• t: the entity tag of the current node

• l: the entity tag of the parent node

The head word of the parent node is defined
percolating head words from children nodes to
parent nodes, giving the priority to verbs. They
can be found using automatic approaches based
on words and entity tag co-occurrence or mutual
information. Using this information, the model
described in (Charniak et al., 1998) is P (s|h, t, l).
This model being conditioned on several pieces
of information, it can be affected by data sparsity
problems. Thus, the model is actually approxi-
mated as an interpolation of probabilities:

P (s|h, t, l) =

λ1P (s|h, t, l) + λ2P (s|ch, t, l)+

λ3P (s|t, l) + λ4P (s|t) (6)
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where λi, i = 1, ..., 4, are parameters of the
model to be tuned, and ch is the cluster of head
words for a given entity tag t. With such model,
when not all pieces of information are available to
estimate reliably the probability with more con-
ditioning, the model can still provide a proba-
bility with terms conditioned with less informa-
tion. The use of head words and their percola-
tion over the tree is called lexicalization. The
goal of tree lexicalization is to add lexical infor-
mation all over the tree. This way the probabil-
ity of all rules can be conditioned also on lexi-
cal information, allowing to define the probabili-
ties P (s|h, t, l) and P (s|ch, t, l). Tree lexicaliza-
tion reflects the characteristics of syntactic pars-
ing, for which the models described in (Charniak,
2000; Charniak et al., 1998) and (Collins, 1997)
were defined. Head words are very informative
since they constitute keywords instantiating la-
bels, regardless if they are syntactic constituents
or named entities. However, for named entity
recognition it doesn’t make sense to give prior-
ity to verbs when percolating head words over the
tree, even more because head words of named en-
tities are most of the time nouns. Moreover, it
doesn’t make sense to give priority to the head
word of a particular entity with respect to the oth-
ers, all entities in a sentence have the same im-
portance. Intuitively, lexicalization of entity trees
is not straightforward as lexicalization of syntac-
tic trees. At the same time, using not lexicalized
trees doesn’t make sense with models like 6, since
all the terms involve lexical information. Instead,
we can use the model of (Johnson, 1998), which
define the probability of a tree τ as:

P (τ) =
Y
X→α

P (X → α)Cτ (X→α) (7)

here the RHS of rules has been generalized with
α, representing RHS of both unary and binary
rules 4 and 5. Cτ (X → α) is the number of times
the rule X → α appears in the tree τ . The model
7 is instantiated when using tree representations
shown in Fig. 4, 5 and 6. When using representa-
tions given in Fig. 7 and 8, the model is:

P (τ |l) (8)

where l is the entity label of the parent node.
Although non-lexicalized models like 7 and 8

have shown less effective for syntactic parsing
than their lexicalized couter-parts, there are evi-
dences showing that they can be effective in our
task. With reference to figure 4, considering the
entity pers.ind instantiated by Nicolas Sarkozy,
our algorithm detects first name.first for Nicolas
and name.last for Sarkozy using the CRF model.
As mentioned earlier, once the CRF model has de-
tected components, since entity trees have not a
complex structure with respect to syntactic trees,
even a simple model like the one in equation 7
or 8 is effective for entity tree parsing. For ex-
ample, once name.first and name.last have been
detected by CRF, pers.ind is the only entity hav-
ing name.first and name.last as children. Am-
biguities, like for example for kind or qualifier,
which can appear in many entities, can affect the
model 7, but they are overcome by the model 8,
taking the entity tag of the parent node into ac-
count. Moreover, the use of CRF allows to in-
clude in the model much more features than the
lexicalized model in equation 6. Using features
like word prefixes (P), suffixes (S), capitalization
(C), morpho-syntactic features (MS) and other
features indicated as F2, the CRF model encodes
the conditional probability:

P (t|w,P, S, C,MS, F ) (9)

where w is an input word and t is the corre-
sponding component.

The probability of the CRF model, used in the
first step to tag input words with components,
is combined with the probability of the PCFG
model, used to parse entity trees starting from
components. Thus the structure of our model is:

P (t|w,P, S, C,MS, F ) · P (τ) (10)

or
P (t|w,P, S, C,MS, F ) · P (τ |l) (11)

depending if we are using the tree representa-
tion given in figure 4, 5 and 6 or in figure 7 and 8,
respectively. A scale factor could be used to com-
bine the two scores, but this is optional as CRFs
can provide normalized posterior probabilities.

2The set of features used in the CRF model will be de-
scribed in more details in the evaluation section.
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5 Related Work

While the models used for named entity detection
and the set of named entities defined along the
years have been discussed in the introduction and
in section 2, since CRFs and models for parsing
constitute the main issue in our work, we discuss
some important models here.

Beyond the models for parsing discussed in
section 4, together with motivations for using or
not in our work, another important model for syn-
tactic parsing has been proposed in (Ratnaparkhi,
1999). Such model is made of four Maximum
Entropy models used in cascade for parsing at
different stages. Also this model makes use of
head words, like those described in section 4, thus
the same considerations hold, moreover it seems
quite complex for real applications, as it involves
the use of four different models together. The
models described in (Johnson, 1998), (Charniak,
1997; Caraballo and Charniak, 1997), (Charniak
et al., 1998), (Charniak, 2000), (Collins, 1997)
and (Ratnaparkhi, 1999), constitute the main in-
dividual models proposed for constituent-based
syntactic parsing. Later other approaches based
on models combination have been proposed, like
e.g. the reranking approach described in (Collins
and Koo, 2005), among many, and also evolutions
or improvements of these models.

More recently, approaches based on log-linear
models have been proposed (Clark and Curran,
2007; Finkel et al., 2008) for parsing, called also
“Tree CRF”, using also different training criteria
(Auli and Lopez, 2011). Using such models in our
work has basically two problems: one related to
scaling issues, since our data present a large num-
ber of labels, which makes CRF training problem-
atic, even more when using “Tree CRF”; another
problem is related to the difference between syn-
tactic parsing and named entity detection tasks,
as mentioned in sub-section 4.2. Adapting “Tree
CRF” to our task is thus a quite complex work, it
constitutes an entire work by itself, we leave it as
feature work.

Concerning linear-chain CRF models, the
one we use is a state-of-the-art implementation
(Lavergne et al., 2010), as it implements the
most effective optimization algorithms as well as
state-of-the-art regularizers (see sub-section 3.1).
Some improvement of linear-chain CRF have
been proposed, trying to integrate higher order

target-side features (Tang et al., 2006). An inte-
gration of the same kind of features has been tried
also in the model used in this work, without giv-
ing significant improvements, but making model
training much harder. Thus, this direction has not
been further investigated.

6 Evaluation

In this section we describe experiments performed
to evaluate our models. We first describe the set-
tings used for the two models involved in the en-
tity tree parsing, and then describe and comment
the results obtained on the test corpus.

6.1 Settings
The CRF implementation used in this work is de-
scribed in (Lavergne et al., 2010), named wapiti.3

We didn’t optimize parameters ρ1 and ρ2 of the
elastic net (see section 3.1), although this im-
proves significantly the performances and leads
to more compact models, default values lead in
most cases to very accurate models. We used a
wide set of features in CRF models, in a window
of [−2,+2] around the target word:

• A set of standard features like word prefixes
and suffixes of length from 1 to 6, plus some
Yes/No features like Does the word start with
capital letter?, etc.

• Morpho-syntactic features extracted from
the output of the tool tagger (Allauzen and
Bonneau-Maynard, 2008)

• Features extracted from the output of the se-
mantic analyzer (Rosset et al., (2009)) pro-
vided by the tool WMatch (Galibert, 2009).

This analysis morpho-syntactic information as
well as semantic information at the same level
of named entities. Using two different sets of
morpho-syntactic features results in more effec-
tive models, as they create a kind of agreement
for a given word in case of match. Concerning
the PCFG model, grammars, tree binarization and
the different tree representations are created with
our own scripts, while entity tree parsing is per-
formed with the chart parsing algorithm described
in (Johnson, 1998).4

3available at http://wapiti.limsi.fr
4available at http://web.science.mq.edu.au/

˜mjohnson/Software.htm
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CRF PCFG
Model # features # labels # rules
baseline 3,041,797 55 29,611
filler-parent 3,637,990 112 29,611
parent-context 3,605,019 120 29,611
parent-node 3,718,089 441 31,110
parent-node-filler 3,723,964 378 31,110

Table 3: Statistics showing the characteristics of the different
models used in this work

6.2 Evaluation Metrics

All results are expressed in terms of Slot Error
Rate (SER) (Makhoul et al., 1999) which has a
similar definition of word error rate for ASR sys-
tems, with the difference that substitution errors
are split in three types: i) correct entity type with
wrong segmentation; ii) wrong entity type with
correct segmentation; iii) wrong entity type with
wrong segmentation; here, i) and ii) are given half
points, while iii), as well as insertion and deletion
errors, are given full points. Moreover, results are
given using the well known F1 measure, defined
as a function of precision and recall.

6.3 Results

In this section we provide evaluations of the mod-
els described in this work, based on combination
of CRF and PCFG and using different tree repre-
sentations of named entity trees.

6.3.1 Model Statistics
As a first evaluation, we describe some statis-

tics computed from the CRF and PCFG models
using the tree representations. Such statistics pro-
vide interesting clues of how difficult is learning
the task and which performance we can expect
from the model. Statistics for this evaluation are
presented in table 3. Rows corresponds to the dif-
ferent tree representations described in this work,
while in the columns we show the number of fea-
tures and labels for the CRF models (# features
and # labels), and the number of rules for PCFG
models (# rules).

As we can see from the table, the number
of rules is the same for the tree representations
baseline, filler-parent and parent-context, and
for the representations parent-node and parent-
node-filler. This is the consequence of the con-
textualization applied by the latter representa-
tions, i.e. parent-node and parent-node-filler
create several different labels depending from
the context, thus the corresponding grammar

DEV TEST
Model SER F1 SER F1
baseline 20.0% 73.4% 14.2% 79.4%
filler-parent 16.2% 77.8% 12.5% 81.2%
parent-context 15.2% 78.6% 11.9% 81.4%
parent-node 6.6% 96.7% 5.9% 96.7%
parent-node-filler 6.8% 95.9% 5.7% 96.8%

Table 4: Results computed from oracle predictions obtained with
the different models presented in this work

DEV TEST
Model SER F1 SER F1
baseline 33.5% 72.5% 33.4% 72.8%
filler-parent 31.3% 74.4% 33.4% 72.7%
parent-context 30.9% 74.6% 33.3% 72.8%
parent-node 31.2% 77.8% 31.4% 79.5%
parent-node-filler 28.7% 78.9% 30.2% 80.3%

Table 5: Results obtained with our combined algorithm based on
CRF and PCFG

will have more rules. For example, the rule
pers.ind⇒ name.first name.last can
appear as it is or contextualized with func.ind,
like in figure 8. In contrast the other tree repre-
sentations modify only fillers, thus the number of
rules is not affected.

Concerning CRF models, as shown in table 3,
the use of the different tree representations results
in an increasing number of labels to be learned by
CRF. This aspect is quite critical in CRF learn-
ing, as training time is exponential in the number
of labels. Indeed, the most complex models, ob-
tained with parent-node and parent-node-filler
tree representations, took roughly 8 days for train-
ing. Additionally, increasing the number of labels
can create data sparseness problems, however this
problem doesn’t seem to arise in our case since,
apart the baseline model which has quite less fea-
tures, all the others have approximately the same
number of features, meaning that there are actu-
ally enough data to learn the models, regardless
the number of labels.

6.3.2 Evaluations of Tree Representations
In this section we evaluate the models in terms

of the evaluation metrics described in previous
section, Slot Error Rate (SER) and F1 measure.

In order to evaluate PCFG models alone, we
performed entity tree parsing using as input ref-
erence transcriptions, i.e. manual transcriptions
and reference component annotations taken from
development and test sets. This can be consid-
ered a kind of oracle evaluations and provides us
an upper bound of the performance of the PCFG
models. Results for this evaluation are reported in
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Participant SER
P1 48.9
P2 41.0
parent-context 33.3
parent-node 31.4
parent-node-filler 30.2

Table 6: Results obtained with our combined algorithm based on
CRF and PCFG

table 4. As it can be intuitively expected, adding
more contextualization in the trees results in more
accurate models, the simplest model, baseline,
has the worst oracle performance, filler-parent
and parent-context models, adding similar con-
textualization information, have very similar ora-
cle performances. Same line of reasoning applies
to models parent-node and parent-node-filler,
which also add similar contextualization and have
very similar oracle predictions. These last two
models have also the best absolute oracle perfor-
mances. However, adding more contextualization
in the trees results also in more rigid models, the
fact that models are robust on reference transcrip-
tions and based on reference component annota-
tions, doesn’t imply a proportional robustness on
component sequences generated by CRF models.

This intuition is confirmed from results re-
ported in table 5, where a real evaluation of our
models is reported, using this time CRF out-
put components as input to PCFG models, to
parse entity trees. The results reported in ta-
ble 5 show in particular that models using base-
line, filler-parent and parent-context tree repre-
sentations have similar performances, especially
on test set. Models characterized by parent-node
and parent-node-filler tree representations have
indeed the best performances, although the gain
with respect to the other models is not as much
as it could be expected given the difference in
the oracle performances discussed above. In par-
ticular the best absolute performance is obtained
with the model parent-node-filler. As we men-
tioned in subsection 4.1, this model represents the
best trade-off between rigidity and accuracy using
the same label for all entity fillers, but still distin-
guishing between fillers found in entity structures
and other fillers found in words not instantiating
any entity.

6.3.3 Comparison with Official Results

As a final evaluation of our models, we pro-
vide a comparison of official results obtained at

the 2011 evaluation campaign of extended named
entity recognition (Galibert et al., 2011; 2) Re-
sults are reported in table 6, where the other two
participants to the campaign are indicated as P1
and P2. These two participants P1 and P2, used
a system based on CRF, and rules for deep syn-
tactic analysis, respectively. In particular, P2 ob-
tained superior performances in previous evalua-
tion campaign on named entity recognition. The
system we proposed at the evaluation campaign
used a parent-context tree representation. The
results obtained at the evaluation campaign are
in the first three lines of Table 6. We compare
such results with those obtained with the parent-
node and parent-node-filler tree representations,
reported in the last two rows of the same table. As
we can see, the new tree representations described
in this work allow to achieve the best absolute per-
formances.

7 Conclusions

In this paper we have presented a Named Entity
Recognition system dealing with extended named
entities with a tree structure. Given such represen-
tation of named entities, the task cannot be mod-
eled as a sequence labelling approach. We thus
proposed a two-steps system based on CRF and
PCFG. CRF annotate entity components directly
on words, while PCFG apply parsing techniques
to predict the whole entity tree. We motivated
our choice by showing that it is not effective to
apply techniques used widely for syntactic pars-
ing, like for example tree lexicalization. We pre-
sented an analysis of different tree representations
for PCFG, which affect significantly parsing per-
formances.

We provided and discussed a detailed evalua-
tion of all the models obtained by combining CRF
and PCFG with the different tree representation
proposed. Our combined models result in better
performances with respect to other models pro-
posed at the official evaluation campaign, as well
as our previous model used also at the evaluation
campaign.
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Abstract

We present work on linking events and flu-
ents (i.e., relations that hold for certain
periods of time) to temporal information
in text, which is an important enabler for
many applications such as timelines and
reasoning. Previous research has mainly
focused on temporal links for events, and
we extend that work to include fluents
as well, presenting a common methodol-
ogy for linking both events and relations
to timestamps within the same sentence.
Our approach combines tree kernels with
classical feature-based learning to exploit
context and achieves competitive F1-scores
on event-time linking, and comparable F1-
scores for fluents. Our best systems achieve
F1-scores of 0.76 on events and 0.72 on flu-
ents.

1 Introduction

It is a long-standing goal of NLP to process natu-
ral language content in such a way that machines
can effectively reason over the entities, relations,
and events discussed within that content. The ap-
plications of such technology are numerous, in-
cluding intelligence gathering, business analytics,
healthcare, education, etc. Indeed, the promise
of machine reading is actively driving research in
this area (Etzioni et al., 2007; Barker et al., 2007;
Clark and Harrison, 2010; Strassel et al., 2010).

Temporal information is a crucial aspect of this
task. For a machine to successfully understand
natural language text, it must be able to associate
time points and temporal durations with relations
and events it discovers in text.

∗The first author conducted this research during an in-
ternship at IBM Research.

In this paper we present methods to estab-
lish links between events (e.g. “bombing” or
“election”) or fluents (e.g. “spouseOf” or “em-
ployedBy”) and temporal expressions (e.g. “last
Tuesday” and “November 2008”). While previ-
ous research has mainly focused on temporal links
for events only, we deal with both events and flu-
ents with the same method. For example, consider
the sentence below

Before his death in October, Steve Jobs
led Apple for 15 years.

For a machine reading system processing this
sentence, we would expect it to link the fluent
CEO of (Steve Jobs, Apple) to time duration “15
years”. Similarly we expect it to link the event
“death” to the time expression “October”.

We do not take a strong “ontological” position
on what events and fluents are, as part of our
task these distinctions are made a priori. In other
words, events and fluents are input to our tempo-
ral linking framework. In the remainder of this pa-
per, we also do not make a strong distinction be-
tween relations in general and fluents in particu-
lar, and use them interchangeably, since our focus
is only on the specific types of relations that rep-
resent fluents. While we only use binary relations
in this work, there is nothing in the framework
that would prevent the use of n-ary relations. Our
work focuses on accurately identifying temporal
links for eventual use in a machine reading con-
text.

In this paper, we describe a single approach that
applies to both fluents and events, using feature
engineering as well as tree kernels. We show that
we can achieve good results for both events and
fluents using the same feature space, and advocate
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the versatility of our approach by achieving com-
petitive results on yet another similar task with a
different data set.

Our approach requires us to capture contextual
properties of text surrounding events, fluents and
time expressions that enable an automatic system
to detect temporal linking within our framework.
A common strategy for this is to follow standard
feature engineering methodology and manually
develop features for a machine learning model
from the lexical, syntactic and semantic analysis
of the text. A key contribution of our work in this
paper is to demonstrate a shallow tree-like repre-
sentation of the text that enables us to employ tree
kernel models, and more accurately detect tempo-
ral linking. The feature space represented by such
tree kernels is far larger than a manually engi-
neered feature space, and is capable of capturing
the contextual information required for temporal
linking.

The remainder of this paper goes into the de-
tails of our approach for temporal linking, and
presents empirical evidence for the effectiveness
of our approach. The contributions of this paper
can be summarized as follows:

1. We define a common methodology to link
events and fluents to timestamps.

2. We use tree kernels in combination with clas-
sical feature-based approaches to obtain sig-
nificant gains by exploiting context.

3. Empirical evidence illustrates that our
framework for temporal linking is very ef-
fective for the task, achieving an F1-score of
0.76 on events and 0.72 on fluents/relations,
as well as 0.65 for TempEval2, approaching
state-of-the-art.

2 Related Work

Most of the previous work on relation extraction
focuses on entity-entity relations, such as in the
ACE (Doddington et al., 2004) tasks. Temporal
relations are part of this, but to a lesser extent.
The primary research effort in event temporality
has gone into ordering events with respect to one
another (e.g., Chambers and Jurafsky (2008)), and
detecting their typical durations (e.g., Pan et al.
(2006)).

Recently, TempEval workshops have focused
on the temporal related issues in NLP. Some of

the TempEval tasks overlap with ours in many
ways. Our task is similar to task A and C of
TempEval-1 (Verhagen et al., 2007) in the sense
that we attempt to identify temporal relation be-
tween events and time expressions or document
dates. However, we do not use a restricted set of
events, but focus primarily on a single temporal
relation tlink instead of named relations like BE-
FORE, AFTER or OVERLAP (although we show
that we can incorporate these as well). Part of our
task is similar to task C of TempEval-2 (Verha-
gen et al., 2010), determining the temporal rela-
tion between an event and a time expression in
the same sentence. In this paper, we do apply our
system to TempEval-2 data and compare our per-
formance to the participating systems.

Our work is similar to that of Boguraev and
Ando (2005), whose research only deals with
temporal links between events and time expres-
sions (and does not consider relations at all). They
employ a sequence tagging model with manual
feature engineering for the task and achieved
state-of-the-art results on Timebank (Pustejovsky
et al., 2003) data. Our task is slightly different be-
cause we include relations in the temporal linking,
and our use of tree kernels enables us to explore a
wider feature space very quickly.

Filatova and Hovy (2001) also explore tempo-
ral linking with events, but do not assume that
events and time stamps have been provided by an
external process. They used a heuristics-based ap-
proach to assign temporal expressions to events
(also relying on the proximity as a base case).
They report accuracy of the assignment for the
correctly classified events, the best being 82.29%.
Our best event system achieves an accuracy of
84.83%. These numbers are difficult to compare,
however, since accuracy does not efficiently cap-
ture the performance of a system on a task with so
many negative examples.

Mirroshandel et al. (2011) describe the use of
syntactic tree kernels for event-time links. Their
results on TempEval are comparable to ours. In
contrast to them, we found, though, that syntactic
tree kernels alone do not perform as well as using
several flat tree representations.

3 Problem Definition

The task of linking events and relations to time
stamps can be defined as the following: given a set
of expressions denoting events or relation men-
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tions in a document, and a set of time expressions
in the same document, find all instances of the
tlink relation between elements of the two input
sets. The existence of a tlink(e, t) means that e,
which is an event or a relation mention, occurs
within the temporal context specified by the time
expression t.

Thus, our task can be cast as a binary rela-
tion classification task: for each possible pair
of (event/relation, time) in a document, decide
whether there exists a link between the two, and
if so, express it in the data.

In addition, we make these assumptions about
the data:

1. There does not exist a timestamp for ev-
ery event/relation in a document. Although
events and relations typically have temporal
context, it may not be explicitly stated in a
document.

2. Every event/relation has at most one time ex-
pression associated with it. This is a simpli-
fying assumption, which in the case of rela-
tions we explore as future work.

3. Each temporal expression can be linked to
one or more events or relations. Since mul-
tiple events or relations may happen for a
given time, it is safe to assume that each tem-
poral expression can be linked to more than
one event/relation.

In general, the events/relations and their associ-
ated timestamps may occur within the same sen-
tence or may occur across different sentences. In
this paper, we focus on our effort and our evalua-
tion on the same sentence linking task.

In order to solve the problem of temporal link-
ing completely, however, it will be important to
also address the links that hold between entities
across sentences. We estimate, based on our data
set, that across sentence links account for 41% of
all correct event-time pairs in a document. For flu-
ents, the ratio is much higher, more than 80% of
the correct fluent-time links are across sentences.
One of the main obstacles for our approach in the
cross-sentence case is the very low ratio of posi-
tive to negative instances (3 : 100) in the set of all
pairs in a document. Most pairs are not linked to
one another.

4 Temporal Linking Framework

As previously mentioned, we approach the tem-
poral linking problem as a classification task. In
the framework of classification, we refer to each
pair of (event/relation, temporal expression) oc-
curring within a sentence as an instance. The goal
is to devise a classifier that separates positive (i.e.,
linked) instances from negative ones, i.e., pairs
where there is no link between the event/relation
and the temporal expression in question. The lat-
ter case is far more frequent, so we have an inher-
ent bias toward negative examples in our data.1

Note that the basis of the positive and nega-
tive links is the context around the target terms.
It is impossible even for humans to determine the
existence of a link based only on the two terms
without their context. For instance, given just two
words (e.g., “said” and “yesterday”) there is no
way to tell if it is a positive or a negative example.
We need the context to decide.

Therefore, we base our classification models on
contextual features drawn from lexical and syn-
tactic analyses of the text surrounding the target
terms. For this, we first define a feature-based
approach, then we improve it by using tree ker-
nels. These two subsections, plus the treatment
of fluent relations, are the main contributions of
this paper. In all of this work, we employ SVM
classifiers (Vapnik, 1995) for machine learning.

4.1 Feature Engineering

A manual analysis of development data provided
several intuitions about the kinds of features that
would be useful in this task. Based on this anal-
ysis and with inspiration from previous work (cf.
Boguraev and Ando (2005)) we established three
categories of features whose description follows.

Features describing events or relations. We
check whether the event or relation is phrasal, a
verb, or noun, whether it is present tense, past
tense, or progressive, the type assigned to the
event/relation by the UIMA type system used for
processing, and whether it includes certain trig-
ger words, such as reporting verbs (“said”, “re-
ported”, etc.).

1Initially, we employed an instance filtering method to
address this, which proved to be ineffective and was subse-
quently left out.
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Features describing temporal expressions.
We check for the presence of certain trigger words
(last, next, old, numbers, etc.) and the type of
the expression (DURATION, TIME, or DATE) as
specified by the UIMA type system.

Features describing context. We also in-
clude syntactic/structural features, such as testing
whether the relation/event dominates the temporal
expression, which one comes first in the sentence
order, and whether either of them is dominated
by a separate verb, preposition, “that” (which of-
ten indicates a subordinate sentence) or counter-
factual nouns or verbs (which would negate the
temporal link).

It is not surprising that some of the most in-
formative features (event comes before tempo-
ral expression, time is syntactic child of event)
are strongly correlated with the baselines. Less
salient features include the test for certain words
indicating the event is a noun, a verb, and if so
which tense it has and whether it is a reporting
verb.

4.2 Tree Kernel Engineering

We expect that there exist certain patterns be-
tween the entities of a temporal link, which mani-
fest on several levels: some on the lexical level,
others expressed by certain sequences of POS
tags, NE labels, or other representations. Kernels
provide a principled way of expanding the number
of dimensions in which we search for a decision
boundary, and allow us to easily model local se-
quences and patterns in a natural way (Giuliano et
al., 2009). While it is possible to define a space
in which we find a decision boundary that sepa-
rates positive and negative instances with manu-
ally engineered features, these features can hardly
capture the notion of context as well as those ex-
plored by a tree kernel.

Tree Kernels are a family of kernel functions
developed to compute the similarity between tree
structures by counting the number of subtrees
they have in common. This generates a high-
dimensional feature space that can be handled ef-
ficiently using dynamic programming techniques
(Shawe-Taylor and Christianini, 2004). For our
purposes we used an implementation of the Sub-
tree and Subset Tree (SST) (Moschitti, 2006).

The advantages of using tree kernels are
two-fold: thanks to an existing implementation

(SVMlight with tree kernels, Moschitti (2004)), it
is faster and easier than traditional feature engi-
neering. The tree structure also allows us to use
different levels of representations (POS, lemma,
etc.) and combine their contributions, while at the
same time taking into account the ordering of la-
bels. We use POS, lemma, semantic type, and a
representation that replaces each word with a con-
catenation of its features (capitalization, count-
able, abstract/concrete noun, etc.).

We developed a shallow tree representation that
captures the context of the target terms, without
encoding too much structure (which may prevent
generalization). In essence, our tree structure in-
duces behavior somewhat similar to a string ker-
nel. In addition, we can model the tasks by pro-
viding specific markup on the generated tree. For
example, in our experiment we used the labels
EVENT (or equivalently RELATION) and TIME-
STAMP to mark our target terms. In order to re-
duce the complexity of this comparison, we focus
on the substring between event/relation and time
stamp and the rest of the tree structure is trun-
cated.

Figure 1 illustrates an example of the structure
described so far for both lemmas and POS tags
(note that the lowest level of the tree contains tok-
enized items, so their number can differ form the
actual words, as in “attorney general”). Similar
trees are produced for each level of representa-
tions used, and for each instance (i.e., pair of time
expressions and event/relation). If a sentence con-
tains more than one event/relation, we create sep-
arate trees for each of them, which differ in the po-
sition of the EVENT/RELATION marks (at level
1 of the tree).

The tree kernel implicitly expands this struc-
ture into a number of substructures allowing us
to capture sequential patterns in the data. As we
will see, this step provides significant boosts to
the task performance.

Curiously, using a full-parse syntactic tree as
input representation did not help performance.
This is in line with our finding that syntactic re-
lations are less important than sequential patterns
(see also Section 5.2). Therefore we adopted the
“string kernel like” representation illustrated in
Figure 1.
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Scores of supporters of detained Egyptian opposition leader Nur demonstrated outside the attorney general’s
office in Cairo last Saturday, demanding he be freed immediately.
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Figure 1: Input Sentence and Tree Kernel Representations for Bag of Words (BOW) and POS tags (BOP)

5 Evaluation

We now apply our models to real world data, and
empirically demonstrate their effectiveness at the
task of temporal linking. In this section, we de-
scribe the data sets that were used for evaluation,
the baselines for comparison, parameter settings,
and the results of the experiments.

5.1 Benchmark
We evaluated our approach in 3 different tasks:

1. Linking Timestamps and Events in the IC
domain

2. Linking Timestamps and Relations in the IC
domain

3. Linking Events to Temporal Expressions
(TempEval-2, task C)

The first two data sets contained annotations
in the intelligence community (IC) domain, i.e.,
mainly news reports about terrorism. It com-
prised 169 documents. This dataset has been de-
veloped in the context of the machine reading pro-
gram (MRP) (Strassel et al., 2010). In both cases
our goal is to develop a binary classifier to judge
whether the event (or relation) overlaps with the
time interval denoted by the timestamp. Success
of this classification can be measured by precision
and recall on annotated data.

We originally considered using accuracy as a
measure of performance, but this does not cor-
rectly reflect the true performance of the system:

given the skewed nature of the data (much smaller
number of positive examples), we could achieve a
high accuracy simply by classifying all instances
as negative, i.e., not assigning a time stamp at all.
We thus decided to report precision, recall and F1.
Unless stated otherwise, results were achieved via
10-fold cross-validation (10-CV).

The number of instances (i.e., pairs of event
and temporal expression) for each of the differ-
ent cases listed above was (in brackets the ratio of
positive to negative instances).

• events: 2046 (505 positive, 1541 negative)

• relations: 6526 (1847 positive, 4679 nega-
tive)

The size of the relation data set after filtering is
5511 (1847 positive, 3395 negative).

In order to increase the originally lower number
of event instances, we made use of the annotated
event-coreference as a sort of closure to add more
instances: if events A and B corefer, and there
is a link between A and time expression t, then
there is also a link between B and t. This was not
explicitly expressed in the data.

For the task at hand, we used gold standard
annotations for timestamps, events and relations.
The task was thus not the identification of these
objects (a necessary precursor and a difficult task
in itself), but the decision as to which events and
time expressions could and should be linked.

We also evaluated our system on TempEval-
2 (Verhagen et al., 2010) for better comparison
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to the state-of-the-art. TempEval-2 data included
the task of linking events to temporal expressions
(there called “task C”), using several link types
(OVERLAP, BEFORE, AFTER, BEFORE-OR-
OVERLAP, OVERLAP-OR-AFTER). This is a
bit different from our settings as it required the
implementation of a multi-class classifier. There-
fore we trained three different binary classifiers
(using the same feature set) for the first three of
those types (for which there was sufficient train-
ing data) and we used a one-versus-all strategy to
distinguish positive from negative examples. The
output of the system is the category with the high-
est SVM decision score. Since we only use three
labels, we incur an error every time the gold la-
bel is something else. Note that this is stricter
than the evaluation in the actual task, which left
contestants with the option of skipping examples
their systems could not classify.

5.2 Baselines

Intuitively, one would expect temporal expres-
sions to be close to the event they denote, or even
syntactically related. In order to test this, we ap-
plied two baselines. In the first, each temporal ex-
pression was linked to the closest event (as mea-
sured in token distance). In the second, we at-
tached each temporal expression to its syntactic
head, if the head was an event. Results are re-
ported in Figure 2.

While these results are encouraging for our
task, it seems at first counter-intuitive that the
syntactic baseline does worse than the proximity-
based one. It does, however, reveal two facts:
events are not always synonymous with syntactic
units, and they are not always bound to tempo-
ral expressions through direct syntactic links. The
latter makes even more sense given that the links
can even occur across sentence boundaries. Pars-
ing quality could play a role, yet seems far fetched
to account for the difference.

More important than syntactic relations seem
to be sequential patterns on different levels, a fact
we exploit with the different tree representations
used (POS tags, NE types, etc.).

For relations, we only applied the closest-
relation baseline. Since relations consist of two or
more arguments that occur in different, often sep-
arated syntactic constituents, a syntactic approach
seems futile, especially given our experience with
events. Results are reported in Figure 3.
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Figure 2: Performance on events

System Accuracy
TRIOS 65%
this work 64.5%
JU-CSE, NCSU-indi
TRIPS, USFD2

all 63%

Table 1: Comparison to Best Systems in TempEval-2

5.3 Events

Figure 2 shows the improvements of the feature-
based approach over the two baseline, and the ad-
ditional gain obtained by using the tree kernel.
Both the features and tree kernels mainly improve
precision, while the tree kernel adds a small boost
in recall. It is remarkable, though, that the closest-
event baseline has a very high recall value. This
suggests that most of the links actually do occur
between items that are close to one another. For a
possible explanation for the low precision value,
see the error analysis (Section 5.5).

Using a two-tailed t-test, we compute the sig-
nificance in the difference between the F1-scores.
Both the feature-based and the tree kernel ap-
proach improvements are statistically significant
at p < 0.001 over the baseline scores.

Table 1 compares the performances of our sys-
tem to the state-of-the-art systems on TempEval-2
Data, task C, showing that our approach is very
competitive. The best systems there used sequen-
tial models. We attribute the competitive nature
of our results to the use of tree kernels, which en-
ables us to make use of contextual information.

5.4 Relations

In general, performance for relations is not as high
as for events (see Figure 3). The reason here is
two-fold: relations consist of two (or more) ele-
ments, which can be in various positions with re-
spect to one another and the temporal expression,
and each relation can be expressed in a number of
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Figure 4: Learning curves for relation models

different ways.
Again, we perform significance tests on the dif-

ference in F1 scores and find that our improve-
ments over the baseline are statistically significant
at p < 0.001. The improvement of the tree kernel
over the feature-based approach, however, are not
statistically significant at the same value.

The learning curve over parts of the training
data (exemplary shown here for relations, Figure
4)2 indicates that there is another advantage to us-
ing tree kernels: the approach can benefit from
more data. This is conceivably because it allows
the kernel to find more common subtrees in the
various representations the more examples it gets,
while the feature space rather finds more instances
that invalidate the expressiveness of features (i.e.,
it encounters positive and negative instances that
have very similar feature vectors). The curve sug-
gests that tree kernels could yield even better re-
sults with more data, while there is little to no ex-
pected gain using only features.

5.5 Error Analysis

Examining the misclassified examples in our data,
we find that both feature-based and tree-kernel
approaches struggle to correctly classify exam-

2The learning curve for events looks similar and is omit-
ted due to space constraints.

ples where time expression and event/relation are
immediately adjacent, but unrelated, as in “the
man arrested last Tuesday told the police ...”,
where last Tuesday modifies arrested. It limits
the amount of context that is available to the tree
kernels, since we truncate the tree representations
to the words between those two elements. This
case closely resembles the problem we see in the
closest-event/relation baseline, which, as we have
seen, does not perform too well. In this case, the
incorrect event (“told”) is as close to the time ex-
pression as the correct one (“arrested”), resulting
in a false positive that affects precision. Features
capturing the order of the elements do not seem
help here, since the elements can be arranged in
any order (i.e., temporal expression before or af-
ter the event/relation). The only way to solve this
problem would be to include additional informa-
tion about whether a time expression is already
attached to another event/relation.

5.6 Ablations

To quantify the utility of each tree representation,
we also performed all-but-one ablation tests, i.e.,
left out each of the tree representations in turn, ran
10-fold cross-validation on the data and observed
the effect on F1. The larger the loss in F1, the
more informative the left-out-representation. We
performed ablations for both events and relations,
and found that the ranking of the representations
is the same for both.

In events and relations alike, leaving out POS
trees has the greatest effect on F1, followed by
the feature-bundle representation. Lemma and se-
mantic type representation have less of an impact.

We hypothesize that the former two capture un-
derlying regularities better by representing differ-
ent words with the same label. Lemmas in turn
are too numerous to form many recurring pat-
terns, and semantic type, while having a smaller
label alphabet, does not assign a label to every
word, thus creating a very sparse representation
that picks up more noise than signal.

In preliminary tests, we also used annotated
dependency trees as input to the tree kernel, but
found that performance improved when they were
left out. This is at odds with work that clearly
showed the value of syntactic tree kernels (Mir-
roshandel et al., 2011). We identify two poten-
tial causes—either our setup was not capable of
correctly capturing and exploiting the information
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from the dependency trees, or our formulation of
the task was not amenable to it. We did not inves-
tigate this further, but leave it to future work.

6 Conclusion and Future Work

We cast the problem of linking events and rela-
tions to temporal expressions as a classification
task using a combination of features and tree ker-
nels, with probabilistic type filtering. Our main
contributions are:

• We showed that within-sentence temporal
links for both events and relations can be ap-
proached with a common strategy.

• We developed flat tree representations and
showed that these produce considerable
gains, with significant improvements over
different baselines.

• We applied our technique without great ad-
justments to an existing data set and achieved
competitive results.

• Our best systems achieve F1 score of 0.76
on events and 0.72 on relations, and are ef-
fective at the task of temporal linking.

We developed the models as part of a machine
reading system and are currently evaluating it in
an end-to-end task.

Following tasks proposed in TempEval-2, we
plan to use our approach for across-sentence clas-
sification, as well as a similar model for linking
entities to the document creation date.
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Abstract 

The well-studied supervised Relation 
Extraction algorithms require training 
data that is accurate and has good 
coverage. To obtain such a gold standard, 
the common practice is to do independent 
double annotation followed by 
adjudication. This takes significantly 
more human effort than annotation done 
by a single annotator. We do a detailed 
analysis on a snapshot of the ACE 2005 
annotation files to understand the 
differences between single-pass 
annotation and the more expensive nearly 
three-pass process, and then propose an 
algorithm that learns from the much 
cheaper single-pass annotation and 
achieves a performance on a par with the 
extractor trained on multi-pass annotated 
data. Furthermore, we show that given 
the same amount of human labor, the 
better way to do relation annotation is not 
to annotate with high-cost quality 
assurance, but to annotate more.  

1. Introduction 

Relation Extraction aims at detecting and 
categorizing semantic relations between pairs of 
entities in text. It is an important NLP task that 
has many practical applications such as 
answering factoid questions, building knowledge 
bases and improving web search.  
    Supervised methods for relation extraction 
have been studied extensively since rich 
annotated linguistic resources, e.g. the Automatic 
Content Extraction1 (ACE) training corpus, were 
released. We will give a summary of related 
methods in section 2. Those methods rely on 
accurate and complete annotation. To obtain high 
quality annotation, the common wisdom is to let 

                                                 
1 http://www.itl.nist.gov/iad/mig/tests/ace/ 

two annotators independently annotate a corpus, 
and then asking a senior annotator to adjudicate 
the disagreements 2 . This annotation procedure 
roughly requires 3 passes3 over the same corpus. 
Therefore it is very expensive. The ACE 2005 
annotation on relations is conducted in this way. 
    In this paper, we analyzed a snapshot of ACE 
training data and found that each annotator 
missed a significant fraction of relation mentions 
and annotated some spurious ones. We found 
that it is possible to separate most missing 
examples from the vast majority of true-negative 
unlabeled examples, and in contrast, most of the 
relation mentions that are adjudicated as 
incorrect contain useful expressions for learning 
a relation extractor. Based on this observation, 
we propose an algorithm that purifies negative 
examples and applies transductive inference to 
utilize missing examples during the training 
process on the single-pass annotation. Results 
show that the extractor trained on single-pass 
annotation with the proposed algorithm has a 
performance that is close to an extractor trained 
on the 3-pass annotation. We further show that 
the proposed algorithm trained on a single-pass 
annotation on the complete set of documents has 
a higher performance than an extractor trained on 
3-pass annotation on 90% of the documents in 
the same corpus, although the effort of doing a 
single-pass annotation over the entire set costs 
less than half that of doing 3 passes over 90% of 
the documents. From the perspective of learning 
a high-performance relation extractor, it suggests 
that a better way to do relation annotation is not 
to annotate with a high-cost quality assurance, 
but to annotate more. 

                                                 
2 The senior annotator also found some missing examples as 
shown in figure 1. 
3 In this paper, we will assume that the adjudication pass has 
a similar cost compared to each of the two first-passes. The 
adjudicator may not have to look at as many sentences as an 
annotator, but he is required to review all instances found by 
both annotators. Moreover, he has to be more skilled and 
may have to spend more time on each instance to be able to 
resolve disagreements.  
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2. Background 

2.1 Supervised Relation Extraction 

One of the most studied relation extraction tasks 
is the ACE relation extraction evaluation 
sponsored by the U.S. government. ACE 2005 
defined 7 major entity types, such as PER 
(Person), LOC (Location), ORG (Organization). 
A relation in ACE is defined as an ordered pair 
of entities appearing in the same sentence which 
expresses one of the predefined relations. ACE 
2005 defines 7 major relation types and more 
than 20 subtypes. Following previous work, we 
ignore sub-types in this paper and only evaluate 
on types when reporting relation classification 
performance. Types include General-affiliation 
(GEN-AFF), Part-whole (PART-WHOLE), 
Person-social (PER-SOC), etc. ACE provides a 
large corpus which is manually annotated with 
entities (with coreference chains between entity 
mentions annotated), relations, events and 
values. Each mention of a relation is tagged with 
a pair of entity mentions appearing in the same 
sentence as its arguments. More details about the 
ACE evaluation are on the ACE official website. 
    Given a sentence s and two entity mentions 
arg1 and arg2 contained in s, a candidate relation 
mention r with argument arg1 preceding arg2 is 
defined as r=(s, arg1, arg2). The goal of Relation 
Detection and Classification (RDC) is to 
determine whether r expresses one of the types 
defined. If so, classify it into one of the types. 
Supervised learning treats RDC as a 
classification problem and solves it with 
supervised Machine Learning algorithms such as 
MaxEnt and SVM. There are two commonly 
used learning strategies (Sun et al., 2011). Given 
an annotated corpus, one could apply a flat 
learning strategy, which trains a single multi-
class classifier on training examples labeled as 
one of the relation types or not-a-relation, and 
apply it to determine its type or output not-a 
relation for each candidate relation mention 
during testing. The examples of each type are the 
relation mentions that are tagged as instances of 
that type, and the not-a-relation examples are 
constructed from pairs of entities that appear in 
the same sentence but are not tagged as any of 
the types. Alternatively, one could apply a 
hierarchical learning strategy, which trains two 
classifiers, a binary classifier RD for relation 
detection and the other a multi-class classifier RC 
for relation classification. RD is trained by 
grouping tagged relation mentions of all types as 

positive instances and using all the not-a-relation 
cases (same as described above) as negative 
examples. RC is trained on the annotated 
examples with their tagged types. During testing, 
RD is applied first to identify whether an 
example expresses some relation, then RC is 
applied to determine the most likely type only if 
it is detected as correct by RD. 
    State-of-the-art supervised methods for 
relation extraction also differ from each other on 
data representation. Given a relation mention, 
feature-based methods (Miller et al., 2000;  
Kambhatla, 2004; Boschee et al., 2005; 
Grishman et al., 2005; Zhou et al., 2005; Jiang 
and Zhai, 2007; Sun et al., 2011) extract a rich 
list of structural, lexical, syntactic and semantic 
features to represent it; in contrast, the kernel 
based methods (Zelenko et al., 2003; Bunescu 
and Mooney, 2005a; Bunescu and Mooney, 
2005b; Zhao and Grishman, 2005; Zhang et al., 
2006a; Zhang et al., 2006b; Zhou et al., 2007; 
Qian et al., 2008) represent each instance with an 
object such as augmented token sequences or a 
parse tree, and used a carefully designed kernel 
function, e.g. subsequence kernel (Bunescu and 
Mooney, 2005b) or convolution tree kernel 
(Collins and Duffy, 2001),  to calculate their 
similarity. These objects are usually augmented 
with features such as semantic features. 

In this paper, we use the hierarchical learning 
strategy since it simplifies the problem by letting 
us focus on relation detection only. The relation 
classification stage remains unchanged and we 
will show that it benefits from improved 
detection. For experiments on both relation 
detection and relation classification, we use 
SVM4 (Vapnik 1998) as the learning algorithm 
since it can be extended to support transductive 
inference as discussed in section 4.3. However, 
for the analysis in section 3.2 and the purification 
preprocess steps in section 4.2, we use a 
MaxEnt5 model since it outputs probabilities6 for 
its predictions.  For the choice of features, we use 
the full set of features from Zhou et al. (2005) 
since it is reported to have a state-of-the-art 
performance (Sun et al., 2011).  

2.2 ACE 2005 annotation 

The ACE 2005 training data contains 599 articles 

                                                 
4 SVM-Light is used. http://svmlight.joachims.org/ 
5 OpenNLP MaxEnt package is used. 
http://maxent.sourceforge.net/about.html 
6 SVM also outputs a value associated with each prediction. 
However, this value cannot be interpreted as probability.  
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from newswire, broadcast news, weblogs, usenet 
newsgroups/discussion forum, conversational 
telephone speech and broadcast conversations. 
The annotation process is conducted as follows: 
two annotators working independently annotate 
each article and complete all annotation tasks 
(entities, values, relations and events). After two 
annotators both finished annotating a file, all 
discrepancies are then adjudicated by a senior 
annotator. This results in a high-quality 
annotation file. More details can be found in the 
documentation of ACE 2005 Multilingual 
Training Data V3.0. 
    Since the final release of the ACE training 
corpus only contains the final adjudicated 
annotations, in which all the traces of the two 
first-pass annotations are removed, we use a 
snapshot of almost-finished annotation, ACE 
2005 Multilingual Training Data V3.0, for our 
analysis. In the remainder of this paper, we will 
call the two independent first-passes of 
annotation fp1 and fp2. The higher-quality data 
done by merging fp1 and fp2 and then having 
disagreements adjudicated by the senior 
annotator is called adj. From this corpus, we 
removed the files that have not been completed 
for all three passes. On the final corpus 
consisting of 511 files, we can differentiate the 
annotations on which the three annotators have 
agreed and disagreed.  
    A notable fact of ACE relation annotation is 
that it is done with arguments from the list of 
annotated entity mentions. For example, in a 
relation mention tyco's ceo and president dennis 
kozlowski which expresses an EMP-ORG 
relation, the two arguments tyco and dennis 
kozlowski must have been tagged as entity 
mentions previously by the annotator. Since fp1 
and fp2 are done on all tasks independently, their 
disagreement on entity annotation will be 
propagated to relation annotation; thus we need 
to deal with these cases specifically.  

3. Analysis of data annotation 

3.1 General statistics 

As discussed in section 2, relation mentions are 
annotated with entity mentions as arguments, and 
the lists of annotated entity mentions vary in fp1, 
fp2 and adj. To estimate the impact propagated 
from entity annotation, we first calculate the ratio 
of overlapping entity mentions between entities 
annotated in fp1/fp2 with adj. We found that 
fp1/fp2 each agrees with adj on around 89% of 

the entity mentions. Following up, we checked 
the relation mentions7 from fp1 and fp2 against 
the adjudicated list of entity mentions from adj 
and found that 682 and 665 relation mentions 
respectively have at least one argument which 
doesn’t appear in the list of adjudicated entity 
mentions. 
    Given the list of relation mentions with both 
arguments appearing in the list of adjudicated 
entity mentions, figure 1 shows the inter-
annotator agreement of the ACE 2005 relation 
annotation. In this figure, the three circles 
represent the list of relation mentions in fp1, fp2 
and adj, respectively. 

3065

1486 1525

645 538

47

383

fp1 fp2

adj  
Figure 1. Inter-annotator agreement of ACE 2005 relation 
annotation. Numbers are the distinct relation mentions 
whose both arguments are in the list of adjudicated entity 
mentions. 
 

    It shows that each annotator missed a 
significant number of relation mentions 
annotated by the other. Considering that we 
removed 682/665 relation mentions from fp1/fp2 
because we generate this figure based on the list 
of adjudicated entity mentions, we estimate that 
fp1 and fp2 both missed around 18.3-28.5%8 of 
the relation mentions. This clearly shows that 
both of the annotators missed a significant 
fraction of the relation mentions. They also 
annotated some spurious relation mentions (as 
adjudicated in adj), although the fraction is 
smaller (close to 10% of all relation mentions in 
adj). 
    ACE 2005 relation annotation guidelines 
(ACE English Annotation Guidelines for 
Relations, version 5.8.3) defined 7 syntactic 
classes and the other class. We plot the 
distribution of syntactic classes of the annotated 

                                                 
7 This is done by selecting the relation mentions whose both 
arguments are in the list of adjudicated entity mentions. 
8 We calculate the lower bound by assuming that the 682 
relation mentions removed from fp1 are found in fp2, 
although with different argument boundary and headword 
tagged. The upper bound is calculated by assuming that they 
are all irrelevant and erroneous relation mentions. 
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relations in figure 2 (3 of the classes, accounting 
together for less than 10% of the cases, are 
omitted) and the other class. It seems that it is 
generally easier for the annotators to find and 
agree on relation mentions of the type 
Preposition/PreMod/Possessives but harder to 
find and agree on the ones belonging to Verbal 
and Other. The definition and examples of these 
syntactic classes can be found in the annotation 
guidelines.  
    In the following sections, we will show the 
analysis on fp1 and adj since the result is similar 
for fp2. 

 
Figure 2. Percentage of examples of major syntactic classes. 

3.2 Why the differences? 

To understand what causes the missing 
annotations and the spurious ones, we need 
methods to find how similar/different the false 
positives are to true positives and also how 
similar/different the false negatives (missing 
annotations) are to true negatives. If we adopt a 
good similarity metric, which captures the 
structural, lexical and semantic similarity 
between relation mentions, this analysis will help 
us to understand the similarity/difference from an 
extraction perspective. 
    We use a state-of-the-art feature space (Zhou 
et al., 2005) to represent examples (including all 
correct examples, erroneous ones and untagged 
examples) and use MaxEnt as the weight 
learning model since it shows competitive 
performance in relation extraction (Jiang and 
Zhai, 2007) and outputs probabilities associated 
with each prediction. We train a MaxEnt model 
for relation detection on true positives and true 
negatives, which respectively are the subset of 
correct examples annotated by fp1 (and 
adjudicated as correct ones) and negative 

examples that are not annotated in adj, and use it 
to make predictions on the mixed pool of correct 
examples, missing examples and spurious ones. 

To illustrate how distinguishable the missing 
examples (false negatives) are from the true 
negative ones, 1) we apply the MaxEnt model on 
both false negatives and true negatives, 2) put 
them together and rank them by the model-
predicted probabilities of being positive, 3) 
calculate their relative rank in this pool. We plot 
the Cumulative distribution of frequency (CDF) 
of the ranks (as percentages in the mixed pools) 
of false negatives in figure 3. We took similar 
steps for the spurious ones (false positives) and 
plot them in figure 3 as well (However, they are 
ranked by model-predicted probabilities of being 
negative). 

 

 
Figure 3: cumulative distribution of frequency (CDF) of the 
relative ranking of model-predicted probability of being 
positive for false negatives in a pool mixed of false 
negatives and true negatives; and the CDF of the relative 
ranking of model-predicted probability of being negative for 
false positives in a pool mixed of false positives and true 
positives. 
 

    For false negatives, it shows a highly skewed 
distribution in which around 75% of the false 
negatives are ranked within the top 10%. That 
means the missing examples are lexically, 
structurally or semantically similar to correct 
examples, and are distinguishable from the true 
negative examples. However, the distribution of 
false positives (spurious examples) is close to 
uniform (flat curve), which means they are 
generally indistinguishable from the correct 
examples. 

3.3 Categorize annotation errors 

The automatic method shows that the errors 
(spurious annotations) are very similar to the 
correct examples but provides little clue as to 
why that is the case. To understand their causes, 
we sampled 65 examples from fp1 (10% of the 
645 errors), read the sentences containing these 
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Category Percentage 
Example 

Relation 
Type Sampled text of spurious examples in fp1 Notes (examples are similar 

ones in adj for comparison) 
Duplicate 
relation 
mention for 
coreferential 
entity mentions 

49.2% ORG-AFF … his budding friendship with US      President 
George W. Bush in the face of … 

… his budding friendship 
with US      President George 
W. Bush in the face of … 

Correct 20% 

PHYS Hundreds of thousands of demonstrators took to 
the streets in Britain…  

PER-SOC The dead included the quack doctor, 55-year-old 
Nityalila Naotia, his teenaged son and… 

(Symmetric relation)  
The dead included the quack 
doctor, 55-year-old Nityalila 
Naotia, his teenaged son 

Argument not 
in list 

15.4% 
 PER-SOC 

Putin had even secretly invited British Prime 
Minister Tony Blair, Bush's staunchest backer      
in the war on Iraq… 

 

Violate 
reasonable 
reader rule 

6.2% PHYS 

"The      amazing thing is they are going to turn 
San Francisco into ground zero for every criminal 
who wants to profit at their chosen profession", 
Paredes said. 

 

Errors 6.1% 

PART-
WHOLE 

…a likely candidate to run Vivendi Universal's 
entertainment unit in the United States… 

Arguments are tagged 
reversed 

PART-
WHOLE 
 

Khakamada argued that the United 
States would also need Russia's help "to make the 
new Iraqi government seem legitimate. 

Relation type error 

illegal 
promotion 
through 
“blocked” 
categories 

3% PHYS 
 

Up to 20,000 protesters thronged the plazas and 
streets of San Francisco, where… 

Up to 20,000 protesters 
thronged the plazas and 
streets of San Francisco, 
where… 

Table 1. Categories of spurious relation mentions in fp1 (on a sample of 10% of relation mentions), ranked by the percentage 
of the examples in each category. In the sample text, red text (also marked with dotted underlines) shows head words of the 
first arguments and the underlined text shows head words of the second arguments. 
 

erroneous relation mentions and compared them 
to the correct relation mentions in the same 
sentence; we categorized these examples and 
show them in table 1. The most common type of 
error is duplicate relation mention for 
coreferential entity mentions. The first row in 
table 1 shows an example, in which there is a 
relation ORG-AFF tagged between US and 
George W. Bush in adj. Because President and 
George W. Bush are coreferential, the example 
<US, President > from fp1 is adjudicated as 
incorrect. This shows that if a relation is 
expressed repeatedly across relation mentions 
whose arguments are coreferential, the 
adjudicator only tags one of the relation mentions 
as correct, although the other is correct too. This 
shared the same principle with another type of 
error illegal promotion through “blocked” 
categories 9  as defined in the annotation 
guideline. The second largest category is correct, 
by which we mean the example is a correct 
relation mention and the adjudicator made a 

                                                 
9 For example, in sentence Smith went to a hotel in Brazil, 
(Smith, hotel) is a taggable PHYS Relation but (Smith, 
Brazil) is not, because to get the second relationship, one 
would have to “promote” Brazil through hotel. For the 
precise definition of annotation rules, please refer to ACE 
(Automatic Content Extraction) English Annotation 
Guidelines for Relations, version 5.8.3. 

mistake. The third largest category is argument 
not in list, by which we mean that at least one of 
the arguments is not in the list of adjudicated 
entity mentions. 
    Based on Table 1, we can see that as many as 
72%-88% of the examples which are adjudicated 
as incorrect are actually correct if viewed from a 
relation learning perspective, since most of them 
contain informative expressions for tagging 
relations.  The annotation guideline is designed 
to ensure high quality while not imposing too 
much burden on human annotators. To reduce 
annotation effort, it defined rules such as illegal 
promotion through “blocked” categories. The 
annotators’ practice suggests that they are 
following another rule not to annotate duplicate 
relation mention for coreferential entity 
mentions. This follows the similar principle of 
reducing annotation effort but is not explicitly 
stated in the guideline: to avoid propagation of a 
relation through a coreference chain. However, 
these examples are useful for learning more ways 
to express a relation. Moreover, even for the 
erroneous examples (as shown in table 1 as 
violate reasonable reader rule and errors), most 
of them have some level of similar structures or 
semantics to the targeted relation. Therefore, it is 
very hard to distinguish them without human 
proofreading. 
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Exp # Training 
data 

Testing 
data 

Detection (%) Classification (%) 
Precision Recall F1 Precision Recall F1 

1 fp1 adj 83.4 60.4 70.0 75.7 54.8 63.6 
2 fp2 adj 83.5 60.5 70.2 76.0 55.1 63.9 
3 adj adj 80.4 69.7 74.6 73.4 63.6 68.2 

Table 2. Performance of RDC trained on fp1/fp2/adj, and tested on adj. 
 

3.4 Why missing annotations and how 
many examples are missing? 

For the large number of missing annotations, 
there are a couple of possible reasons. One 
reason is that it is generally easier for a human 
annotator to annotate correctly given a well-
defined guideline, but it is hard to ensure 
completeness, especially for a task like relation 
extraction.  Furthermore, the ACE 2005 
annotation guideline defines more than 20 
relation subtypes. These many subtypes make it 
hard for an annotator to keep all of them in mind 
while doing the annotation, and thus it is 
inevitable that some examples are missed. 
    Here we proceed to approximate the number 
of missing examples given limited knowledge. 
Let each annotator annotate n examples and 
assume that each pair of annotators agrees on a 
certain fraction p of the examples. Assuming the 
examples are equally likely to be found by an 
annotator, therefore the total number of unique 
examples found by 𝑘  annotators is ∑ (1 −𝑘

𝑖=0
𝑝)𝑖𝑛. If we had an infinite number of annotators 
(𝑘 → ∞), the total number of unique examples 
will be 𝑛

𝑝
, which is the upper bound of the total 

number of examples. In the case of the ACE 
2005 relation mention annotation, since the two 
annotators annotate around 4500 examples and 
they agree on 2/3 of them, the total number of all 
positive examples is around 6750. This is close 
to the number of relation mentions in the 
adjudicated list: 6459. Here we assume the 
adjudicator is doing a more complex task than an 
annotator, resolving the disagreements and 
completing the annotation (as shown in figure 1).  
    The assumption of the calculation is a little 
crude but reasonable given the limited number of 
passes of annotation we have. Recent research (Ji 
et al, 2010) shows that, by adding annotators for 
IE tasks, the merged annotation tends to 
converge after having 5 annotators. To 
understand the annotation behavior better, in 
particular whether annotation will converge after 
adding a few annotators, more passes of 
annotation need to be collected. We leave this as 
future work. 
 

4. Relation extraction with low-cost 
annotation 

4.1 Baseline algorithm 

To see whether a single-pass annotation is useful 
for relation detection and classification, we did 
5-fold cross validation (5-fold CV) with each of 
fp1, fp2 and adj as the training set, and tested on 
adj. The experiments are done with the same 511 
documents we used for the analysis. As shown in 
table 2, we did 5-fold CV on adj for experiment 
3. For fairness, we use settings similar to 5-fold 
CV for experiment 1 and 2. Take experiment 1 as 
an example: we split both of fp1 and adj into 5 
folds, use 4 folds from fp1 as training data, and 1 
fold from adj as testing data and does one train-
test cycle. We rotate the folds (both training and 
testing) and repeat 5 times. The final results are 
averaged over the 5 runs. Experiment 2 was 
conducted similarly. In the reminder of the paper, 
5-fold CV experiments are all conducted in this 
way. 
    Table 2 shows that a relation tagger trained on 
the single-pass annotated data fp1 performs 
worse than the one trained on merged and 
adjudicated data adj, with 4.6 points lower F 
measure in relation detection, and 4.6 points 
lower relation classification. For detection, 
precision on fp1 is 3 points higher than on adj 
but recall is much lower (close to 10 points). The 
recall difference shows that the missing 
annotations contain expressions that can help to 
find more correct examples during testing. The 
small precision difference indirectly shows that 
the spurious ones in fp1 (as adjudicated) do not 
hurt precision. Performance on classification 
shows a similar trend because the relation 
classifier takes the examples predicted by the 
detector as correct as its input. Therefore, if there 
is an error, it gets propagated to this stage. Table 
2 also shows similar performance differences 
between fp2 and adj.  
    In the remainder of this paper, we will discuss 
a few algorithms to improve a relation tagger 
trained on single-pass annotated data10. Since we 

                                                 
10 We only use fp1 and adj in the following experiments 
because we observed that fp1 and fp2 are similar in general 
in the analysis, though a fraction of the annotation in fp1 
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already showed that most of the spurious 
annotations are not actually errors from an 
extraction perspective and table 2 shows that 
they do not hurt precision, we will only focus on 
utilizing the missing examples, in other words, 
training with an incomplete annotation. 

4.2 Purify the set of negative examples 

As discussed in section 2, traditional supervised 
methods find all pairs of entity mentions that 
appear within a sentence, and then use the pairs 
that are not annotated as relation mentions as the 
negative examples for the purpose of training a 
relation detector. It relies on the assumption that 
the annotators annotated all relation mentions 
and missed no (or very few) examples. However, 
this is not true for training on a single-pass 
annotation, in which a significant portion of 
relation mentions are left not annotated. If this 
scheme is applied, all of the correct pairs which 
the annotators missed belong to this “negative” 
category. Therefore, we need a way to purify the 
“negative” set of examples obtained by this 
conventional approach. 
    Li and Liu (2003) focuses on classifying 
documents with only positive examples. Their 
algorithm initially sets all unlabeled data to be 
negative and trains a Rocchio classifier, selects 
negative examples which are closer to the 
negative centroid than positive centroid as the 
purified negative examples, and then retrains the 
model. Their algorithm performs well for text 
classification. It is based on the assumption that 
there are fewer unannotated positive examples 
than negative ones in the   unlabeled set, so true 
negative examples still dominate the set of noisy 
“negative” examples in the purification step. 
Based on the same assumption, our purification 
process consists of the following steps: 

1) Use annotated relation mentions as 
positive examples; construct all possible 
relation mentions that are not annotated, and 
initially set them to be negative. We call this 
noisy data set D. 

2) Train a MaxEnt relation detection model 
Mdet on D. 

3) Apply Mdet  on all unannotated 
examples, and rank them by the model-
predicted probabilities of being positive, 

4) Remove the top N examples from D. 
These preprocessing steps result in a purified 
data set  𝐷𝑝𝑢𝑟𝑒. We can use 𝐷𝑝𝑢𝑟𝑒 for the normal 
                                                                          
and fp2 is different. Moreover, algorithms trained on them 
show similar performance. 

training process of a supervised relation 
extraction algorithm. 
    The algorithm is similar to Li and Liu 2003. 
However, we drop a few noisy examples instead 
of choosing a small purified subset since we have 
relatively few false negatives compared to the 
entire set of unannotated examples. Moreover, 
after step 3, most false negatives are clustered 
within the small region of top ranked examples 
which has a high model-predicated probability of 
being positive. The intuition is similar to what 
we observed from figure 3 for false negatives 
since we also observed very similar distribution 
using the model trained with noisy data. 
Therefore, we can purify negatives by removing 
examples in this noisy subset.  
    However, the false negatives are still mixed 
with true negatives. For example, still slightly 
more than half of the top 2000 examples are true 
negatives. Thus we cannot simply flip their 
labels and use them as positive examples. In the 
following section, we will use them in the form 
of unlabeled examples to help train a better 
model. 

4.3 Transductive inference on unlabeled 
examples 

Transductive SVM (Vapnik, 1998; Joachims, 
1999) is a semi-supervised learning method 
which learns a model from a data set consisting 
of both labeled and unlabeled examples. 
Compared to its popular antecedent SVM, it also 
learns a maximum margin classification 
hyperplane, but additionally forces it to separate 
a set of unlabeled data with large margin. The 
optimization function of Transductive  SVM 
(TSVM) is the following: 
 

 
Figure 4. TSVM optimization function for non-separable 
case (Joachims, 1999) 
 

    TSVM can leverage an unlabeled set of 
examples to improve supervised learning. As 
shown in section 3, a significant number of 
relation mentions are missing from the single-
pass annotation data. Although it is not possible 
to find all missing annotations without human 
effort, we can improve the model by further 
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utilizing the fact that some unannotated examples 
should have been annotated.  
    The purification process discussed in the 
previous section removes N examples which 
have a high density of false negatives. We further 
utilize the N examples as follows: 

1) Construct a training corpus 𝐷ℎ𝑦𝑏𝑟𝑖𝑑 from 
𝐷𝑝𝑢𝑟𝑒  by taking a random sample11 of N*(1-
p)/p (p is the ratio of annotated examples to 
all examples; p=0.05 in fp1) negatively 
labeled examples in 𝐷𝑝𝑢𝑟𝑒 and setting them to 
be unlabeled. In addition, the N examples 
removed by the purification process are added 
back as unlabeled examples.  

2) Train TSVM on 𝐷ℎ𝑦𝑏𝑟𝑖𝑑.  
    The second step trained a model which 
replaced the detection model in the hierarchical 
detection-classification learning scheme we used. 
We will show in the next section that this 
improves the model. 
 

5. Experiments 
 

Experiments were conducted over the same set of 
documents on which we did analysis: the 511 
documents which have completed annotation in 
all of the fp1, fp2 and adj from the ACE 2005 
Multilingual Training Data V3.0. To 
reemphasize, we apply the hierarchical learning 
scheme and we focus on improving relation 
detection while keeping relation classification 
unchanged (results show that its performance is 
improved because of the improved detection). 
We use SVM as our learning algorithm with the 
full feature set from Zhou et al. (2005).  
    Baseline algorithm: The relation detector is 
unchanged. We follow the common practice, 
which is to use annotated examples as positive 
ones and all possible untagged relation mentions 
as negative ones. We sub-sampled the negative 
data by ½ since that shows better performance. 
    +purify:  This algorithm adds an additional 
purification preprocessing step (section 4.2) 
before the hierarchical learning RDC algorithm. 
After purification, the RDC algorithm is trained 
on the positive examples and purified negative 
examples. We set N=200012 in all experiments. 

                                                 
11 We included this large random sample so that the balance 
of positive to negative examples in the unlabeled set would 
be similar to that of the labeled data. The test data is not 
included in the unlabeled set. 
12 We choose 2000 because it is close to the number of 
relations missed from each single-pass annotation. In 
practice, it contains more than 70% of the false negatives, 
and it is less than 10% of the unannotated examples. To 
estimate how many examples are missing (section 3.4), one 

    +tSVM: First, the same purification process of 
+purify is applied. Then we follow the steps 
described in section 4.3 to construct the set of 
unlabeled examples, and set all the rest of 
purified negative examples to be negative. 
Finally, we train TSVM on both labeled and 
unlabeled data and replace the relation detection 
in the RDC algorithm. The relation classification 
is unchanged. 
    Table 3 shows the results. All experiments are 
done with 5-fold cross validation13 using testing 
data from adj. The first three rows show 
experiments trained on fp1, and the last row 
(ADJ) shows the unmodified RDC algorithm 
trained on adj for comparison. The purification 
of negative examples shows significant 
performance gain, 3.7% F1 on relation detection 
and 3.4% on relation classification. The precision 
decreases but recall increases substantially since 
the missing examples are not treated as 
negatives. Experiment shows that the purification 
process removes more than 60% of the false 
negatives. Transductive SVM further improved 
performance by a relatively small margin. This 
shows that the latent positive examples can help 
refine the model. Results also show that 
transductive inference can find around 17% of 
missing relation mentions. We notice that the 
performance of relation classification is 
improved since by improving relation detection, 
some examples that do not express a relation are 
removed. The classification performance on 
single-pass annotation is close to the one trained 
on adj due to the help from a better relation 
detector trained with our algorithm.  
    We also did 5-fold cross validation with a 
model trained on a fraction of the 4/5 (4 folds) of 
adj data (each experiment shown in table 4 uses 
4 folds of adj documents for training since one 
fold is left for cross validation). The documents 
are sampled randomly. Table 4 shows results for 
varying training data size. Compared to the 
results shown in the “+tSVM” row of table 3, we 
can see that our best model trained on single-pass 
annotation outperforms SVM trained on 90% of 
the dual-pass, adjudicated data in both relation 
detection and classification, although it costs less 
than half the 3-pass annotation. This suggests 
that given the same amount of human effort for 

                                                                          
should perform multiple passes of independent annotation 
on a small dataset and measure inter-annotator agreements. 
13 Details about the settings for 5-fold cross validation are in 
section 4.1. 
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Algorithm Detection (%) Classification (%) 
Precision Recall F1 Precision Recall F1 

Baseline 83.4 60.4 70.0 75.7 54.8 63.6 
+purify 76.8 70.9 73.7 69.8 64.5 67.0 
+tSVM 76.4 72.1 74.2 69.4 65.2 67.2 
ADJ (on adj) 80.4 69.7 74.6 73.4 63.6 68.2 

Table 3. 5-fold cross-validation results. All are trained on fp1 (except the last row showing the unchanged algorithm trained 
on adj for comparison), and tested on adj. McNemar's test show that the improvement from +purify to +tSVM, and from 
+tSVM to ADJ are statistically significant (with p<0.05). 
 

Percentage of 
adj used 

Detection (%) Classification (%) 
Precision Recall F1 Precision Recall F1 

60% × 4/5 86.9 41.2 55.8 78.6 37.2 50.5 
70% × 4/5 85.5 51.3 64.1 77.7 46.6 58.2 
80% × 4/5 83.3 58.1 68.4 75.8 52.9 62.3 
90% × 4/5 82.0 64.9 72.5 74.9 59.4 66.2 

Table 4. Performance with SVM trained on a fraction of adj. It shows 5 fold cross validation results. 
 

relation annotation, annotating more documents 
with single-pass offers advantages over 
annotating less data with high quality assurance 
(dual passes and adjudication). 

6. Related work 

Dligach et al. (2010) studied WSD annotation 
from a cost-effectiveness viewpoint. They 
showed empirically that, with same amount of 
annotation dollars spent, single-annotation is 
better than dual-annotation and adjudication. The 
common practice for quality control of WSD 
annotation is similar to Relation annotation. 
However, the task of WSD annotation is very 
different from relation annotation. WSD requires 
that every example must be assigned some tag, 
whereas that is not required for relation tagging. 
Moreover, relation tagging requires identifying 
two arguments and correctly categorizing their 
types.  

The purified approach applied in this paper is 
related to the general framework of learning from 
positive and unlabeled examples. Li and Liu 
(2003) initially set all unlabeled data to be 
negative and train a Rocchio classifier, then 
select negative examples which are closer to the 
negative centroid than positive centroid as the 
purified negative examples.  We share a similar 
assumption with Li and Liu (2003) but we use a 
different method to select negative examples 
since the false negative examples show a very 
skewed distribution, as described in section 5.2.  

Transductive SVM was introduced by Vapnik 
(1998) and later refined in Joachims (1999). A 
few related methods were studied on the subtask 
of relation classification (the second stage of the 
hierarchical learning scheme) in Zhang (2005).   

Chan and Roth (2011) observed the similar 
phenomenon that ACE annotators rarely 
duplicate a relation link for coreferential 

mentions. They use an evaluation scheme to 
avoid being penalized by the relation mentions 
which are not annotated because of this behavior. 
 

7. Conclusion 
 

We analyzed a snapshot of the ACE 2005 
relation annotation and found that each single-
pass annotation missed around 18-28% of 
relation mentions and contains around 10% 
spurious mentions. A detailed analysis showed 
that it is possible to find some of the false 
negatives, and that most spurious cases are 
actually correct examples from a system 
builder’s perspective. By automatically purifying 
negative examples and applying transductive 
inference on suspicious examples, we can train a 
relation classifier whose performance is 
comparable to a classifier trained on the dual-
annotated and adjudicated data. Furthermore, we 
show that single-pass annotation is more cost-
effective than annotation with high quality 
assurance. 
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Abstract

Topic models have great potential for help-
ing users understand document corpora.
This potential is stymied by their purely un-
supervised nature, which often leads to top-
ics that are neither entirely meaningful nor
effective in extrinsic tasks (Chang et al.,
2009). We propose a simple and effective
way to guide topic models to learn topics
of specific interest to a user. We achieve
this by providingsets of seed words that a
user believes are representative of the un-
derlying topics in a corpus. Our model
uses these seeds to improveboth topic-
word distributions (by biasing topics to pro-
duce appropriate seed words) and to im-
prove document-topic distributions (by bi-
asing documents to select topics related to
the seed words they contain). Extrinsic
evaluation on a document clustering task
reveals a significant improvement when us-
ing seed information, even over other mod-
els that use seed information naı̈vely.

1 Introduction

Topic models such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) have emerged as a pow-
erful tool to analyze document collections in an
unsupervised fashion. When fit to a document
collection, topic models implicitly use document
level co-occurrence information to group seman-
tically related words into a single topic. Since the
objective of these models is to maximize the prob-
ability of the observed data, they have a tendency
to explain only the most obvious and superficial
aspects of a corpus. They effectively sacrifice per-
formance on rare topics to do a better job in mod-
eling frequently occurring words. The user is then

left with a skewed impression of the corpus, and
perhaps one that does not perform well in extrin-
sic tasks.

To illustrate this problem, we ran LDA on
the most frequent five categories of the Reuters-
21578 (Lewis et al., 2004) text corpus. This doc-
ument distribution is very skewed: more than half
of the collection belongs to the most frequent cat-
egory (“Earn”). The five topics identified by the
LDA are shown in Table 1. A brief observation
of the topics reveals that LDA has roughly allo-
cated topics 1 & 2 for the most frequent class
(“Earn”) and one topic for the subsequent two
frequent classes (“Acquisition” and “Forex”) and
merged the least two frequent classes (“Crude”
and “Grain”) into a single topic. The red colored
words in topic 5 correspond to the “Crude” class
and blue words are from the “Grain” class.

This leads to the situation where the topics
identified by LDA are not in accordance with the
underlying topical structure of the corpus. This
is a problem not just with LDA: it is potentially
a problem with any extension thereof that have
focused on improving the semantic coherence of
the words in each topic (Griffiths et al., 2005;
Wallach, 2005; Griffiths et al., 2007), the doc-
ument topic distributions (Blei and McAuliffe,
2008; Lacoste-Julien et al., 2008) or other aspects
(Blei. and Lafferty., 2009).

We address this problem by providing some ad-
ditional information to the model. Initially, along
with the document collection, a user may provide
higher level view of the document collection. For
instance, as discussed in Section 4.4, when run
on historical NIPS papers, LDA fails to find top-
ics related to Brain Imaging, Cognitive Science or
Hardware, even though we know from the call for
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mln, dlrs, billion, year, pct, company, share, april, record, cts, quarter, march, earnings, stg, first, pay
mln, NUM, cts, loss, net, dlrs, shr, profit, revs, year, note,oper, avg, shrs, sales, includes

lt, company, shares, corp, dlrs, stock, offer, group, share, common, board, acquisition, shareholders
bank, market, dollar, pct, exchange, foreign, trade, rate,banks, japan, yen, government, rates, today
oil, tonnes, prices, mln,wheat, production, pct,gas, year,grain, crude, price,corn, dlrs,bpd, opec

Table 1: Topics identified by LDA on the frequent-5 categories of the Reuters corpus. The categories are Earn,
Acquisition, Forex, Grain and Crude (in the order document frequency).

1 company, billion, quarter, shrs, earnings
2 acquisition, procurement, merge
3 exchange, currency, trading, rate, euro
4 grain, wheat, corn, oilseed, oil
5 natural, gas, oil, fuel, products, petrol

Table 2: An example for sets of seed words (seed top-
ics) for the frequent-5 categories of the Reuters-21578
categorization corpus. We use them as running exam-
ple in the rest of the paper.

papers that such topics should exist in the corpus.
By allowing the user to provide someseed words
related to these underrepresented topics, we en-
courage the model to find evidence of these top-
ics in the data. Importantly, weonly encourage
the model to follow the seed sets and donot force
it. So if it has compelling evidence in the data
to overcome the seed information then it still has
the freedom to do so. Our seeding approach in
combination with the interactive topic modeling
(Hu et al., 2011) will allow a user to bothexplore
a corpus, and also guide the exploration towards
the distinctions that he/she finds more interesting.

2 Incorporating Seeds

Our approach to allowing a user to guide the topic
discovery process is to let him provideseed infor-
mation at the level of word type. Namely, the user
provides sets of seed words that are representative
of the corpus. Table 2 shows an example of seed
sets one might use for the Reuters corpus. This
kind of supervision is similar to the seeding in
bootstrapping literature (Thelen and Riloff, 2002)
or prototype-based learning (Haghighi and Klein,
2006). Our reliance on seed sets is orthogonal
to existing approaches that use external knowl-
edge, which operate at the level of documents
(Blei and McAuliffe, 2008), tokens (Andrzejew-
ski and Zhu, 2009) or pair-wise constraints (An-
drzejewski et al., 2009).

We build a model that uses the seed words
in two ways: to improve both topic-word and
document-topic probability distributions. For
ease of exposition, we present these ideas sep-
arately and then in combination (Section 2.3).
To improve topic-word distributions, we set up
a model in which each topic prefers to gener-
ate words that are related to the words in a seed
set (Section 2.1). To improve document-topic
distributions, we encourage the model to select
document-level topics based on the existence of
input seed words in that document (Section 2.2).

Before moving on to the details of our mod-
els, we briefly recall the generative story of the
LDA model and the reader is encouraged to refer
to (Blei et al., 2003) for further details.

1. For each topick = 1 · · ·T,

• chooseφk ∼ Dir(β).

2. For each documentd, chooseθd ∼ Dir(α).

• For each tokeni = 1 · · ·Nd:

(a) Select a topiczi ∼ Mult(θd).
(b) Select a wordwi ∼ Mult(φzi).

where T is the number of topics,α, β are hyper-
parameters of the model andφk andθd are topic-
word and document-topic Multinomial probabil-
ity distributions respectively.

2.1 Word-Topic Distributions (Model 1)

In regular topic models, each topick is defined
by a Multinomial distributionφk over words. We
extend this notion and instead define a topic as a
mixture oftwo Multinomial distributions: a “seed
topic” distribution and a “regular topic” distribu-
tion. The seed topic distribution is constrained to
only generate words from a corresponding seed
set. The regular topic distribution may generate
any word (including seed words). For example,
seed topic 4 (in Table 2) can only generate the
five words in its set. The word “oil” can be gener-
ated by seed topics 4 and 5, as well as any regular

205



φsTφrTφs
1

φr
1

doc

z=1 z=2 z=T· · · · · · · · ·
π11− π1 πT1− πT

Figure 1: Tree representation of a document in Model
1.

topic. We want to emphasize that, like any regular
topic, each seed topic is anon-uniform probabil-
ity distribution over the words in its set. The user
only inputs the sets of seed words and the model
will infer their probability distributions.

For the sake of simplicity, we describe our
model by assuming a one-to-one correspondence
between seed and regular topics. This assumption
can be easily relaxed by duplicating the seed top-
ics when there are more regular topics. As shown
in Fig. 1, each document is a mixture over T top-
ics, where each of those topics is a mixture of
a regular topic (φr

·
) and its associated seed topic

(φs
·
) distributions. The parameterπk controls the

probability of drawing a word from the seed topic
distribution versus the regular topic distribution.
For our first model, we assume that the corpus is
generated based on the following generative pro-
cess (its graphical notation is shown in Fig. 2(a)):

1. For each topick=1· · · T,

(a) Choose regular topicφrk ∼ Dir(βr).

(b) Chooseseed topicφsk ∼ Dir(βs).

(c) Chooseπk ∼ Beta(1, 1).

2. For each documentd, chooseθd ∼ Dir(α).

• For each tokeni = 1 · · ·Nd:

(a) Select a topiczi ∼ Mult(θd).
(b) Select an indicatorxi ∼ Bern(πzi)
(c) if xi is 0

– Select a wordwi ∼ Mult(φrzi).
// choose from regular topic

(d) if xi is 1
– Select a wordwi ∼ Mult(φszi).

// choose from seed topic

The first step is to generate Multinomial distribu-
tions for both seed topics and regular topics. The
seed topics are drawn in a way thatconstrains

their distribution to only generate words in the
corresponding seed set. Then, for each token in a
document, we first generate a topic. After choos-
ing a topic, we flip a (biased) coin to pick either
the seed or the regular topic distribution. Once
this distribution is selected we generate a word
from it. It is important to note that although there
are 2×T topic-word distributions in total, each
document is still a mixture ofonly T topics (as
shown in Fig. 1). This is crucial in relating seed
and regular topics and is similar to the way top-
ics and aspects are tied in TAM model (Paul and
Girju, 2010).

To understand how this model gathers words
related to seed words, consider a seed topic (say
the fourth row in Table 2) with seed words{grain,
wheat, corn,etc. }. Now by assigning all the re-
lated words such as “tonnes”, “agriculture”, “pro-
duction” etc. to its correspondingregular topic,
the model can potentially put high probability
mass on topicz = 4 for agriculture related doc-
uments. Instead, if it places these words in an-
other regular topic, sayz = 3, then the document
probability mass has to be distributed among top-
ics 3 and4 and as a result the model will pay a
steeper penalty. Thus the model uses seed topic
to gather related words into its associated regu-
lar topic and as a consequence the document-topic
distributions also become focussed.

We have experimented with two ways of choos-
ing the binary variablexi (step 2b) of the gener-
ative story. In the first method, we fix this sam-
pling probability to a constant value which is in-
dependent of the chosen topic (i.e. πi = π̂, ∀i =
1 · · · T). And in the second method we learn the
probability as well (Sec. 4).

2.2 Document-Topic distributions (Model 2)

In the previous model we used seed words to im-
prove topic-word probability distributions. Here
we propose a model to explore the use of seed
words to improve document-topic probability dis-
tributions. Unlike the previous model, we will
present this model in the general case where the
number of seed topics is not equal to the number
of regular topics. Hence, we associate each seed
set (we refer seed set as group for conciseness)
with a Multinomial distribution over the regular
topics which we call group-topic distribution.

To give an overview of our model, first, we
transfer the seed information from words onto

206



DT

α θ

βr φr

φs

Nd

x z

w

(a) Model 1

DT

α

τ

ψ θ

βr

~b

φr
Nd

ζ

γ

z

w

g

(b) Model 2

DT

α

τ

ψ θ

βr

~b

φr

φs

Nd

ζ

γ

x z

w

g
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Figure 2: The graphical notation of all the three models. In Model 1 we use seed topics to improve the topic-word
probability distributions. In Model 2, the seed topic information is first transfered to the document level based
on the document tokens and then it is used to improve document-topic distributions. In the final, SeededLDA,
model we combine both the models. In Model 1 and SeededLDA, wedropped the dependency ofφs on hyper
parameterβs since it is observed. And, for clarity, we also dropped the dependency ofx onπ.

the documents that contain them. Then, the
document-topic distribution is drawn in a two step
process: we sample a seed set (g for group) and
then use its group-topic distribution (ψg) as prior
to draw the document-topic distribution (θd). We
used this two step process, to allow flexible num-
ber of seed and regular topics, and to tie the topic
distributions of all the documents within a group.
We assume the following generative story and its
graphical notation is shown in Fig. 2(b).

1. For eachk = 1· · ·T,

(a) Chooseφrk ∼ Dir(βr).

2. For each seed sets = 1· · ·S,

(a) Choose group-topic distributionψs ∼
Dir(α). // the topic distribution forsth

group (seed set) – a vector of length T.

3. For each documentd,

(a) Choose a binary vector~b of length S.

(b) Choose a document-group distribution
ζd ∼ Dir(τ~b).

(c) Choose a group variableg ∼ Mult(ζd)

(d) Chooseθd ∼ Dir(ψg). // of length T

(e) For each tokeni = 1 · · ·Nd:

i. Select a topiczi ∼ Mult(θd).
ii. Select a wordwi ∼ Mult(φrzi).

We first generate T topic-word distributions
(φk) and S group-topic distributions (ψs). Then
for each document, we generate a list of seed sets
that are allowed for this document. This list is

represented using the binary vector~b. This bi-
nary vector can be populated based on the docu-
ment words and hence it is treated as an observed
variable. For example, consider the (very short!)
document “oil companies have merged”. Accord-
ing to the seed sets from Table 2, we define a bi-
nary vector that denotes which seed topics contain
words in this document. In this case, this vec-
tor ~b = 〈1, 1, 0, 1, 1〉, indicating the presence of
seeds from sets1, 2, 4 and5.1 As discussed in
(Williamson et al., 2010), generating binary vec-
tor is crucial if we want a document to talk about
topics that are less prominent in the corpus.

The binary vector~b, that indicates which seeds
exist in this document, defines amean of a
Dirichlet distribution from which we sample a
document-group distribution, ζd (step 3b). We
set the concentration of this Dirichlet to a hy-
perparamterτ , which we set by hand (Sec. 4);
thus,ζd ∼ Dir(τ~b). From the resulting multino-
mial, we draw agroup variableg for this docu-
ment. This group variable brings clustering struc-
ture among the documents by grouping the docu-
ments that are likely to talk about same seed set.

Once the group variable (g) is drawn, we
choose the document-topic distribution (θd) from
a Dirichlet distribution with the group’s-topic dis-
tribution as the prior (step 3d). This step ensures
that the topic distributions of documents within
each group are related. The remaining sampling

1As a special case, if no seed word is found in the docu-
ment,~b is defined as the all-ones vector.
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process proceeds like LDA. We sample a topic
for each word and then generate a word from its
corresponding topic-word distribution. Observe
that, if the binary vector is all ones and if we
setθd = ζd then this model reduces to the LDA
model withτ andβr as the hyperparameters.

2.3 SeededLDA

Both of our models use seed words in different
ways to improve topic-word and document-topic
distributions respectively. We can combine both
the above models easily. We refer to the combined
model as SeededLDA and its generative story is
as follows (its graphical notation is shown in Fig.
2(c)). The variables have same semantics as in the
previous models.

1. For eachk=1· · · T,

(a) Choose regular topicφrk ∼ Dir(βr).

(b) Chooseseed topicφsk ∼ Dir(βs).

(c) Chooseπk ∼ Beta(1, 1).

2. For each seed sets = 1· · ·S,

(a) Choose group-topic distributionψs ∼
Dir(α).

3. For each documentd,

(a) Choose a binary vector~b of length S.

(b) Choose a document-group distribution
ζd ∼ Dir(τ~b).

(c) Choose a group variableg ∼ Mult(ζd).

(d) Chooseθd ∼ Dir(ψg). // of length T

(e) For each tokeni = 1 · · ·Nd:

i. Select a topiczi ∼ Mult(θd).
ii. Select an indicatorxi ∼ Bern(πzi).
iii. if xi is 0

• Select a wordwi ∼ Mult(φrzi).
iv. if xi is 1

• Select a wordwi ∼ Mult(φszi).

In the SeededLDA model, the process for gen-
erating group variable of a document is same as
the one described in the Model 2. And like in the
Model 2, we sample a document-topic probability
distribution as a Dirichlet draw with the group-
topic distribution of the chosen group as prior.
Subsequently, we choose a topic for each token
and then flip a biased coin. We choose either the
seed or the regular topic based on the result of the
coin toss and then generate a word from its distri-
bution.

2.4 Automatic Seed Selection

In (Andrzejewski and Zhu, 2009; Andrzejewski
et al., 2009), the seed information is provided
manually. Here, we describe the use of feature se-
lection techniques, prevalent in the classification
literature, to automatically derive the seed sets. If
we want the topicality structure identified by the
LDA to align with the underlying class structure,
then the seed words need to be representative of
the underlying topicality structure. To enable this,
we first take class labeled data (doesn’t need to
be multi-class labeled data unlike (Ramage et al.,
2009)) and identify the discriminating features for
each class. Then we choose these discriminating
features as the initial sets of seed words. In prin-
ciple, this is similar to the prototype driven unsu-
pervised learning (Haghighi and Klein, 2006).

We use Information Gain (Mitchell, 1997) to
identify the required discriminating features. The
Information Gain (IG) of a word (w) in a class (c)
is given by

IG(c, w) = H(c)−H(c|w)

whereH(c) is the entropy of the class andH(c|w)
is the conditional entropy of the class given the
word. In computing Information Gain, we bina-
rize the document vectors and consider whether a
word occurs in any document of a given class or
not. Thus obtained ranked list of words for each
class are filtered for ambiguous words and then
used as initial sets of seed words to be input to the
model.

3 Related Work

Seed-based supervision is closely related to the
idea of seeding in the bootstrapping literature for
learning semantic lexicons (Thelen and Riloff,
2002). The goals are similar as well: growing
a small set of seed examples into a much larger
set. A key difference is thetype of semantic in-
formation that the two approaches aim to capture:
semantic lexicons are based on much more spe-
cific notions of semantics (e.g. all the country
names) than the generic “topic” semantics of topic
models. The idea of seeding has also been used
in prototype-driven learning (Haghighi and Klein,
2006) and shown similar efficacies for these semi-
supervised learning approaches.

LDAWN (Boyd-Graber et al., 2007) models
sets of words for the word sense disambiguation
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task. It assumes that a topic is a distribution
over synsets and relies on the Wordnet to obtain
the synsets. The most related prior work is that
of (Andrzejewski et al., 2009), who propose the
use Dirichlet Forest priors to incorporate Must
Link and Cannot Link constraints into the topic
models. This work is analogous to constrained
K-means clustering (Wagstaff et al., 2001; Basu
et al., 2008). A must link between a pair word
types represents that the model should encourage
both the words to have either high or low prob-
ability in any particular topic. A cannot link be-
tween a word pair indicates both the words should
not have high probability in a single topic. In the
Dirichlet Forest approach, the constraints are first
converted into trees with words as the leaves and
edges having pre-defined weights. All the trees
are joined to a dummy node to form a forest. The
sampling for a word translates into a random walk
on the forest: starting from the root and selecting
one of its children based on the edge weights until
you reach a leaf node.

While the Dirichlet Forest method requires su-
pervision in terms of Must link and Cannot link
information, the Topics In Sets (Andrzejewski and
Zhu, 2009) model proposes a different approach.
Here, the supervision is provided at thetoken
level. The user chooses specific tokens and re-
strict them to occur only with in a specified list of
topics. While this needs minimal changes to the
inference process of LDA, it requires information
at the level of tokens. The word type level seed
information can be converted into token level in-
formation (like we do in Sec. 4) but this prevents
their model from distinguishing the tokens based
on the word senses.

Several models have been proposed which use
supervision at the document level. Supervised
LDA (Blei and McAuliffe, 2008) and DiscLDA
(Lacoste-Julien et al., 2008) try to predict the cat-
egory labels (e.g. sentiment classification) for
the input documents based on a document labeled
data. Of these models, the most related one to
SeededLDA is the LabeledLDA model (Ramage
et al., 2009). Their model operates on multi-class
labeled corpus. Each document is assumed to be
a mixture over a known subset of topics (classes)
with each topic being a distribution over words.
The process of generating document topic distri-
bution in LabeledLDA is similar to the process
of generating group distribution in our Model 2

(Sec. 2.2). However our model differs from La-
beledLDA in the subsequent steps. Rather than
using the group distribution directly, we sam-
ple a group variable and use it to constrain the
document-topic distributions of all the documents
within this group. Moreover, in their model the
binary vector is observed directly in the form of
document labels while, in our case, it is automat-
ically populated based on the document tokens.

Interactive topic modeling brings the user into
the loop, by allowing him/her to make suggestions
on how to improve the quality of the topics at each
iteration (Hu et al., 2011). In their approach, the
authors use Dirichlet Forest method to incorpo-
rate the user’s preferences. In our experiments
(Sec. 4), we show that SeededLDA performs bet-
ter than Dirichlet Forest method, so SeededLDA
when used with their framework can allow an user
to explore a document collection in a more mean-
ingful manner.

4 Experiments

We evaluate different aspects of the model sep-
arately. Our experimental setup proceeds as fol-
lows: a) Using an existing model, we evaluate the
effectiveness of automatically derived constraints
indicating the potential benefits of adding seed
words into the topic models. b) We evaluate each
of our proposed models in different settings and
compare with multiple baseline systems.

Since our aim is to overcome the domi-
nance of majority topics by encouraging the
topicality structure identified by the topic mod-
els to align with that of the document cor-
pus, we choose extrinsic evaluation as the
primary evaluation method. We use docu-
ment clustering task and use frequent-5 cate-
gories of Reuters-21578 corpus (Lewis et al.,
2004) and four classes from the 20 News-
groups data set (i.e.‘rec.autos’, ‘sci.electronics’,
‘comp.hardware’ and ‘alt.atheism’). For both
the corpora we do the standard preprocessing
of removing stopwords and infrequent words
(Williamson et al., 2010).

For all the models, we use a Collapsed Gibbs
sampler (Griffiths and Steyvers, 2004) for the in-
ference process. We use the standard hyperparam-
eters valuesα = 1.0, β = 0.01 andτ = 1.0 and
run the sampler for 1000 iterations, but one can
use techniques like slice sampling to estimate the
hyperparameters (Johnson and Goldwater, 2009).
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Reuters 20 Newsgroups
F-measure VI F-measure VI

LDA 0.64 (±.05) 1.26 (±.16) 0.77 (±.06) 0.9 (±.13)
Dirichlet Forest 0.67∗ (±.02) 1.17(±.11) 0.79(±.01) 0.83∗(±.03)

∆ over LDA (+4.68%) (-7.1%) (+2.6%) (-7.8%)

Table 3: The effect of adding constraints by Dirichlet Forest Encoding. For Variational Information (VI) a lower
score indicates a better clustering.∗ indicates statistical significance atp = 0.01 as measured by the t-test. All
the four improvements are significant atp = 0.05.

We run all the models with the same number of
topics as the number of clusters. Then, for each
document, we find the topic that has maximum
probability in the posterior document-topic distri-
bution and assign it to that cluster. The accuracy
of the document clustering is measured in terms
of F-measure and Variation of Information. F-
measure is calculated based on the pairs of doc-
uments,i.e. if two documents belong to a cluster
in both ground truth and the clustering proposed
by the system then it is counted as correct, other-
wise it is counted as wrong. Variational Informa-
tion (VI) of two clusteringsX andY is given as
(Meilă, 2007):

VI(X,Y ) = H(X) +H(Y )− 2I(X,Y )

whereH(X) denotes the entropy of the clustering
X and I(X,Y ) denotes the mutual information
between the two clusterings. For VI, a lower value
indicates a better clustering. All the accuracies are
averaged over 25 different random initializations
and all the significance results are measured using
the t-test atp = 0.01.

4.1 Seed Extraction

The seeds were extracted automatically (Sec. 2.4)
based on a small sample of labeled data other than
the test data. We first extract 25 seeds words per
each class and then remove the seed words that
appear in more than one class. After this filtering,
on an average, we are left with 9 and 15 words per
each seed topic for Reuters and 20 Newsgroups
corpora respectively.

We use the existing Dirichlet Forest method to
evaluate the effectiveness of the automatically ex-
tracted seed words. The Must and Cannot links
required for the supervision (Andrzejewski et al.,
2009) are automatically obtained by adding a
must-link between every pair of words belonging
to the same seed set and a split constraint between

every pair of words belonging to different sets.
The accuracies are averaged over 25 different ran-
dom initializations and are shown in Table 3. We
have also indicated the relative performance gains
compared to LDA. The significant improvement
over the plain LDA demonstrates the effectiveness
of the automatic extraction of seed words in topic
models.

4.2 Document Clustering

In the next experiment, we compare our models
with LDA and other baselines. The first baseline
(maxCluster) simply counts the number of tokens
in each document from each of the seed topics and
assigns the document to the seed topic that has
most tokens. This results in a clustering of doc-
uments based on the seed topic they are assigned
to. This baseline evaluates the effectiveness of the
seed words with respect to the underlying cluster-
ing. Apart from the maxCluster baseline, we use
LDA and z-labels (Andrzejewski and Zhu, 2009)
as our baselines. Forz-labels, we treat all the to-
kens of a seed word in the same way. Table 4
shows the comparison of our models with respect
to the baseline systems.2 Comparing the perfor-
mance of maxCluster to that of LDA, we observe
that the seed words themselves do a poor job in
clustering the documents.

We experimented with two variants of Model 1.
In the first run (Model 1) we sample theπk value,
i.e. the probability of choosing a seed topic for
each topic. While in the ‘Model 1 (̂π = 0.7)’ run,
we fix this probability to a constant value of 0.7 ir-
respective of the topic.3 Though both the models

2The code used for LDA baseline in Tables 3 and 4
are different. For Table 3, we use the code available from
http://pages.cs.wisc.edu/∼andrzeje/research/dflda.html.
We use our own version for Table 4. We tried to produce
a comparable baseline by running the former for more
iterations and with different hyperparameters. In Table 3,
we report their best results.

3We chose this value based on intuition; it isnot tuned.
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Reuters 20 Newsgroups
F-measure VI F-measure VI

maxCluster 0.53 1.75 0.58 1.44
LDA 0.66 (±.04) 1.2 (±.12) 0.76 (±.06) 0.9 (±.14)
z-labels 0.73 (±.01) 1.04 (±.01) 0.8 (±.00) 0.82 (±.01)

∆ over LDA (+10.6%) (-13.3%) (+5.26%) (-8.8%)
Model 1 0.69 (±.00) 1.13 (±.01) 0.8 (±.01) 0.81 (±.02)
Model 1 (̂π = 0.7) 0.73 (±.00) 1.09 (±.01) 0.8 (±.01) 0.81 (±.02)
Model 2 0.66 (±.04) 1.22 (±.1) 0.77 (±.07) 0.85 (±.12)
SeededLDA 0.76∗ (±.01) 0.99∗ (±.03) 0.81∗ (±.01) 0.75∗ (±.02)

∆ over LDA (+15.5%) (-17.5%) (+6.58%) (-16.7%)

Table 4: Accuracies on document clustering task with different models.∗ indicates significant improvement
compared to thez-labels approach, as measured by the t-test withp = 0.01. The relative performance gains are
with respect to the LDA model and are provided for comparisonwith Dirichlet Forest method (in Table 3.)

performed better than LDA, fixing the probabil-
ity gave better results. When we attempt to learn
this value, the model chooses to explain some of
the seed words by the regular topics. On the other
hand, whenπ is fixed, it explains almost all the
seed words based on the seed topics. The next
row (Model 2) indicates the performance of our
second model on the same data sets. The first
model seems to be performing better than the sec-
ond model, which is justifiable since the latter
uses seed topics indirectly. Though the variants
of Model 1 and Model 2 performed better than
the LDA, they fell short of thez-labels approach.

Table 4 also shows the performance of our com-
bined model (SeededLDA) on both the corpora.
When the models are combined, the performance
improves over each of them and is also better than
the baseline systems. As explained before, our in-
dividual models improve both the topic-word and
document-topic distributions respectively. But it
turns out that the knowledge learnt by both the in-
dividual models is complementary to each other.
As a result the combined model performed better
than the individual models and other baseline sys-
tems. Comparing the last rows of Tables 4 and 3,
we notice that the relative performance gains ob-
served in the case of SeededLDA is significantly
higher than the performance gains obtained by
incorporating the constraints using the Dirichlet
Forest method. Moreover, as indicated in the Ta-
ble 4, SeededLDA achieves significant gains over
thez-labels approach as well.

We have also provided the standard intervals
for each of the approaches. A quick inspection of

these intervals reveals the superior performance
of SeededLDA compared to all the baselines. The
standard deviation of the F-measures over dif-
ferent random initializations of our our model is
about 1% for both the corpora while it is 4% and
6% for the LDA on Reuters and 20 Newsgroups
corpora respectively. The reduction in the vari-
ance, across all the approaches that use seed infor-
mation, shows the increased robustness of the in-
ference process when using seed words. From the
accuracies in both the tables, it is clear that Seed-
edLDA model out-performs other models which
try to incorporate seed information into the topic
models.

4.3 Effect of Ambiguous Seeds

In the following experiment we study the effect
of ambiguous seeds. We allow a seed word to oc-
cur in multiple seed sets. Table 6 shows the cor-
responding results. The performance drops when
we add ambiguous seed words, but it is still higher
than that of the LDA model. This suggests that the
quality of the seed topics is determined by the dis-
criminative power of the seed words rather than
the number of seed words in each seed topic. The
topics identified by the SeededLDA on Reuters
corpus are shown in the Table 5. With the help of
the seed sets, the model is able to split the ‘Grain’
and ‘Crude’ into two separate topics which were
merged into a single topic by the plain LDA.

4.4 Qualitative Evaluation on NIPS papers

We ran LDA and SeededLDA models on the NIPS
papers from 2001 to 2010. For this corpus, the
seed words are chosen from the call for proposal.
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group, offer, common, cash, agreement, shareholders, acquisition, stake, merger, board, sale
oil, price, prices, production, lt, gas, crude, 1987, 1985,bpd, opec, barrels, energy, first, petroleum

0, mln, cts, net, loss, 2, dlrs, shr, 3, profit, 4, 5, 6, revs, 7,9, 8, year, note, 1986, 10, 0, sales
tonnes, wheat, mln, grain, week, corn, department, year, export, program, agriculture, 0, soviet, prices

bank, market, pct, dollar, exchange, billion, stg, today, foreign, rate, banks, japan, yen, rates, trade

Table 5: Topics identified by SeededLDA on the frequent-5 categories of Reuters corpus

Reuters 20 Newsgroups
F VI F VI

LDA 0.66 1.2 0.76 0.9
SeededLDA 0.76 0.99 0.81 0.75
SeededLDA

0.71 1.08 0.79 0.78
(amb)

Table 6: Effect of ambiguous seed words on Seed-
edLDA.

There are 10 major areas with sub areas under
each of them. We ran both the models with 10 top-
ics. For SeededLDA, the words in each of the ar-
eas are selected as seed words and we filter out the
ambiguous seed words. Upon a qualitative obser-
vation of the output topics, we found that LDA has
identified seven major topics and left out “Brain
Imaging”, “Cognitive Science and Artificial In-
telligence” and “Hardware Technologies” areas.
Not surprisingly, but reassuringly, these areas are
underrepresented among the NIPS papers. On the
other hand, SeededLDA successfully identifies all
of the major topics. The topics identified by LDA
and SeededLDA are shown in the supplementary
material.

5 Discussion

In traditional topic models, a symmetric Dirich-
let distribution is used as prior for topic-word dis-
tributions. A first attempt method to incorporate
seed words into the model is to use an asymmetric
Dirichlet distribution as prior for the topic-word
distributions (also called as Informed priors). For
example, to encourage Topic 5 to align with a seed
set we can choose an asymmetric prior of the form
~β5 = {β, · · · , β + c, · · · , β}, i.e. we increase
the component values corresponding to the seed
words by a positive constant value. This favors
the desired seed words to be drawn with a higher
probability from this topic. But, it is argued else-
where that words drawn from such distributions
rarely pick words other than the seed words (An-

drzejewski et al., 2009). Moreover, since, in our
method each seed topic is a distribution over the
seed words, the convex combination of regular
and seed topics can be seen as adding different
weights (ci) to different components of the prior
vector. Thus our Model 1 can be seen as an asym-
metric generalization of the Informed priors.

For comparability purposes, in this paper, we
experimented with same number of regular topics
as the number of seed topics. But as explained in
the modeling part, our model is general enough
to handle situation with unequal number of seed
and regular topics. In this case, we assume that
the seed topics indicate a higher level of topical-
ity structure of the corpus and associate each seed
topic (or group) with a distribution over the regu-
lar topics. On the other hand, in many NLP appli-
cations, we tend to haveonly a partial information
rather than high-level supervision. In such cases,
one can create some empty seed sets and tweak
the model 2 to output a 1 in the binary vector cor-
responding to these seed sets. In this paper, we
used information gain to select the discriminating
seed words. But in the real world applications,
one can use publicly available ODP categorization
data to obtain the higher level seed words and thus
explore the corporal in a more meaningful way.

In this paper, we have explored two methods
to incorporate lexical prior into the topic mod-
els, combining them into a single model that we
call SeededLDA. From our experimental analysis,
we found that automatically derived seed words
can improve clustering performance significantly.
Moreover, we found out that allowing a seed word
to be shared across multiple sets of seed words de-
grades the performance.
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Meilă, M. (2007). Comparing clusterings—an infor-
mation based distance.J. Multivar. Anal., 98:873–
895.

Mitchell, T. M. (1997).Machine Learning. McGraw-
Hill, New York.

Paul, M. and Girju, R. (2010). A two-dimensional
topic-aspect model for discovering multi-faceted
topics. InAAAI.

Ramage, D., Hall, D., Nallapati, R., and Manning,
C. D. (2009). Labeled LDA: a supervised topic
model for credit attribution in multi-labeled cor-
pora. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Process-
ing: Volume 1 - Volume 1, EMNLP ’09, pages 248–
256, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Thelen, M. and Riloff, E. (2002). A bootstrapping
method for learning semantic lexicons using extrac-
tion pattern contexts. InIn Proc. 2002 Conf. Empir-
ical Methods in NLP (EMNLP).

Wagstaff, K., Cardie, C., Rogers, S., and Schrödl, S.
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Abstract

Update summarization is a new challenge
in multi-document summarization focusing
on summarizing a set of recent documents
relatively to another set of earlier docu-
ments. We present an unsupervised proba-
bilistic approach to model novelty in a doc-
ument collection and apply it to the genera-
tion of update summaries. The new model,
called DUALSUM, results in the second or
third position in terms of the ROUGE met-
rics when tuned for previous TAC competi-
tions and tested on TAC-2011, being statis-
tically indistinguishable from the winning
system. A manual evaluation of the gen-
erated summaries shows state-of-the art re-
sults for DUALSUM with respect to focus,
coherence and overall responsiveness.

1 Introduction

Update summarization is the problem of extract-
ing and synthesizing novel information in a col-
lection of documents with respect to a set of doc-
uments assumed to be known by the reader. This
problem has received much attention in recent
years, as can be observed in the number of partic-
ipants to the special track on update summariza-
tion organized by DUC and TAC since 2007. The
problem is usually formalized as follows: Given
two collections A and B, where the documents in
A chronologically precede the documents in B,
generate a summary of B under the assumption
that the user of the summary has already read the
documents in A.

Extractive techniques are the most common
approaches in multi-document summarization.
Summaries generated by such techniques consist

of sentences extracted from the document collec-
tion. Extracts can have coherence and cohesion
problems, but they generally offer a good trade-
off between linguistic quality and informative-
ness.

While numerous extractive summarization
techniques have been proposed for multi-
document summarization (Erkan and Radev,
2004; Radev et al., 2004; Shen and Li, 2010; Li et
al., 2011), few techniques have been specifically
designed for update summarization. Most exist-
ing approaches handle it as a redundancy removal
problem, with the goal of producing a summary of
collection B that is as dissimilar as possible from
either collection A or from a summary of collec-
tionA. A problem with this approach is that it can
easily classify as redundant sentences in which
novel information is mixed with existing informa-
tion (from collection A). Furthermore, while this
approach can identify sentences that contain novel
information, it cannot model explicitly what the
novel information is.

Recently, Bayesian models have successfully
been applied to multi-document summarization
showing state-of-the-art results in summarization
competitions (Haghighi and Vanderwende, 2009;
Jin et al., 2010). These approaches offer clear and
rigorous probabilistic interpretations that many
other techniques lack. Furthermore, they have the
advantage of operating in unsupervised settings,
which can be used in real-world scenarios, across
domains and languages. To our best knowledge,
previous work has not used this approach for up-
date summarization.

In this article, we propose a novel nonpara-
metric Bayesian approach for update summariza-
tion. Our approach, which is a variation of Latent
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Dirichlet Allocation (LDA) (Blei et al., 2003),
aims to learn to distinguish between common in-
formation and novel information. We have eval-
uated this approach on the ROUGE scores and
demonstrate that it produces comparable results
to the top system in TAC-2011. Furthermore, our
approach improves over that system when evalu-
ated manually in terms of linguistic quality and
overall responsiveness.

2 Related work

2.1 Bayesian approaches in Summarization

Most Bayesian approaches to summarization are
based on topic models. These generative mod-
els represent documents as mixtures of latent top-
ics, where a topic is a probability distribution over
words. In TOPICSUM (Haghighi and Vander-
wende, 2009), each word is generated by a sin-
gle topic which can be a corpus-wide background
distribution over common words, a distribution
of document-specific words or a distribution of
the core content of a given cluster. BAYESSUM

(Daumé and Marcu, 2006) and the Special Words
and Background model (Chemudugunta et al.,
2006) are very similar to TOPICSUM.

A commonality of all these models is the use of
collection and document-specific distributions in
order to distinguish between the general and spe-
cific topics in documents. In the context of sum-
marization, this distinction helps to identify the
important pieces of information in a collection.

Models that use more structure in the repre-
sentation of documents have also been proposed
for generating more coherent and less redun-
dant summaries, such as HIERSUM (Haghighi
and Vanderwende, 2009) and TTM (Celikyilmaz
and Hakkani-Tur, 2011). For instance, HIERSUM

models the intuitions that first sentences in docu-
ments should contain more general information,
and that adjacent sentences are likely to share
specic content vocabulary. However, HIERSUM,
which builds upon TOPICSUM, does not show
a statistically signicant improvement in ROUGE
over TOPICSUM.

A number of techniques have been proposed to
rank sentences of a collection given a word distri-
bution (Carbonell and Goldstein, 1998; Goldstein
et al., 1999). The Kullback-Leibler divergence
(KL) is a widely used measure in summarization.
Given a target distribution T that we want a sum-

mary S to approximate, KL is commonly used as
the scoring function to select the subset of sen-
tences S∗ that minimizes the KL divergence with
T :

S∗ = argmin
S

KL(T, S) =
∑
w∈V

pT (w) log
pT (w)

pS(w)

where w is a word from the vocabulary V. This
strategy is called KLSum. Usually, a smoothing
factor τ is applied on the candidate distribution S
in order to avoid the divergence to be undefined1.

This objective function selects the most repre-
sentative sentences of the collection, and at the
same time it also diversifies the generated sum-
mary by penalizing redundancy. Since the prob-
lem of finding the subset of sentences from a
collection that minimizes the KL divergence is
NP-complete, a greedy algorithm is often used in
practice2. Some variations of this objective func-
tion can be considered, such as penalizing sen-
tences that contain document-specific topics (Ma-
son and Charniak, 2011) or rewarding sentences
appearing closer to the beginning of the docu-
ment.

Wang et al. (2009) propose a Bayesian ap-
proach for summarization that does not use KL
for reranking. In their model, Bayesian Sentence-
based Topic Models, every sentence in a docu-
ment is assumed to be associated to a unique la-
tent topic. Once the model parameters have been
calculated, a summary is generated by choosing
the sentence with the highest probability for each
topic.

While hierarchical topic modeling approaches
have shown remarkable effectiveness in learning
the latent topics of document collections, they are
not designed to capture the novel information in
a collection with respect to another one, which is
the primary focus of update summarization.

2.2 Update Summarization

The goal of update summarization is to generate
an update summary of a collection B of recent
documents assuming that the users already read
earlier documents from a collection A. We refer

1In our experiments we set τ = 0.01.
2In our experiments, we follow the same approach as in

(Haghighi and Vanderwende, 2009) by greedily adding sen-
tences to a summary so long as they decrease KL divergence.
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to collection A as the base collection and to col-
lection B as the update collection.

Update summarization is related to novelty de-
tection which can be defined as the problem of
determining whether a document contains new in-
formation given an existing collection (Soboroff
and Harman, 2005). Thus, while the goal of nov-
elty detection is to determine whether some infor-
mation is new, the goal of update summarization
is to extract and synthesize the novel information.

Update summarization is also related to con-
trastive summarization, i.e. the problem of jointly
generating summaries for two entities in order to
highlight their differences (Lerman and McDon-
ald, 2009). The primary difference here is that
update summarization aims to extract novel or up-
dated information in the update collection with re-
spect to the base collection.

The most common approach for update sum-
marization is to apply a normal multi-document
summarizer, with some added functionality to re-
move sentences that are redundant with respect
to collection A. This can be achieved using sim-
ple filtering rules (Fisher and Roark, 2008), Max-
imal Marginal Relevance (Boudin et al., 2008), or
more complex graph-based algorithms (Shen and
Li, 2010; Wenjie et al., 2008). The goal here is
to boost sentences in B that bring out completely
novel information. One problem with this ap-
proach is that it is likely to discard as redundant
sentences in B containing novel information if it
is mixed with known information from collection
A.

Another approach is to introduce specific fea-
tures intended to capture the novelty in collection
B. For example, comparing collections A and B,
FastSum derives features for the collection B such
as number of named entities in the sentence that
already occurred in the old cluster or the number
of new content words in the sentence not already
mentioned in the old cluster that are subsequently
used to train a Support Vector Machine classifier
(Schilder et al., 2008). A limitation with this ap-
proach is there are no large training sets available
and, the more features it has, the more it is af-
fected by the sparsity of the training data.

3 DualSum

3.1 Model Formulation

The input for DUALSUM is a set of pairs of collec-
tions of documents C = {(Ai,Bi)}i=1...m, where
Ai is a base document collection and Bi is an up-
date document collection. We use c to refer to a
collection pair (Ac,Bc).

In DUALSUM, documents are modeled as a bag
of words that are assumed to be sampled from a
mixture of latent topics. Each word is associated
with a latent variable that specifies which topic
distribution is used to generate it. Words in a doc-
ument are assumed to be conditionally indepen-
dent given the hidden topic.

As in previous Bayesian works for summariza-
tion (Daumé and Marcu, 2006; Chemudugunta
et al., 2006; Haghighi and Vanderwende, 2009),
DUALSUM not only learns collection-specific dis-
tributions, but also a general background distri-
bution over common words, φG and a document-
specific distribution φcd for each document d in
collection pair c, which is useful to separate the
specific aspects from the general aspects of c. The
main novelty is that DUALSUM introduces spe-
cific machinery for identifying novelty.

To capture the differences between the base and
the update collection for each pair c, DUALSUM

learns two topics for every collection pair. The
joint topic, φAc captures the common information
between the two collections in the pair, i.e. the
main event that both collections are discussing.
The update topic, φBc focuses on the specific as-
pects that are specific of the documents inside the
update collection.

In the generative model,

• For a document d in a collection Ac, words
can be originated from one of three differ-
ent topics: φG, φcd and φAc , the last one of
which captures the main topic described in
the collection pair.

• For a document d in a collection Bc, words
can be originated from one of four different
topics: φG, φcd, φAc and φBc . The last one
will capture the most important updates to
the main topic.

To make this representation easier, we can also
state that both collections are generated from the
four topics, but we constrain the topic probability
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1. Sample φG ∼ Dir(λG)

2. For each collection pair c = (Ac,Bc):

• Sample φAc ∼ Dir(λA)

• Sample φBc ∼ Dir(λB)

• For each document d of type ucd ∈ {A,B}:
- Sample φcd ∼ Dir(λD)

- If (ucd = A) sample ψcd ∼ Dir(γA)

- If (ucd = B) sample ψcd ∼ Dir(γB)

- For each word w in document d:
(a) Sample a topic z ∼ Mult(ψcd), z ∈
{G, cd,Ac,Bc}

(b) Sample a word w ∼Mult(φz)

Figure 1: Generative model in DUALSUM.
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Figure 2: Graphical model representation of DUAL-
SUM.

for φBc to be always zero when generating a base
document.

We denote ucd ∈ {A,B} the type of a docu-
ment d in pair c. This is an observed, Boolean
variable stating whether the document d belongs
to the base or the update collection inside the pair
c.

The generation process of documents in DU-
ALSUM is described in Figure 1, and the plate
diagram corresponding to this generative story
is shown in Figure 2. DUALSUM is an LDA-
like model, where topic distributions are multi-
nomial distributions over words and topics that
are sampled from Dirichlet distributions. We use
λ = (λG, λD, λA, λB) as symmetric priors for the
Dirichlet distributions generating the word distri-
butions. In our experiments, we set λG = 0.1 and
λD = λA = λB = 0.001. A greater value is as-
signed to λG in order to reflect the intuition that

there should be more words in the background
than in the other distributions, so the mass is ex-
pected to be shared on a larger number of words.

Unlike for the word distributions, mixing prob-
abilities are drawn from a Dirichlet distribution
with asymmetric priors. The prior knowledge
about the origin of words in the base and up-
date collections is again encoded at the level the
hyper-parameters. For example, if we set γA =
(5, 3, 2, 0), this would reflect the intuition that,
on average, in the base collections, 50% of the
words originate from the background distribution,
30% from the document-specific distribution, and
20% from the joint topic. Similarly, if we set
γB = (5, 2, 2, 1), the prior reflects the assumption
that, on average, in the update collections, 50% of
the words originate from the background distri-
bution, 20% from the document-specific distribu-
tion, 20% from the joint topic, and 10% from the
novel, update topic3. The priors we have actually
used are reported in Section 4.

3.2 Learning and inference
In order to find the optimal model parameters, the
following equation needs to be computed:

p(z, ψ, φ|w,u) =
p(z, ψ, φ,w,u)

p(w,u)

Omitting hyper-parameters for notational sim-
plicity, the joint distribution over the observed
variables is:

p(w,u) = p(φG)×∏
c

p(φAc)p(φBc)×

∏
d

p(ucd)p(φcd)

∫
∆

p(ψcd|ucd)dψcd ×∏
n

∑
cdn

p(wcdn|zcdn)p(zcdn|ψcd)

where ∆ denotes the 4-dimensional simplex4.
Since this equation is intractable, we need to per-
form approximate inference in order to estimate
the model parameters. A number of Bayesian sta-
tistical inference techniques can be used to ad-
dress this problem.

3To highlight the difference between asymmetric and
symmetric priors we put the indices in superscript and sub-
script respectively.

4Remember that, for base documents, words cannot
be generated by the update topic, so ∆ denotes the 3-
dimensional simplex for base documents.
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Variational approaches (Blei et al., 2003) and
collapsed Gibbs sampling (Griffiths and Steyvers,
2004) are common techniques for approximate in-
ference in Bayesian models. They offer different
advantages: the variational approach is arguably
faster computationally, but the Gibbs sampling
approach is in principal more accurate since it
asymptotically approaches the correct distribution
(Porteous et al., 2008). In this section, we pro-
vide details on a collapsed Gibbs sampling strat-
egy to infer the model parameters of DUALSUM

for a given dataset.
Collapsed Gibbs sampling is a particular case

of Markov Chain Monte Carlo (MCMC) that in-
volves repeatedly sampling a topic assignment for
each word in the corpus. A single iteration of the
Gibbs sampler is completed after sampling a new
topic for each word based on the previous assign-
ment. In a collapsed Gibbs sampler, the model
parameters are integrated out (or collapsed), al-
lowing to only sample z. Let us call wcdn the n-th
word in document d in collection c, and zcdn its
topic assignment. For Gibbs sampling, we need
to calculate p(zcdn|w,u, z−cdn) where z−cdn de-
notes the random vector of topic assignments ex-
cept the assignment zcdn.

p(zcdn = j|w,u, z−cdn, γ
A, γB, λ) ∝

n
(wcdn)
−cdn,j + λj∑V

v=1 n
(v)
−cdn,j + V λj

n
(cd)
−cdn,j + γucd

j∑
k∈K(n

(cd)
−cdn,k + γucd

k )

where K = {G, cd,Ac,Bc}, n(v)
−cdn,j denotes the

number of times word v is assigned to topic j
excluding current assignment of word wcdn and
n

(cd)
−cdn,k denotes the number of words in document
d of collection c that are assigned to topic j ex-
cluding current assignment of word wcdn.

After each sampling iteration, the model pa-
rameters can be estimated using the following for-
mulas5.

φk
w =

n
(w)
k + λk∑V

v=1 n
(v)
k + V λk

ψcd
k =

n
(cd)
k + λk∑
n(cd)

. + V λk

5The interested reader is invited to consult (Wang, 2011)
for more details on using Gibbs sampling for LDA-like mod-
els

where k ∈ K, n(v)
k denotes the number of times

word v is assigned to topic k, and n(cd)
k denotes

the number of words in document d of collection
c that are assigned to topic k.

By the strong law of large numbers, the average
of sample parameters should converge towards
the true expected value of the model parameter.
Therefore, good estimates of the model parame-
ters can be obtained averaging over the sampled
values. As suggested by Gamerman and Lopes
(2006), we have set a lag (20 iterations) between
samples in order to reduce auto-correlation be-
tween samples. Our sampler also discards the first
100 iterations as burn-in period in order to avoid
averaging from samples that are still strongly in-
fluenced by the initial assignment.

4 Experiments in Update
Summarization

The Bayesian graphical model described in the
previous section can be run over a set of news
collections to learn the background distribution,
a joint distribution for each collection, an update
distribution for each collection and the document-
specific distributions. Once this is done, one of
the learned collections can be used to generate the
summary that best approximates this collection,
using the greedy algorithm described by Haghighi
and Vanderwende (2009). Still, there are some pa-
rameters that can be defined and which affects the
results obtained:

• DUALSUM’s choice of hyper-parameters af-
fects how the topics are learned.

• The documents can be represented with n-
grams of different lengths.

• It is possible to generate a summary that ap-
proximates the joint distribution, the update-
only distribution, or a combination of both.

This section describes how these parameters
have been tuned.

4.1 Parameter tuning
We use the TAC 2008 and 2009 update task
datasets as training set for tuning the hyper-
parameters for the model, namely the pseudo-
counts for the two Dirichlet priors that affects the
topic mix assignment for each document. By per-
forming a grid search over a large set of pos-
sible hyper-parameters, these have been fixed to
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γA = (90, 190, 50, 0) and γB = (90, 170, 45, 25)
as the values that produced the best ROUGE-2
score on those two datasets.

Regarding the base collection, this can be inter-
preted as setting as prior knowledge that roughly
27% of the words in the original dataset originate
from the background distribution, 58% from the
document-specific distributions, and 15% from
the topic of the original collection. We remind
the reader that the last value in γA is set to zero
because, due to the problem definition, the origi-
nal collection must have no words generated from
the update topic, which reflects the most recent
developments that are still not present in the base
collections A.

Regarding the update set, 27% of the words are
assumed to originate again from the background
distribution, 51% from the document-specific dis-
tributions, 14% from an topic in common with
the original collection, and 8% from the update-
specific topic. One interesting fact to note from
these settings is that most of the words belong to
topics that are specific to single documents (58%
and 51% respectively for both sets A and B) and
to the background distribution, whereas the joint
and update topics generate a much smaller, lim-
ited set of words. This helps these two distribu-
tions to be more focused.

The other settings mentioned at the beginning
of this section have been tuned using the TAC-
2010 dataset, which we reserved as our develop-
ment set. Once the different document-specific
and collection-specific distributions have been ob-
tained, we have to choose the target distribu-
tion T to with which the possible summaries will
be compared using the KL metric. Usually, the
human-generated update summaries not only in-
clude the terms that are very specific about the last
developments, but they also include a little back-
ground regarding the developing event. There-
fore, we try, for KLSum, a simple mixture be-
tween the joint topic (φA) and the update topic
(φB).

Figure 3 shows the ROUGE-2 results obtained
as we vary the mixture weight between the joint
φA distribution and the update-specific φB distri-
bution. As can be seen at the left of the curve, us-
ing only the update-specific model, which disre-
gards the generic words about the topic described,
produces much lower results. The results improve
as the relative weight of the joined topic model

Figure 3: Variation in ROUGE-2 score in the TAC-
2010 dataset as we change the mixture weight for the
joined topic model between 0 and 1.

Figure 4: Effect of the mixture weight in ROUGE-2
scores (TAC-2010 dataset). Results are reported us-
ing bigrams (above, blue), unigrams (middle, red) and
trigrams (below, yellow).

increases until it plateaus at a maximum around
roughly the interval [0.6, 0.8], and from that point
performance slowly degrades as at the right part
of the curve the update model is given very little
importance in generating the summary. Based on
these results, from this point onwards, the mixture
weight has been set to 0.7. Note that using only
the joint distribution (setting the mixture weight
to 1.0) also produces reasonable results, hinting
that it successfully incorporates the most impor-
tant n-grams from across the base and the update
collections at the same time.

A second parameter is the size of the n-grams
for representing the documents. The original
implementations of SUMBASIC (Nenkova and
Vanderwende, 2005) and TOPICSUM (Haghighi
and Vanderwende, 2009) were defined over sin-
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gle words (unigrams). Still, Haghighi and Van-
derwende (2009) report some improvements in
the ROUGE-2 score when representing words as
a bag of bigrams, and Darling (2010) mention
similar improvements when running SUMBASIC

with bigrams. Figure 4 shows the effect on the
ROUGE-2 curve when we switch to using uni-
grams and trigrams. As stated in previous work,
using bigrams has better results than using uni-
grams. Using trigrams was worse than either of
them. This is probably because trigrams are too
specific and the document collections are small,
so the models are more likely to suffer from data
sparseness.

4.2 Baselines
DUALSUM is a modification of TOPICSUM de-
signed specifically for the case of update sum-
marization, by modifying TOPICSUM’s graphical
model in a way that captures the dependency be-
tween the joint and the update collections. Still, it
is important to discover whether the new graphi-
cal model actually improves over simpler applica-
tions of TOPICSUM to this task. The three base-
lines that we have considered are:

• Running TOPICSUM on the set of collections
containing only the update documents. We
call this run TOPICSUMB.

• Running TOPICSUM on the set of collections
containing both the base and the update doc-
uments. Contrary to the previous run, the
topic model for each collection in this run
will contain information relevant to the base
events. We call this run TOPICSUMA∪B.

• Running TOPICSUM twice, once on the set
of collections containing the update docu-
ments, and the second time on the set of
collections containing the base documents.
Then, for each collection, the obtained base
and update models are combined in a mix-
ture model using a mixture weight between
zero and one. The weight has been tuned us-
ing TAC-2010 as development set. We call
this run TOPICSUMA+TOPICSUMB.

4.3 Automatic evaluation
DUALSUM and the three baselines6 have been

6Using the settings obtained in the previous section, hav-
ing been optimized on the datasets from previous TAC com-
petitions.

automatically evaluated using the TAC-2011
dataset. Table 1 shows the ROUGE results ob-
tained. Because of the non-deterministic nature
of Gibbs sampling, the results reported here are
the average of five runs for all the baselines and
for DUALSUM. DUALSUM outperforms two of
the baselines in all three ROUGE metrics, and it
also outperforms TOPICSUMB on two of the three
metrics.

The top three systems in TAC-2011 have been
included for comparison. The results between
these three systems, and between them and DU-
ALSUM, are all indistinguishable at 95% confi-
dence. Note that the best baseline, TOPICSUMB,
is quite competitive, with results that are indis-
tinguishable to the top participants in this year’s
evaluation. Note as well that, because we have
five different runs for our algorithms, whereas
we just have one output for the TAC participants,
the confidence intervals in the second case were
slightly bigger when checking for statistical sig-
nificance, so it is slightly harder for these systems
to assert that they outperform the baselines with
95% confidence. These results would have made
DUALSUM the second best system for ROUGE-
1 and ROUGE-SU4, and the third best system in
terms of ROUGE-2.

The supplementary materials contain a detailed
example of the the topic model obtained for the
background in the TAC-2011 dataset, and the base
and update models for collection D1110. As
expected, the top unigrams and bigrams are all
closed-class words and auxiliary verbs. Because
trigrams are longer, background trigrams actu-
ally include some content words (e.g. university
or director). Regarding the models for φA and
φB, the base distribution contains words related
to the original event of an earthquake in Sichuan
province (China), and the update distribution fo-
cuses more on the official (updated) death toll
numbers. It can be noted here that the tokenizer
we used is very simple (splitting tokens separated
with white-spaces or punctuation) so that num-
bers such as 7.9 (the magnitude of the earthquake)
and 12,000 or 14,000 are divided into two tokens.
We thought this might be a for the bigram-based
system to produce better results, but we ran the
summarizers with a numbers-aware tokenizer and
the statistical differences between versions still
hold.
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Method R-1 R-2 R-SU4
TOPICSUMB 0.3442 0.0868 0.1194
TOPICSUMA∪B 0.3385 0.0809 0.1159
TOPICSUMA+TOPICSUMB 0.3328 0.0770 0.1125
DUALSUM 0.3575‡†∗ 0.0924†∗ 0.1285‡†∗

TAC-2011 best system (Peer 43) 0.3559†∗ 0.0958†∗ 0.1308‡†∗

TAC-2011 2nd system (Peer 25) 0.3582†∗ 0.0926∗ 0.1276†∗

TAC-2011 3rd system (Peer 17) 0.3558†∗ 0.0886 0.1279†∗

Table 1: Results on the TAC-2011 dataset. ‡, † and ∗ indicate that a result is significantly better than TOPICSUMB,
TOPICSUMA∪B and TOPICSUMA+TOPICSUMB, respectively (p < 0.05).

4.4 Manual evaluation

While the ROUGE metrics provides an arguable
estimate of the informativeness of a generated
summary, it does not account for other important
aspects such as the readability or the overall re-
sponsiveness. To evaluate such aspects, a manual
evaluation is required. A fairly standard approach
for manual evaluation is through pairwise com-
parison (Haghighi and Vanderwende, 2009; Ce-
likyilmaz and Hakkani-Tur, 2011).

In this approach, raters are presented with pairs
of summaries generated by two systems and they
are asked to say which one is best with respect
to some aspects. We followed a similar approach
to compare DualSum with Peer 43 - the best sys-
tem with respect to ROUGE-2, on the TAC 2011
dataset. For each collection, raters were presented
with three summaries: a reference summary ran-
domly chosen from the model summaries, and the
summaries generated by Peer 43 and DualSum.
They were asked to read the summaries and say
which one of the two generated summaries is best
with respect to: 1) Overall responsiveness: which
summary is best overall (both in terms of content
and fluency), 2) Focus: which summary contains
less irrelevant details, 3) Coherence: which sum-
mary is more coherent and 4) Non-redundancy:
which summary repeats less the same informa-
tion. For each aspect, the rater could also reply
that both summary were of the same quality.

For each of the 44 collections in TAC-2011, 3
ratings were collected from raters7. Results are
reported in Table 2. DualSum outperforms Peer
43 in three aspects, including Overall Responsive-
ness, which aggregates all the other scores and
can be considered the most important one. Re-

7In total 132 raters participated to the task via our own
crowdsourcing platform, not mentioned yet for blind review.

Best system
Aspect Peer 43 Same DualSum

Overall Responsiveness 39 25 68
Focus 41 22 69

Coherence 39 30 63
Non-redundancy 40 53 39

Table 2: Results of the side-by-side manual evaluation.

garding Non-redundancy, DualSum and Peer 43
obtain similar results but the majority of raters
found no difference between the two systems.
Fleiss κ has been used to measure the inter-rater
agreement. For each aspect, we observe κ ∼ 0.2
which corresponds to a slight agreement; but if we
focus on tasks where the 3 ratings reflect a prefer-
ence for either of the two systems, then κ ∼ 0.5,
which indicates moderate agreement.

4.5 Efficiency and applicability

The running time for summarizing the TAC col-
lections with DualSum, averaged over a hundred
runs, is 4.97 minutes, using one core (2.3 GHz).
Memory consumption was 143 MB.

It is important to note as well that, while TOP-
ICSUM incorporates an additional layer to model
topic distributions at the sentence level, we noted
early in our experiments that this did not improve
the performance (as evaluated with ROUGE) and
consequently relaxed that assumption in Dual-
Sum. This resulted in a simplification of the
model and a reduction of the sampling time.

While five minutes is fast enough to be able
to experiment and tune parameters with the TAC
collections, it would be quite slow for a real-
time summarization system able to generate sum-
maries on request. As can be seen from the plate
diagram in Figure 2, all the collections are gen-
erated independently from each other. The only
exception, for which it is necessary to have all
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the collections available at the same time dur-
ing Gibbs sampling, is the background distribu-
tion, which is estimated from all the collections
simultaneously, roughly representing 27% of the
words, that should appear distributed across all
documents.

The good news is that this background distri-
bution will contain closed-class words in the lan-
guage, which are domain-independent (see sup-
plementary material for examples). Therefore,
we can generate this distribution from one of
the TAC datasets only once, and then it can be
reused. Fixing the background distribution to a
pre-computed value requires a very simple mod-
ification of the Gibbs sampling implementation,
which just needs to adjust at each iteration the
collection and document-specific models, and the
topic assignment for the words.

Using this modified implementation, it is now
possible to summarize a single collection inde-
pendently. The summarization of a single col-
lection of the size of the TAC collections is re-
duced on average to only three seconds on the
same hardware settings, allowing the use of this
summarizer in an on-line application.

5 Conclusions

The main contribution of this paper is DUALSUM,
a new topic model that is specifically designed to
identify and extract novelty from pairs of collec-
tions.

It is inspired by TOPICSUM (Haghighi and
Vanderwende, 2009), with two main changes:
Firstly, while TOPICSUM can only learn the main
topic of a collection, DUALSUM focuses on the
differences between two collections. Secondly,
while TOPICSUM incorporates an additional layer
to model topic distributions at the sentence level,
we have found that relaxing this assumption and
modeling the topic distribution at document level
does not decrease the ROUGE scores and reduces
the sampling time.

The generated summaries, tested on the TAC-
2011 collection, would have resulted on the sec-
ond and third position in the last summarization
competition according to the different ROUGE
scores. This would make DUALSUM statistically
indistinguishable from the top system with 0.95
confidence.

We also propose and evaluate the applicability
of an alternative implementation of Gibbs sam-

pling to on-line settings. By fixing the back-
ground distribution we are able to summarize a
distribution in only three seconds, which seems
reasonable for some on-line applications.

As future work, we plan to explore the use of
DUALSUM to generate more general contrastive
summaries, by identifying differences between
collections whose differences are not of temporal
nature.
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Abstract

In this paper, we present a supervised
learning approach to training submodu-
lar scoring functions for extractive multi-
document summarization. By taking a
structured prediction approach, we pro-
vide a large-margin method that directly
optimizes a convex relaxation of the de-
sired performance measure. The learning
method applies to all submodular summa-
rization methods, and we demonstrate its
effectiveness for both pairwise as well as
coverage-based scoring functions on mul-
tiple datasets. Compared to state-of-the-
art functions that were tuned manually, our
method significantly improves performance
and enables high-fidelity models with num-
ber of parameters well beyond what could
reasonably be tuned by hand.

1 Introduction

Automatic document summarization is the prob-
lem of constructing a short text describing the
main points in a (set of) document(s). Exam-
ple applications range from generating short sum-
maries of news articles, to presenting snippets for
URLs in web-search. In this paper we focus on
extractive multi-document summarization, where
the final summary is a subset of the sentences
from multiple input documents. In this way, ex-
tractive summarization avoids the hard problem
of generating well-formed natural-language sen-
tences, since only existing sentences from the in-
put documents are presented as part of the sum-
mary.

A current state-of-the-art method for document
summarization was recently proposed by Lin and

Bilmes (2010), using a submodular scoring func-
tion based on inter-sentence similarity. On the one
hand, this scoring function rewards summaries
that are similar to many sentences in the origi-
nal documents (i.e. promotes coverage). On the
other hand, it penalizes summaries that contain
sentences that are similar to each other (i.e. dis-
courages redundancy). While obtaining the exact
summary that optimizes the objective is computa-
tionally hard, they show that a greedy algorithm
is guaranteed to compute a good approximation.
However, their work does not address how to
select a good inter-sentence similarity measure,
leaving this problem as well as selecting an appro-
priate trade-off between coverage and redundancy
to manual tuning.

To overcome this problem, we propose a su-
pervised learning method that can learn both
the similarity measure as well as the cover-
age/reduncancy trade-off from training data. Fur-
thermore, our learning algorithm is not limited to
the model of Lin and Bilmes (2010), but applies to
all monotone submodular summarization models.
Due to the diminishing-returns property of mono-
tone submodular set functions and their computa-
tional tractability, this class of functions provides
a rich space for designing summarization meth-
ods. To illustrate the generality of our approach,
we also provide experiments for a coverage-based
model originally developed for diversified infor-
mation retrieval (Swaminathan et al., 2009).

In general, our method learns a parameterized
monotone submodular scoring function from su-
pervised training data, and its implementation is
available for download.1 Given a set of docu-
ments and their summaries as training examples,

1http://www.cs.cornell.edu/˜rs/sfour/
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we formulate the learning problem as a struc-
tured prediction problem and derive a maximum-
margin algorithm in the structural support vec-
tor machine (SVM) framework. Note that, un-
like other learning approaches, our method does
not require a heuristic decomposition of the learn-
ing task into binary classification problems (Ku-
piec et al., 1995), but directly optimizes a struc-
tured prediction. This enables our algorithm to di-
rectly optimize the desired performance measure
(e.g. ROUGE) during training. Furthermore, our
method is not limited to linear-chain dependen-
cies like (Conroy and O’leary, 2001; Shen et al.,
2007), but can learn any monotone submodular
scoring function.

This ability to easily train summarization mod-
els makes it possible to efficiently tune models
to various types of document collections. In par-
ticular, we find that our learning method can re-
liably tune models with hundreds of parameters
based on a training set of about 30 examples.
This increases the fidelity of models compared
to their hand-tuned counterparts, showing sig-
nificantly improved empirical performance. We
provide a detailed investigation into the sources
of these improvements, identifying further direc-
tions for research.

2 Related work

Work on extractive summarization spans a large
range of approaches. Starting with unsupervised
methods, one of the widely known approaches
is Maximal Marginal Relevance (MMR) (Car-
bonell and Goldstein, 1998). It uses a greedy ap-
proach for selection and considers the trade-off
between relevance and redundancy. Later it was
extended (Goldstein et al., 2000) to support multi-
document settings by incorporating additional in-
formation available in this case. Good results can
be achieved by reformulating this as a knapsack
packing problem and solving it using dynamic
programing (McDonald, 2007). Alternatively, we
can use annotated phrases as textual units and se-
lect a subset that covers most concepts present
in the input (Filatova and Hatzivassiloglou, 2004)
(which can also be achieved by our coverage scor-
ing function if it is extended with appropriate fea-
tures).

A popular stochastic graph-based summariza-
tion method is LexRank (Erkan and Radev, 2004).
It computes sentence importance based on the

concept of eigenvector centrality in a graph of
sentence similarities. Similarly, TextRank (Mi-
halcea and Tarau, 2004) is also graph based rank-
ing system for identification of important sen-
tences in a document by using sentence similar-
ity and PageRank (Brin and Page, 1998). Sen-
tence extraction can also be implemented using
other graph based scoring approaches (Mihalcea,
2004) such as HITS (Kleinberg, 1999) and po-
sitional power functions. Graph based methods
can also be paired with clustering such as in Col-
labSum (Wan et al., 2007). This approach first
uses clustering to obtain document clusters and
then uses graph based algorithm for sentence se-
lection which includes inter and intra-document
sentence similarities. Another clustering-based
algorithm (Nomoto and Matsumoto, 2001) is a
diversity-based extension of MMR that finds di-
versity by clustering and then proceeds to reduce
redundancy by selecting a representative for each
cluster.

The manually tuned sentence pairwise model
(Lin and Bilmes, 2010; Lin and Bilmes, 2011) we
took inspiration from is based on budgeted sub-
modular optimization. A summary is produced
by maximizing an objective function that includes
coverage and redundancy terms. Coverage is de-
fined as the sum of sentence similarities between
the selected summary and the rest of the sen-
tences, while redundancy is the sum of pairwise
intra-summary sentence similarities. Another ap-
proach based on submodularity (Qazvinian et al.,
2010) relies on extracting important keyphrases
from citation sentences for a given paper and us-
ing them to build the summary.

In the supervised setting, several early methods
(Kupiec et al., 1995) made independent binary de-
cisions whether to include a particular sentence
in the summary or not. This ignores dependen-
cies between sentences and can result in high re-
dundancy. The same problem arises when using
learning-to-rank approaches such as ranking sup-
port vector machines, support vector regression
and gradient boosted decision trees to select the
most relevant sentences for the summary (Metzler
and Kanungo, 2008).

Introducing some dependencies can improve
the performance. One limited way of introduc-
ing dependencies between sentences is by using a
linear-chain HMM. The HMM is assumed to pro-
duce the summary by having a chain transitioning
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between summarization and non-summarization
states (Conroy and O’leary, 2001) while travers-
ing the sentences in a document. A more expres-
sive approach is using a CRF for sequence label-
ing (Shen et al., 2007) which can utilize larger and
not necessarily independent feature spaces. The
disadvantage of using linear chain models, how-
ever, is that they represent the summary as a se-
quence of sentences. Dependencies between sen-
tences that are far away from each other cannot
be modeled efficiently. In contrast to such lin-
ear chain models, our approach on submodular
scoring functions can model long-range depen-
dencies. In this way our method can use proper-
ties of the whole summary when deciding which
sentences to include in it.

More closely related to our work is that of Li
et al. (2009). They use the diversified retrieval
method proposed in Yue and Joachims (2008) for
document summarization. Moreover, they assume
that subtopic labels are available so that additional
constraints for diversity, coverage and balance can
be added to the structural SVM learning prob-
lem. In contrast, our approach does not require the
knowledge of subtopics (thus allowing us to ap-
ply it to a wider range of tasks) and avoids adding
additional constraints (simplifying the algorithm).
Furthermore, it can use different submodular ob-
jective functions, for example word coverage and
sentence pairwise models described later in this
paper.

Another closely related work also takes a max-
margin discriminative learning approach in the
structural SVM framework (Berg-Kirkpatrick et
al., 2011) or by using MIRA (Martins and Smith,
2009) to learn the parameters for summarizing
a set of documents. However, they do not con-
sider submodular functions, but instead solve an
Integer Linear Program (ILP) or an approxima-
tion thereof. The ILP encodes a compression
model where arbitrary parts of the parse trees
of sentences in the summary can be cut and re-
moved. This allows them to select parts of sen-
tences and yet preserve some gramatical struc-
ture. Their work focuses on learning a particular
compression model based on ILP inference, while
our work explores learning a general and large
class of sentence selection models using submod-
ular optimization. The third notable approach
uses SEARN (Daumé, 2006) to learn parameters
for joint summarization and compression model,

however it uses vine-growth model and employs
search to to find the best policy which is then used
to generate a summary.

A specific subclass of submodular (but not
monotone) functions are defined by Determinan-
tal Point Processes (DPPs) (Kulesza and Taskar,
2011). While they provide an elegant probabilis-
tic interpretation of the resulting summarization
models, the lack of monotonicity means that no
efficient approximation algorithms are known for
computing the highest-scoring summary.

3 Submodular document summarization

In this section, we illustrate how document sum-
marization can be addressed using submodular set
functions. The set of documents to be summa-
rized is split into a set of individual sentences
x = {s1, ..., sn}. The summarization method
then selects a subset ŷ ⊆ x of sentences that max-
imizes a given scoring function Fx : 2x → R
subject to a budget constraint (e.g. less than B
characters).

ŷ = arg max
y⊆x

Fx(y) s.t. |y| ≤ B (1)

In the following we restrict the admissible scoring
functions F to be submodular.

Definition 1. Given a set x, a function F : 2x →
R is submodular iff for all u ∈ U and all sets s
and t such that s ⊆ t ⊆ x, we have,

F (s ∪ {u})− F (s) ≥ F (t ∪ {u})− F (t).

Intuitively, this definition says that adding u to
a subset s of t increases f at least as much as
adding it to t. Using two specific submodular
functions as examples, the following sections il-
lustrate how this diminishing returns property nat-
urally reflects the trade-off between maximizing
coverage while minimizing redundancy.

3.1 Pairwise scoring function
The first submodular scoring function we con-
sider was proposed by Lin and Bilmes (2010) and
is based on a model of pairwise sentence similar-
ities. It scores a summary y using the following
function, which Lin and Bilmes (2010) show is
submodular:

Fx(y) =
∑

i∈x\y,j∈y

σ(i, j)− λ
∑

i,j∈y:i 6=j
σ(i, j). (2)
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Figure 1: Illustration of the pairwise model. Not all
edges are shown for clarity purposes. Edge thickness
denotes the similarity score.

In the above equation, σ(i, j) ≥ 0 denotes a mea-
sure of similarity between pairs of sentences i and
j. The first term in Eq. 2 is a measure of how simi-
lar the sentences included in summary y are to the
other sentences in x. The second term penalizes
y by how similar its sentences are to each other.
λ > 0 is a scalar parameter that trades off be-
tween the two terms. Maximizing Fx(y) amounts
to increasing the similarity of the summary to ex-
cluded sentences while minimizing repetitions in
the summary. An example is illustrated in Figure
1. In the simplest case, σ(i, j) may be the TFIDF
(Salton and Buckley, 1988) cosine similarity, but
we will show later how to learn sophisticated sim-
ilarity functions.

3.2 Coverage scoring function

A second scoring function we consider was
first proposed for diversified document retrieval
(Swaminathan et al., 2009; Yue and Joachims,
2008), but it naturally applies to document sum-
marization as well (Li et al., 2009). It is based on
a notion of word coverage, where each word v has
some importance weight ω(v) ≥ 0. A summary
y covers a word if at least one of its sentences
contains the word. The score of a summary is
then simply the sum of the word weights its cov-
ers (though we could also include a concave dis-
count function that rewards covering a word mul-
tiple times (Raman et al., 2011)):

Fx(y) =
∑

v∈V (y)

ω(v). (3)

In the above equation, V (y) denotes the union of
all words in y. This function is analogous to a
maximum coverage problem, which is known to
be submodular (Khuller et al., 1999).

Figure 2: Illustration of the coverage model. Word
border thickness represents importance.

An example of how a summary is scored is il-
lustrated in the Figure 2. Analogous to the defini-
tion of similarity σ(i, j) in the pairwise model, the
choice of the word importance function ω(v) is
crucial in the coverage model. A simple heuristic
is to weigh words highly that occur in many sen-
tences of x, but in few other documents (Swami-
nathan et al., 2009). However, we will show in the
following how to learn ω(v) from training data.

Algorithm 1 Greedy algorithm for finding the
best summary ŷ given a scoring function Fx(y).

Parameter: r > 0.
ŷ ← ∅
A← x
while A 6= ∅ do

k ← arg max
l∈A

Fx(ŷ ∪ {l})− Fx(ŷ)
(cl)r

if ck+
∑

i∈ŷ ci≤B and Fx(ŷ∪{k})−Fx(ŷ)≥
0 then
ŷ ← ŷ ∪ {k}

end if
A← A\{k}

end while

3.3 Computing a Summary
Computing the summary that maximizes either of
the two scoring functions from above (i.e. Eqns.
(2) and (3)) is NP-hard (McDonald, 2007). How-
ever, it is known that the greedy algorithm 1 can
achieve a 1 − 1/e approximation to the optimum
solution for any linear budget constraint (Lin and
Bilmes, 2010; Khuller et al., 1999). Even further,
this algorithm provides a 1 − 1/e approximation
for any monotone submodular scoring function.

The algorithm starts with an empty summariza-
tion. In each step, a sentence is added to the sum-
mary that results in the maximum relative increase
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of the objective. The increase is relative to the
amount of budget that is used by the added sen-
tence. The algorithm terminates when the budget
B is reached.

Note that the algorithm has a parameter r in
the denominator of the selection rule, which Lin
and Bilmes (2010) report to have some impact
on performance. In the algorithm, ci represents
the cost of the sentence (i.e., length). Thus, the
algorithm actually selects sentences with large
marginal unity relative to their length (trade-off
controlled by the parameter r). Selecting r to be
less than 1 gives more importance to “information
density” (i.e. sentences that have a higher ratio
of score increase per length). The 1 − 1

e greedy
approximation guarantee holds despite this addi-
tional parameter (Lin and Bilmes, 2010). More
details on our choice of r and its effects are pro-
vided in the experiments section.

4 Learning algorithm

In this section, we propose a supervised learning
method for training a submodular scoring func-
tion to produce desirable summaries. In particu-
lar, for the pairwise and the coverage model, we
show how to learn the similarity function σ(i, j)
and the word importance weights ω(v) respec-
tively. In particular, we parameterize σ(i, j) and
ω(v) using a linear model, allowing that each de-
pends on the full set of input sentences x:

σx(i, j) = wTφpx(i, j) ωx(v) = wTφcx(v). (4)

In the above equations, w is a weight vector that
is learned, and φpx(i, j) and φcx(v) are feature vec-
tors. In the pairwise model, φpx(i, j) may include
feature like the TFIDF cosine between i and j or
the number of words from the document titles that
i and j share. In the coverage model, φcx(v) may
include features like a binary indicator of whether
v occurs in more than 10% of the sentences in x
or whether v occurs in the document title.

We propose to learn the weights following a
large-margin framework using structural SVMs
(Tsochantaridis et al., 2005). Structural SVMs
learn a discriminant function

h(x) = arg max
y∈Y

w>Ψ(x, y) (5)

that predicts a structured output y given a (pos-
sibly also structured) input x. Ψ(x, y) ∈ RN is

called the joint feature-map between input x and
output y. Note that both submodular scoring func-
tion in Eqns. (2) and (3) can be brought into the
form wTΨ(x, y) for the linear parametrization in
Eq. (6) and (7):

Ψp(x, y)=
∑

i∈x\y,j∈y

φpx(i, j)− λ
∑

i,j∈y:i 6=j
φpx(i, j), (6)

Ψc(x, y)=
∑

v∈V (y)

φcx(v). (7)

After this transformation, it is easy to see that
computing the maximizing summary in Eq. (1)
and the structural SVM prediction rule in Eq. (5)
are equivalent.

To learn the weight vector w, structural SVMs
require training examples (x1, y1), ..., (xn, yn) of
input/output pairs. In document summarization,
however, the “correct” extractive summary is typ-
ically not known. Instead, training documents
xi are typically annotated with multiple manual
(non-extractive) summaries (denoted by Y i). To
determine a single extractive target summary yi

for training, we find the extractive summary that
(approximately) optimizes ROUGE score – or
some other loss function ∆(Y i, y) – with respect
to Y i.

yi = argmin
y∈Y

∆(Y i, y) (8)

We call the yi determined in this way the “target”
summary for xi. Note that yi is a greedily con-
structed approximate target summary based on its
proximity to Y i via ∆. Because of this, we will
learn a model that can predict approximately good
summaries yi from xi. However, we believe that
most of the score difference between manual sum-
maries and yi (as explored in the experiments sec-
tion) is due to it being an extractive summary and
not due to greedy construction.

Following the structural SVM approach, we
can now formulate the problem of learning w as
the following quadratic program (QP):

min
w,ξ≥0

1
2
‖w‖2 +

C

n

n∑
i=1

ξi (9)

s.t. w>Ψ(xi, yi)−w>Ψ(xi, ŷi) ≥
∆(ŷi, Y i)− ξi, ∀ŷi 6= yi, ∀1 ≤ i ≤ n.

The above formulation ensures that the scor-
ing function with the target summary (i.e.
w>Ψ(xi, yi)) is larger than the scoring function

228



Algorithm 2 Cutting-plane algorithm for solving
the learning optimization problem.

Parameter: desired tolerance ε > 0.
∀i :Wi ← ∅
repeat

for ∀i do
ŷ ← arg max

y
wTΨ(xi, y) + ∆(Y i, y)

if wTΨ(xi, yi) + ε ≤ wTΨ(xi, ŷ) +
∆(Y i, ŷ)− ξi then
Wi ←Wi ∪ {ŷ}
w ← solve QP (9) using constraintsWi

end if
end for

until noWi has changed during iteration

for any other summary ŷi (i.e., w>Ψ(xi, ŷi)).
The objective function learns a large-margin
weight vector w while trading it off with an upper
bound on the empirical loss. The two quantities
are traded off with a parameter C > 0.

Even though the QP has exponentially many
constraints in the number of sentences in the in-
put documents, it can be solved approximately
in polynomial time via a cutting plane algorithm
(Tsochantaridis et al., 2005). The steps of the
cutting-plane algorithm are shown in Algorithm
2. In each iteration of the algorithm, for each
training document xi, a summary ŷi which most
violates the constraint in (9) is found. This is done
by finding

ŷ ← arg max
y∈Y

wTΨ(xi, y) + ∆(Y i, y),

for which we use a variant of the greedy algorithm
in Figure 1. After a violating constraint for each
training example is added, the resulting quadratic
program is solved. These steps are repeated until
all the constraints are satisfied to a required preci-
sion ε.

Finally, special care has to be taken to appro-
priately define the loss function ∆ given the dis-
parity of Y i and yi. Therefore, we first define an
intermediate loss function

∆R(Y, ŷ) = max(0, 1−ROUGE1F (Y, ŷ)),

based on the ROUGE-1 F score. To ensure that
the loss function is zero for the target label as de-
fined in (8), we normalized the above loss as be-

low:

∆(Y i, ŷ) = max(0,∆R(Y i, ŷ)−∆R(Y i, yi)),

The loss ∆ was used in our experiments. Thus
training a structural SVM with this loss aims to
maximize the ROUGE-1 F score with the man-
ual summaries provided in the training examples,
while trading it off with margin. Note that we
could also use a different loss function (as the
method is not tied to this particular choice), if we
had a different target evaluation metric. Finally,
once a w is obtained from structural SVM train-
ing, a predicted summary for a test document x
can be obtained from (5).

5 Experiments

In this section, we empirically evaluate the ap-
proach proposed in this paper. Following Lin and
Bilmes (2010), experiments were conducted on
two different datasets (DUC ’03 and ’04). These
datasets contain document sets with four manual
summaries for each set. For each document set,
we concatenated all the articles and split them
into sentences using the tool provided with the
’03 dataset. For the supervised setting we used
10 resamplings with a random 20/5/5 (’03) and
40/5/5 (’04) train/test/validation split. We deter-
mined the best C value in (9) using the perfor-
mance on each validation set and then report aver-
age performence over the corresponding test sets.
Baseline performance (the approach of Lin and
Bilmes (2010)) was computed using all 10 test
sets as a single test set. For all experiments and
datasets, we used r = 0.3 in the greedy algorithm
as recommended in Lin and Bilmes (2010) for the
’03 dataset. We find that changing r has only a
small influence on performance.2

The construction of features for learning is or-
ganized by word groups. The most trivial group
is simply all words (basic). Considering the prop-
erties of the words themselves, we constructed
several features from properties such as capital-
ized words, non-stop words and words of cer-
tain length (cap+stop+len). We obtained another
set of features from the most frequently occur-
ing words in all the articles (minmax). We also
considered the position of a sentence (containing

2Setting r to 1 and thus eliminating the non-linearity does
lower the score (e.g. to 0.38466 for the pairwise model on
DUC ’03 compared with the results on Figure 3).
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the word) in the article as another feature (loca-
tion). All those word groups can then be further
refined by selecting different thresholds, weight-
ing schemes (e.g. TFIDF) and forming binned
variants of these features.

For the pairwise model we use cosine similar-
ity between sentences using only words in a given
word group during computation. For the word
coverage model we create separate features for
covering words in different groups. This gives us
fairly comparable feature strength in both mod-
els. The only further addition is the use of differ-
ent word coverage levels in the coverage model.
First we consider how well does a sentence cover
a word (e.g. a sentence with five instances of the
same word might cover it better than another with
only a single instance). And secondly we look at
how important it is to cover a word (e.g. if a word
appears in a large fraction of sentences we might
want to be sure to cover it). Combining those two
criteria using different thresholds we get a set of
features for each word. Our coverage features are
motivated from the approach of Yue and Joachims
(2008). In contrast, the hand-tuned pairwise base-
line uses only TFIDF weighted cosine similarity
between sentences using all words, following the
approach in Lin and Bilmes (2010).

The resulting summaries are evaluated using
ROUGE version 1.5.5 (Lin and Hovy, 2003). We
selected the ROUGE-1 F measure because it was
used by Lin and Bilmes (2010) and because it is
one of the commonly used performance scores in
recent work. However, our learning method ap-
plies to other performance measures as well. Note
that we use the ROUGE-1 F measure both for the
loss function during learning, as well as for the
evaluation of the predicted summaries.

5.1 How does learning compare to manual
tuning?

In our first experiment, we compare our super-
vised learning approach to the hand-tuned ap-
proach. The results from this experiment are sum-
marized in Figure 3. First, supervised training
of the pairwise model (Lin and Bilmes, 2010)
resulted in a statistically significant (p ≤ 0.05
using paired t-test) increase in performance on
both datasets compared to our reimplementation
of the manually tuned pairwise model. Note that
our reimplementation of the approach of Lin and
Bilmes (2010) resulted in slightly different per-

formance numbers than those reported in Lin and
Bilmes (2010) – better on DUC ’03 and somewhat
lower on DUC ’04, if evaluated on the same selec-
tion of test examples as theirs. We conjecture that
this is due to small differences in implementation
and/or preprocessing of the dataset. Furthermore,
as authors of Lin and Bilmes (2010) note in their
paper, the ’03 and ’04 datasets behave quite dif-
ferently.

model dataset ROUGE-1 F (stderr)
pairwise DUC ’03 0.3929 (0.0074)
coverage 0.3784 (0.0059)
hand-tuned 0.3571 (0.0063)
pairwise DUC ’04 0.4066 (0.0061)
coverage 0.3992 (0.0054)
hand-tuned 0.3935 (0.0052)

Figure 3: Results obtained on DUC ’03 and ’04
datasets using the supervised models. Increase in per-
formance over the hand-tuned is statistically signifi-
cant (p ≤ 0.05) for the pairwise model on the both
datasets, but only on DUC ’03 for the coverage model.

Figure 3 also reports the performance for
the coverage model as trained by our algorithm.
These results can be compared against those for
the pairwise model. Since we are using features
of comparable strength in both approaches, as
well as the same greedy algorithm and structural
SVM learning method, this comparison largely
reflects the quality of models themselves. On the
’04 dataset both models achieve the same perfor-
mance while on ’03 the pairwise model performs
significantly (p ≤ 0.05) better than the coverage
model.

Overall, the pairwise model appears to perform
slightly better than the coverage model with the
datasets and features we used. Therefore, we fo-
cus on the pairwise model in the following.

5.2 How fast does the algorithm learn?
Hand-tuned approaches have limited flexibility.
Whenever we move to a significantly different
collection of documents we have to reinvest time
to retune it. Learning can make this adaptation
to a new collection more automatic and faster –
especially since training data has to be collected
even for manual tuning.

Figure 4 evaluates how effectively the learn-
ing algorithm can make use of a given amount of
training data. In particular, the figure shows the
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Figure 4: Learning curve for the pairwise model on
DUC ’04 dataset showing ROUGE-1 F scores for
different numbers of learning examples (logarithmic
scale). The dashed line represents the preformance of
the hand-tuned model.

learning curve for our approach. Even with very
few training examples, the learning approach al-
ready outperforms the baseline. Furthermore, at
the maximum number of training examples avail-
able to us the curve still increases. We therefore
conjecture that more data would further improve
performance.

5.3 Where is room for improvement?

To get a rough estimate of what is actually achiev-
able in terms of the final ROUGE-1 F score, we
looked at different “upper bounds” under vari-
ous scenarios (Figure 5). First, ROUGE score
is computed by using four manual summaries
from different assessors, so that we can estimate
inter-subject disagreement. If one computes the
ROUGE score of a held-out summary against the
remaining three summaries, the resulting perfor-
mance is given in the row labeled human of Fig-
ure 5. It provides a reasonable estimate of human
performance.

Second, in extractive summarization we re-
strict summaries to sentences from the documents
themselves, which is likely to lead to a reduc-
tion in ROUGE. To estimate this drop, we use the
greedy algorithm to select the extractive summary
that maximizes ROUGE on the test documents.
The resulting performance is given in the row ex-
tractive of Figure 5. On both dataset, the drop
in performance for this (approximately3) optimal

3We compared the greedy algorithm with exhaustive
search for up to three selected sentences (more than that
would take too long). In about half the cases we got the same
solution, in other cases the soultion was on average about 1%

extractive summary is about 10 points of ROUGE.
Third, we expect some drop in performance,

since our model may not be able to fit the optimal
extractive summaries due to a lack of expressive-
ness. This can be estimated by looking at train-
ing set performance, as reported in row model fit
of Figure 5. On both datasets, we see a drop of
about 5 points of ROUGE performance. Adding
more and better features might help the model fit
the data better.

Finally, a last drop in performance may come
from overfitting. The test set ROUGE scores are
given in the row prediction of Figure 5. Note that
the drop between training and test performance
is rather small, so overfitting is not an issue and
is well controlled in our algorithm. We therefore
conclude that increasing model fidelity seems like
a promising direction for further improvements.

bound dataset ROUGE-1 F
human DUC ’03 0.56235
extractive 0.45497
model fit 0.40873
prediction 0.39294
human DUC ’04 0.55221
extractive 0.45199
model fit 0.40963
prediction 0.40662

Figure 5: Upper bounds on ROUGE-1 F scores: agree-
ment between manual summaries, greedily computed
best extractive summaries, best model fit on the train
set (using the best C value) and the test scores of the
pairwise model.

5.4 Which features are most useful?
To understand which features affected the final
performance of our approach, we assessed the
strength of each set of our features. In particu-
lar, we looked at how the final test score changes
when we removed certain features groups (de-
scribed in the beginning of Section 5) as shown
in Figure 6.

The most important group of features are the
basic features (pure cosine similarity between
sentences) since removing them results in the
largest drop in performance. However, other fea-
tures play a significant role too (i.e. only the ba-
sic ones are not enough to achieve good perfor-

below optimal confirming that greedy selection works quite
well.
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mance). This confirms that performance can be
improved by adding richer fatures instead of us-
ing only a single similarity score as in Lin and
Bilmes (2010). Using learning for these complex
model is essential, since hand-tuning is likely to
be intractable.

The second most important group of features
considering the drop in performance (i.e. loca-
tion) looks at positions of sentences in the arti-
cles. This makes intuitive sense because the first
sentences in news articles are usually packed with
information. The other three groups do not have a
significant impact on their own.

removed ROUGE-1 F
group
none 0.40662
basic 0.38681
all except basic 0.39723
location 0.39782
sent+doc 0.39901
cap+stop+len 0.40273
minmax 0.40721

Figure 6: Effects of removing different feature groups
on the DUC ’04 dataset. Bold font marks significant
difference (p ≤ 0.05) when compared to the full pari-
wise model. The most important are basic similar-
ity features including all words (similar to (Lin and
Bilmes, 2010)). The last feature group actually low-
ered the score but is included in the model because we
only found this out later on DUC ’04 dataset.

5.5 How important is it to train with
multiple summaries?

While having four manual summaries may be im-
portant for computing a reliable ROUGE score
for evaluation, it is not clear whether such an ap-
proach is the most efficient use of annotator re-
sources for training. In our final experiment, we
trained our method using only a single manual
summary for each set of documents. When us-
ing only a single manual summary, we arbitrarily
took the first one out of the provided four refer-
ence summaries and used only it to compute the
target label for training (instead of using average
loss towards all four of them). Otherwise, the ex-
perimental setup was the same as in the previous
subsections, using the pairwise model.

For DUC ’04, the ROUGE-1 F score obtained
using only a single summary per document set

was 0.4010, which is slightly but not significantly
lower than the 0.4066 obtained with four sum-
maries (as shown on Figure 3). Similarly, on DUC
’03 the performance drop from 0.3929 to 0.3838
was not significant as well.

Based on those results, we conjecture that hav-
ing more documents sets with only a single man-
ual summary is more useful for training than
fewer training examples with better labels (i.e.
multiple summaries). In both cases, we spend
approximately the same amount of effort (as the
summaries are the most expensive component of
the training data), however having more training
examples helps (according to the learning curve
presented before) while spending effort on multi-
ple summaries appears to have only minor benefit
for training.

6 Conclusions

This paper presented a supervised learning ap-
proach to extractive document summarization
based on structual SVMs. The learning method
applies to all submodular scoring functions, rang-
ing from pairwise-similarity models to coverage-
based approaches. The learning problem is for-
mulated into a convex quadratic program and was
then solved approximately using a cutting-plane
method. In an empirical evaluation, the structural
SVM approach significantly outperforms conven-
tional hand-tuned models on the DUC ’03 and
’04 datasets. A key advantage of the learn-
ing approach is its ability to handle large num-
bers of features, providing substantial flexibility
for building high-fidelity summarization models.
Furthermore, it shows good control of overfitting,
making it possible to train models even with only
a few training examples.
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Abstract

This paper presents an incremental prob-
abilistic learner that models the acquis-
tion of syntax and semantics from a cor-
pus of child-directed utterances paired with
possible representations of their meanings.
These meaning representations approxi-
mate the contextual input available to the
child; they do not specify the meanings of
individual words or syntactic derivations.
The learner then has to infer the meanings
and syntactic properties of the words in the
input along with a parsing model. We use
the CCG grammatical framework and train
a non-parametric Bayesian model of parse
structure with online variational Bayesian
expectation maximization. When tested on
utterances from the CHILDES corpus, our
learner outperforms a state-of-the-art se-
mantic parser. In addition, it models such
aspects of child acquisition as “fast map-
ping,” while also countering previous crit-
icisms of statistical syntactic learners.

1 Introduction

Children learn language by mapping the utter-
ances they hear onto what they believe those ut-
terances mean. The precise nature of the child’s
prelinguistic representation of meaning is not
known. We assume for present purposes that
it can be approximated by compositional logical
representations such as (1), where the meaning is
a logical expression that describes a relationship
have between the person you refers to and the
object another(x, cookie(x)):

Utterance : you have another cookie (1)

Meaning : have(you, another(x, cookie(x)))

Most situations will support a number of plausi-
ble meanings, so the child has to learn in the face

of propositional uncertainty1, from a set of con-
textually afforded meaning candidates, as here:

Utterance : you have another cookie

Candidate
Meanings


have(you, another(x, cookie(x)))

eat(you, your(x, cake(x)))
want(i, another(x, cookie(x)))

The task is then to learn, from a sequence of such
(utterance, meaning-candidates) pairs, the correct
lexicon and parsing model. Here we present a
probabilistic account of this task with an empha-
sis on cognitive plausibility.

Our criteria for plausibility are that the learner
must not require any language-specific informa-
tion prior to learning and that the learning algo-
rithm must be strictly incremental: it sees each
training instance sequentially and exactly once.
We define a Bayesian model of parse structure
with Dirichlet process priors and train this on a
set of (utterance, meaning-candidates) pairs de-
rived from the CHILDES corpus (MacWhinney,
2000) using online variational Bayesian EM.

We evaluate the learnt grammar in three ways.
First, we test the accuracy of the trained model
in parsing unseen utterances onto gold standard
annotations of their meaning. We show that
it outperforms a state-of-the-art semantic parser
(Kwiatkowski et al., 2010) when run with similar
training conditions (i.e., neither system is given
the corpus based initialization originally used by
Kwiatkowski et al.). We then examine the learn-
ing curves of some individual words, showing that
the model can learn word meanings on the ba-
sis of a single exposure, similar to the fast map-
ping phenomenon observed in children (Carey
and Bartlett, 1978). Finally, we show that our

1Similar to referential uncertainty but relating to propo-
sitions rather than referents.
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learner captures the step-like learning curves for
word order regularities that Thornton and Tesan
(2007) claim children show. This result coun-
ters Thornton and Tesan’s criticism of statistical
grammar learners—that they tend to exhibit grad-
ual learning curves rather than the abrupt changes
in linguistic competence observed in children.

1.1 Related Work
Models of syntactic acquisition, whether they
have addressed the task of learning both syn-
tax and semantics (Siskind, 1992; Villavicencio,
2002; Buttery, 2006) or syntax alone (Gibson
and Wexler, 1994; Sakas and Fodor, 2001; Yang,
2002) have aimed to learn a single, correct, deter-
ministic grammar. With the exception of Buttery
(2006) they also adopt the Principles and Param-
eters grammatical framework, which assumes de-
tailed knowledge of linguistic regularities2. Our
approach contrasts with all previous models in as-
suming a very general kind of linguistic knowl-
edge and a probabilistic grammar. Specifically,
we use the probabilistic Combinatory Categorial
Grammar (CCG) framework, and assume only
that the learner has access to a small set of general
combinatory schemata and a functional mapping
from semantic type to syntactic category. Further-
more, this paper is the first to evaluate a model
of child syntactic-semantic acquisition by parsing
unseen data.

Models of child word learning have focused
on semantics only, learning word meanings from
utterances paired with either sets of concept sym-
bols (Yu and Ballard, 2007; Frank et al., 2008; Fa-
zly et al., 2010) or a compositional meaning rep-
resentation of the type used here (Siskind, 1996).
The models of Alishahi and Stevenson (2008)
and Maurits et al. (2009) learn, as well as word-
meanings, orderings for verb-argument structures
but not the full parsing model that we learn here.

Semantic parser induction as addressed by
Zettlemoyer and Collins (2005, 2007, 2009), Kate
and Mooney (2007), Wong and Mooney (2006,
2007), Lu et al. (2008), Chen et al. (2010),
Kwiatkowski et al. (2010, 2011) and Börschinger
et al. (2011) has the same task definition as the
one addressed by this paper. However, the learn-
ing approaches presented in those previous pa-

2This linguistic use of the term ”parameter” is distinct
from the statistical use found elsewhere in this paper.

pers are not designed to be cognitively plausible,
using batch training algorithms, multiple passes
over the data, and language specific initialisations
(lists of noun phrases and additional corpus statis-
tics), all of which we dispense with here. In
particular, our approach is closely related that of
Kwiatkowski et al. (2010) but, whereas that work
required careful initialisation and multiple passes
over the training data to learn a discriminative
parsing model, here we learn a generative parsing
model without either.

1.2 Overview of the approach
Our approach takes, as input, a corpus of (ut-
terance, meaning-candidates) pairs {(si, {m}i) :
i = 1, . . . , N}, and learns a CCG lexicon Λ and
the probability of each production a → b that
could be used in a parse. Together, these define
a probabilistic parser that can be used to find the
most probable meaning for any new sentence.

We learn both the lexicon and production prob-
abilities from allowable parses of the training
pairs. The set of allowable parses {t} for a sin-
gle (utterance, meaning-candidates) pair consists
of those parses that map the utterance onto one of
the meanings. This set is generated with the func-
tional mapping T :

{t} = T (s,m), (2)

which is defined, following Kwiatkowski et al.
(2010), using only the CCG combinators and a
mapping from semantic type to syntactic category
(presented in in Section 4).

The CCG lexicon Λ is learnt by reading off
the lexical items used in all parses of all training
pairs. Production probabilities are learnt in con-
junction with Λ through the use of an incremen-
tal parameter estimation algorithm, online Varia-
tional Bayesian EM, as described in Section 5.

Before presenting the probabilistic model, the
mapping T , and the parameter training algorithm,
we first provide some background on the meaning
representations we use and on CCG.

2 Background

2.1 Meaning Representations
We represent the meanings of utterances in first-
order predicate logic using the lambda-calculus.
An example logical expression (henceforth also
referred to as a lambda expression) is:

like(eve,mummy) (3)
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which expresses a logical relationship like be-
tween the entity eve and the entity mummy. In
Section 6.1 we will see how logical expressions
like this are created for a set of child-directed ut-
terances (to use in training our model).

The lambda-calculus uses λ operators to define
functions. These may be used to represent func-
tional meanings of utterances but they may also be
used as a ‘glue language’, to compose elements of
first order logical expressions. For example, the
function λxλy.like(y, x) can be combined with
the object mummy to give the phrasal mean-
ing λy.like(y,mummy) through the lambda-
calculus operation of function application.

2.2 CCG
Combinatory Categorial Grammar (CCG; Steed-
man 2000) is a strongly lexicalised linguistic for-
malism that tightly couples syntax and seman-
tics. Each CCG lexical item in the lexicon Λ is
a triple, written as word ` syntactic category :
logical expression . Examples are:

You ` NP : you

read ` S\NP/NP : λxλy.read(y, x)

the ` NP/N : λf.the(x, f(x))

book ` N : λx.book(x)

A full CCG category X : h has syntactic cate-
gory X and logical expression h. Syntactic cat-
egories may be atomic (e.g., S or NP) or com-
plex (e.g., (S\NP)/NP). Slash operators in com-
plex categories define functions from the range on
the right of the slash to the result on the left in
much the same way as lambda operators do in the
lambda-calculus. The direction of the slash de-
fines the linear order of function and argument.

CCG uses a small set of combinatory rules to
concurrently build syntactic parses and semantic
representations. Two example combinatory rules
are forward (>) and backward (<) application:

X/Y : f Y : g ⇒ X : f(g) (>)
Y : g X\Y : f ⇒ X : f(g) (<)

Given the lexicon above, the phrase “You read the
book” can be parsed using these rules, as illus-
trated in Figure 1 (with additional notation dis-
cussed in the following section)..

CCG also includes combinatory rules of
forward (> B) and backward (< B) composition:

X/Y : f Y/Z : g ⇒X/Z : λx.f(g(x)) (> B)
Y \Z : g X\Y : f ⇒X\Z : λx.f(g(x)) (< B)

3 Modelling Derivations

The objective of our learning algorithm is to
learn the correct parameterisation of a probabilis-
tic model P (s,m, t) over (utterance, meaning,
derivation) triples. This model assigns a proba-
bility to each of the grammar productions a → b
used to build the derivation tree t. The probabil-
ity of any given CCG derivation t with sentence
s and semantics m is calculated as the product of
all of its production probabilities.

P (s,m, t) =
∏

a→b∈t
P (b|a) (4)

For example, the derivation in Figure 1 contains
13 productions, and its probability is the product
of the 13 production probabilities. Grammar pro-
ductions may be either syntactic—used to build a
syntactic derivation tree, or lexical—used to gen-
erate logical expressions and words at the leaves
of this tree.

A syntactic production Ch → R expands a
head node Ch into a result R that is either an
ordered pair of syntactic parse nodes 〈Cl,Cr〉
(for a binary production) or a single parse node
(for a unary production). Only two unary syn-
tactic productions are allowed in the grammar:
START→ A to generate A as the top syntactic
node of a parse tree and A→ [A]lex to indicate
that A is a leaf node in the syntactic derivation
and should be used to generate a logical expres-
sion and word. Syntactic derivations are built by
recursively applying syntactic productions to non-
leaf nodes in the derivation tree. Each syntactic
production Ch → R has conditional probability
P (R|Ch). There are 3 binary and 5 unary syntac-
tic productions in Figure 1.

Lexical productions have two forms. Logical
expressions are produced from leaf nodes in the
syntactic derivation tree Alex → m with condi-
tional probability P (m|Alex). Words are then pro-
duced from these logical expressions with condi-
tional probability P (w|m). An example logical
production from Figure 1 is [NP]lex → you. An
example word production is you→ You.

Every production a → b used in a parse tree t
is chosen from the set of productions that could
be used to expand a head node a. If there are a
finite K productions that could expand a then a
K-dimensional Multinomial distribution parame-
terised by θa can be used to model the categorical
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START

Sdcl

NP

[NP]lex

you

You

Sdcl\NP

(Sdcl\NP)/NP

[(Sdcl\NP)/NP]lex

λxλy.read(y, x)

read

NP

NP/N

[NP/N]lex

λfλx.the(x, f(x))

the

N

[N]lex

λx.book(x)

book

Figure 1: Derivation of sentence You read the
book with meaning read(you, the(x, book(x))).

choice of production:

b ∼ Multinomial(θa) (5)

However, before training a model of language ac-
quisition the dimensionality and contents of both
the syntactic grammar and lexicon are unknown.
In order to maintain a probability model with
cover over the countably infinite number of pos-
sible productions, we define a Dirichlet Process
(DP) prior for each possible production head a.
For the production head a, DP (αa, Ha) assigns
some probability mass to all possible production
targets {b} covered by the base distribution Ha.

It is possible to use the DP as an infinite prior
from which the parameter set of a finite dimen-
sional Multinomial may be drawn provided that
we can choose a suitable partition of {b}. When
calculating the probability of an (s,m, t) triple,
the choice of this partition is easy. For any given
production head a there is a finite set of usable
production targets {b1, . . . , bk−1} in t. We create
a partition that includes one entry for each of these
along with a final entry {bk, . . . } that includes all
other ways in which a could be expanded in dif-
ferent contexts. Then, by applying the distribution
Ga drawn from the DP to this partition, we get a
parameter vector θa that is equivalent to a draw
from a k dimensional Dirichlet distribution:

Ga ∼ DP (αa, Ha) (6)

θa = (Ga(b1), . . . , Ga(bk−1), Ga({bk, . . . })
∼ Dir(αaH(b1), . . . , αaHa(bk−1), (7)

αaHa({bk, . . . }))

Together, Equations 4-7 describe the joint distri-
bution P (X,S, θ) over the observed training data

X = {(si, {m}i) : i = 1, . . . , N}, the latent vari-
ables S (containing the productions used in each
parse t) and the parsing parameters θ.

4 Generating Parses

The previous section defined a parameterisation
over parses assuming that the CCG lexicon Λ was
known. In practice Λ is empty prior to training
and must be populated with the lexical items from
parses t consistent with training pairs (s, {m}).

The set of allowed parses {t} is defined by the
function T from Equation 2. Here we review the
splitting procedure of Kwiatkowski et al. (2010)
that is used to generate CCG lexical items and de-
scribe how it is used by T to create a packed chart
representation of all parses {t} that are consistent
with s and at least one of the meaning represen-
tations in {m}. In this section we assume that s
is paired at each point with only a single meaning
m. Later we will show how T is used multiple
times to create the set of parses consistent with s
and a set of candidate meanings {m}.

The splitting procedure takes as input a CCG
category X :h, such as NP : a(x, cookie(x)), and
returns a set of category splits. Each category split
is a pair of CCG categories (Cl :ml,Cr :mr) that
can be recombined to give X : h using one of the
CCG combinators in Section 2.2. The CCG cat-
egory splitting procedure has two parts: logical
splitting of the category semantics h; and syntac-
tic splitting of the syntactic category X. Each logi-
cal split of h is a pair of lambda expressions (f, g)
in the following set:

{(f, g) | h = f(g) ∨ h = λx.f(g(x))}, (8)

which means that f and g can be recombined us-
ing either function application or function com-
position to give the original lambda expression
h. An example split of the lambda expression
h = a(x, cookie(x)) is the pair

(λy.a(x, y(x)), λx.cookie(x)), (9)

where λy.a(x, y(x)) applied to λx.cookie(x) re-
turns the original expression a(x, cookie(x)).

Syntactic splitting assigns linear order and syn-
tactic categories to the two lambda expressions f
and g. The initial syntactic category X is split by
a reversal of the CCG application combinators in
Section 2.2 if f and g can be recombined to give
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Syntactic Category Semantic Type Example Phrase
Sdcl 〈ev, t〉 I took it ` Sdcl :λe.took(i, it, e)
St t I′m angry ` St :angry(i)
Swh 〈e, 〈ev, t〉〉 Who took it? ` Swh :λxλe.took(x, it, e)
Sq 〈ev, t〉 Did you take it? ` Sq :λe.Q(take(you, it, e))
N 〈e, t〉 cookie `N:λx.cookie(x)
NP e John `NP:john
PP 〈ev, t〉 on John ` PP:λe.on(john, e)

Figure 2: Atomic Syntactic Categories.

h with function application:

{(X/Y : f Y : g), (10)

(Y : g : X\Y : f)|h = f(g)}

or by a reversal of the CCG composition combi-
nators if f and g can be recombined to give hwith
function composition:

{(X/Z : f Z/Y : g, (11)

(Z\Y : g : X\Z : f)|h = λx.f(g(x))}

Unknown category names in the result of a
split (Y in (10) and Z in (11)) are labelled via a
functional mapping cat from semantic type T to
syntactic category:

cat(T ) =

 Atomic(T ) if T ∈ Figure 2
cat(T1)/cat(T2) if T = 〈T1, T2〉
cat(T1)\cat(T2) if T = 〈T1, T2〉


which uses the Atomic function illustrated
in Figure 2 to map semantic-type to basic CCG
syntactic category. As an example, the logical
split in (9) supports two CCG category splits, one
for each of the CCG application rules.

(NP/N :λy.a(x, y(x)), N :λx.cookie(x)) (12)

(N :λx.cookie(x), NP\N :λy.a(x, y(x))) (13)

The parse generation algorithm T uses the func-
tion split to generate all CCG category pairs that
are an allowed split of an input category X :h:

{(Cl :ml,Cr :mr)} = split(X :h),

and then packs a chart representation of {t} in a
top-down fashion starting with a single cell entry
Cm :m for the top node shared by all parses {t}.
For the utterance and meaning in (1) the top parse
node, spanning the entire word-string, is

S :have(you, another(x, cookie(x))).

T cycles over all cell entries in increasingly small
spans and populates the chart with their splits. For
any cell entry X :h spanning more than one word
T generates a set of pairs representing the splits of
X :h. For each split (Cl :ml,Cr :mr) and every bi-
nary partition (wi:k, wk:j) of the word-span T cre-
ates two new cell entries in the chart: (Cl :ml)i:k
and (Cr :mr)k:j .

Input : Sentence [w1, . . . , wn], top node Cm :m
Output: Packed parse chart Ch containing {t}
Ch = [ [{}1, . . . , {}n]1, . . . , [{}1, . . . , {}n]n ]
Ch[1][n− 1] = Cm :m
for i = n, . . . , 2; j = 1 . . . (n− i) + 1 do

for X:h ∈ Ch[j][i] do
for (Cl :ml,Cr :mr) ∈ split(X:h) do

for k = 1, . . . , i− 1 do
Ch[j][k]← Cl :ml

Ch[j + k][i− k]← Cr :mr

Algorithm 1: Generating {t} with T .

Algorithm 1 shows how the learner uses T to
generate a packed chart representation of {t} in
the chart Ch. The function T massively overgen-
erates parses for any given natural language. The
probabilistic parsing model introduced in Sec-
tion 3 is used to choose the best parse from the
overgenerated set.

5 Training

5.1 Parameter Estimation
The probabilistic model of the grammar describes
a distribution over the observed training data X,
latent variables S, and parameters θ. The goal of
training is to estimate the posterior distribution:

p(S, θ|X) =
p(S,X|θ)p(θ)

p(X)
(14)

which we do with online Variational Bayesian Ex-
pectation Maximisation (oVBEM; Sato (2001),
Hoffman et al. (2010)). oVBEM is an online
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Bayesian extension of the EM algorithm that
accumulates observation pseudocounts na→b for
each of the productions a → b in the grammar.
These pseudocounts define the posterior over pro-
duction probabilities as follows:

(θa→b1 , . . . , θa→b{k,... })) | X,S ∼ (15)

Dir(αH(b1) + na→b1 , . . . ,

∞∑
j=k

αH(bj) + na→bj
)

These pseudocounts are computed in two steps:

oVBE-step For the training pair (si, {m}i)
which supports the set of parses {t}, the expec-
tation E{t}[a → b] of each production a → b is
calculated by creating a packed chart representa-
tion of {t} and running the inside-outside algo-
rithm. This is similar to the E-step in standard
EM apart from the fact that each production is
scored with the current expectation of its parame-
ter weight θ̂i−1

a→b, where:

θ̂i−1
a→b =

eΨ(αaHa(a→b)+ni−1
a→b)

e
Ψ
(∑K
{b′} αaHa(a→b′)+ni−1

a→b′

) (16)

and Ψ is the digamma function (Beal, 2003).

oVBM-step The expectations from the oVBE
step are used to update the pseudocounts in Equa-
tion 15 as follows,

nia→b = ni−1
a→b + ηi(N × E{t}[a→ b]− ni−1

a→b)
(17)

where ηi is the learning rate and N is the size of
the dataset.

5.2 The Training Algorithm
Now the training algorithm used to learn the lex-
icon Λ and pseudocounts {na→b} can be defined.
The algorithm, shown in Algorithm 2, passes over
the training data only once and one training in-
stance at a time. For each (si, {m}i) it uses the
function T |{m}i| times to generate a set of con-
sistent parses {t}′. The lexicon is populated by
using the lex function to read all of the lexical
items off from the derivations in each {t}′. In
the parameter update step, the training algorithm
updates the pseudocounts associated with each of
the productions a → b that have ever been seen
during training according to Equation (17).

Only non-zero pseudocounts are stored in our
model. The count vector is expanded with a new
entry every time a new production is used. While

Input : Corpus D = {(si, {m}i)|i = 1, . . . , N},
Function T , Semantics to syntactic cate-
gory mapping cat, function lex to read
lexical items off derivations.

Output: Lexicon Λ, Pseudocounts {na→b}.
Λ = {}, {t} = {}
for i = 1, . . . , N do
{t}i = {}
for m′ ∈ {m}i do

Cm′ = cat(m′)
{t}′ = T (si,Cm′ :m

′)
{t}i = {t}i ∪ {t}′, {t} = {t} ∪ {t}′
Λ = Λ ∪ lex ({t}′)

for a→ b ∈ {t} do
ni

a→b = ni−1
a→b + ηi(N × E{t}i

[a→ b]−
ni−1

a→b)

Algorithm 2: Learning Λ and {na→b}

the parameter update step cycles over all produc-
tions in {t} it is not neccessary to store {t}, just
the set of productions that it uses.

6 Experimental Setup

6.1 Data

The Eve corpus, collected by Brown (1973), con-
tains 14, 124 English utterances spoken to a sin-
gle child between the ages of 18 and 27 months.
These have been hand annotated by Sagae et al.
(2004) with labelled syntactic dependency graphs.
An example annotation is shown in Figure 3.

While these annotations are designed to rep-
resent syntactic information, the parent-child re-
lationships in the parse can also be viewed as a
proxy for the predicate-argument structure of the
semantics. We developed a template based de-
terministic procedure for mapping this predicate-
argument structure onto logical expressions of the
type discussed in Section 2.1. For example, the
dependency graph in Figure 3 is automatically
transformed into the logical expression

λe.have(you,another(y, cookie(y)), e) (18)

∧ on(the(z, table(z)), e),

where e is a Davidsonian event variable used to
deal with adverbial and prepositional attachments.
The deterministic mapping to logical expressions
uses 19 templates, three of which are used in this
example: one for the verb and its arguments, one
for the prepositional attachment and one (used
twice) for the quantifier-noun constructions.
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SUBJ ROOT DET OBJ JCT DET POBJ

pro|you v|have qn|another n|cookie prep|on det|the n|table
You have another cookie on the table

Figure 3: Syntactic dependency graph from Eve corpus.

This mapping from graph to logical expression
makes use of a predefined dictionary of allowed,
typed, logical constants. The mapping is success-
ful for 31% of the child-directed utterances in the
Eve corpus3. The remaining data is mostly ac-
counted for by one-word utterances that have no
straightforward interpretation in our typed logi-
cal language (e.g. what; okay; alright; no; yeah;
hmm; yes; uhhuh; mhm; thankyou), missing ver-
bal arguments that cannot be properly guessed
from the context (largely in imperative sentences
such as drink the water), and complex noun con-
structions that are hard to match with a small set
of templates (e.g. as top to a jar). We also re-
move the small number of utterances containing
more than 10 words for reasons of computational
efficiency (see discussion in Section 8).

Following Alishahi and Stevenson (2010), we
generate a context set {m}i for each utterance si
by pairing that utterance with its correct logical
expression along with the logical expressions of
the preceding and following (|{m}i|−1)/2 utter-
ances.

6.2 Base Distributions and Learning Rate

Each of the production heads a in the grammar
requires a base distribution Ha and concentration
parameter αa. For word-productions the base dis-
tribution is a geometric distribution over character
strings and spaces. For syntactic-productions the
base distribution is defined in terms of the new
category to be named by cat and the probability
of splitting the rule by reversing either the appli-
cation or composition combinators.

Semantic-productions’ base distributions are
defined by a probabilistic branching process con-
ditioned on the type of the syntactic category.
This distribution prefers less complex logical ex-
pressions. All concentration parameters are set to
1.0. The learning rate for parameter updates is
ηi = (0.8 + i)−0.5.

3Data available at www.tomkwiat.com/resources.html
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Figure 4: Meaning Prediction: Train on files 1, . . . , n
test on file n+ 1.

7 Experiments

7.1 Parsing Unseen Sentences

We test the parsing model that is learnt by training
on the first i files of the longitudinally ordered Eve
corpus and testing on file i + 1, for i = 1 . . . 19.
For each utterance s′ in the test file we use the
parsing model to predict a meaning m∗ and com-
pare this to the target meaning m′. We report the
proportion of utterances for which the prediction
m∗ is returned correctly both with and without
word-meaning guessing. When a word has never
been seen at training time our parser has the abil-
ity to ‘guess’ a typed logical meaning with place-
holders for constant and predicate names.

For comparison we use the UBL semantic
parser of Kwiatkowski et al. (2010) trained in
a similar setting—i.e., with no language specific
initialisation4. Figure 4 shows accuracy for our
approach with and without guessing, for UBL

4Kwiatkowski et al. (2010) initialise lexical weights in
their learning algorithm using corpus-wide alignment statis-
tics across words and meaning elements. Instead we run
UBL with small positive weight for all lexical items. When
run with Giza++ parameter initialisations, UBL10 achieves
48.1% across folds compared to 49.2% for our approach.
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when run over the training data once (UBL1) and
for UBL when run over the training data 10 times
(UBL10) as in Kwiatkowski et al. (2010). Each
of the points represents accuracy on one of the
19 test files. All of these results are from parsers
trained on utterances paired with a single candi-
date meaning. The lines of best fit show the up-
ward trend in parser performance over time.

Despite only seeing each training instance
once, our approach, due to its broader lexi-
cal search strategy, outperforms both versions of
UBL which performs a greedy search in the space
of lexicons and requires initialisation with co-
occurence statistics between words and logical
constants to guide this search. These statistics are
not justified in a model of language acquisition
and so they are not used here. The low perfor-
mance of all systems is due largely to the sparsity
of the data with 32.9% of all sentences containing
a previously unseen word.

7.2 Word Learning

Due to the sparsity of the data, the training algo-
rithm needs to be able to learn word-meanings on
the basis of very few exposures. This is also a de-
sirable feature from the perspective of modelling
language acquisition as Carey and Bartlett (1978)
have shown that children have the ability to learn
word meanings on the basis of one, or very few,
exposures through the process of fast mapping.

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

P
(m
|w

)

1 Meaning

0 500 1000 1500 2000

3 Meanings

0 500 1000 1500 2000
Number of Utterances

0.0

0.2

0.4

0.6

0.8

1.0

P
(m
|w

)

5 Meanings

0 500 1000 1500 2000
Number of Utterances

7 Meanings

f = 168 a→ λf.a(x, f (x))

f = 10 another→ λf.another(x, f (x))

f = 2 any→ λf.any(x, f (x))

Figure 5: Learning quantifiers with frequency f.

Figure 5 shows the posterior probability of the
correct meanings for the quantifiers ‘a’, ‘another’
and ‘any’ over the course of training with 1, 3,
5 and 7 candidate meanings for each utterance5.
These three words are all of the same class but
have very different frequencies in the training
subset shown (168, 10 and 2 respectively). In all
training settings, the word ‘a’ is learnt gradually
from many observations but the rarer words ‘an-
other’ and ‘any’ are learnt (when they are learnt)
through large updates to the posterior on the ba-
sis of few observations. These large updates re-
sult from a syntactic bootstrapping effect (Gleit-
man, 1990). When the model has great confidence
about the derivation in which an unseen lexical
item occurs, the pseudocounts for that lexical item
get a large update under Equation 17. This large
update has a greater effect on rare words which
are associated with small amounts of probability
mass than it does on common ones that have al-
ready accumulated large pseudocounts. The fast
learning of rare words later in learning correlates
with observations of word learning in children.

7.3 Word Order Learning

Figure 6 shows the posterior probability of the
correct SVO word order learnt from increasing
amounts of training data. This is calculated by
summing over all lexical items containing transi-
tive verb semantics and sampling in the space of
parse trees that could have generated them. With
no propositional uncertainty in the training data
the correct word order is learnt very quickly and
stabilises. As the amount of propositional uncer-
tainty increases, the rate at which this rule is learnt
decreases. However, even in the face of ambigu-
ous training data, the model can learn the cor-
rect word-order rule. The distribution over word
orders also exhibits initial uncertainty, followed
by a sharp convergence to the correct analysis.
This ability to learn syntactic regularities abruptly
means that our system is not subject to the crit-
icisms that Thornton and Tesan (2007) levelled
at statistical models of language acquisition—that
their learning rates are too gradual.

5The term ‘fast mapping’ is generally used to refer to
noun learning. We chose to examine quantifier learning here
as there is a greater variation in quantifier frequencies. Fast
mapping of nouns is also achieved.
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Figure 6: Learning SVO word order.

8 Discussion

We have presented an incremental model of lan-
guage acquisition that learns a probabilistic CCG
grammar from utterances paired with one or
more potential meanings. The model assumes
no language-specific knowledge, but does assume
that the learner has access to language-universal
correspondences between syntactic and semantic
types, as well as a Bayesian prior encouraging
grammars with heavy reuse of existing rules and
lexical items. We have shown that this model
not only outperforms a state-of-the-art semantic
parser, but also exhibits learning curves similar
to children’s: lexical items can be acquired on a
single exposure and word order is learnt suddenly
rather than gradually.

Although we use a Bayesian model, our ap-
proach is different from many of the Bayesian
models proposed in cognitive science and lan-
guage acquisition (Xu and Tenenbaum, 2007;
Goldwater et al., 2009; Frank et al., 2009; Grif-
fiths and Tenenbaum, 2006; Griffiths, 2005; Per-
fors et al., 2011). These models are intended
as ideal observer analyses, demonstrating what
would be learned by a probabilistically optimal
learner. Our learner uses a more cognitively plau-
sible but approximate online learning algorithm.
In this way, it is similar to other cognitively plau-
sible approximate Bayesian learners (Pearl et al.,
2010; Sanborn et al., 2010; Shi et al., 2010).

Of course, despite the incremental nature of our
learning algorithm, there are still many aspects
that could be criticized as cognitively implausi-

ble. In particular, it generates all parses consistent
with each training instance, which can be both
memory- and processor-intensive. It is unlikely
that children do this once they have learnt at least
some of the target language. In future, we plan
to investigate more efficient parameter estimation
methods. One possibility would be an approxi-
mate oVBEM algorithm in which the expectations
in Equation 17 are calculated according to a high
probability subset of the parses {t}. Another op-
tion would be particle filtering, which has been
investigated as a cognitively plausible method for
approximate Bayesian inference (Shi et al., 2010;
Levy et al., 2009; Sanborn et al., 2010).

As a crude approximation to the context in
which an utterance is heard, the logical represen-
tations of meaning that we present to the learner
are also open to criticism. However, Steedman
(2002) argues that children do have access to
structured meaning representations from a much
older apparatus used for planning actions and we
wish to eventually ground these in sensory input.

Despite the limitations listed above, our ap-
proach makes several important contributions to
the computational study of language acquisition.
It is the first model to learn syntax and seman-
tics concurrently; previous systems (Villavicen-
cio, 2002; Buttery, 2006) learnt categorial gram-
mars from sentences where all word meanings
were known. Our model is also the first to be
evaluated by parsing sentences onto their mean-
ings, in contrast to the work mentioned above and
that of Gibson and Wexler (1994), Siskind (1992)
Sakas and Fodor (2001), and Yang (2002). These
all evaluate their learners on the basis of a small
number of predefined syntactic parameters.

Finally, our work addresses a misunderstand-
ing about statistical learners—that their learn-
ing curves must be gradual (Thornton and Tesan,
2007). By demonstrating sudden learning of word
order and fast mapping, our model shows that sta-
tistical learners can account for sudden changes in
children’s grammars. In future, we hope to extend
these results by examining other learning behav-
iors and testing the model on other languages.
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D. de Sistemas Informáticos y Computación
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Abstract

Translation needs have greatly increased
during the last years. In many situa-
tions, text to be translated constitutes an
unbounded stream of data that grows con-
tinually with time. An effective approach
to translate text documents is to follow
an interactive-predictive paradigm in which
both the system is guided by the user
and the user is assisted by the system to
generate error-free translations. Unfortu-
nately, when processing such unbounded
data streams even this approach requires an
overwhelming amount of manpower. Is in
this scenario where the use of active learn-
ing techniques is compelling. In this work,
we propose different active learning tech-
niques for interactive machine translation.
Results show that for a given translation
quality the use of active learning allows us
to greatly reduce the human effort required
to translate the sentences in the stream.

1 Introduction

Translation needs have greatly increased during
the last years due to phenomena such as global-
ization and technologic development. For exam-
ple, the European Parliament1 translates its pro-
ceedings to 22 languages in a regular basis or
Project Syndicate2 that translates editorials into
different languages. In these and many other ex-
amples, data can be viewed as an incoming un-
bounded stream since it grows continually with
time (Levenberg et al., 2010). Manual translation
of such streams of data is extremely expensive
given the huge volume of translation required,

1http://www.europarl.europa.eu
2http://project-syndicate.org

therefore various automatic machine translation
methods have been proposed.

However, automatic statistical machine trans-
lation (SMT) systems are far from generating
error-free translations and their outputs usually
require human post-editing in order to achieve
high-quality translations. One way of taking ad-
vantage of SMT systems is to combine them
with the knowledge of a human translator in the
interactive-predictive machine translation (IMT)
framework (Foster et al., 1998; Langlais and La-
palme, 2002; Barrachina et al., 2009), which is
a particular case of the computer-assisted trans-
lation paradigm (Isabelle and Church, 1997). In
the IMT framework, a state-of-the-art SMT model
and a human translator collaborate to obtain high-
quality translations while minimizing required
human effort.

Unfortunately, the application of either post-
editing or IMT to data streams with massive data
volumes is still too expensive, simply because
manual supervision of all instances requires huge
amounts of manpower. For such massive data
streams the need of employing active learning
(AL) is compelling. AL techniques for IMT se-
lectively ask an oracle (e.g. a human transla-
tor) to supervise a small portion of the incoming
sentences. Sentences are selected so that SMT
models estimated from them translate new sen-
tences as accurately as possible. There are three
challenges when applying AL to unbounded data
streams (Zhu et al., 2010). These challenges can
be instantiated to IMT as follows:

1. The pool of candidate sentences is dynam-
ically changing, whereas existing AL algo-
rithms are dealing with static datasets only.
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2. Concepts such as optimum translation and
translation probability distribution are con-
tinually evolving whereas existing AL algo-
rithms only deal with constant concepts.

3. Data volume is unbounded which makes
impractical to batch-learn one single sys-
tem from all previously translated sentences.
Therefore, model training must be done in an
incremental fashion.

In this work, we present a proposal of AL for
IMT specifically designed to work with stream
data. In short, our proposal divides the data
stream into blocks where AL techniques for static
datasets are applied. Additionally, we implement
an incremental learning technique to efficiently
train the base SMT models as new data is avail-
able.

2 Related work

A body of work has recently been proposed to ap-
ply AL techniques to SMT (Haffari et al., 2009;
Ambati et al., 2010; Bloodgood and Callison-
Burch, 2010). The aim of these works is to
build one single optimal SMT model from manu-
ally translated data extracted from static datasets.
None of them fit in the setting of data streams.

Some of the above described challenges of AL
from unbounded streams have been previously ad-
dressed in the MT literature. In order to deal with
the evolutionary nature of the problem, Nepveu et
al. (2004) propose an IMT system with dynamic
adaptation via cache-based model extensions for
language and translation models. Pursuing the
same goal for SMT, Levenberg et al., (2010)
study how to bound the space when processing
(potentially) unbounded streams of parallel data
and propose a method to incrementally retrain
SMT models. Another method to efficiently re-
train a SMT model with new data was presented
in (Ortiz-Martı́nez et al., 2010). In this work,
the authors describe an application of the online
learning paradigm to the IMT framework.

To the best of our knowledge, the only previ-
ous work on AL for IMT is (González-Rubio et
al., 2011). There, the authors present a naı̈ve ap-
plication of the AL paradigm for IMT that do not
take into account the dynamic change in proba-
bility distribution of the stream. Nevertheless, re-
sults show that even that simple AL framework

halves the required human effort to obtain a cer-
tain translation quality.

In this work, the AL framework presented
in (González-Rubio et al., 2011) is extended in
an effort to address all the above described chal-
lenges. In short, we propose an AL framework for
IMT that splits the data stream into blocks. This
approach allows us to have more context to model
the changing probability distribution of the stream
(challenge 2) and results in a more accurate sam-
pling of the changing pool of sentences (chal-
lenge 1). In contrast to the proposal described
in (González-Rubio et al., 2011), we define sen-
tence sampling strategies whose underlying mod-
els can be updated with the newly available data.
This way, the sentences to be supervised by the
user are chosen taking into account previously su-
pervised sentences. To efficiently retrain the un-
derlying SMT models of the IMT system (chal-
lenge 3), we follow the online learning technique
described in (Ortiz-Martı́nez et al., 2010). Finally,
we integrate all these elements to define an AL
framework for IMT with an objective of obtaining
an optimum balance between translation quality
and human user effort.

3 Interactive machine translation

IMT can be seen as an evolution of the SMT
framework. Given a sentence f from a source
language to be translated into a sentence e of
a target language, the fundamental equation of
SMT (Brown et al., 1993) is defined as follows:

ê = arg max
e

Pr(e | f) (1)

where Pr(e | f) is usually approximated by a log
linear translation model (Koehn et al., 2003). In
this case, the decision rule is given by the expres-
sion:

ê = arg max
e

{
M∑

m=1

λmhm(e, f)

}
(2)

where each hm(e, f) is a feature function repre-
senting a statistical model and λm its weight.

In the IMT framework, a human translator is in-
troduced in the translation process to collaborate
with an SMT model. For a given source sentence,
the SMT model fully automatically generates an
initial translation. The human user checks this
translation, from left to right, correcting the first
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source (f ): Para ver la lista de recursos
desired translation (ê): To view a listing of resources

inter.-0 ep

es To view the resources list

inter.-1
ep To view
k a
es list of resources

inter.-2
ep To view a list
k list i
es list i ng resources

inter.-3
ep To view a listing
k o
es o f resources

accept ep To view a listing of resources

Figure 1: IMT session to translate a Spanish sentence
into English. The desired translation is the translation
the human user have in mind. At interaction-0, the sys-
tem suggests a translation (es). At interaction-1, the
user moves the mouse to accept the first eight charac-
ters ”To view ” and presses the a key (k), then the
system suggests completing the sentence with ”list of
resources” (a new es). Interactions 2 and 3 are simi-
lar. In the final interaction, the user accepts the current
translation.

error. Then, the SMT model proposes a new ex-
tension taking the correct prefix, ep, into account.
These steps are repeated until the user accepts the
translation. Figure 1 illustrates a typical IMT ses-
sion. In the resulting decision rule, we have to
find an extension es for a given prefix ep. To do
this we reformulate equation (1) as follows, where
the term Pr(ep | f) has been dropped since it does
not depend on es:

ês = arg max
es

Pr(ep, es | f) (3)

≈ arg max
es

p(es | f , ep) (4)

The search is restricted to those sentences e
which contain ep as prefix. Since e ≡ ep es, we
can use the same log-linear SMT model, equa-
tion (2), whenever the search procedures are ad-
equately modified (Barrachina et al., 2009).

4 Active learning for IMT

The aim of the IMT framework is to obtain high-
quality translations while minimizing the required
human effort. Despite the fact that IMT may
reduce the required effort with respect to post-
editing, it still requires the user to supervise all
the translations. To address this problem, we pro-
pose to use AL techniques to select only a small

number of sentences whose translations are worth
to be supervised by the human expert.

This approach implies a modification of the
user-machine interaction protocol. For a given
source sentence, the SMT model generates an ini-
tial translation. Then, if this initial translation is
classified as incorrect or “worth of supervision”,
we perform a conventional IMT procedure as in
Figure 1. If not, we directly return the initial au-
tomatic translation and no effort is required from
the user. At the end of the process, we use the new
sentence pair (f , e) available to refine the SMT
models used by the IMT system.

In this scenario, the user only checks a small
number of sentences, thus, final translations are
not error-free as in conventional IMT. However,
results in previous works (González-Rubio et al.,
2011) show that this approach yields important
reduction in human effort. Moreover, depending
on the definition of the sampling strategy, we can
modify the ratio of sentences that are interactively
translated to adapt our system to the requirements
of a specific translation task. For example, if the
main priority is to minimize human effort, our
system can be configured to translate all the sen-
tences without user intervention.

Algorithm 1 describes the basic algorithm to
implement AL for IMT. The algorithm receives as
input an initial SMT model, M , a sampling strat-
egy, S, a stream of source sentences, F, and the
block size, B. First, a block of B sentences, X ,
is extracted from the data stream (line 3). From
this block, we sample those sentences, Y , that
are worth to be supervised by the human expert
(line 4). For each of the sentences in X , the cur-
rent SMT model generates an initial translation,
ê, (line 6). If the sentence has been sampled as
worthy of supervision, f ∈ Y , the user is required
to interactively translate it (lines 8–13) as exem-
plified in Figure 1. The source sentence f and its
human-supervised translation, e, are then used to
retrain the SMT model (line 14). Otherwise, we
directly output the automatic translation ê as our
final translation (line 17).

Most of the functions in the algorithm denote
different steps in the interaction between the hu-
man user and the machine:

• translate(M, f): returns the most proba-
ble automatic translation of f given by M .

• validPrefix(e): returns the prefix of e
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input : M (initial SMT model)
S (sampling strategy)
F (stream of source sentences)
B (block size)

auxiliar : X (block of sentences)
Y (sentences worth of supervision)

begin1
repeat2
X = getSentsFromStream (B,F);3
Y = S(X,M);4
foreach f ∈ X do5

ê = translate(M, f);6
if f ∈ Y then7

e = ê;8
repeat9

ep = validPrefix(e);10
ês = genSuffix(M, f , ep);11
e = ep ês;12

until validTranslation(e) ;13
M = retrain(M, (f , e));14
output(e);15

else16
output(ê);17

until True ;18
end19

Algorithm 1: Pseudo-code of the proposed
algorithm to implement AL for IMT from
unbounded data streams.

validated by the user as correct. This prefix
includes the correction k.

• genSuffix(M, f , ep): returns the suffix of
maximum probability that extends prefix ep.

• validTranslation(e): returns True if
the user considers the current translation to
be correct and False otherwise.

Apart from these, the two elements that define
the performance of our algorithm are the sampling
strategy S(X,M) and the retrain(M, (f , e))

function. On the one hand, the sampling strat-
egy decides which sentences should be supervised
by the user, which defines the human effort re-
quired by the algorithm. Section 5 describes our
implementation of the sentence sampling to deal
with the dynamic nature of data streams. On the
other hand, the retrain(·) function incremen-
tally trains the SMT model with each new training
pair (f , e). Section 6 describes the implementa-
tion of this function.

5 Sentence sampling strategies

A good sentence sampling strategy must be able
to select those sentences that along with their cor-
rect translations improve most the performance of
the SMT model. To do that, the sampling strat-
egy have to correctly discriminate “informative”
sentences from those that are not. We can make
different approximations to measure the informa-
tiveness of a given sentence. In the following
sections, we describe the three different sampling
strategies tested in our experimentation.

5.1 Random sampling

Arguably, the simplest sampling approach is ran-
dom sampling, where the sentences are randomly
selected to be interactively translated. Although
simple, it turns out that random sampling per-
form surprisingly well in practice. The success
of random sampling stem from the fact that in
data stream environments the translation proba-
bility distributions may vary significantly through
time. While general AL algorithms ask the user to
translate informative sentences, they may signifi-
cantly change probability distributions by favor-
ing certain translations, consequently, the previ-
ously human-translated sentences may no longer
reveal the genuine translation distribution in the
current point of the data stream (Zhu et al., 2007).
This problem is less severe for static data where
the candidate pool is fixed and AL algorithms are
able to survey all instances. Random sampling
avoids this problem by randomly selecting sen-
tences for human supervision. As a result, it al-
ways selects those sentences with the most similar
distribution to the current sentence distribution in
the data stream.

5.2 n-gram coverage sampling

One technique to measure the informativeness
of a sentence is to directly measure the amount
of new information that it will add to the SMT
model. This sampling strategy considers that
sentences with rare n-grams are more informa-
tive. The intuition for this approach is that rare
n-grams need to be seen several times in order to
accurately estimate their probability.

To do that, we store the counts for each n-gram
present in the sentences used to train the SMT
model. We assume that an n-gram is accurately
represented when it appears A or more times in
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the training samples. Therefore, the score for a
given sentence f is computed as:

C(f) =

∑N
n=1 |N<A

n (f)|∑N
n=1 |Nn(f)|

(5)

where Nn(f) is the set of n-grams of size n
in f , N<A

n (f) is the set of n-grams of size n in
f that are inaccurately represented in the training
data and N is the maximum n-gram order. In
the experimentation, we assume N = 4 as the
maximum n-gram order and a value of 10 for the
threshold A. This sampling strategy works by se-
lecting a given percentage of the highest scoring
sentences.

We update the counts of the n-grams seen by
the SMT model with each new sentence pair.
Hence, the sampling strategy is always up-to-date
with the last training data.

5.3 Dynamic confidence sampling
Another technique is to consider that the most in-
formative sentence is the one the current SMT
model translates worst. The intuition behind this
approach is that an SMT model can not generate
good translations unless it has enough informa-
tion to translate the sentence.

The usual approach to compute the quality of a
translation hypothesis is to compare it to a refer-
ence translation, but, in this case, it is not a valid
option since reference translations are not avail-
able. Hence, we use confidence estimation (Gan-
drabur and Foster, 2003; Blatz et al., 2004; Ueff-
ing and Ney, 2007) to estimate the probability of
correctness of the translations. Specifically, we
estimate the quality of a translation from the con-
fidence scores of their individual words.

The confidence score of a word ei of the trans-
lation e = e1 . . . ei . . . eI generated from the
source sentence f = f1 . . . fj . . . fJ is computed
as described in (Ueffing and Ney, 2005):

Cw(ei, f) = max
0≤j≤| f |

p(ei|fj) (6)

where p(ei|fj) is an IBM model 1 (Brown et al.,
1993) bilingual lexicon probability and f0 is the
empty source word. The confidence score for the
full translation e is computed as the ratio of its
words classified as correct by the word confidence
measure. Therefore, we define the confidence-
based informativeness score as:

C(e, f) = 1− |{ei | Cw(ei, f) > τw}|
| e |

(7)

Finally, this sampling strategy works by select-
ing a given percentage of the highest scoring sen-
tences.

We dynamically update the confidence sampler
each time a new sentence pair is added to the SMT
model. The incremental version of the EM algo-
rithm (Neal and Hinton, 1999) is used to incre-
mentally train the IBM model 1.

6 Retraining of the SMT model

To retrain the SMT model, we implement the
online learning techniques proposed in (Ortiz-
Martı́nez et al., 2010). In that work, a state-
of-the-art log-linear model (Och and Ney, 2002)
and a set of techniques to incrementally train this
model were defined. The log-linear model is com-
posed of a set of feature functions governing dif-
ferent aspects of the translation process, includ-
ing a language model, a source sentence–length
model, inverse and direct translation models, a
target phrase–length model, a source phrase–
length model and a distortion model.

The incremental learning algorithm allows us
to process each new training sample in constant
time (i.e. the computational complexity of train-
ing a new sample does not depend on the num-
ber of previously seen training samples). To do
that, a set of sufficient statistics is maintained for
each feature function. If the estimation of the
feature function does not require the use of the
well-known expectation–maximization (EM) al-
gorithm (Dempster et al., 1977) (e.g. n-gram lan-
guage models), then it is generally easy to incre-
mentally extend the model given a new training
sample. By contrast, if the EM algorithm is re-
quired (e.g. word alignment models), the estima-
tion procedure has to be modified, since the con-
ventional EM algorithm is designed for its use in
batch learning scenarios. For such models, the in-
cremental version of the EM algorithm (Neal and
Hinton, 1999) is applied. A detailed description
of the update algorithm for each of the models in
the log-linear combination is presented in (Ortiz-
Martı́nez et al., 2010).

7 Experiments

We carried out experiments to assess the perfor-
mance of the proposed AL implementation for
IMT. In each experiments, we started with an
initial SMT model that is incrementally updated
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corpus use sentences words
(Spa/Eng)

Europarl train 731K 15M/15M
devel. 2K 60K/58K

News test 51K 1.5M/1.2MCommentary

Table 1: Size of the Spanish–English corpora used in
the experiments. K and M stand for thousands and
millions of elements respectively.

with the sentences selected by the current sam-
pling strategy. Due to the unavailability of public
benchmark data streams, we selected a relatively
large corpus and treated it as a data stream for AL.
To simulate the interaction with the user, we used
the reference translations in the data stream cor-
pus as the translation the human user would like
to obtain. Since each experiment is carried out
under the same conditions, if one sampling strat-
egy outperforms its peers, then we can safely con-
clude that this is because the sentences selected to
be translated are more informative.

7.1 Training corpus and data stream

The training data comes from the Europarl corpus
as distributed for the shared task in the NAACL
2006 workshop on statistical machine transla-
tion (Koehn and Monz, 2006). We used this data
to estimate the initial log-linear model used by our
IMT system (see Section 6). The weights of the
different feature functions were tuned by means
of minimum error–rate training (Och, 2003) exe-
cuted on the Europarl development corpus. Once
the SMT model was trained, we use the News
Commentary corpus (Callison-Burch et al., 2007)
to simulate the data stream. The size of these cor-
pora is shown in Table 1. The reasons to choose
the News Commentary corpus to carry out our
experiments are threefold: first, its size is large
enough to simulate a data stream and test our
AL techniques in the long term; second, it is
out-of-domain data which allows us to simulate
a real-world situation that may occur in a trans-
lation company, and, finally, it consists in edito-
rials from eclectic domain: general politics, eco-
nomics and science, which effectively represents
the variations in the sentence distributions of the
simulated data stream.

7.2 Assessment criteria

We want to measure both the quality of the gener-
ated translations and the human effort required to
obtain them.

We measure translation quality with the well-
known BLEU (Papineni et al., 2002) score.

To estimate human user effort, we simulate the
actions taken by a human user in its interaction
with the IMT system. The first translation hypoth-
esis for each given source sentence is compared
with a single reference translation and the longest
common character prefix (LCP) is obtained. The
first non-matching character is replaced by the
corresponding reference character and then a new
translation hypothesis is produced (see Figure 1).
This process is iterated until a full match with the
reference is obtained. Each computation of the
LCP would correspond to the user looking for the
next error and moving the pointer to the corre-
sponding position of the translation hypothesis.
Each character replacement, on the other hand,
would correspond to a keystroke of the user.

Bearing this in mind, we measure the user ef-
fort by means of the keystroke and mouse-action
ratio (KSMR) (Barrachina et al., 2009). This mea-
sure has been extensively used to report results in
the IMT literature. KSMR is calculated as the
number of keystrokes plus the number of mouse
movements divided by the total number of refer-
ence characters. From a user point of view the
two types of actions are different and require dif-
ferent types of effort (Macklovitch, 2006). In any
case, as an approximation, KSMR assumes that
both actions require a similar effort.

7.3 Experimental results

In this section, we report results for three different
experiments. First, we studied the performance
of the sampling strategies when dealing with the
sampling bias problem. In the second experiment,
we carried out a typical AL experiment measur-
ing the performance of the sampling strategies as
a function of the percentage of the corpus used
to retrain the SMT model. Finally, we tested our
AL implementation for IMT in order to study the
tradeoff between required human effort and final
translation quality.

7.3.1 Dealing with the sampling bias
In this experiment, we want to study the perfor-

mance of the different sampling strategies when
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Figure 2: Performance of the AL methods across dif-
ferent data blocks. Block size 500. Human supervision
10% of the corpus.

dealing with the sampling bias problem. Fig-
ure 2 shows the evolution of the translation qual-
ity, in terms of BLEU, across different data blocks
for the three sampling strategies described in sec-
tion 5, namely, dynamic confidence sampling
(DCS), n-gram coverage sampling (NS) and ran-
dom sampling (RS). On the one hand, the x-axis
represents the data blocks number in their tempo-
ral order. On the other hand, the y-axis represents
the BLEU score when automatically translating a
block. Such translation is obtained by the SMT
model trained with translations supervised by the
user up to that point of the data stream. To fairly
compare the different methods, we fixed the per-
centage of words supervised by the human user
(10%). In addition to this, we used a block size of
500 sentences. Similar results were obtained for
other block sizes.

Results in Figure 2 indicate that the perfor-
mances for the data blocks fluctuate and fluctu-
ations are quite significant. This phenomenon is
due to the eclectic domain of the sentences in the
data stream. Additionally, the steady increase in
performance is caused by the increasing amount
of data used to retrain the SMT model.

Regarding the results for the different sam-
pling strategies, DCS consistently outperformed
RS and NS. This observation asserts that for con-
cept drifting data streams with constant changing
translation distributions, DCS can adaptively ask
the user to translate sentences to build a superior
SMT model. On the other hand, NS obtains worse
results that RS. This result can be explained by the
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Figure 3: BLEU of the initial automatic translations
as a function of the percentage of the corpus used to
retrain the model.

fact that NS is independent of the target language
and just looks into the source language, while
DCS takes into account both the source sentence
and its automatic translation. Similar phenomena
has been reported in a previous work on AL for
SMT (Haffari et al., 2009).

7.3.2 AL performance
We carried out experiments to study the perfor-

mance of the different sampling strategies. To this
end, we compare the quality of the initial auto-
matic translations generated in our AL implemen-
tation for IMT (line 6 in Algorithm 1). Figure 3
shows the BLEU score of these initial translations
represented as a function of the percentage of the
corpus used to retrain the SMT model. The per-
centage of the corpus is measured in number of
running words.

In Figure 3, we present results for the three
sampling strategies described in section 5. Ad-
ditionally, we also compare our techniques with
the AL technique for IMT proposed in (González-
Rubio et al., 2011). Such technique is similar to
DCS but it does not update the IBM model 1 used
by the confidence sampler with the newly avail-
able human-translated sentences. This technique
is referred to as static confidence sampler (SCS).

Results in Figure 3 indicate that the perfor-
mance of the retrained SMT models increased as
more data was incorporated. Regarding the sam-
pling strategies, DCS improved the results ob-
tained by the other sampling strategies. NS ob-
tained by far the worst results, which confirms the
results shown in the previous experiment. Finally,
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Figure 4: Quality of the data stream translation
(BLEU) as a function of the required human effort
(KSMR). w/o AL denotes a system with no retraining.

as it can be seen, SCS obtained slightly worst re-
sults than DCS showing the importance of dy-
namically adapting the underlying model used by
the sampling strategy.

7.3.3 Balancing human effort and
translation quality

Finally, we studied the balance between re-
quired human effort and final translation error.
This can be useful in a real-world scenario where
a translation company is hired to translate a
stream of sentences. Under these circumstances,
it would be important to be able to predict the ef-
fort required from the human translators to obtain
a certain translation quality.

The experiment simulate this situation using
our proposed IMT system with AL to translate
the stream of sentences. To have a broad view
of the behavior of our system, we repeated this
translation process multiple times requiring an in-
creasing human effort each time. Experiments
range from a fully-automatic translation system
with no need of human intervention to a system
where the human is required to supervise all the
sentences. Figure 4 presents results for SCS (see
section 7.3.2) and the sentence selection strate-
gies presented in section 5. In addition, we also
present results for a static system without AL (w/o
AL). This system is equal to SCS but it do not per-
form any SMT retraining.

Results in Figure 4 show a consistent reduction
in required user effort when using AL. For a given
human effort the use of AL methods allowed to
obtain twice the translation quality. Regarding the

different AL sampling strategies, DCS obtains the
better results but differences with other methods
are slight.

Varying the sentence classifier, we can achieve
a balance between final translation quality and re-
quired human effort. This feature allows us to
adapt the system to suit the requirements of the
particular translation task or to the available eco-
nomic or human resources. For example, if a
translation quality of 60 BLEU points is satisfac-
tory, then the human translators would need to
modify only a 20% of the characters of the au-
tomatically generated translations.

Finally, it should be noted that our IMT sys-
tems with AL are able to generate new suffixes
and retrain with new sentence pairs in tenths of a
second. Thus, it can be applied in real time sce-
narios.

8 Conclusions and future work

In this work, we have presented an AL frame-
work for IMT specially designed to process data
streams with massive volumes of data. Our pro-
posal splits the data stream in blocks of sentences
of a certain size and applies AL techniques indi-
vidually for each block. For this purpose, we im-
plemented different sampling strategies that mea-
sure the informativeness of a sentence according
to different criteria.

To evaluate the performance of our proposed
sampling strategies, we carried out experiments
comparing them with random sampling and the
only previously proposed AL technique for IMT
described in (González-Rubio et al., 2011). Ac-
cording to the results, one of the proposed sam-
pling strategies, specifically the dynamic con-
fidence sampling strategy, consistently outper-
formed all the other strategies.

The results in the experimentation show that the
use of AL techniques allows us to make a tradeoff
between required human effort and final transla-
tion quality. In other words, we can adapt our sys-
tem to meet the translation quality requirements
of the translation task or the available human re-
sources.

As future work, we plan to investigate on
more sophisticated sampling strategies such as
those based in information density or query-by-
committee. Additionally, we will conduct exper-
iments with real users to confirm the results ob-
tained by our user simulation.
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Abstract

Translation models used for statistical ma-
chine translation are compiled from par-
allel corpora; such corpora are manually
translated, but the direction of translation is
usually unknown, and is consequently ig-
nored. However, much research in Trans-
lation Studies indicates that the direction of
translation matters, as translated language
(translationese) has many unique proper-
ties. Specifically, phrase tables constructed
from parallel corpora translated in the same
direction as the translation task perform
better than ones constructed from corpora
translated in the opposite direction.

We reconfirm that this is indeed the case,
but emphasize the importance of using also
texts translated in the ‘wrong’ direction.
We take advantage of information pertain-
ing to the direction of translation in con-
structing phrase tables, by adapting the
translation model to the special proper-
ties of translationese. We define entropy-
based measures that estimate the correspon-
dence of target-language phrases to transla-
tionese, thereby eliminating the need to an-
notate the parallel corpus with information
pertaining to the direction of translation.
We show that incorporating these measures
as features in the phrase tables of statisti-
cal machine translation systems results in
consistent, statistically significant improve-
ment in the quality of the translation.

1 Introduction

Much research in Translation Studies indicates
that translated texts have unique characteristics
that set them apart from original texts (Toury,
1980; Gellerstam, 1986; Toury, 1995). Known
as translationese, translated texts (in any lan-
guage) constitute a genre, or a dialect, of the

target language, which reflects both artifacts of
the translation process and traces of the origi-
nal language from which the texts were trans-
lated. Among the better-known properties of
translationese are simplification and explicitation
(Baker, 1993, 1995, 1996): translated texts tend
to be shorter, to have lower type/token ratio, and
to use certain discourse markers more frequently
than original texts. Incidentally, translated texts
are so markedly different from original ones that
automatic classification can identify them with
very high accuracy (van Halteren, 2008; Baroni
and Bernardini, 2006; Ilisei et al., 2010; Koppel
and Ordan, 2011).

Contemporary Statistical Machine Translation
(SMT) systems use parallel corpora to train trans-
lation models that reflect source- and target-
language phrase correspondences. Typically,
SMT systems ignore the direction of translation
used to produce those corpora. Given the unique
properties of translationese, however, it is reason-
able to assume that this direction may affect the
quality of the translation. Recently, Kurokawa
et al. (2009) showed that this is indeed the case.
They train a system to translate between French
and English (and vice versa) using a French-
translated-to-English parallel corpus, and then an
English-translated-to-French one. They find that
in translating into French the latter parallel cor-
pus yields better results, whereas for translating
into English it is better to use the former.

Usually, of course, the translation direction of a
parallel corpus is unknown. Therefore, Kurokawa
et al. (2009) train an SVM-based classifier to pre-
dict which side of a bi-text is the origin and which
one is the translation, and only use the subset
of the corpus that corresponds to the translation
direction of the task in training their translation
model.
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We use these results as our departure point,
but improve them in two major ways. First,
we demonstrate that the other subset of the cor-
pus, reflecting translation in the ‘wrong’ direc-
tion, is also important for the translation task, and
must not be ignored; second, we show that ex-
plicit information on the direction of translation of
the parallel corpus, whether manually-annotated
or machine-learned, is not mandatory. This is
achieved by casting the problem in the framework
of domain adaptation: we use domain-adaptation
techniques to direct the SMT system toward pro-
ducing output that better reflects the properties
of translationese. We show that SMT systems
adapted to translationese produce better transla-
tions than vanilla systems trained on exactly the
same resources. We confirm these findings using
an automatic evaluation metric, BLEU (Papineni
et al., 2002), as well as through a qualitative anal-
ysis of the results.

Our departure point is the results of Kurokawa
et al. (2009), which we successfully replicate in
Section 3. First (Section 4), we explain why trans-
lation quality improves when the parallel corpus
is translated in the ‘right’ direction. We do so
by showing that the subset of the corpus that was
translated in the direction of the translation task
(the ‘right’ direction, henceforth source-to-target,
or S → T ) yields phrase tables that are better
suited for translation of the original language than
the subset translated in the reverse direction (the
‘wrong’ direction, henceforth target-to-source, or
T → S). We use several statistical measures that
indicate the better quality of the phrase tables in
the former case.

Then (Section 5), we explore ways to build a
translation model that is adapted to the unique
properties of translationese. We first show that
using the entire parallel corpus, including texts
that are translated both in the ‘right’ and in the
‘wrong’ direction, improves the quality of the re-
sults. Furthermore, we show that the direction of
translation used for producing the parallel corpus
can be approximated by defining several entropy-
based measures that correlate well with transla-
tionese, and, consequently, with the quality of the
translation.

Specifically, we use the entire corpus, create a
single, unified phrase table and then use the statis-
tical measures mentioned above, and in particular
cross-entropy, as a clue for selecting phrase pairs

from this table. The benefit of this method is that
not only does it yield the best results, but it also
eliminates the need to directly predict the direc-
tion of translation of the parallel corpus. The main
contribution of this work, therefore, is a method-
ology that improves the quality of SMT by build-
ing translation models that are adapted to the na-
ture of translationese.

2 Related Work

Kurokawa et al. (2009) are the first to address
the direction of translation in the context of SMT.
Their main finding is that using the S → T por-
tion of the parallel corpus results in mucqqh better
translation quality than when the T → S portion
is used for training the translation model. We in-
deed replicate these results here (Section 3), and
view them as a baseline. Additionally, we show
that the T → S portion is also important for ma-
chine translation and thus should not be discarded.
Using information-theory measures, and in par-
ticular cross-entropy, we gain statistically signif-
icant improvements in translation quality beyond
the results of Kurokawa et al. (2009). Further-
more, we eliminate the need to (manually or au-
tomatically) detect the direction of translation of
the parallel corpus.

Lembersky et al. (2011) also investigate the re-
lations between translationese and machine trans-
lation. Focusing on the language model (LM),
they show that LMs trained on translated texts
yield better translation quality than LMs compiled
from original texts. They also show that perplex-
ity is a good discriminator between original and
translated texts.

Our current work is closely related to research
in domain-adaptation. In a typical domain adap-
tation scenario, a system is trained on a large cor-
pus of “general” (out-of-domain) training mate-
rial, with a small portion of in-domain training
texts. In our case, the translation model is trained
on a large parallel corpus, of which some (gener-
ally unknown) subset is “in-domain” (S → T ),
and some other subset is “out-of-domain” (T →
S). Most existing adaptation methods focus on
selecting in-domain data from a general domain
corpus. In particular, perplexity is used to score
the sentences in the general-domain corpus ac-
cording to an in-domain language model. Gao
et al. (2002) and Moore and Lewis (2010) apply
this method to language modeling, while Foster
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et al. (2010) and Axelrod et al. (2011) use it on
the translation model. Moore and Lewis (2010)
suggest a slightly different approach, using cross-
entropy difference as a ranking function.

Domain adaptation methods are usually applied
at the corpus level, while we focus on an adap-
tation of the phrase table used for SMT. In this
sense, our work follows Foster et al. (2010), who
weigh out-of-domain phrase pairs according to
their relevance to the target domain. They use
multiple features that help distinguish between
phrase pairs in the general domain and those in
the specific domain. We rely on features that are
motivated by the findings of Translation Studies,
having established their relevance through a com-
parative analysis of the phrase tables. In particu-
lar, we use measures such as translation model en-
tropy, inspired by Koehn et al. (2009). Addition-
ally, we apply the method suggested by Moore
and Lewis (2010) using perplexity ratio instead
of cross-entropy difference.

3 Experimental Setup

The tasks we focus on are translation between
French and English, in both directions. We
use the Hansard corpus, containing transcripts of
the Canadian parliament from 1996–2007, as the
source of all parallel data. The Hansard is a
bilingual French–English corpus comprising ap-
proximately 80% English-original texts and 20%
French-original texts. Crucially, each sentence
pair in the corpus is annotated with the direction
of translation. Both English and French are lower-
cased and tokenized using MOSES (Koehn et al.,
2007). Sentences longer than 80 words are dis-
carded.

To address the effect of the corpus size, we
compile six subsets of different sizes (250K,
500K, 750K, 1M, 1.25M and 1.5M parallel
sentences) from each portion (English-original
and French-original) of the corpus. Addition-
ally, we use the devtest section of the Hansard
corpus to randomly select French-original and
English-original sentences that are used for tun-
ing (1,000 sentences each) and evaluation (5,000
sentences each). French-to-English MT sys-
tems are tuned and tested on French-original sen-
tences and English-to-French systems on English-
original ones.

To replicate the results of Kurokawa et al.
(2009) and set up a baseline, we train twelve

French-to-English and twelve English-to-French
phrase-based (PB-) SMT systems using the
MOSES toolkit (Koehn et al., 2007), each trained
on a different subset of the corpus. We use
GIZA++ (Och and Ney, 2000) with grow-diag-
final alignment, and extract phrases of length up
to 10 words. We prune the resulting phrase tables
as in Johnson et al. (2007), using at most 30 trans-
lations per source phrase and discarding singleton
phrase pairs.

We construct English and French 5-gram lan-
guage models from the English and French
subsections of the Europarl-V6 corpus (Koehn,
2005), using interpolated modified Kneser-Ney
discounting (Chen, 1998) and no cut-off on all
n-grams. Europarl consists of a large number
of subsets translated from various languages, and
is therefore unlikely to be biased towards a spe-
cific source language. The reordering model used
in all MT systems is trained on the union of
the 1.5M French-original and the 1.5M English-
original subsets, using msd-bidirectional-fe re-
ordering. We use the MERT algorithm (Och,
2003) for tuning and BLEU (Papineni et al., 2002)
as our evaluation metric. We test the statistical
significance of the differences between the results
using the bootstrap resampling method (Koehn,
2004).

A word on notation: We use ‘English-original’
(EO) and ‘French-original’ (FO) to refer to the
subsets of the corpus that are translated from En-
glish to French and from French to English, re-
spectively. The translation tasks are English-to-
French (E2F) and French-to-English (F2E). We
thus use ‘S → T ’ when the FO corpus is used for
the F2E task or when the EO corpus is used for
the E2F task; and ‘T → S’ when the FO corpus
is used for the E2F task or when the EO corpus is
used for the F2E task.

Table 1 depicts the BLEU scores of the baseline
systems. The data are consistent with the findings
of Kurokawa et al. (2009): systems trained on
S → T parallel texts outperform systems trained
on T → S texts, even when the latter are much
larger. The difference in BLEU score can be as
high as 3 points.

4 Analysis of the Phrase Tables

The baseline results suggest that S → T and
T → S phrase tables differ substantially, presum-
ably due to the different characteristics of original
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Task: French-to-English
Corpus subset S → T T → S

250K 34.35 31.33
500K 35.21 32.38
750K 36.12 32.90

1M 35.73 33.07
1.25M 36.24 33.23
1.5M 36.43 33.73

Task: English-to-French
Corpus subset S → T T → S

250K 27.74 26.58
500K 29.15 27.19
750K 29.43 27.63

1M 29.94 27.88
1.25M 30.63 27.84
1.5M 29.89 27.83

Table 1: BLEU scores of baseline systems

and translated texts. In this section we explain
the better translation quality in terms of the bet-
ter quality of the respective phrase tables, as de-
fined by a number of statistical measures. We first
relate these measures to the unique properties of
translationese.

Translated texts tend to be simpler than original
ones along a number of criteria. Generally, trans-
lated texts are not as rich and variable as origi-
nal ones, and in particular, their type/token ratio
is lower. Consequently, we expect S → T phrase
tables (which are based on a parallel corpus whose
source is original texts, and whose target is trans-
lationese) to have more unique source phrases and
a lower number of translations per source phrase.
A large number of unique source phrases suggests
better coverage of the source text, while a small
number of translations per source phrase means a
lower phrase table entropy. Entropy-based mea-
sures are well-established tools to assess the qual-
ity of a phrase table. Phrase table entropy captures
the amount of uncertainty involved in choosing
candidate translation phrases (Koehn et al., 2009).

Given a source phrase s and a phrase table T
with translations t of s whose probabilities are
p(t|s), the entropy H of s is:

H(s) = −
∑
t∈T

p(t|s)× log2p(t|s) (1)

There are two major flavors of the phrase table
entropy metric: Lambert et al. (2011) calculate

the average entropy over all translation options
for each source phrase (henceforth, phrase table
entropy or PtEnt), whereas Koehn et al. (2009)
search through all possible segmentations of the
source sentence to find the optimal covering set of
test sentences that minimizes the average entropy
of the source phrases in the covering set (hence-
forth, covering set entropy or CovEnt).

We also propose a metric that assesses the qual-
ity of the source side of a phrase table. The met-
ric finds the minimal covering set of a given text
in the source language using source phrases from
a particular phrase table, and outputs the average
length of a phrase in the covering set (henceforth,
covering set average length or CovLen).

Lembersky et al. (2011) show that perplexity
distinguishes well between translated and origi-
nal texts. Moreover, perplexity reflects the de-
gree of ‘relatedness’ of a given phrase to original
language or to translationese. Motivated by this
observation, we design two cross-entropy-based
measures to assess how well each phrase table fits
the genre of translationese. Since MT systems are
evaluated against human translations, we believe
that this factor may have a significant impact on
translation performance. The cross-entropy of a
text T = w1, w2, · · ·wN according to a language
model L is:

H(T, L) = − 1

N

N∑
i=1

log2L(wi) (2)

We build language models of translated texts
as follows. For English translationese, we
extract 170,000 French-original sentences from
the English portion of Europarl, and 3,000
English-translated-from-French sentences from
the Hansard corpus (disjoint from the training,
development and test sets, of course). We use
each corpus to train a trigram language model
with interpolated modified Kneser-Ney discount-
ing and no cut-off. All out-of-vocabulary words
are mapped to a special token, 〈unk〉. Then,
we interpolate the Hansard and Europarl language
models to minimize the perplexity of the target
side of the development set (λ = 0.58). For
French translationese, we use 270,000 sentences
from Europarl and 3,000 sentences from Hansard,
λ = 0.81. Finally, we compute the cross-entropy
of each target phrase in the phrase tables accord-
ing to these language models.
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As with the entropy-based measures, we define
two cross-entropy metrics: phrase table cross-
entropy or PtCrEnt calculates the average cross-
entropy over weighted cross-entropies of all trans-
lation options for each source phrase, and cover-
ing set cross-entropy or CovCrEnt finds the opti-
mal covering set of test sentences that minimizes
the weighted cross-entropy of the source phrase
in the covering set. Given a phrase table T and a
language model L, the weighted cross-entropyW
for a source phrase s is:

W (s, L) = −
∑
t∈T

H(t, L)× p(t|s) (3)

where H(t, L) is the cross-entropy of t according
to a language model L.

Table 2 depicts various statistical measures
computed on the phrase tables corresponding to
our 24 SMT systems.1 The data meet our pre-
liminary expectations: S → T phrase tables have
more unique source phrases, but fewer translation
options per source phrase. They have lower en-
tropy and cross-entropy, but higher covering set
length.

In order to asses the correspondence of each
measure to translation quality, we compute the
correlation of BLEU scores from Table 1 with
each of the measures specified in Table 2; we
compute the correlation coefficientR2 (the square
of Pearson’s product-moment correlation coeffi-
cient) by fitting a simple linear regression model.
Table 3 lists the results. Only the covering set
cross-entropy measure shows stability over the
French-to-English and English-to-French transla-
tion tasks, with R2 equals to 0.56 and 0.54, re-
spectively. Other measures are sensitive to the
translation task: covering set entropy has the
highest correlation with BLEU (R2 = 0.94) when
translating French-to-English, but it drops to 0.46
for the reverse task. The covering set average
length measure shows similar behavior: R2 drops
from 0.75 in French-to-English to 0.56 in English-
to-French. Still, the correlation of these measures
with BLEU is high.

Consequently, we use the three best measures,
namely covering set entropy, cross-entropy and
average length, as indicators of better transla-
tions, more similar to translationese. Crucially,

1The phrase tables were pruned, retaining only phrases
that are included in the evaluation set.

Measure R2 (FR–EN) R2 (EN-FR)
AvgTran 0.06 0.22
PtEnt 0.03 0.19
CovEnt 0.94 0.46
PtCrEnt 0.33 0.44
CovCrEnt 0.56 0.54
CovLen 0.75 0.56

Table 3: Correlation of BLEU scores with phrase table
statistical measures

these measures are computed directly on the
phrase table, and do not require reference trans-
lations or meta-information pertaining to the di-
rection of translation of the parallel phrase.

5 Translation Model Adaptation

We have thus established the fact that S → T
phrase tables have an advantage over T → S ones
that stems directly from the different characteris-
tics of original and translated texts. We have also
identified three statistical measures that explain
most of the variability in translation quality. We
now explore ways for taking advantage of the en-
tire parallel corpus, including translations in both
directions, in light of the above findings. Our goal
is to establish the best method to address the is-
sue of different translation direction components
in the parallel corpus.

First, we simply take the union of the two sub-
sets of the parallel corpus. We create three dif-
ferent mixtures of FO and EO: 500K sentences
each of FO and EO (‘MIX1’), 500K sentences
of FO and 1M sentences of EO (‘MIX2’), and
1M sentences of FO and 500K sentences of EO
(‘MIX3’). We use these corpora to train French-
to-English and English-to-French MT systems,
evaluating their quality on the evaluation sets de-
scribed in Section 3. We use the same Moses con-
figuration as well as the same language and re-
ordering models as in Section 3.

Table 4 reports the results, comparing them
to the results obtained for the baseline MT sys-
tems trained on individual French-original and
English-original bi-texts (see Section 3).2 Note
that the mixed corpus includes many more sen-
tences than each of the baseline models; this is a

2Recall that when translating from French to English,
S → T means that the bi-text is French-original; when trans-
lating from English to French, S → T means it is English-
original.
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Task: French-to-English
Set Total Source AvgTran PtEnt CovEnt PtCrEnt CovCrEnt CovLen

S → T
250K 231K 69K 3.35 0.86 0.36 3.94 1.64 2.44
500K 360K 86K 4.21 0.98 0.35 3.52 1.30 2.64
750K 461K 96K 4.81 1.05 0.35 3.24 1.10 2.77

1M 544K 103K 5.27 1.10 0.34 3.09 0.99 2.85
1.25M 619K 109K 5.66 1.14 0.34 2.98 0.91 2.92

1.5M 684K 114K 6.01 1.18 0.33 2.90 0.85 2.97
T → S
250K 199K 55K 3.65 0.92 0.45 4.00 1.87 2.25
500K 317K 69K 4.56 1.05 0.43 3.57 1.52 2.42
750K 405K 78K 5.19 1.12 0.43 3.39 1.35 2.53

1M 479K 85K 5.66 1.16 0.42 3.21 1.21 2.61
1.25M 545K 90K 6.07 1.20 0.41 3.11 1.12 2.67

1.5M 602K 94K 6.43 1.24 0.41 3.04 1.07 2.71
Task: English-to-French

Set Total Source AvgTran PtEnt CovEnt PtCrEnt CovCrEnt CovLen
S → T
250K 224K 49K 4.52 1.07 0.63 3.48 1.88 2.08
500K 346K 61K 5.64 1.21 0.59 3.08 1.49 2.25
750K 437K 68K 6.39 1.29 0.57 2.91 1.33 2.33

1M 513K 74K 6.95 1.34 0.55 2.75 1.18 2.41
1.25M 579K 78K 7.42 1.38 0.54 2.63 1.09 2.46

1.5M 635K 81K 7.83 1.41 0.53 2.58 1.03 2.50
T → S
250K 220K 46K 4.75 1.12 0.63 3.62 2.09 2.02
500K 334K 57K 5.82 1.24 0.60 3.24 1.70 2.16
750K 421K 64K 6.54 1.31 0.58 2.97 1.48 2.25

1M 489K 69K 7.10 1.36 0.57 2.84 1.35 2.32
1.25M 550K 73K 7.56 1.40 0.55 2.74 1.25 2.37

1.5M 603K 76K 7.92 1.43 0.55 2.66 1.17 2.41

Table 2: Statistic measures computed on the phrase tables: total size, in tokens (‘Total’); the number of unique
source phrases (‘Source’); the average number of translations per source phrase (‘AvgTran’); phrase table entropy
(‘PtEnt’) and covering set entropy (‘CovEnt’); phrase table cross-entropy (‘PtCrEnt’) and covering set cross-
entropy (‘CovCrEnt’); and the covering set average length (‘CovLen’)

realistic scenario, in which one can opt either to
use the entire parallel corpus, or only its S → T
subset. Even with a corpus several times as large,
however, the ‘mixed’ MT systems perform only
slightly better than the S → T ones. On one
hand, this means that one can train MT systems
on S → T data only, at the expense of only a mi-
nor loss in quality. On the other hand, it is obvi-
ous that the T → S component also contributes to
translation quality. We now look at ways to better
utilize this portion.

We compute the measures established in the

previous section on phrase tables trained on the
MIX corpora, and compare them with the same
measures computed for phrase tables trained on
the relevant S → T corpus for both translation
tasks. Table 5 displays the figures for the MIX1
corpus: Phrase tables trained on mixed corpora
have higher covering set average length, similar
covering set entropy, but significantly worse cov-
ering set cross-entropy. Consequently, improving
covering set cross-entropy has the greatest poten-
tial for improving translation quality. We there-
fore use this feature to ‘encourage’ the decoder to
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Task: French-to-English
System MIX1 MIX2 MIX3
Union 35.27 35.36 35.94
S → T 35.21 35.21 35.73
T → S 32.38 33.07 32.38

Task: English-to-French
System MIX1 MIX2 MIX3
Union 29.27 30.01 29.44
S → T 29.15 29.94 29.15
T → S 27.19 27.19 27.88

Table 4: Evaluation of the MIX systems

select translation options that are more related to
the genre of translated texts.

French-to-English
Measure MIX1 S → T

CovLen 2.78 2.64
CovEnt 0.37 0.35
CovCrEnt 1.58 1.10

English-to-French
Measure MIX1 S → T

CovLen 2.40 2.25
CovEnt 0.55 0.58
CovCrEnt 2.09 1.48

Table 5: Statistical measures computed for mixed vs.
source-to-target phrase tables

We do so by adding to each phrase pair in the
phrase tables an additional factor, as a measure of
its fitness to the genre of translationese. We ex-
periment with two such factors. First, we use the
language models described in Section 4 to com-
pute the cross-entropy of each translation option
according to this model. We add cross-entropy
as an additional score of a translation pair that
can be tuned by MERT (we refer to this system
as CrEnt). Since cross-entropy is ‘the lower the
better’ metric, we adjust the range of values used
by MERT for this score to be negative. Sec-
ond, following Moore and Lewis (2010), we de-
fine an adapting feature that not only measures
how close phrases are to translated language, but
also how far they are from original language, and
use it as a factor in a phrase table (this system
is referred to as PplRatio). We build two addi-
tional language models of original texts as fol-
lows. For original English, we extract 135,000
English-original sentences from the English por-

tion of Europarl, and 2,700 English-original sen-
tences from the Hansard corpus. We train a tri-
gram language model with interpolated modified
Kneser-Ney discounting on each corpus and we
interpolate both models to minimize the perplex-
ity of the source side of the development set for
the English-to-French translation task (λ = 0.49).
For original French, we use 110,000 sentences
from Europarl and 2,900 sentences from Hansard,
λ = 0.61. Finally, for each target phrase t in the
phrase table we compute the ratio of the perplex-
ity of t according to the original language model
Lo and the perplexity of twith respect to the trans-
lated modelLt (see Section 4). In other words, the
factor F is computed as follows:

F (t) =
H(t, Lo)

H(t, Lt)
(4)

We apply these techniques to the French-to-
English and English-to-French phrase tables built
from the mixed corpora and use each phrase ta-
ble to train an SMT system. Table 6 summa-
rizes the performance of these systems. All sys-
tems outperform the corresponding Union sys-
tems. ‘CrEnt’ systems show significant improve-
ments (p < 0.05) on balanced scenarios (‘MIX1’)
and on scenarios biased towards the S → T com-
ponent (‘MIX2’ in the French-to-English task,
‘MIX3’ in English-to-French). ‘PplRatio’ sys-
tems exhibit more consistent behavior, showing
small, but statistically significant improvement
(p < 0.05) in all scenarios.

Task: French-to-English
System MIX1 MIX2 MIX3
Union 35.27 35.36 35.94
CrEnt 35.54 35.45 36.75
PplRatio 35.59 35.78 36.22

Task: English-to-French
System MIX1 MIX2 MIX3
Union 29.27 30.01 29.44
CrEnt 29.47 30.44 29.45
PplRatio 29.65 30.34 29.62

Table 6: Evaluation of MT Systems

Note again that all systems in the same column
are trained on exactly the same corpus and have
exactly the same phrase tables. The only differ-
ence is an additional factor in the phrase table that
“encourages” the decoder to select translation op-
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tions that are closer to translated texts than to orig-
inal ones.

6 Analysis

In order to study the effect of the adaptation qual-
itatively, rather than quantitatively, we focus on
several concrete examples. We compare transla-
tions produced by the ‘Union’ (henceforth base-
line) and by the ‘PplRatio’ (henceforth adapted)
French-English SMT systems. We manually in-
spect 200 sentences of length between 15 and 25
from the French-English evaluation set.

In many cases, the adapted system produces
more fluent and accurate translations. In the fol-
lowing examples, the baseline system generates
common translations of French words that are ad-
equate for a wider context, whereas the adapted
system chooses less common, but more suitable
translations:
Source J’ai eu cette perception et j’étais assez

certain que ça allait se faire.
Baseline I had that perception and I was enough

certain it was going do.
Adapted I had that perception and I was quite

certain it was going do.
Source J’attends donc que vous en demandiez la

permission, monsieur le Président.
Baseline I look so that you seek permission, mr.

chairman.
Adapted I await, then, that you seek permission,

mr. chairman.
In quite a few cases, the baseline system leaves

out important words from the source sentence,
producing ungrammatical, even illegible transla-
tions, whereas the adapted system generates good
translations. Careful traceback reveals that the
baseline system ‘splits’ the source sentence into
phrases differently (and less optimally) than the
adapted system. Apparently, when the decoder is
coerced to select translation options that are more
adapted to translationese, it tends to select source
phrases that are more related to original texts, re-
sulting in more successful coverage of the source
sentence:
Source Pourtant, lorsqu’ on les avait présentés,

c’était pour corriger les problèmes liés au
PCSRA.

Baseline Yet when they had presented, it was to
correct the problems the CAIS program.

Adapted Yet when they had presented, it was to
correct the problems associated with CAIS.

Source Cependant, je pense qu’il est prématuré
de le faire actuellement, étant donné que le
ministre a lancé cette tournée.

Baseline However, I think it is premature to the
right now, since the minister launched this
tour.

Adapted However, I think it is premature to do
so now, given that the minister has launched
this tour.

Finally, there are often cultural differences be-
tween languages, specifically the use of a 24-hour
clock (common in French) vs. a 12-hour clock
(common in English). The adapted system is
more consistent in translating the former to the
latter:

Source On avait décidé de poursuivre la séance
jusqu’ à 18 heures, mais on n’aura pas le
temps de faire un autre tour de table.

Baseline We had decided to continue the meeting
until 18 hours, but we will not have the time
to do another round.

Adapted We had decided to continue the meeting
until 6 p.m., but we won’t have the time to do
another round.

Source Vu qu’il est 17h 20, je suis d’accord
pour qu’on ne discute pas de ma motion
immédiatement.

Baseline Seen that it is 17h 20, I agree that we are
not talking about my motion immediately.

Adapted Given that it is 5:20, I agree that we are
not talking about my motion immediately.

In (human) translation circles, translating out of
one’s mother tongue is considered unprofessional,
even unethical (Beeby, 2009). Many professional
associations in Europe urge translators to work
exclusively into their mother tongue (Pavlović,
2007). The two kinds of automatic systems built
in this paper reflect only partly the human sit-
uation, but they do so in a crucial way. The
S → T systems learn examples from many hu-
man translators who follow the decree according
to which translation should be made into one’s na-
tive tongue. The T → S systems are flipped di-
rections of humans’ input and output. The S → T
direction proved to be more fluent, accurate and
even more culturally sensitive. This has to do with
fact that the translators ‘cover’ the source texts
more fully, having a better ‘translation model’.
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7 Conclusion

Phrase tables trained on parallel corpora that were
translated in the same direction as the translation
task perform better than ones trained on corpora
translated in the opposite direction. Nonethe-
less, even ‘wrong’ phrase tables contribute to the
translation quality. We analyze both ‘correct’ and
‘wrong’ phrase tables, uncovering a great deal of
difference between them. We use insights from
Translation Studies to explain these differences;
we then adapt the translation model to the nature
of translationese.

We incorporate information-theoretic measures
that correlate well with translationese into phrase
tables as an additional score that can be tuned
by MERT, and show a statistically significant im-
provement in the translation quality over all base-
line systems. We also analyze the results qual-
itatively, showing that SMT systems adapted to
translationese tend to produce more coherent and
fluent outputs than the baseline systems. An addi-
tional advantage of our approach is that it does not
require an annotation of the translation direction
of the parallel corpus. It is completely generic
and can be applied to any language pair, domain
or corpus.

This work can be extended in various direc-
tions. We plan to further explore the use of two
phrase tables, one for each direction-determined
subset of the parallel corpus. Specifically, we will
interpolate the translation models as in Foster and
Kuhn (2007), including a maximum a posteriori
combination (Bacchiani et al., 2006). We also
plan to upweight the S → T subset of the parallel
corpus and train a single phrase table on the con-
catenated corpus. Finally, we intend to extend this
work by combining the translation-model adap-
tation we present here with the language-model
adaptation suggested by Lembersky et al. (2011)
in a unified system that is more tuned to generat-
ing translationese.

Acknowledgments

We are grateful to Cyril Goutte, George Foster
and Pierre Isabelle for providing us with an anno-
tated version of the Hansard corpus. This research
was supported by the Israel Science Foundation
(grant No. 137/06) and by a grant from the Israeli
Ministry of Science and Technology.

References

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
Domain adaptation via pseudo in-domain data se-
lection. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 355–362. Association for Computa-
tional Linguistics, July 2011. URL http://www.
aclweb.org/anthology/D11-1033.

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. MAP adaptation of stochastic
grammars. Computer Speech and Language, 20:41–
68, January 2006. ISSN 0885-2308. doi: 10.1016/
j.csl.2004.12.001. URL http://dl.acm.org/
citation.cfm?id=1648820.1648854.

Mona Baker. Corpus linguistics and translation stud-
ies: Implications and applications. In Gill Fran-
cis Mona Baker and Elena Tognini-Bonelli, editors,
Text and technology: in honour of John Sinclair,
pages 233–252. John Benjamins, Amsterdam, 1993.

Mona Baker. Corpora in translation studies: An
overview and some suggestions for future research.
Target, 7(2):223–243, September 1995.

Mona Baker. Corpus-based translation studies:
The challenges that lie ahead. In Gill Francis
Mona Baker and Elena Tognini-Bonelli, editors,
Terminology, LSP and Translation. Studies in lan-
guage engineering in honour of Juan C. Sager,
pages 175–186. John Benjamins, Amsterdam, 1996.

Marco Baroni and Silvia Bernardini. A new
approach to the study of Translationese: Machine-
learning the difference between original and
translated text. Literary and Linguistic Com-
puting, 21(3):259–274, September 2006. URL
http://llc.oxfordjournals.org/cgi/
content/short/21/3/259?rss=1.

Alison Beeby. Direction of translation (directional-
ity). In Mona Baker and Gabriela Saldanha, edi-
tors, Routledge Encyclopedia of Translation Stud-
ies, pages 84–88. Routledge (Taylor and Francis),
New York, 2nd edition, 2009.

Stanley F. Chen. An empirical study of smoothing
techniques for language modeling. Technical report
10-98, Computer Science Group, Harvard Univer-
sity, November 1998.

George Foster and Roland Kuhn. Mixture-model adap-
tation for SMT. In Proceedings of the Second
Workshop on Statistical Machine Translation, pages
128–135. Association for Computational Linguis-
tics, June 2007. URL http://www.aclweb.
org/anthology/W/W07/W07-0717.

George Foster, Cyril Goutte, and Roland Kuhn. Dis-
criminative instance weighting for domain adap-
tation in statistical machine translation. In

263



Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Process-
ing, pages 451–459, Stroudsburg, PA, USA,
2010. Association for Computational Linguis-
tics. URL http://dl.acm.org/citation.
cfm?id=1870658.1870702.

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai-
Fu Lee. Toward a unified approach to statistical lan-
guage modeling for Chinese. ACM Transactions
on Asian Language Information Processing, 1:3–
33, March 2002. ISSN 1530-0226. doi: http://doi.
acm.org/10.1145/595576.595578. URL http://
doi.acm.org/10.1145/595576.595578.

Martin Gellerstam. Translationese in Swedish novels
translated from English. In Lars Wollin and Hans
Lindquist, editors, Translation Studies in Scandi-
navia, pages 88–95. CWK Gleerup, Lund, 1986.

Iustina Ilisei, Diana Inkpen, Gloria Corpas Pastor,
and Ruslan Mitkov. Identification of translationese:
A machine learning approach. In Alexander F.
Gelbukh, editor, Proceedings of CICLing-2010:
11th International Conference on Computational
Linguistics and Intelligent Text Processing, vol-
ume 6008 of Lecture Notes in Computer Science,
pages 503–511. Springer, 2010. ISBN 978-3-
642-12115-9. URL http://dx.doi.org/10.
1007/978-3-642-12116-6.

Howard Johnson, Joel Martin, George Foster, and
Roland Kuhn. Improving translation quality by dis-
carding most of the phrasetable. In Proceedings of
the Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
967–975. Association for Computational Linguis-
tics, June 2007. URL http://www.aclweb.
org/anthology/D/D07/D07-1103.

Philipp Koehn. Statistical significance tests for ma-
chine translation evaluation. In Proceedings of
EMNLP 2004, pages 388–395, Barcelona, Spain,
July 2004. Association for Computational Linguis-
tics.

Philipp Koehn. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Confer-
ence Proceedings: the tenth Machine Translation
Summit, pages 79–86, Phuket, Thailand, 2005.
AAMT. URL http://mt-archive.info/
MTS-2005-Koehn.pdf.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondrej Bojar,
Alexandra Constantin, and Evan Herbst. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics

Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech Re-
public, June 2007. Association for Computational
Linguistics. URL http://www.aclweb.org/
anthology/P07-2045.

Philipp Koehn, Alexandra Birch, and Ralf Steinberger.
462 machine translation systems for Europe. In Ma-
chine Translation Summit XII, 2009.

Moshe Koppel and Noam Ordan. Translationese
and its dialects. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, pages 1318–1326, Portland, Oregon, USA,
June 2011. Association for Computational Lin-
guistics. URL http://www.aclweb.org/
anthology/P11-1132.

David Kurokawa, Cyril Goutte, and Pierre Isabelle.
Automatic detection of translated text and its im-
pact on machine translation. In Proceedings of MT-
Summit XII, 2009.

Patrik Lambert, Holger Schwenk, Christophe Ser-
van, and Sadaf Abdul-Rauf. Investigations on
translation model adaptation using monolingual
data. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, pages 284–
293. Association for Computational Linguistics,
July 2011. URL http://www.aclweb.org/
anthology/W11-2132.

Gennadi Lembersky, Noam Ordan, and Shuly Wint-
ner. Language models for machine translation:
Original vs. translated texts. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing, pages 363–374, Edinburgh,
Scotland, UK, July 2011. Association for Computa-
tional Linguistics. URL http://www.aclweb.
org/anthology/D11-1034.

Robert C. Moore and William Lewis. Intelligent
selection of language model training data. In
Proceedings of the ACL 2010 Conference, Short
Papers, pages 220–224, Stroudsburg, PA, USA,
2010. Association for Computational Linguis-
tics. URL http://dl.acm.org/citation.
cfm?id=1858842.1858883.

Franz Josef Och. Minimum error rate training in sta-
tistical machine translation. In ACL ’03: Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics, pages 160–167, Morris-
town, NJ, USA, 2003. Association for Computa-
tional Linguistics. doi: http://dx.doi.org/10.3115/
1075096.1075117.

Franz Josef Och and Hermann Ney. Improved statisti-
cal alignment models. In ACL ’00: Proceedings of
the 38th Annual Meeting on Association for Com-
putational Linguistics, pages 440–447, Morristown,

264



NJ, USA, 2000. Association for Computational Lin-
guistics. doi: http://dx.doi.org/10.3115/1075218.
1075274.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. BLEU: a method for automatic eval-
uation of machine translation. In ACL ’02: Proceed-
ings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 311–318, Morris-
town, NJ, USA, 2002. Association for Computa-
tional Linguistics. doi: http://dx.doi.org/10.3115/
1073083.1073135.
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Abstract

In this paper we investigate the relevance of
aspectual type for the problem of temporal
information processing, i.e. the problems
of the recent TempEval challenges.

For a large list of verbs, we obtain sev-
eral indicators about their lexical aspect by
querying the web for expressions where
these verbs occur in contexts associated
with specific aspectual types.

We then proceed to extend existing solu-
tions for the problem of temporal informa-
tion processing with the information ex-
tracted this way. The improved perfor-
mance of the resulting models shows that
(i) aspectual type can be data-mined with
unsupervised methods with a level of noise
that does not prevent this information from
being useful and that (ii) temporal informa-
tion processing can profit from information
about aspectual type.

1 Introduction

Extracting the temporal information present in a
text is relevant to many natural language process-
ing applications, including question-answering,
information extraction, and even document sum-
marization, as summaries may be more readable
if they follow a chronological order.

Recent evaluation campaigns have focused on
the extraction of temporal information from writ-
ten text. TempEval (Verhagen et al., 2007), in
2007, and more recently TempEval-2 (Verhagen
et al., 2010), in 2010, were concerned with this
problem. Additionally, they provided data that
can be used to develop and evaluate systems that
can automatically temporally tag natural language

text. These data are annotated according to the
TimeML (Pustejovsky et al., 2003) scheme.

Figure 1 shows a small and slightly simpli-
fied fragment of the data from TempEval, with
TimeML annotations. There, event terms, such
as the term referring to the event of releasing the
tapes, are annotated usingEVENT tags. States
(such as the situations denoted by verbs likewant
or love) are also considered events. Temporal ex-
pressions, such astoday, are enclosed inTIMEX3
tags. The attributevalue of time expressions
holds a normalized representation of the date or
time they refer to (e.g. the wordtodaydenotes the
date1998-01-14 in this example). TheTLINK
elements at the end describe temporal relations
between events and temporal expressions. For in-
stance, the event of the plane going down is anno-
tated as temporally preceding the date denoted by
the temporal expressiontoday.

The major tasks of these two TempEval evalu-
ation challenges were about guessing the type of
temporal relations, i.e. the value of therelType
attribute of theTLINK elements in Figure 1, all
other annotations being given. Temporal relation
classification is also the most interesting problem
in temporal information processing. The other
relevant tasks (identifying and normalizing tem-
poral expressions and events) have a longer re-
search history and show better evaluation results.

TempEval was organized in three tasks
(TempEval-2 has four additional ones, that are not
relevant to this work): task A was concerned with
classifying temporal relations holding between an
event and a time mentioned in the same sentence
(although they could be syntactically unrelated, as
the temporal relation represented by theTLINK
with thelid with the valuel1 in Figure 1); task
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<s>In Washington<TIMEX3 tid="t53" type="DATE"
value="1998-01-14">today</TIMEX3>, the Federal
Aviation Administration<EVENT eid="e1"
class="OCCURRENCE" stem="release"
aspect="NONE" tense="PAST" polarity="POS"
pos="VERB">released</EVENT> air traffic control tapes from
<TIMEX3 tid="t54" type="TIME"
value="1998-XX-XXTNI">the night</TIMEX3> the TWA
Flight eight hundred<EVENT eid="e2"
class="OCCURRENCE" stem="go" aspect="NONE"
tense="PAST" polarity="POS"
pos="VERB">went</EVENT> down.</s>
<TLINK lid="l1" relType="BEFORE" eventID="e2"
relatedToTime="t53"/>
<TLINK lid="l2" relType="OVERLAP"
eventID="e2" relatedToTime="t54"/>

Figure 1: Sample of the data annotated for TempEval,
corresponding to the fragment:In Washington today,
the Federal Aviation Administration released air traf-
fic control tapes from the night the TWA Flight eight
hundred went down.

Task

A B C

Best system 0.62 0.80 0.55
Average of all participants 0.56 0.74 0.51
Majority class baseline 0.57 0.56 0.47

Table 1: Results for English in TempEval (F-measure),
from Verhagen et al. (2009)

B focused on the temporal relation between events
and the document’s creation time, which is also
annotated in TimeML (not shown in that Figure);
and task C was about classifying the temporal re-
lation between the main events of two consecu-
tive sentences. The possible values for the type
of temporal relation areBEFORE, AFTER and
OVERLAP.1

Table 1 shows the results of the first TempEval
evaluation. The results of TempEval-2 are fairly
similar (Verhagen et al., 2010), but the data used
are similar but not identical.

The best system in TempEval for tasks A and B
(Puşcaşu, 2007) combined statistical and knowl-
edge based methods to propagate temporal con-
straints along parse trees coming from a syntac-
tic parser. The best system for task C (Min et

1There are the additional disjunctive values
BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER and
VAGUE, employed when the annotators could not make a
more specific decision, but these affect a small number of
instances.

al., 2007) also combined rule-based and machine
learning approaches. It employed sophisticated
NLP to compute some of the features used; more
specifically it used syntactic features.

Our goal with this work is to evaluate the im-
pact of information about aspectual type on these
tasks. The TimeML annotations include an at-
tributeclass for EVENTs that encodes some as-
pectual information, distinguishing between sta-
tive (annotated with the valueSTATE) and non-
stative events (valueOCCURRENCE). This at-
tribute is relevant to the classification problem at
hand, i.e. it is a useful feature for machine learned
classifiers for the TempEval tasks (although this
class attribute encodes other kinds of informa-
tion as well). However, aspectual distinctions can
be more fine-grained than a mere binary distinc-
tion, and so far no system has explored this sort of
information to help improve the solutions to tem-
poral relation classification.

In this paper we work with Portuguese, but in
principle there is no reason to believe that our
findings would not apply to other languages that
display similar aspectual phenomena, such as En-
glish. Some of the details, such as the material
in Section 4.2, are however language specific and
would need adaptation.

2 Aspectual Type

Distinctions of aspectual type (also referred to as
situation type, lexical aspect orAktionsart) of the
sort of Vendler (1967) and Dowty (1979) are ex-
pected to improve the existing solutions to the
problem of temporal relation classification. The
major aspectual distinctions are between (i) states
(e.g. to hate beer, to know the answer, to own a
car, to stink), (ii) processes, also called activities
(to work, to eat ice cream, to grow, to play the
piano), (iii) culminated processes, also called ac-
complishments (to paint a picture, to burn down,
to deliver a sermon) and (iv) culminations, also
called achievements (to explode, to win the game,
to find the key). States and processes are atelic
situations in that they do not make salient a spe-
cific instant in time. Culminated processes and
culminations are telic situations: they have an in-
trinsic, instantaneous endpoint, called the culmi-
nation (e.g. in the case ofto paint a picture, it is
the moment when the picture is ready; in the case
of to explode, it is the moment of the explosion).

There are several reasons to think aspectual

267



type is relevant to temporal information pro-
cessing. First, these distinctions are related to
how long events last: culminations are punctual,
whereas states can be very prolonged in time.
States are thus more likely to temporally overlap
other temporal entities than culminations, for in-
stance.

Second, there are grammatical consequences
on how events are anchored in time. Consider
the following examples, from Ritchie (1979) and
Moens and Steedman (1988):

(1) When they built the 59th Street bridge,
they used the best materials.

(2) When they built that bridge, I was still a
young lad.

The situation of building the bridge is a cul-
minated processed, composed by the process of
actively building a bridge followed by the culmi-
nation of the bridge being finished. In sentence
(1), the event described in the main clause (that of
using the best materials) is a process, but in sen-
tence (2) it is a state (the state of being a young
lad). Even though the two clauses in each sen-
tence are connected bywhen, the temporal rela-
tions holding between the events of each clause
are different. On the one hand, in sentence (1)
the event of using the best materials (a process)
overlaps with the process of actively building the
bridge and precedes the culmination of finishing
the bridge. On the other hand, in sentence (2)
the event of being a young lad (which is a state)
overlaps with both the process of actively build-
ing the bridge and the culmination of the bridge
being built. This difference is arguably caused by
the different aspectual types of the main events of
each sentence.

As another example, states overlap with tem-
poral location adverbials, as in (3), while culmi-
nations are included in them, as in (4).

(3) He was happy last Monday.

(4) He reached the top of Mount Everest last
Monday.

In other cases, differences in aspectual type can
disambiguate ambiguous linguistic material. For
instance, the prepositionin is ambiguous as it can
be used to locate events in the future but also to
measure the duration of culminated processes; it
is thus ambiguous with culminated processes, as

in he will read the book in three daysbut not with
other aspectual types, as inhe will be living there
in three days.

A factor related to aspectual class, that is not
trivial to account for, is the phenomenon of as-
pectual shift, or aspectual coercion (Moens and
Steedman, 1988; de Swart, 1998; de Swart, 2000).
Many linguistic contexts pose constraints on as-
pectual type. This does not mean, however, that
clashes of aspectual type cause ungrammatical-
ity. What often happens is that phrases associated
with an incompatible aspectual type get their type
changed in order to be of the required type, caus-
ing a change in meaning.

For instance, the progressive construction com-
bines with processes. When it combines with e.g.
a culminated process, the culmination is stripped
off from this culminated process, which is thus
converted into a process. The result is that a sen-
tence like (5) does not say that the bridge was fin-
ished (the event has no culmination), whereas one
such as (6) does say this (the event has a culmina-
tion).

(5) They were building that bridge.

(6) They built that bridge.

Aspectual type is not a property of just words,
but phrases as well. For example, while the
progressive construction just mentioned combines
with processes, the resulting phrase behaves as a
state (cf. the sentenceWhen they built the 59th

Street bridge, they were using the best materi-
als and what was mentioned above aboutwhen
clauses).

3 Strategy

Aspectual type is hard to annotate. This is partly
because of what was just mentioned: it is not a
property of just words, but rather phrases, and
different phrases with the same head word can
have different aspectual types; however anno-
tation schemes like TimeML annotate the head
word as denoting events, not full phrases or
clauses.

For this reason, our strategy is to obtain aspec-
tual type information from unannotated data. Be-
cause these data are gradient—an event-denoting
word can be associated with different aspectual
types, depending on word sense—we do not aim
to extract categorical information, but rather nu-
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meric values for each event term that reflect as-
sociations to aspectual types. These may be seen
as values that are indicative of the frequencies in
which an event term denotes a state, or a process,
etc.

In order to extract these indicators, we resort to
a methodology sometimes referred to as Google
Hits: large amounts of queries are sent to a web
search engine (not necessarily Google), and the
number of search results (the number of web
pages that match the query) is recorded and taken
as a measure of the frequency of the queried ex-
pression.

This methodology is not perfect, since multiple
occurrences of the queried expression in the same
web page are not reflected in the hit count, and
in many cases the hit counts reported by search
engines are just estimates and might not be very
accurate. Additionally, uncarefully formulated
queries can match expressions that are syntacti-
cally and semantically very different from what
was intended. In any case, it has the advantages
of being based on a very large amount of data and
not requiring any manual annotation, which can
introduce errors.

3.1 The Web as a Very Large Corpus

Hearst (1992) is one of the earliest studies where
specific textual patterns are used to extract lexico-
semantic information from very large corpora.
The author’s goal was to extract hyponymy rela-
tions. With the same goal, Kozareva et al. (2008)
apply similar textual patterns to the web.

The web has been used as a corpus by many
other authors with the purpose of extracting syn-
tactic or semantic properties of words or re-
lations between them, e.g. Ravichandran and
Hovy (2002), Etzioni et al. (2004), etc. Some
of this work is specially relevant to the problem
of temporal information processing. VerbOcean
(Chklovski and Pantel, 2004) is a database of
web mined relations between verbs. Among other
kinds of relations, it includes typical precedence
relations, e.g.sleepinghappens beforewaking up.
This type of information has in fact been used by
some of the participating systems of TempEval-2
(Ha et al., 2010), with good results.

More generally, there is a large body of work
focusing on lexical acquisition from corpora. Just
as an example, Mayol et al. (2005) learn subcate-
gorization frames of verbs from large amounts of

data. Relevant to our work is that of Siegel and
McKeown (2000). The authors guess the aspec-
tual type of verbs by searching for specific pat-
terns in a one million word corpus that has been
syntactically parsed. They extract several linguis-
tic indicators and combine them with machine
learning algorithms. The indicators that they ex-
tract are naturally different from ours, since they
have access to syntactic structure and we do not,
but our data are based on a much larger corpus.

3.2 Textual Patterns as Indicators of
Aspectual Type

Because of aspectual shift phenomena (see Sec-
tion 2), full syntactic parsing is necessary in order
to determine the aspectual type of a natural lan-
guage expression. However, this can be approxi-
mated by frequencies: it is natural to expect that
e.g. stative verbs occur more frequently in stative
contexts than non-stative verbs, even if there may
be errors in determining these contexts if syntactic
parsing is not a possibility.

If one uses Google Hits, syntactic information
is not accessible. In return for its impreciseness,
Google Hits have the advantage of being based on
very large amounts of data.

4 Scope and Approach

In this study we focus exclusively on verbs, but
events can be denoted by words belonging to
other parts-of-speech. This limitation is linked to
the fact that the textual patterns that are used to
search for specific aspectual contexts are sensitive
to part-of-speech (i.e. what may work for a verb
may not work equally well for a noun).

In order to assess whether aspectual type in-
formation is relevant to the problem of temporal
relation classification, our approach is to check
whether incorporating that kind of information
into existing solutions for this problem can im-
prove their performance. TimeML annotated
data, such as those used for TempEval, can be
used to train machine learned classifiers. These
can then be augmented with attributes encoding
aspectual type information and their performance
compared to the original classifiers.

Additionally, we work with Portuguese data.
This is because our work is part of an effort to
implement a temporal processing system for Por-
tuguese. We briefly describe the data next.
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<s>Em Washington,<TIMEX3 tid="t53" type="DATE"
value="1998-01-14">hoje</TIMEX3>, a Federal Aviation
Administration <EVENT eid="e1" class="OCCURRENCE"
stem="publicar" aspect="NONE" tense="PPI"
polarity="POS" pos="VERB">publicou</EVENT>
gravações do controlo de tráfego aéreo da<TIMEX3
tid="t54" type="TIME"
value="1998-XX-XXTNI">noite</TIMEX3> em que o voo
TWA800 <EVENT eid="e2" class="OCCURRENCE"
stem="cair" aspect="NONE" tense="PPI"
polarity="POS" pos="VERB">caiu</EVENT>.</s>
<TLINK lid="l1" relType="BEFORE" eventID="e2"
relatedToTime="t53"/>

<TLINK lid="l2" relType="OVERLAP"

eventID="e2" relatedToTime="t54"/>

Figure 2: Sample of the Portuguese data adapted from
the TempEval data, corresponding to the fragment:Em
Washington, hoje, a Federal Aviation Administration
publicou gravaç̃oes do controlo de tŕafego áereo da
noite em que o voo TWA800 caiu.

4.1 Data

Our experiments used TimeBankPT (Costa and
Branco, 2010; Costa and Branco, 2012; Costa, to
appear). This corpus is an adaptation of the orig-
inal TempEval data to Portuguese, obtained by
translating it and then adapting the annotations.
Figure 2 shows the Portuguese equivalent to the
sample presented above in Figure 1. The two cor-
pora are quite similar, but there is of course the
language difference. TimeBankPT contains a few
corrections to the data (mostly the temporal rela-
tions), but these corrections only changed around
1.2% of the total number of annotated temporal
relations (Costa and Branco, 2012). Although we
did not test our results on English data, we specu-
late that our results carry over to other languages.

Just like the original English corpus for
TempEval, it is divided in a training part and a
testing part. The numbers (sentences, words, an-
notated events, time expressions and temporal re-
lations) are fairly similar for the two corpora (the
English one and the Portuguese one).

4.2 Extracting the Aspectual Indicators

We extracted the 4,000 most common verbs from
a 180 million word corpus of Portuguese news-
paper text, CETEMPúblico. Because this corpus
is not annotated, we used a part-of-speech tag-
ger and morphological analyzer (Barreto et al.,
2006; Silva, 2007) to detect verbs and to obtain
their dictionary form. We then used an inflection

tool (Branco et al., 2009) to generate the specific
verb forms that are used in the queries. They are
mostly third person singular forms of several dif-
ferent tenses.

The indicators that we used are ratios of Google
Hits. They compare two queries.

Several indicators were tested. We provide ex-
amples with the verbfazer “do” for the queries
being compared by each indicator. The name of
each indicator reflects the aspectual type being
tested, i.e. states should present high values for
State Indicators 1 and 2, processes should show
high values for Process Indicators 1–4, etc.

• State Indicator 1 (IndicatorS1) is about im-
perfective and perfective past forms of verbs.
It compares the number of hitsa for an im-
perfective formfazia “did” to the number of
hits b for a perfective formfez “did”: a

a+b
.

Assuming the imperfective past constrains
the entire clause to be a state, and the perfec-
tive past constrains it to be telic, the higher
this value the more frequently the verb ap-
pears in stative clauses in a past tense.2

• State Indicator 2 (IndicatorS2) is about the
co-occurrence withacaba de“has just fin-
ished”. It compares the number of hitsa
for acaba de fazer“has just finished doing”
to the number of hitsb for fazer “to do”:
b

a+b
. In Portuguese, this construction does

not seem to be felicitous with states.

• Process Indicator 1 (IndicatorP1) is about
past progressive forms and simple past forms
(both imperfective). It compares the num-
ber of hitsa for fazia “did” to the number of
hits b for estava a fazer“was doing”: b

a+b
.

Assuming the progressive construction is a
function from processes to states (see Sec-
tion 2), the higher this value, the more likely
the verb can occur with the interpretation of
a process.

2We expect this frequency to be indicative of states be-
cause states can appear in the imperfective past tense with
their interpretation unchanged, whereas non-stative events
have their interpretation shifted to a stative one in that con-
text (e.g. they get a habitual reading). In order to refer to an
event occurring in the past with an on-going interpretation,
non-stative verbs require the progressive construction tobe
used in Portuguese, whereas states do not. Therefore, states
should occur more freely in the simple imperfective past.
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• Process Indicator 2 (IndicatorP2) is about
past progressive forms vs. simple past forms
(perfective). It compares the number of hits
a for fez “did” to the number of hitsb for
esteve a fazer“was doing”: b

a+b
. Similarly

to the previous indicator, this one tests the
frequency of a verb appearing in a context
typical of processes.

• Process Indicator 3 (IndicatorP3) is about
the occurrence offor Adverbials. It com-
pares the number of hitsa for fez “did” to
the number of hitsb for fez durante muito
tempo “did for a long time”: b

a+b
. This

number is also intended to be an indica-
tion of how frequent a verb can be used
with the interpretation of a process. Note
that Portuguese allows modifiers to occur
freely between a verb and its complements,
so this test should work for transitive verbs
(or any other subcategorization frame involv-
ing complements), not just intransitive ones.

• Process Indicator 4 (IndicatorP4) is about
the co-occurrence of a verb withparar de“to
stop”. It compares the number of hitsa for
parou de fazer“stopped doing” to the num-
ber of hitsb for fazer“to do”: a

a+b
. Just like

the English verbsstopandfinishare sensitive
to the aspectual type of their complement, so
is the Portuguese verbparar, which selects
for processes.

• Atelicity Indicator 1 (IndicatorA1) is about
comparingin andfor adverbials. It compares
the number of hitsa for fez num instante“did
in an instant” to the number of hitsb for fez
durante muito tempo“did for a long time”:
b

a+b
. Processes can be modified byfor ad-

verbials, whereas culminated processes are
modified by in adverbials. This indicator
tests the occurrence of a verb in contexts that
require these aspectual types.

• Atelicity Indicator 2 (IndicatorA2) is about
comparingfor Adverbials withsuddenly. It
compares the number of hitsa for fez de re-
pente“did suddenly” to the number of hits
b for fez durante muito tempo“did for a
long time”: b

a+b
. De repente“suddenly”

seems to modify culminations, so this indi-
cator compares process readings with culmi-
nation readings.

• Culmination Indicator1 (IndicatorC1) is
about differentiating culminations and cul-
minated processes. It compares the number
of hitsa for fez de repente“did suddenly” to
the number of hitsb for fez num instante“did
in an instant”: a

a+b
.

For each of the 4,000 verbs, the necessary
queries required by these indicators were gener-
ated and then sent to a search engine. The queries
were enclosed in quotes, so as to guarantee ex-
act matches. The number of hits was recorded for
each query.

We had some problems with outliers for a few
rather infrequent verbs. These could show very
extreme values for some indicators. In order
to minimize their impact, for each indicator we
homogenized the 100 highest values that were
found. More specifically, for each indicator, each
one of the highest 100 values was replaced by the
100th highest value. The bottom 100 values were
similarly changed. This way the top 99 values and
the bottom 99 values are replaced by the 100th

highest value and the 100th lowest value respec-
tively.

Each indicator ranges between 0 and 1 in the-
ory. In practice, we seldom find values close to the
extremes, as this would imply that some queries
would have close to 0 hits, which does not occur
very often (after all, we intentionally used queries
for which we would expect large hit counts, as
these are more likely to be representative of true
language use). For this reason, each indicator is
scaled so that its minimum (actual) value is 0 and
its maximum (actual) value is 1.

5 Evaluation

As mentioned before, in order to assess the use-
fulness of these aspectual indicators for the tasks
of temporal relation classification, we checked
whether they can improve machine learned clas-
sifiers trained for this problem. We next describe
the classifiers that were used as the bases for com-
parison.

5.1 Experimental Setup

In order to obtain bases for comparison, we
trained machine learned classifiers on the Por-
tuguese corpus TimeBankPT, that is adapted from
the TempEval data (see Section 4.1). We took
inspiration in the work of Hepple et al. (2007).
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This was one of the participating systems of
TempEval. It used machine learning algorithms
implemented in Weka (Witten and Frank, 1999).
For our experiments, we used Weka’s implemen-
tation of the C4.5 algorithm,trees.J48 (Quin-
lan, 1993), the RIPPER algorithm as implemented
by Weka’srules.JRip (Cohen, 1995), a near-
est neighbors classifier,lazy.KStar (Cleary
and Trigg, 1995), a Naı̈ve Bayes classifier, namely
Weka’sbayes.NaiveBayes (John and Lang-
ley, 1995), and a support vector classifier, Weka’s
functions.SMO (Platt, 1998) . We chose these
algorithms as they are representative of a wide
range of machine learning approaches.

Recall that the tasks of TempEval are to guess
the type of temporal relations. Each train or test
instance thus corresponds to a temporal relation,
i.e. a TLINK element in the TimeML annota-
tions (see Figures 1 and 2). The classification
problem is to determine the value of the attribute
relType of TimeML TLINK elements. These
temporal relations relate an event (referred by the
eventID attribute ofTLINK elements) to an-
other temporal entity, that can be a time (pointed
to by therelatedToTimeattribute), in the case
of tasks A and B, or, in the case of task C, an-
other event (given by therelatedToEvent at-
tribute).

As for the features that were employed, we also
took inspiration in the approach of Hepple et al.
(2007). These authors used as classifier attributes
two types of features. The first group of features
corresponds to TimeML attributes: for instance
the value of theaspect attribute ofEVENT el-
ements, for the events involved in the temporal
relation to be classified. The second group of fea-
tures corresponds to simple features that can be
computed with string manipulation and do not re-
quire any kind of natural language processing.

Table 2 shows the features that were tried and
employed.

The event features correspond to attributes
of EVENT elements, with the exception of
the event-string feature, which takes as
value the character data inside the correspond-
ing TimeML EVENT element. In a simi-
lar spirit, the timex3 features are taken from
the attributes ofTIMEX3 elements with the
same name. Thetlink-relType feature
is the class attribute and corresponds to the
relType attribute of the TimeMLTLINK el-

Task

Attribute A B C

event-aspect × X X

event-polarity X X X

event-POS × × X

event-stem × X ×

event-string X × ×

event-class X × X

event-tense X X X

order-event-first X N/A N /A
order-event-between X N/A N /A
order-timex3-between × N/A N /A
order-adjacent X N/A N /A

timex3-mod X × N/A
timex3-type × × N/A

tlink-relType X X X

Table 2: Feature combinations used in the classifiers
used as comparison bases. Features inspired by the
ones used by Hepple et al. (2007) in TempEval.

ement that represents the temporal relation to
be classified. Theorder features are the at-
tributes computed from the document’s textual
content. The featureorder-event-first
encodes whether the event terms precedes in
the text the time expression it is related to by
the temporal relation to classify. The clas-
sifier attribute order-event-between de-
scribes whether any other event is mentioned
in the text between the two expressions for
the entities that are in the temporal relation,
and similarly order-timex3-between is
about whether there is an intervening tempo-
ral expression. Finally,order-adjacent is
true iff both order-timex3-between and
order-event-between are false (even if
other linguistic material occurs between the ex-
pressions denoting the two entities in the temporal
relation).

In order to arrive at the final set of features
(marked with a check mark in Table 2), we per-
formed exhaustive search on all possible combi-
nations of these features for each task, using the
Naı̈ve Bayes algorithm. They were compared us-
ing 10-fold cross-validation on the training data.
The feature combinations shown in Table 2 are
the optimal combinations arrived at in this way.

These are the classifiers that we used for the

272



comparison with the aspectual type indicators.
We chose this straightforward approach because it
forms a basis for comparison that is easily repro-
ducible: the algorithm implementations that were
used are part of freely available software, and the
features that were employed are easily computed
from the annotated data, with no need to run any
natural language processing tools whatsoever.

As mentioned before in Section 4.1, the data
used are organized in a training set and an evalu-
ation set. The training part is around 60K words
long, the test data containing around 9K words.
When tested on held-out data, these classifiers
present the scores shown in italics in Table 3.

These results are fairly similar to the scores that
the system of Hepple et al. (2007) obtained in
TempEval with English data: 0.59 for task A, 0.73
for task B, and 0.54 for task C. They are also not
very far from the best results of TempEval. As
such they represent interesting bases for compar-
ison, as improving their performance is likely to
be relevant to the best systems that have been de-
veloped for temporal information processing.

5.2 Results and Discussion

After obtaining the bases for comparison de-
scribed above, we proceeded to check whether the
aspectual type indicators described in Section 4.2
can improve these results.

For each aspectual indicator, we implemented
a classifier feature that encodes its value for the
event term in the temporal relation (if it is not a
verb, this value is missing). In the case of task C,
two features are added for each indicator, one for
each event term.

We extended each of these classifiers with one
of these features at a time (two in the case of task
C), and checked whether it improved the results
on the test data. So for instance, in order to test
Indicator S1, we extended each of these classifiers
with a feature that encodes the value that this indi-
cator presents for the term that denotes the event
present in the temporal relation to be classified.
In the case of task C, two classifier features are
added, one for each event term, and both for the
same Indicator S1. For instance, for the (train-
ing) instance corresponding to theTLINK in Fig-
ure 2 with thelid attribute that has the valuel1,
the classifier feature for Indicator S1 has the value
that was computed for the verbcair “go down”,
since this is thestem of the word that denotes

Task

Classifier A B C

trees.J48 0.57 0.77 0.53
With best indicator 0.55

rules.JRip 0.60 0.76 0.51
With best indicator 0.61 0.54

lazy.KStar 0.54 0.70 0.52
With best indicator 0.73 0.53

bayes.NaiveBayes 0.50 0.76 0.53
With best indicator 0.53 0.54

functions.SMO 0.55 0.79 0.54
With best indicator 0.56 0.55

Table 3: Evaluation on held-out test data of classi-
fiers trained on full train data. Values for the classi-
fiers used as comparison bases are in italics. Boldface
highlights improvements resulting from incorporating
aspectual indicators as classifier features, and missing
values represent no improvement.

the event that is the first argument of this temporal
relation. After adding each of these features, we
retrained the classifiers on the training data and
tested them on the held-out test data. In order to
keep the evaluation manageable, we did not test
combinations of multiple indicators.

Table 3 shows the overall results. For task
A, the best indicators wereP4 (with JRip), A1
(NaiveBayes) and S1 (SMO). For task B the
best one wasP4 (KStar). For task C, the best
indicators wereP3 (J48), A1 and P3 (JRip),
C1 (KStar), A1 (NaiveBayes) andP2 (SMO).
Each of the indicatorsS2, P1 andA2 either does
not improve the results or does so but not as much
as another, better indicator for the same task and
algorithm.

It seems clear from Table 3 that some tasks ben-
efit from these indicators more than others. In
particular, task C shows consistent improvements
whereas task B is hardly affected. Since task C
is about relations involving two events, the classi-
fiers may be picking up the sort of linguistic gen-
eralizations mentioned in Section 2 aboutwhen
clauses.

J48 andJRip produce human-readable mod-
els. We checked how these classifiers are taking
advantage of the aspectual indicators. For task C,
the induced models are generally associating high
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values of the indicatorsA1 andP3 with overlap
relations and low values of these indicators with
other types of relations. This is expected. On the
one end, high values for these indicators are asso-
ciated with atelicity (i.e. the endpoint of the cor-
responding event is not presented). On the other
hand, both indicators are based on queries con-
taining the phrasedurante muito tempo“for a long
time”, which, in addition to picking up events that
can be modified byfor adverbials, more specifi-
cally pick up events that happenfor a long time
and are thus likely to overlap other events.

For task A,JRip also associates high values of
the indicatorP4—which constitute evidence that
the corresponding events are processes (which are
atelic)—with overlap relations. This is a specially
interesting result, considering that the queries on
which this indicator is based reflect a purely as-
pectual constraint.

6 Concluding Remarks

In this paper, we evaluated the relevance of infor-
mation about aspectual type for temporal process-
ing tasks.

Temporal information processing has received
substantial attention recently with the two
TempEval challenges in 2007 and 2010. The most
interesting problem of temporal information pro-
cessing, that of temporal relation classification, is
still affected by high error rates.

Even though a very substantial part of the se-
mantics literature on tense and aspect focuses on
aspectual type, solutions to the problem of auto-
matic temporal relation classification have not in-
corporated this sort of semantic information. In
part this is expected, as aspectual type is very in-
terconnected with syntax (cf. the discussion about
aspectual coercion in Section 2), and the phe-
nomenon of aspect shift can make it hard to com-
pute even when syntactic information is available.

Our contribution with this paper is to incor-
porate this sort of information in existing ma-
chine learned classifiers that tackle this problem.
Even though these classifiers do not have access to
syntactic information, aspectual type information
seemed to be useful in improving the performance
of these models. We hypothesize that combin-
ing aspectual type information with information
about syntactic structure can further improve the
problems of temporal information processing, but
we leave that research to future work.

An interesting question that we hope will be ad-
dressed by future work is how these results extend
to other languages. We cannot provide an answer
to this question, as we do not have the data. How-
ever, this experiment can be replicated for any lan-
guage that has (i) TimeML annotated data, (ii) a
reasonable size of documents on the Web and a
search engine capable of separating them from the
documents in other languages and (iii) an aspec-
tual system similar enough that the question be-
ing addressed in this paper makes sense (and use-
ful patterns for queries can be constructed, even
if not entirely identical to the ones that we used).
The second criterion is met by many, many lan-
guages. The third one also seems to affect many
languages, as the existing literature on aspectual
phenomena indicates that these phenomena are
quite widespread. The second criterion is, at the
moment, the hardest to fulfill as not many lan-
guages have data with rich annotations about time
(i.e. including events and temporal relations). We
speculate that our results can extend to English,
although a different set of query patterns may
have to be used in order to extract the aspectual
indicators that are employed. We believe this be-
cause the two languages largely overlap when it
comes to aspectual phenomena.
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Amália Mendes, Maria Fernanda Nascimento, Fil-
ipe Nunes, and João Silva. 2006. Open resources
and tools for the shallow processing of Portuguese:
the TagShare project. InProceedings of LREC
2006.

António Branco, Francisco Costa, Eduardo Ferreira,
Pedro Martins, Filipe Nunes, João Silva, and Sara
Silveira. 2009. LX-Center: a center of online lin-
guistic services. InProceedings of the Demo Ses-
sion, ACL-IJCNLP2009, Singapore.

Timothy Chklovski and Patrick Pantel. 2004. Verb-
Ocean: Mining the Web for fine-grained semantic
verb relations. InIn Proceedings of EMNLP-2004,
Barcelona, Spain.

John G. Cleary and Leonard E. Trigg. 1995. K*: An
instance-based learner using an entropic distance
measure. In12th International Conference on Ma-
chine Learning, pages 108–114.

William W. Cohen. 1995. Fast effective rule induc-
tion. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115–123.

Francisco Costa and António Branco. 2010. Tempo-
ral information processing of a new language: Fast

274



porting with minimal resources. InProceedings of
ACL 2010.

Francisco Costa and António Branco. 2012. Time-
BankPT: A TimeML annotated corpus of Por-
tuguese. InProceedings of LREC2012.

Francisco Costa. to appear.Processing Temporal In-
formation in Unstructured Documents. Ph.D. the-
sis, Universidade de Lisboa, Lisbon.
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Abstract

In this paper, we define a new type of
summary for sentiment analysis: a single-
sentence summary that consists of a sup-
porting sentence that conveys the overall
sentiment of a review as well as a convinc-
ing reason for this sentiment. We present a
system for extracting supporting sentences
from online product reviews, based on a
simple and unsupervised method. We de-
sign a novel comparative evaluation method
for summarization, using a crowdsourcing
service. The evaluation shows that our
sentence extraction method performs better
than a baseline of taking the sentence with
the strongest sentiment.

1 Introduction

Given the success of work on sentiment analy-
sis in NLP, increasing attention is being focused
on how to present the results of sentiment analy-
sis to the user. In this paper, we address an im-
portant use case that has so far been neglected:
quick scanning of short summaries of a body of
reviews with the purpose of finding a subset of
reviews that can be studied in more detail. This
use case occurs in companies that want to quickly
assess, perhaps on a daily basis, what consumers
think about a particular product. One-sentence
summaries can be quickly scanned – similar to
the summaries that search engines give for search
results – and the reviews that contain interesting
and new information can then be easily identified.
Consumers who want to quickly scan review sum-
maries to pick out a few reviews that are helpful
for a purchasing decision are a similar use case.

For a one-sentence summary to be useful in this
context, it must satisfy two different “information

needs”: it must convey the sentiment of the re-
view, but it must also provide a specific reason
for that sentiment, so that the user can make an
informed decision as to whether reading the en-
tire review is likely to be worth the user’s time –
again similar to the purpose of the summary of a
web page in search engine results.

We call a sentence that satisfies these two crite-
ria a supporting sentence. A supporting sentence
contains information on the sentiment as well as
a specific reason for why the author arrived at this
sentiment. Examples for supporting sentences are
“The picture quality is very good” or “The bat-
tery life is 2 hours”. Non-supporting sentences
contain opinions without such reasons such as “I
like the camera” or “This camera is not worth the
money”.

To address use cases of sentiment analysis that
involve quick scanning and selective reading of
large numbers of reviews, we present a simple un-
supervised system in this paper that extracts one
supporting sentence per document and show that
it is superior to a baseline of selecting the sentence
with the strongest sentiment.

One problem we faced in our experiments was
that standard evaluations of summarization would
have been expensive to conduct for this study. We
therefore used crowdsourcing to perform a new
type of comparative evaluation method that is dif-
ferent from training set and gold standard cre-
ation, the dominant way crowdsourcing has been
used in NLP so far.

In summary, our contributions in this paper are
as follows. We define supporting sentences, a new
type of sentiment summary that is appropriate in
situations where both the sentiment of a review
and a good reason for that sentiment need to be

276



conveyed succinctly. We present a simple un-
supervised method for extracting supporting sen-
tences and show that it is superior to a baseline in
a novel crowdsourcing-based evaluation.

In the next section, we describe related work
that is relevant to our new approach. In Section 3
we present the approach we use to identify sup-
porting sentences. Section 4 describes the fea-
ture representation of sentences and the classifi-
cation method. In Section 5 we give an overview
of the crowdsourcing evaluation. Section 6 dis-
cusses our experimental results. In Sections 7 and
8, we present our conclusions and plans for future
work.

2 Related Work

Both sentiment analysis (Pang and Lee, 2008;
Liu, 2010) and summarization (Nenkova and
McKeown, 2011) are important subfields of NLP.
The work most relevant to this paper is work on
summarization methods that addresses the spe-
cific requirements of summarization in sentiment
analysis. There are two lines of work in this vein
with goals similar to ours: (i) aspect-based and
pro/con-summarization and (ii) approaches that
extract summary sentences from reviews.

An aspect is a component or attribute of a
product such as “battery”, “lens cap”, “battery
life”, and “picture quality” for cameras. Aspect-
oriented summarization (Hu and Liu, 2004;
Zhuang et al., 2006; Kim and Hovy, 2006) col-
lects sentiment assessments for a given set of as-
pects and returns a list of pros and cons about ev-
ery aspect for a review or, in some cases, on a
per-sentence basis.

Aspect-oriented summarization and pro/con-
summarization differ in a number of ways from
supporting sentence summarization. First, as-
pects and pros&cons are taken from a fixed in-
ventory. The inventory is typically small and does
not cover the full spectrum of relevant informa-
tion. Second, in its most useful form, aspect-
oriented summarization requires classification of
phrases and sentences according to the aspect they
belong to; e.g., “The camera is very light” has
to be recognized as being relevant to the aspect
“weight”. Developing a component that assigns
phrases and sentences to their corresponding cat-
egories is time-consuming and has to be redone
for each domain. Any such component will make
mistakes and undetected or incorrectly classified

aspects can result in bad summaries.
Our approach enables us to find strong support-

ing sentences even if the reason given in that sen-
tence does not fit well into the fixed inventory. No
manual work like the creation of an aspect inven-
tory is necessary and there are no requirements on
the format of the reviews such as author-provided
pros and cons.

Aspect-oriented summarization also differs in
that it does not differentiate along the dimension
of quality of the reason given for a sentiment. For
example, “I don’t like the zoom” and “The zoom
range is too limited” both give reasons for why a
camera gets a negative evaluation, but only the lat-
ter reason is informative. In our work, we evaluate
the quality of the reason given for a sentiment.

The use case we address in this paper requires
a short, easy-to-read summary. A well-formed
sentence is usually easier to understand than a
pro/con table. It also has the advantage that the
information conveyed is accurately representing
what the user wanted to say – this is not the case
for a presentation that involves several complex
processing steps and takes linguistic material out
of the context that may be needed to understand it
correctly.

Berend (2011) performs a form of pro/con
summarization that does not rely on aspects.
However, most of the problems of aspect-based
pro/con summarization also apply to this paper:
no differentiation between good and bad reasons,
the need for human labels to train a classifier, and
inferior readability compared to a well-formed
sentence.

Two previous approaches that have attempted
to extract sentences from reviews in the context
of summarization are (Beineke et al., 2004) and
(Arora et al., 2009). Beineke et al. (2004) train
a classifier on rottentomatoes.com summary sen-
tences provided by review authors. These sen-
tences sometimes contain a specific reason for the
overall sentiment of the review, but sometimes
they are just catchy lines whose purpose is to
draw moviegoers in to read the entire review; e.g.,
“El Bulli barely registers a pulse stronger than a
book’s” (which does not give a specific reason for
why the movie does not register a strong pulse).

Arora et al. (2009) define two classes of sen-
tences: qualified claims and bald claims. A qual-
ified claim gives the reader more details (e.g.,
“This camera is small enough to fit easily in a
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coat pocket”) while a bald claim is open to inter-
pretation (e.g., “This camera is small”). Quali-
fied/bald is a dimension of classification of senti-
ment statements that is to some extent orthogonal
to quality of reason. Qualified claims do not have
to contain a reason and bald claims can contain
an informative reason. For example, “I didn’t like
the camera, but I suspect it will be a great camera
for first timers” is classified as a qualified claim,
but the sentence does not give a good reason for
the sentiment of the document. Both dimensions
(qualified/bald, high-quality/low-quality reason)
are important and can be valuable components of
a complete sentiment analysis system.

Apart from the definition of the concept of sup-
porting sentence, which we believe to be more ap-
propriate for the application we have in mind than
rottentomatoes.com summary sentences and qual-
ified claims, there are two other important differ-
ences of our approach to these two papers. First,
we directly evaluate the quality of the reasons in a
crowdsourcing experiment. Second, our approach
is unsupervised and does not require manual an-
notation of a training set of supporting sentences.

As we will discuss in Section 5, we propose
a novel evaluation measure for summarization
based on crowdsourcing in this paper. The most
common use of crowdsourcing in NLP is to have
workers label a training set and then train a super-
vised classifier on this training set. In contrast, we
use crowdsourcing to directly evaluate the relative
quality of the automatic summaries generated by
the unsupervised method we propose.

3 Approach

Our approach is based on the following three
premises.

(i) A good supporting sentence conveys both
the review’s sentiment and a supporting fact.
We make this assumption because we want
the sentence to be self-contained. If it only
describes a fact about a product without
evaluation, then it does not on its own ex-
plain which sentiment is conveyed by the ar-
ticle and why.

(ii) Supporting facts are most often expressed by
noun phrases. We call a noun phrase that ex-
presses a supporting fact a keyphrase. We
are not assuming that all important words

in the supporting sentence are nominal; the
verb will be needed in many cases to accu-
rately convey the reason for the sentiment
expressed. However, it is a fairly safe as-
sumption that part of the information is con-
veyed using noun phrases since it is dif-
ficult to convey specific information with-
out using specific noun phrases. Adjectives
are often important when expressing a rea-
son, but frequently a noun is also mentioned
or one would need to resolve a pronoun to
make the sentence a self-contained support-
ing sentence. In a sentence like “It’s easy
to use” it is not clear what the adjective is
referring to.

(iii) Noun phrases that express supporting facts
tend to be domain-specific; they can be
automatically identified by selecting noun
phrases that are frequent in the domain – ei-
ther in relative terms (compared to a generic
corpus) or in absolute terms. By making
this assumption we may fail to detect sup-
porting sentences that are worded in an orig-
inal way using ordinary words. However,
in a specific domain there is usually a lot
of redundancy and most good reasons oc-
cur many times and are expressed by similar
words.

Based on these assumptions, we select the sup-
porting sentence in two steps. In the first step, we
determine the n sentences with the strongest sen-
timent within every review by classifying the po-
larity of the sentences (where n is a parameter).
In the second step, we select one of the n sen-
tences as the best supporting sentence by means
of a weighting function.

Step 1: Sentiment Classification

In this step, we apply a sentiment classifier to all
sentences of the review to classify sentences as
positive or negative. We then select the n sen-
tences with the highest probability of conforming
with the overall sentiment of the document. For
example, if the document’s polarity is negative,
we select the n sentences that are most likely to be
negative according to the sentiment classifier. We
restrict the set of n sentences to sentences with the
“right” sentiment because even an excellent sup-
porting sentence is not a good characterization of
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the content of the review if it contradicts the over-
all assessment given by the review. Only in cases
where there are fewer than n sentences with the
correct sentiment, we also select sentences with
the “wrong” sentence to obtain a minimum of n
sentences for each review.

Step 2: Weighting Function

Based on premises (ii) and (iii) above, we score
a sentence based on the number of noun phrases
that occur with high absolute and relative fre-
quency in the domain. We only consider sim-
ple nouns and compound nouns consisting of
two nouns in this paper. In general, compound
nouns are more informative and specific. A com-
pound noun may refer to a specific reason even
if the head noun does not (e.g., “life” vs. “battery
life”). This means that we need to compute scores
in a way that allows us to give higher weight to
compound nouns than to simple nouns.

In addition, we also include counts of nouns
and compounds in the scoring that do not have
high absolute/relative frequency because fre-
quency heuristics identify keyphrases with only
moderate accuracy. However, theses nouns and
compounds are given a lower weight.

This motivates a scoring function that is a
weighted sum of four variables: number of simple
nouns with high frequency, number of infrequent
simple nouns, number of compound nouns with
high frequency, and number of infrequent com-
pound nouns. High frequency is defined as fol-
lows. Let fdom(p) be the domain-specific abso-
lute frequency of phrase p, i.e., the frequency in
the review corpus, and fwiki(p) the frequency of
p in the English Wikipedia. We view the distribu-
tion of terms in Wikipedia as domain-independent
and define the relative frequency as in Equation 1.

frel(p) =
fdom(p)
fwiki(p)

(1)

We do not consider nouns and compound nouns
that do not occur in Wikipedia for computing
the relative frequency. A noun (resp. compound
noun) is deemed to be of high frequency if it is
one of the k% nouns (resp. compound nouns) with
the highest fdom(p) and at the same time is one of
the k% nouns (resp. compound nouns) with the
highest frel(p) where k is a parameter.

Based on these definitions, we define four dif-
ferent sets: F1 (the set of nouns with high fre-

quency), I1 (the set of infrequent nouns), F2 (the
set of compounds with high frequency), and I2
(the set of infrequent compounds). An infrequent
noun (resp. compound) is simply defined as a
noun (resp. compound) that does not meet the fre-
quency criterion.

We define the score s of a sentence with n to-
kens t1 . . . tn (where the last token tn is a punctu-
ation mark) as follows:

s =
n−1∑
i=1

wf2 · [[(ti, ti+1) ∈ F2]]

+ wi2 · [[(ti, ti+1) ∈ I2]]
+ wf1 · [[ti ∈ F1]]
+ wi1 · [[ti ∈ I1]]

(2)

where [[φ]] = 1 if φ is true and [[φ]] = 0 otherwise.
Note that a noun in a compound will contribute to
the overall score in two different summands.

The weights wf2 , wi2 , wf1 , and wi1 are deter-
mined using logistic regression. The training set
for the regression is created in an unsupervised
fashion as follows. From each set of n sentences
(one per review), we select the two highest scor-
ing, i.e., the two sentences that were classified
with the highest confidence. The two classes in
the regression problem are then the top ranked
sentences vs. the sentences at rank 2. Since tak-
ing all sentences turned out to be too noisy, we
eliminate sentence pairs where the top sentence is
better than the second sentence on almost all of
the set counts (i.e., count of members of F1, I1,
F2, and I2). Our hypothesis in setting up this re-
gression was that the sentence with the strongest
sentiment often does not give a good reason. Our
experiments confirm that this hypothesis is true.

The weights wf2 , wi2 , wf1 , and wi1 estimated
by the regression are then used to score sentences
according to Equation 2.

We give the same weight to all keyphrase com-
pounds (and the same weight to all keyphrase
nouns) – in future work one could attempt to give
higher weights to keyphrases with higher absolute
or relative frequency. In this paper, our goal is to
establish a simple baseline for the task of extrac-
tion of supporting sentences.

After computing the overall weight for each
sentence in a review, the sentence with the highest
weight is chosen as the supporting sentence – the
sentence that is most informative for explaining
the overall sentiment of the review.
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4 Experiments

4.1 Data

We use part of the Amazon dataset from Jindal
and Liu (2008). The dataset consists of more than
5.8 million consumer-written reviews of several
products, taken from the Amazon website. For
our experiment we used the digital camera do-
main and extracted 15,340 reviews covering a to-
tal of 740 products. See table 1 for key statistics
of the data set.

Type Number
Brands 17
Products 740
Documents (all) 15,340
Documents (cleaned) 11,624
Documents (train) 9,880
Documents (test) 1,744
Short test documents 147
Long test documents 1,597
Average number of sents 13.36
Median number of sents 10

Table 1: Key statistics of our dataset

In addition to the review text, authors can give
an overall rating (a number of stars) to the prod-
uct. Possible ratings are 5 (very positive), 4 (pos-
itive), 3 (neutral), 2 (negative), and 1 (very nega-
tive). We unify ratings of 4 and 5 to “positive” and
ratings of 1 and 2 to “negative” to obtain polarity
labels for binary classification. Reviews with a
rating of 3 are discarded.

4.2 Preprocessing

We tokenized and part-of-speech (POS) tagged
the corpus using TreeTagger (Schmid, 1994). We
split each review into individual sentences by us-
ing the sentence boundaries given by TreeTag-
ger. One problem with user-written reviews is
that they are often not written in coherent En-
glish, which results in wrong POS tags. To ad-
dress some of these problems, we cleaned the
corpus after the tokenization step. We separated
word-punctuation clusters (e.g., word...word) and
removed emoticons, html tags, and all sentences
with three or fewer tokens, many of which were
a result of wrong tokenization. We excluded all
reviews with fewer than five sentences. Short re-
views are often low-quality and do not give good

reasons. The cleaned corpus consists of 11,624
documents. Finally, we split the corpus into train-
ing set (85%) and test set (15%) as shown in Table
1. The average number of sentences of a review is
13.36 sentences, the median number of sentences
is 10.

4.3 Sentiment Classification

We first build a sentence sentiment classifier by
training the Stanford maximum entropy classifier
(Manning and Klein, 2003) on the sentences in the
training set. Sentences occurring in positive (resp.
negative) reviews are labeled positive (resp. neg-
ative). We use a simple bag-of-words representa-
tion (without punctuation characters and frequent
stop words). Propagating labels from documents
to sentences creates a noisy training set because
some sentences have sentiment different from the
sentiment in their documents; however, there is
no alternative because we need per-sentence clas-
sification decisions, but do not have per-sentence
human labels.

The accuracy of the classifier is 88.4% on
“propagated” sentence labels.

We use the sentence classifier in two ways.
First, it defines our baseline BL for extracting
supporting sentences: the baseline simply pro-
poses the sentence with the highest sentiment
score that is compatible with the sentiment of the
document as the supporting sentence.

Second, the sentence classifier selects a subset
of candidate sentences that is then further pro-
cessed using the scoring function in Equation 2.
This subset consists of the n = 5 sentences with
the highest sentiment scores of the “right” polarity
– that is, if the document is positive (resp. nega-
tive), then the n = 5 sentences with the highest
positive (resp. negative) scores are selected.

4.4 Determining Frequencies and Weights

The absolute frequency of nouns and compound
nouns simply is computed as their token fre-
quency in the training set. For computing the rel-
ative frequency (as described in Section 3, Equa-
tion 1), we use the 20110405 dump of the English
Wikipedia.

In the product review corpora we studied,
the percentage of high-frequency keyphrase com-
pound nouns was higher than that of simple
nouns. We therefore use two different thresh-
olds for absolute and relative frequency. We de-
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fine F1 as the set of nouns that are in the top
kn = 2.5% for both absolute and relative fre-
quencies; and F2 as the set of compounds that are
in the top kp = 5% for both absolute and rela-
tive frequencies. These thresholds are set to ob-
tain a high density of good keyphrases with few
false positives. Below the threshold there are still
other good keyphrases, but they cannot be sepa-
rated easily from non-keyphrases.

Sentences are scored according to Equation 2.
Recall that the parameters wf2 , wi2 , wf1 , and wi1

are determined using logistic regression. The ob-
tained parameter values (see table 2) indicate the
relative importance of the four different types of
terms. Compounds are the most important term
and even those with a frequency below the thresh-
old kp still provide more detailed information than
simple nouns above the threshold kn; the value of
wi2 is approximately twice the value wf1 for this
reason. Non-keyphrase nouns are least important
and are weighted with only a very small value of
wi1 = 0.01.

Phrase Par Value
keyphrase compounds wf2 1.07
non-keyphrase compounds wi2 0.89
keyphrase nouns wf1 0.46
non-keyphrase nouns wi1 0.01

Table 2: Weight settings

The scoring function with these parameter val-
ues is applied to the n = 5 selected sentences of
the review. The highest scoring sentence is then
selected as the supporting sentence proposed by
our system.

For 1380 of the 1744 reviews, the sentence se-
lected by our system is different from the baseline
sentence; however, there are 364 cases (20.9%)
where the two are the same. Only the 1380 cases
where the two methods differ are included in the
crowdsourcing evaluation to be described in the
next section. As we will show below, our sys-
tem selects better supporting sentences than the
baseline in most cases. So if baseline and our sys-
tem agree, then it is even more likely that the sen-
tence selected by both is a good supporting sen-
tence. However, there could also be cases where
the n = 5 sentences selected by the sentiment
classifier are all bad supporting sentences or cases
where the document does not contain any good

supporting sentences.

5 Comparative Evaluation with Amazon
Mechanical Turk

One standard way to evaluate summarization sys-
tems is to create hand-edited summaries and to
compute some measure of similarity (e.g., word
or n-gram overlap) between automatic and human
summaries. An alternative for extractive sum-
maries is to classify all sentences in the document
with respect to their appropriateness as summary
sentences. An automatic summary can then be
scored based on its ability to correctly identify
good summary sentences. Both of these meth-
ods require a large annotation effort and are most
likely too complex to be outsourced to a crowd-
sourcing service because the creation of manual
summaries requires skilled writers. For the sec-
ond type of evaluation, ranking sentences accord-
ing to a criterion is a lot more time consuming
than making a binary decision – so ranking the
13 or 14 sentences that a review contains on av-
erage for the entire test set would be a signifi-
cant annotation effort. It would also be difficult
to obtain consistent and repeatable annotation in
crowdsourcing on this task due to its subtlety.

We therefore designed a novel evaluation
methodology in this paper that has a much smaller
startup cost. It is well known that relative judg-
ments are easier to make on difficult tasks than ab-
solute judgments. For example, much recent work
on relevance ranking in information retrieval re-
lies on relative relevance judgments (one docu-
ment is more relevant than another) rather than ab-
solute relevance judgments. We adopt this gen-
eral idea and only request such relative judgments
on supporting sentences from annotators. Unlike
a complete ranking of the sentences (which would
require m(m − 1)/2 judgments where m is the
length of the review), we choose a setup where
we need to only elicit a single relative judgment
per review, one relative judgment on a sentence
pair (consisting of the baseline sentence and the
system sentence) for each of the 1380 reviews se-
lected in the previous section. This is a manage-
able annotation task that can be run on a crowd-
sourcing service in a short time and at little cost.

We use Amazon Mechanical Turk (AMT) for
this annotation task. The main advantage of AMT
is that cost per annotation task is very low, so that
we can obtain large annotated datasets for an af-
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Task:
Sentence 1: This 5 meg camera meets all my requirements.

Sentence 2: Very good pictures, small bulk, long battery life.

 

Which sentence gives the more convincing reason? Fill out exactly one field, please.
Please type the blue word of the chosen sentence into the corresponding answer field.

s1 

s2 

If both sentences do not give a convincing reason, type NOTCONV into this answer
field.

X 

Submit

file:///Users/hs0711/example2.html

1 of 1 3/9/12 12:06 PM

Figure 1: AMT interface for annotators

fordable price. The disadvantage is the level of
quality of the annotation which will be discussed
at the end of this section.

5.1 Task Design

We created a HIT (Human Intelligence Task)
template including detailed annotation guidelines.
Every HIT consists of a pair of sentences. One
sentence is the baseline sentence; the other sen-
tence is the system sentence, i.e., the sentence se-
lected by the scoring function. The two sentences
are presented in random order to avoid bias.

The workers are then asked to evaluate the rel-
ative quality of the sentences by selecting one of
the following three options:

1. Sentence 1 has the more convincing reason

2. Sentence 2 has the more convincing reason

3. Neither sentence has a convincing reason

If both sentences contain reasons, the worker
has to compare the two reasons and choose the
sentence with the more convincing reason.

Each HIT was posted to three different workers
to make it possible to assess annotator agreement.
Every worker can process each HIT only once
so that the three assignments are always done by
three different people.

Based on the worker annotations, we compute a
gold standard score for each sentence. This score

is simply the number of times it was rated bet-
ter than its competitor. The score can be 0, 1, 2
or 3. HITs for which the worker chooses the op-
tion “Neither sentence has a convincing reason”
are ignored when computing sentence scores.

The sentence with the higher score is then se-
lected as the best supporting sentence for the cor-
responding review.

In cases of ties, we posted the sentence pair one
more time for one worker. If one of the two sen-
tences has a higher score after this reposting, we
choose it as the winner. Otherwise we label this
sentence pair “no decision” or “N-D”.

5.2 Quality of AMT Annotations
Since our crowdsourcing based evaluation is
novel, it is important to investigate if human an-
notators perform the annotation consistently and
reproducibly.

The Fleiss’ κ agreement score for the final
experiment is 0.17. AMT workers only have
the instructions given by the requesters. If they
are not clear enough or too complicated, work-
ers can misunderstand the task, which decreases
the quality of the answers. There are also AMT
workers who spam and give random answers to
tasks. Moreover, ranking sentences according to
the quality of the given reason is a subjective task.
Even if the sentence contains a reason, it might
not be convincing for the worker.

To ensure a high level of quality for our dataset,

282



Experiment # Docs BL SY N-D B=S
1 AMT, first pass 1380 27.4 57.9 14.7 -
2 AMT, second pass 203 46.8 45.8 7.4 -
3 AMT final 1380 34.3 64.6 1.1 -
4 AMT+[B=S] 1744 27.1 51.1 0.9 20.9

Table 3: AMT evaluation results. Numbers are percentages or counts. BL = baseline, SY = system, N-D = no
decision, B=S = same sentence selected by baseline and system

we took some precautions. To force workers to
actually read the sentences and not just click a
few boxes, we randomly marked one word of each
sentence blue. The worker had to type the word
of their preferred sentence into the corresponding
answer field or NOTCONV into the special field if
neither sentence was convincing. Figure 1 shows
our AMT interface design.

For each answer field we have a gold stan-
dard (the words we marked blue and the word
NOTCONV) which enables us to look for spam.
The analysis showed that some workers mistyped
some words, which however only indicates that
the worker actually typed the word instead of
copying it from the task. Some workers submit-
ted inconsistent answers, for instance, they typed
a random word or filled out all three answer fields.
In such cases we reposted this HIT again to re-
ceive a correct answer.

After the task, we counted how often a worker
said that neither sentence is convincing since a
high number indicates that the worker might have
only copied the word for several sentence pairs
without checking the content of the sentences. We
also analyzed the time a worker needed for every
HIT. Since no task was done in less than 10 sec-
onds, the possibility of just copying the word was
rather low.

6 Results and discussion

The results of the AMT experiment are shown in
table 3. As described above, each of the 1380
sentence pairs was evaluated by three workers.
Workers rated the system sentence as better for
57.9% of the reviews, and the baselines sentence
as better for 27.4% of the reviews; for 14.7% of
reviews, the scores of the two sentences were tied
(line 1 of Table 3). The 203 reviews in this cate-
gory were reposted one more time (as described in
Section 5). The responses were almost perfectly
evenly split: about 47% of workers preferred the

baseline system, 46% the system sentence; 7.4%
of the responses were undecided (line 2). Line 3
presents the consolidated results where the 14.7%
ties on line 1 are replaced by the ratings obtained
on line 2 in the second pass.

The consolidated results (line 3) show that our
system is clearly superior to the baseline of se-
lecting the sentence with the strongest sentiment.
Our system selected a better supporting sentence
for 64.6% of the reviews; the baseline selected a
better sentence for 34.3% of the reviews. These
results exclude the reviews where baseline and
system selected the same sentence. If we as-
sume that these sentences are also acceptable sen-
tences (since they score well on the traditional
sentiment metrics as well as on our new con-
tent keyword metric), then our system finds a
good supporting sentence for 72.0% of reviews
(51.1+20.9) whereas the baseline does so for only
48.0% (27.1+20.9).

6.1 Error Analysis
Our error analysis revealed that a significant pro-
portion of system sentences that were worse than
baseline sentences did contain a reason. How-
ever, the baseline sentence also contained a reason
and was rated better by AMT annotators. Exam-
ples (1) and (2) show two such cases. The first
sentence is the baseline sentence (BL) which was
rated better. The system sentence (SY) contains
a similar or different reason. Since rating reasons
is a very subjective task, it is impossible to de-
fine which of these two sentences contains the bet-
ter reason and depends on how the workers think
about it.

(1) BL:The best thing is that everything is just so
easily displayed and one doesn’t need a
manual to start getting the work done.

SY: The zoom is incredible, the video was so
clear that I actually thought of making a
15 min movie.
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(2) BL:The colors are horrible, indoor shots are
horrible, and too much noise.

SY: Who cares about 8 mega pixels and 1600
iso when it takes such bad quality pic-
tures.

In example (3) the system sentence is an in-
complete sentence consisting of only two noun
phrases. These cut-off sentences are mainly
caused by incorrect usage of grammar and punc-
tuation by the reviewers which results in wrongly
determined sentence boundaries in the prepro-
cessing step.

(3) BL:Gives peace of mind to have it fit per-
fectly.

SY: battery and SD card.

In some cases, the two sentences that were pre-
sented to the worker in the evaluation had a dif-
ferent polarity. This can have two reasons: (i) due
to noisy training input, the classifier misclassified
some of the sentences, and (ii) for short reviews
we also used sentences with the non-conforming
polarity. Sentences with different polarity often
confused the workers and they tended to prefer
the positive sentence even if the negative one con-
tained a more convincing reason as can be seen in
example (4).

(4) BL:It shares same basic commands and
setup, so the learning curve was minimal.

SY: I was not blown away by the image qual-
ity, and as others have mentioned, the
flash really is weak.

A general problem with our approach is that the
weighting function favors sentences with many
noun phrases. The system sentence in example
(5) contains many noun phrases, including some
highly frequent nouns (e.g., ”lens”, ”battery”),
but there is no convincing reason and the baseline
sentence has been selected by the workers.

(5) BL:I have owned my cd300 for about 3 weeks
and have already taken 700 plus pictures.

SY: It has something to do with the lens be-
cause the manual says it only happens to
the 300 and when I called Sony tech sup-
port the guy tried to tell me the battery
was faulty and it wasn’t.

Finally, there are a number of cases where our
assumption that good supporting sentences con-
tain keyphrases is incorrect. For example, sen-
tence (6) does not contain any keyphrases indica-
tive of good reasons. The information that makes
it a good supporting sentence is mainly expressed
using verbs and particles.

(6) I have had an occasional problem with
the camera not booting up and telling me
to turn it off and then on again.

7 Conclusion

In this work, we presented a system that ex-
tracts supporting sentences, single-sentence sum-
maries of a document that contain a convincing
reason for the author’s opinion about a product.
We used an unsupervised approach that extracts
keyphrases of the given domain and then weights
these keyphrases to identify supporting sentences.
We used a novel comparative evaluation method-
ology with the crowdsourcing framework Ama-
zon Mechanical Turk to evaluate this novel task
since no gold standard is available. We showed
that our keyphrase-based system performs better
than a baseline of extracting the sentence with the
highest sentiment score.

8 Future work

Our method failed for some of the about 35% of
reviews where it did not find a convincing reason
because of the noisiness of reviews. Reviews are
user-generated content and contain grammatically
incorrect sentences and are full of typographical
errors. This problem makes it hard to perform pre-
processing steps like part-of-speech tagging and
sentence boundary detection correctly and reli-
ably. We plan to address these problems in fu-
ture work by developing a more robust processing
pipeline.
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Gábor Berend. 2011. Opinion expression mining by
exploiting keyphrase extraction. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, pages 1162–1170, Chiang Mai,
Thailand, November. Asian Federation of Natural
Language Processing.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proceedings of the
Tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’04,
pages 168–177, New York, NY, USA. ACM.

Nitin Jindal and Bing Liu. 2008. Opinion spam
and analysis. In WSDM ’08: Proceedings of the
international conference on Web search and web
data mining, pages 219–230, New York, NY, USA.
ACM.

Soo-Min Kim and Eduard Hovy. 2006. Automatic
identification of pro and con reasons in online re-
views. In Proceedings of the COLING/ACL on
Main conference poster sessions, COLING-ACL
’06, pages 483–490, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Bing Liu. 2010. Sentiment analysis and subjectivity.
Handbook of Natural Language Processing, 2nd ed.

Christopher Manning and Dan Klein. 2003. Opti-
mization, maxent models, and conditional estima-
tion without magic. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology: Tutorials - Volume 5,
NAACL-Tutorials ’03, pages 8–8, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Ani Nenkova and Kathleen McKeown. 2011. Auto-
matic summarization. Foundations and Trends in
Information Retrieval, 5(2-3):103–233.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in In-
formation Retrieval, 2(1-2):1–135.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In Proceedings of the

International Conference on New Methods in Lan-
guage Processing, Manchester, UK.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006.
Movie review mining and summarization. In Pro-
ceedings of the 15th ACM international conference
on Information and knowledge management, CIKM
’06, pages 43–50, New York, NY, USA. ACM.

285



Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 286–295,
Avignon, France, April 23 - 27 2012. c©2012 Association for Computational Linguistics

Bootstrapped Training of Event Extraction Classifiers

Ruihong Huang and Ellen Riloff
School of Computing

University of Utah
Salt Lake City, UT 84112

{huangrh,riloff}@cs.utah.edu

Abstract

Most event extraction systems are trained
with supervised learning and rely on a col-
lection of annotated documents. Due to
the domain-specificity of this task, event
extraction systems must be retrained with
new annotated data for each domain. In
this paper, we propose a bootstrapping so-
lution for event role filler extraction that re-
quires minimal human supervision. We aim
to rapidly train a state-of-the-art event ex-
traction system using a small set of “seed
nouns” for each event role, a collection
of relevant (in-domain) and irrelevant (out-
of-domain) texts, and a semantic dictio-
nary. The experimental results show that
the bootstrapped system outperforms previ-
ous weakly supervised event extraction sys-
tems on the MUC-4 data set, and achieves
performance levels comparable to super-
vised training with 700 manually annotated
documents.

1 Introduction

Event extraction systems process stories about
domain-relevant events and identify the role fillers
of each event. A key challenge for event extrac-
tion is that recognizing role fillers is inherently
contextual. For example, aPERSON can be a
perpetrator or a victim in different contexts (e.g.,
“John Smith assassinated the mayor”vs. “John
Smith was assassinated”). Similarly, anyCOM-
PANY can be an acquirer or an acquiree depending
on the context.

Many supervised learning techniques have
been used to create event extraction systems us-
ing gold standard “answer key” event templates
for training (e.g., (Freitag, 1998a; Chieu and Ng,

2002; Maslennikov and Chua, 2007)). How-
ever, manually generating answer keys for event
extraction is time-consuming and tedious. And
more importantly, event extraction annotations
are highly domain-specific, so new annotations
must be obtained for each domain.

The goal of our research is to use bootstrap-
ping techniques to automatically train a state-of-
the-art event extraction system without human-
generated answer key templates. The focus of our
work is the TIER event extraction model, which
is a multi-layered architecture for event extrac-
tion (Huang and Riloff, 2011). TIER’s innova-
tion over previous techniques is the use of four
different classifiers that analyze a document at in-
creasing levels of granularity. TIER progressively
zooms in on event information using a pipeline
of classifiers that perform document-level classi-
fication, sentence classification, and noun phrase
classification. TIER outperformed previous event
extraction systems on the MUC-4 data set, but re-
lied heavily on a large collection of 1,300 docu-
ments coupled with answer key templates to train
its four classifiers.

In this paper, we present a bootstrapping solu-
tion that exploits a large unannotated corpus for
training by usingrole-identifying nouns(Phillips
and Riloff, 2007) as seed terms. Phillips and
Riloff observed that some nouns, by definition,
refer to entities or objects that play a specific role
in an event. For example, “assassin”, “sniper”,
and “hitman” refer to people who play the role
of PERPETRATORin a criminal event. Similarly,
“victim”, “casualty”, and “fatality” refer to peo-
ple who play the role ofVICTIM , by virtue of
their lexical semantics. Phillips and Riloff called
these wordsrole-identifying nounsand used them
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to learn extraction patterns. Our research also
usesrole-identifying nounsto learn extraction pat-
terns, but the role-identifying nouns and patterns
are then used to create training data for event ex-
traction classifiers. Each classifier is then self-
trained in a bootstrapping loop.

Our weakly supervised training procedure re-
quires a small set of “seed nouns” for each event
role, and a collection of relevant (in-domain) and
irrelevant (out-of-domain) texts. No answer key
templates or annotated texts are needed. The seed
nouns are used to automatically generate a set
of role-identifying patterns, and then the nouns,
patterns, and a semantic dictionary are used to
label training instances. We also propagate the
event role labels across coreferent noun phrases
within a document to produce additional train-
ing instances. The automatically labeled texts are
used to train three components of TIER: its two
types of sentence classifiers and its noun phrase
classifiers. To create TIER’s fourth component,
its document genre classifier, we apply heuristics
to the output of the sentence classifiers.

We present experimental results on the MUC-
4 data set, which is a standard benchmark for
event extraction research. Our results show that
the bootstrapped system, TIERlite, outperforms
previous weakly supervised event extraction sys-
tems and achieves performance levels comparable
to supervised training with 700 manually anno-
tated documents.

2 Related Work

Event extraction techniques have largely focused
on detecting event “triggers” with their arguments
for extracting role fillers. Classical methods are
either pattern-based (Kim and Moldovan, 1993;
Riloff, 1993; Soderland et al., 1995; Huffman,
1996; Freitag, 1998b; Ciravegna, 2001; Califf and
Mooney, 2003; Riloff, 1996; Riloff and Jones,
1999; Yangarber et al., 2000; Sudo et al., 2003;
Stevenson and Greenwood, 2005) or classifier-
based (e.g., (Freitag, 1998a; Chieu and Ng, 2002;
Finn and Kushmerick, 2004; Li et al., 2005; Yu et
al., 2005)).

Recently, several approaches have been pro-
posed to address the insufficiency of using only
local context to identify role fillers. Some ap-
proaches look at the broader sentential context
around a potential role filler when making a de-
cision (e.g., (Gu and Cercone, 2006; Patwardhan

and Riloff, 2009)). Other systems take a more
global view and consider discourse properties of
the document as a whole to improve performance
(e.g., (Maslennikov and Chua, 2007; Ji and Gr-
ishman, 2008; Liao and Grishman, 2010; Huang
and Riloff, 2011)). Currently, the learning-based
event extraction systems that perform best all use
supervised learning techniques that require a large
number of texts coupled with manually-generated
annotations or answer key templates.

A variety of techniques have been explored
for weakly supervised training of event extrac-
tion systems, primarily in the realm of pattern or
rule-based approaches (e.g., (Riloff, 1996; Riloff
and Jones, 1999; Yangarber et al., 2000; Sudo et
al., 2003; Stevenson and Greenwood, 2005)). In
some of these approaches, a human must man-
ually review and “clean” the learned patterns to
obtain good performance. Research has also been
done to learn extraction patterns in an unsuper-
vised way (e.g., (Shinyama and Sekine, 2006;
Sekine, 2006)). But these efforts target open do-
main information extraction. To extract domain-
specific event information, domain experts are
needed to select the pattern subsets to use.

There have also been weakly supervised ap-
proaches that use more than just local context.
(Patwardhan and Riloff, 2007) uses a semantic
affinity measure to learn primary and secondary
patterns, and the secondary patterns are applied
only to event sentences. The event sentence clas-
sifier is self-trained using seed patterns. Most
recently, (Chambers and Jurafsky, 2011) acquire
event words from an external resource, group the
event words to form event scenarios, and group
extraction patterns for different event roles. How-
ever, these weakly supervised systems produce
substantially lower performance than the best su-
pervised systems.

3 Overview of TIER

The goal of our research is to develop a weakly
supervised training process that can successfully
train a state-of-the-art event extraction system for
a new domain with minimal human input. We de-
cided to focus our efforts on the TIER event ex-
traction model because it recently produced bet-
ter performance on the MUC-4 data set than prior
learning-based event extraction systems (Huang
and Riloff, 2011). In this section, we briefly give
an overview of TIER’s architecture and its com-
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Figure 1: TIER Overview

ponents.
TIER is a multi-layered architecture for event

extraction, as shown in Figure 1. Documents pass
through a pipeline where they are analyzed at dif-
ferent levels of granularity, which enables the sys-
tem to gradually “zoom in” on relevant facts. The
pipeline consists of a document genre classifier,
two types of sentence classifiers, and a set of noun
phrase (role filler) classifiers.

The lower pathway in Figure 1 shows that all
documents pass through anevent sentence clas-
sifier. Sentences labeled as event descriptions
then proceed to the noun phrase classifiers, which
are responsible for identifying the role fillers in
each sentence. The upper pathway in Figure 1 in-
volves a document genre classifier to determine
whether a document is an “event narrative” story
(i.e., an article that primarily discusses the details
of a domain-relevant event). Documents that are
classified as event narratives warrant additional
scrutiny because they most likely contain a lot of
event information. Event narrative stories are pro-
cessed by an additional set ofrole-specific sen-
tence classifiersthat look for role-specific con-
texts that will not necessarily mention the event.
For example, a victim may be mentioned in a sen-
tence that describes the aftermath of a crime, such
as transportation to a hospital or the identifica-
tion of a body. Sentences that are determined to
have “role-specific” contexts are passed along to
the noun phrase classifiers for role filler extrac-
tion. Consequently, event narrative documents
pass through both the lower pathway and the up-
per pathway. This approach creates an event ex-
traction system that can discover role fillers in a
variety of different contexts by considering the
type of document being processed.

TIER was originally trained with supervised
learning using 1,300 texts and their corresponding
answer key templates from the MUC-4 data set
(MUC-4 Proceedings, 1992). Human-generated
answer key templates are expensive to produce
because the annotation process is both difficult

and time-consuming. Furthermore, answer key
templates for one domain are virtually never
reusable for different domains, so a new set of
answer keys must be produced from scratch for
each domain. In the next section, we present our
weakly supervised approach for training TIER’s
event extraction classifiers.

4 Bootstrapped Training of Event
Extraction Classifiers

We adopt a two-phase approach to train TIER’s
event extraction modules using minimal human-
generated resources. The goal of the first phase
is to automatically generate positive training ex-
amples usingrole-identifyingseed nouns as input.
The seed nouns are used to automatically gener-
ate a set ofrole-identifying patternsfor each event
role. Each set of patterns is then assigned a set
of semantic constraints (selectional restrictions)
that are appropriate for that event role. The se-
mantic constraints consist of the role-identifying
seed nouns as well as general semantic classes
that constrain the event role (e.g., a victim must
be aHUMAN ). A noun phrase will satisfy the se-
mantic constraints if its head noun is in the seed
noun list or if it has the appropriate semantic type
(based on dictionary lookup). Each pattern is then
matched against the unannotated texts, and if the
extracted noun phrase satisfies its semantic con-
straints, then the noun phrase is automatically la-
beled as a role filler.

The second phase involves bootstrapped train-
ing of TIER’s classifiers. Using the labeled in-
stances generated in the first phase, we iteratively
train three of TIER’s components: the two types
of sentential classifiers and the noun phrase clas-
sifiers. For the fourth component, the document
classifier, we apply heuristics to the output of the
sentence classifiers to assess the density of rel-
evant sentences in a document and label high-
density stories as event narratives. In the fol-
lowing sections, we present the details of each of
these steps.

4.1 Automatically Labeling Training Data

Finding seeding instances of high precision and
reasonable coverage is important in bootstrap-
ping. However, this is especially challenging
for event extraction task because identifying role
fillers is inherently contextual. Furthermore, role
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Figure 2: Using Basilisk to Induce Role-Identifying
Patterns

fillers occur sparsely in text and in diverse con-
texts.

In this section, we explain how we gener-
ate role-identifying patternsautomatically using
seed nouns, and we discuss why we add seman-
tic constraints to the patterns when producing la-
beled instances for training. Then, we discuss the
coreference-based label propagation that we used
to obtain additional training instances. Finally, we
give examples to illustrate how we create training
instances.

4.1.1 Inducing Role-Identifying Patterns

The input to our system is a small set of
manually-definedseed nounsfor each event role.
Specifically, the user is required to provide
10 role-identifying nounsfor each event role.
(Phillips and Riloff, 2007) defined a noun as be-
ing “role-identifying” if its lexical semantics re-
veal the role of the entity/object in an event. For
example, the words “assassin” and “sniper” are
people who participate in a violent event as aPER-
PETRATOR. Therefore, the entities referred to by
role-identifying nouns are probable role fillers.

However, treating every context surrounding a
role-identifying noun as a role-identifying pattern
is risky. The reason is that many instances of role-
identifying nouns appear in contexts that do not
describe the event. But, if one pattern has been
seen to extract many role-identifying nouns and
seldomly seen to extract other nouns, then the pat-
tern likely represents an event context.

As (Phillips and Riloff, 2007) did, we use
Basilisk to learn patterns for each event role.
Basilisk was originally designed for semantic
class learning (e.g., to learn nouns belonging to
semantic categories, such asbuilding or human).
As shown in Figure 2, beginning with a small set
of seed nouns for each semantic class, Basilisk
learns additional nouns belonging to the same se-
mantic class. Internally, Basilisk uses extraction

patterns automatically generated from unanno-
tated texts to assess the similarity of nouns. First,
Basilisk assigns a score to each pattern based on
the number of seed words that co-occur with it.
Basilisk then collects the noun phrases extracted
by the highest-scoring patterns. Next, the head
noun of each noun phrase is assigned a score
based on the set of patterns that it co-occurred
with. Finally, Basilisk selects the highest-scoring
nouns, automatically labels them with the seman-
tic class of the seeds, adds these nouns to the lex-
icon, and restarts the learning process in a boot-
strapping fashion.

For our work, we give Basiliskrole-identifying
seed nounsfor each event role. We run the boot-
strapping process for 20 iterations and then har-
vest the 40 best patterns that Basilisk identifies
for each event role. We also tried using the addi-
tional role-identifying nouns learned by Basilisk,
but found that these nouns were too noisy.

4.1.2 Using the Patterns to Label NPs

The inducedrole-identifying patternscan be
matched against the unannotated texts to produce
labeled instances. However, relying solely on the
pattern contexts can be misleading. For example,
the pattern context<subject> caused damage
will extract some noun phrases that are weapons
(e.g., the bomb) but some noun phrases that are
not (e.g.,the tsunami).

Based on this observation, we add selectional
restrictions to each pattern that requires a noun
phrase to satisfy certain semantic constraints in
order to be extracted and labeled as a positive
instances for an event role. The selectional re-
strictions are satisfied if the head noun is among
the role-identifying seed nounsor if the semantic
class of the head noun is compatible with the cor-
responding event role. In the previous example,
tsunamiwill not be extracted as a weapon because
it has an incompatible semantic class (EVENT),
but bombwill be extracted because it has a com-
patible semantic class (WEAPON).

We use the semantic class labels assigned by
the Sundance parser (Riloff and Phillips, 2004) in
our experiments. Sundance looks up each noun
in a semantic dictionary to assign the semantic
class labels. As an alternative, general resources
(e.g., WordNet (Miller, 1990)) or a semantic tag-
ger (e.g., (Huang and Riloff, 2010)) could be
used.

289



John Smith was killed by 

. . . . . .

 

was killed by <np>

Role−Identifying
Patterns

two armed men
1

an hour later.
Police arrestedthe unidentified men  

3

 

in broad daylight this morning.  

left his house to go to work about 8:00 am.

The assassins
2

attackedthe mayor as he 

<subject> fired shots

men = Human

Role−Identifying  Semantic
 Dictionary 

terrorists

snipers
assassins

. . .

building = Object
<subject> attacked

Noun
Constraints Constraints

Figure 3: Automatic Training Data Creation

4.1.3 Propagating Labels with Coreference

To enrich the automatically labeled training in-
stances, we also propagate the event role labels
across coreferent noun phrases within a docu-
ment. The observation is that once a noun phrase
has been identified as a role filler, its corefer-
ent mentions in the same document likely fill the
same event role since they are referring to the
same real world entity.

To leverage these coreferential contexts, we
employ a simple head noun matching heuristic to
identify coreferent noun phrases. This heuristic
assumes that two noun phrases that have the same
head noun are coreferential. We considered us-
ing an off-the-shelf coreference resolver, but de-
cided that the head noun matching heuristic would
likely produce higher precision results, which is
important to produce high-quality labeled data.

4.1.4 Examples of Training Instance
Creation

Figure 3 illustrates how we label training in-
stances automatically. The text example shows
three noun phrases that are automatically labeled
as perpetrators. Noun phrases #1 and #2 oc-
cur in role-identifying pattern contexts (was killed
by <np> and <subject> attacked) and satisfy
the semantic constraints for perpetrators because
“men” has a compatible semantic type and “assas-
sins” is a role-identifying noun for perpetrators.

Noun phrase #3 (“the unidentified men”) does
not occur in a pattern context, but it is deemed
to be coreferent with “two armed men” because
they have the same head noun. Consequently, we

propagate the perpetrator label from noun phrase
#1 to noun phrase #3.

4.2 Creating TIERlite with Bootstrapping

In this section, we explain how the labeled in-
stances are used to train TIER’s classifiers with
bootstrapping. In addition to the automatically
labeled instances, the training process depends
on a text corpus that consists of both relevant
(in-domain) and irrelevant (out-of-domain) doc-
uments. Positive instances are generated from
the relevant documents and negative instances are
generated by randomly sampling from the irrele-
vant documents.

The classifiers are all support vector machines
(SVMs), implemented using the SVMlin software
(Keerthi and DeCoste, 2005). When applying the
classifiers during bootstrapping, we use a sliding
confidence threshold to determine which labels
are reliable based on the values produced by the
SVM. Initially, we set the threshold to be 2.0 to
identify highly confident predictions. But if fewer
thank instances pass the threshold, then we slide
the threshold down in decrements of 0.1 until we
obtain at leastk labeled instances or the thresh-
old drops below 0, in which case bootstrapping
ends. We usedk=10 for both sentence classifiers
andk=30 for the noun phrase classifiers.

The following sections present the details of the
bootstrapped training process for each of TIER’s
components.

Figure 4: The Bootstrapping Process

4.2.1 Noun Phrase Classifiers

The mission of the noun phrase classifiers is to
determine whether a noun phrase is a plausible
event role filler based on the local features sur-
rounding the noun phrase (NP). A set of classifiers
is needed, one for each event role.

As shown in Figure 4, to seed the classifier
training, the positive noun phrase instances are
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generated from the relevant documents follow-
ing Section 4.1. The negative noun phrase in-
stances are drawn randomly from the irrelevant
documents. Considering the sparsity of role fillers
in texts, we set the negative:positive ratio to be
10:1. Once the classifier is trained, it is applied to
the unlabeled noun phrases in the relevant docu-
ments. Noun phrases that are assigned role filler
labels by the classifier with high confidence (us-
ing the sliding threshold) are added to the set of
positive instances. New negative instances are
drawn randomly from the irrelevant documents to
maintain the 10:1 (negative:positive) ratio.

We extract features from each noun phrase
(NP) and its surrounding context. The features
include the NP head noun and its premodifiers.
We also use the Stanford NER tagger (Finkel et
al., 2005) to identify Named Entities within the
NP. The context features include four words to the
left of the NP, four words to the right of the NP,
and the lexico-syntactic patterns generated by Au-
toSlog to capture expressions around the NP (see
(Riloff, 1993) for details).

4.2.2 Event Sentence Classifier

The event sentence classifier is responsible
for identifying sentences that describe a relevant
event. Similar to the noun phrase classifier train-
ing, positive training instances are selected from
the relevant documents and negative instances are
drawn from the irrelevant documents. All sen-
tences in the relevant documents that contain one
or more labeled noun phrases (belonging to any
event role) are labeled as positive training in-
stances. We randomly sample sentences from the
irrelevant documents to obtain a negative:positive
training instance ratio of 10:1. The bootstrapping
process is then identical to that of the noun phrase
classifiers. The feature set for this classifier con-
sists of unigrams, bigrams and AutoSlog’s lexico-
syntactic patterns surrounding allnoun phrases in
the sentence.

4.2.3 Role-Specific Sentence Classifiers

The role-specific sentence classifiers are
trained to identify the contexts specific to each
event role. All sentences in the relevant doc-
uments that contain at least one labeled noun
phrase for the appropriate event role are used
as positive instances. Negative instances are
randomly sampled from the irrelevant documents

to maintain the negative:positive ratio of 10:1.
The bootstrapping process and feature set are the
same as for the event sentence classifier.

The difference between the two types of sen-
tence classifiers is that the event sentence classi-
fier uses positive instances from allevent roles,
while each role-specific sentence classifiers only
uses the positive instances for one particular event
role. The rationale is similar as in the super-
vised setting (Huang and Riloff, 2011); the event
sentence classifier is expected to generalize over
all event roles to identify event mention contexts,
while the role-specific sentence classifiers are ex-
pected to learn to identify contexts specific to in-
dividual roles.

4.2.4 Event Narrative Document Classifier

TIER also uses an event narrative document
classifier and only extracts information from role-
specific sentences within event narrative docu-
ments. In the supervised setting, TIER uses
heuristic rules derived from answer key templates
to identify the event narrative documents in the
training set, which are used to train an event nar-
rative document classifier. The heuristic rules re-
quire that an event narrative should have a high
density of relevant information and tend to men-
tion the relevant information within the first sev-
eral sentences.

In our weakly supervised setting, we use the
information density heuristic directly instead of
training an event narrative classifier. We approxi-
mate the relevant information density heuristic by
computing the ratio of relevant sentences (both
event sentences and role-specific sentences) out of
all the sentences in a document. Thus, the event
narrative labeller only relies on the output of the
two sentence classifiers. Specifically, we label a
document as an event narrative if≥ 50% of the
sentences in the document are relevant (i.e., la-
beled positively by either sentence classifier).

5 Evaluation

In this section, we evaluate our bootstrapped sys-
tem, TIERlite, on the MUC-4 event extraction
data set. First, we describe the IE task, the data
set, and the weakly supervised baseline systems
that we use for comparison. Then we present the
results of our fully bootstrapped system TIERlite,
the weakly supervised baseline systems, and two
fully supervised event extraction systems, TIER
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and GLACIER. In addition, we analyze the per-
formance of TIERlite using different configura-
tions to assess the impact of its components.

5.1 IE Task and Data

We evaluated the performance of our systems on
the MUC-4 terrorism IE task (MUC-4 Proceed-
ings, 1992) about Latin American terrorist events.
We used 1,300 texts (DEV) as our training set and
200 texts (TST3+TST4) as the test set. All the
documents have answer key templates. For the
training set, we used the answer keys to separate
the documents into relevant and irrelevant sub-
sets. Any document containing at least one rel-
evant event was considered to be relevant.

PerpInd PerpOrg Target Victim Weapon
129 74 126 201 58

Table 1: # of Role Fillers in the MUC-4 Test Set

Following previous studies, we evaluate our
system on five MUC-4 string event roles:perpe-
trator individuals (PerpInd),perpetrator organi-
zations(PerpOrg),physical targets, victims, and
weapons. Table 1 shows the distribution of role
fillers in the MUC-4 test set. The complete IE task
involves the creation of answer key templates, one
template per event1. Our work focuses on extract-
ing individual role fillers and not template genera-
tion, so we evaluate the accuracy of the role fillers
irrespective of which template they occur in.

We used the samehead nounscoring scheme
as previous systems, where an extraction is cor-
rect if its head noun matches the head noun in the
answer key2. Pronouns were discarded from both
the system responses and the answer keys since
no coreference resolution is done. Duplicate ex-
tractions were conflated before being scored, so
they count as just one hit or one miss.

5.2 Weakly Supervised Baselines

We compared the performance of our system with
three previous weakly supervised event extraction
systems.

AutoSlog-TS (Riloff, 1996) generates lexico-
syntactic patterns exhaustively from unannotated
texts and ranks them based on their frequency and
probability of occurring in relevant documents.
A human expert then examines the patterns and

1Documents may contain multiple events per article.
2For example, “armed men” will match “5 armed men”.

manually selects the best patterns for each event
role. During testing, the patterns are matched
against unseen texts to extract event role fillers.

PIPER (Patwardhan and Riloff, 2007; Patward-
han, 2010) learns extraction patterns using a se-
mantic affinity measure, and it distinguishes be-
tween primary and secondary patterns and ap-
plies them selectively. (Chambers and Jurafsky,
2011) (C+J) created an event extraction system
by acquiring event words from WordNet (Miller,
1990), clustering the event words into different
event scenarios, and grouping extraction patterns
for different event roles.

5.3 Performance of TIERlite

Table 2 shows the seed nouns that we used in our
experiments, which were generated by sorting the
nouns in the corpus by frequency and manually
identifying the first 10 role-identifying nouns for
each event role.3 Table 3 shows the number of
training instances (noun phrases) that were auto-
matically labeled for each event role using our
training data creation approach (Section 4.1).

Event Role Seed Nouns
Perpetrator terrorists assassins criminals rebels
Individual murderers deathsquads guerrillas

member members individuals
Perpetrator FMLN ELN FARC MRTA M-19 Front
Organization ShiningPath MedellinCartel

The Extraditables
Army of National Liberation

Target houses residence building home homes
offices pipeline hotel car vehicles

Victim victims civilians children jesuits Galan
priests students women peasants Romero

Weapon weapons bomb bombs explosives rifles
dynamite grenades device carbomb

Table 2: Role-Identifying Seed Nouns

PerpInd PerpOrg Target Victim Weapon
296 157 522 798 248

Table 3: # of Automatically Labeled NPs

Table 4 shows how our bootstrapped system
TIERlite compares with previous weakly super-
vised systems and two supervised systems, its su-
pervised counterpart TIER (Huang and Riloff,
2011) and a model that jointly considers local
and sentential contexts, GLACIER (Patwardhan

3We only found 9 weapon terms among the high-
frequency terms.
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Weakly Supervised Baselines
PerpInd PerpOrg Target Victim Weapon Average

AUTOSLOG-TS (1996) 33/49/40 52/33/41 54/59/56 49/54/51 38/44/41 45/48/46
PIPERBest (2007) 39/48/43 55/31/40 37/60/46 44/46/45 47/47/47 44/46/45
C+J (2011) - - - - - 44/36/40

Supervised Models
GLACIER (2009) 51/58/54 34/45/38 43/72/53 55/58/56 57/53/55 48/57/52
TIER (2011) 48/57/52 46/53/50 51/73/60 56/60/58 53/64/58 51/62/56

Weakly Supervised Models
TIERlite 47/51/49 60/39/47 37/65/47 39/53/45 53/55/54 47/53/50

Table 4: Performance of the Bootstrapped Event Extraction System (Precision/Recall/F-score)
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Figure 5: The Learning Curve of Supervised TIER

and Riloff, 2009). We see that TIERlite outper-
forms all three weakly supervised systems, with
slightly higher precision and substantially more
recall. When compared to the supervised sys-
tems, the performance of TIERlite is similar to
GLACIER, with comparable precision but slightly
lower recall. But the supervised TIER system,
which was trained with 1,300 annotated docu-
ments, is still superior, especially in recall.

Figure 5 shows the learning curve for TIER
when it is trained with fewer documents, rang-
ing from 100 to 1,300 in increments of 100. Each
data point represents five experiments where we
randomly selectedk documents from the train-
ing set and averaged the results. The bars show
the range of results across the five runs. Figure 5
shows that TIER’s performance increases from an
F score of 34 when trained on just 100 documents
up to an F score of 56 when training on 1,300 doc-
uments. The circle shows the performance of our
bootstrapped system, TIERlite, which achieves an
F score comparable to supervised training with
about 700 manually annotated documents.

5.4 Analysis

Table 6 shows the effect of the coreference prop-
agation step described in Section 4.1.3 as part of
training data creation. Without this step, the per-
formance of the bootstrapped system yields an F
score of 41. With the benefit of the additional
training instances produced by coreference prop-
agation, the system yields an F score of 53. The
new instances produced by coreference propaga-
tion seem to substantially enrich the diversity of
the set of labeled instances.

Seeding P/R/F
wo/Coref 45/38/41
w/Coref 47/53/50

Table 6: Effects of Coreference Propagation

In the evaluation section, we saw that the su-
pervised event extraction systems achieve higher
recall than the weakly supervised systems. Al-
though our bootstrapped event extraction sys-
tem TIERlite produces higher recall than previ-
ous weakly supervised systems, a substantial re-
call gap still exists.

Considering the pipeline structure of the event
extraction system, as shown in Figure 1, the noun
phrase extractors are responsible for identifying
all candidate role fillers. The sentential classifiers
and the document classifier effectively serve as
filters to rule out candidates from irrelevant con-
texts. Consequently, there is no way to recover
missing recall (role fillers) if the noun phrase ex-
tractors fail to identify them.

Since the noun phrase classifiers are so central
to the performance of the system, we compared
the performance of the bootstrapped noun phrase
classifiers directly with their supervised conter-
parts. The results are shown in Table 5. Both sets
of classifiers produce low precision when used in
isolation, but their precision levels are compara-
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PerpInd PerpOrg Target Victim Weapon Average
Supervised Classifier 25/67/36 26/78/39 34/83/49 32/72/45 30/75/43 30/75/42
Bootstrapped Classifier 30/54/39 37/53/44 30/71/42 28/63/39 36/57/44 32/60/42

Table 5: Evaluation of Bootstrapped Noun Phrase Classifiers(Precision/Recall/F-score)

ble. The TIER pipeline architecture is successful
at eliminating many of the false hits. However,
the recall of the bootstrapped classifiers is consis-
tently lower than the recall of the supervised clas-
sifiers. Specifically, the recall is about 10 points
lower for three event roles (PerpInd, Target and
Victim) and 20 points lower for the other two event
roles (PerpOrgandWeapon). These results sug-
gest that our bootstrapping approach to training
instance creation does not fully capture the diver-
sity of role filler contexts that are available in the
supervised training set of 1,300 documents. This
issue is an interesting direction for future work.

6 Conclusions

We have presented a bootstrapping approach for
training a multi-layered event extraction model
using a small set of “seed nouns” for each event
role, a collection of relevant (in-domain) and ir-
relevant (out-of-domain) texts and a semantic dic-
tionary. The experimental results show that the
bootstrapped system, TIERlite, outperforms pre-
vious weakly supervised event extraction sys-
tems on a standard event extraction data set, and
achieves performance levels comparable to super-
vised training with 700 manually annotated docu-
ments. The minimal supervision required to train
such a model increases the portability of event ex-
traction systems.
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Abstract 

In this paper, we describe a new approach to 
semi-supervised adaptive learning of event 
extraction from text. Given a set of exam-
ples and an un-annotated text corpus, the 
BEAR system (Bootstrapping Events And 
Relations) will automatically learn how to 
recognize and understand descriptions of 
complex semantic relationships in text, such 
as events involving multiple entities and 
their roles. For example, given a series of 
descriptions of bombing and shooting inci-
dents (e.g., in newswire) the system will 
learn to extract, with a high degree of accu-
racy, other attack-type events mentioned 
elsewhere in text, irrespective of the form of 
description. A series of evaluations using 
the ACE data and event set show a signifi-
cant performance improvement over our 
baseline system. 

1 Introduction 

We constructed a semi-supervised machine 
learning process that effectively exploits statisti-
cal and structural properties of natural language 
discourse in order to rapidly acquire rules to de-
tect mentions of events and other complex rela-
tionships in text, extract their key attributes, and 
construct template-like representations. The 
learning process exploits descriptive and struc-
tural redundancy, which is common in language; 
it is often critical for achieving successful com-
munication despite distractions, different con-
texts, or incompatible semantic models between 
a speaker/writer and a hearer/reader. We also 
take advantage of the high degree of referential 
consistency in discourse (e.g., as observed in 
word sense distribution by (Gale, et al. 1992), 
and arguably applicable to larger linguistic 
units), which enables the reader to efficiently 
correlate different forms of description across 
coherent spans of text.  

The method we describe here consists of two 
steps: (1) supervised acquisition of initial extrac-
tion rules from an annotated training corpus, and 

(2) self-adapting unsupervised multi-pass boot-
strapping by which the system learns new rules 
as it reads un-annotated text using the rules learnt 
in the first step and in the subsequent learning 
passes. When a sufficient quantity and quality of 
text material is supplied, the system will learn 
many ways in which a specific class of events 
can be described. This includes the capability to 
detect individual event mentions using a system 
of context-sensitive triggers and to isolate perti-
nent attributes such as agent, object, instrument, 
time, place, etc., as may be specific for each type 
of event. This method produces an accurate and 
highly adaptable event extraction that significant-
ly outperforms current information extraction 
techniques both in terms of accuracy and robust-
ness, as well as in deployment cost. 

2 Learning by bootstrapping  

As a semi-supervised machine learning method, 
bootstrapping can start either with a set of prede-
fined rules or patterns, or with a collection of 
training examples (seeds) annotated by a domain 
expert on a (small) data set. These are normally 
related to a target application domain and may be 
regarded as initial “teacher instructions” to the 
learning system. The training set enables the sys-
tem to derive initial extraction rules, which are 
applied to un-annotated text data in order to pro-
duce a much larger set of examples. The exam-
ples found by the initial rules will occur in a 
variety of linguistic contexts, and some of these 
contexts may provide support for creating alter-
native extraction rules. When the new rules are 
subsequently applied to the text corpus, addition-
al instances of the target concepts will be identi-
fied, some of which will be positive and some 
not. As this process continues to iterate over, the 
system acquires more extraction rules, fanning 
out from the seed set until no new rules can be 
learned.  

Thus defined, bootstrapping has been used in 
natural language processing research, notably in 
word sense disambiguation (Yarowsky, 1995). 
Strzalkowski and Wang (1996) were first to 
demonstrate that the technique could be applied 
to adaptive learning of named entity extraction 
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Figure 1. Skeletal dependency structure representation of an 

event mention. 

rules. For example, given a “naïve” rule for iden-
tifying company names in text, e.g., “capitalized 
NP followed by Co.”, their system would first 
find a large number of (mostly) positive instanc-
es of company names, such as “Henry Kauffman 
Co.” From the context surrounding each of these 
instances it would isolate alternative indicators, 
such as “the president of”, which is noted to oc-
cur in front of many company names, as in “The 
president of American Electric Automobile Co. 
…”. Such alternative indicators give rise to new 
extraction rules, e.g., “president of + CNAME”. 
The new rules find more entities, including com-
pany names that do not end with Co., and the 
process iterates until no further rules are found. 
The technique achieved a very high performance 
(95% precision and 90% recall), which encour-
aged more research in IE area by using boot-
strapping techniques. Using a similar approach, 
(Thelen and Riloff, 2002) generated new syntac-
tic patterns by exploiting the context of known 
seeds for learning semantic categories.  

In Snowball (Agichtein and Gravano, 2000 ) 
and Yangarber’s IE system (2000), bootstrapping 
technique was applied for extraction of binary 
relations, such as Organization-Location, e.g., 
between Microsoft and Redmond, WA. Then, Xu 
(2007) extended the method for more complex 
relations extraction by using sentence syntactic 
structure and a data driven pattern generation. In 
this paper, we describe a different approach on 
building event patterns and adapting to the dif-
ferent structures of unseen events. 

3 Bootstrapping applied to event learn-
ing  

Our objective in this project was to expand the 
bootstrapping technique to learn extraction of 
events from text, irrespective of their form of 
description, a property essential for successful 
adaptability to new domains and text genres. The 
major challenge in advancing from entities and 
binary relations to event learning is the complex-
ity of structures involved that not only consist of 
multiple elements but their linguistic context 
may now extend well beyond a few surrounding 
words, even past sentence boundaries. These 
considerations guided the design of the BEAR 
system (Bootstrapping Events And Relations), 
which is described in this paper. 

3.1 Event representation  

An event description can vary from very concise, 
newswire-style to very rich and complex as may 

be found in essays and other narrative forms. The 
system needs to recognize any of these forms and 
to do so we need to distill each description to a 
basic event pattern. This pattern will capture the 
heads of key phrases and their dependency struc-
ture while suppressing modifiers and certain oth-
er non-essential elements. Such skeletal 
representations cannot be obtained with keyword 
analysis or linear processing of sentences at word 
level (e.g., Agichtein and Gravano, 2000), be-
cause such methods cannot distinguish a phrase 
head from its modifier. A shallow dependency 
parser, such as Minipar (Lin, 1998), that recog-
nizes dependency relations between words is 
quite sufficient for deriving head-modifier rela-
tions and thus for construction of event tem-
plates. Event templates are obtained by stripping 
the parse tree of modifiers while preserving the 
basic dependency structure as shown in Figure 1, 
which is a stripped down parse tree of, “Also 
Monday, Israeli soldiers fired on four diplomatic 
vehicles in the northern Gaza town of Beit 
Hanoun, said diplomats” 

The model proposed here represents a signifi-
cant advance over the current methods for rela-
tion extraction, such as the SVO model 
(Yangarber, et al. 2000) and its extension, e.g., 
the chain model (Sudo, et al. 2001) and other 
related variants (Riloff, 1996) all of which lack 
the expressive power to accurately recognize and 
represent complex event descriptions and to sup-
port successful machine learning. While Sudo’s 
subtree model (2003) overcomes some of the 
limitations of the chain models and is thus con-
ceptually closer to our method, it nonetheless 
lacks efficiency required for practical applica-
tions.  

We represent complex relations as tree-like 
structures anchored at an event trigger (which is 
usually but not necessarily the main verb) with 
branches extending to the event attributes (which 
are usually named entities). Unlike the singular 
concepts (i.e., named entities such as ‘person’ or 
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‘location’) or linear relations (i.e., tuples such as 
‘Gates – CEO – Microsoft’), an event description 
consists of elements that form non-linear de-
pendencies, which may not be apparent in the 
word order and therefore require syntactic and 
semantic analysis to extract. Furthermore, an ar-
rangement of these elements in text can vary 
greatly from one event mention to the next, and 
there is usually other intervening material in-
volved. Consequently, we construe event repre-
sentation as a collection of paths linking the 
trigger to the attributes through the nodes of a 
parse tree1.  

To create an event pattern (which will be part 
of an extraction rule), we generalize the depend-
ency paths that connect the event trigger with 
each of the event key attributes (the roles). A 
dependency path consists of lexical and syntactic 
relations (POS and phrase dependencies), as well 
as semantic relations, such as entity tags (e.g., 
Person, Company, etc.) of event roles and word 
sense designations (based on Wordnet senses) of 
event triggers. In addition to the trigger-role 
paths (which we shall call the sub-patterns), an 
event pattern also contains the following: 

• Event Type and Subtype – which is inher-
ited from seed examples; 

• Trigger class – an instance of the trigger 
must be found in text before any patterns 
are applied; 

• Confidence score – expected accuracy of 
the pattern established during training 
process; 

• Context profile – additional features col-
lected from the context surrounding the 
event description, including references of 
other types of events near this event, in 
the same sentence, same paragraph, or ad-
jacent paragraphs. 

We note that the trigger-attribute sub-patterns 
are defined over phrase structures rather than 
over linear text, as shown in Figure 2. In order to 
compose a complete event pattern, sub-patterns 
are collected across multiple mentions of the 
same-type event. 

                                                             
1 Details of how to derive the skeletal tree representation are 
described in (Liu, 2009). 
2 t – the type of the event, w_pos – the lemma of a word and 
its POS. 
3 In this figure we omit the parse tree trimming step which 
was explained in the previous section. 

3.2 Designating the sense of event triggers  

An event trigger may have multiple senses but 
only one of them is for the event representation. 
If the correct sense can be determined, we would 
be able to use its synonyms and hyponym as al-
ternative event triggers, thus enabling extraction 
of more events. This, in turn, requires sense dis-
ambiguation to be performed on the event trig-
gers. 

In MUC evaluations, participating groups ( 
Yangarber and Grishman, 1998) used human 
experts to decide the correct sense of event trig-
gers and then manually added correct synonyms 
to generalize event patterns. Although accurate, 
the process is time consuming and not portable to 
new domains. 

We developed a new approach for utilizing 
Wordnet to decide the correct sense of an event 
trigger. The method is based on the hypothesis 
that event triggers will share same sense when 
represent same type of event. For example, when 
the verbs, attack, assail, strike, gas, bomb, are 
trigger words of Conflict-Attack event, they 
share same sense. This process is described in the 
following steps: 
1)  From training corpus, collect all triggers, 

which specify the lemma, POS tag, the type 
of event and get all possible senses of them 
from Wordnet. 

2)  Order the triggers by the trigger frequency 
TrF(t, w_pos),2 which is calculated by divid-
ing number of times each word (w_pos) is 
used as a trigger for the event of type (t) by 
the total number of times this word occurs in 
the training corpus. Clearly, the greater trig-
ger frequency of a word, the more discrimi-
native it is as a trigger for the given type of 
event. When the senses of the triggers with 
high accuracy are defined, they can be the 
reference for the triggers in low accuracy. 

3)  From the top of the trigger list, select the 
first none-sense defined trigger (Tr1) 

4)  Again, beginning from the top of the trigger 
list, for every trigger Tr2 (other than Tr1), 
we look for a pair of compatible senses be-
tween Tr1 and Tr2. To do so, traverse Syno-
nym, Hypernym, and Hyponym links starting 
from the sense(s) of Tr2 (use either the sense 
already assigned to Tr2 if has or all its possi-
ble senses) and see whether there are paths 
which can reach the senses of Tr1. If such 
converging paths exist, the compatible senses 

                                                             
2 t – the type of the event, w_pos – the lemma of a word and 
its POS. 

Attacker:  <N(subj, PER): Attacker> <V(fire): trigger> 
Place:  <V(fire): trigger> <Prep> <N> <Prep(in)> <N(GPE): Place> 
Target:  <V(fire): trigger> <Prep(on)> <N(VEH): Target> 

Time-Within:<N(timex2): Time-Within><SentHead><V(fire): 
trigger> 

Figure 2. Trigger-attribute sub-patterns for key roles in a Conflict-
Attack event pattern. 
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are identified and assigned to Tr1 and Tr2 (if 
Tr2’s sense wasn’t assigned before). Then go 
back to step 3. However, if no such path ex-
ist between Tr1 senses with other triggers 
senses, the first sense listed in Wordnet will 
be assigned to Tr1 

This algorithm tries to assign the most proper 
sense to every trigger for one type of event. For 
example, the sense of fire as trigger of Conflict-
Attack event is “start firing a weapon”; while it is 
used in Personal-End_Position, its sense is “ter-
minate the employment of”. After the trigger 
sense is defined, we can expand event triggers by 
adding their synonyms and hyponyms during the 
event extraction. 

3.3 Deriving initial rules from seed exam-
ples  

Extraction rules are construed as transformations 
from the event patterns derived from text onto a 
formal representation of an event. The initial 
rules are derived from a manually annotated 
training text corpus (seed data), supplied as part 
of an application task. Each rule contains the 
type of events it extracts, trigger, a list of role 
sub-patterns, and the confidence score obtained 
through a validation process (see section 3.6). 
Figure 3 shows an extraction pattern for the Con-
flict-Attack event derived from the training cor-
pus (but not validated yet)3.  

3.4 Learning through pattern mutation  

Given an initial set of extraction rules, a variety 
of pattern mutation techniques are applied to de-
rive new patterns and new rules. This is done by 
selecting elements of previously learnt patterns, 
based on the history of partial matches and com-
bining them into new patterns. This form of 
learning, which also includes conditional rule 
                                                             
3 In this figure we omit the parse tree trimming step which 
was explained in the previous section. 

relaxation, is particularly useful for rapid adapta-
tion of extraction capability to slightly altered, 
partly ungrammatical, or otherwise variant data.  

The basic idea is as follows: the patterns ac-
quired in prior learning iterations (starting with 
those obtained from the seed examples) are 
matched against incoming text to extract new 
events. Along the way there will be a number of 
partial matches, i.e., when no existing pattern 
fully matches a span of text. This may simply 
mean that no event is present; however, depend-
ing upon the degree of the partial match we may 
also consider that a novel structural variant was 
found. BEAR would automatically test this hy-
pothesis by attempting to construe a new pattern, 
out of the elements of existing patterns, in order 
to achieve a full match. If a match is achieved, 
the new “mutated” pattern will be added to 
BEAR learned collection, subject to a validation 
step. The validation step (discussed later in this 
paper) is to assure that the added pattern would 
not introduce an unacceptable drop in overall 
system precision. Specific pattern mutation tech-
niques include the following: 
• Adding a role subpattern: When a pattern 

matches an event mention while there is a 
sufficient linguistic evidence (e.g., pres-
ence of certain types of named entities) 
that additional roles may be present in 
text, then appropriate role subpatterns can 
be "imported" from other, non-matching 
patterns (Figure 4). 

•  Replacing a role subpattern: When a pat-
tern matches but for one role, the system 
can replace this role subpattern by another 
subpattern for the same role taken from a 
different pattern for the same event type. 

•  Adding or replacing a trigger: When a 
pattern matches but for the trigger, a new 
trigger can be added if it either is already 
present in another pattern for the same 
event type or the syno-
nym/hyponym/hypernym of the trigger 
(found in section 3.2). 

We should point out that some of the same ef-
fects can be obtained by making patterns more 
general, i.e., adding "optional" attributes (i.e., 
optional sub-patterns), etc. Nonetheless, the pat-
tern mutation is more efficient because it will 
automatically learn such generalization on an as-
needed basis in an entirely data-driven fashion, 
while also maintaining high precision of the re-
sulting pattern set. It is thus a more general 
method. Figure 4 illustrated the use of the ele-
ments combination technique. In this example, 

 
Figure 3. A Conflict-Attack event pattern derived from a 

positive example in the training corpus 
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Figure 5. A new extraction pattern is derived by iden-

tifying an alternative trigger for an event. 

Pattern ID: 1286 
Type: Conflict   Subtype: Attack 
Trigger:  attack_N 
Target:  <N(FAC): Target> <Prep(in)> <N(attack): trigger> 
Attacker:  <N(PER): Attacker> <V> <N> <Prep> <N> <Prep(in)> 
<N(attack): trigger> 
Time-Within: <N(attack): trigger> <E0> <V> <N(timex2): Time-
within> 

Figure 5B. A new pattern is derived for event in Fig 5, with an attack as the 
trigger. 

Pattern ID: 1207 
Type: Conflict    Subtype: Attack 
Trigger:  bombing_N 
Target:  <N(bombing): trigger> <Prep(of)> <N(FAC): Target>  
Attacker:  <N(PER): Attacker> <V> <N(bombing): trigger>  
Time-Within: <N(bombing): trigger> <Prep> <N> <Prep> <N> 
<E0> <V> <N(timex2): Time-within> 

Figure 5A. A pattern with the bombing trigger matches the event 
mention in Fig. 5. 

 
Figure 4. Deriving a new pattern by importing a role from another pattern 

neither of the two existing patterns can fully 
match the new event description; however, by 
combining the first pattern with the Place role 
sub-pattern from the second pattern we obtain a 
new pattern that fully matches the text. While 
this adjustment is quite simple, it is nonetheless 
performed automatically and without any human 
assistance. The new pattern is then “learned” by 
BEAR, subject to a verification step explained in 
a later section. 

3.5 Learning by exploiting structural duali-
ty  

As the system reads through new text extracting 
more events using already learnt rules, each ex-
tracted event mention is analyzed for presence of 
alternative trigger elements that can consistently 
predict the presence of a subset of events that 
includes the current one. Subsequently, an alter-
native sub-pattern structure will be built with 
branches extending from the new trigger to the 
already identified attributes, as shown schemati-
cally in Figure 5.  

In this example, a Conflict-Attack-type event 
is extracted using a pattern (shown in Figure 5A) 
anchored at the “bombing” trigger. Nonetheless, 
an alternative trigger structure is discovered, 
which is anchored at “an attack” NP, as shown 
on the right side of Figure 5. This “discovery” is 
based upon seeing the new trigger repeatedly – it 
needs to “explain” a subset of previously seen 
events to be adopted. The new trigger will 
prompt BEAR to derive additional event pat-
terns, by computing alternative trigger-attribute 
paths in the dependency tree. The new pattern 

(shown in Figure 5B) is of course subject to con-
fidence validation, after which it will be immedi-
ately applied to extract more events. 

 Another way of getting at this kind of struc-
tural duality is to exploit co-referential con-
sistency within coherent spans of discourse, e.g., 
a single news article or a similar document. Such 
documents may contain references to multiple 
events, but when the same type of event is men-
tioned along with the same attributes, it is more 
likely than not in reference to the same event.  
This hypothesis is a variant of an argument ad-
vanced in (Gale, et al. 2000) that a polysemous 
word used multiple times within a single docu-
ment, is consistently used in the same sense. So 
if we extract an event mention (of type T) with 
trigger t in one part of a document, and then find 
that t occurs in another part of the same docu-
ment, then we may assume that this second oc-
currence of t has the same sense as the first. 
Since t is a trigger for an event of type T, we can 
hypothesize its subsequent occurrences indicate 
additional mentions of type T events that were 
not extracted by any of the existing patterns. Our 
objective is to exploit these unextracted mentions 
and then automatically generate additional event 
patterns. 

Indeed, Ji (2008) showed that trigger co-
occurrence helps finding new mentions of the 
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Pattern ID: -1 
Type: Personnel  Subtype: End-Position 
Trigger: resign_V 
Person: <N(PER, subj): Person> <V(resign): trigger> 
Entity: <V(resign):trigger> <E0> <N(ORG): Entity> <N> <V> 

Figure 7A. A new pattern for End-Position learned by exploiting 
event co-reference. 

 
Figure 7. Two event mentions have different triggers and 

sub-patterns structures 
 

 
Figure 6. The probability of a sentence containing a mention of the 

same type of event within a single document 

same event; however, we found that if using enti-
ty co-reference as another factor, more new men-
tions could be identified when the trigger has low 
projected accuracy (Liu, 2009; Yu Hong, et al. 
2011). Our experiments (Figure 64), which com-
pared the triggers and the roles across all event 
mentions within each document on ACE training 
corpus, showed that when the trigger accuracy is 
0.5 or higher, each of its occurrences within the 
document indicates an event mention of the same 
type with a very high probability (mostly > 0.9). 
For triggers with lower accuracy, this high prob-
ability is only achieved when the two mentions 
share at least 60% of their roles, in addition to 
having a common trigger. Thus our approach 
uses co-occurrence of both trigger and event ar-
gument for detecting new event mentions.  

In Figure 7, an End-Position event is extracted 
from left sentence (L), with “resign” as the trig-
ger and “Capek” and “UBS” assigned Person and 
Entity roles, respectively5. The right sentence 
(R), taken from the same document, contains the 
same trigger word, “resigned” and also the same 

                                                             
4 The X-axis is the percentage of entities coreferred between 
the EVMs (Event mentions) and the SEs (Sentences); while 
the Y-axis shows the probability that the SE contains a men-
tion that is the same type as the EVM. 
5 Entity is the employer in the event 

entities, “Howard G. Capek” and “UBS”. The 
projected accuracy of resign_V as an End-
Position trigger is 0.88. With 100% argument 
overlap rate, we estimate the probability that sen-
tence R contains an event mention of the same 
type as sentence L (and in fact co-referential 
mention) at 97% (We set 80% as the threshold). 
Thus a new event mention is found and a new 
pattern for End-Position is automatically derived 
from R, as shown in Figure 7A. 

3.6 Pattern validation  

Extraction patterns are validated after each learn-
ing cycle against the already annotated data. In 
the first supervised learning step, patterns accu-
racy is tested against the training corpus based on 
the similarity between the extracted events and 
human annotated events:  

• A Full match is achieved when the event 
type is correctly identified and all its roles 
are correctly matched. A full credit is 
added to the pattern score. 

• A Partial match is achieved when the 
event type is correctly identified but only 
a subset of roles is correctly extracted. A 
partial score, which is the ratio of the 
matched roles to the whole roles, is add-
ed. 

• A False Alarm occurs when a wrong type 
of event is extracted (including when no 
event is present in text). No credit is add-
ed to the pattern score. 

In the subsequent steps, the validation is ex-
tended over parts of the unannotated corpus. In 
Riloff (1996) and Sudo et al. (2001), the pattern 
accuracy is mainly dependent on its occurrences 
in the relevant documents6 vs. the whole corpus. 
However, one document may contain multiple 
types of events, thus we set a more restricted val-
idation measure on new rules: 

• Good Match If a new rule “rediscovers” 
already extracted events of the same type, 
then it will be counted as either a Full 
Match or Partial Match based on previ-
ous rules 

• Possible Match If an already extracted 
event of same type of a rule contains 
same entities and trigger as the candidate 
extracted by the rule. This candidate is a 
possible match, so it will get a partial 

                                                             
6 If a document contains same type of events extracted from 
previous steps, the document is a relevant document to the 
pattern. 
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Victim pattern: <N(obj, PER): Victim> <V(kill): trigger> (Life-Die) 
Projected Accuracy: 0.9390243902439024 
Number of negative matches: 5 
Number of Positive matches: 77 
 
Attacker pattern: <N(subj, PE/PER/ORG): Attacker> <V> <V(use): 
trigger>  (Conflict-Attack) 
Projected Accuracy: 0.025210084033613446  
Number of negative matches: 116  
Number of positive matches: 3 

 
Attacker pattern: <N(subj, GPE/PER): Attacker> <V(attack): trig-
ger>  (Conflict-Attack) 
Projected Accuracy: 0.4166666666666667  
Number of negative matches: 7  
Number of positive matches: 5 
categories of posi-
tive matches: 

GPE: 4  GPE_Nation: 4  PER: 1 
PER_Individual: 1 

categories of nega-
tive matches: 

GPE: 1  GPE_Nation: 1  PER: 6  
PER_Group: 1 
PER_Individual: 5 

Figure 9. sub-patterns with projected accuracy scores 

Event id: 27 
from: sample 
Projected Accuracy: 0.1765 
Adjusted Projected Accuracy: 0.91 
Type: Justice Subtype: Arrest-Jail 
Trigger: capture 
Person sub-pattern:  <N(obj, PER): Person> <V(capture): trigger> 
Co-occurrence ratio: {para_Conflict_Demonstrate=100%,  …} 
Mutually exclusive ratio: {sent_Conflict_Attack=100%, pa-
ra_Conflict_Attack=96.3%,  …} 

Figure 8. An Arrest-Jail pattern with context profile information 

score based on the statistics result from 
Figure 6. 

• False Alarm If a new rule picks up an al-
ready extracted event in different type 

Thus, event patterns are validated for overall 
expected precision by calculating the ratio of 
positive matches to all matches against known 
events. This produces pattern confidence scores, 
which are used to decide if a pattern is to be 
learned or not. Learning only the patterns with 
sufficiently high confidence scores helps to 
guard the bootstrapping process from spinning 
off track; nonetheless, the overall objective is to 
maximize the performance of the resulting set of 
extraction rules, particularly by expanding its 
recall rate. 

For the patterns where the projected accuracy 
score falls under the cutoff threshold, we may 
still be able to make some “repairs” by taking 
into account their context profile. To do so, we 
applied a similar approach as (Liao, 2010), which 
showed that some types of events can appeared 
frequently with each other. We collected all the 
matches produced by such a failed pattern and 
created a list of all other events that occur in their 
immediate vicinity: in the same sentence, as well 
as the sentences before and after it7. These other 
events, of different types and detected by differ-
ent patterns, may be seen as co-occurring near 
the target event: these that co-occur near positive 
matches of our pattern will be added to the posi-
tive context support of this pattern; conversely, 
events co-occurring near false alarms will be 
added to the negative context support for this 
pattern. By collecting such contextual infor-
mation, we can find contextually-based indica-
tors and non-indicators for occurrence of event 
mentions. When these extra constraints are in-
cluded in a previously failed pattern, its projected 

                                                             
7 If a known event is detected in the same sentence 
(sent_…), the same paragraph (para_…), or an adjacent 
paragraph (adj_para_...) as the candidate event, it be-
comes an element of the pattern context support. 

accuracy is expected to increase, in some cases 
above the threshold.  

For example, the pattern in Figure 8 has an in-
itially low projected accuracy score; however, we 
find that positive matches of this pattern show a 
very high (100% in fact) degree of correlation 
with mentions of Demonstrate events. Therefore, 
limiting the application of this pattern to situa-
tions where a Justice-Arrest-Jail event is men-
tioned in a nearby text improves its projected 
accuracy to 91%, which is well above the re-
quired threshold.  

In addition to the confidence rate of each new 
pattern, we also calculate projected accuracy of 
each of the role sub-patterns, because they may 
be used in the process of detecting new patterns, 
and it will be necessary to score partial matches, 
as a function confidence weights for pattern 
components. To validate a sub-pattern we apply 
it to the training corpus and calculate its project-
ed accuracy score by dividing the number of cor-
rectly matched roles by the total number of 
matches returned. The projected accuracy score 
will tell us how well a sub-pattern can distin-
guish a specific event role from other infor-
mation, when used independently from other 
elements of the complete pattern. 

Figure 9 shows three sub-pattern examples. 
The first sub-pattern extracts the Victim role in a 
Life-Die event with very high projected accuracy. 
This sub-pattern is also a good candidate for 
generations of additional patterns for this type of 
event, a process which we describe in section D. 
The second sub-pattern was built to extract the 
Attacker role in Conflict-Attack events, but it has 
very low projected accuracy. The third one 
shows another Attacker sub-pattern whose pro-
jected accuracy score is 0.417 after the first step 
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Figure 10. BEAR cross-validated scores 

Table 1. Sub-patterns whose projected accuracy is significantly increased after noisy samples are removed 

Sub-patterns Projected 
Accuracy 

Additional con-
straints 

Revised Accu-
racy 

Movement-Transport: 
<N(obj, PER/VEH): Artifact> <V(send): trigger> 0.475 removing PER 0.667 

<V(bring): trigger> <N(obj)> <Prep = to> <N(FAC/GPE): Destina-
tion> 0.375 removing GPE 1.0 

…    
Conflict Attack: 

<N(PER/ORG/GPE):Attacker><N(attack):trigger> 0.682 removing PER 0.8 
<N(subj,GPE/PER):Attacker><V(attack): trigger> 0.417 removing GPE 0.8 

<N(obj,VEH/PER/FAC):Target><V(target):trigger> 0.364 removing 
PER_Individual 0.667 

…    
 

 
Figure 11. BEAR’s unsupervised learning curve. 

in validation process. This is quite low; however, 
it can be repaired by constraining its entity type 
to GPE. This is because we note that with a GPE 
entity, the subpattern is 80% on target, while 
with PER entity it is 85% a false alarm. After 
this sub-pattern is restricted to GPE its projected 
accuracy becomes 0.8. 

Table 1 lists example sub-patterns for which 
the projected accuracy increases significantly 
after adding more constrains. When the projected 
accuracy of a sub-pattern is improved, all pat-
terns containing this sub-pattern will also im-
prove their projected accuracy. If the adjusted 
projected accuracy rises above the predefined 
threshold, the repaired pattern will be saved. 

 In the following section, we will discuss the 
experiments conducted to evaluate the perfor-
mance of the techniques underlying BEAR: how 
effectively it can learn and how accurately it can 
perform its extraction task. 

4 Evaluation  

We test the system learning effectiveness by 
comparing its performance immediately follow-
ing the first iteration (i.e., using rules derived 
from the training data) with its performance after 
N cycles of unsupervised learning. We split ACE 
training corpus 8  randomly into 5 folders and 
trained BEAR on the four folders and evaluated 
it on the left one. Then, we did 5 fold cross vali-
dation. Our experiments showed that BEAR 

                                                             
8 ACE training data contains 599 documents from news, 
weblog, usenet, and conversational telephone speech. Total 
33 types of events are defined in ACE corpus.  

reached the best cross-validated score, 66.72%, 
when pattern accuracy threshold is set at 0.5. The 
highest score of single run is 67.62%. In the fol-
lowing of this section, we will use results of one 
single run to display the learning behavior of 
BEAR.  

In Figure 10, X-axis shows values of the 
learning threshold (in descending order), while 
Y-axis is the average F-score achieved by the 
automatically learned patterns for all types of 
events against the test corpus. The red (lower) 
line represents BEAR’s base run immediately 
after the first iteration (supervised learning step); 
the blue (upper) line represents BEAR’s perfor-
mance after an additional 10 unsupervised learn-
ing cycles9 are completed. We note that the final 
performance of the bootstrapped system steadily 
increases as the learning threshold is lowered, 
peaking at about 0.5 threshold value, and then 
declines as the threshold value is further de-
creased, although it remains solidly above the 
base run. Analyzing more closely a few selected 
points on this chart we note, for example, that the 
base run at threshold of 0 has F-score of 34.5%, 
which represents 30.42% recall, 40% precision. 
On the other end of the curve, at the threshold of 
0.9, the base run precision is 91.8% but recall at 
only 21.5%, which produces F-score of 34.8%. It 
is interesting to observe that at neither of these 
two extremes the system learning effectiveness is 
particularly good, and is significantly less than at 

                                                             
9 The learning process for one type of event will stop when 
no new patterns can be generated, so the number of learning 
cycles for each event type is different. The highest number 
of learning cycles is 10 and lowest one is 2. 

303



Table 2. BEAR performance following different selections of 
learning steps 

 Precision Recall F-score 
Base1 0.89 0.22 0.35 
Base2 0.87 0.28 0.42 

All 0.84 0.56 0.67 
PMM 0.84 0.48 0.61 
CBM 0.86 0.37 0.52 

 

 
Figure 13. Event mention extraction after learning: recall for 

each type of event 

 
Figure 12. Event mention extraction after learning: preci-

sion for each type of event 

the median threshold of 0.5 (based on the exper-
iments conducted thus far), where the system 
performance improves from 42% to 66.86% F-
score, which represents 83.9% precision and 
55.57% recall.   

Figure 11 explains BEAR’s learning effec-
tiveness at what we determined empirically to be 
the optimal confidence threshold (0.5) for pattern 
acquisition. We note that the performance of the 
system steadily increases until it reaches a plat-
eau after about 10 learning cycles.  

Figure 12 and Figure 13 show a detailed 
breakdown of BEAR extraction performance 
after 10 learning cycles for different types of 
events. We note that while precision holds steady 
across the event types, recall levels vary signifi-
cantly. The main reason for low recall in some 
types of events is the failure to find a sufficient 
number of high-confidence patterns. This may 
point to limitations of the current pattern discov-
ery methods and may require new ways of reach-
ing outside of the current feature set. 

In the previous section we described several 
learning methods that BEAR uses to discover, 
validate and adapt new event extraction rules. 
Some of them work by manipulating already 
learnt patterns and adapting them to new data in 
order to create new patterns, and we shall call 
these pattern-mutation methods (PMM). Other 
described methods work by exploiting a broader 
linguistic context in which the events occur, or 
context-based methods (CBM). CB methods look 
for structural duality in text surrounding the 
events and thus discover alternative extraction 
patterns.  

In Table 2, we report the results of running 
BEAR with each of these two groups of learning 
methods separately and then in combination to 

see how they contribute to the end performance. 
Base1 and Base2 showed the result without and 
with adding trigger synonyms in event extrac-
tion. By introducing trigger synonyms, 27% 
more good events were extracted at the first it-
eration and thus, BEAR had more resources to 
use in the unsupervised learning steps.  

The ALL is the combination of PMM and 
CBM, which demonstrate both methods have the 
contribution to the final results. Furthermore, as 
explained before, new extraction rules are 
learned in each iteration cycle based on what was 
learned in prior cycles and that new rules are 
adopted only after they are tested for their pro-
jected accuracy (confidence score), so that the 
overall precision of the resulting rule set is main-
tained at a high level relative to the base run. 

5 Conclusion and future work  

In this paper, we presented a semi-supervised 
method for learning new event extraction pat-
terns from un-annotated text. The techniques de-
scribed here add significant new tools that 
increase capabilities of information extraction 
technology in general, and more specifically, of 
systems that are built by purely supervised meth-
ods or from manually designed rules. Our eval-
uation using ACE dataset demonstrated that that 
bootstrapping can be effectively applied to learn-
ing event extraction rules for 33 different types 
of events and that the resulting system can out-
perform supervised system (base run) significant-
ly.  
Some follow-up research issues include: 

• New techniques are needed to recognize 
event descriptions that still evade the cur-
rent pattern derivation techniques, espe-
cially for the events defined in Personnel, 
Business, and Transactions classes. 

• Adapting the bootstrapping method to ex-
tract events in a different language, e.g. 
Chinese or Arabic. 

• Expanding this method to extraction of 
larger “scenarios”, i.e., groups of correlat-
ed events that form coherent “stories” of-
ten described in larger sections of text, 
e.g., an event and its immediate conse-
quences. 
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Abstract

Existing concept-color-emotion lexicons
limit themselves to small sets of basic emo-
tions and colors, which cannot capture the
rich pallet of color terms that humans use
in communication. In this paper we begin
to address this problem by building a novel,
color-emotion-concept association lexicon
via crowdsourcing. This lexicon, which we
call CLEX, has over 2,300 color terms, over
3,000 affect terms and almost 2,000 con-
cepts. We investigate the relation between
color and concept, and color and emotion,
reinforcing results from previous studies, as
well as discovering new associations. We
also investigate cross-cultural differences in
color-emotion associations between US and
India-based annotators.

1 Introduction

People typically use color terms to describe the
visual characteristics of objects, and certain col-
ors often have strong associations with particu-
lar objects, e.g., blue - sky, white - snow. How-
ever, people also take advantage of color terms to
strengthen their messages and convey emotions in
natural interactions (Jacobson and Bender, 1996;
Hardin and Maffi, 1997). Colors are both indica-
tive of and have an effect on our feelings and emo-
tions. Some colors are associated with positive
emotions, e.g., joy, trust and admiration and some
with negative emotions, e.g., aggressiveness, fear,
boredom and sadness (Ortony et al., 1988).

Given the importance of color and visual de-
scriptions in conveying emotion, obtaining a
deeper understanding of the associations between
colors, concepts and emotions may be helpful for

many tasks in language understanding and gener-
ation. A detailed set of color-concept-emotion as-
sociations (e.g., brown - darkness - boredom; red -
blood - anger) could be quite useful for sentiment
analysis, for example, in helping to understand
what emotion a newspaper article, a fairy tale, or
a tweet is trying to evoke (Alm et al., 2005; Mo-
hammad, 2011b; Kouloumpis et al., 2011). Color-
concept-emotion associations may also be useful
for textual entailment, and for machine translation
as a source of paraphrasing.

Color-concept-emotion associations also have
the potential to enhance human-computer inter-
actions in many real- and virtual-world domains,
e.g., online shopping, and avatar construction in
gaming environments. Such knowledge may al-
low for clearer and hopefully more natural de-
scriptions by users, for example searching for
a sky-blue shirt rather than blue or light blue
shirt. Our long term goal is to use color-emotion-
concept associations to enrich dialog systems
with information that will help them generate
more appropriate responses to users’ different
emotional states.

This work introduces a new lexicon of color-
concept-emotion associations, created through
crowdsourcing. We call this lexicon CLEX1. It
is comparable in size to only two known lexi-
cons: WORDNET-AFFECT (Strapparava and Val-
itutti, 2004) and EMOLEX (Mohammad and Tur-
ney, 2010). In contrast to the development of
these lexicons, we do not restrict our annotators
to a particular set of emotions. This allows us to
1Available for download at:
http://research.microsoft.com/en-us/
downloads/
Questions about the data and the access process may be
sent to svitlana@jhu.edu
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collect more linguistically rich color-concept an-
notations associated with mood, cognitive state,
behavior and attitude. We also do not have any
restrictions on color naming, which helps us to
discover a rich lexicon of color terms and collo-
cations that represent various hues, darkness, sat-
uration and other natural language collocations.

We also perform a comprehensive analysis of
the data by investigating several questions includ-
ing: What affect terms are evoked by a certain
color, e.g., positive vs. negative? What con-
cepts are frequently associated with a particular
color? What is the distribution of part-of-speech
tags over concepts and affect terms in the data col-
lected without any preselected set of affect terms
and concepts? What affect terms are strongly as-
sociated with a certain concept or a category of
concepts and is there any correlation with a se-
mantic orientation of a concept?

Finally, we share our experience collecting the
data using crowdsourcing, describe advantages
and disadvantages as well as the strategies we
used to ensure high quality annotations.

2 Related Work

Interestingly, some color-concept associations
vary by culture and are influenced by the tra-
ditions and beliefs of a society. As shown in
(Sable and Akcay, 2010) green represents danger
in Malaysia, envy in Belgium, love and happiness
in Japan; red is associated with luck in China and
Denmark, but with bad luck in Nigeria and Ger-
many and reflects ambition and desire in India.

Some expressions involving colors share the
same meaning across many languages. For in-
stance, white heat or red heat (the state of high
physical and mental tension), blue-blood (an aris-
tocrat, royalty), white-collar or blue collar (of-
fice clerks). However, there are some expres-
sions where color associations differ across lan-
guages, e.g., British or Italian black eye becomes
blue in Germany, purple in Spain and black-butter
in France; your French, Italian and English neigh-
bors are green with envy while Germans are yel-
low with envy (Bortoli and Maroto, 2001).

There has been little academic work on con-
structing color-concept and color-emotion lexi-
cons. The work most closely related to ours
collects concept-color (Mohammad, 2011c) and
concept-emotion (EMOLEX) associations, both
relying on crowdsourcing. His project involved

collecting color and emotion annotations for
10,170 word-sense pairs from Macquarie The-
saurus2. They analyzed their annotations, looking
for associations with the 11 basic color terms from
Berlin and Key (1988). The set of emotion labels
used in their annotations was restricted to the set
of 8 basic emotions proposed by Plutchik (1980).
Their annotators were restricted to the US, and
produced 4.45 annotations per word-sense pair on
average.

There is also a commercial project from Cym-
bolism3 to collect concept-color associations. It
has 561,261 annotations for a restricted set of 256
concepts, mainly nouns, adjectives and adverbs.

Other work on collecting emotional aspect
of concepts includes WordNet-Affect (WNA)
(Strapparava and Valitutti, 2004), the General En-
quirer (GI) (Stone et al., 1966), Affective Forms
of English Words (Bradley and Lang, 1999) and
Elliott’s Affective Reasoner (Elliott, 1992).

The WNA lexicon is a set of affect terms from
WordNet (Miller, 1995). It contains emotions,
cognitive states, personality traits, behavior, at-
titude and feelings, e.g., joy, doubt, competitive,
cry, indifference, pain. Total of 289 affect terms
were manually extracted, but later the lexicon was
extended using WordNet semantic relationships.
WNA covers 1903 affect terms - 539 nouns, 517
adjectives, 238 verbs and 15 adverbs.

The General Enquirer covers 11,788 concepts
labeled with 182 category labels including cer-
tain affect categories (e.g., pleasure, arousal, feel-
ing, pain) in addition to positive/negative seman-
tic orientation for concepts4.

Affective Forms of English Words is a work
which describes a manually collected set of nor-
mative emotional ratings for 1K English words
that are rated in terms of emotional arousal (rang-
ing from calm to excited), affective valence (rang-
ing from pleasant to unpleasant) and dominance
(ranging from in control to dominated).

Elliott’s Affective Reasoner is a collection of
programs that is able to reason about human emo-
tions. The system covers a set of 26 emotion cat-
egories from Ortony et al (1988).

Kaya (2004) and Strapparava and Ozbal (2010)
both have worked on inferring emotions associ-
ated with colors using semantic similarity. Their
2http://www.macquarieonline.com.au
3http://www.cymbolism.com/
4http://www.wjh.harvard.edu/˜inquirer/
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research found that Americans perceive red as ex-
citement, yellow as cheer, purple as dignity and
associate blue with comfort and security. Other
research includes that geared toward discovering
culture-specific color-concept associations (Gage,
1993) and color preference, for example, in chil-
dren vs. adults (Ou et al., 2011).

3 Data Collection

In order to collect color-concept and color-
emotion associations, we use Amazon Mechani-
cal Turk5. It is a fast and relatively inexpensive
way to get a large amount of data from many cul-
tures all over the world.

3.1 MTurk and Data Quality

Amazon Mechanical Turk is a crowdsourcing
platform that has been extensively used for ob-
taining low-cost human annotations for various
linguistic tasks over the last few years (Callison-
Burch, 2009). The quality of the data obtained
from non-expert annotators, also referred to as
workers or turkers, was investigated by Snow et
al (2008). Their empirical results show that the
quality of non-expert annotations is comparable
to the quality of expert annotations on a variety of
natural language tasks, but the cost of the annota-
tion is much lower.

There are various quality control strategies that
can be used to ensure annotation quality. For in-
stance, one can restrict a “crowd” by creating a
pilot task that allows only workers who passed
the task to proceed with annotations (Chen and
Dolan, 2011). In addition, new quality control
mechanisms have been recently introduced e.g.,
Masters. They are groups of workers who are
trusted for their consistent high quality annota-
tions, but to employ them costs more.

Our task required direct natural language in-
put from workers and did not include any mul-
tiple choice questions (which tend to attract more
cheating). Thus, we limited our quality control ef-
forts to (1) checking for empty input fields and (2)
blocking copy/paste functionality on a form. We
did not ask workers to complete any qualification
tasks because it is impossible to have gold stan-
dard answers for color-emotion and color-concept
associations. In addition, we limited our crowd to

5http://www.mturk.com

a set of trusted workers who had been consistently
working on similar tasks for us.

3.2 Task Design

Our task was designed to collect a linguistically
rich set of color terms, emotions, and concepts
that were associated with a large set of colors,
specifically the 152 RGB values corresponding to
facial features of cartoon human avatars. In to-
tal we had 36 colors for hair/eyebrows, 18 for
eyes, 27 for lips, 26 for eye shadows, 27 for fa-
cial mask and 18 for skin. These data is necessary
to achieve our long-term goal which is to model
natural human-computer interactions in a virtual
world domain such as the avatar editor.

We designed two MTurk tasks. For Task 1, we
showed a swatch for one RGB value and asked
50 workers to name the color, describe emotions
this color evokes and define a set of concepts as-
sociated with that color. For Task 2, we showed a
particular facial feature and a swatch in a particu-
lar color, and asked 50 workers to name the color
and describe the concepts and emotions associ-
ated with that color. Figure 1 shows what would
be presented to worker for Task 2.

Q1. How would you name this color?
Q2. What emotion does this color evoke?
Q3. What concepts do you associate with it?

Figure 1: Example of MTurk Task 2. Task 1 is the
same except that only a swatch is given.

The design that we suggested has a minor lim-
itation in that a color swatch may display differ-
ently on different monitors. However, we hope to
overcome this issue by collecting 50 annotations
per RGB value. The example color e→ emotion c→
concept associations produced by different anno-
tators ai are shown below:

• [R=222, G=207, B=186] (a1) light golden
yellow e→ purity, happiness c→ butter cookie,
vanilla; (a2) gold e→ cheerful, happy c→ sun,
corn; (a3) golden e→ sexy c→ beach, jewelery.

• [R=218, G=97, B=212] (a4) pinkish pur-
ple e→ peace, tranquility, stressless c→ justin
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bieber’s headphones, someday perfume; (a5)
pink e→ happiness c→ rose, bougainvillea.

In addition, we collected data about workers’
gender, age, native language, number of years of
experience with English, and color preferences.
This data is useful for investigating variance in an-
notations for color-emotion-concept associations
among workers from different cultural and lin-
guistic backgrounds.

4 Data Analysis

We collected 15,200 annotations evenly divided
between the two tasks over 12 days. In total, 915
workers (41% male, 51% female and 8% who did
not specify), mainly from India and United States,
completed our tasks as shown in Table 1. 18%
workers produced 20 or more annotations. They
spent 78 seconds on average per annotation with
an average salary rate $2.3 per hour ($0.05 per
completed task).

Country Annotations
India 7844
United States 5824
Canada 187
United Kingdom 172
Colombia 100

Table 1: Demographic information about annota-
tors: top 5 countries represented in our dataset.

In total, we collected 2,315 unique color terms,
3,397 unique affect terms, and 1,957 unique con-
cepts for the given 152 RGB values. In the
sections below we discuss our findings on color
naming, color-emotion and color-concept associ-
ations. We also give a comparison of annotated
affect terms and concepts from CLEX and other
existing lexicons.

4.1 Color Terms
Berlin and Kay (1988) state that as languages
evolve they acquire new color terms in a strict
chronological order. When a language has only
two colors they are white (light, warm) and black
(dark, cold). English is considered to have 11 ba-
sic colors: white, black, red, green, yellow, blue,
brown, pink, purple, orange and gray, which is
known as the B&K order.

In addition, colors can be distinguished along at
most three independent dimensions of hue (olive,

orange), darkness (dark, light, medium), satura-
tion (grayish, vivid), and brightness (deep, pale)
(Mojsilovic, 2002). Interestingly, we observe
these dimensions in CLEX by looking for B&K
color terms and their frequent collocations. We
present the top 10 color collocations for the B&K
colors in Table 2. As can be seen, color terms
truly are distinguished by darkness, saturation and
brightness terms e.g., light, dark, greenish, deep.
In addition, we find that color terms are also as-
sociated with color-specific collocations, e.g., sky
blue, chocolate brown, pea green, salmon pink,
carrot orange. These collocations were produced
by annotators to describe the color of particular
RGB values. We investigate these color-concept
associations in more details in Section 4.3.

In total, the CLEX has 2,315 unique color

Color Co-occurrences
∑

white off, antique, half, dark, black, bone,
milky, pale, pure, silver

0.62

black light, blackish brown, brownish,
brown, jet, dark, green, off, ash,
blackish grey

0.43

red dark, light, dish brown, brick, or-
ange, brown, indian, dish, crimson,
bright

0.59

green dark, light, olive, yellow, lime, for-
est, sea, dark olive, pea, dirty

0.54

yellow light, dark, green, pale, golden,
brown, mustard, orange, deep,
bright

0.63

blue light, sky, dark, royal, navy, baby,
grey, purple, cornflower, violet

0.55

brown dark, light, chocolate, saddle, red-
dish, coffee, pale, deep, red,
medium

0.67

pink dark, light, hot, pale, salmon, baby,
deep, rose, coral, bright

0.55

purple light, dark, deep, blue, bright,
medium, pink, pinkish, bluish,
pretty

0.69

orange light, burnt, red, dark, yellow,
brown, brownish, pale, bright, car-
rot

0.68

gray dark, light, blue, brown, charcoal,
leaden, greenish, grayish blue, pale,
grayish brown

0.62

Table 2: Top 10 color term collocations for the
11 B&K colors; co-occurrences are sorted by fre-
quency from left to right in a decreasing order;∑10

1 p(• | color) is a total estimated probability
of the top 10 co-occurrences.
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Agreement Color Term
% of overall Exact match 0.492
agreement Substring match 0.461
Free-marginal Exact match 0.458
Kappa Substring match 0.424

Table 3: Inter-annotator agreement on assigning
names to RGB values: 100 annotators, 152 RGB
values and 16 color categories including 11 B&K
colors, 4 additional colors and none of the above.

names for the set of 152 RGB values. The
inter-annotator agreement rate on color naming is
shown in Table 3. We report free-marginal Kappa
(Randolph, 2005) because we did not force an-
notators to assign certain number of RGB values
to a certain number of color terms. Additionally,
we report inter-annotator agreement for an exact
string match e.g., purple, green and a substring
match e.g., pale yellow = yellow = golden yellow.

4.2 Color-Emotion Associations
In total, the CLEX lexicon has 3,397 unique af-
fect terms representing feelings (calm, pleasure),
emotions (joy, love, anxiety), attitudes (indiffer-
ence, caution), and mood (anger, amusement).
The affect terms in CLEX include the 8 basic emo-
tions from (Plutchik, 1980): joy, sadness, anger,
fear, disgust, surprise, trust and anticipation6

CLEX is a very rich lexicon because we did not
restrict our annotators to any specific set of affect
terms. A wide range of parts-of-speech are rep-
resented, as shown in the first column in Table 4.
For instance, the term love is represented by other
semantically related terms such as: lovely, loved,
loveliness, loveless, love-able and the term joy is
represented as enjoy, enjoyable, enjoyment, joy-
ful, joyfulness, overjoyed.

POS Affect Terms, % Concepts, %
Nouns 79 52
Adjectives 12 29
Adverbs 3 5
Verbs 6 12

Table 4: Main syntactic categories for affect terms
and concepts in CLEX.

The manually constructed portion of
WORDNET-AFFECT includes 101 positive
and 188 negative affect terms (Strapparava and
6The set of 8 Plutchik’s emotions is a superset of emotions
from (Ekman, 1992).

Valitutti, 2004). Of this set, 41% appeared at
least once in CLEX. We also looked specifically
at the set of terms labeled as emotions in the
WORDNET-AFFECT hierarchy. Of these, 12 are
positive emotions and 10 are negative emotions.

We found that 9 out of 12 positive emotion
terms (except self-pride, levity and fearlessness)
and 9 out of 10 negative emotion terms (except in-
gratitude) also appear in CLEX as shown in Table
5. Thus, we can conclude that annotators do not
associate any colors with self-pride, levity, fear-
lessness and ingratitude. In addition, some emo-
tions were associated more frequently with colors
than others. For instance, positive emotions like
calmness, joy, love are more frequent in CLEX

than expectation and ingratitude; negative emo-
tions like sadness, fear are more frequent than
shame, humility and daze.

Positive Freq. Negative Freq.
calmness 1045 sadness 356
joy 527 fear 250
love 482 anxiety 55
hope 147 despair 19
affection 86 compassion 10
enthusiasm 33 dislike 8
liking 5 shame 5
expectation 3 humility 3
gratitude 3 daze 1

Table 5: WORDNET-AFFECT positive and neg-
ative emotion terms from CLEX. Emotions are
sorted by frequency in decreasing order from the
total 27,802 annotations.

Next, we analyze the color-emotion associ-
ations in CLEX in more detail and compare
them with the only other publicly-available color-
emotion lexicon, EMOLEX. Recall that EMOLEX

(Mohammad, 2011a) has 11 B&K colors associ-
ated with 8 basic positive and negative emotions
from (Plutchik, 1980). Affect terms in CLEX are
not labeled as conveying positive or negative emo-
tions. Instead, we use the overlapping 289 affect
terms between WORDNET-AFFECT and CLEX

and propagate labels from WORDNET-AFFECT to
the corresponding affect terms in CLEX. As a re-
sult we discover positive and negative affect term
associations with the 11 B&K colors. Table 6
shows the percentage of positive and negative af-
fect term associations with colors for both CLEX

and EMOLEX.
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Positive Negative
CLEX EL CLEX EL

white 2.5 20.1 0.3 2.9
black 0.6 3.9 9.3 28.3
red 1.7 8.0 8.2 21.6
green 3.3 15.5 2.7 4.7
yellow 3.0 10.8 0.7 6.9
blue 5.9 12.0 1.6 4.1
brown 6.5 4.8 7.6 9.4
pink 5.6 7.8 1.1 1.2
purple 3.1 5.7 1.8 2.5
orange 1.6 5.4 1.7 3.8
gray 1.0 5.7 3.6 14.1

Table 6: The percentage of affect terms associated
with B&K colors in CLEX and EMOLEX (similar
color-emotion associations are shown in bold).

The percentage of color-emotion associations
in CLEX and EMOLEX differs because the set of
affect terms in CLEX consists of 289 positive and
negative affect terms compared to 8 affect terms
in EMOLEX. Nevertheless, we observe the same
pattern as (Mohammad, 2011a) for negative emo-
tions. They are associated with black, red and
gray colors, except yellow becomes a color of
positive emotions in CLEX. Moreover, we found
the associations with the color brown to be am-
biguous as it was associated with both positive
and negative emotions. In addition, we did not ob-
serve strong associations between white and pos-
itive emotions. This may be because white is the
color of grief in India. The rest of the positive
emotions follow the EMOLEX pattern and are as-
sociated with green, pink, blue and purple colors.

Next, we perform a detailed comparison be-
tween CLEX and EMOLEX color-emotion asso-
ciations for the 11 B&K colors and the 8 basic
emotions from (Plutchik, 1980) in Table 7. Recall
that annotations in EMOLEX are done by workers
from the USA only. Thus, we report two num-
bers for CLEX - annotations from workers from
the USA (CA) and all annotations (C). We take
EMOLEX results from (Mohammad, 2011c). We
observe a strong correlation between CLEX and
EMOLEX affect lexicons for some color-emotion
associations. For instance, anger has a strong as-
sociation with red and brown, anticipation with
green, fear with black, joy with pink, sadness
with black, brown and gray, surprise with yel-
low and orange, and finally, trust is associated
with blue and brown. Nonetheless, we also found

a disagreement in color-emotion associations be-
tween CLEX and EMOLEX. For instance antic-
ipation is associated with orange in CLEX com-
pared to white, red or yellow in EMOLEX. We also
found quite a few inconsistent associations with
the disgust emotion. This inconsistency may be
explained by several reasons: (a) EMOLEX asso-
ciates emotions with colors through concepts, but
CLEX has color-emotion associations obtained
directly from annotators; (b) CLEX has 3,397
affect terms compared to 8 basic emotions in
EMOLEX. Therefore, it may be introducing some
ambiguous color-emotion associations.

Finally, we investigate cross-cultural differ-
ences in color-emotion associations between the
two most representative groups of our annotators:
US-based and India-based. We consider the 8
Plutchik’s emotions and allow associations with
all possible color terms (rather than only 11 B&K
colors). We show top 5 colors associated with
emotions for two groups of annotators in Figure 2.
For example, we found that US-based annotators
associate pink with joy, dark brown with trust vs.
India-based annotators who associate yellow with
joy and blue with trust.

4.3 Color-Concept Associations
In total, workers annotated the 152 RGB values
with 37,693 concepts which is on average 2.47
concepts compared to 1.82 affect term per anno-
tation. CLEX contains 1,957 unique concepts in-
cluding 1,667 nouns, 23 verbs, 28 adjectives, and
12 adverbs. We investigate an overlap of con-
cepts by part-of-speech tag between CLEX and
other lexicons including EMOLEX (EL), Affec-
tive Norms of English Words (AN), General In-
quirer (GI). The results are shown in Table 8.

Finally, we generate concept clusters associ-
ated with yellow, white and brown colors in Fig-
ure 3. From the clusters, we observe the most
frequent k concepts associated with these colors
have a correlation with either positive or negative
emotion. For example, white is frequently associ-
ated with snow, milk, cloud and all of these con-
cepts evolve positive emotions. This observation
helps resolve the ambiguity in color-emotion as-
sociations we found in Table 7.

5 Conclusions

We have described a large-scale crowdsourcing
effort aimed at constructing a rich color-emotion-
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white black red green yellow blue brown pink purple orange grey

anger
C - 3.6 43.4 0.3 0.3 0.3 3.3 0.6 0.3 1.5 2.1
CA - 3.8 40.6 0.8 - - 4.5 - 0.8 2.3 0.8
EA 2.1 30.7 32.4 5.0 5.0 2.4 6.6 0.5 2.3 2.5 9.9

sadness
C 0.3 24.0 0.3 0.6 0.3 4.2 11.4 0.3 2.2 0.3 10.3
CA - 22.2 - 0.6 - 5.3 9.4 - 4.1 - 12.3
EA 3.0 36.0 18.6 3.4 5.4 5.8 7.1 0.5 1.4 2.1 16.1

fear
C 0.8 43.0 8.9 2.0 1.2 0.4 6.1 0.4 0.8 0.4 2.0
CA - 29.5 10.5 3.2 1.1 - 3.2 - 1.1 1.1 4.2
EA 4.5 31.8 25.0 3.5 6.9 3.0 6.1 1.3 2.3 3.3 11.8

disgust
C - 2.3 1.1 11.2 1.1 1.1 24.7 1.1 3.4 1.1 -
CA - - - 14.8 1.8 - 33.3 - 1.8 - -
EA 2.0 33.7 24.9 4.8 5.5 1.9 9.7 1.1 1.8 3.5 10.5

joy
C 1.0 0.2 0.2 3.4 5.7 4.2 4.2 9.1 4.4 4.0 0.6
CA 0.9 - 0.3 3.3 4.5 4.8 2.7 10.6 4.2 3.9 0.6
EA 21.8 2.2 7.4 14.1 13.4 11.3 3.1 11.1 6.3 5.8 2.8

trust
C - - 1.2 3.5 1.2 17.4 8.1 1.2 1.2 5.8 1.2
CA - - 3.0 6.1 3.0 3.0 9.1 - - 3.0 3.0
EA 22.0 6.3 8.4 14.2 8.3 14.4 5.9 5.5 4.9 3.8 5.8

surprise
C - - - 3.3 6.7 6.7 3.3 3.3 6.7 13.3 3.3
CA - - - - 5.6 5.6 - 5.6 11.1 11.1 -
EA 11.0 13.4 21.0 8.3 13.5 5.2 3.4 5.2 4.1 5.6 8.8

anticipation
C - - - 5.3 5.3 - 5.3 5.3 - 15.8 5.3
CA - - - - - - - 10.0 - 10.0 10.0
EA 16.2 7.5 11.5 16.2 10.7 9.5 5.7 5.9 3.1 4.9 8.4

Table 7: The percentage of the 8 basic emotions associated with 11 B&K colors in CLEX vs. EMOLEX,
e.g., sadness is associated with black by 36% of annotators in EMOLEX(EA), 22.1% in CLEX(CA) by
US-based annotators only and 24% in CLEX(C) by all annotators; we report zero associations by “-”.

(a) Joy - US: 331, I: 154 (b) Trust - US: 33, I: 47 (c) Surprise - US: 18, I: 12 (d) Anticipation - US: 10, I: 9

(e) Anger - US: 133, I: 160 (f) Sadness - US: 171, I: 142 (g) Fear - US: 95, I: 105 (h) Disgust - US: 54, I: 16

Figure 2: Apparent cross-cultural differences in color-emotion associations between US- and India-
based annotators. 10.6% of US workers associated joy with pink, while 7.1% India-based workers
associated joy with yellow (based on 331 joy associations from the US and from 154 India).
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(a) Yellow (b) Brown (c) White

Figure 3: Concept clusters of color-concept associations for ambiguous colors: yellow, white, brown.

concept association lexicon, CLEX. This lexicon
links concepts, color terms and emotions to spe-
cific RGB values. This lexicon may help to dis-
ambiguate objects when modeling conversational
interactions in many domains. We have examined
the association between color terms and positive
or negative emotions.

Our work also investigated cross-cultural dif-
ferences in color-emotion associations between
India- and US-based annotators. We identified
frequent color-concept associations, which sug-
gests that concepts associated with a particular
color may express the same sentiment as the color.

Our future work includes applying statistical
inference for discovering a hidden structure of
concept-emotion associations. Moreover, auto-
matically identifying the strength of association
between a particular concept and emotions is an-
other task which is more difficult than just iden-
tifying the polarity of the word. We are also in-
terested in using a similar approach to investigate

CLEX∩AN CLEX∩EL CLEX∩GI
Noun 287 Noun 574 Noun 708
Verb 4 Verb 13 Verb 17
Adj 28 Adj 53 Adj 66
Adv 1 Adv 2 Adv 3

320 642 794
AN\CLEX EL\CLEX GI\CLEX

712 7,445 11,101
CLEX\AN CLEX\EL CLEX\GI

1,637 1,315 1,163

Table 8: An overlap of concepts by part-of-
speech tag between CLEX and existing lexicons.
CLEX∩GI stands for the intersection of sets,
CLEX\GI denotes the difference of sets.

the way that colors are associated with concepts
and emotions in languages other than English.
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Abstract

We extend the original entity-based coher-
ence model (Barzilay and Lapata, 2008)
by learning from more fine-grained coher-
ence preferences in training data. We asso-
ciate multiple ranks with the set of permuta-
tions originating from the same source doc-
ument, as opposed to the original pairwise
rankings. We also study the effect of the
permutations used in training, and the effect
of the coreference component used in en-
tity extraction. With no additional manual
annotations required, our extended model
is able to outperform the original model on
two tasks: sentence ordering and summary
coherence rating.

1 Introduction

Coherence is important in a well-written docu-
ment; it helps make the text semantically mean-
ingful and interpretable. Automatic evaluation
of coherence is an essential component of vari-
ous natural language applications. Therefore, the
study of coherence models has recently become
an active research area. A particularly popular
coherence model is the entity-based local coher-
ence model of Barzilay and Lapata (B&L) (2005;
2008). This model represents local coherence
by transitions, from one sentence to the next, in
the grammatical role of references to entities. It
learns a pairwise ranking preference between al-
ternative renderings of a document based on the
probability distribution of those transitions. In
particular, B&L associated a lower rank with au-
tomatically created permutations of a source doc-
ument, and learned a model to discriminate an
original text from its permutations (see Section

3.1 below). However, coherence is matter of de-
gree rather than a binary distinction, so a model
based only on such pairwise rankings is insuffi-
ciently fine-grained and cannot capture the sub-
tle differences in coherence between the permuted
documents.

Since the first appearance of B&L’s model,
several extensions have been proposed (see Sec-
tion 2.3 below), primarily focusing on modify-
ing or enriching the original feature set by incor-
porating other document information. By con-
trast, we wish to refine the learning procedure
in a way such that the resulting model will be
able to evaluate coherence on a more fine-grained
level. Specifically, we propose a concise exten-
sion to the standard entity-based coherence model
by learning not only from the original docu-
ment and its corresponding permutations but also
from ranking preferences among the permutations
themselves.

We show that this can be done by assigning a
suitable objective score for each permutation indi-
cating its dissimilarity from the original one. We
call this a multiple-rank model since we train our
model on a multiple-rank basis, rather than tak-
ing the original pairwise ranking approach. This
extension can also be easily combined with other
extensions by incorporating their enriched feature
sets. We show that our multiple-rank model out-
performs B&L’s basic model on two tasks, sen-
tence ordering and summary coherence rating,
evaluated on the same datasets as in Barzilay and
Lapata (2008).

In sentence ordering, we experiment with
different approaches to assigning dissimilarity
scores and ranks (Section 5.1.1). We also exper-
iment with different entity extraction approaches
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Manila Miles Island Quake Baco

1 − − X X −

2 S − O − −

3 X X X X X

Table 1: A fragment of an entity grid for five entities
across three sentences.

(Section 5.1.2) and different distributions of per-
mutations used in training (Section 5.1.3). We
show that these two aspects are crucial, depend-
ing on the characteristics of the dataset.

2 Entity-based Coherence Model

2.1 Document Representation
The original entity-based coherence model is
based on the assumption that a document makes
repeated reference to elements of a set of entities
that are central to its topic. For a document d, an
entity grid is constructed, in which the columns
represent the entities referred to in d, and rows
represent the sentences. Each cell corresponds
to the grammatical role of an entity in the corre-
sponding sentence: subject (S), object (O), nei-
ther (X), or nothing (−). An example fragment
of an entity grid is shown in Table 1; it shows
the representation of three sentences from a text
on a Philippine earthquake. B&L define a lo-
cal transition as a sequence {S ,O, X,−}n, repre-
senting the occurrence and grammatical roles of
an entity in n adjacent sentences. Such transi-
tion sequences can be extracted from the entity
grid as continuous subsequences in each column.
For example, the entity “Manila” in Table 1 has
a bigram transition {S , X} from sentence 2 to 3.
The entity grid is then encoded as a feature vector
Φ(d) = (p1(d), p2(d), . . . , pm(d)), where pt(d) is
the probability of the transition t in the entity grid,
and m is the number of transitions with length no
more than a predefined optimal transition length
k. pt(d) is computed as the number of occurrences
of t in the entity grid of document d, divided by
the total number of transitions of the same length
in the entity grid.

For entity extraction, Barzilay and Lapata
(2008) had two conditions: Coreference+ and
Coreference−. In Coreference+, entity corefer-
ence relations in the document were resolved by
an automatic coreference resolution tool (Ng and
Cardie, 2002), whereas in Coreference−, nouns

are simply clustered by string matching.

2.2 Evaluation Tasks

Two evaluation tasks for Barzilay and Lapata
(2008)’s entity-based model are sentence order-
ing and summary coherence rating.

In sentence ordering, a set of random permu-
tations is created for each source document, and
the learning procedure is conducted on this syn-
thetic mixture of coherent and incoherent docu-
ments. Barzilay and Lapata (2008) experimented
on two datasets: news articles on the topic of
earthquakes (Earthquakes) and narratives on the
topic of aviation accidents (Accidents). A train-
ing data instance is constructed as a pair con-
sisting of a source document and one of its ran-
dom permutations, and the permuted document
is always considered to be less coherent than the
source document. The entity transition features
are then used to train a support vector machine
ranker (Joachims, 2002) to rank the source docu-
ments higher than the permutations. The model is
tested on a different set of source documents and
their permutations, and the performance is evalu-
ated as the fraction of correct pairwise rankings in
the test set.

In summary coherence rating, a similar exper-
imental framework is adopted. However, in this
task, rather than training and evaluating on a set
of synthetic data, system-generated summaries
and human-composed reference summaries from
the Document Understanding Conference (DUC
2003) were used. Human annotators were asked
to give a coherence score on a seven-point scale
for each item. The pairwise ranking preferences
between summaries generated from the same in-
put document cluster (excluding the pairs consist-
ing of two human-written summaries) are used by
a support vector machine ranker to learn a dis-
criminant function to rank each pair according to
their coherence scores.

2.3 Extended Models

Filippova and Strube (2007) applied Barzilay and
Lapata’s model on a German corpus of newspa-
per articles with manual syntactic, morphological,
and NP coreference annotations provided. They
further clustered entities by semantic relatedness
as computed by the WikiRelated! API (Strube and
Ponzetto, 2006). Though the improvement was
not significant, interestingly, a short subsection in
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their paper described their approach to extending
pairwise rankings to longer rankings, by supply-
ing the learner with rankings of all renderings as
computed by Kendall’s τ, which is one of our
extensions considered in this paper. Although
Filippova and Strube simply discarded this idea
because it hurt accuracies when tested on their
data, we found it a promising direction for further
exploration. Cheung and Penn (2010) adapted
the standard entity-based coherence model to the
same German corpus, but replaced the original
linguistic dimension used by Barzilay and Lap-
ata (2008) — grammatical role — with topologi-
cal field information, and showed that for German
text, such a modification improves accuracy.

For English text, two extensions have been pro-
posed recently. Elsner and Charniak (2011) aug-
mented the original features used in the standard
entity-based coherence model with a large num-
ber of entity-specific features, and their extension
significantly outperformed the standard model
on two tasks: document discrimination (another
name for sentence ordering), and sentence inser-
tion. Lin et al. (2011) adapted the entity grid rep-
resentation in the standard model into a discourse
role matrix, where additional discourse informa-
tion about the document was encoded. Their ex-
tended model significantly improved ranking ac-
curacies on the same two datasets used by Barzi-
lay and Lapata (2008) as well as on the Wall Street
Journal corpus.

However, while enriching or modifying the
original features used in the standard model is cer-
tainly a direction for refinement of the model, it
usually requires more training data or a more so-
phisticated feature representation. In this paper,
we instead modify the learning approach and pro-
pose a concise and highly adaptive extension that
can be easily combined with other extended fea-
tures or applied to different languages.

3 Experimental Design

Following Barzilay and Lapata (2008), we wish
to train a discriminative model to give the cor-
rect ranking preference between two documents
in terms of their degree of coherence. We experi-
ment on the same two tasks as in their work: sen-
tence ordering and summary coherence rating.

3.1 Sentence Ordering

In the standard entity-based model, a discrimina-
tive system is trained on the pairwise rankings be-
tween source documents and their permutations
(see Section 2.2). However, a model learned from
these pairwise rankings is not sufficiently fine-
grained, since the subtle differences between the
permutations are not learned. Our major contribu-
tion is to further differentiate among the permuta-
tions generated from the same source documents,
rather than simply treating them all as being of the
same degree of coherence.

Our fundamental assumption is that there exists
a canonical ordering for the sentences of a doc-
ument; therefore we can approximate the degree
of coherence of a document by the similarity be-
tween its actual sentence ordering and that canon-
ical sentence ordering. Practically, we automati-
cally assign an objective score for each permuta-
tion to estimate its dissimilarity from the source
document (see Section 4). By learning from all
the pairs across a source document and its per-
mutations, the effective size of the training data
is increased while no further manual annotation
is required, which is favorable in real applica-
tions when available samples with manually an-
notated coherence scores are usually limited. For
r source documents each with m random permuta-
tions, the number of training instances in the stan-
dard entity-based model is therefore r × m, while
in our multiple-rank model learning process, it is
r ×

(
m+1

2

)
≈ 1

2 r × m2 > r × m, when m > 2.

3.2 Summary Coherence Rating

Compared to the standard entity-based coherence
model, our major contribution in this task is to
show that by automatically assigning an objective
score for each machine-generated summary to es-
timate its dissimilarity from the human-generated
summary from the same input document cluster,
we are able to achieve performance competitive
with, or even superior to, that of B&L’s model
without knowing the true coherence score given
by human judges.

Evaluating our multiple-rank model in this task
is crucial, since in summary coherence rating,
the coherence violations that the reader might en-
counter in real machine-generated texts can be
more precisely approximated, while the sentence
ordering task is only partially capable of doing so.
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4 Dissimilarity Metrics

As mentioned previously, the subtle differences
among the permutations of the same source docu-
ment can be used to refine the model learning pro-
cess. Considering an original document d and one
of its permutations, we call σ = (1, 2, . . . ,N) the
reference ordering, which is the sentence order-
ing in d, and π = (o1, o2, . . . , oN) the test order-
ing, which is the sentence ordering in that permu-
tation, where N is the number of sentences being
rendered in both documents.

In order to approximate different degrees of co-
herence among the set of permutations which bear
the same content, we need a suitable metric to
quantify the dissimilarity between the test order-
ing π and the reference ordering σ. Such a metric
needs to satisfy the following criteria: (1) It can be
automatically computed while being highly corre-
lated with human judgments of coherence, since
additional manual annotation is certainly undesir-
able. (2) It depends on the particular sentence
ordering in a permutation while remaining inde-
pendent of the entities within the sentences; oth-
erwise our multiple-rank model might be trained
to fit particular probability distributions of entity
transitions rather than true coherence preferences.

In our work we use three different metrics:
Kendall’s τ distance, average continuity, and edit
distance.

Kendall’s τ distance: This metric has been
widely used in evaluation of sentence ordering
(Lapata, 2003; Lapata, 2006; Bollegala et al.,
2006; Madnani et al., 2007)1. It measures the
disagreement between two orderings σ and π in
terms of the number of inversions of adjacent sen-
tences necessary to convert one ordering into an-
other. Kendall’s τ distance is defined as

τ =
2m

N(N − 1)
,

where m is the number of sentence inversions nec-
essary to convert σ to π.

Average continuity (AC): Following Zhang
(2011), we use average continuity as the sec-
ond dissimilarity metric. It was first proposed

1Filippova and Strube (2007) found that their perfor-
mance dropped when using this metric for longer rankings;
but they were using data in a different language and with
manual annotations, so its effect on our datasets is worth try-
ing nonetheless.

by Bollegala et al. (2006). This metric esti-
mates the quality of a particular sentence order-
ing by the number of correctly arranged contin-
uous sentences, compared to the reference order-
ing. For example, if π = (. . . , 3, 4, 5, 7, . . . , oN),
then {3, 4, 5} is considered as continuous while
{3, 4, 5, 7} is not. Average continuity is calculated
as

AC = exp

 1
n − 1

n∑
i=2

log (Pi + α)

 ,
where n = min(4,N) is the maximum number
of continuous sentences to be considered, and
α = 0.01. Pi is the proportion of continuous sen-
tences of length i in π that are also continuous in
the reference ordering σ. To represent the dis-
similarity between the two orderings π and σ, we
use its complement AC′ = 1 − AC, such that the
larger AC′ is, the more dissimilar two orderings
are2.

Edit distance (ED): Edit distance is a com-
monly used metric in information theory to mea-
sure the difference between two sequences. Given
a test ordering π, its edit distance is defined as the
minimum number of edits (i.e., insertions, dele-
tions, and substitutions) needed to transform it
into the reference ordering σ. For permutations,
the edits are essentially movements, which can
be considered as equal numbers of insertions and
deletions.

5 Experiments

5.1 Sentence Ordering
Our first set of experiments is on sentence order-
ing. Following Barzilay and Lapata (2008), we
use all transitions of length ≤ 3 for feature extrac-
tion. In addition, we explore three specific aspects
in our experiments: rank assignment, entity ex-
traction, and permutation generation.

5.1.1 Rank Assignment
In our multiple-rank model, pairwise rankings

between a source document and its permutations
are extended into a longer ranking with multiple
ranks. We assign a rank to a particular permuta-
tion, based on the result of applying a chosen dis-
similarity metric from Section 4 (τ, AC, or ED) to
the sentence ordering in that permutation.

We experiment with two different approaches
to assigning ranks to permutations, while each

2We will refer to AC′ as AC from now on.
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source document is always assigned a zero (the
highest) rank.

In the raw option, we rank the permutations di-
rectly by their dissimilarity scores to form a full
ranking for the set of permutations generated from
the same source document.

Since a full ranking might be too sensitive to
noise in training, we also experiment with the
stratified option, in which C ranks are assigned to
the permutations generated from the same source
document. The permutation with the smallest dis-
similarity score is assigned the same (zero, the
highest) rank as the source document, and the one
with the largest score is assigned the lowest (C−1)
rank; then ranks of other permutations are uni-
formly distributed in this range according to their
raw dissimilarity scores. We experiment with 3
to 6 ranks (the case where C = 2 reduces to the
standard entity-based model).

5.1.2 Entity Extraction

Barzilay and Lapata (2008)’s best results were
achieved by employing an automatic coreference
resolution tool (Ng and Cardie, 2002) for ex-
tracting entities from a source document, and the
permutations were generated only afterwards —
entity extraction from a permuted document de-
pends on knowing the correct sentence order and
the oracular entity information from the source
document — since resolving coreference relations
in permuted documents is too unreliable for an au-
tomatic tool.

We implement our multiple-rank model with
full coreference resolution using Ng and Cardie’s
coreference resolution system, and entity extrac-
tion approach as described above — the Coref-
erence+ condition. However, as argued by El-
sner and Charniak (2011), to better simulate
the real situations that human readers might en-
counter in machine-generated documents, such
oracular information should not be taken into ac-
count. Therefore we also employ two alterna-
tive approaches for entity extraction: (1) use the
same automatic coreference resolution tool on
permuted documents — we call it the Corefer-
ence± condition; (2) use no coreference reso-
lution, i.e., group head noun clusters by simple
string matching — B&L’s Coreference− condi-
tion.

5.1.3 Permutation Generation
The quality of the model learned depends on

the set of permutations used in training. We are
not aware of how B&L’s permutations were gen-
erated, but we assume they are generated in a per-
fectly random fashion.

However, in reality, the probabilities of seeing
documents with different degrees of coherence are
not equal. For example, in an essay scoring task,
if the target group is (near-) native speakers with
sufficient education, we should expect their essays
to be less incoherent — most of the essays will
be coherent in most parts, with only a few minor
problems regarding discourse coherence. In such
a setting, the performance of a model trained from
permutations generated from a uniform distribu-
tion may suffer some accuracy loss.

Therefore, in addition to the set of permutations
used by Barzilay and Lapata (2008) (PSBL), we
create another set of permutations for each source
document (PSM) by assigning most of the proba-
bility mass to permutations which are mostly sim-
ilar to the original source document. Besides its
capability of better approximating real-life situ-
ations, training our model on permutations gen-
erated in this way has another benefit: in the
standard entity-based model, all permuted doc-
uments are treated as incoherent; thus there are
many more incoherent training instances than co-
herent ones (typically the proportion is 20:1). In
contrast, in our multiple-rank model, permuted
documents are assigned different ranks to fur-
ther differentiate the different degrees of coher-
ence within them. By doing so, our model will
be able to learn the characteristics of a coherent
document from those near-coherent documents as
well, and therefore the problem of lacking coher-
ent instances can be mitigated.

Our permutation generation algorithm is shown
in Algorithm 1, where α = 0.05, β = 5.0,
MAX NUM = 50, and K and K′ are two normal-
ization factors to make p(swap num) and p(i, j)
proper probability distributions. For each source
document, we create the same number of permu-
tations as PSBL.

5.2 Summary Coherence Rating
In the summary coherence rating task, we are
dealing with a mixture of multi-document sum-
maries generated by systems and written by hu-
mans. Barzilay and Lapata (2008) did not assume
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Algorithm 1 Permutation Generation.
Input: S 1, S 2, . . . , S N ; σ = (1, 2, . . . ,N)

Choose a number of sentence swaps
swap num with probability e−α×swap num/K

for i = 1→ swap num do
Swap a pair of sentence (S i, S j)

with probability p(i, j) = e−β×|i− j|/K′

end for
Output: π = (o1, o2, . . . , oN)

a simple binary distinction among the summaries
generated from the same input document clus-
ter; rather, they had human judges give scores for
each summary based on its degree of coherence
(see Section 3.2). Therefore, it seems that the
subtle differences among incoherent documents
(system-generated summaries in this case) have
already been learned by their model.

But we wish to see if we can replace hu-
man judgments by our computed dissimilarity
scores so that the original supervised learning is
converted into unsupervised learning and yet re-
tain competitive performance. However, given
a summary, computing its dissimilarity score is
a bit involved, due to the fact that we do not
know its correct sentence order. To tackle this
problem, we employ a simple sentence align-
ment between a system-generated summary and
a human-written summary originating from the
same input document cluster. Given a system-
generated summary Ds = (S s1, S s2, . . . , S sn) and
its corresponding human-written summary Dh =

(S h1, S h2, . . . , S hN) (here it is possible that n ,
N), we treat the sentence ordering (1, 2, . . . ,N)
in Dh as σ (the original sentence ordering), and
compute π = (o1, o2, . . . , on) based on Ds. To
compute each oi in π, we find the most similar
sentence S h j, j ∈ [1,N] in Dh by computing their
cosine similarity over all tokens in S h j and S si;
if all sentences in Dh have zero cosine similarity
with S si, we assign −1 to oi.

Once π is known, we can compute its “dissimi-
larity” from σ using a chosen metric. But because
now π is not guaranteed to be a permutation of σ
(there may be repetition or missing values, i.e.,
−1, in π), Kendall’s τ cannot be used, and we use
only average continuity and edit distance as dis-
similarity metrics in this experiment.

The remaining experimental configuration is
the same as that of Barzilay and Lapata (2008),

with the optimal transition length set to ≤ 2.

6 Results

6.1 Sentence Ordering
In this task, we use the same two sets of source
documents (Earthquakes and Accidents, see Sec-
tion 3.1) as Barzilay and Lapata (2008). Each
contains 200 source documents, equally divided
between training and test sets, with up to 20 per-
mutations per document. We conduct experi-
ments on these two domains separately. For each
domain, we accompany each source document
with two different sets of permutations: the one
used by B&L (PSBL), and the one generated from
our model described in Section 5.1.3 (PSM). We
train our multiple-rank model and B&L’s standard
two-rank model on each set of permutations using
the SVMrank package (Joachims, 2006), and eval-
uate both systems on their test sets. Accuracy is
measured as the fraction of correct pairwise rank-
ings for the test set.

6.1.1 Full Coreference Resolution with
Oracular Information

In this experiment, we implement B&L’s fully-
fledged standard entity-based coherence model,
and extract entities from permuted documents us-
ing oracular information from the source docu-
ments (see Section 5.1.2).

Results are shown in Table 2. For each test sit-
uation, we list the best accuracy (in Acc columns)
for each chosen dissimilarity metric, with the cor-
responding rank assignment approach. C repre-
sents the number of ranks used in stratifying raw
scores (“N” if using raw configuration, see Sec-
tion 5.1.1 for details). Baselines are accuracies
trained using the standard entity-based coherence
model3.

Our model outperforms the standard entity-
based model on both permutation sets for both
datasets. The improvement is not significant
when trained on the permutation set PSBL, and
is achieved only with one of the three metrics;

3There are discrepancies between our reported accuracies
and those of Barzilay and Lapata (2008). The differences are
due to the fact that we use a different parser: the Stanford de-
pendency parser (de Marneffe et al., 2006), and might have
extracted entities in a slightly different way than theirs, al-
though we keep other experimental configurations as close
as possible to theirs. But when comparing our model with
theirs, we always use the exact same set of features, so the
absolute accuracies do not matter.
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Condition: Coreference+

Perms Metric
Earthquakes Accidents

C Acc C Acc

PSBL

τ 3 79.5 3 82.0
AC 4 85.2 3 83.3
ED 3 86.8 6 82.2

Baseline 85.3 83.2

PSM

τ 3 86.8 3 85.2*
AC 3 85.6 1 85.4*
ED N 87.9* 4 86.3*

Baseline 85.3 81.7

Table 2: Accuracies (%) of extending the stan-
dard entity-based coherence model with multiple-rank
learning in sentence ordering using Coreference+ op-
tion. Accuracies which are significantly better than the
baseline (p < .05) are indicated by *.

but when trained on PSM (the set of permutations
generated from our biased model), our model’s
performance significantly exceeds B&L’s4 for all
three metrics, especially as their model’s perfor-
mance drops for dataset Accidents.

From these results, we see that in the ideal sit-
uation where we extract entities and resolve their
coreference relations based on the oracular infor-
mation from the source document, our model is
effective in terms of improving ranking accura-
cies, especially when trained on our more realistic
permutation sets PSM.

6.1.2 Full Coreference Resolution without
Oracular Information

In this experiment, we apply the same auto-
matic coreference resolution tool (Ng and Cardie,
2002) on not only the source documents but also
their permutations. We want to see how removing
the oracular component in the original model af-
fects the performance of our multiple-rank model
and the standard model. Results are shown in Ta-
ble 3.

First we can see when trained on PSM, run-
ning full coreference resolution significantly hurts
performance for both models. This suggests that,
in real-life applications, where the distribution of
training instances with different degrees of co-
herence is skewed (as in the set of permutations

4Following Elsner and Charniak (2011), we use the
Wilcoxon Sign-rank test for significance.

Condition: Coreference±

Perms Metric
Earthquakes Accidents

C Acc C Acc

PSBL

τ 3 71.0 3 73.3
AC 3 *76.8 3 74.5
ED 4 *77.4 6 74.4

Baseline 71.7 73.8

PSM

τ 3 55.9 3 51.5
AC 4 53.9 6 49.0
ED 4 53.9 5 52.3

Baseline 49.2 53.2

Table 3: Accuracies (%) of extending the stan-
dard entity-based coherence model with multiple-rank
learning in sentence ordering using Coreference± op-
tion. Accuracies which are significantly better than the
baseline (p < .05) are indicated by *.

generated from our model), running full corefer-
ence resolution is not a good option, since it al-
most makes the accuracies no better than random
guessing (50%).

Moreover, considering training using PSBL,
running full coreference resolution has a different
influence for the two datasets. For Earthquakes,
our model significantly outperforms B&L’s while
the improvement is insignificant for Accidents.
This is most probably due to the different way that
entities are realized in these two datasets. As an-
alyzed by Barzilay and Lapata (2008), in dataset
Earthquakes, entities tend to be referred to by pro-
nouns in subsequent mentions, while in dataset
Accidents, literal string repetition is more com-
mon.

Given a balanced permutation distribution as
we assumed in PSBL, switching distant sentence
pairs in Accidents may result in very similar en-
tity distribution with the situation of switching
closer sentence pairs, as recognized by the auto-
matic tool. Therefore, compared to Earthquakes,
our multiple-rank model may be less powerful in
indicating the dissimilarity between the sentence
orderings in a permutation and its source docu-
ment, and therefore can improve on the baseline
only by a small margin.

6.1.3 No Coreference Resolution
In this experiment, we do not employ any coref-

erence resolution tool, and simply cluster head
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Condition: Coreference−

Perms Metric
Earthquakes Accidents

C Acc C Acc

PSBL

τ 4 82.8 N 82.0
AC 3 78.0 3 **84.2
ED N 78.2 3 *82.7

Baseline 83.7 80.1

PSM

τ 3 **86.4 N **85.7
AC 4 *84.4 N **86.6
ED 5 **86.7 N **84.6

Baseline 82.6 77.5

Table 4: Accuracies (%) of extending the stan-
dard entity-based coherence model with multiple-rank
learning in sentence ordering using Coreference− op-
tion. Accuracies which are significantly better than the
baseline are indicated by * (p < .05) and ** (p < .01).

nouns by string matching. Results are shown in
Table 4.

Even with such a coarse approximation of
coreference resolution, our model is able to
achieve around 85% accuracy in most test cases,
except for dataset Earthquakes, training on PSBL

gives poorer performance than the standard model
by a small margin. But such inferior perfor-
mance should be expected, because as explained
above, coreference resolution is crucial to this
dataset, since entities tend to be realized through
pronouns; simple string matching introduces too
much noise into training, especially when our
model wants to train a more fine-grained discrim-
inative system than B&L’s. However, we can see
from the result of training on PSM, if the per-
mutations used in training do not involve swap-
ping sentences which are too far away, the result-
ing noise is reduced, and our model outperforms
theirs. And for dataset Accidents, our model
consistently outperforms the baseline model by a
large margin (with significance test at p < .01).

6.1.4 Conclusions for Sentence Ordering
Considering the particular dissimilarity metric

used in training, we find that edit distance usually
stands out from the other two metrics. Kendall’s τ
distance proves to be a fairly weak metric, which
is consistent with the findings of Filippova and
Strube (2007) (see Section 2.3). Figure 1 plots
the testing accuracies as a function of different
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Figure 1: Effect of C on testing accuracies in selected
sentence ordering experimental configurations.

choices of C’s with the configurations where our
model outperforms the baseline model. In each
configuration, we choose the dissimilarity metric
which achieves the best accuracy reported in Ta-
bles 2 to 4 and the PS BL permutation set. We
can see that the dependency of accuracies on the
particular choice of C is not consistent across all
experimental configurations, which suggests that
this free parameter C needs careful tuning in dif-
ferent experimental setups.

Combining our multiple-rank model with sim-
ple string matching for entity extraction is a ro-
bust option for coherence evaluation, regardless
of the particular distribution of permutations used
in training, and it significantly outperforms the
baseline in most conditions.

6.2 Summary Coherence Rating

As explained in Section 3.2, we employ a simple
sentence alignment between a system-generated
summary and its corresponding human-written
summary to construct a test ordering π and calcu-
late its dissimilarity between the reference order-
ing σ from the human-written summary. In this
way, we convert B&L’s supervised learning model
into a fully unsupervised model, since human an-
notations for coherence scores are not required.
We use the same dataset as Barzilay and Lap-
ata (2008), which includes multi-document sum-
maries from 16 input document clusters generated
by five systems, along with reference summaries
composed by humans.

In this experiment, we consider only average
continuity (AC) and edit distance (ED) as dissimi-
larity metrics, with raw configuration for rank as-
signment, and compare our multiple-rank model
with the standard entity-based model using ei-
ther full coreference resolution5 or no resolution

5We run the coreference resolution tool on all documents.
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Entities Metric Same Full

Coreference+

AC 82.5 *72.6
ED 81.3 **73.0

Baseline 78.8 70.9

Coreference−
AC 76.3 72.0
ED 78.8 71.7

Baseline 80.0 72.3

Table 5: Accuracies (%) of extending the stan-
dard entity-based coherence model with multiple-rank
learning in summary rating. Baselines are results of
standard entity-based coherence model. Accuracies
which are significantly better than the corresponding
baseline are indicated by * (p < .05) and ** (p < .01).

for entity extraction. We train both models on
the ranking preferences (144 in all) among sum-
maries originating from the same input document
cluster using the SVMrank package (Joachims,
2006), and test on two different test sets: same-
cluster test and full test. Same-cluster test is the
one used by Barzilay and Lapata (2008), in which
only the pairwise rankings (80 in all) between
summaries originating from the same input doc-
ument cluster are tested; we also experiment with
full test, in which pairwise rankings (1520 in all)
between all summary pairs excluding two human-
written summaries are tested.

Results are shown in Table 5. Coreference+

and Coreference− denote the configuration of
using full coreference resolution or no resolu-
tion separately. First, clearly for both models,
performance on full test is inferior to that on
same-cluster test, but our model is still able to
achieve performance competitive with the stan-
dard model, even if our fundamental assumption
about the existence of canonical sentence order-
ing in documents with same content may break
down on those test pairs not originating from the
same input document cluster. Secondly, for the
baseline model, using the Coreference− configu-
ration yields better accuracy in this task (80.0%
vs. 78.8% on same-cluster test, and 72.3% vs.
70.9% on full test), which is consistent with the
findings of Barzilay and Lapata (2008). But our
multiple-rank model seems to favor the Corefer-
ence+ configuration, and our best accuracy even
exceeds B&L’s best when tested on the same set:
82.5% vs. 80.0% on same-cluster test, and 73.0%

vs. 72.3% on full test.
When our model performs poorer than the

baseline (using Coreference− configuration), the
difference is not significant, which suggests that
our multiple-rank model with unsupervised score
assignment via simple cosine matching can re-
main competitive with the standard model, which
requires human annotations to obtain a more fine-
grained coherence spectrum. This observation is
consistent with Banko and Vanderwende (2004)’s
discovery that human-generated summaries look
quite extractive.

7 Conclusions

In this paper, we have extended the popular co-
herence model of Barzilay and Lapata (2008) by
adopting a multiple-rank learning approach. This
is inherently different from other extensions to
this model, in which the focus is on enriching
the set of features for entity-grid construction,
whereas we simply keep their original feature set
intact, and manipulate only their learning method-
ology. We show that this concise extension is
effective and able to outperform B&L’s standard
model in various experimental setups, especially
when experimental configurations are most suit-
able considering certain dataset properties (see
discussion in Section 6.1.4).

We experimented with two tasks: sentence or-
dering and summary coherence rating, following
B&L’s original framework. In sentence ordering,
we also explored the influence of removing the
oracular component in their original model and
dealing with permutations generated from differ-
ent distributions, showing that our model is robust
for different experimental situations. In summary
coherence rating, we further extended their model
such that their original supervised learning is con-
verted into unsupervised learning with competi-
tive or even superior performance.

Our multiple-rank learning model can be easily
adapted into other extended entity-based coher-
ence models with their enriched feature sets, and
further improvement in ranking accuracies should
be expected.
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Abstract

In this paper, we compare three different
generalization methods for in-domain and
cross-domain opinion holder extraction be-
ing simple unsupervised word clustering,
an induction method inspired by distant
supervision and the usage of lexical re-
sources. The generalization methods are
incorporated into diverse classifiers. We
show that generalization causes significant
improvements and that the impact of im-
provement depends on the type of classifier
and on how much training and test data dif-
fer from each other. We also address the
less common case of opinion holders being
realized in patient position and suggest ap-
proaches including a novel (linguistically-
informed) extraction method how to detect
those opinion holders without labeled train-
ing data as standard datasets contain too
few instances of this type.

1 Introduction

Opinion holder extraction is one of the most im-
portant subtasks in sentiment analysis. The ex-
traction of sources of opinions is an essential com-
ponent for complex real-life applications, such
as opinion question answering systems or opin-
ion summarization systems (Stoyanov and Cardie,
2011). Common approaches designed to extract
opinion holders are based on data-driven methods,
in particular supervised learning.

In this paper, we examine the role of general-
ization for opinion holder extraction in both in-
domain and cross-domain classification. General-
ization may not only help to compensate the avail-
ability of labeled training data but also conciliate
domain mismatches.

In order to illustrate this, compare for instance
(1) and (2).

(1) Malaysia did not agree to such treatment of Al-Qaeda sol-
diers as they were prisoners-of-war and should be accorded
treatment as provided for under the Geneva Convention.

(2) Japan wishes to build a $21 billion per year aerospace indus-
try centered on commercial satellite development.

Though both sentences contain an opinion
holder, the lexical items vary considerably. How-
ever, if the two sentences are compared on the ba-
sis of some higher level patterns, some similari-
ties become obvious. In both cases the opinion
holder is an entity denoting a person and this en-
tity is an agent1 of some predictive predicate (i.e.
agree in (1) and wishes in (2)), more specifically,
an expression that indicates that the agent utters a
subjective statement. Generalization methods ide-
ally capture these patterns, for instance, they may
provide a domain-independent lexicon for those
predicates. In some cases, even higher order fea-
tures, such as certain syntactic constructions may
vary throughout the different domains. In (1) and
(2), the opinion holders are agents of a predictive
predicate, whereas the opinion holder her daugh-
ters in (3) is a patient2 of embarrasses.

(3) Mrs. Bennet does what she can to get Jane and Bingley to-
gether and embarrasses her daughters by doing so.

If only sentences, such as (1) and (2), occur in
the training data, a classifier will not correctly ex-
tract the opinion holder in (3), unless it obtains
additional knowledge as to which predicates take
opinion holders as patients.

1By agent we always mean constituents being labeled as
A0 in PropBank (Kingsbury and Palmer, 2002).

2By patient we always mean constituents being labeled
as A1 in PropBank.
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In this work, we will consider three differ-
ent generalization methods being simple unsuper-
vised word clustering, an induction method and
the usage of lexical resources. We show that gen-
eralization causes significant improvements and
that the impact of improvement depends on how
much training and test data differ from each other.
We also address the issue of opinion holders in
patient position and present methods including a
novel extraction method to detect these opinion
holders without any labeled training data as stan-
dard datasets contain too few instances of them.

In the context of generalization it is also impor-
tant to consider different classification methods
as the incorporation of generalization may have a
varying impact depending on how robust the clas-
sifier is by itself, i.e. how well it generalizes even
with a standard feature set. We compare two state-
of-the-art learning methods, conditional random
fields and convolution kernels, and a rule-based
method.

2 Data

As a labeled dataset we mainly use the MPQA
2.0 corpus (Wiebe et al., 2005). We adhere to
the definition of opinion holders from previous
work (Wiegand and Klakow, 2010; Wiegand and
Klakow, 2011a; Wiegand and Klakow, 2011b),
i.e. every source of a private state or a subjective
speech event (Wiebe et al., 2005) is considered an
opinion holder.

This corpus contains almost exclusively news
texts. In order to divide it into different domains,
we use the topic labels from (Stoyanov et al.,
2004). By inspecting those topics, we found that
many of them can grouped to a cluster of news
items discussing human rights issues mostly in
the context of combating global terrorism. This
means that there is little point in considering every
single topic as a distinct (sub)domain and, there-
fore, we consider this cluster as one single domain
ETHICS.3 For our cross-domain evaluation, we
want to have another topic that is fairly different
from this set of documents. By visual inspection,
we found that the topic discussing issues regard-
ing the International Space Station would suit our
purpose. It is henceforth called SPACE.

3The cluster is the union of documents with the following
MPQA-topic labels: axisofevil, guantanamo, humanrights,
mugabe and settlements.

Domain # Sentences # Holders in sentence (average)
ETHICS 5700 0.79
SPACE 628 0.28
FICTION 614 1.49

Table 1: Statistics of the different domain corpora.

In addition to these two (sub)domains, we
chose some text type that is not even news text
in order to have a very distant domain. There-
fore, we had to use some text not included in the
MPQA corpus. Existing text collections contain-
ing product reviews (Kessler et al., 2010; Toprak
et al., 2010), which are generally a popular re-
source for sentiment analysis, were not found
suitable as they only contain few distinct opinion
holders. We finally used a few summaries of fic-
tional work (two Shakespeare plays and one novel
by Jane Austen4) since their language is notably
different from that of news texts and they con-
tain a large number of different opinion holders
(therefore opinion holder extraction is a meaning-
ful task on this text type). These texts make up
our third domain FICTION. We manually labeled
it with opinion holder information by applying the
annotation scheme of the MPQA corpus.

Table 1 lists the properties of the different do-
main corpora. Note that ETHICS is the largest do-
main. We consider it our primary (source) domain
as it serves both as a training and (in-domain) test
set. Due to their size, the other domains only
serve as test sets (target domains).

For some of our generalization methods, we
also need a large unlabeled corpus. We use the
North American News Text Corpus (LDC95T21).

3 The Different Types of Generalization

3.1 Word Clustering (Clus)

The simplest generalization method that is con-
sidered in this paper is word clustering. By that,
we understand the automatic grouping of words
occurring in similar contexts. Such clusters are
usually computed on a large unlabeled corpus.
Unlike lexical features, features based on clusters
are less sparse and have been proven to signif-
icantly improve data-driven classifiers in related
tasks, such as named-entity recognition (Turian et

4available at: www.absoluteshakespeare.com/
guides/{othello|twelfth night}/summary/
{othello|twelfth night} summary.htm
www.wikisummaries.org/Pride and Prejudice
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I. Madrid, Dresden, Bordeaux, Istanbul, Caracas, Manila, ...
II. Toby, Betsy, Michele, Tim, Jean-Marie, Rory, Andrew, ...
III. detest, resent, imply, liken, indicate, suggest, owe, expect, ...
IV. disappointment, unease, nervousness, dismay, optimism, ...
V. remark, baby, book, saint, manhole, maxim, coin, batter, ...

Table 2: Some automatically induced clusters.

ETHICS SPACE FICTION
1.47 2.70 11.59

Table 3: Percentage of opinion holders as patients.

al., 2010). Such a generalization is, in particular,
attractive as it is cheaply produced. As a state-
of-the-art clustering method, we consider Brown
clustering (Brown et al., 1992) as implemented in
the SRILM-toolkit (Stolcke, 2002). We induced
1000 clusters which is also the configuration used
in (Turian et al., 2010).5

Table 2 illustrates a few of the clusters induced
from our unlabeled dataset introduced in Section
(§) 2. Some of these clusters represent location
or person names (e.g. I. & II.). This exempli-
fies why clustering is effective for named-entity
recognition. We also find clusters that intuitively
seem to be meaningful for our task (e.g. III. &
IV.) but, on the other hand, there are clusters that
contain words that with the exception of their part
of speech do not have anything in common (e.g.
V.).

3.2 Manually Compiled Lexicons (Lex)
The major shortcoming of word clustering is that
it lacks any task-specific knowledge. The oppo-
site type of generalization is the usage of manu-
ally compiled lexicons comprising predicates that
indicate the presence of opinion holders, such as
supported, worries or disappointed in (4)-(6).

(4) I always supported this idea. holder:agent.
(5) This worries me. holder:patient
(6) He disappointed me. holder:patient

We follow Wiegand and Klakow (2011b) who
found that those predicates can be best obtained
by using a subset of Levin’s verb classes (Levin,
1993) and the strong subjective expressions of the
Subjectivity Lexicon (Wilson et al., 2005). For
those predicates it is also important to consider
in which argument position they usually take an
opinion holder. Bethard et al. (2004) found the

5We also experimented with other sizes but they did not
produce a better overall performance.

majority of holders are agents (4). A certain
number of predicates, however, also have opinion
holders in patient position, e.g. (5) and (6).

Wiegand and Klakow (2011b) found that many
of those latter predicates are listed in one of
Levin’s verb classes called amuse verbs. While
on the evaluation on the entire MPQA corpus,
opinion holders in patient position are fairly rare
(Wiegand and Klakow, 2011b), we may wonder
whether the same applies to the individual do-
mains that we consider in this work. Table 3
lists the proportion of those opinion holders (com-
puted manually) based on a random sample of 100
opinion holder mentions from those corpora. The
table shows indeed that on the domains from the
MPQA corpus, i.e. ETHICS and SPACE, those
opinion holders play a minor role but there is a no-
tably higher proportion on the FICTION-domain.

3.3 Task-Specific Lexicon Induction (Induc)
3.3.1 Distant Supervision with Prototypical

Opinion Holders
Lexical resources are potentially much more

expressive than word clustering. This knowledge,
however, is usually manually compiled, which
makes this solution much more expensive. Wie-
gand and Klakow (2011a) present an intermedi-
ate solution for opinion holder extraction inspired
by distant supervision (Mintz et al., 2009). The
output of that method is also a lexicon of predi-
cates but it is automatically extracted from a large
unlabeled corpus. This is achieved by collecting
predicates that frequently co-occur with prototyp-
ical opinion holders, i.e. common nouns such as
opponents (7) or critics (8), if they are an agent
of that predicate. The rationale behind this is
that those nouns act very much like actual opin-
ion holders and therefore can be seen as a proxy.

(7) Opponents say these arguments miss the point.
(8) Critics argued that the proposed limits were unconstitutional.

This method reduces the human effort to specify-
ing a small set of such prototypes.

Following the best configuration reported
in (Wiegand and Klakow, 2011a), we extract 250
verbs, 100 nouns and 100 adjectives from our un-
labeled corpus (§2).

3.3.2 Extension for Opinion Holders in
Patient Position

The downside of using prototypical opinion
holders as a proxy for opinion holders is that it

327



anguish∗, astonish, astound, concern, convince, daze, delight,
disenchant∗, disappoint, displease, disgust, disillusion, dissat-
isfy, distress, embitter∗, enamor∗, engross, enrage, entangle∗,
excite, fatigue∗, flatter, fluster, flummox∗, frazzle∗, hook∗, hu-
miliate, incapacitate∗, incense, interest, irritate, obsess, outrage,
perturb, petrify∗, sadden, sedate∗, shock, stun, tether∗, trouble

Table 4: Examples of the automatically extracted verbs
taking opinion holders as patients (∗: not listed as
amuse verb).

is limited to agentive opinion holders. Opinion
holders in patient position, such as the ones taken
by amuse verbs in (5) and (6), are not covered.
Wiegand and Klakow (2011a) show that consid-
ering less restrictive contexts significantly drops
classification performance. So the natural exten-
sion of looking for predicates having prototypical
opinion holders in patient position is not effective.
Sentences, such as (9), would mar the result.

(9) They criticized their opponents.

In (9) the prototypical opinion holder opponents
(in the patient position) is not a true opinion
holder.

Our novel method to extract those predicates
rests on the observation that the past participle of
those verbs, such as shocked in (10), is very often
identical to some predicate adjective (11) having
a similar if not identical meaning. For the predi-
cate adjective, the opinion holder is, however, its
subject/agent and not its patient.

(10) He had shockedverb me. holder:patient
(11) I was shockedadj . holder:agent

Instead of extracting those verbs directly (10),
we take the detour via their corresponding pred-
icate adjectives (11). This means that we collect
all those verbs (from our large unlabeled corpus
(§2)) for which there is a predicate adjective that
coincides with the past participle of the verb.

To increase the likelihood that our extracted
predicates are meaningful for opinion holder ex-
traction, we also need to check the semantic type
in the relevant argument position, i.e. make sure
that the agent of the predicate adjective (which
would be the patient of the corresponding verb)
is an entity likely to be an opinion holder. Our
initial attempts with prototypical opinion holders
were too restrictive, i.e. the number of prototyp-
ical opinion holders co-occurring with those ad-
jectives was too small. Therefore, we widen the
semantic type of this position from prototypical

opinion holders to persons. This means that we
allow personal pronouns (i.e. I, you, he, she and
we) to appear in this position. We believe that this
relaxation can be done in that particular case, as
adjectives are much more likely to convey opin-
ions a priori than verbs (Wiebe et al., 2004).

An intrinsic evaluation of the predicates that we
thus extracted from our unlabeled corpus is dif-
ficult. The 250 most frequent verbs exhibiting
this special property of coinciding with adjectives
(this will be the list that we use in our experi-
ments) contains 42% entries of the amuse verbs
(§3.2). However, we also found many other po-
tentially useful predicates on this list that are not
listed as amuse verbs (Table 4). As amuse verbs
cannot be considered a complete golden standard
for all predicates taking opinion holders as pa-
tients, we will focus on a task-based evaluation
of our automatically extracted list (§6).

4 Data-driven Methods

In the following, we present the two supervised
classifiers we use in our experiments. Both clas-
sifiers incorporate the same levels of representa-
tions, including the same generalization methods.

4.1 Conditional Random Fields (CRF)
The supervised classifier most frequently used
for information extraction tasks, in general, are
conditional random fields (CRF) (Lafferty et al.,
2001). Using CRF, the task of opinion holder ex-
traction is framed as a tagging problem in which
given a sequence of observations x = x1x2 . . . xn

(words in a sentence) a sequence of output tags
y = y1y2 . . . yn indicating the boundaries of opin-
ion holders is computed by modeling the condi-
tional probability P (x|y).

The features we use (Table 5) are mostly in-
spired by Choi et al. (2005) and by the ones
used for plain support vector machines (SVMs)
in (Wiegand and Klakow, 2010). They are orga-
nized into groups. The basic group Plain does not
contain any generalization method. Each other
group is dedicated to one specific generalization
method that we want to examine (Clus, Induc
and Lex). Apart from considering generalization
features indicating the presence of generalization
types, we also consider those types in conjunction
with semantic roles. As already indicated above,
semantic roles are especially important for the de-
tection of opinion holders. Unfortunately, the cor-
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Group Features

Plain

Token features: unigrams and bigrams
POS/chunk/named-entity features: unigrams, bi-
grams and trigrams
Constituency tree path to nearest predicate
Nearest predicate
Semantic role to predicate+lexical form of predicate

Clus
Cluster features: unigrams, bigrams and trigrams
Semantic role to predicate+cluster-id of predicate
Cluster-id of nearest predicate

Induc

Is there predicate from induced lexicon within win-
dow of 5 tokens?
Semantic role to predicate, if predicate is contained in
induced lexicon
Is nearest predicate contained in induced lexicon?

Lex

Is there predicate from manually compiled lexicons
within window of 5 tokens?
Semantic role to predicate, if predicate is contained in
manually compiled lexicons
Is nearest predicate contained in manually compiled
lexicons?

Table 5: Feature set for CRF.

responding feature from the Plain feature group
that also includes the lexical form of the predicate
is most likely a sparse feature. For the opinion
holder me in (10), for example, it would corre-
spond to A1 shock. Therefore, we introduce for
each generalization method an additional feature
replacing the sparse lexical item by a generaliza-
tion label, i.e. Clus: A1 CLUSTER-35265, Induc:
A1 INDUC-PRED and Lex: A1 LEX-PRED.6

For this learning method, we use CRF++.7 We
choose a configuration that provides good perfor-
mance on our source domain (i.e. ETHICS).8

For semantic role labeling we use SWIRL9, for
chunk parsing CASS (Abney, 1991) and for con-
stituency parsing Stanford Parser (Klein and Man-
ning, 2003). Named-entity information is pro-
vided by Stanford Tagger (Finkel et al., 2005).

4.2 Convolution Kernels (CK)

Convolution kernels (CK) are special kernel func-
tions. A kernel function K : X × X → R com-
putes the similarity of two data instances xi and
xj (xi ∧ xj ∈ X). It is mostly used in SVMs that
estimate a hyperplane to separate data instances
from different classes H(~x) = ~w · ~x + b = 0
where w ∈ Rn and b ∈ R (Joachims, 1999). In

6Predicates in patient position are given the same gener-
alization label as the predicates in agent position. Specially
marking them did not result in a notable improvement.

7http://crfpp.sourceforge.net
8The soft margin parameter −c is set to 1.0 and all fea-

tures occurring less than 3 times are removed.
9http://www.surdeanu.name/mihai/swirl

convolution kernels, the structures to be compared
within the kernel function are not vectors com-
prising manually designed features but the under-
lying discrete structures, such as syntactic parse
trees or part-of-speech sequences. Since they are
directly provided to the learning algorithm, a clas-
sifier can be built without taking the effort of im-
plementing an explicit feature extraction.

We take the best configuration from (Wiegand
and Klakow, 2010) that comprises a combination
of three different tree kernels being two tree ker-
nels based on constituency parse trees (one with
predicate and another with semantic scope) and
a tree kernel encoding predicate-argument struc-
tures based on semantic role information. These
representations are illustrated in Figure 1. The re-
sulting kernels are combined by plain summation.

In order to integrate our generalization meth-
ods into the convolution kernels, the input struc-
tures, i.e. the linguistic tree structures, have to be
augmented. For that we just add additional nodes
whose labels correspond to the respective gener-
alization types (i.e. Clus: CLUSTER-ID, Induc:
INDUC-PRED and Lex: LEX-PRED). The nodes
are added in such a way that they (directly) domi-
nate the leaf node for which they provide a gener-
alization.10 If several generalization methods are
used and several of them apply for the same lex-
ical unit, then the (vertical) order of the general-
ization nodes is LEX-PRED � INDUC-PRED �
CLUSTER-ID.11 Figure 2 illustrates the predi-
cate argument structure from Figure 1 augmented
with INDUC-PRED and CLUSTER-IDs.

For this learning method, we use the
SVMLight-TK toolkit.12 Again, we tune the
parameters to our source domain (ETHICS).13

5 Rule-based Classifiers (RB)

Finally, we also consider rule-based classifiers
(RB). The main difference towards CRF and CK
is that it is an unsupervised approach not requiring
training data. We re-use the framework by Wie-
gand and Klakow (2011b). The candidate set are
all noun phrases in a test set. A candidate is clas-
sified as an opinion holder if all of the following

10Note that even for the configuration Plain the trees are
already augmented with named-entity information.

11We chose this order as it roughly corresponds to the
specificity of those generalization types.

12disi.unitn.it/moschitti
13The cost parameter−j (Morik et al., 1999) was set to 5.
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Figure 1: The different structures (left: constituency trees, right: predicate argument structure) derived from
Sentence (1) for the opinion holder candidate Malaysia used as input for convolution kernels (CK).

Figure 2: Predicate argument structure augmented
with generalization nodes.

conditions hold:
• The candidate denotes a person or group of persons.
• There is a predictive predicate in the same sentence.
• The candidate has a pre-specified semantic role in the event

that the predictive predicate evokes (default: agent-role).

The set of predicates is obtained from a given lex-
icon. For predicates that take opinion holders as
patients, the default agent-role is overruled.

We consider several classifiers that differ in the
lexicon they use. RB-Lex uses the combination of
the manually compiled lexicons presented in §3.2.
RB-Induc uses the predicates that have been au-
tomatically extracted from a large unlabeled cor-
pus using the methods presented in §3.3. RB-
Induc+Lex considers the union of those lexicons.
In order to examine the impact of modeling opin-
ion holders in patient position, we also introduce
two versions of each lexicon. AG just consid-
ers predicates in agentive position while AG+PT
also considers predicates that take opinion hold-
ers as patients. For example, RB-InducAG+PT

is a classifier that uses automatically extracted
predicates in order to detect opinion holders in
both agent and patient argument position, i.e.
RB-InducAG+PT also covers our novel extraction
method for patients (§3.3.2).

The output of clustering will exclusively be
evaluated in the context of learning-based meth-

Features
Induc Lex Induc+Lex

Domains AG AG+PT AG AG+PT AG+PT
ETHICS 50.77 50.99 52.22 52.27 53.07
SPACE 45.81 46.55 47.60 48.47 45.20
FICTION 46.59 49.97 54.84 59.35 63.11

Table 6: F-score of the different rule-based classifiers.

ods, since there is no straightforward way of in-
corporating this output into a rule-based classifier.

6 Experiments

CK and RB have an instance space that is differ-
ent from the one of CRF. While CRF produces
a prediction for every word token in a sentence,
CK and RB only produce a prediction for every
noun phrase. For evaluation, we project the pre-
dictions from RB and CK to word token level in
order to ensure comparability. We evaluate the se-
quential output with precision, recall and F-score
as defined in (Johansson and Moschitti, 2010; Jo-
hansson and Moschitti, 2011).

6.1 Rule-based Classifier

Table 6 shows the cross-domain performance of
the different rule-based classifiers. RB-Lex per-
forms better than RB-Induc. In comparison to the
domains ETHICS and SPACE the difference is
larger on FICTION. Presumably, this is due to the
fact that the predicates in Induc are extracted from
a news corpus (§2). Thus, Induc may slightly suf-
fer from a domain mismatch. A combination of
the two classifiers, i.e. RB-Lex+Induc, results in
a notable improvement in the FICTION-domain.
The approaches that also detect opinion holders as
patients (AG+PT) including our novel approach
(§3.3.2) are effective. A notable improvement can
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Training Size (%)
Features Alg. 5 10 20 50 100

Plain
CRF 32.14 35.24 41.03 51.05 55.13
CK 42.15 46.34 51.14 56.39 59.52

+Clus
CRF 33.06 37.11 43.47 52.05 56.18
CK 42.02 45.86 51.11 56.59 59.77

+Induc
CRF 37.28 42.31 46.54 54.27 56.71
CK 46.26 49.35 53.26 57.28 60.42

+Lex
CRF 40.69 43.91 48.43 55.37 58.46
CK 46.45 50.59 53.93 58.63 61.50

+Clus+Induc
CRF 37.27 42.19 47.35 54.95 57.14
CK 45.14 48.20 52.39 57.37 59.97

+Clus+Lex
CRF 40.52 44.29 49.32 55.44 58.80
CK 45.89 49.35 53.56 58.74 61.43

+Lex+Induc
CRF 42.23 45.92 49.96 55.61 58.40
CK 47.46 51.44 54.80 58.74 61.58

All
CRF 41.56 45.75 50.39 56.24 59.08
CK 46.18 50.10 54.04 58.92 61.44

Table 7: F-score of in-domain (ETHICS) learning-
based classifiers.

only be measured on the FICTION-domain since
this is the only domain with a significant propor-
tion of those opinion holders (Table 3).

6.2 In-Domain Evaluation of
Learning-based Methods

Table 7 shows the performance of the learning-
based methods CRF and CK on an in-domain
evaluation (ETHICS-domain) using different
amounts of labeled training data. We carry out
a 5-fold cross-validation and use n% of the train-
ing data in the training folds. The table shows that
CK is more robust than CRF. The fewer training
data are used the more important generalization
becomes. CRF benefits much more from gener-
alization than CK. Interestingly, the CRF config-
uration with the best generalization is usually as
good as plain CK. This proves the effectiveness
of CK. In principle, Lex is the strongest general-
ization method while Clus is by far the weakest.
For Clus, systematic improvements towards no
generalization (even though they are minor) can
only be observed with CRF. As far as combina-
tions are concerned, either Lex+Induc or All per-
forms best. This in-domain evaluation proves that
opinion holder extraction is different from named-
entity recognition. Simple unsupervised general-
ization, such as word clustering, is not effective
and popular sequential classifiers are less robust
than margin-based tree-kernels.

Table 8 complements Table 7 in that it com-
pares the learning-based methods with the best
rule-based classifier and also displays precision

and recall. RB achieves a high recall, whereas the
learning-based methods always excel RB in pre-
cision.14 Applying generalization to the learning-
based methods results in an improvement of both
recall and precision if few training data are used.
The impact on precision decreases, however, the
more training data are added. There is always a
significant increase in recall but learning-based
methods may not reach the level of RB even
though they use the same resources. This is a
side-effect of preserving a much higher precision.
It also explains why learning-based methods with
generalization may have a lower F-score than RB.

6.3 Out-of-Domain Evaluation of
Learning-based Methods

Table 9 presents the results of out-of-domain clas-
sifiers. The complete ETHICS-dataset is used for
training. Some properties are similar to the pre-
vious experiments: CK always outperforms CRF.
RB provides a high recall whereas the learning-
based methods maintain a higher precision. Sim-
ilar to the in-domain setting using few labeled
training data, the incorporation of generalization
increases both precision and recall. Moreover, a
combination of generalization methods is better
than just using one method on average, although
Lex is again a fairly robust individual generaliza-
tion method. Generalization is more effective in
this setting than on the in-domain evaluation us-
ing all training data, in particular for CK, since
the training and test data are much more different
from each other and suitable generalization meth-
ods partly close that gap.

There is a notable difference in precision be-
tween the SPACE- and FICTION-domain (and
also the source domain ETHICS (Table 8)). We
strongly assume that this is due to the distribu-
tion of opinion holders in those datasets (Table 1).
The FICTION-domain contains much more opin-
ion holders, therefore the chance that a predicted
opinion holder is correct is much higher.

With regard to recall, a similar level of per-
formance as in the ETHICS-domain can only be
achieved in the SPACE-domain, i.e. CK achieves
a recall of 60%. In the FICTION-domain, how-
ever, the recall is much lower (best recall of CK
is below 47%). This is no surprise as the SPACE-
domain is more similar to the source domain than

14The reason for RB having a high recall is extensively
discussed in (Wiegand and Klakow, 2011b).
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the FICTION-domain since ETHICS and SPACE
are news texts. FICTION contains more out-of-
domain language. Therefore, RB (which exclu-
sively uses domain-independent knowledge) out-
performs both learning-based methods including
the ones incorporating generalization. Similar re-
sults have been observed for rule-based classifiers
from other tasks in cross-domain sentiment anal-
ysis, such as subjectivity detection and polarity
classification. High-level information as it is en-
coded in a rule-based classifier generalizes better
than learning-based methods (Andreevskaia and
Bergler, 2008; Lambov et al., 2009).

We set up another experiment exclusively for
the FICTION-domain in which we combine the
output of our best learning-based method, i.e. CK,
with the prediction of a rule-based classifier. The
combined classifier will predict an opinion holder,
if either classifier predicts one. The motivation for
this is the following: The FICTION-domain is the
only domain to have a significant proportion of
opinion holders appearing as patients. We want
to know how much of them can be recognized
with the best out-of-domain classifier using train-
ing data with only very few instances of this type
and what benefit the addition of using various RBs
which have a clearer notion of these constructions
brings about. Moreover, we already observed that
the learning-based methods have a bias towards
preserving a high precision and this may have as
a consequence that the generalization features in-
corporated into CK will not receive sufficiently
large weights. Unlike the SPACE-domain where
a sufficiently high recall is already achieved with
CK (presumably due to its stronger similarity to-
wards the source domain) the FICTION-domain
may be more severely affected by this bias and
evidence from RB may compensate for this.

Table 10 shows the performance of those com-
bined classifiers. For all generalization types
considered, there is, indeed, an improvement by
adding information from RB resulting in a large
boost in recall. Already the application of our in-
duction approach Induc results in an increase of
more than 8% points compared to plain CK. The
table also shows that there is always some im-
provement if RB considers opinion holders as pa-
tients (AG+PT). This can be considered as some
evidence that (given the available data we use)
opinion holders in patient position can only be ef-
fectively extracted with the help of RBs. It is also

CRF CK
Size Feat. Prec Rec F1 Prec Rec F1

10
Plain 52.17 26.61 35.24 58.26 38.47 46.34
All 62.85 35.96 45.75 63.18 41.50 50.10

50
Plain 59.85 44.50 51.05 59.60 53.50 56.39
All 62.99 50.80 56.24 61.91 56.20 58.92

100
Plain 64.14 48.33 55.13 62.38 56.91 59.52
All 64.75 54.32 59.08 63.81 59.24 61.44
RB 47.38 60.32 53.07 47.38 60.32 53.07

Table 8: Comparison of best RB with learning-based
approaches on in-domain classification.

Algorithms Generalization Prec Rec F
CK (Plain) 66.90 41.48 51.21
CK Induc 67.06 45.15 53.97
CK+RBAG Induc 60.22 54.52 57.23
CK+RBAG+PT Induc 61.09 58.14 59.58
CK Lex 69.45 46.65 55.81
CK+RBAG Lex 67.36 59.02 62.91
CK+RBAG+PT Lex 68.25 63.28 65.67
CK Induc+Lex 69.73 46.17 55.55
CK+RBAG Induc+Lex 61.41 65.56 63.42
CK+RBAG+PT Induc+Lex 62.26 70.56 66.15

Table 10: Combination of out-of-domain CK and rule-
based classifiers on FICTION (i.e. distant domain).

further evidence that our novel approach to extract
those predicates (§3.3.2) is effective.

The combined approach in Table 10 not only
outperforms CK (discussed above) but also RB
(Table 6). We manually inspected the output of
the classifiers to find also cases in which CK de-
tect opinion holders that RB misses. CK has the
advantage that it is not only bound to the relation-
ship between candidate holder and predicate. It
learns further heuristics, e.g. that sentence-initial
mentions of persons are likely opinion holders. In
(12), for example, this heuristics fires while RB
overlooks this instance as to give someone a share
of advice is not part of the lexicon.

(12) She later gives Charlotte her share of advice on running a
household.

7 Related Work

The research on opinion holder extraction has
been focusing on applying different data-driven
approaches. Choi et al. (2005) and Choi et al.
(2006) explore conditional random fields, Wie-
gand and Klakow (2010) examine different com-
binations of convolution kernels, while Johans-
son and Moschitti (2010) present a re-ranking ap-
proach modeling complex relations between mul-
tiple opinions in a sentence. A comparison of
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SPACE (similar target domain) FICTION (distant target domain)
CRF CK CRF CK

Features Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
Plain 47.32 48.62 47.96 45.89 57.07 50.87 68.58 28.96 40.73 66.90 41.48 51.21
+Clus 49.00 48.62 48.81 49.23 57.64 53.10 71.85 32.21 44.48 67.54 41.21 51.19
+Induc 42.92 49.15 45.82 46.66 60.45 52.67 71.59 34.77 46.80 67.06 45.15 53.97
+Lex 49.65 49.07 49.36 49.60 59.88 54.26 71.91 35.83 47.83 69.45 46.65 55.81
+Clus+Induc 46.61 48.78 47.67 48.65 58.20 53.00 71.32 35.88 47.74 67.46 42.17 51.90
+Lex+Induc 48.75 50.87 49.78 49.92 58.76 53.98 74.02 37.37 49.67 69.73 46.17 55.55
+Clus+Lex 49.72 50.87 50.29 53.70 59.32 56.37 73.41 37.15 49.33 70.59 43.98 54.20
All 49.87 51.03 50.44 51.68 58.76 54.99 72.00 37.44 49.26 70.61 44.83 54.84

best RB 41.72 57.80 48.47 41.72 57.80 48.47 63.26 62.96 63.11 63.26 62.96 63.11

Table 9: Comparison of best RB with learning-based approaches on out-of-domain classification.

those methods has not yet been attempted. In
this work, we compare the popular state-of-the-art
learning algorithms conditional random fields and
convolution kernels for the first time. All these
data-driven methods have been evaluated on the
MPQA corpus. Some generalization methods are
incorporated but unlike this paper they are neither
systematically compared nor combined. The role
of resources that provide the knowledge of argu-
ment positions of opinion holders is not covered
in any of these works. This kind of knowledge
should be directly learnt from the labeled train-
ing data. In this work, we found, however, that
the distribution of argument positions of opinion
holders varies throughout the different domains
and, therefore, cannot be learnt from any arbitrary
out-of-domain training set.

Bethard et al. (2004) and Kim and Hovy (2006)
explore the usefulness of semantic roles provided
by FrameNet (Fillmore et al., 2003). Bethard
et al. (2004) use this resource to acquire labeled
training data while in (Kim and Hovy, 2006)
FrameNet is used within a rule-based classifier
mapping frame-elements of frames to opinion
holders. Bethard et al. (2004) only evaluate on an
artificial dataset (i.e. a subset of sentences from
FrameNet and PropBank (Kingsbury and Palmer,
2002)). The only realistic test set on which Kim
and Hovy (2006) evaluate their approach are news
texts. Their method is compared against a sim-
ple rule-based baseline and, unlike this work, not
against a robust data-driven algorithm.

(Wiegand and Klakow, 2011b) is similar to
(Kim and Hovy, 2006) in that a rule-based ap-
proach is used relying on the relationship towards
predictive predicates. Diverse resources are con-
sidered for obtaining such words, however, they
are only evaluated on the entire MPQA corpus.

The only cross-domain evaluation of opinion
holder extraction is reported in (Li et al., 2007) us-
ing the MPQA corpus as a training set and the NT-
CIR collection as a test set. A low cross-domain
performance is obtained and the authors conclude
that this is due to the very different annotation
schemes of those corpora.

8 Conclusion

We examined different generalization methods for
opinion holder extraction. We found that for in-
domain classification, the more labeled training
data are used, the smaller is the impact of gener-
alization. Robust learning methods, such as con-
volution kernels, benefit less from generalization
than weaker classifiers, such as conditional ran-
dom fields. For cross-domain classification, gen-
eralization is always helpful. Distant domains
are problematic for learning-based methods, how-
ever, rule-based methods provide a reasonable re-
call and can be effectively combined with the
learning-based methods. The types of generaliza-
tion that help best are manually compiled lexicons
followed by an induction method inspired by dis-
tant supervision. Finally, we examined the case
of opinion holders as patients and also presented
a novel automatic extraction method that proved
effective. Such dedicated extraction methods are
important as common labeled datasets (from the
news domain) do not provide sufficient training
data for these constructions.

Acknowledgements

This work was funded by the German Federal Ministry
of Education and Research (Software-Cluster) under
grant no. “01IC10S01”. The authors thank Alessandro
Moschitti, Benjamin Roth and Josef Ruppenhofer for
their technical support and interesting discussions.

333



References

Steven Abney. 1991. Parsing By Chunks. In Robert
Berwick, Steven Abney, and Carol Tenny, editors,
Principle-Based Parsing. Kluwer Academic Pub-
lishers, Dordrecht.

Alina Andreevskaia and Sabine Bergler. 2008. When
Specialists and Generalists Work Together: Over-
coming Domain Dependence in Sentiment Tagging.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (ACL/HLT), Columbus, OH,
USA.

Steven Bethard, Hong Yu, Ashley Thornton, Vasileios
Hatzivassiloglou, and Dan Jurafsky. 2004. Extract-
ing Opinion Propositions and Opinion Holders us-
ing Syntactic and Lexical Cues. In Computing At-
titude and Affect in Text: Theory and Applications.
Springer-Verlag.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18:467–479.

Yejin Choi, Claire Cardie, Ellen Riloff, and Sid-
dharth Patwardhan. 2005. Identifying Sources
of Opinions with Conditional Random Fields and
Extraction Patterns. In Proceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing
(HLT/EMNLP), Vancouver, BC, Canada.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
Extraction of Entities and Relations for Opinion
Recognition. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), Sydney, Australia.

Charles. J. Fillmore, Christopher R. Johnson, and
Miriam R. Petruck. 2003. Background to
FrameNet. International Journal of Lexicography,
16:235 – 250.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs
Sampling. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics
(ACL), Ann Arbor, MI, USA.

Thorsten Joachims. 1999. Making Large-Scale SVM
Learning Practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods -
Support Vector Learning. MIT Press.

Richard Johansson and Alessandro Moschitti. 2010.
Reranking Models in Fine-grained Opinion Anal-
ysis. In Proceedings of the International Confer-
ence on Computational Linguistics (COLING), Be-
jing, China.

Richard Johansson and Alessandro Moschitti. 2011.
Extracting Opinion Expressions and Their Polari-
ties – Exploration of Pipelines and Joint Models. In

Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Portland,
OR, USA.

Jason S. Kessler, Miriam Eckert, Lyndsay Clarke,
and Nicolas Nicolov. 2010. The ICWSM JDPA
2010 Sentiment Corpus for the Automotive Do-
main. In Proceedings of the International AAAI
Conference on Weblogs and Social Media Data
Challange Workshop (ICWSM-DCW), Washington,
DC, USA.

Soo-Min Kim and Eduard Hovy. 2006. Extracting
Opinions, Opinion Holders, and Topics Expressed
in Online News Media Text. In Proceedings of
the ACL Workshop on Sentiment and Subjectivity in
Text, Sydney, Australia.

Paul Kingsbury and Martha Palmer. 2002. From
TreeBank to PropBank. In Proceedings of the
Conference on Language Resources and Evaluation
(LREC), Las Palmas, Spain.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate Unlexicalized Parsing. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), Sapporo, Japan.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the International
Conference on Machine Learning (ICML).
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Abstract

In this paper, we extend current state-of-the-
art research on unsupervised acquisition of
scripts, that is, stereotypical and frequently
observed sequences of events. We design,
evaluate and compare different methods for
constructing models for script event predic-
tion: given a partial chain of events in a
script, predict other events that are likely
to belong to the script. Our work aims
to answer key questions about how best
to (1) identify representative event chains
from a source text, (2) gather statistics from
the event chains, and (3) choose ranking
functions for predicting new script events.
We make several contributions, introducing
skip-grams for collecting event statistics, de-
signing improved methods for ranking event
predictions, defining a more reliable evalu-
ation metric for measuring predictiveness,
and providing a systematic analysis of the
various event prediction models.

1 Introduction

There has been recent interest in automatically ac-
quiring world knowledge in the form of scripts
(Schank and Abelson, 1977), that is, frequently
recurring situations that have a stereotypical se-
quence of events, such as a visit to a restaurant.
All of the techniques so far proposed for this task
share a common sub-task: given an event or partial
chain of events, predict other events that belong
to the same script (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009; Chambers and Ju-
rafsky, 2011; Manshadi et al., 2008; McIntyre and
Lapata, 2009; McIntyre and Lapata, 2010; Regneri
et al., 2010). Such a model can then serve as input
to a system that identifies the order of the events

within that script (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009) or that generates
a story using the selected events (McIntyre and
Lapata, 2009; McIntyre and Lapata, 2010).

In this article, we analyze and compare tech-
niques for constructing models that, given a partial
chain of events, predict other events that belong to
the script. In particular, we consider the following
questions:

• How should representative chains of events
be selected from the source text?

• Given an event chain, how should statistics
be gathered from it?

• Given event n-gram statistics, which ranking
function best predicts the events for a script?

In the process of answering these questions, this
article makes several contributions to the field of
script and narrative event chain understanding:

• We explore for the first time the use of skip-
grams for collecting narrative event statistics,
and show that this approach performs better
than classic n-gram statistics.

• We propose a new method for ranking events
given a partial script, and show that it per-
forms substantially better than ranking meth-
ods from prior work.

• We propose a new evaluation procedure (us-
ing Recall@N) for the cloze test, and advo-
cate its usage instead of average rank used
previously in the literature.

• We provide a systematic analysis of the in-
teractions between the choices made when
constructing an event prediction model.
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Section 2 gives an overview of the prior work
related to this task. Section 3 lists and briefly de-
scribes different approaches that try to provide
answers to the three questions posed in this intro-
duction, while Section 4 presents the results of our
experiments and reports on our findings. Finally,
Section 5 provides a conclusive discussion along
with ideas for future work.

2 Prior Work

Our work is primarily inspired by the work of
Chambers and Jurafsky, which combined a depen-
dency parser with coreference resolution to col-
lect event script statistics and predict script events
(Chambers and Jurafsky, 2008; Chambers and Ju-
rafsky, 2009). For each document in their training
corpus, they used coreference resolution to iden-
tify all the entities, and a dependency parser to
identify all verbs that had an entity as either a sub-
ject or object. They defined an event as a verb plus
a dependency type (either subject or object), and
collected for each entity, the chain of events that
it participated in. They then calculated pointwise
mutual information (PMI) statistics over all the
pairs of events that occurred in the event chains in
their corpus. To predict a new script event given
a partial chain of events, they selected the event
with the highest sum of PMIs with all the events
in the partial chain.

The work of McIntyre and Lapata followed in
this same paradigm, (McIntyre and Lapata, 2009;
McIntyre and Lapata, 2010), collecting chains of
events by looking at entities and the sequence of
verbs for which they were a subject or object. They
also calculated statistics over the collected event
chains, though they considered both event bigram
and event trigram counts. Rather than predicting
an event for a script however, they used these sim-
ple counts to predict the next event that should be
generated for a children’s story.

Manshadi and colleagues were concerned about
the scalability of running parsers and coreference
over a large collection of story blogs, and so used
a simplified version of event chains – just the main
verb of each sentence (Manshadi et al., 2008).
Rather than rely on an ad-hoc summation of PMIs,
they apply language modeling techniques (specifi-
cally, a smoothed 5-gram model) over the sequence
of events in the collected chains. However, they
only tested these language models on sequencing
tasks (e.g. is the real sequence better than a ran-

dom sequence?) rather than on prediction tasks
(e.g. which event should follow these events?).

In the current article, we attempt to shed some
light on these previous works by comparing differ-
ent ways of collecting and using event chains.

3 Methods

Models that predict script events typically have
three stages. First, a large corpus is processed to
find event chains in each of the documents. Next,
statistics over these event chains are gathered and
stored. Finally, the gathered statistics are used to
create a model that takes as input a partial script
and produces as output a ranked list of events for
that script. The following sections give more de-
tails about each of these stages and identify the
decisions that must be made in each step, and an
overview of the whole process with an example
source text is displayed in Figure 1.

3.1 Identifying Event Chains
Event chains are typically defined as a sequence
of actions performed by some actor. Formally, an
event chain C for some actor a, is a partially or-
dered set of events (v, d) where each v is a verb
that has the actor a as its dependency d. Following
prior work (Chambers and Jurafsky, 2008; Cham-
bers and Jurafsky, 2009; McIntyre and Lapata,
2009; McIntyre and Lapata, 2010), these event
chains are identified by running a coreference sys-
tem and a dependency parser. Then for each en-
tity identified by the coreference system, all verbs
that have a mention of that entity as one of their
dependencies are collected1. The event chain is
then the sequence of (verb, dependency-type) tu-
ples. For example, given the sentence A Crow
was sitting on a branch of a tree when a Fox ob-
served her, the event chain for the Crow would be
(sitting, SUBJECT), (observed, OBJECT).

Once event chains have been identified, the most
appropriate event chains for training the model
must be selected. The goal of this process is to
select the subset of the event chains identified by
the coreference system and the dependency parser
that look to be the most reliable. Both the coref-
erence system and the dependency parser make
some errors, so not all event chains are necessarily
useful for training a model. The three strategies
we consider for this selection process are:

1Also following prior work, we consider only the depen-
dencies subject and object.
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John woke up. He opened his eyes and yawned. Then he crossed the room and walked to the door.There he saw Mary. Mary smiled and kissed him. Then they both blushed.JOHN(woke, SUBJ)(opened, SUBJ)(yawned, SUBJ)(crossed, SUBJ)(walked, SUBJ)(saw, SUBJ)(kissed, OBJ)(blushed, SUBJ) MARY(saw, OBJ)(smiled, SUBJ)(kissed, SUBJ)(blushed, SUBJ)all chains, long chains,the longest chain all chains 1. Identifying event chains... [(saw, OBJ), (smiled, SUBJ)][(smiled, SUBJ), (kissed, SUBJ)][(kissed, SUBJ), (blushed, SUBJ)] [(saw, OBJ), (smiled, SUBJ)][(saw, OBJ), (kissed, SUBJ)][(smiled, SUBJ), (kissed, SUBJ)][(smiled, SUBJ), (blushed, SUBJ)][(kissed, SUBJ), (blushed, SUBJ)] [(saw, OBJ), (smiled, SUBJ)][(saw, OBJ), (kissed, SUBJ)][(saw, OBJ), (blushed, SUBJ)]...[(kissed, SUBJ), (blushed, SUBJ)]regular bigrams 2-skip bigrams1-skip bigrams 2. Gathering event chain statistics(saw, OBJ)(smiled, SUBJ)(kissed, SUBJ)_________ (missing event)constructing a partial script (cloze test)1. (looked, OBJ)2. (gave, SUBJ)3. (saw, SUBJ)... 1. (kissed, OBJ)2. (looked, OBJ)3. (waited, SUBJ)... 1. (blushed, SUBJ)2. (kissed, OBJ)3. (smiled, SUBJ)C&J PMIOrdered PMIBigram prob. 3. Predicting script events
Figure 1: An overview of the whole linear work flow showing the three key steps – identifying event chains,
collecting statistics out of the chains and predicting a missing event in a script. The figure also displays how a
partial script for evaluation (Section 4.3) is constructed. We show the whole process for Mary’s event chain only,
but the same steps are followed for John’s event chain.

• Select all event chains, that is, all sequences
of two or more events linked by common
actors. This strategy will produce the largest
number of event chains to train a model from,
but it may produce noisier training data as
the very short chains included by this strategy
may be less likely to represent real scripts.
• Select all long event chains consisting of 5

or more events. This strategy will produce a
smaller number of event chains, but as they
are longer, they may be more likely to repre-
sent scripts.
• Select only the longest event chain. This

strategy will produce the smallest number of
event chains from a corpus. However, they
may be of higher quality, since this strategy
looks for the key actor in each story, and only
uses the events that are tied together by that
key actor. Since this is the single actor that
played the largest role in the story, its actions
may be the most likely to represent a real
script.

3.2 Gathering Event Chain Statistics

Once event chains have been collected from the
corpus, the statistics necessary for constructing
the event prediction model must be gathered. Fol-
lowing prior work (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009; Manshadi et al.,
2008; McIntyre and Lapata, 2009; McIntyre and
Lapata, 2010), we focus on gathering statistics
about the n-grams of events that occur in the
collected event chains. Specifically, we look at
strategies for collecting bigram statistics, the most
common type of statistics gathered in prior work.
We consider three strategies for collecting bigram
statistics:

• Regular bigrams. We find all pairs of
events that are adjacent in an event chain
and collect the number of times each event
pair was observed. For example, given the
chain of events (saw, SUBJ), (kissed, OBJ),
(blushed, SUBJ), we would extract the two
event bigrams: ((saw, SUBJ), (kissed, OBJ))
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and ((kissed, OBJ), (blushed, SUBJ)). In addi-
tion to the event pair counts, we also collect
the number of times each event was observed
individually, to allow for various conditional
probability calculations. This strategy fol-
lows the classic approach for most language
models.

• 1-skip bigrams. We collect pairs of events
that occur with 0 or 1 events intervening be-
tween them. For example, given the chain
(saw, SUBJ), (kissed, OBJ), (blushed, SUBJ),
we would extract three bigrams: the two regu-
lar bigrams ((saw, SUBJ), (kissed, OBJ)) and
((kissed, OBJ), (blushed, SUBJ)), plus the 1-
skip-bigram, ((saw, SUBJ), (blushed, SUBJ)).
This approach to collecting n-gram statistics
is sometimes called skip-gram modeling, and
it can reduce data sparsity by extracting more
event pairs per chain (Guthrie et al., 2006).
It has not previously been applied in the task
of predicting script events, but it may be
quite appropriate to this task because in most
scripts it is possible to skip some events in
the sequence.

• 2-skip bigrams. We collect pairs of events
that occur with 0, 1 or 2 intervening events,
similar to what was done in the 1-skip bi-
grams strategy. This will extract even more
pairs of events from each chain, but it is pos-
sible the statistics over these pairs of events
will be noisier.

3.3 Predicting Script Events

Once statistics over event chains have been col-
lected, it is possible to construct the model for
predicting script events. The input of this model
will be a partial script c of n events, where c =
c1c2 . . . cn = (v1, d1), (v2, d2), . . . , (vn, dn), and
the output of this model will be a ranked list of
events where the highest ranked events are the ones
most likely to belong to the event sequence in the
script. Thus, the key issue for this model is to de-
fine the function f for ranking events. We consider
three such ranking functions:

• Chambers & Jurafsky PMI. Chambers and
Jurafsky (2008) define their event ranking
function based on pointwise mutual infor-
mation. Given a partial script c as defined
above, they consider each event e = (v′, d′)

collected from their corpus, and score it as
the sum of the pointwise mutual informations
between the event e and each of the events in
the script:

f(e, c) =
n∑
i

log
P (ci, e)

P (ci)P (e)

Chambers and Jurafsky’s description of this
score suggests that it is unordered, such that
P (a, b) = P (b, a). Thus the probabilities
must be defined as:

P (e1, e2) =
C(e1, e2) + C(e2, e1)∑

ei

∑
ej

C(ei, ej)

P (e) =
C(e)∑
e′ C(e′)

where C(e1, e2) is the number of times that
the ordered event pair (e1, e2) was counted in
the training data, and C(e) is the number of
times that the event e was counted.

• Ordered PMI. A variation on the approach
of Chambers and Jurafsky is to have a score
that takes the order of the events in the chain
into account. In this scenario, we assume that
in addition to the partial script of events, we
are given an insertion point, m, where the
new event should be added. The score is then
defined as:

f(e, c) =

m∑
k=1

log
P (ck, e)

P (ck)P (e)
+

n∑
k=m+1

log
P (e, ck)

P (e)P (ck)

where the probabilities are defined as:

P (e1, e2) =
C(e1, e2)∑

ei

∑
ej

C(ei, ej)

P (e) =
C(e)∑
e′ C(e′)

This approach uses pointwise mutual infor-
mation but also models the event chain in the
order it was observed.

• Bigram probabilities. Finally, a natural
ranking function, which has not been applied
to the script event prediction task (but has
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been applied to related tasks (Manshadi et
al., 2008)) is to use the bigram probabilities
of language modeling rather than pointwise
mutual information scores. Again, given an
insertion point m for the event in the script,
we define the score as:

f(e, c) =
m∑

k=1

log P (e|ck) +

n∑
k=m+1

log P (ck|e)

where the conditional probability is defined
as2:

P (e1|e2) =
C(e1, e2)

C(e2)

This approach scores an event based on the
probability that it was observed following all
the events before it in the chain and preceding
all the events after it in the chain. This ap-
proach most directly models the event chain
in the order it was observed.

4 Experiments

Our experiments aimed to answer three questions:
Which event chains are worth keeping? How
should event bigram counts be collected? And
which ranking method is best for predicting script
events? To answer these questions we use two
corpora, the Reuters Corpus and the Andrew Lang
Fairy Tale Corpus, to evaluate our three differ-
ent chain selection methods, {all chains, long
chains, the longest chain}, our three different bi-
gram counting methods, {regular bigrams, 1-skip
bigrams, 2-skip bigrams}, and our three different
ranking methods, {Chambers & Jurafsky PMI, or-
dered PMI, bigram probabilities}.

4.1 Corpora
We consider two corpora for evaluation:

• Reuters Corpus, Volume 1 3 (Lewis et
al., 2004) – a large collection of 806, 791
news stories written in English concerning
a number of different topics such as politics,

2Note that predicted bigram probabilities are calculated
in this way for both classic language modeling and skip-gram
modeling. In skip-gram modeling, skips in the n-grams are
only used to increase the size of the training data; prediction
is performed exactly as in classic language modeling.

3http://trec.nist.gov/data/reuters/reuters.html

economics, sports, etc., strongly varying in
length, topics and narrative structure.

• Andrew Lang Fairy Tale Corpus 4 – a
small collection of 437 children stories with
an average length of 125 sentences, and used
previously for story generation by McIntyre
and Lapata (2009).

In general, the Reuters Corpus is much larger and
allows us to see how well script events can be
predicted when a lot of data is available, while the
Andrew Lang Fairy Tale Corpus is much smaller,
but has a more straightforward narrative structure
that may make identifying scripts simpler.

4.2 Corpus Processing

Constructing a model for predicting script events
requires a corpus that has been parsed with a de-
pendency parser, and whose entities have been
identified via a coreference system. We there-
fore processed our corpora by (1) filtering out
non-narrative articles, (2) applying a dependency
parser, (3) applying a coreference resolution sys-
tem and (4) identifying event chains via entities
and dependencies.

First, articles that had no narrative content were
removed from the corpora. In the Reuters Corpus,
we removed all files solely listing stock exchange
values, interest rates, etc., as well as all articles
that were simply summaries of headlines from dif-
ferent countries or cities. After removing these
files, the Reuters corpus was reduced to 788, 245
files. Removing files from the Fairy Tale corpus
was not necessary – all 437 stories were retained.

We then applied the Stanford Parser (Klein and
Manning, 2003) to identify the dependency struc-
ture of each sentence in each article in the corpus.
This parser produces a constitutent-based syntactic
parse tree for each sentence, and then converts this
tree to a collapsed dependency structure via a set
of tree patterns.

Next we applied the OpenNLP coreference en-
gine5 to identify the entities in each article, and the
noun phrases that were mentions of each entity.

Finally, to identify the event chains, we took
each of the entities proposed by the coreference
system, walked through each of the noun phrases
associated with that entity, retrieved any subject

4http://www.mythfolklore.net/andrewlang/
5http://incubator.apache.org/opennlp/
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or object dependencies that linked a verb to that
noun phrase, and created an event chain from the
sequence of (verb, dependency-type) tuples in the
order that they appeared in the text.

4.3 Evaluation Metrics

We follow the approach of Chambers and Jurafsky
(2008), evaluating our models for predicting script
events in a narrative cloze task. The narrative
cloze task is inspired by the classic psychological
cloze task in which subjects are given a sentence
with a word missing and asked to fill in the blank
(Taylor, 1953). Similarly, in the narrative cloze
task, the system is given a sequence of events from
a script where one event is missing, and asked
to predict the missing event. The difficulty of a
cloze task depends a lot on the context around
the missing item – in some cases it may be quite
predictable, but in many cases there is no single
correct answer, though some answers are more
probable than others. Thus, performing well on a
cloze task is more about ranking the missing event
highly, and not about proposing a single “correct”
event.

In this way, narrative cloze is like perplexity
in a language model. However, where perplexity
measures how good the model is at predicting a
script event given the previous events in the script,
narrative cloze measures how good the model is
at predicting what is missing between events in
the script. Thus narrative cloze is somewhat more
appropriate to our task, and at the same time sim-
plifies comparisons to prior work.

Rather than manually constructing a set of
scripts on which to run the cloze test, we follow
Chambers and Jurafsky in reserving a section of
our parsed corpora for testing, and then using the
event chains from that section as the scripts for
which the system must predict events. Given an
event chain of length n, we run n cloze tests, with
a different one of the n events removed each time
to create a partial script from the remaining n− 1
events (see Figure 1). Given a partial script as
input, an accurate event prediction model should
rank the missing event highly in the guess list that
it generates as output.

We consider two approaches to evaluating the
guess lists produced in response to narrative cloze
tests. Both are defined in terms of a test collection
C, consisting of |C| partial scripts, where for each
partial script c with missing event e, ranksys(c) is

the rank of e in the system’s guess list for c.

• Average rank. The average rank of the miss-
ing event across all of the partial scripts:

1

|C|
∑
c∈C

ranksys(c)

This is the evaluation metric used by Cham-
bers and Jurafsky (2008).

• Recall@N. The fraction of partial scripts
where the missing event is ranked N or less6

in the guess list.

1

|C|
|{c : c ∈ C ∧ ranksys(c) ≤ N}|

In our experiments we use N = 50, but re-
sults are roughly similar for lower and higher
values of N .

Recall@N has not been used before for evaluat-
ing models that predict script events, however we
suggest that it is a more reliable metric than Av-
erage rank. When calculating the average rank,
the length of the guess lists will have a significant
influence on results. For instance, if a small model
is trained with only a small vocabulary of events,
its guess lists will usually be shorter than a larger
model, but if both models predict the missing event
at the bottom of the list, the larger model will get
penalized more. Recall@N does not have this is-
sue – it is not influenced by length of the guess
lists.

An alternative evaluation metric would have
been mean average precision (MAP), a metric
commonly used to evaluate information retrieval.
Mean average precision reduces to mean recipro-
cal rank (MRR) when there’s only a single answer
as in the case of narrative cloze, and would have
scored the ranked lists as:

1

|C|
∑
c∈C

1

ranksys(c)

Note that mean reciprocal rank has the same issues
with guess list length that average rank does. Thus,
since it does not aid us in comparing to prior work,
and it has the same deficiencies as average rank,
we do not report MRR in this article.

6Rank 1 is the event that the system predicts is most prob-
able, so we want the missing event to have the smallest rank
possible.
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2-skip + bigram prob.
Chain selection Av. rank Recall@50

all chains 502 0.5179
long chains 549 0.4951

the longest chain 546 0.4984

Table 1: Chain selection methods for the Reuters corpus
- comparison of average ranks and Recall@50.

2-skip + bigram prob.
Chain selection Av. rank Recall@50

all chains 1650 0.3376
long chains 452 0.3461

the longest chain 1534 0.3376

Table 2: Chain selection methods for the Fairy Tale
corpus - comparison of average ranks and Recall@50.

4.4 Results

We considered all 27 combinations of our chain
selection methods, bigram counting methods, and
ranking methods: {all chains, long chains, the
longest chain}x{regular bigrams, 1-skip bigrams,
2-skip bigrams}x{Chambers & Jurafsky PMI, or-
dered PMI, bigram probabilities}. The best among
these 27 combinations for the Reuters corpus was
{all chains}x{2-skip bigrams}x{bigram probabil-
ities} achieving an average rank of 502 and a Re-
call@50 of 0.5179.

Since viewing all the combinations at once
would be confusing, instead the following sec-
tions investigate each decision (selection, counting,
ranking) one at a time. While one decision is var-
ied across its three choices, the other decisions are
held to their values in the best model above.

4.4.1 Identifying Event Chains
We first try to answer the question: How should

representative chains of events be selected from
the source text? Tables 1 and 2 show perfor-
mance when we vary the strategy for selecting
event chains, while fixing the counting method to
2-skip bigrams, and fixing the ranking method to
bigram probabilities.

For the Reuters collection, we see that using all
chains gives a lower average rank and a higher
Recall@50 than either of the strategies that select
a subset of the event chains. The explanation is
probably simple: using all chains produces more
than 700,000 bigrams from the Reuters corpus,
while using only the long chains produces only
around 300,000. So more data is better data for

all chains + bigram prob.
Bigram selection Av. rank Recall@50
regular bigrams 789 0.4886
1-skip bigrams 630 0.4951
2-skip bigrams 502 0.5179

Table 3: Event bigram selection methods for the
Reuters corpus - comparison of average ranks and Re-
call@50.

all chains + bigram prob.
Bigram selection Av. rank Recall@50
regular bigrams 2363 0.3227
1-skip bigrams 1690 0.3418
2-skip bigrams 1650 0.3376

Table 4: Event bigram selection methods for the Fairy
Tales corpus - comparison of average ranks and Re-
call@50.

predicting script events.
For the Fairy Tale collection, long chains gives

the lowest average rank and highest Recall@50. In
this collection, there is apparently some benefit to
filtering the shorter event chains, probably because
the collection is small enough that the noise in-
troduced from dependency and coreference errors
plays a larger role.

4.4.2 Gathering Event Chain Statistics

We next try to answer the question: Given an
event chain, how should statistics be gathered from
it? Tables 3 and 4 show performance when we vary
the strategy for counting event pairs, while fixing
the selecting method to all chains, and fixing the
ranking method to bigram probabilities.

For the Reuters corpus, 2-skip bigrams achieves
the lowest average rank and the highest Recall@50.
For the Fairy Tale corpus, 1-skip bigrams and 2-
skip bigrams perform similarly, and both have
lower average rank and higher Recall@50 than
regular bigrams.

Skip-grams probably outperform regular n-
grams on both of these corpora because the skip-
grams provide many more event pairs over which
to calculate statistics: in the Reuters corpus, regu-
lar bigrams extracts 737,103 bigrams, while 2-skip
bigrams extracts 1,201,185 bigrams. Though skip-
grams have not been applied to predicting script
events before, it seems that they are a good fit,
and better capture statistics about narrative event
chains than regular n-grams do.
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all bigrams + 2-skip
Ranking method Av. rank Recall@50

C&J PMI 2052 0.1954
ordered PMI 3584 0.1694
bigram prob. 502 0.5179

Table 5: Ranking methods for the Reuters corpus -
comparison of average ranks and Recall@50.

all bigrams + 2-skip
Ranking method Av. rank Recall@50

C&J PMI 1455 0.1975
ordered PMI 2460 0.0467
bigram prob. 1650 0.3376

Table 6: Ranking methods for the Fairy Tale corpus -
comparison of average ranks and Recall@50.

4.4.3 Predicting Script Events
Finally, we try to answer the question: Given

event n-gram statistics, which ranking function
best predicts the events for a script? Tables 5 and
6 show performance when we vary the strategy for
ranking event predictions, while fixing the selec-
tion method to all chains, and fixing the counting
method to 2-skip bigrams.

For both Reuters and the Fairy Tale corpus, Re-
call@50 identifies bigram probabilities as the best
ranking function by far. On the Reuters corpus
the Chambers & Jurafsky PMI ranking method
achieves Recall@50 of only 0.1954, while bigram
probabilities ranking method achieves 0.5179. The
gap is also quite large on the Fairy Tales corpus:
0.1975 vs. 0.3376.

On the Reuters corpus, average rank also identi-
fies bigram probabilities as the best ranking func-
tion, yet for the Fairy Tales corpus, Chambers &
Jurafsky PMI and bigram probabilities have simi-
lar average ranks. This inconsistency is probably
due to the flaws in the average rank evaluation
measure that were discussed in Section 4.3 – the
measure is overly sensitive to the length of the
guess list, particularly when the missing event is
ranked lower, as it is likely to be when training on
a smaller corpus like the Fairy Tales corpus.

5 Discussion

Our experiments have led us to several important
conclusions. First, we have introduced skip-grams
and proved their utility for acquiring script knowl-
edge – our models that employ skip bigrams score
consistently higher on event prediction. By follow-

ing the intuition that events do not have to appear
strictly one after another to be closely semantically
related, skip-grams decrease data sparsity and in-
crease the size of the training data.

Second, our novel bigram probabilities ranking
function outperforms the other ranking methods.
In particular, it outperforms the state-of-the-art
pointwise mutual information method introduced
by Chambers and Jurafsky (2008), and it does so
by a large margin, more than doubling the Re-
call@50 on the Reuters corpus. The key insight
here is that, when modeling events in a script, a
language-model-like approach better fits the task
than a mutual information approach.

Third, we have discussed why Recall@N is a
better and more consistent evaluation metric than
Average rank. However, both evaluation metrics
suffer from the strictness of the narrative cloze test,
which accepts only one event being the correct
event, while it is sometimes very difficult, even
for humans, to predict the missing events, and
sometimes more solutions are possible and equally
correct. In future research, our goal is to design
a better evaluation framework which is more suit-
able for this task, where credit can be given for
proposed script events that are appropriate but not
identical to the ones observed in a text.

Fourth, we have observed some differences in
results between the Reuters and the Fairy Tale
corpora. The results for Reuters are consistently
better (higher Recall@50, lower average rank), al-
though fairy tales contain a plainer narrative struc-
ture, which should be more appropriate to our task.
This again leads us to the conclusion that more
data (even with more noise as in Reuters) leads to
a greater coverage of events, better overall models
and, consequently, to more accurate predictions.
Still, the Reuters corpus seems to be far from a
perfect corpus for research in the automatic acqui-
sition of scripts, since only a small portion of the
corpus contains true narratives. Future work must
therefore gather a large corpus of true narratives,
like fairy tales and children’s stories, whose sim-
ple plot structures should provide better learning
material, both for models predicting script events,
and for related tasks like automatic storytelling
(McIntyre and Lapata, 2009).

One of the limitations of the work presented
here is that it takes a fairly linear, n-gram-based ap-
proach to characterizing story structure. We think
such an approach is useful because it forms a natu-
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ral baseline for the task (as it does in many other
tasks such as named entity tagging and language
modeling). However, story structure is seldom
strictly linear, and future work should consider
models based on grammatical or discourse links
that can capture the more complex nature of script
events and story structure.
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Abstract 

It is becoming clear that traditional 
evaluation measures used in 
Computational Linguistics (including 
Error Rates, Accuracy, Recall, Precision 
and F-measure) are of limited value for 
unbiased evaluation of systems, and are 
not meaningful for comparison of 
algorithms unless both the dataset and 
algorithm parameters are strictly 
controlled for skew (Prevalence and 
Bias). The use of techniques originally 
designed for other purposes, in particular 
Receiver Operating Characteristics Area 
Under Curve, plus variants of Kappa, 
have been proposed to fill the void.  

This paper aims to clear up some of the 
confusion relating to evaluation, by 
demonstrating that the usefulness of each 
evaluation method is highly dependent on 
the assumptions made about the 
distributions of the dataset and the 
underlying populations. The behaviour of 
a number of evaluation measures is 
compared under common assumptions. 

Deploying a system in a context which 
has the opposite skew from its validation 
set can be expected to approximately 
negate Fleiss Kappa and halve Cohen 
Kappa but leave Powers Kappa 
unchanged. For most performance 
evaluation purposes, the latter is thus 
most appropriate, whilst for comparison 
of behaviour, Matthews Correlation is 
recommended.  

Introduction 

Research in Computational Linguistics usually 
requires some form of quantitative evaluation. A 
number of traditional measures borrowed from 
Information Retrieval (Manning & Schütze, 
1999) are in common use but there has been 
considerable critical evaluation of these measures 
themselves over the last decade or so (Entwisle 
& Powers, 1998, Flach, 2003, Ben-David. 2008). 

Receiver Operating Analysis (ROC) has been 
advocated as an alternative by many,  and in 
particular has been used by Fürnkranz and Flach 
(2005), Ben-David (2008) and Powers (2008) to 
better understand both learning algorithms 
relationship and the between the various 
measures, and the inherent biases that make 
many of them suspect. One of the key advantages 
of ROC is that it provides a clear indication of 
chance level performance as well as a less well 
known indication of the relative cost weighting 
of positive and negative cases for each possible 
system or parameterization represented. 

ROC Area Under the Curve (Fig. 1) has been 
also used as a performance measure but averages 
over the false positive rate (Fallout) and is thus a 
function of cost that is dependent on the 
classifier rather than the application. For this 
reason it has come into considerable criticism 
and a number of variants and alternatives have 
been proposed (e.g. AUK, Kaymak et. Al, 2010 
and H-measure, Hand, 2009). An AUC curve 
that is at least as good as a second curve at all 
points, is said to dominate it and indicates that 
the first classifier is equal or better than the 
second for all plotted values of the parameters, 
and all cost ratios. However AUC being greater 
for one classifier than another does not have such 
a property – indeed deconvexities within or 
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intersections of ROC curves are both prima facie 
evidence that fusion of the parameterized 
classifiers will be useful (cf. Provost and Facett, 
2001; Flach and Wu, 2005). 

AUK stands for Area under Kappa, and 
represents a step in the advocacy of Kappa (Ben-
David, 2008ab) as an alternative to the traditional 
measures and ROC AUC. Powers (2003,2007) 
has also proposed a Kappa-like measure 
(Informedness) and analysed it in terms of ROC, 
and there are many more, Warrens (2010) analyzing 
the relationships between some of the others. 

Systems like RapidMiner (2011) and Weka 
(Witten and Frank, 2005) provide almost all of 
the measures we have considered, and many 
more besides.  This encourages the use of 
multiple measures, and indeed it is now 
becoming routine to display tables  of multiple 
results for each system, and this is in particular 
true for the frameworks of some of the 
challenges and competitions brought to the 
communities (e.g. 2nd i2b2 Challenge in NLP for 
Clinical Data, 2011; 2nd Pascal Challenge on 
HTC, 2011)).  

This use of multiple statistics is no doubt in 
response to the criticism levelled at the 
evaluation mechanisms used in earlier 
generations of competitions and the above 
mentioned critiques, but the proliferation of 
alternate measures in some ways merely 
compounds the problem. Researchers have the 
temptation of choosing those that favour their 
system as they face the dilemma of what to do 
about competing (and often disagreeing) 
evaluation measures that they do not completely 
understand. These systems and competitions also 
exhibit another issue, the tendency to macro-
averages over multiple classes, even of measures 
that are not denominated in class (e.g. that are 
proportions of predicted labels rather than real 
classes, as with Precision). 

This paper is directed at better understanding 
some of these new and old measures as well as  
providing recommendations as to which measures 
are appropriate in which circumstances. 

What’s in a Kappa? 

In this paper we focus on the Kappa family of 
measures, as well as some closely related 
statistics named for other letters of the Greek 
alphabet, and some measures that we will show 
behave as Kappa measures although they were 
not originally defined as such.  These include 
Informedness, Gini Coefficient and single point 

ROC AUC, which are in fact all equivalent to 
DeltaP’ in the dichotomous case, which we deal 
with first, and to the other Kappas when the 
marginal prevalences (or biases) match. 

1.1 Two classes and non-negative Kappa. 

Kappa was originally proposed (Cohen, 1960) to 
compare human ratings in a binary, or 
dichotomous, classification task. Cohen (1960) 
recognized that Rand Accuracy did not take 
chance into account and therefore proposed to 
subtract off the chance level of Accuracy and 
then renormalize to the form of a probability: 
K(Acc) = [Acc – E(Acc)] / [1 – E(Acc)] (1) 

This leaves the question of how to estimate the 
expected Accuracy, E(Acc). Cohen (1960) made 
the assumption that raters would have different 
distributions that could be estimated as  
the products of the corresponding marginal 
coefficients of the contingency table: 

 
 +ve Class −ve Class  
+ve Prediction A=TP B=FP PP 
−ve Prediction C=FN D=TN PN 
Notation RP RN N 
Table 1. Statistical and IR Contingency Notation 

In order to discuss this further it is important 
to discuss our notational conventions, and it is 
noted that in statistics, the letters A-D (upper 
case or lower case) are conventionally used to 
label the cells, and their sums may be used to 
label the marginal cells.  However in the 
literature on ROC analysis, which we follow 
here, it is usual to talk about true and false 
positives (that is positive predictions that are 
correct or incorrect), and conversely true and 
false negatives.  Often upper case is used to 
indicate counts in the contingency table, which 
sum to the number of instances, N. In this case 
lower case letters are used to indicate 
probabilities, which means that the 
corresponding upper case values in the 
contingency table are all divided by N, and n=1.  

Statistics relative to (the total numbers of 
items in) the real classes are called Rates and 
have the number (or proportion) of Real 
Positives (RP) or Real Negatives (RN) in the 
denominator. In this notation, we have Recall = 
TPR = TP/RP. 

Conversely statistics relative to the (number 
of) predictions are called Accuracies, so relative 
to the predictions that label instances positively, 
Predicted Positives (PP), we have Precision = 
TPA = TP/PP.   
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The accuracy of all our predictions, positive or 
negative, is given by Rand Accuracy = 
(TF+TN)/N = tf+tn, and this is what is meant in 
general by the unadorned term Accuracy, or the 
abbreviation Acc. 

Rand Accuracy is the weighted average of 
Precision and Inverse Precision (probability that 
negative predictions are correctly labeled), where 

the weighting is made according to the number 
of predictions made for the corresponding labels. 
Rand Accuracy is also the weighted average of 
Recall and Inverse Recall (probability that 
negative instances are correctly predicted), 
where the weighting is made according to the 
number of instances in the corresponding 
classes. 

The marginal probabilities rp and pp are also 
known as Prevalence (the class prevalence of 
positive instances) and Bias (the label bias to 
positive predictions), and the corresponding 
probabilities of negative classes and labels are 
the Inverse Prevalence and Inverse Bias 
respectively. In the ROC literature, the ratios of 
negative to positive classes is often referred to as 
the class ratio or skew.  We can similarly also 
refer to a label ratio, prediction ratio or 
prediction skew.  Note that optimal performance 
can only be achieved if class skew = label skew. 

The Expected True Positives and Expected 
True Negatives for Cohen Kappa, as well as Chi-
squared significance, are estimated as the 
product of Bias and Prevalence, and the product 
of Inverse Bias and Inverse Prevalence, resp., 
where traditional uses of Kappa for agreement of 
human raters, the contingency table represents 
one rater as providing the classification to be 
predicted by the other rater. Cohen assumes that 
their distribution of ratings are independent, as 
reflected both by the margins and the 
contingencies: ETP = RP*PP; ETN = RN*NN. 
This gives us E(Acc) = (ETP+ETN)/N=etp+etn. 

By contrast the two rater two class form of 
Fleiss (1981) Kappa, also known as Scott Pi, 
assumes that both raters are labeling 
independently using the same distribution, and 
that the margins reflect this potential variation. 
The expected number of positives is thus 
effectively estimated as the average of the two 
raters’ counts, so that EP = (RP+PP)/2, and EN = 
(RN+PN)/2, ETP = EP2 and ETN = EN2. 

1.2 Inverting Kappa 

The definition of Kappa in Eqn (1) can be seen 
to be applicable to arbitrary definitions of 
Expected Accuracy, and in order to discover how 
other measures relate to the family of Kappa 
measures it is useful to invert Kappa to discover 
the implicit definition of Expected Accuracy that 
allows a measure to be interpreted as a form of 
Kappa. We simply make E(Acc) the subject by 
multiplying out Eqn (1) to a common 
denominator and associating factors of E(Acc):  

 
 

Figure 1. Illustration of ROC Analysis. The 
solid diagonal represents chance performance 
for different rates of guessing positive or 
negative labels.  The dotted line represent the 
convex hull enclosing the results of different 
systems, thresholds or parameters tested. The 
(0,0) and (1,1) points represent guessing always 
negative and always positive and are always 
nominal systems in a ROC curve.  The points 
along any straight line segment of a convex hull 
are achievable by probabilistic interpolation of 
the systems at each end, the gradient represents 
the cost ratio and all points along the segment, 
including the endpoints have the same effective 
cost benefit. AUC is the area under the curve 
joining the systems with straight edges and 
AUCH is the area under the convex hull where 
points within it are ignored. The height above 
the chance line of any point represents DeltaP’,  
the Gini Coefficient and also the Dichotomous 
Informedness of the corresponding system, and 
also corresponds to  twice the area of the triangle 
between it and the chance line, and thus 2AUC-1 
where AUC is calculated on this single point 
curve (not shown) joining it to (0,0) and (1,1).  
The (1,0) point represents perfect performance 
with 100% True Positive Rate and 0% False 
Negative Rate.   

!
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K(Acc) = [Acc – E(Acc)] / [1 – E(Acc)] (1) 
E(Acc) = [Acc – K(Acc)] / [1 – K(Acc)] (2) 

Note that for a given value of Acc the function 
connecting E(Acc) and K(Acc) is its own 
inverse: 
E(Acc) = fAcc(K(Acc)) (3) 
K(Acc) = fAcc(E(Acc)) (4) 

For the future we will tend to drop the Acc 
argument or subscript when it is clear, and we 
will also subscript E and K with the name or 
initial of the corresponding definition of 
Expectation and thus Kappa (viz. Fleiss and 
Cohen so far). 

Note that given Acc and E(Acc) are in the 
range of 0..1 as probabilities, Kappa is also 
restricted to this range, and takes the form of a 
probability. 

1.3 Multiclass multirater Kappa 

Fleiss (1981) and others sought to generalize the 
Cohen (1960) definition of Kappa to handle both 
multiple class (not just positive/negative) and 
multiple raters (not just two – one of which we 
have called real and the other prediction).  Fleiss 
in fact generalized Scott’s (1955) Pi in both 
senses, not Cohen Kappa. The Fleiss Kappa is 
not formulated as we have done here for 
exposition, but in terms of pairings (agreements) 
amongst the raters, who are each assumed to 
have rated the same number of items, N, but not 
necessarily all.  Krippendorf’s (1970, 1978) 
effectively generalizes further by dealing with 
arbitrary numbers of raters assessing different 
numbers of items. 

Light (1971) and Hubert (1977) successfully 
generalized Cohen Kappa. Another approach to 
estimating E(Acc) was taken by Bennett et al 
(1955) which basically assumed all classes were 
equilikely (effectively what use of Accuracy, F-
Measure etc. do, although they don’t subtract off 
the chance component).  

The Bennett Kappa was generalized by 
Randolph (2005), but as our starting point is that 
we need to take the actual margins into account, 
we do not pursue these further.  However, 
Warrens (2010a) shows that, under certain 
conditions, Fleiss Kappa is a lower bound of 
both the Hubert generalization of Cohen Kappa 
and the Randolph generalization of Bennet 
Kappa, which is itself correspondingly an upper 
bound of both the Hubert and the Light 
generalizations of Cohen Kappa. Unfortunately 
the conditions are that there is some agreement 
between the class and label skews (viz. the 

prevalence and bias of each class/label). Our 
focus in this paper is the behaviour of the various 
Kappa measures as we move from strongly 
matched to strongly mismatched biases. 

Cohen (1968) also introduced a weighted 
variant of Kappa. We have also discussed cost 
weighting in the context of ROC, and Hand 
(2009) seeks to improve on ROC AUC by 
introducing a beta distribution as an estimated 
cost profile, but we will not discuss them further 
here as we are more interested in the 
effectiveness of the classifer overall rather than 
matching a particular cost profile, and are 
skeptical about any generic cost distribution.  In 
particular the beta distribution gives priority to 
central tendency rather than boundary conditions, 
but boundary conditions are frequently 
encountered in optimization.  Similarly Kaymak 
et al.’s (2010) proposal to replace AUC by AUK 
corresponds to a Cohen Kappa reweighting of 
ROC that eliminates many of its useful 
properties, without any expectation that the 
measure, as an integration across a surrogate cost 
distribution, has any validity for system 
selection.  Introducing alternative weights is also 
allowed in the definition of F-Measure, although 
in practice this is almost invariably employed as 
the equally weighted harmonic mean of Recall 
and Precision. Introducing additional weight or 
distribution parameters, just multiplies the 
confusion as to which measure to believe. 

Powers (2003) derived a further multiclass 
Kappa-like measure from first principles, 
dubbing it Informedness, based on an analogy of 
Bookmaker associating costs/payoffs based on 
the odds. This is then proven to measure the 
proportion of time (or probability) a decision is 
informed versus random, based on the same 
assumptions re expectation as Cohen Kappa, and 
we will thus call it Powers Kappa, and derive an 
formulation of the corresponding expectation. 

Powers (2007) further identifies that the 
dichotomous form of Powers Kappa is equivalent 
to the Gini cooefficient as a deskewed version of 
the weighted Relative Accuracy proposed by 
Flach (2003) based on his analysis and 
deskewing of common evaluation measures in 
the ROC paradigm. Powers (2007) also identifies 
that Dichotomous Informedness is equivalent to 
an empirically derived psychological measure 
called DeltaP’ (Perruchet et al. 2004). DeltaP’ 
(and its dual DeltaP) were derived based on 
analysis of human word association data – the 
combination of this empirical observation with 
the place of DeltaP’ as the dichotomous case of 
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Powers’ ‘Informedness’ suggests that human 
association is in some sense optimal. Powers 
(2007) also introduces a dual of Informedness 
that he names Markedness, and shows that the 
geometric mean of Informedness and 
Markedness is Matthews Correlation, the 
nominal analog of Pearson Correlation. 

Powers’ Informedness is in fact a variant of 
Kappa with some similarities to Cohen Kappa, 
but also some advantages over both Cohen and 
Fleiss Kappa due to its asymmetric relation with 
Recall, in the dichotomous form of Powers (2007), 
Informedness =  Recall + InverseRecall – 1 
                       = (Recall – Bias) / (1 – Prevalence). 

If we think of Kappa as assessing the 
relationship between two raters, Powers’ statistic 
is not evenhanded and the Informedness and 
Markedness duals measure the two directions of 
prediction, normalizing Recall and Precision.  In 
fact, the relationship with Correlation allows 
these to be interpreted as regression coefficients 
for the prediction function and its inverse. 

1.4 Kappa vs Correlation 
It is often asked why we don’t just use 
Correlation to measure.  In fact, Castellan (1996) 
uses Tetrachoric Correlation, another 
generalization of Pearson Correlation that 
assumes that the two class variables are given by 
underlying normal distributions.  Uebersax 
(1987), Hutchison (1993) and Bonnet and Price 
(2005) each compare Kappa and Correlation and 
conclude that there does not seem to be any 
situation where Kappa would be preferable to 
Correlation. However all the Kappa and 
Correlation variants considered were symmetric, 
and it is thus interesting to consider the separate 
regression coefficients underlying it that 
represent the Powers Kappa duals of 
Informedness and Markedness, which have the 
advantage of separating out the influences of 
Prevalence and Bias (which then allows macro-
averaging, which is not admissable for any 
symmetric form of Correlation or Kappa, as we 
will discuss shortly).  Powers (2007) regards 
Matthews Correlation as an appropriate measure 
for symmetric situations (like rater agreement) 
and generalizes the relationships between 
Correlation and Significance to the Markedness 
and Informedness Measures. The differences 
between Informedness and Markedness, which 
relate to mismatches in Prevalence and Bias, 
mean that the pair of numbers provides further 
information about the nature of the relationship 
between the two classifications or raters, whilst 

the ability to take the geometric mean (of macro-
averaged) Informedness and Markedness means 
that a single Correlation can be provided when 
appropriate. 

Our aim now is therefore to characterize 
Informedness (and hence as its dual Markedness) 
as a Kappa measure in relation to the families of 
Kappa measures represented by Cohen and Fleiss 
Kappa in the dichotomous case.  Note that 
Warrens (2011) shows that a linearly weighted 
versions of Cohen’s (1968) Kappa is in fact a 
weighted average of dichotomous Kappas.  
Similarly Powers (2003) shows that his Kappa 
(Informedness) has this property.  Thus it is 
appropriate to consider the dichotomous case, 
and from this we can generalize as required. 

1.5 Kappa vs Determinant 

Warrens (2010c) discusses another commonly 
used measure, the Odds Ratio ad/bc (in 
Epidemiology rather than Computer Science or 
Computational Linguistics). Closely related to 
this is the Determinant of the Contingency 
Matrix dtp = ad-bc = etp-etn (in the Chi-Sqr, 
Cohen and Powers sense based on independent 
marginal probabilities).  Both show whether the 
odds favour positives over negatives more for the 
first rater (real) than the second (predicted) – for 
the ratio it is if it is greater than one, for the 
difference it is if it is greater than 0. Note that 
taking logs of all coefficients would maintain the 
same relationship and that the difference of the 
logs corresponds to the log of the ratio, mapping 
into the information domain. 

Warrens (2010c) further shows (in cost-
weighted form) that Cohen Kappa is given by the 
following (in the notation of this paper, but 
preferring the notations Prevalence and Inverse 
Prevalence to rp and rn for clarity): 
KC = dtp/[(Prev*IBias+Bias*IPrev)/2]. (5) 

Based on the previous characterization of 
Fleiss Kappa, we can further characterize it by 
KF = dtp/[(Prev+Bias)*(IBias+IPrev)/4]. (6) 

Powers (2007) also showed corresponding 
formulations for Bookmaker Informedness (B, or 
Powers Kappa = KP), Markedness and Matthews 
Correlation: 
B  = dtp/[(Prev*IPrev)]. (7) 
M = dtp/[(Bias*IBias)]. (8) 
C  = dtp/[√(Prev*IPrev*Bias*IBias)]. (9) 

These elegant dichotomous forms are 
straightforward, with the independence 
assumptions on Bias and Prevalence clear in 
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Cohen Kappa, the arithmetic means of Bias and 
Prevalence clear in Fleiss Kappa, and the  
geometric means of Bias and Prevalence in the 
Matthews Correlation.  Further the independence 
of Bias is apparent for Powers Kappa in the 
Informedness form, and independence of 
Prevalence is clear in the Markedness direction. 

Note that the names Powers uses suggest that 
we are measuring something about the 
information conveyed by the prediction about the 
class in the case of Informedness, and the 
information conveyed to the predictor by the 
class state in the case of Markedness. To the 
extent that Prevalence and Bias can be controlled 
independently, Informedness and Markedness are 
independent and Correlation represents the joint 
probability of information being passed in both 
directions! Powers (2007) further proposes using 
log formulations of these measures to take them 
into the information domain, as well as relating 
them to mutual information, G-squared and chi-
squared significance. 

1.6 Kappa vs Concordance 

The pairwise approach used by Fleiss Kappa and 
its relatives does not assume raters use a 
common distribution, but does assume they are 
using the same set, and number of categories.  
When undertaking comparison of unconstrained 
ratings or unsupervised learning, this constraint 
is removed and we need to use a measure of 
concordance to compare clusterings against each 
other or against a Gold Standard.  Some of the 
concordance measures use operators in 
probability space and relate closely to the 
techniques here, whilst others operate in 
information space. See Pfitzner et al. (2009) for 
reviews of clustering comparison/concordance. 

A complete coverage of evaluation would also 
cover significance and the multiple testing 
problem, but we will confine our focus in this 
paper to the issue of choice of Kappa or 
Correlation statistic, as well as addressing some 
issues relating to the use of macro-averaging. In 
this paper we are regarding the choice of Bias as 
under the control of the experimenter, as we have 
a focus on learned or hand crafted computational 
linguistics systems.  In fact, when we are using 
bootstrapping techniques or dealing with 
multiple real samples or different subjects or 
ecosystems, Prevalence may also vary. Thus the 
simple marginal assumptions of Cohen or 
Powers statistics are the appropriate ones. 

1.7 Averaging 
We now consider the issue of dealing with 
multiple measures and results of multiple 
classifiers by averaging.  We first consider 
averages of some of the individual measures we 
have seen. The averages need not be arithmetic 
means, or may represent means over the 
Prevalences and Biases. 

We will be punctuating our theoretical 
discussions and explanations with empirical 
demonstrations where we use 1:1 and 4:1 
prevalence versus matching and mismatching 
bias to generate the chance level contingency 
based on marginal independence.  We then mix 
in a proportion of informed decisions, with the 
remaining decisions made by chance.   

Table 2 compares Accuracy and F-Measure 
for an informed decision percentage of 0, 100, 15 
and -15. Note that Powers Kappa or 
‘Informedness’ purports to recover this 
proportion or probability. 

F-Measure is one of the most common 
measures in Computational Linguistics and 
Information Retrieval, being a Harmonic Mean 
of Recall and Precision, which in the common 
unweighted form also is interpretable with 
respect to a mean of Prevalence and Bias: 
F = tp / [(Prev+Bias)/2] (10) 

Note that like Recall and Precision, F-Measure 
ignores totally cell D corresponding to tn.  This 
is an issue when Prevalence and Bias are uneven 
or mismatched. In Information Retrieval, it is 
often justified on the basis that the number of 
irrelevant documents is large and not precisely 
known, but in fact this is due to lack of 
knowledge of the number of relevant documents, 
which affects Recall. In fact if tn is large with 
respect to both rp and pp, and thus with respect 
to components tp, fp and fn, then both tn/pn and 
tn/rn approach 0 as tn increases without bound. 

As discussed earlier, Rand Accuracy is a 
prevalence (real class) weighted average of 
Precision and Inverse Precision, as well as a bias 
(prediction label) weighted average of Recall and 
Inverse Precision. It reflects the D (tn) cell unlike 
F, and while it does not remove the effect of 
chance it does not have the positive bias of F. 
Acc = tp + fp (11) 

We also point out that the differences between 
the various Kappas shown in Determinant 
normalized form in Eqns (5-9) vary only in the 
way prevalences and biases are averaged 
together in the normalizing denominator. 
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Informed   1:1/1:1 4:1/4:1 4:1/1:4 
Acc 50% 68% 32% 0% F 50% 80% 32% 
Acc 100% 100% 100% 100% F 100% 100% 100% 
Acc 57.5% 72.8% 42.2% 15% F 57.5% 83% 46.97% 
Acc 42.5% 57.8% 27.2% -15% F 42.5% 72% 27.2% 

Table 2. Accuracy and F-Measure for different 
mixes of prevalence and bias skew (odds ratio 

shown) as well as different proportions of correct 
(informed) answers versus guessing – negative 

proportions imply that the informed decisions are 
deliberately made incorrectly (oracle tells me 

what to do and I do the opposite). 

From Table 2 we note that the first set of 
statistics notes the chance level varies from the 
50% expected for Bias=Prevalence=50%. This is 
in fact the E(Acc) used in calculating Cohen 
Kappa.  Where Prevalences and Biases are equal 
and balanced, all common statistics agree – 
Recall = Precision = Accuracy = F, and they are 
interpretable with respect to this 50% chance 
level. All the Kappas will also agree, as the  
different averages of the identical prevalences 
and biases all come down to 50% as well.  So 
subtracting 50% from 57.5% and normalizing 
(dividing) by the average effective prevalence of 
50%, we return 15% informed decisions in all 
cases (as seen in detail in Table 3). 

However, F-measure gives an inflated estimate 
when it focus on the more prevalent positive 
class, with corresponding bias in the chance 
component. 

Worse still is the strength of the Acc and F 
scores under conditions of matched bias and 
prevalence when the deviation from chance is -
15% - that is making the wrong decision 15% of 
the time and guessing the rest of the time.  In 
academic terms, if we bump these rates up to  
±25% F-factor gives a High Distinction for 
guessing 75% of the time and putting the right 
answer for the other 25%, a Distinction for 100% 
guessing, and a Credit for guessing 75% of the 
time and putting a wrong answer for the other 
25%!  In fact, the Powers Kappa corresponds to 
the methodology of multiple choice marking, 
where for questions with k+1 choices, a right 
answer gets 1 mark, and a wrong answer gets -1/k 
so that guessing achieves an expected mark of 0. 
Cohen Kappa achieves a very similar result for 
unbiased guessing strategies. 

We now turn to macro-averaging across 
multiple classifiers or raters.  The Area Under the 
Curve measures are all of this form, whether we 
are talking about ROC, Kappa, Recall-Precision 
curves or whatever. The controversy over these 
averages, and macro-averaging in general, relates 
to one of two issues: 1. The averages are not in 
general over the appropriate units or 
denominators of the individual statistics; or 2. 
The averages are over a classifier determined 
cost function rather than an externally or 
standardly defined cost function.  AUK and H-
Measure seek to address these issues as discussed 
earlier.  In fact they both boil down to averaging 
with an inappropriate distribution of weights. 

Commonly macro-averaging averages across 
classes as average statistics derived for each class 
weighted by the cardinality of the class (viz. 
prevalence). In our review above, we cited four 
examples, but we will refer only to WEKA 
(Witten et al., 2005) here as a commonly used 
system and associated text book that employs 
and advocates macro-averaging. WEKA 
averages over tpr, fpr, Recall (yes redundantly), 
Precision, F-Factor and ROC AUC.  Only the 
average over tpr=Recall is actually meaningful, 
because only it has the number of members of 
the class, or its prevalence, as its denominator. 
Precision needs to be macro-averaged over the 
number of predictions for each class, in which 
case it is equivalent to micro-averaging. 

Other micro-averaged statistics are also 
shown, including Kappa (with the expectation 
determined from ZeroR – predicting the majority 
class, leading to a Cohen-like Kappa).  

AUC will be pointwise for classifiers that 
don’t provide any probabilistic information 
associated with label prediction, and thus don’t 
allow varying a threshold for additional points on 
the ROC or other threshold curves. In the case 
where multiple threshold points are available, 
ROC AUC cannot be interpreted as having any 
relevance to any particular classifier, but is an 
average over a range of classifiers. Even then it 
is not so meaningful as AUCH, which should be 
used as classifiers on the convex hull are usually 
available. The AUCH measure will then 
dominate any individual classifiers, as if the 
convex hull is not the same as the single 
classifier it must include points that are above the 
classifier curve and thus its enclosed area totally 
includes the area that is enclosed by the 
individual classifier. 

Macroaveraging of the curve based on each 
class in turn as the Positive Class, and weighted 
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by the size of the positive class, is not 
meaningful as effectively shown by Powers 
(2003) for the special case of the single point 
curve given its equivalence to Powers Kappa. 

In fact Markedness does admit averaging over 
classes, whilst Informedness requires averaging 
over predicted labels, as does Precision.  The 
other Kappa and Correlations are more complex 
(note the demoninators in Eqns 5-9) and how 
they might be meaningfully macro-averaged is 
an open question.  However, microaveraging can 
always be done quickly and easily by simply 
summing all the contingency tables (the true 
contingency tables are tables of counts, not 
probabilities, as shown in Table 1). 

Macroaveraging should never be done except 
for the special cases of Recall and Markedness 
when it is equivalent to micro-average, which is 
only slightly more expensive/complicated to do. 

Comparison of Kappas 
We now turn to explore the different definitions 
of Kappas, using the same approach employed 
with Accuracy and F-Factor in Table 1: We will 
consider 0%, 100%, 15% and -15% informed 
decisions, with random decisions modelled on 
the basis of independent Bias and Prevalence.   

This clearly biases against the Fleiss family of 
Kappas, which is entirely appropriate.  As 
pointed out by Entwisle & Powers (1998) the 
practice of deliberately skewing bias to achieve 
better statistics is to be deprecated – they used 
the real-life example of a CL researcher choosing 
to say water was always a noun because it was a 
noun more often than not. With Cohen or Powers’ 
measures, any actual power of the system to 
determine PoS, however weak, would be 
reflected in an improvement in the scores versus 
any random choice, whatever the distribution.  
Recall that choosing one answer all the time 
corresponds to the extreme points of the chance 
line in the ROC curve. 

Studies like Fitzgibbon et al (2007) and 
Leibbrandt and Powers (2012) show divergences 
amongst the conventional and debiased measures, 
but it is tricky to prove which is better. 

Kappa in the Limit 
It is however straightforward to derive limits for 
the various Kappas and Expectations under 
extreme and central conditions of bias and 
prevalence, including both match and mismatch. 
The 36 theoretical results match the mixture 
model results in Table 3, however, due to space 
constraints, formal treatment will be limited to 

two of the more complex cases that both relate to 
Fleiss Kappa with its mismatch to the marginal 
independence assumptions we prefer. These will 
provide informedness of probability B plus a 
remaining proportion 1-B of random responses 
exhibiting extreme bias versus both neutral and 
contrary prevalence. Note that we consider only 
|B|<1 as all Kappas give Acc=1 and thus K=1 for 
B=1, and only Powers Kappa is designed to work 
for B<1, giving K= -1 for B= -1. 

Recall that the general calculation of Expected 
Accuracy is 
E(Acc) = etp+etn (11) 

For Fleiss Kappa we must calculate the 
expected values of the correct contingencies as 
discussed previously with expected probabilities 
ep = (rp+pp)/2      &      en = (rn+pn)/2 (12) 
etp = ep2               &      etn = en2 (13) 

We first consider cases where prevalence is 
extreme and the chance component exhibits 
inverse bias. We thus consider limits as  
rp0, rn1, pp1-B, pnB. This gives us 
(assuming |B|<1) 
EF(Acc)  = (1/4+B2/4+B/2)2+(1/4+B2/4-B/2)2 
               = (1+B2)/2 (14) 
KF(Acc) = (1-B)2/[B2-2] (15) 

We second consider cases where the 
prevalence is balanced and chance extreme, with 
rp0.5, rn0.5, pp1-B, pnB, giving 
EF(Acc) = 1/2 + (B-1/2)2/2 
              = 5/8 + B(B-1)/2 (16) 
KF(Acc)=[(B-1/2)-(B-1/2)2/2]/[1/2-(B-1/2)2/2] (17) 
             =[B-5/8+B(B-1)/2]/[1-(5/8+B(B-1)/2) 

Conclusions 
The asymmetric Powers Informedness gives 

the clearest measure of the predictive value of a 
system, while the Matthews Correlation (as 
geometric mean with the Powers Markedness 
dual) is appropriate for comparing equally valid 
classifications or ratings into an agreed number 
of classes. Concordance measures should be used 
if number of classes is not agreed or specified. 

For mismatch cases (15) Fleiss is always 
negative for |B|<1) and thus fails to adequately 
reward good performance under these marginal 
conditions. For the chance case (17), the first 
form we provide shows that the deviation from 
matching Prevalence is a driver in a Kappa-like 
function. Cohen on the other hand (Table 3) 
tends to apply multiply the weight given to error 
in even mild prevalence-bias mismatch 
conditions. None of the symmetric Kappas 
designed for raters are suitable for classifiers. 
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  1:1 1:1 4:1 4:1 4:1 1:4 1:1 1:1 4:1 4:1 4:1 1:4 1:1 1:1 4:1 4:1 4:1 1:4 

Informedness 0% 0% 0% 0% 0% 0% 0% 0% 0% 
Prevalence 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 20% 50% 20% 20% 50% 80% 80% 

Bias 50% 80% 20% 50% 80% 20% 50% 20% 80% 
Ibias 50% 20% 80% 50% 20% 80% 50% 80% 20% 

             
SkewR 100% 25% 25% 100% 25% 25% 100% 400% 400% 
SkewP 100% 25% 400% 100% 25% 400% 100% 400% 25% 

OddsRatio 100% 100% 6% 100% 100% 6% 100% 100% 1600% 
ePowers 50% 68% 32% 50% 68% 32% 50% 68% 32% 
eCohen 50% 68% 32% 50% 68% 32% 50% 68% 32% 
eFleiss 50% 68% 50% 50% 68% 50% 50% 68% 50% 

kPowers 0% 0% 0% 0% 0% 0% 0% 0% 0% 
kCohen 0% 0% 0% 0% 0% 0% 0% 0% 0% 
kFleiss 0% 0% -36% 0% 0% -36% 0% 0% -36% 

Informedness 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Prevalence 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 20% 50% 20% 20% 50% 80% 80% 

Bias 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Ibias 50% 20% 20% 50% 20% 20% 50% 80% 80% 

             
SkewR 100% 25% 25% 100% 25% 25% 100% 400% 400% 
SkewP 100% 25% 25% 100% 25% 25% 100% 400% 400% 

OddsRatio 100% 100% 100% 100% 100% 100% 100% 100% 100% 
ePowers 50% 68% 68% 50% 68% 68% 50% 68% 68% 
aCohen 50% 68% 68% 50% 68% 68% 50% 68% 68% 
aFleiss 50% 68% 68% 50% 68% 68% 50% 68% 68% 

kPowers 100% 100% 100% 100% 100% 100% 100% 100% 100% 
kCohen 100% 100% 100% 100% 100% 100% 100% 100% 100% 
kFleiss 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Informedness 15% 15% 15% 99% 99% 99% 99% 99% 99% 
Prevalence 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 20% 50% 20% 20% 50% 80% 80% 

Bias 50% 80% 29% 50% 80% 79% 50% 20% 79% 
Ibias 50% 20% 71% 50% 20% 21% 50% 80% 21% 

             
SkewR 100% 25% 25% 100% 25% 25% 100% 400% 400% 
SkewP 100% 25% 245% 100% 25% 26% 100% 400% 26% 

OddsRatio 100% 100% 6% 100% 100% 6% 100% 100% 1600% 
ePowers 50% 68% 32% 50% 68% 32% 50% 68% 32% 
eCohen 50% 68% 37% 50% 68% 68% 50% 68% 32% 
eFleiss 50% 68% 50% 50% 68% 68% 50% 68% 50% 

kPowers 15% 15% 15% 99% 99% 99% 1% 1% 1% 
kCohen 15% 15% 8% 99% 99% 98% 1% 1% 0% 
kFleiss 15% 15% -17% 99% 99% 98% 1% 1% -35% 

Informedness -15% -15% -15% -99% -99% -99% -99% -99% -99% 
Prevalence 50% 80% 20% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 80% 50% 20% 20% 50% 80% 80% 

Bias 50% 71% 80% 50% 21% 20% 50% 21% 80% 
Ibias 50% 29% 20% 50% 79% 80% 50% 79% 20% 

             
SkewR 100% 25% 400% 100% 25% 25% 100% 400% 400% 
SkewP 100% 41% 25% 100% 385% 400% 100% 385% 25% 

OddsRatio 100% 65% 1038% 100% 25% 25% 100% 104% 1542% 
ePowers 50% 63% 37% 50% 50% 50% 50% 68% 32% 
eCohen 50% 63% 32% 50% 32% 32% 50% 68% 32% 
eFleiss 50% 63% 50% 50% 50% 50% 50% 68% 50% 

kPowers -15% -15% -15% -99% -99% -99% -1% -1% -1% 
kCohen -15% -13% -7% -99% -47% -47% -1% -1% 0% 
kFleiss -15% -14% -46% -99% -99% -99% -1% -1% -37% 

 
Table 3. Empirical Results for Accuracy and Kappa for Fleiss/Scott, Cohen and Powers. Shaded 
cells indicate misleading results, which occur for both Cohen and Fleiss Kappas. 
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Abstract

Document revision histories are a useful
and abundant source of data for natural
language processing, but selecting relevant
data for the task at hand is not trivial.
In this paper we introduce a scalable ap-
proach for automatically distinguishing be-
tween factual and fluency edits in document
revision histories. The approach is based
on supervised machine learning using lan-
guage model probabilities, string similar-
ity measured over different representations
of user edits, comparison of part-of-speech
tags and named entities, and a set of adap-
tive features extracted from large amounts
of unlabeled user edits. Applied to con-
tiguous edit segments, our method achieves
statistically significant improvements over
a simple yet effective edit-distance base-
line. It reaches high classification accuracy
(88%) and is shown to generalize to addi-
tional sets of unseen data.

1 Introduction

Many online collaborative editing projects such as
Wikipedia1 keep track of complete revision histo-
ries. These contain valuable information about the
evolution of documents in terms of content as well
as language, style and form. Such data is publicly
available in large volumes and constantly grow-
ing. According to Wikipedia statistics, in August
2011 the English Wikipedia contained 3.8 million
articles with an average of 78.3 revisions per ar-
ticle. The average number of revision edits per
month is about 4 million in English and almost 11
million in total for all languages.2

1http://www.wikipedia.org
2Average for the 5 years period between August 2006

and August 2011. The count includes edits by registered

Exploiting document revision histories has
proven useful for a variety of natural language
processing (NLP) tasks, including sentence com-
pression (Nelken and Yamangil, 2008; Yamangil
and Nelken, 2008) and simplification (Yatskar et
al., 2010; Woodsend and Lapata, 2011), informa-
tion retrieval (Aji et al., 2010; Nunes et al., 2011),
textual entailment recognition (Zanzotto and Pen-
nacchiotti, 2010), and paraphrase extraction (Max
and Wisniewski, 2010; Dutrey et al., 2011).

The ability to distinguish between factual
changes or edits, which alter the meaning, and flu-
ency edits, which improve the style or readability,
is a crucial requirement for approaches exploit-
ing revision histories. The need for an automated
classification method has been identified (Nelken
and Yamangil, 2008; Max and Wisniewski, 2010),
but to the best of our knowledge has not been di-
rectly addressed. Previous approaches have either
applied simple heuristics (Yatskar et al., 2010;
Woodsend and Lapata, 2011) or manual annota-
tions (Dutrey et al., 2011) to restrict the data to
the type of edits relevant to the NLP task at hand.
The work described in this paper shows that it is
possible to automatically distinguish between fac-
tual and fluency edits. This is very desirable as
it does not rely on heuristics, which often gener-
alize poorly, and does not require manual anno-
tation beyond a small collection of training data,
thereby allowing for much larger data sets of re-
vision histories to be used for NLP research.

In this paper, we make the following novel con-
tributions:

We address the problem of automated classi-
fication of user edits as factual or fluency edits

users, anonymous users, software bots and reverts. Source:
http://stats.wikimedia.org.
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by defining the scope of user edits, extracting a
large collection of such user edits from the En-
glish Wikipedia, constructing a manually labeled
dataset, and setting up a classification baseline.

A set of features is designed and integrated into
a supervised machine learning framework. It is
composed of language model probabilities and
string similarity measured over different represen-
tations, including part-of-speech tags and named
entities. Despite their relative simplicity, the fea-
tures achieve high classification accuracy when
applied to contiguous edit segments.

We go beyond labeled data and exploit large
amounts of unlabeled data. First, we demonstrate
that the trained classifier generalizes to thousands
of examples identified by user comments as spe-
cific types of fluency edits. Furthermore, we in-
troduce a new method for extracting features from
an evolving set of unlabeled user edits. This
method is successfully evaluated as an alternative
or supplement to the initial supervised approach.

2 Related Work

The need for user edits classification is implicit in
studies of Wikipedia edit histories. For example,
Viegas et al. (2004) use revision size as a simpli-
fied measure for the change of content, and Kittur
et al. (2007) use metadata features to predict user
edit conflicts.

Classification becomes an explicit requirement
when exploiting edit histories for NLP research.
Yamangil and Nelken (2008) use edits as train-
ing data for sentence compression. They make
the simplifying assumption that all selected edits
retain the core meaning. Zanzotto and Pennac-
chiotti (2010) use edits as training data for textual
entailment recognition. In addition to manually
labeled edits, they use Wikipedia user comments
and a co-training approach to leverage unlabeled
edits. Woodsend and Lapata (2011) and Yatskar
et al. (2010) use Wikipedia comments to identify
relevant edits for learning sentence simplification.

The work by Max and Wisniewski (2010) is
closely related to the approach proposed in this
paper. They extract a corpus of rewritings, dis-
tinguish between weak semantic differences and
strong semantic differences, and present a typol-
ogy of multiple subclasses. Spelling corrections
are heuristically identified but the task of auto-
matic classification is deferred. Follow-up work
by Dutrey et al. (2011) focuses on automatic para-

phrase identification using a rule based approach
and manually annotated examples.

Wikipedia vandalism detection is a user ed-
its classification problem addressed by a yearly
competition (since 2010) in conjunction with the
CLEF conference (Potthast et al., 2010; Potthast
and Holfeld, 2011). State-of-the-art solutions in-
volve supervised machine learning using various
content and metadata features. Content features
use spelling, grammar, character- and word-level
attributes. Many of them are relevant for our ap-
proach. Metadata features allow detection by pat-
terns of usage, time and place, which are gener-
ally useful for the detection of online malicious
activities (West et al., 2010; West and Lee, 2011).
We deliberately refrain from using such features.

A wide range of methods and approaches has
been applied to the similar tasks of textual en-
tailment and paraphrase recognition, see Androut-
sopoulos and Malakasiotis (2010) for a compre-
hensive review. These are all related because
paraphrases and bidirectional entailments repre-
sent types of fluency edits.

A different line of research uses classifiers to
predict sentence-level fluency (Zwarts and Dras,
2008; Chae and Nenkova, 2009). These could be
useful for fluency edits detection. Alternatively,
user edits could be a potential source of human-
produced training data for fluency models.

3 Definition of User Edits Scope

Within our approach we distinguish between edit
segments, which represent the comparison (diff)
between two document revisions, and user edits,
which are the input for classification.

An edit segment is a contiguous sequence of
deleted, inserted or equal words. The difference
between two document revisions (vi, vj) is repre-
sented by a sequence of edit segments E. Each
edit segment (δ, wm

1 ) ∈ E is a pair, where δ ∈
{deleted , inserted , equal} and wm

1 is a m-word
substring of vi, vj or both (respectively).

A user edit is a minimal set of sentences over-
lapping with deleted or inserted segments. Given
the two sets of revision sentences (Svi , Svj ), let

φ(δ, wm
1 ) = {s ∈ Svi ∪ Svj | wm

1 ∩ s 6= ∅} (1)

be the subset of sentences overlapping with a
given edit segment, and let

ψ(s) = {(δ, wm
1 ) ∈ E | wm

1 ∩ s 6= ∅} (2)
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be the subset of edit segments overlapping with a
given sentence.

A user edit is a pair (pre ⊆ Svi , post ⊆ Svj )
where

∀s ∈ pre ∪ post ∀δ ∈ {deleted , inserted} ∀wm
1

(δ, wm
1 ) ∈ ψ(s)→ φ(δ, wm

1 ) ⊆ pre ∪ post (3)

∃s ∈ pre ∪ post ∃δ ∈ {deleted , inserted} ∃wm
1

(δ, wm
1 ) ∈ ψ(s) (4)

Table 1 illustrates different types of edit seg-
ments and user edits. The term replaced segment
refers to adjacent deleted and inserted segments.
Example (1) contains a replaced segment because
the deleted segment (“1700s”) is adjacent to the
inserted segment (“18th century”). Example (2)
contains an inserted segment (“and largest profes-
sional”), a replaced segment (“(est.” → “estab-
lished in”) and a deleted segment (“)”). User edits
of both examples consist of a single pre sentence
and a single post sentence because deleted and in-
serted segments do not cross any sentence bound-
ary. Example (3) contains a replaced segment (“.
He” → “who”). In this case the deleted segment
(“. He”) overlaps with two sentences and there-
fore the user edit consists of two pre sentences.

4 Features for Edits Classification

We design a set of features for supervised classi-
fication of user edits. The design is guided by two
main considerations: simplicity and interoperabil-
ity. Simplicity is important because there are po-
tentially hundreds of millions of user edits to be
classified. This amount continues to grow at rapid
pace and a scalable solution is required. Interop-
erability is important because millions of user ed-
its are available in multiple languages. Wikipedia
is a flagship project, but there are other collabora-
tive editing projects. The solution should prefer-
ably be language- and project-independent. Con-
sequently, we refrain from deeper syntactic pars-
ing, Wikipedia-specific features, and language re-
sources that are limited to English.

Our basic intuition is that longer edits are likely
to be factual and shorter edits are likely to be
fluency edits. The baseline method is therefore
character-level edit distance (Levenshtein, 1966)
between pre- and post-edited text.

Six feature categories are added to the baseline.
Most features take the form of threefold counts re-
ferring to deleted, inserted and equal elements of

(1) Revisions 368209202 & 378822230

pre (“By the mid 1700s, Medzhybizh was the seat of
power in Podilia Province.”)

post (“By the mid 18th century, Medzhybizh was
the seat of power in Podilia Province.”)

diff (equal , “By the mid”) , (deleted, “1700s”) ,
(inserted , “18th century”) , (equal , “, Medzhy-
bizh was the seat of power in Podilia Province.”)

(2) Revisions 148109085 & 149440273

pre (“Original Society of Teachers of the Alexander
Technique (est. 1958).”)

post (“Original and largest professional Society of
Teachers of the Alexander Technique estab-
lished in 1958.”)

diff (equal , “Original”) , (inserted , “and largest
professional”) , (equal , “Society of Teachers of
the Alexander Technique”) , (deleted , “(est.”) ,
(inserted , “ established in”) , (equal , “1958”) ,
(deleted , “)”) , (equal , “.”)

(3) Revisions 61406809 & 61746002

pre (“Fredrik Modin is a Swedish ice hockey left
winger.” , “He is known for having one of the
hardest slap shots in the NHL.”)

post (“Fredrik Modin is a Swedish ice hockey left
winger who is known for having one of the hard-
est slap shots in the NHL.”)

diff (equal , “Fredrik Modin is a Swedish ice hockey
left winger”) , (deleted , “. He”) , (inserted ,
“who”) , (equal , “is known for having one of
the hardest slap shots in the NHL.”)

Table 1: Examples of user edits and the corre-
sponding edit segments (revision numbers corre-
spond to the English Wikipedia).

each user edit. For instance, example (1) in Table
1 has one deleted token, two inserted tokens and
14 equal tokens. Many features use string similar-
ity calculated over alternative representations.

Character-level features include counts of
deleted, inserted and equal characters of different
types, such as word & non-word characters or dig-
its & non-digits. Character types may help iden-
tify edits types. For example, the change of dig-
its may suggest a factual edit while the change of
non-word characters may suggest a fluency edit.

Word-level features count deleted, inserted
and equal words using three parallel represen-
tations: original case, lower case, and lemmas.
Word-level edit distance is calculated for each
representation. Table 2 illustrates how edit dis-
tance may vary across different representations.
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Rep. User Edit Dist

Words pre Branch lines were built in Kenya 4
post A branch line was built in Kenya

Lowcase pre branch lines were built in kenya 3
post a branch line was built in kenya

Lemmas pre branch line be build in Kenya 1
post a branch line be build in Kenya

PoS tags pre NN NNS VBD VBN IN NNP 2
post DT NN NN VBD VBN IN NNP

NE tags pre LOCATION 0
post LOCATION

Table 2: Word- and tag-level edit distance mea-
sured over different representations (example
from Wikipedia revisions 2678278 & 2682972).

Fluency edits may shift words, which sometimes
may be slightly modified. Fluency edits may also
add or remove words that already appear in con-
text. Optimal calculation of edit distance with
shifts is computationally expensive (Shapira and
Storer, 2002). Translation error rate (TER) pro-
vides an approximation but it is designed for the
needs of machine translation evaluation (Snover
et al., 2006). To have a more sensitive estima-
tion of the degree of edit, we compute the minimal
character-level edit distance between every pair of
words that belong to different edit segments. For
each pair of edit segments (δ, wm

1 ), (δ′, w′k1) over-
lapping with a user edit, if δ 6= δ′ we compute:

∀w ∈ wm
1 : min

w′∈w′k
1

EditDist(w,w′) (5)

Binned counts of the number of words with a min-
imal edit distance of 0, 1, 2, 3 or more charac-
ters are accumulated per edit segment type (equal,
deleted or inserted).

Part-of-speech (PoS) features include counts
of deleted, inserted and equal PoS tags (per tag)
and edit distance at the tag level between PoS tags
before and after the edit. Similarly, named-entity
(NE) features include counts of deleted, inserted
and equal NE tags (per tag, excluding OTHER)
and edit distance at the tag level between NE tags
before and after the edit. Table 2 illustrates the
edit distance at different levels of representation.
We assume that a deleted NE tag, e.g. PERSON
or LOCATION, could indicate a factual edit. It
could however be a fluency edit where the NE is
replaced by a co-referent like “she” or “it”. Even
if we encounter an inserted PRP PoS tag, the fea-
tures do not capture the explicit relation between

the deleted NE tag and the inserted PoS tag. This
is an inherent weakness of these features when
compared to parsing-based alternatives.

An additional set of counts, NE values, de-
scribes the number of deleted, inserted and equal
normalized values of numeric entities such as
numbers and dates. For instance, if the word
“100” is replaced by “200” and the respective nu-
meric values 100.0 and 200.0 are normalized, the
counts of deleted and inserted NE values will be
incremented and suggest a factual edit. If on the
other hand “100” is replaced by “hundred” and the
latter is normalized as having the numeric value
100.0, then the count of equal NE values will be
incremented, rather suggesting a fluency edit.

Acronym features count deleted, inserted and
equal acronyms. Potential acronyms are extracted
from word sequences that start with a capital letter
and from words that contain multiple capital let-
ters. If, for example, “UN” is replaced by “United
Nations”, “MicroSoft” by “MS” or “Jean Pierre”
by “J.P”, the count of equal acronyms will be in-
cremented, suggesting a fluency edit.

The last category, language model (LM) fea-
tures, takes a different approach. These features
look at n-gram based sentence probabilities be-
fore and after the edit, with and without normal-
ization with respect to sentence lengths. The ratio
of the two probabilities, P̂ratio(pre, post) is com-
puted as follows:

P̂ (wm
1 ) ≈

m∏
i=1

P (wi|wi−1
i−n+1) (6)

P̂norm(wm
1 ) = P̂ (wm

1 )
1
m (7)

P̂ratio(pre, post) =
P̂norm(post)

P̂norm(pre)
(8)

log P̂ratio(pre, post) = log
P̂norm(post)

P̂norm(pre)
(9)

= log P̂norm(post)− log P̂norm(pre)

=
1

|post |
log P̂ (post)− 1

|pre|
log P̂ (pre)

Where P̂ is the sentence probability estimated as
a product of n-gram conditional probabilities and
P̂norm is the sentence probability normalized by
the sentence length. We hypothesize that the rel-
ative change of normalized sentence probabilities
is related to the edit type. As an additional feature,
the number of out of vocabulary (OOV) words be-
fore and after the edit is computed. The intuition
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Dataset Labeled Subset

Number of User Edits:
923,820 (100%) 2,008 (100%)

Edit Segments Distribution:
Replaced 535,402 (57.96%) 1,259 (62.70%)
Inserted 235,968 (25.54%) 471 (23.46%)
Deleted 152,450 (16.5%) 278 (13.84%)

Character-level Edit Distance Distribution:
1 202,882 (21.96%) 466 (23.21%)
2 81,388 (8.81%) 198 (9.86%)
3-10 296,841 (32.13%) 645 (32.12%)
11-100 342,709 (37.10%) 699 (34.81%)

Word-level Edit Distance Distribution:
1 493,095 (53.38%) 1,008 (54.18%)
2 182,770 (19.78%) 402 (20.02%)
3 77,603 (8.40%) 161 (8.02%)
4-10 170,352 (18.44%) 357 (17.78%)

Labels Distribution:
Fluency - 1,008 (50.2%)
Factual - 1,000 (49.8%)

Table 3: Dataset of nearly 1 million user edits
with single deleted, inserted or replaced segments,
of which 2K are labeled. The labels are almost
equally distributed. The distribution over edit seg-
ment types and edit distance intervals is detailed.

is that unknown words are more likely to be in-
dicative of factual edits.

5 Experiments

5.1 Experimental Setup

First, we extract a large amount of user edits from
revision histories of the English Wikipedia.3 The
extraction process scans pairs of subsequent re-
visions of article pages and ignores any revision
that was reverted due to vandalism. It parses the
Wikitext and filters out markup, hyperlinks, tables
and templates. The process analyzes the clean text
of the two revisions4 and computes the difference
between them.5 The process identifies the overlap
between edit segments and sentence boundaries
and extracts user edits. Features are calculated
and user edits are stored and indexed. LM features
are calculated against a large English 4-gram lan-

3Dump of all pages with complete edit history as of Jan-
uary 15, 2011 (342GB bz2), http://dumps.wikimedia.org.

4Tokenization, sentence split, PoS & NE tags by Stanford
CoreNLP, http://nlp.stanford.edu/software/corenlp.shtml.

5Myers’ O(ND) difference algorithm (Myers, 1986),
http://code.google.com/p/google-diff-match-patch.

guage model built by SRILM (Stolcke, 2002) with
modified interpolated Kneser-Ney smoothing us-
ing the AFP and Xinhua portions of the English
Gigaword corpus (LDC2003T05).

We extract a total of 4.3 million user edits of
which 2.52 million (almost 60%) are insertions
and deletions of complete sentences. Although
these may include fluency edits such as sentence
reordering or rewriting from scratch, we assume
that the large majority is factual. Of the remaining
1.78 million edits, the majority (64.5%) contains
single deleted, inserted or replaced segments. We
decide to focus on this subset because sentences
with multiple non-contiguous edit segments are
more likely to contain mixed cases of unrelated
factual and fluency edits, as illustrated by exam-
ple (2) in Table 1. Learning to classify contigu-
ous edit segments seems to be a reasonable way
of breaking down the problem into smaller parts.
We filter out user edits with edit distance longer
than 100 characters or 10 words that we assume to
be factual. The resulting dataset contains 923,820
user edits: 58% replaced segments, 25.5% in-
serted segments and 16.5% deleted segments.

Manual labeling of user edits is carried out by
a group of annotators with near native or native
level of English. All annotators receive the same
written guidelines. In short, fluency labels are
assigned to edits of letter case, spelling, gram-
mar, synonyms, paraphrases, co-referents, lan-
guage and style. Factual labels are assigned to
edits of dates, numbers and figures, named enti-
ties, semantic change or disambiguation, addition
or removal of content. A random set of 2,676 in-
stances is labeled: 2,008 instances with a majority
agreement of at least two annotators are selected
as training set, 270 instances are held out as de-
velopment set, 164 trivial fluency corrections of a
single letter’s case and 234 instances with no clear
agreement among annotators are excluded. The
last group (8.7%) emphasizes that the task is, to
a limited extent, subjective. It suggests that auto-
mated classification of certain user edits would be
difficult. Nevertheless, inter-rater agreement be-
tween annotators is high to very high. Kappa val-
ues between 0.74 to 0.84 are measured between
six pairs of annotators, each pair annotated a com-
mon subset of at least 100 instances. Table 3 de-
scribes the resulting dataset, which we also make
available to the research community.6

6Available for download at http://staff.
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Character-level Edit Distance

↙ ≤ 4 > 4↘

Fluency (725) Factual (821)
Factual (179) Fluency (283)

Figure 1: A decision tree that uses character-level
edit distance as a sole feature. The tree correctly
classifies 76% of the labeled user edits.

Feature set SVM RF Logit

Baseline 76.26% 76.26% 76.34%
+ Char-level 83.71%† 84.45%† 84.01%†

+ Word-level 78.38%†∨ 81.38%†∧ 78.13%†∨

+ PoS 76.58%∨ 76.97% 78.35%†∧

+ NE 82.71%† 83.12%† 82.38%†

+ Acronyms 76.55% 76.61% 76.96%
+ LM 76.20% 77.42% 76.52%
All Features 87.14%†∧ 87.14%† 85.64%†∨

Table 4: Classification accuracy using the base-
line, each feature set added to the baseline, and
all features combined. Statistical significance at
p < 0.05 is indicated by † w.r.t the baseline (us-
ing the same classifier), and by ∧ w.r.t to another
classifier marked by ∨ (using the same features).
Highest accuracy per classifier is marked in bold.

5.2 Feature Analysis

We experiment with three classifiers: Support
Vector Machines (SVM), Random Forests (RF)
and Logistic Regression (Logit).7 SVMs (Cortes
and Vapnik, 1995) and Logistic Regression (or
Maximum Entropy classifiers) are two widely
used machine learning techniques. SVMs have
been applied to many text classification problems
(Joachims, 1998). Maximum Entropy classifiers
have been applied to the similar tasks of para-
phrase recognition (Malakasiotis, 2009) and tex-
tual entailment (Hickl et al., 2006). Random
Forests (Breiman, 2001) as well as other decision
tree algorithms are successfully used for classi-
fying Wikipedia edits for the purpose of vandal-
ism detection (Potthast et al., 2010; Potthast and
Holfeld, 2011).

Experiments begin with the edit-distance base-

science.uva.nl/˜abronner/uec/data.
7Using Weka classifiers: SMO (SVM), RandomForest &

Logistic (Hall et al., 2009). Classifier’s parameters are tuned
using the held-out development set.

Feature set SVM RF Logit
flu. / fac. flu. / fac. flu. / fac.

Baseline 0.85 / 0.67 0.74 / 0.79 0.85 / 0.67
+ Char-level 0.85 / 0.82 0.83 / 0.86 0.86 / 0.82
+ Word-level 0.88 / 0.69 0.81 / 0.82 0.86 / 0.70
+ PoS 0.85 / 0.68 0.78 / 0.76 0.84 / 0.72
+ NE 0.86 / 0.79 0.79 / 0.87 0.87 / 0.78
+ Acronyms 0.87 / 0.66 0.83 / 0.70 0.86 / 0.68
+ LM 0.85 / 0.67 0.79 / 0.76 0.84 / 0.69
All Features 0.88 / 0.86 0.86 / 0.88 0.87 / 0.84

Table 5: Fraction of correctly classified edits per
type: fluency edits (left) and factual edits (right),
using the baseline, each feature set added to the
baseline, and all features combined.

line. Then each one of the feature groups is sep-
arately added to the baseline. Finally, all features
are evaluated together. Table 4 reports the per-
centage of correctly classified edits (classifiers’
accuracy), and Table 5 reports the fraction of cor-
rectly classified edits per type. All results are for
10-fold cross validation. Statistical significance
against the baseline and between classifiers is cal-
culated at p < 0.05 using paired t-test.

The first interesting result is the highly predic-
tive power of the single-feature baseline. It con-
firms the intuition that longer edits are mainly fac-
tual. Figure 1 shows that the edit distance of 72%
of the user edits labeled as fluency is between 1 to
4, while the edit distance of 82% of those labeled
as factual is greater than 4. The cut-off value is
found by a single-node decision tree that uses edit
distance as a sole feature. The tree correctly clas-
sifies 76% of the instances. This result implies
that the actual challenge is to correctly classify
short factual edits and long fluency edits.

Character-level features and named-entity fea-
tures lead to significant improvements over the
baseline for all classifiers. Their strength lies in
their ability to identify short factual edits such
as changes of numeric values or proper names.
Word-level features also significantly improve the
baseline but their contribution is smaller. PoS
and acronym features lead to small statistically-
insignificant improvements over the baseline.

The poor contribution of LM features is sur-
prising. It might be due to the limited context
of n-grams, but it might be that LM probabili-
ties are not a good predictor for the task. Re-
moving LM features from the set of all features
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Fluency Edits Misclassified as Factual

Equivalent or redundant in context 14
Paraphrases 13
Equivalent numeric patterns 7
Replacing first name with last name 4
Acronyms 4
Non specific adjectives or adverbs 3
Other 5

Factual Edits Misclassified as Fluency

Short correction of content 35
Opposites 3
Similar names 3
Noise (unfiltered vandalism) 3
Other 6

Table 6: Error types based on manual examina-
tion of 50 fluency edit misclassifications and 50
factual edit misclassifications.

leads to a small decrease in classification accu-
racy, namely 86.68% instead of 87.14% for SVM.
This decrease is not statistically significant.

The highest accuracy is achieved by both SVM
and RF and there are few significant differences
among the three classifiers. The fraction of cor-
rectly classified edits per type (Table 5) reveals
that for SVM and Logit, most fluency edits are
correctly classified by the baseline and most im-
provements over the baseline are attributed to bet-
ter classification of factual edits. This is not the
case for RF, where the fraction of correctly classi-
fied factual edits is higher and the fraction of cor-
rectly classified fluency edits is lower. This in-
sight motivates further experimentation. Repeat-
ing the experiment with a meta-classifier that uses
a majority voting scheme, achieves an improved
accuracy of 87.58%. This improvement is not sta-
tistically significant.

5.3 Error Analysis

To have better understanding of errors made by
the classifier, 50 fluency edit misclassifications
and 50 factual edit misclassifications are ran-
domly selected and manually examined. The er-
rors are grouped into categories as summarized in
Table 6. These explain certain limitations of the
classifier and suggest possible improvements.

Fluency edit misclassifications: 14 instances
(28%) are phrases (often co-referents) that are ei-
ther equivalent or redundant in the given context.

Correctly Classified Fluency Edits

“Adventure education makes intentional use of intention-
ally uses challenging experiences for learning.”

“He served as president from October 1 , 1985 and retired
through his retirement on June 30 , 2002.”

“In 1973, he helped organize assisted in organizing his
first ever visit to the West.”

Correctly Classified Factual Edits

“Over the course of the next two years five months, the
unit completed a series of daring raids.”

“Scottish born David Tennant has reportedly said he
would like his Doctor to wear a kilt.”

“This family joined the strip in late 1990 around March
1991.”

Table 7: Examples of correctly classified user ed-
its. Deleted segments are struck out, inserted are
bold (revision numbers are omitted for brevity).

For example: “in 1986” → “that year”, “when
she returned”→ “when Ruffa returned” and “the
core member of the group are”→ “the core mem-
bers are”. 13 (26%) are paraphrases misclassified
as factual edits. Examples are: “made cartoons”
→ “produced animated cartoons” and “with the
implication that they are similar to” → “imply-
ing a connection to”. 7 modify numeric patterns
that do not change the meaning such as the year
“37” → “1937”. 4 replace a first name of a per-
son with the last name. 4 contain acronyms, e.g.
“Display PostScript” → “Display PostScript (or
DPS)”. Acronym features are correctly identified
but the classifier fails to recognize a fluency edit.
3 modify adjectives or adverbs that do not change
the meaning such as “entirely” and “various”.

Factual edit misclassifications: the big major-
ity, 35 instances (70%), could be characterized as
short corrections, often replacing a similar word,
that make the content more accurate or more
precise. Examples (context is omitted): “city”
→ “village”, “emigrated” → “immigrated” and
“electrical”→ “electromagnetic”. 3 are opposites
or antonyms such as “previous” → “next” and
“lived” → “died”. 3 are modifications of similar
person or entity names, e.g. “Kelly” → “Kate”.
3 are instances of unfiltered vandalism, i.e. noisy
examples. Other misclassifications include verb
tense modifications such as “is” → “was” and
“consists” → “consisted”. These are difficult to
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Comment Test Set Classified as
Size Fluency Edits

“grammar” 1,122 88.9%
“spelling” 2,893 97.6%
“typo” 3,382 91.6%
“copyedit” 3,437 68.4%
Random set 5,000 49.4%

Table 8: Classifying unlabeled data selected by
user comments that suggest a fluency edit. The
SVM classifier is trained using the labeled data.
User comments are not used as features.

classify because the modification of verb tense in
a given context is sometimes factual and some-
times a fluency edit.

These findings agree with the feature analy-
sis. Fluency edit misclassifications are typically
longer phrases that carry the same meaning while
factual edit misclassifications are typically sin-
gle words or short phrases that carry different
meaning. The main conclusion is that the clas-
sifier should take into account explicit content
and context. Putting aside the consideration of
simplicity and interoperability, features based on
co-reference resolution and paraphrase recogni-
tion are likely to improve fluency edits classi-
fication, and features from language resources
that describe synonymy and antonymy relations
are likely to improve factual edits classification.
While this conclusion may come at no surprise, it
is important to highlight the high classification ac-
curacy that is achieved without such capabilities
and resources. Table 7 presents several examples
of correct classification produced by our classifier.

6 Exploiting Unlabeled Data

We extracted a large set of user edits but our ap-
proach has been limited to a restricted number of
labeled examples. This section attempts to find
whether the classifier generalizes beyond labeled
data and whether unlabeled data could be used to
improve classification accuracy.

6.1 Generalizing Beyond Labeled Data

The aim of the next experiment is to test how well
the supervised classifier generalizes beyond the
labeled test set. The problem is the availability
of test data. There is no shared task for user ed-
its classification and no common test set to eval-

Replaced by Frequency Edit class

“second” 144 Factual
“First” 38 Fluency
“last” 31 Factual
“1st” 22 Fluency
“third” 22 Factaul

Table 9: User edits replacing the word “first” with
another single word: most frequent 5 out of 524.

Replaced by Frequency Replaced by Frequency

“Adams” 7 “Squidward” 6
“Joseph” 7 “Alexander” 5
“Einstein” 6 “Davids” 5
“Galland” 6 “Haim” 5
“Lowe” 6 “Hickes” 5

Table 10: Fluency edits replacing the word “He”
with proper noun: most frequent 10 out of 1,381.

uate against. We resort to Wikipedia user com-
ments. It is a problematic option because it is un-
reliable. Users may add a comment when submit-
ting an edit, but it is not mandatory. The com-
ment is a free text with no predefined structure.
It could be meaningful or nonsense. The com-
ment is per revision. It may refer to one, some
or all edits submitted for a given revision. Nev-
ertheless, we identify several keywords that rep-
resent certain types of fluency edits: “grammar”,
“spelling”, “typo”, and “copyedit”. The first three
clearly indicate grammar and spelling corrections.
The last indicates a correction of format and style,
but also of accuracy of the text. Therefore it only
represents a bias towards fluency edits.

We extract unlabeled edits whose comment is
equal to one of the keywords and construct a test
set per keyword. An additional test set consists of
randomly selected unlabeled edits with any com-
ment. The five test sets are classified by the SVM
classifier trained using the labeled data and the set
of all features. To remove any doubt, user com-
ments are not part of any feature of the classifier.

The results in Table 8 show that most unlabeled
edits whose comments are “grammar”, “spelling”
or “typo” are indeed classified as fluency ed-
its. The classification of edits whose comment is
“copyedit” is biased towards fluency edits, but as
expected the result is less distinct. The classifica-
tion of the random set is balanced, as expected.
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Feature set SVM RF Logit

Baseline 76.26% 76.26% 76.34%
All Features 87.14%†∧ 87.14%† 85.64%†∨

Unlabeled only 78.11%∨ 83.49%†∧ 78.78%†∨

Base + unlabeled 80.86%†∨ 85.45%†∧ 81.83%†∨

All + unlabeled 87.23% 88.35%‡†∧ 85.92%∨

Table 11: Classification accuracy using features
from unlabeled data. The first two rows are identi-
cal to Table 4. Statistical significance at p < 0.05
is indicated by: † w.r.t the baseline; ‡ w.r.t all fea-
tures excluding features from unlabeled data; and
∧ w.r.t to another classifier marked by ∨ (using the
same features). The best result is marked in bold.

6.2 Features from Unlabeled Data

The purpose of the last experiment is to exploit
unlabeled data in order to extract additional fea-
tures for the classifier. The underlying assumption
is that reoccurring patterns may indicate whether
a user edit is factual or a fluency edit.

We could assume that fluency edits would re-
occur across many revisions, while factual edits
would only appear in revisions of specific docu-
ments. However, this assumption does not nec-
essarily hold. Table 9 gives a simple example of
single word replacements for which the most re-
occurring edit is actually factual and other factual
and fluency edits reoccur in similar frequencies.

Finding user edits reoccurrence is not trivial.
We could rely on exact matches of surface forms,
but this may lead to data sparseness issues. Flu-
ency edits that exchange co-referents and proper
nouns, as illustrated by the example in Table 10,
may reoccur frequently but this fact could not
be revealed by exact matching of specific proper
nouns. On the other hand, using a bag of word
approach may find too many unrelated edits.

We introduce a two-step method that measures
the reoccurrence of edits in unlabeled data us-
ing exact and approximate matching over multi-
ple representations. The method provides a set of
frequencies that is fed into the classifier and al-
lows for learning subtle patterns of reoccurrence.
Staying consistent with our initial design consid-
erations, the method is simple and interoperable.

Given a user edit (pre, post), the method does
not compare pre with post in any way. It only
compares pre with pre-edited sentences of other
unlabeled edits and post with post-edited sen-

tences of other unlabeled edits. The first step is to
select candidates using a bag of words approach.
The second step is a comparison of the user edit
with each one of the candidates while increment-
ing counts of similarity measures. These account
for exact matches between different representa-
tions (original and low case, lemmas, PoS and NE
tags) as well as for approximate matches using
character- and word-level edit distance between
those representations. An additional feature is the
number of distinct documents in the candidate set.

We compute the set of features for the labeled
dataset based on the unlabeled data. The number
of candidates is set to 1,000 per user edit. We
re-train the classifiers using five configurations:
Baseline and All Features are identical to the first
experiment. Unlabeled only uses the new feature
set without any other feature. Base + Unlabeled
adds the new feature set to the baseline. All + Un-
labeled uses all available features. All results are
for 10-fold cross validation with statistical signif-
icance at p < 0.05 by paired t-test, see Table 11.

We find that features extracted from unlabeled
data outperform the baseline and lead to statisti-
cally significant improvements when added to it.
The combination of all features allows Random
Forests to achieve the highest statistically signifi-
cant accuracy level of 88.35%.

7 Conclusions

This work addresses the task of user edits clas-
sification as factual or fluency edits. It adopts
a supervised machine learning approach and
uses character- and word- level features, part-
of-speech tags, named entities, language model
probabilities, and a set of features extracted from
large amounts of unlabeled data. Our experiments
with contiguous user edits extracted from revision
histories of the English Wikipedia achieve high
classification accuracy and demonstrate general-
ization to data beyond labeled edits.

Our approach shows that machine learning
techniques can successfully distinguish between
user edit types, making them a favorable alterna-
tive to heuristic solutions. The simple and adap-
tive nature of our method allows for application to
large and evolving sets of user edits.
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Abstract

Online community is an important source
for latest news and information. Accurate
prediction of a user’s interest can help pro-
vide better user experience. In this paper,
we develop a recommendation system for
online forums. There are a lot of differ-
ences between online forums and formal me-
dia. For example, content generated by users
in online forums contains more noise com-
pared to formal documents. Content topics
in the same forum are more focused than
sources like news websites. Some of these
differences present challenges to traditional
word-based user profiling and recommenda-
tion systems, but some also provide oppor-
tunities for better recommendation perfor-
mance. In our recommendation system, we
propose to (a) use latent topics to interpo-
late with content-based recommendation; (b)
model latent user groups to utilize informa-
tion from other users. We have collected
three types of forum data sets. Our experi-
mental results demonstrate that our proposed
hybrid approach works well in all three types
of forums.

1 Introduction

Internet is an important source of information. It
has become a habit of many people to go to the in-
ternet for latest news and updates. However, not all
articles are equally interesting for different users.
In order to intelligently predict interesting articles
for individual users, personalized news recommen-
dation systems have been developed. There are in
general two types of approaches upon which rec-

ommendation systems are built. Content based rec-
ommendation systems use the textual information
of news articles and user generated content to rank
items. Collaborative filtering, on the other hand,
uses co-occurrence information from a collection
of users for recommendation.

During the past few years, online community
has become a large part of internet. More often,
latest information and knowledge appear at on-
line community earlier than other formal media.
This makes it a favorable place for people seeking
timely update and latest information. Online com-
munity sites appear in many forms, for example,
online forums, blogs, and social networking web-
sites. Here we focus our study on online forums. It
is very helpful to build an automatic system to sug-
gest latest information a user would be interested
in. However, unlike formal news media, user gen-
erated content in forums is usually less organized
and not well formed. This presents a great chal-
lenge to many existing news article recommenda-
tion systems. In addition, what makes online fo-
rums different from other media is that users of
online communities are not only the information
consumers but also active providers as participants.
Therefore in this study we develop a recommen-
dation system to account for these characteristics
of forums. We propose several improvements over
previous work:

• Latent topic interpolation: This is to address
the issue with the word-based content repre-
sentation. In this paper we used Latent Dirich-
let Allocation (LDA), a generative multino-
mial mixture model, for topic inference inside
threads. We build a system based on words
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and latent topics, and linearly interpolate their
results.

• User modeling: We model users’ participa-
tion inside threads as latent user groups. Each
latent group is a multinomial distribution on
users. Then LDA is used to infer the group
mixture inside each thread, based on which
the probability of a user’s participation can be
derived.

• Hybrid system: Since content and user-
based methods rely on different information
sources, we combine the results from them for
further improvement.

We have evaluated our proposed method using
three data sets collected from three representative
forums. Our experimental results show that in all
forums, by using latent topics information, system
can achieve better accuracy in predicting threads
for recommendation. In addition, by modeling la-
tent user groups in thread participation, further im-
provement is achieved in the hybrid system. Our
analysis also showed that each forum has its nature,
resulting in different optimal parameters in the dif-
ferent forums.

2 Related Work

Recommendation systems can help make informa-
tion retrieving process more intelligent. Generally,
recommendation methods are categorized into two
types (Adomavicius and Tuzhilin, 2005), content-
based filtering and collaborative filtering.

Systems using content-based filtering use the
content information of recommendation items a
user is interested in to recommend new items to
the user. For example, in a news recommendation
system, in order to recommend appropriate news
articles to a user, it finds the most prominent fea-
tures (e.g., key words, tags, category) in the docu-
ment that a user likes, then suggests similar articles
based on this “personal profile”. In Fabs system
(Balabanovic and Shoham, 1997), Skyskill & We-
bert system (Pazzani et al., 1997), documents are
represented using a set of most important words
according to a weighting measure. The most popu-
lar measure of word “importance” is TF-IDF (term
frequency, inverse document frequency) (Salton
and Buckley, 1988), which gives weights to words

according to its “informativeness”. Then, base on
this “personal profile” a ranking machine is applied
to give a ranked recommendation list. In Fabs sys-
tem, Rocchio’ algorithm (Rocchio, 1971) is used
to learn the average TF-IDF vector of highly rated
documents. Skyskill & Webert’s system uses Naive
Bayes classifiers to give the probability of docu-
ments being liked. Winnow’s algorithm (Little-
stone, 1988), which is similar to perception algo-
rithm, has been shown to perform well when there
are many features. An adaptive framework is intro-
duced in (Li et al., 2010) using forum comments
for news recommendation. In (Wu et al., 2010),
a topic-specific topic flow model is introduced to
rank the likelihood of user participating in a thread
in online forums.

Collaborative-filtering based systems, unlike
content-based systems, predict the recommending
items using co-occurrence information between
users. For example, in a news recommendation
system, in order to recommend an article to user
c, the system tries to find users with similar taste
as c. Items favored by similar users would be rec-
ommended. Grundy (Rich, 1979) is known to be
one of the first collaborative-filtering based sys-
tems. Collaborative filtering systems can be ei-
ther model based or memory based (Breese et al.,
1998). Memory-based algorithms, such as (Del-
gado and Ishii, 1999; Nakamura and Abe, 1998;
Shardanand and Maes, 1995), use a utility function
to measure the similarity between users. Then rec-
ommendation of an item is made according to the
sum of the utility values of active users that partic-
ipate in it. Model-based algorithms, on the other
hand, try to formulate the probability function of
one item being liked statistically using active user
information. (Ungar et al., 1998) clustered sim-
ilar users into groups for recommendation. Dif-
ferent clustering methods have been experimented,
including K-means and Gibbs Sampling. Other
probabilistic models have also been used to model
collaborative relationships, including a Bayesian
model (Chien and George, 1999), linear regres-
sion model (Sarwar et al., 2001), Gaussian mix-
ture models (Hofmann, 2003; Hofmann, 2004). In
(Blei et al., 2001) a collaborative filtering appli-
cation is discussed using LDA. However in this
model, re-estimation of parameters for the whole
system is needed when a new item comes in. In
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this paper, we formulate users’ participation differ-
ently using the LDA mixture model.

Some previous work has also evaluated using
a hybrid model with both content and collabora-
tive features and showed outstanding performance.
For example, in (Basu et al., 1998), hybrid features
are used to make recommendation using inductive
learning.

3 Forum Data

We have collected data from three forums in this
study.1 Ubuntu community forum is a technical
support forum; World of Warcraft (WoW) forum is
about gaming; Fitness forum is about how to live
a healthy life. These three forums are quite rep-
resentative of online forums on the internet. Us-
ing three different types of forums for task eval-
uation helps to demonstrate the robustness of our
proposed method. In addition, it can show how the
same method could have substantial performance
difference on forums of different nature. Users’
behaviors in these three forums are very differ-
ent. Casual forums like “Wow gaming” have much
more posts in each thread. However its posts are
the shortest in length. This is because discussions
inside these types of forums are more like casual
conversation, and there is not much requirement
on the user’s background, and thus there is more
user participation. In contrast, technical forums
like “Ubuntu” have fewer average posts in each
thread, and have the longest post length. This is
because a Question and Answer (QA) forum tends
to be very goal oriented. If a user finds the thread
is unrelated, then there will be no motivation for
participation.

Inside forums, different boards are created to
categorize the topics allowed for discussion. From
the data we find that users tend to participate in a
few selected boards of their choices. To create a
data set for user interest prediction in this study,
we pick the most popular boards in each forum.
Even within the same board, users tend to partici-
pate in different threads base on their interest. We
use a user’s participation information as an indica-
tion whether a thread is interesting to a user or not.
Hence, our task is to predict the user participation
in forum threads. Note this approach could intro-

1Please contact the authors to obtain the data.

duce some bias toward negative instances in terms
of user interests. A users’ absence from a thread
does not necessarily mean the user is not interested
in that thread; it may be a result of the user being
offline by that time or the thread is too behind in
pages. As a matter of fact, we found most users
read only the threads on the first page during their
time of visit of a forum. This makes participation
prediction an even harder task than interest predic-
tion.

In online forums, threads are ordered by the time
stamp of their last participating post. Provided with
the time stamp for each post, we can calculate the
order of a thread on its board during a user’s par-
ticipation. Figure 1 shows the distribution of post
location during users’ participation. We found that
most of the users read only the posts on the first
page. In order to minimize the false negative in-
stances from the data set, we did thread location
filtering. That is, we want to filter out messages
that actually interest the user but do not have the
user’s participation because they are not on the first
page. For any user, only those threads appearing in
the first 10 entries on a page during a user’s visit
are included in the data set.

Figure 1: Thread position during users’ participation.

In the pre-processing step of the experiment, first
we use online status filtering discussed above to
remove threads that a user does not see while of-
fline. The statistics of the boards we have used in
each forum are shown in Table 1. The statistics
are consistent with the full forum statistics. For
example, users in technical forums tend to post
less than casual forums. We define active users as
those who have participated in 10 or more threads.
Column “Part. @300” shows the average number
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of threads the top 300 users have participated in.
“Filt. Threads@300” shows the average number of
threads after using online filtering with a window
of 10. Thread participation in “Ubuntu” forum is
very sparse for each user, having only 10.01% par-
ticipating threads for each user after filtering. “Fit-
ness” and “Wow Forum” have denser participation,
at 18.97% and 13.86% respectively.

4 Interesting Thread Prediction

In the task of interesting thread prediction, the sys-
tem generates a ranked list of threads a user is
likely to be interested in based on users’ past his-
tory of thread participation. Here, instead of pre-
dicting the true interestedness, we predict the par-
ticipation of the user, which is a sufficient condi-
tion for interestedness. This approach is also used
by (Wu et al., 2010) for their task evaluation. In
this section, we describe our proposed approaches
for thread participation prediction.

4.1 Content-based Filtering
In the content-based filtering approach, only con-
tent of a thread is used as features for prediction.
Recommendation through content-based filtering
has its deep root in information retrieval. Here we
use a Naive Bayes classifier for ranking the threads
using information based on the words and the la-
tent topic analysis.

4.1.1 Naive Bayes Classification
In (Pazzani et al., 1997) Naive Bayesian classi-

fier showed outstanding performance in web page
recommendation compared to several other clas-
sifiers. A Naive Bayes classifier is a generative
model in which words inside a document are as-
sumed to be conditionally independent. That is,
given the class of a document, words are generated
independently. The posterior probability of a test
instance in Naive Bayes classifier takes the follow-
ing form:

P (Ci|f1..k) =
1

Z
P (Ci)

∏
j

P (fj |Ci) (1)

where Z is the class label independent normaliza-
tion term, f1..k is the bag-of-word feature vector
for the document. Naive Bayes classifier is known
for not having a well calibrated posterior probabil-
ity (Bennett, 2000). (Pavlov et al., 2004) showed

that normalization by document length yielded
good empirical results in approximating a well cal-
ibrated posterior probability for Naive Bayes clas-
sifier. The normalized Naive Bayes classifier they
used is as follows:

P (Ci|f1..k) =
1

Z
P (Ci)

∏
j

P (fj |Ci)
1

|f | (2)

In this equation, the probability of generat-
ing each word is normalized by the length of
the feature vector |f |. The posterior probabil-
ity P (interested|f1..k) from (normalized) Naive
Bayes classifier is used for recommendation item
ranking.

4.1.2 Latent Topics based Interpolation
Because of noisy forum writing and limited

training data, the above bag-of-word model used in
naive Bayes classifier may suffer from data sparsity
issues. We thus propose to use latent topic model-
ing to alleviate this problem. Latent Dirichlet Allo-
cation (LDA) is a generative model based on latent
topics. The major difference between LDA and
previous methods such as probabilistic Latent Se-
mantic Analysis (pLSA) is that LDA can efficiently
infer topic composition of new documents, regard-
less of the training data size (Blei et al., 2001). This
makes it ideal for efficiently reducing the dimen-
sion of incoming documents.

In an online forum, words contained in threads
tend to be very noisy. Irregular words, such as
abbreviation, misspelling and synonyms, are very
common in an online environment. From our ex-
periments, we observe that LDA seems to be quite
robust to these phenomena and able to capture
word relationship semantically. To illustrate the
words inside latent topics in the LDA model in-
ferred from online forums, we show in Table 2 the
top words in 3 out of 20 latent topics inferred from
“Ubuntu” forum according to its multinomial dis-
tribution. We can see that variations of the same
words are grouped into the same topic.

Since each post could be very short and LDA is
generally known not to work well with short docu-
ments, we concatenated the content of posts inside
each thread to form documents. In order to build
a valid evaluation configuration, only posts before
the first time the testing user participated are used
for model fitting and inference.
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Forum Name Threads Posts Active Users Part. @300 Filt. Threads @300
Ubuntu 185,747 940,230 1,700 464.72 4641.25
Fitness 27,250 529,201 2,808 613.15 3231.04
Wow Gaming 34,187 1,639,720 19,173 313.77 2264.46

Table 1: Data statistics after filtering.

Topic 1 Topic 2 Topic 3
lol’d wine email
lol. Wine mail
imo. game Thunderbird

,’ fixme evolution
-, stub send

lulz. not emails
lmao. WINE gmail
rofl. play postfix

Table 2: Example of LDA topics that capture words
with different variations.

After model fitting for LDA, the topic distri-
butions on new threads can be inferred using the
model. Compared to the original bag-of-word fea-
ture vector, the topic distribution vector is not only
more robust against noise, but also closer to hu-
man interpretation of words. For example in topic
3 in Table 2, people who care about “Thunder-
bird”, an email client, are also very likely to show
interest in “postfix”, which is a Linux email ser-
vice. These closely related words, however, might
not be captured using the bag-of-word model since
that would require the exact words to appear in the
training set.

In order to take advantage of the topic level in-
formation while not losing the “fine-grained” word
level feature, we use the topic distribution as ad-
ditional features in combination with the bag-of-
word features. To tune the contribution of topic
level features in classifiers like Naive Bayes clas-
sifiers, we normalize the topic level feature to a
length of Lt = γ|f | and bag-of-word feature to
Lw = (1−γ)|f |. γ is a tuning parameter from 0 to
1 that determines the proportion of the topic infor-
mation used in the features. |f | is from the original
bag-of-word feature vector. The final feature vec-
tor for each thread can be represented as:

F = Lww1, ..., Lwwk ∪ Ltθ1, ..., LtθT (3)

where θ1, ..., θt is the multinomial distribution of
topics for the thread.

4.2 Collaborative Filtering
Collaborative filtering techniques make prediction
using information from similar users. It has ad-
vantages over content-based filtering in that it can
correctly predict items that are vastly different in
content but similar in concepts indicated by users’
participation.

In some previous work, clustering methods were
used to partition users into several groups, Then,
predictions were made using information from
users in the same group. However, in the case
of thread recommendation, we found that users’
interest does not form clean clusters. Figure 2
shows the mutual information between users after
doing an average-link clustering on their pairwise
mutual information. In a clean clustering, intra-
cluster mutual information should be high, while
inter-cluster mutual information is very low. If so,
we would expect that the figure shows clear rect-
angles along the diagonal. Unfortunately, from this
figure it appears that users far away in the hierarchy
tree still have a lot of common thread participation.
Here, we propose to model user similarity based on
latent user groups.

4.2.1 Latent User Groups
In this paper, we model users’ participation in-

side threads as an LDA generative model. We
model each user group as a multinomial distribu-
tion. Users inside each group are assumed to have
common interests in certain topic(s). A thread in an
online forum typically contains several such top-
ics. We could model a user’s participation in a
thread as a mixture of several different user groups.
Since one thread typically attracts a subset of user
groups, it is reasonable to add a Dirichlet prior on
the user group mixture.

The generative process is the same as the LDA
used above for topic modeling, except now users
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Figure 2: Mutual information between users in Average
Link Hierarchical clustering.

are ‘words’ and user groups are ‘topics’. Using
LDA to model user participation can be viewed
as soft-clustering of users in a sense that one user
could appear in multiple groups at the same time.
The generative process for participating users is as
follows.

1. Choose θ ∼ Dir(α)

2. For each of N participating users, un:

(a) Choose a group zn ∼Multinomial(θ)

(b) Choose a user un ∼ p(un|zn)

One thing worth noting is that in LDA model a
document is assumed to consist of many words. In
the case of modeling user participation, a thread
typically has far fewer users than words inside a
document. This could potentially cause problem
during variable estimation and inference. How-
ever, we show that this approach actually works
well in practice (experimental results in Section 5).

4.2.2 Using Latent User Groups for
Prediction

For an incoming new thread, first the latent
group distribution is inferred using collapsed Gibbs
Sampling (Griffiths and Steyvers, 2004). The pos-
terior probability of a user ui participating in thread
j given the user group distribution is as follows.

P (ui|θj , φ) =
∑
k∈T

P (ui|φk)P (k|θj) (4)

In the equation, φk is the multinomial distribution
of users in group k, T is the number of latent user

groups, and θj is the group composition in thread
j after inference using the training data. In gen-
eral, the probability of user ui appearing in thread
j is proportional to the membership probabilities
of this user in the groups that compose the partici-
pating users.

4.3 Hybrid System
Up to this point we have two separate systems that
can generate ranked recommendation lists based on
different factors of threads. In order to generate the
final ranked list, we give each item a score accord-
ing to the ranked lists from the two systems. Then
the two scores are linearly interpolated using a tun-
ing parameter λ as shown in Equation 5. The final
ranked list is generated accordingly.

Ci =(1− λ)Scorecontent

+ λScorecollaborative

(5)

We propose several different rescoring methods
to generate the scores in the above formula for the
two individual systems.

• Posterior: The posterior probabilities of each
item from the two systems are used directly as
the score.

Scoredir = p(clike|itemi) (6)

This way the confidence of “how likely” an
item is interesting is preserved. However,
the downside is that the two different sys-
tems have different calibration on its posterior
probability, which could be problematic when
directly adding them together.

• Linear rescore: To counter the problem asso-
ciated with posterior probability calibration,
we use linear rescoring based on the ranked
list:

Scorelin = 1− posi

N
(7)

In the formula, posi is the position of item i
in the ranked list, and N is the total number
of items being ranked. The resulting score is
between 0 and 1, 1 being the first item on the
list and 0 being the last.

• Sigmoid rescore: In a ranked list, usually
items on the top and bottom of the list have
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higher confidence than those in the middle.
That is to say more “emphasis” should be put
on both ends of the list. Hence we use a sig-
moid function on the Scorelinear to capture
this.

Scoresig =
1

1 + e−l(Scorelin−0.5)
(8)

A sigmoid function is relatively flat on both
ends while being steep in the middle. In the
equation, l is a tuning parameter that decides
how “flat” the score of both ends of the list is
going to be. Determining the best value for l
is not a trivial problem. Here we empirically
assign l = 10.

5 Experiment and Evaluation

In this section, we evaluate our approach empiri-
cally on the three forum data sets described in Sec-
tion 3. We pick the top 300 most active users from
each forum for the evaluation. Among the 300
users, 100 of them are randomly selected as the de-
velopment set for parameter tuning, while the rest
is test set. All the data sets are filtered using an on-
line filter as previously described, with a window
size of 10 threads.

Threads are tokenized into words and filtered us-
ing a simple English stop word list. All words
are then ordered by their occurrences multiplied by
their inverse document frequencies (IDF).

idfw = log
|D|

|{d : w ∈ d}| (9)

The top 4,000 words from this list are then used to
form the vocabulary.

We used standard mean average precision
(MAP) as the evaluation metric. This standard in-
formation retrieval evaluation metric measures the
quality of the returned rank lists from a system.
Entries higher in the rank are more accurate than
lower ones. For an interesting thread recommenda-
tion system, it is preferable to provide a short and
high-quality list of recommendation; therefore, in-
stead of reporting full-range MAP, we report MAP
on top 10 relevant threads (MAP@10). The reason
why we picked 10 as the number of relevant doc-
ument for MAP evaluation is that users might not
have time to read too many posts, even if they are
relevant.

During evaluation, a 3-fold cross-validation is
performed for each user in the test set. In each fold,
MAP@10 score is calculated from the ranked list
generated by the system. Then the average from all
the folds and all the users is computed as the final
result.

To make a proper evaluation configuration, for
each user, only posts up to the first participation of
the testing user are used for the test set.

5.1 Content-based Results
Here we evaluate the performance of interest
thread prediction using only features from text.
First we use the ranking model with latent topic
information only on the development set to deter-
mine an optimal number of topics. Empirically,
we use hyper parameter β = 0.1 and α = 1/K
(K is the number of topics). We use the perfor-
mance of content-based recommendation directly
to determine the optimal topic number K. We var-
ied the latent topic number K from 10 to 100, and
found that the best performance was achieved us-
ing 30 topics in all three forums. Hence we use
K = 30 for content based recommendation unless
otherwise specified.

Next, we show how topic information can help
content-based recommendation achieve better re-
sults. We tune the parameter γ described in Sec-
tion 4.1.2 and show corresponding performances.
We compare the performance using Naive Bayes
classifier, before and after normalization. The
MAP@10 results on the test set are shown in Fig-
ure 3 for three forums. When γ = 0, no latent topic
information is used, and when γ = 1, latent topics
are used without any word features.

When using Naive Bayes classifier without nor-
malization, we find relatively larger performance
gain from adding topic information for the γ val-
ues of close to 0. This phenomenon is probably
because of the poor posterior probabilities of the
Naive Bayes classifier, which are close to either 1
or 0.

For normalized Naive Bayes classifier, interpo-
lating with latent topics based ranking yields per-
formance improvement compared to word-based
results consistently for the three forums. In
“Wow Gaming” corpus, the optimal performance
is achieved with a relatively high γ value (at around
0.5), and it is even higher for the “Fitness” forum.
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This means that the system relies more on the la-
tent topics information. This is because in these fo-
rums, casual conversation contains more irregular
words, causing more severe data sparsity problem
than others.

Between the two naive Bayes classifiers, we
can see that using normalized probabilities out-
performs the original one in “Wow Gaming” and
“Ubuntu” forums. This observation is consistent
with previous work (e.g., (Pavlov et al., 2004)).
However, we found that in “Fitness Forum”, the
performance degrades with normalization. Further
work is still needed to understand why this is the
case.

5.2 Latent User Group Classification
In this section, collaborative filtering using latent
user groups is evaluated. First, participating users
from the training set are used to estimate an LDA
model. Then, users participating in a thread are
used to infer the topic distribution of the thread.
Candidate threads are then sorted by the proba-
bility of a target user’s participation according to
Equation 4. Note that all the users in the forum are
used to estimate the latent user groups, but only the
top 300 active users are used in evaluation. Here,
we vary the number of latent user groups G from
5 to 100. Hyper parameters were set empirically:
α = 1/G, β = 0.1.

Figure 4 shows the MAP@10 results using dif-
ferent numbers of latent groups for the three fo-
rums. We compare the performance using latent
groups with a baseline using SVM ranking. In
the baseline system, users’ participation in a thread
is used as a binary feature. LibSVM with radius
based function (RBF) kernel is used to estimate the
probability of a user’s participation.

From the results, we find that ranking using la-
tent groups information outperforms the baseline
in almost all non-trivial cases. In the case of
“Ubuntu” forum, the performance gain is less com-
pared to other forums. We believe this is because
in this technical support forum, the average user
participation in threads is much less, thus making
it hard to infer a reliable group distribution in a
thread. In addition, the optimal number of user
groups differs greatly between “Fitness” forum and
“Wow Gaming” forum. We conjecture the reason
behind this is that in the “Fitness” forum, users

#user

#w
or

d

Figure 5: Position of items with different #users and
#words in a ranked list. (red=0 being higher on the
ranked list and green being lower)

may be interested in a larger variety of topics and
thus the user distribution in different topics is not
very obvious. In contrast, people in the gaming
forum are more specific to the topics they are inter-
ested in.

It is known that LDA tends to perform poorly
when there are too few words/users. To have a
general idea of how much user participation is
“enough” for decent prediction, we show a graph
(Figure 5) depicting the relationships among the
number of users, the number of words, and the po-
sition of the positive instances in the ranked lists.
In this graph, every dot is a positive thread instance
in “Wow Gaming” forum. Red color shows that
the positive thread is indeed getting higher ranks
than others. We observe that threads with around
16 participants can already achieve a decent perfor-
mance.

5.3 Hybrid System Performance

In this section, we evaluate the performance of the
hybrid system output. Parameters used in each fo-
rum data set are the optimal parameters found in
the previous sections. Here we show the effect of
the tuning parameter λ (described in Section 4.3).
Also, we compare three different scoring schemes
used to generate the final ranked list. Performance
of the hybrid system is shown in Table 3.

We can see that the combination of the two sys-
tems always outperforms any one model alone.
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Figure 3: Content-based filtering results: MAP@10 vs. γ (contribution of topic-based features).
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Figure 4: Collaborative filtering results: MAP@10 vs. user group number.

Forum Contribution Factor λ
0.0 1.0 Optimal

Ubuntu 0.523 0.198 0.534 (λ = 0.9)
Wow 0.278 0.283 0.304 (λ = 0.1)

Fitness 0.545 0.457 0.551 (λ = 0.85)

Table 3: Performance of the hybrid system with differ-
ent λ values.

This is intuitive since the two models use differ-
ent information sources. A MAP@10 score of 0.5
means that around half of the suggested results do
have user participation. We think this is a good re-
sult considering that this is not a trivial task.

We also notice that based on the nature of differ-
ent forums, the optimal λ value could be substan-
tially different. For example, in “Wow gaming”
forum where people participate in more threads, a
higher λ value is observed which favors collabo-
rative filtering score. In contrast, in “Ubuntu” fo-
rum, where people participate in far fewer threads,
the content-based system is more reliable in thread
prediction, hence a lower λ is used. This observa-
tion also shows that the hybrid system is more ro-
bust against differences among forums compared
with single model systems.

6 Conclusion

In this paper, we proposed a new system that can
intelligently recommend threads from online com-
munity according to a user’s interest. The system
uses both content-based filtering and collaborative-
filtering techniques. In content-based filtering, we
solve the problem of data sparsity in online con-
tent by smoothing using latent topic information.
In collaborative filtering, we model users’ partici-
pation in threads with latent groups under an LDA
framework. The two systems compliment each
other and their combination achieves better per-
formance than individual ones. Our experiments
across different forums demonstrate the robustness
of our methods and the difference among forums.
In the future work, we plan to explore how social
information could help further refine a user’s inter-
est.
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Abstract 

We present the PONG method to compute 

selectional preferences using part-of-speech 

(POS) N-grams.  From a corpus labeled with 

grammatical dependencies, PONG learns the 

distribution of word relations for each POS 

N-gram.  From the much larger but unlabeled 

Google N-grams corpus, PONG learns the 

distribution of POS N-grams for a given pair 

of words.  We derive the probability that one 

word has a given grammatical relation to the 

other. PONG estimates this probability by 

combining both distributions, whether or not 
either word occurs in the labeled corpus.  

PONG achieves higher average precision on 

16 relations than a state-of-the-art baseline in 

a pseudo-disambiguation task, but lower 

coverage and recall. 

1 Introduction 

Selectional preferences specify plausible fillers 
for the arguments of a predicate, e.g., celebrate.  
Can you celebrate a birthday?  Sure.  Can you 
celebrate a pencil?  Arguably yes:  Today the 
Acme Pencil Factory celebrated its one-billionth 

pencil.  However, such a contrived example is 
unnatural because unlike birthday, pencil lacks a 
strong association with celebrate.  How can we 
compute the degree to which birthday or pencil 
is a plausible and typical object of celebrate? 

Formally, we are interested in computing the 
probability Pr(r | t, R), where (as Table 1 
specifies), t is a target word such as celebrate, r 

is a word possibly related to it, such as birthday 
or pencil, and R is a possible relation between 
them, whether a semantic role such as the agent 
of an action, or a grammatical dependency such 
as the object of a verb.  We call t the “target” 

because originally it referred to a vocabulary 
word targeted for instruction, and r its “relative.” 

 

Notation Description 

R a relation between words 

t a target word 

r, r' possible relatives of t 

g a word N-gram 

gi and gj ith and jth words of g 

p the POS N-gram of g 

 
Table 1:  Notation used throughout this paper 
 

Previous work on selectional preferences has 
used them primarily for natural language analytic 
tasks such as word sense disambiguation (Resnik, 
1997),  dependency parsing (Zhou et al., 2011), 
and semantic role labeling (Gildea and Jurafsky, 
2002).  However, selectional preferences can 
also apply to natural language generation tasks 
such as sentence generation and question 

generation.  For generation tasks, choosing the 
right word to express a specified argument of a 
relation requires knowing its connotations – that 
is, its selectional preferences.  Therefore, it is 
useful to know selectional preferences for many 
different relations.  Such knowledge could have 
many uses.  In education, they could help teach 

word connotations.  In machine learning they 
could help computers learn languages.  In 
machine translation, they could help generate 
more natural wording. 

This paper introduces a method named PONG 
(for Part-Of-Speech N-Grams) to compute 
selectional preferences for many different 

relations by combining part-of-speech 
information and Google N-grams.  PONG 
achieves higher precision on a pseudo-
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disambiguation task than the best previous model 
(Erk et al., 2010), but lower coverage. 

The paper is organized as follows.  Section 2 
describes the relations for which we compute 

selectional preferences.  Section 3 describes 
PONG.  Section 4 evaluates PONG.  Section 5 
relates PONG to prior work.  Section 6 concludes.   

2 Relations Used 

Selectional preferences characterize constraints 
on the arguments of predicates.  Selectional 
preferences for semantic roles (such as agent and 
patient) are generally more informative than for 
grammatical dependencies (such as subject and 
object).  For example, consider these 
semantically equivalent but grammatically 

distinct sentences: 
Pat opened the door. 
The door was opened by Pat.   

In both sentences the agent of opened, namely 
Pat, must be capable of opening something – an 
informative constraint on Pat.  In contrast, 
knowing that the grammatical subject of opened 

is Pat in the first sentence and the door in the 
second sentence tells us only that they are nouns. 

Despite this limitation, selectional preferences 
for grammatical dependencies are still useful, for 
a number of reasons.  First, in practice they 
approximate semantic role labels.  For instance, 
typically the grammatical subject of opened is its 
agent.  Second, grammatical dependencies can be 

extracted by parsers, which tend to be more 
accurate than current semantic role labelers.  
Third, the number of different grammatical 
dependencies is large enough to capture diverse 
relations, but not so large as to have sparse data 
for individual relations.  Thus in this paper, we 
use grammatical dependencies as relations. 

A parse tree determines the basic grammatical 
dependencies between the words in a sentence.  
For instance, in the parse of Pat opened the door, 
the verb opened has Pat as its subject and door 
as its object, and door has the as its determiner.  
Besides these basic dependencies, we use two 
additional types of dependencies. 

Composing two basic dependencies yields a 
collapsed dependency (de Marneffe and Manning, 
2008).  For example, consider this sentence: 

The airplane flies in the sky. 
Here sky is the prepositional object of in, which 
is the head of a prepositional phrase attached to 
flies.  Composing these two dependencies yields 
the collapsed dependency prep_in between flies 

and sky, which captures an important semantic 

relation between these two content words:  sky is 
the location where flies occurs.  Other function 
words yield different collapsed dependencies.  
For example, consider these two sentences: 

The airplane flies over the ocean. 
The airplane flies and lands. 

Collapsed dependencies for the first sentence 
include prep_over between flies and ocean, 
which characterizes their relative vertical 
position, and conj_and between flies and lands, 
which links two actions that an airplane can 
perform.  As these examples illustrate, collapsing 

dependencies involving prepositions and 
conjunctions can yield informative dependencies 
between content words. 

Besides collapsed dependencies, PONG infers 
inverse dependencies.  Inverse selectional 
preferences are selectional preferences of 
arguments for their predicates, such as a 

preference of a subject or object for its verb.  
They capture semantic regularities such as the set 
of verbs that an agent can perform, which tend to 
outnumber the possible agents for a verb (Erk et 
al., 2010). 

3 Method 

To compute selectional preferences, PONG 
combines information from a limited corpus 
labeled with the grammatical dependencies 
described in Section 2, and a much larger 
unlabeled corpus.  The key idea is to abstract 

word sequences labeled with grammatical 
relations into POS N-grams, in order to learn a 
mapping from POS N-grams to those relations.  
For instance, PONG abstracts the parsed 
sentence Pat opened the door as NN VB DT NN, 
with the first and last NN as the subject and 
object of the VB.  To estimate the distribution of 

POS N-grams containing particular target and 
relative words, PONG POS-tags Google N-
grams (Franz and Brants, 2006). 

Section 3.1 derives PONG’s probabilistic 
model for combining information from labeled 
and unlabeled corpora.  Section 3.2 and Section 
3.3 describe how PONG estimates probabilities 

from each corpus.  Section 3.4 discusses a 
sparseness problem revealed during probability 
estimation, and how we address it in PONG. 

3.1 Probabilistic model 

We quantify the selectional preference for a 
relative r to instantiate a relation R of a target t as 

the probability Pr(r | t, R), estimated as follows.  
By the definition of conditional probability: 
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Pr( , , )
Pr( | , )

Pr( , )

r t R
r t R

t R  

We care only about the relative probability of 
different r for fixed t and R, so we rewrite it as:   

Pr( , , )r t R  

We use the chain rule: 

Pr( | , ) Pr( | ) Pr( )R r t r t t  

and notice that t is held constant: 

Pr( | , ) Pr( | )R r t r t  

We estimate the second factor as follows:

 
Pr( , ) freq( , )

Pr( | )
Pr( ) freq( )

t r t r
r t

t t  

We calculate the denominator freq(t) as the 
number of  N-grams in the Google N-gram 
corpus that contain t, and the numerator freq(t, r) 
as the number of N-grams containing both t and r. 

To estimate the factor Pr(R | r, t) directly from 
a corpus of text labeled with grammatical 

relations, it would be trivial to count how often a 
word r bears relation R to target word t.  
However, the results would be limited to the 
words in the corpus, and many relation 
frequencies would be estimated sparsely or 
missing altogether; t or r might not even occur. 

Instead, we abstract each word in the corpus as 
its part-of-speech (POS) label.  Thus we abstract 

The big boy ate meat as DT JJ NN VB NN.  We 
call this sequence of POS tags a POS N-gram.  
We use POS N-grams to predict word relations.  
For instance, we predict that in any word 
sequence with this POS N-gram, the JJ will 
modify (amod) the first NN, and the second NN 
will be the direct object (dobj) of the VB.   

This prediction is not 100% reliable.  For 
example, the initial 5-gram of The big boy ate 
meat pie has the same POS 5-gram as before.  
However, the dobj of its VB (ate) is not the 
second NN (meat), but the subsequent NN (pie).  
Thus POS N-grams predict word relations only 
in a probabilistic sense. 

To transform Pr(R | r, t) into a form we can 
estimate, we first apply the definition of 
conditional probability: 

 

Pr( , , )
Pr( | , )

Pr( , )

R t r
R t r

t r
 

To estimate the numerator Pr(R, t, r), we first 
marginalize over the POS N-gram p: 

 
Pr( , , , )

 
Pr( , )p

R t r p

t r  

We expand the numerator using the chain rule: 

 
Pr( | , , ) Pr( | , ) Pr( , )

Pr( , )p

R t r p p t r t r

t r  

Cancelling the common factor yields: 

 Pr( | , , ) Pr( | , )
p

R p t r p t r  

We approximate the first term Pr(R | p, t, r) as 
Pr(R | p), based on the simplifying assumption 
that R is conditionally independent of t and r, 
given p.  In other words, we assume that given a 
POS N-gram, the target and relative words t and 
r give no additional information about the 

probability of a relation.  However, their 
respective positions i and j in the POS N-gram p 
matter, so we condition the probability on them: 

 Pr( | , , ) Pr( | , , )R p t r R p i j
 

Summing over their possible positions, we get 

Pr( | , )

Pr( | , , ) Pr( | , )i j

p i j

R r t

R p i j p t g r g

 

As Figure 1 shows, we estimate Pr(R | p, i, j) by 
abstracting the labeled corpus into POS N-grams. 
We estimate Pr(p | t = gi, r = gj) based on the 
frequency of partially lexicalized POS N-grams 
like DT JJ:red NN:hat VB NN among Google N-

grams with t and r in the specified positions. 
Sections 3.2 and 3.3 describe how we estimate 

Pr(R | p, i, j) and Pr(p | t = gi, r = gj), respectively.  
Note that PONG estimates relative rather than 
absolute probabilities.  Therefore it cannot (and 
does not) compare them against a fixed threshold 
to make decisions about selectional preferences.  

3.2 Mapping POS N-grams to relations 

To estimate Pr(R | p, i, j), we use the Penn 
Treebank Wall Street Journal (WSJ) corpus, 
which is labeled with grammatical relations 
using the Stanford dependency parser (Klein and 
Manning, 2003).   

To estimate the probability Pr(R | p, i, j) of a 
relation R between a target at position i and a 
relative at position j in a POS N-gram p, we 
compute what fraction of the word N-grams g 
with POS N-gram p have relation R between 
some target t and relative r at positions i and j: 

Pr( | , , )

freq( . .POS( ) relation( , ) )

freq( . .POS( ) relation( , ))

i j

i j

R p i j

g s t g p g g R

g s t g p g g
 

3.3 Estimating POS N-gram distributions 

Given a target and relative, we need to estimate 
their distribution of POS N-grams and positions. 
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Figure 1:  Overview of PONG.   

From the labeled corpus, PONG extracts abstract mappings from POS N-grams to relations. 
From the unlabeled corpus, PONG estimates POS N-gram probability given a target and relative. 
 

A labeled corpus is too sparse for this purpose, 
so we use the much larger unlabeled Google N-
grams corpus (Franz and Brants, 2006). 

The probability that an N-gram with target t at 

position i and relative r at position j will have the 
POS N-gram p is: 

Pr( | , )

freq( . .POS( ) , , ))

freq( . . )

i j

i j

i j

p t g r g

g s t g p g t g r

g s t g t g r
  

To compute this ratio, we first use a well-
indexed table to efficiently retrieve all N-grams 
with words t and r at the specified positions.  We 
then obtain their POS N-grams from the Stanford 
POS tagger (Toutanova et al., 2003), and count 
how many of them have the POS N-gram p. 

3.4 Reducing POS N-gram sparseness 

We abstract word N-grams into POS N-grams to 
address the sparseness of the labeled corpus, but 
even the POS N-grams can be sparse.  For n=5, 
the rarer ones occur too sparsely (if at all) in our 
labeled corpus to estimate their frequency. 

To address this issue, we use a coarser POS 
tag set than the Penn Treebank POS tag set.  As 
Table 2 shows, we merge tags for adjectives, 
nouns, adverbs, and verbs into four coarser tags.   

Coarse Original  

ADJ JJ, JJR, JJS 

ADVERB RB, RBR, RBS 

NOUN NN, NNS, NNP, NNPS 

VERB VB, VBD, VBG, VBN, VBP, VBZ 

Table 2:  Coarser POS tag set used in PONG 

To gauge the impact of the coarser POS tags, 
we calculated Pr(r | t, R) for 76 test instances 
used in an earlier unpublished study by Liu Liu, 
a former Project LISTEN graduate student.  Each 

instance consists of two randomly chosen words 
in the WSJ corpus labeled with a grammatical 
relation.  Coarse POS tags increased coverage of 
this pilot set – that is, the fraction of instances for 

which PONG computes a probability – from 69% 
to 92%. 

Using the universal tag set (Petrov et al., 2011) 
as an even coarser tag set is an interesting future 
direction, especially for other languages.  Its 
smaller size (12 tags vs. our 23) should reduce 
data sparseness, but increase the risk of over-
generalization. 

4 Evaluation 

To evaluate PONG, we use a standard pseudo-
disambiguation task, detailed in Section 4.1.  

Section 4.2 describes our test set.  Section 4.3 
lists the metrics we evaluate on this test set.  
Section 4.4 describes the baselines we compare 
PONG against on these metrics, and Section 4.5 
describes the relations we compare them on.  
Section 4.6 reports our results.  Section 4.7 
analyzes sources of error. 

4.1 Evaluation task 

The pseudo-disambiguation task (Gale et al., 
1992; Schutze, 1992) is as follows:  given a 
target word t, a relation R, a relative r, and a 
random distracter r', prefer either r or r', 
whichever is likelier to have relation R to word t. 

This evaluation does not use a threshold:  just 
prefer whichever word is likelier according to the 
model being evaluated.  If the model assigns only 
one of the words a probability, prefer it, based on 
the assumption that the unknown probability of 
the other word is lower.  If the model assigns the 
same probability to both words, or no probability 

to either word, do not prefer either word. 
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4.2 Test set 

As a source of evaluation data, we used the 

British National Corpus (BNC).  As a common 
test corpus for all the methods we evaluated, we 
selected one half of BNC by sorting filenames 
alphabetically and using the odd-numbered files.  
We used the other half of BNC as a training 
corpus for the baseline methods we compared 
PONG to. 

A test set for the pseudo-disambiguation task 

task consists of tuples of the form (R, t, r, r').  To 
construct a test set, we adapted the process used 
by Rooth et al. (1999) and Erk et al. (2010). 

First, we chose 100 (R, t) pairs for each 
relation R at random from the test corpus. Rooth 
et al. (1999) and Erk et al. (2010) chose such 
pairs from a training corpus to ensure that it 

contained the target t.  In contrast, choosing pairs 
from an unseen test corpus includes target words 
whether or not they occur in the training corpus. 

To obtain a sample stratified by frequency, 
rather than skewed heavily toward high-
frequency pairs, Erk et al. (2010) drew (R, t) 
pairs from each of five frequency bands in the 

entire British National Corpus (BNC):  50-100 
occurrences; 101-200; 201-500; 500-1000; and 
more than 1000.  However, we use only half of 
BNC as our test corpus, so to obtain a 
comparable test set, we drew 20 (R, t) pairs from 
each of the corresponding frequency bands in 
that half:  26-50 occurrences; 51-100; 101-250; 
251-500; and more than 500. 

For each chosen (R, t) pair, we drew a separate 
(R, t, r) triple from each of six frequency bands:  
1-25 occurrences; 26-50; 51-100; 101-250; 251-
500; and more than 500.  We necessarily omitted 
frequency bands that contained no such triples.  
We filtered out triples where r did not have the 
most frequent part of speech for the relation R.  

For example, this filter would exclude the triple 
(dobj, celebrate, the) because a direct object is 
most frequently a noun, but the is a determiner. 

Then, like Erk et al. (2010), we paired the 
relative r in each (R, t, r) triple with a distracter r' 
with the same (most frequent) part of speech as 
the relative r, yielding the test tuple (R, t, r, r'). 

Rooth et al. (1999) restricted distracter 
candidates to words with between 30 and 3,000 
occurrences in BNC; accordingly, we chose only 
distracters with between 15 and 1,500 
occurrences in our test corpus.  We selected r' 
from these candidates randomly, with probability 
proportional to their frequency in the test corpus.  
Like Rooth et al. (1999), we excluded as 

distracters any actual relatives, i.e. candidates r' 
where the test corpus contained the triple (R, t, r').  
Table 3 shows the resulting number of (R, t, r, r') 
test tuples for each relation. 

 

Relation R # tuples for R # tuples for R
T
 

advmod 121 131 

amod 162 128 

conj_and 155 151 

dobj 145 167 

nn 173 158 

nsubj  97 124 

prep_of 144 153 

xcomp 139 140 

Table 3:  Test set size for each relation 

4.3 Metrics 

We report four evaluation metrics:  precision, 
coverage, recall, and F-score.  Precision (called 

“accuracy” in some papers on selectional 
preferences) is the percentage of all covered 
tuples where the original relative r is preferred.  
Coverage is the percentage of tuples for which 
the model prefers r to r' or vice versa.  Recall is 
the percentage of all tuples where the original 
relative is preferred, i.e., precision times 

coverage.  F-score is the harmonic mean of 
precision and recall. 

4.4 Baselines 

We compare PONG to two baseline methods.   
EPP is a state-of-the-art model for which Erk 

et al. (2010) reported better performance than 

both Resnik’s (1996) WordNet model and 
Rooth’s (1999) EM clustering model.  EPP 
computes selectional preferences using 
distributional similarity, based on the assumption 
that relatives are likely to appear in the same 
contexts as relatives seen in the training corpus.  
EPP computes the similarity of a potential 

relative’s vector space representation to relatives 
in the training corpus. 

EPP has various options for its vector space 
representation, similarity measure, weighting  
scheme, generalization space, and whether to use 
PCA.  In re-implementing EPP, we chose the 
options that performed best according to Erk et al. 
(2010), with one exception.  To save work, we 

chose not to use PCA, which Erk et al. (2010) 
described as performing only slightly better in 
the dependency-based space. 
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Relation Target Relative Description 

advmod verb adverb Adverbial modifier 

amod noun adjective Adjective modifier 

conj_and noun noun Conjunction with “and” 

dobj verb noun Direct object 

nn noun noun Noun compound modifier 

nsubj verb noun Nominal subject 

prep_of noun noun Prepositional modifier 

xcomp verb verb Open clausal complement 

 
Table 4: Relations tested in the pseudo-disambiguation experiment.   

Relation names and descriptions are from de Marneffe and Manning (2008) except for prep_of.   
Target and relative POS are the most frequent POS pairs for the relations in our labeled WSJ corpus. 

 

Relation 
Precision (%) Coverage (%) Recall (%) F-score (%) 

PONG EPP DEP PONG EPP DEP PONG EPP DEP PONG EPP DEP 

advmod 78.7 - 98.6 72.1 - 69.2 56.7 - 68.3 65.9 - 80.7 

advmod
T
 89.0 71.0 97.4 69.5 100 59.5 61.8 71.0 58.0 73.0 71.0 72.7 

amod 78.8 - 99.0 90.1 - 61.1 71.0 - 60.5 74.7 - 75.1 

amod
T
 84.1 74.0 97.3 83.6 99.2 57.0 70.3 73.4 55.5 76.6 73.7 70.6 

conj_and 77.2 74.2 100 73.6 100 52.3 56.8 74.2 52.3 65.4 74.2 68.6 

conj_and
T
 80.5 70.2 97.3 74.8 100 49.7 60.3 70.2 48.3 68.9 70.2 64.6 

dobj 87.2 80.0 97.7 80.7 100 60.0 70.3 80.0 58.6 77.9 80.0 73.3 

dobj
T
 89.6 80.2 98.1 92.2 100 64.1 82.6 80.2 62.9 86.0 80.2 76.6 

nn 86.7 73.8 97.2 95.3 99.4 63.0 82.7 73.4 61.3 84.6 73.6 75.2 

nn
T
 83.8 79.7 99.0 93.7 100 60.8 78.5 79.7 60.1 81.0 79.7 74.8 

nsubj 76.1 77.3 100 69.1 100 42.3 52.6 77.3 42.3 62.2 77.3 59.4 

nsubj
T
 78.5 66.9 95.0 86.3 100 48.4 67.7 66.9 46.0 72.7 66.9 62.0 

prep_of 88.4 77.8 98.4 84.0 100 44.4 74.3 77.8 43.8 80.3 77.8 60.6 

prep_of
T
 79.2 76.5 97.4 81.7 100 50.3 64.7 76.5 49.0 71.2 76.5 65.2 

xcomp 84.0 61.9 95.3 85.6 100 61.2 71.9 61.9 58.3 77.5 61.9 72.3 

xcomp
T
 86.4 78.6 98.9 89.3 100 63.6 77.1 78.6 62.9 81.5 78.6 76.9 

average 83.0 74.4 97.9 82.6 99.9 56.7 68.7 74.4 55.5 75.0 74.4 70.5 

 
Table 5:  Coverage, Precision, Recall, and F-score for various relations; RT is the inverse of relation R. 

PONG uses POS N-grams, EPP uses distributional similarity, and DEP uses dependency parses. 
 

To score a potential relative r0, EPP uses this 
formula:

,
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Here sim(r0, r) is the nGCM similarity defined 
below between vector space representations of r0 
and a relative r seen in the training data: 
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The weight function wtr,t(a) is analogous to 
inverse document frequency in Information 
Retrieval. 

DEP, our second baseline method, runs the 
Stanford dependency parser to label the training 
corpus with grammatical relations, and uses their 
frequencies to predict selectional preferences.  

To do the pseudo-disambiguation task, DEP 
compares the frequencies of (R, t, r) and (R, t, r'). 

4.5 Relations tested 

To test PONG, EPP, and DEP, we chose the 
most frequent eight relations between content 

words in the WSJ corpus, which occur over 
10,000 times and are described in Table 4.  We 
also tested their inverse relations.  However, EPP 
does not compute selectional preferences for 
adjective and adverb as relatives.  For this reason, 
we did not test EPP on advmod and amod 
relations with adverbs and adjectives as relatives. 
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4.6 Experimental results 

Table 5 displays results for all 16 relations.  To 

compute statistical significance conservatively in 
comparing methods, we used paired t-tests with 
N = 16 relations. 

PONG’s precision was significantly better 
than EPP (p<0.001) but worse than DEP 
(p<0.0001).  Still, PONG’s high precision 
validates its underlying assumption that POS N-
grams strongly predict grammatical 

dependencies. 
On coverage and recall, EPP beat PONG, 

which beat DEP (p<0.0001).  PONG’s F-score 
was higher, but not significantly, than EPP’s 
(p>0.5) or DEP’s (p>0.02). 

4.7 Error analysis 

In the pseudo-disambiguation task of choosing 
which of two words is related to a target, PONG 
makes errors of coverage (preferring neither 
word) and precision (preferring the wrong word). 

Coverage errors, which occurred 17.4% of the 
time on average, arose only when PONG failed 

to estimate a probability for either word.  PONG 
fails to score a potential relative r of a target t 
with a specified relation R if the labeled corpus 
has no POS N-grams that (a) map to R, (b) 
contain the POS of t and r, and (c) match Google 
word N-grams with t and r at those positions.  
Every relation has at least one POS N-gram that 
maps to it, so condition (a) never fails.  PONG 

uses the most frequent POS of t and r, and we 
believe that condition (b) never fails.  However, 
condition (c) can and does fail when t and r do 
not co-occur in any Google N-grams, at least that 
match a POS N-gram that can map to relation R.  
For example, oversee and diet do not co-occur in 
any Google N-grams, so PONG cannot score diet 

as a potential dobj of oversee. 
Precision errors, which occur 17% of the time 

on average, arose when (a) PONG scored the 
distracter but failed to score the true relative, or 
(b) scored them both but preferred the distracter.  
Case (a) accounted for 44.62% of the errors on 
the covered test tuples. 

One likely cause of errors in case (b) is over-

generalization when PONG abstracts a word N-
gram labeled with a relation by mapping its POS 
N-gram to that relation.  In particular, the coarse 
POS tag set may discard too much information.  
Another likely cause of errors is probabilities 
estimated poorly due to sparse data.   The 
probability of a relation for a POS N-gram rare in 

the training corpus is likely to be inaccurate.  So 

is the probability of a POS N-gram for rare co-
occurrences of a target and relative in Google 
word N-grams.  Using a smaller tag set may 
reduce the sparse data problem but increase the 

risk of over-generalization. 

5 Relation to Prior Work 

In predicting selectional preferences, a key 
issue is generalization.  Our DEP baseline simply 

counts co-occurrences of target and relative 
words in a corpus to predict selectional 
preferences, but only for words seen in the 
corpus.  Prior work, summarized in  
Table 6, has therefore tried to infer the similarity 
of unseen relatives to seen relatives. To illustrate, 
consider the problem of inducing that the direct 

objects of celebrate tend to be days or events. 
Resnik (1996) combined WordNet with a 

labeled corpus to model the probability that 
relatives of a predicate belong to a particular 
conceptual class.  This method could notice, for 
example, that the direct objects of celebrate tend 
to belong to the conceptual class event.  Thus it 

could prefer anniversary or occasion as the 
object of celebrate even if unseen in its training 
corpus.  However, this method depends strongly 
on the WordNet taxonomy. 

Rather than use linguistic resources such as 
WordNet, Rooth et al. (1999) and Wald et al. 
(2008) induced semantically annotated 
subcategorization frames from unlabeled corpora. 

They modeled semantic classes as hidden 
variables, which they estimated using EM-based 
clustering.  Ritter (2010) computed selectional 
preferences by using unsupervised topic models 
such as LinkLDA, which infers semantic classes 
of words automatically instead of requiring a pre-
defined set of classes as input. 

The contexts in which a linguistic unit occurs 
provide information about its meaning.  Erk 
(2007) and Erk et al. (2010) modeled the 
contexts of a word as the distribution of words  
that co-occur with it.  They calculated the 
semantic similarity of two words as the similarity 
of their context distributions according to various 

measures.  Erk et al. (2010) reported the state-of-
the-art method we used as our EPP baseline. 

In contrast to prior work that explored various 
solutions to the generalization problem, we don’t 
so much solve this problem as circumvent it.  
Instead of generalizing from a training corpus 
directly to unseen words, PONG abstracts a word 
N-gram to a POS N-gram and maps it to the 

relations that the word N-gram is labeled with. 
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Table 6:  Comparison with prior methods to compute selectional preferences 

 

To compute selectional preferences, whether the 
words are in the training corpus or not, PONG 
applies these abstract mappings to word N-grams 
in the much larger Google N-grams corpus. 

Some prior work on selectional preferences 
has used POS N-grams and a large unlabeled 

corpus.  The most closely related work we found 
was by Gormley et al. (2011).  They used 
patterns in POS N-grams to generate test data for 
their selectional preferences model, but not to 
infer preferences.  Zhou et al. (2011) identified 
selectional preferences of one word for another 

Reference Relation to 

target 

Lexical 

resource 

Primary  corpus 

(labeled) & 

information 

used 

Generalization  

corpus 

(unlabeled) & 

information used 

Method 

Resnik, 
1996 

Verb-object 
Verb-subject 
Adjective-noun 
Modifier-head 
Head-modifier 

Senses in 
WordNet 
noun 
taxonomy 

Target, relative, 
and relation in a 
parsed, partially 
sense-tagged 
corpus (Brown 

corpus) 

none Information 
theoretic 
model 

Rooth et 
al., 1999 

Verb-object 
Verb-subject 

none Target, relative, 
and relation in a 
parsed corpus 
(parsed BNC) 

none EM-based 
clustering 

Ritter, 
2010 

Verb-subject 
Verb-object 
Subject-verb-
object 

none Subject-verb-
object tuples 
from 500 million 
web-pages 

none LDA model 

Erk, 2007 Predicate and 
Semantic roles 

none Target, relative, 
and relation in a 
semantic role 
labeled corpus 
(FrameNet) 

Words and their 
relations in a 
parsed corpus 
(BNC) 

Similarity 
model based 
on word co-
occurrence  

Erk et al., 
2010 

SYN option:  
Verb-subject 
Verb-object, and 
their inverse 

relations 
SEM option:  
verb and 
semantic roles 
that have nouns 
as their headword 
in a primary 
corpus, and their 

inverse relations 

none Target, relative, 
and relation in 
SYN   option:  a  
parsed corpus 

(parsed BNC) 
SEM   option:  a 
semantic role 
labeled corpus 
(FrameNet) 

Two options: 
 
WORDSPACE:  
an unlabeled 

corpus (BNC) 
 
DEPSPACE:  
Words and their 
subject and object 
relations in a 
parsed corpus 
(parsed BNC) 

Similarity 
model using 
vector space 
representation 

of words 

Zhou et 
al., 2011 

Any (relations 
not distinguished) 

none Counts of words 
in Web or 
Google N-gram 

none PMI 
(Pointwise 
Mutual 

Information) 

This paper All grammatical 
dependencies in a 
parsed corpus, 
and their inverse 

relations 

none POS N-gram 
distribution for 
relations in 
parsed WSJ 

corpus 

POS N-gram 
distribution for 
target and relative 
in Google N-gram 

Combine both 
POS N-gram 
distributions 
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by using Pointwise Mutual Information (PMI) 
(Fano, 1961) to check whether they co-occur 
more frequently in a large corpus than predicted 
by their unigram frequencies.  However, their 

method did not distinguish among different 
relations. 

6 Conclusion 

This paper describes, derives, and evaluates 

PONG, a novel probabilistic model of selectional 
preferences.  PONG uses a labeled corpus to map 
POS N-grams to grammatical relations.  It 
combines this mapping with probabilities 
estimated from a much larger POS-tagged but 
unlabeled Google N-grams corpus. 

We tested PONG on the eight most common 

relations in the WSJ corpus, and their inverses – 
more relations than evaluated in prior work.  
Compared to the state-of-the-art EPP baseline 
(Erk et al., 2010), PONG averaged higher 
precision but lower coverage and recall.  
Compared to the DEP baseline, PONG averaged 
lower precision but higher coverage and recall.  

All these differences were substantial (p < 0.001). 
Compared to both baselines, PONG’s average F-
score was higher, though not significantly. 

Some directions for future work include:  First, 
improve PONG by incorporating models of 
lexical similarity explored in prior work.  Second, 
use the universal tag set to extend PONG to other 
languages, or to perform better in English.  Third, 

in place of grammatical relations, use rich, 
diverse semantic roles, while avoiding sparsity.  
Finally, use selectional preferences to teach word 
connotations by using various relations to 
generate example sentences or useful questions. 

Acknowledgments 

The research reported here was supported by the 
Institute of Education Sciences, U.S. Department 
of Education, through Grant R305A080157.  The 
opinions expressed are those of the authors and 
do not necessarily represent the views of the 

Institute or the U.S. Department of Education.  
We thank the helpful reviewers and Katrin Erk 
for her generous assistance. 

References 

de Marneffe, M.-C. and Manning, C.D. 2008. 

Stanford Typed Dependencies Manual. 

http://nlp.stanford.edu/software/dependencies_man

ual.pdf, Stanford University, Stanford, CA. 

Erk, K. 2007. A Simple, Similarity-Based Model for 

Selectional Preferences. In Proceedings of the 45th 

Annual Meeting of the Association of 

Computational Linguistics, Prague, Czech 

Republic, June, 2007, 216-223. 

Erk, K., Padó, S. and Padó, U. 2010. A Flexible, 

Corpus-Driven Model of Regular and Inverse 

Selectional Preferences. Computational Linguistics 

36(4), 723-763. 

Fano, R. 1961. Transmission  O F   Information:  A  

Statistical  Theory  of  Communications. MIT 

Press, Cambridge, MA. 

Franz, A. and Brants, T. 2006. All Our N-Gram Are 

Belong to You. 

Gale, W.A., Church, K.W. and Yarowsky, D. 1992. 
Work on Statistical Methods for Word Sense 

Disambiguation. In Proceedings of the AAAI Fall 

Symposium on Probabilistic Approaches to Natural 

Language, Cambridge, MA, October 23–25, 1992, 

54-60. 

Gildea, D. and Jurafsky, D. 2002. Automatic Labeling 
of Semantic Roles. Computational Linguistics 

28(3), 245-288. 

Gormley, M.R., Dredze, M., Durme, B.V. and Eisner, 

J. 2011. Shared Components Topic Models with 

Application to Selectional Preference, NIPS 
Workshop on Learning Semantics Sierra Nevada, 

Spain. 

im Walde, S.S., Hying, C., Scheible, C. and Schmid, 

H. 2008. Combining Em Training and the Mdl 

Principle for an Automatic Verb Classification 

Incorporating Selectional Preferences. In 
Proceedings of the 46th Annual Meeting of the 

Association for Computational Linguistics, 

Columbus, OH,  2008, 496-504. 

Klein, D. and Manning, C.D. 2003. Accurate 

Unlexicalized Parsing. In Proceedings of the 41st 

Annual Meeting of the Association for 
Computational Linguistics, Sapporo, Japan, July 7-

12, 2003, E.W. HINRICHS and D. ROTH, Eds. 

Petrov, S., Das, D. and McDonald, R.T. 2011. A 

Universal Part-of-Speech Tagset. ArXiv 

1104.2086. 

Resnik, P. 1996. Selectional Constraints: An 

Information-Theoretic Model and Its 

Computational Realization. Cognition 61, 127-159. 

Resnik, P. 1997. Selectional Preference and Sense 

Disambiguation. In ACL SIGLEX Workshop on 

385



Tagging Text with Lexical Semantics: Why, What, 

and How, Washington, DC, April 4-5, 1997, 52-57. 

Ritter, A., Mausam and Etzioni, O. 2010. A Latent 

Dirichlet Allocation Method for Selectional 

Preferences. In Proceedings of the 48th Annual 

Meeting of the Association for Computational 

Linguistics, Uppsala, Sweden,  2010, 424-434. 

Rooth, M., Riezler, S., Prescher, D., Carroll, G. and 

Beil, F. 1999. Inducing a Semantically Annotated 

Lexicon Via Em-Based Clustering. In Proceedings 

of the 37th Annual Meeting of the Association for 

Computational Linguistics on Computational 

Linguistics, College Park, MD,  1999, Association 

for Computational Linguistics, 104-111. 

Schutze, H. 1992. Context Space. In Proceedings of 

the AAAI Fall Symposium on Intelligent 

Probabilistic Approaches to Natural Language, 

Cambridge, MA,  1992, 113-120. 

Toutanova, K., Klein, D., Manning, C. and Singer, Y. 

2003. Feature-Rich Part-of-Speech Tagging with a 

Cyclic Dependency Network. In Proceedings of the 

Human Language Technology Conference and 

Annual Meeting of the North American Chapter of 

the Association for Computational Linguistics 

(HLT-NAACL), Edmonton, Canada,  2003, 252–

259. 

Zhou, G., Zhao, J., Liu, K. and Cai, L. 2011. 

Exploiting Web-Derived Selectional Preference to 

Improve Statistical Dependency Parsing. In 

Proceedings of the 49th Annual Meeting of the 

Association for Computational Linguistics, 

Portland, OR,  2011, 1556–1565. 

 

 

386



Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 387–396,
Avignon, France, April 23 - 27 2012. c©2012 Association for Computational Linguistics

WebCAGe – A Web-Harvested Corpus Annotated with GermaNet Senses

Verena Henrich, Erhard Hinrichs, and Tatiana Vodolazova
University of Tübingen

Department of Linguistics
{firstname.lastname}@uni-tuebingen.de

Abstract

This paper describes an automatic method
for creating a domain-independent sense-
annotated corpus harvested from the web.
As a proof of concept, this method has
been applied to German, a language for
which sense-annotated corpora are still in
short supply. The sense inventory is taken
from the German wordnet GermaNet. The
web-harvesting relies on an existing map-
ping of GermaNet to the German version
of the web-based dictionary Wiktionary.
The data obtained by this method consti-
tute WebCAGe (short for: Web-Harvested
Corpus Annotated with GermaNet Senses),
a resource which currently represents the
largest sense-annotated corpus available for
German. While the present paper focuses
on one particular language, the method as
such is language-independent.

1 Motivation

The availability of large sense-annotated corpora
is a necessary prerequisite for any supervised and
many semi-supervised approaches to word sense
disambiguation (WSD). There has been steady
progress in the development and in the perfor-
mance of WSD algorithms for languages such as
English for which hand-crafted sense-annotated
corpora have been available (Agirre et al., 2007;
Erk and Strapparava, 2012; Mihalcea et al., 2004),
while WSD research for languages that lack these
corpora has lagged behind considerably or has
been impossible altogether.

Thus far, sense-annotated corpora have typi-
cally been constructed manually, making the cre-
ation of such resources expensive and the com-
pilation of larger data sets difficult, if not com-
pletely infeasible. It is therefore timely and ap-
propriate to explore alternatives to manual anno-
tation and to investigate automatic means of cre-
ating sense-annotated corpora. Ideally, any auto-
matic method should satisfy the following crite-
ria:

(1) The method used should be language inde-
pendent and should be applicable to as many
languages as possible for which the neces-
sary input resources are available.

(2) The quality of the automatically generated
data should be extremely high so as to be us-
able as is or with minimal amount of manual
post-correction.

(3) The resulting sense-annotated materials (i)
should be non-trivial in size and should be
dynamically expandable, (ii) should not be
restricted to a narrow subject domain, but
be as domain-independent as possible, and
(iii) should be freely available for other re-
searchers.

The method presented below satisfies all of
the above criteria and relies on the following re-
sources as input: (i) a sense inventory and (ii) a
mapping between the sense inventory in question
and a web-based resource such as Wiktionary1 or

1http://www.wiktionary.org/
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Wikipedia2.
As a proof of concept, this automatic method

has been applied to German, a language for which
sense-annotated corpora are still in short supply
and fail to satisfy most if not all of the crite-
ria under (3) above. While the present paper
focuses on one particular language, the method
as such is language-independent. In the case
of German, the sense inventory is taken from
the German wordnet GermaNet3 (Henrich and
Hinrichs, 2010; Kunze and Lemnitzer, 2002).
The web-harvesting relies on an existing map-
ping of GermaNet to the German version of the
web-based dictionary Wiktionary. This mapping
is described in Henrich et al. (2011). The
resulting resource consists of a web-harvested
corpus WebCAGe (short for: Web-Harvested
Corpus Annotated with GermaNet Senses),
which is freely available at: http://www.sfs.uni-
tuebingen.de/en/webcage.shtml

The remainder of this paper is structured as
follows: Section 2 provides a brief overview of
the resources GermaNet and Wiktionary. Sec-
tion 3 introduces the mapping of GermaNet to
Wiktionary and how this mapping can be used
to automatically harvest sense-annotated materi-
als from the web. The algorithm for identifying
the target words in the harvested texts is described
in Section 4. In Section 5, the approach of au-
tomatically creating a web-harvested corpus an-
notated with GermaNet senses is evaluated and
compared to existing sense-annotated corpora for
German. Related work is discussed in Section 6,
together with concluding remarks and an outlook
on future work.

2 Resources

2.1 GermaNet

GermaNet (Henrich and Hinrichs, 2010; Kunze
and Lemnitzer, 2002) is a lexical semantic net-
work that is modeled after the Princeton Word-
Net for English (Fellbaum, 1998). It partitions the

2http://www.wikipedia.org/
3Using a wordnet as the gold standard for the sense inven-

tory is fully in line with standard practice for English where
the Princeton WordNet (Fellbaum, 1998) is typically taken
as the gold standard.

lexical space into a set of concepts that are inter-
linked by semantic relations. A semantic concept
is represented as a synset, i.e., as a set of words
whose individual members (referred to as lexical
units) are taken to be (near) synonyms. Thus, a
synset is a set-representation of the semantic rela-
tion of synonymy.

There are two types of semantic relations in
GermaNet. Conceptual relations hold between
two semantic concepts, i.e. synsets. They in-
clude relations such as hypernymy, part-whole re-
lations, entailment, or causation. Lexical rela-
tions hold between two individual lexical units.
Antonymy, a pair of opposites, is an example of a
lexical relation.

GermaNet covers the three word categories of
adjectives, nouns, and verbs, each of which is
hierarchically structured in terms of the hyper-
nymy relation of synsets. The development of
GermaNet started in 1997, and is still in progress.
GermaNet’s version 6.0 (release of April 2011)
contains 93407 lexical units, which are grouped
into 69594 synsets.

2.2 Wiktionary
Wiktionary is a web-based dictionary that is avail-
able for many languages, including German. As
is the case for its sister project Wikipedia, it
is written collaboratively by volunteers and is
freely available4. The dictionary provides infor-
mation such as part-of-speech, hyphenation, pos-
sible translations, inflection, etc. for each word.
It includes, among others, the same three word
classes of adjectives, nouns, and verbs that are
also available in GermaNet. Distinct word senses
are distinguished by sense descriptions and ac-
companied with example sentences illustrating
the sense in question.

Further, Wiktionary provides relations to
other words, e.g., in the form of synonyms,
antonyms, hypernyms, hyponyms, holonyms, and
meronyms. In contrast to GermaNet, the relations
are (mostly) not disambiguated.

For the present project, a dump of the Ger-
man Wiktionary as of February 2, 2011 is uti-

4Wiktionary is available under the Cre-
ative Commons Attribution/Share-Alike license
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 1: Sense mapping of GermaNet and Wiktionary using the example of Bogen.

lized, consisting of 46457 German words com-
prising 70339 word senses. The Wiktionary data
was extracted by the freely available Java-based
library JWKTL5.

3 Creation of a Web-Harvested Corpus

The starting point for creating WebCAGe is an
existing mapping of GermaNet senses with Wik-
tionary sense definitions as described in Henrich
et al. (2011). This mapping is the result of a
two-stage process: i) an automatic word overlap
alignment algorithm in order to match GermaNet
senses with Wiktionary sense descriptions, and
ii) a manual post-correction step of the automatic
alignment. Manual post-correction can be kept at
a reasonable level of effort due to the high accu-
racy (93.8%) of the automatic alignment.

The original purpose of this mapping was to
automatically add Wiktionary sense descriptions
to GermaNet. However, the alignment of these
two resources opens up a much wider range of

5http://www.ukp.tu-darmstadt.de/software/jwktl

possibilities for data mining community-driven
resources such as Wikipedia and web-generated
content more generally. It is precisely this poten-
tial that is fully exploited for the creation of the
WebCAGe sense-annotated corpus.

Fig. 1 illustrates the existing GermaNet-
Wiktionary mapping using the example word Bo-
gen. The polysemous word Bogen has three dis-
tinct senses in GermaNet which directly corre-
spond to three separate senses in Wiktionary6.
Each Wiktionary sense entry contains a definition
and one or more example sentences illustrating
the sense in question. The examples in turn are
often linked to external references, including sen-
tences contained in the German Gutenberg text
archive7 (see link in the topmost Wiktionary sense
entry in Fig. 1), Wikipedia articles (see link for
the third Wiktionary sense entry in Fig. 1), and
other textual sources (see the second sense en-
try in Fig. 1). It is precisely this collection of

6Note that there are further senses in both resources not
displayed here for reasons of space.

7http://gutenberg.spiegel.de/
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Figure 2: Sense mapping of GermaNet and Wiktionary using the example of Archiv.

heterogeneous material that can be harvested for
the purpose of compiling a sense-annotated cor-
pus. Since the target word (rendered in Fig. 1
in bold face) in the example sentences for a par-
ticular Wiktionary sense is linked to a GermaNet
sense via the sense mapping of GermaNet with
Wiktionary, the example sentences are automati-
cally sense-annotated and can be included as part
of WebCAGe.

Additional material for WebCAGe is harvested
by following the links to Wikipedia, the Guten-
berg archive, and other web-based materials. The
external webpages and the Gutenberg texts are ob-
tained from the web by a web-crawler that takes
some URLs as input and outputs the texts of the
corresponding web sites. The Wikipedia articles
are obtained by the open-source Java Wikipedia
Library JWPL 8. Since the links to Wikipedia, the
Gutenberg archive, and other web-based materials
also belong to particular Wiktionary sense entries
that in turn are mapped to GermaNet senses, the
target words contained in these materials are au-
tomatically sense-annotated.

Notice that the target word often occurs more

8http://www.ukp.tu-darmstadt.de/software/jwpl/

than once in a given text. In keeping with
the widely used heuristic of “one sense per dis-
course”, multiple occurrences of a target word in
a given text are all assigned to the same GermaNet
sense. An inspection of the annotated data shows
that this heuristic has proven to be highly reliable
in practice. It is correct in 99.96% of all target
word occurrences in the Wiktionary example sen-
tences, in 96.75% of all occurrences in the exter-
nal webpages, and in 95.62% of the Wikipedia
files.

WebCAGe is developed primarily for the pur-
pose of the word sense disambiguation task.
Therefore, only those target words that are gen-
uinely ambiguous are included in this resource.
Since WebCAGe uses GermaNet as its sense in-
ventory, this means that each target word has at
least two GermaNet senses, i.e., belongs to at least
two distinct synsets.

The GermaNet-Wiktionary mapping is not al-
ways one-to-one. Sometimes one GermaNet
sense is mapped to more than one sense in Wik-
tionary. Fig. 2 illustrates such a case. For
the word Archiv each resource records three dis-
tinct senses. The first sense (‘data repository’)
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in GermaNet corresponds to the first sense in
Wiktionary, and the second sense in GermaNet
(‘archive’) corresponds to both the second and
third senses in Wiktionary. The third sense in
GermaNet (‘archived file’) does not map onto any
sense in Wiktionary at all. As a result, the word
Archiv is included in the WebCAGe resource with
precisely the sense mappings connected by the
arrows shown in Fig. 2. The fact that the sec-
ond GermaNet sense corresponds to two sense
descriptions in Wiktionary simply means that the
target words in the example are both annotated by
the same sense. Furthermore, note that the word
Archiv is still genuinely ambiguous since there is
a second (one-to-one) mapping between the first
senses recorded in GermaNet and Wiktionary, re-
spectively. However, since the third GermaNet
sense is not mapped onto any Wiktionary sense at
all, WebCAGe will not contain any example sen-
tences for this particular GermaNet sense.

The following section describes how the target
words within these textual materials can be auto-
matically identified.

4 Automatic Detection of Target Words

For highly inflected languages such as German,
target word identification is more complex com-
pared to languages with an impoverished inflec-
tional morphology, such as English, and thus re-
quires automatic lemmatization. Moreover, the
target word in a text to be sense-annotated is
not always a simplex word but can also appear
as subpart of a complex word such as a com-
pound. Since the constituent parts of a compound
are not usually separated by blank spaces or hy-
phens, German compounding poses a particular
challenge for target word identification. Another
challenging case for automatic target word detec-
tion in German concerns particle verbs such as an-
kündigen ‘announce’. Here, the difficulty arises
when the verbal stem (e.g., kündigen) is separated
from its particle (e.g., an) in German verb-initial
and verb-second clause types.

As a preprocessing step for target word identi-
fication, the text is split into individual sentences,
tokenized, and lemmatized. For this purpose, the
sentence detector and the tokenizer of the suite

of Apache OpenNLP tools9 and the TreeTagger
(Schmid, 1994) are used. Further, compounds
are split by using BananaSplit10. Since the au-
tomatic lemmatization obtained by the tagger and
the compound splitter are not 100% accurate, tar-
get word identification also utilizes the full set of
inflected forms for a target word whenever such
information is available. As it turns out, Wik-
tionary can often be used for this purpose as well
since the German version of Wiktionary often
contains the full set of word forms in tables11 such
as the one shown in Fig. 3 for the word Bogen.

Figure 3: Wiktionary inflection table for Bogen.

Fig. 4 shows an example of such a sense-
annotated text for the target word Bogen ‘vi-
olin bow’. The text is an excerpt from the
Wikipedia article Violine ‘violin’, where the target
word (rendered in bold face) appears many times.
Only the second occurrence shown in the figure
(marked with a 2 on the left) exactly matches the
word Bogen as is. All other occurrences are ei-
ther the plural form Bögen (4 and 7), the geni-
tive form Bogens (8), part of a compound such
as Bogenstange (3), or the plural form as part
of a compound such as in Fernambukbögen and
Schülerbögen (5 and 6). The first occurrence
of the target word in Fig. 4 is also part of a
compound. Here, the target word occurs in the
singular as part of the adjectival compound bo-
gengestrichenen.

For expository purposes, the data format shown
in Fig. 4 is much simplified compared to the ac-
tual, XML-based format in WebCAGe. The infor-

9http://incubator.apache.org/opennlp/
10http://niels.drni.de/s9y/pages/bananasplit.html
11The inflection table cannot be extracted with the Java

Wikipedia Library JWPL. It is rather extracted from the Wik-
tionary dump file.
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Figure 4: Excerpt from Wikipedia article Violine ‘violin’ tagged with target word Bogen ‘violin bow’.

mation for each occurrence of a target word con-
sists of the GermaNet sense, i.e., the lexical unit
ID, the lemma of the target word, and the Ger-
maNet word category information, i.e., ADJ for
adjectives, NN for nouns, and VB for verbs.

5 Evaluation

In order to assess the effectiveness of the ap-
proach, we examine the overall size of WebCAGe
and the relative size of the different text col-
lections (see Table 1), compare WebCAGe to
other sense-annotated corpora for German (see
Table 2), and present a precision- and recall-based
evaluation of the algorithm that is used for auto-
matically identifying target words in the harvested
texts (see Table 3).

Table 1 shows that Wiktionary (7644 tagged
word tokens) and Wikipedia (1732) contribute
by far the largest subsets of the total number of
tagged word tokens (10750) compared with the
external webpages (589) and the Gutenberg texts
(785). These tokens belong to 2607 distinct pol-

ysemous words contained in GermaNet, among
which there are 211 adjectives, 1499 nouns, and
897 verbs (see Table 2). On average, these words
have 2.9 senses in GermaNet (2.4 for adjectives,
2.6 for nouns, and 3.6 for verbs).

Table 2 also shows that WebCAGe is consid-
erably larger than the other two sense-annotated
corpora available for German ((Broscheit et al.,
2010) and (Raileanu et al., 2002)). It is impor-
tant to keep in mind, though, that the other two
resources were manually constructed, whereas
WebCAGe is the result of an automatic harvesting
method. Such an automatic method will only con-
stitute a viable alternative to the labor-intensive
manual method if the results are of sufficient qual-
ity so that the harvested data set can be used as is
or can be further improved with a minimal amount
of manual post-editing.

For the purpose of the present evaluation, we
conducted a precision- and recall-based analy-
sis for the text types of Wiktionary examples,
external webpages, and Wikipedia articles sep-
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Table 1: Current size of WebCAGe.

Wiktionary External Wikipedia Gutenberg All
examples webpages articles texts texts

Number of
tagged
word
tokens

adjectives 575 31 79 28 713
nouns 4103 446 1643 655 6847
verbs 2966 112 10 102 3190

all word classes 7644 589 1732 785 10750

Number of
tagged
sentences

adjectives 565 31 76 26 698
nouns 3965 420 1404 624 6413
verbs 2945 112 10 102 3169

all word classes 7475 563 1490 752 10280

Total
number of
sentences

adjectives 623 1297 430 65030 67380
nouns 4184 9630 6851 376159 396824
verbs 3087 5285 263 146755 155390

all word classes 7894 16212 7544 587944 619594

Table 2: Comparing WebCAGe to other sense-tagged corpora of German.

WebCAGe Broscheit et Raileanu et
al., 2010 al., 2002

Sense
tagged
words

adjectives 211 6 0
nouns 1499 18 25
verbs 897 16 0

all word classes 2607 40 25
Number of tagged word tokens 10750 approx. 800 2421

Domain independent yes yes
medical
domain

arately for the three word classes of adjectives,
nouns, and verbs. Table 3 shows that precision
and recall for all three word classes that occur
for Wiktionary examples, external webpages, and
Wikipedia articles lies above 92%. The only size-
able deviations are the results for verbs that occur
in the Gutenberg texts. Apart from this one excep-
tion, the results in Table 3 prove the viability of
the proposed method for automatic harvesting of
sense-annotated data. The average precision for
all three word classes is of sufficient quality to be
used as-is if approximately 2-5% noise in the an-
notated data is acceptable. In order to eliminate
such noise, manual post-editing is required. How-
ever, such post-editing is within acceptable lim-
its: it took an experienced research assistant a to-
tal of 25 hours to hand-correct all the occurrences

of sense-annotated target words and to manually
sense-tag any missing target words for the four
text types.

6 Related Work and Future Directions

With relatively few exceptions to be discussed
shortly, the construction of sense-annotated cor-
pora has focussed on purely manual methods.
This is true for SemCor, the WordNet Gloss Cor-
pus, and for the training sets constructed for En-
glish as part of the SensEval and SemEval shared
task competitions (Agirre et al., 2007; Erk and
Strapparava, 2012; Mihalcea et al., 2004). Purely
manual methods were also used for the German
sense-annotated corpora constructed by Broscheit
et al. (2010) and Raileanu et al. (2002) as well as
for other languages including the Bulgarian and
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Table 3: Evaluation of the algorithm of identifying the target words.

Wiktionary External Wikipedia Gutenberg
examples webpages articles texts

Precision

adjectives 97.70% 95.83% 99.34% 100%
nouns 98.17% 98.50% 95.87% 92.19%
verbs 97.38% 92.26% 100% 69.87%

all word classes 97.32% 96.19% 96.26% 87.43%

Recall

adjectives 97.70% 97.22% 98.08% 97.14%
nouns 98.30% 96.03% 92.70.% 97.38%
verbs 97.51% 99.60% 100% 89.20%

all word classes 97.94% 97.32% 93.36% 95.42%

the Chinese sense-tagged corpora (Koeva et al.,
2006; Wu et al., 2006). The only previous at-
tempts of harvesting corpus data for the purpose
of constructing a sense-annotated corpus are the
semi-supervised method developed by Yarowsky
(1995), the knowledge-based approach of Lea-
cock et al. (1998), later also used by Agirre and
Lopez de Lacalle (2004), and the automatic asso-
ciation of Web directories (from the Open Direc-
tory Project, ODP) to WordNet senses by Santa-
marı́a et al. (2003).

The latter study (Santamarı́a et al., 2003) is
closest in spirit to the approach presented here.
It also relies on an automatic mapping between
wordnet senses and a second web resource. While
our approach is based on automatic mappings be-
tween GermaNet and Wiktionary, their mapping
algorithm maps WordNet senses to ODP subdi-
rectories. Since these ODP subdirectories contain
natural language descriptions of websites relevant
to the subdirectory in question, this textual mate-
rial can be used for harvesting sense-specific ex-
amples. The ODP project also covers German so
that, in principle, this harvesting method could be
applied to German in order to collect additional
sense-tagged data for WebCAGe.

The approach of Yarowsky (1995) first collects
all example sentences that contain a polysemous
word from a very large corpus. In a second step,
a small number of examples that are representa-
tive for each of the senses of the polysemous tar-
get word is selected from the large corpus from
step 1. These representative examples are manu-
ally sense-annotated and then fed into a decision-

list supervised WSD algorithm as a seed set for it-
eratively disambiguating the remaining examples
collected in step 1. The selection and annotation
of the representative examples in Yarowsky’s ap-
proach is performed completely manually and is
therefore limited to the amount of data that can
reasonably be annotated by hand.

Leacock et al. (1998), Agirre and Lopez de La-
calle (2004), and Mihalcea and Moldovan (1999)
propose a set of methods for automatic harvesting
of web data for the purposes of creating sense-
annotated corpora. By focusing on web-based
data, their work resembles the research described
in the present paper. However, the underlying har-
vesting methods differ. While our approach re-
lies on a wordnet to Wiktionary mapping, their
approaches all rely on the monosemous relative
heuristic. Their heuristic works as follows: In or-
der to harvest corpus examples for a polysemous
word, the WordNet relations such as synonymy
and hypernymy are inspected for the presence of
unambiguous words, i.e., words that only appear
in exactly one synset. The examples found for
these monosemous relatives can then be sense-
annotated with the particular sense of its ambigu-
ous word relative. In order to increase coverage
of the monosemous relatives approach, Mihalcea
and Moldovan (1999) have developed a gloss-
based extension, which relies on word overlap of
the gloss and the WordNet sense in question for
all those cases where a monosemous relative is
not contained in the WordNet dataset.

The approaches of Leacock et al., Agirre and
Lopez de Lacalle, and Mihalcea and Moldovan as
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well as Yarowsky’s approach provide interesting
directions for further enhancing the WebCAGe re-
source. It would be worthwhile to use the au-
tomatically harvested sense-annotated examples
as the seed set for Yarowsky’s iterative method
for creating a large sense-annotated corpus. An-
other fruitful direction for further automatic ex-
pansion of WebCAGe is to use the heuristic of
monosemous relatives used by Leacock et al., by
Agirre and Lopez de Lacalle, and by Mihalcea
and Moldovan. However, we have to leave these
matters for future research.

In order to validate the language independence
of our approach, we plan to apply our method to
sense inventories for languages other than Ger-
man. A precondition for such an experiment is an
existing mapping between the sense inventory in
question and a web-based resource such as Wik-
tionary or Wikipedia. With BabelNet, Navigli and
Ponzetto (2010) have created a multilingual re-
source that allows the testing of our approach to
languages other than German. As a first step in
this direction, we applied our approach to English
using the mapping between the Princeton Word-
Net and the English version of Wiktionary pro-
vided by Meyer and Gurevych (2011). The re-
sults of these experiments, which are reported in
Henrich et al. (2012), confirm the general appli-
cability of our approach.

To conclude: This paper describes an automatic
method for creating a domain-independent sense-
annotated corpus harvested from the web. The
data obtained by this method for German have
resulted in the WebCAGe resource which cur-
rently represents the largest sense-annotated cor-
pus available for this language. The publication of
this paper is accompanied by making WebCAGe
freely available.
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Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
regina@csail.mit.edu

Abstract

In this talk, I will address the problem of grounding linguistic analysis in control applications, such
as game playing and robot navigation. We assume access to natural language documents that describe
the desired behavior of a control algorithm (e.g., game strategy guides). Our goal is to demonstrate
that knowledge automatically extracted from such documents can dramatically improve performance
of the target application. First, I will present a reinforcement learning algorithm for learning to map
natural language instructions to executable actions. This technique has enabled automation of tasks
that until now have required human participation — for example, automatically configuring software
by consulting how-to guides. Next, I will present a Monte-Carlo search algorithm for game playing
that incorporates information from game strategy guides. In this framework, the task of text inter-
pretation is formulated as a probabilistic model that is trained based on feedback from Monte-Carlo
search. When applied to the Civilization strategy game, a language-empowered player outperforms
its traditional counterpart by a significant margin.
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Abstract

Probabilistic accounts of language process-
ing can be psychologically tested by com-
paring word-reading times (RT) to the con-
ditional word probabilities estimated by
language models. Using surprisal as a link-
ing function, a significant correlation be-
tween unlexicalized surprisal and RT has
been reported (e.g., Demberg and Keller,
2008), but success using lexicalized models
has been limited. In this study, phrase struc-
ture grammars and recurrent neural net-
works estimated both lexicalized and unlex-
icalized surprisal for words of independent
sentences from narrative sources. These
same sentences were used as stimuli in
a self-paced reading experiment to obtain
RTs. The results show that lexicalized sur-
prisal according to both models is a signif-
icant predictor of RT, outperforming its un-
lexicalized counterparts.

1 Introduction

Context-sensitive, prediction-based processing
has been proposed as a fundamental mechanism
of cognition (Bar, 2007): Faced with the prob-
lem of responding in real-time to complex stim-
uli, the human brain would use basic information
from the environment, in conjunction with previ-
ous experience, in order to extract meaning and
anticipate the immediate future. Such a cognitive
style is a well-established finding in low level sen-
sory processing (e.g., Kveraga et al., 2007), but
has also been proposed as a relevant mechanism
in higher order processes, such as language. In-
deed, there is ample evidence to show that human
language comprehension is both incremental and

predictive. For example, on-line detection of se-
mantic or syntactic anomalies can be observed in
the brain’s EEG signal (Hagoort et al., 2004) and
eye gaze is directed in anticipation at depictions
of plausible sentence completions (Kamide et al.,
2003). Moreover, probabilistic accounts of lan-
guage processing have identified unpredictability
as a major cause of processing difficulty in lan-
guage comprehension. In such incremental pro-
cessing, parsing would entail a pre-allocation of
resources to expected interpretations, so that ef-
fort would be related to the suitability of such
an allocation to the actually encountered stimulus
(Levy, 2008).

Possible sentence interpretations can be con-
strained by both linguistic and extra-linguistic
context, but while the latter is difficult to evalu-
ate, the former can be easily modeled: The pre-
dictability of a word for the human parser can be
expressed as the conditional probability of a word
given the sentence so far, which can in turn be es-
timated by language models trained on text cor-
pora. These probabilistic accounts of language
processing difficulty can then be validated against
empirical data, by taking reading time (RT) on a
word as a measure of the effort involved in its pro-
cessing.

Recently, several studies have followed this ap-
proach, using “surprisal” (see Section 1.1) as the
linking function between effort and predictabil-
ity. These can be computed for each word in a
text, or alternatively for the words’ parts of speech
(POS). In the latter case, the obtained estimates
can give an indication of the importance of syn-
tactic structure in developing upcoming-word ex-
pectations, but ignore the rich lexical information
that is doubtlessly employed by the human parser
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to constrain predictions. However, whereas such
an unlexicalized (i.e., POS-based) surprisal has
been shown to significantly predict RTs, success
with lexical (i.e., word-based) surprisal has been
limited. This can be attributed to data sparsity
(larger training corpora might be needed to pro-
vide accurate lexical surprisal than for the unlex-
icalized counterpart), or to the noise introduced
by participant’s world knowledge, inaccessible to
the models. The present study thus sets out to find
such a lexical surprisal effect, trying to overcome
possible limitations of previous research.

1.1 Surprisal theory
The concept of surprisal originated in the field of
information theory, as a measure of the amount of
information conveyed by a particular event. Im-
probable (‘surprising’) events carry more infor-
mation than expected ones, so that surprisal is in-
versely related to probability, through a logarith-
mic function. In the context of sentence process-
ing, if w1, ..., wt−1 denotes the sentence so far,
then the cognitive effort required for processing
the next word, wt, is assumed to be proportional
to its surprisal:

effort(t) ∝ surprisal(wt)

= − log(P (wt|w1, ..., wt−1)) (1)

Different theoretical groundings for this rela-
tionship have been proposed (Hale, 2001; Levy
2008; Smith and Levy, 2008). Smith and Levy
derive it by taking a scale free assumption: Any
linguistic unit can be subdivided into smaller en-
tities (e.g., a sentence is comprised of words, a
word of phonemes), so that time to process the
whole will equal the sum of processing times for
each part. Since the probability of the whole can
be expressed as the product of the probabilities of
the subunits, the function relating probability and
effort must be logarithmic. Levy (2008), on the
other hand, grounds surprisal in its information-
theoretical context, describing difficulty encoun-
tered in on-line sentence processing as a result of
the need to update a probability distribution over
possible parses, being directly proportional to the
difference between the previous and updated dis-
tributions. By expressing the difference between
these in terms of relative entropy, Levy shows that
difficulty at each newly encountered word should
be equal to its surprisal.

1.2 Empirical evidence for surprisal

The simplest statistical language models that can
be used to estimate surprisal values are n-gram
models or Markov chains, which condition the
probability of a given word only on its n− 1 pre-
ceding ones. Although Markov models theoret-
ically limit the amount of prior information that
is relevant for prediction of the next step, they
are often used in linguistic context as an approx-
imation to the full conditional probability. The
effect of bigram probability (or forward transi-
tional probability) has been repeatedly observed
(e.g. McDonald and Shillcock, 2003), and Smith
and Levy (2008) report an effect of lexical sur-
prisal as estimated by a trigram model on RTs
for the Dundee corpus (a collection of newspaper
texts with eye-tracking data from ten participants;
Kennedy and Pynte, 2005).

Phrase structure grammars (PSGs) have also
been amply used as language models (Boston et
al., 2008; Brouwer et al., 2010; Demberg and
Keller, 2008; Hale, 2001; Levy, 2008). PSGs
can combine statistical exposure effects with ex-
plicit syntactic rules, by annotating norms with
their respective probabilities, which can be es-
timated from occurrence counts in text corpora.
Information about hierarchical sentence structure
can thus be included in the models. In this way,
Brouwer et al. trained a probabilistic context-
free grammar (PCFG) on 204,000 sentences ex-
tracted from Dutch newspapers to estimate lexi-
cal surprisal (using an Earley-Stolcke parser; Stol-
cke, 1995), showing that it could account for
the noun phrase coordination bias previously de-
scribed and explained by Frazier (1987) in terms
of a minimal-attachment preference of the human
parser. In contrast, Demberg and Keller used texts
from a naturalistic source (the Dundee corpus) as
the experimental stimuli, thus evaluating surprisal
as a wide-coverage account of processing diffi-
culty. They also employed a PSG, trained on a
one-million-word language sample from the Wall
Street Journal (part of the Penn Treebank II, Mar-
cus et al., 1993). Using Roark’s (2001) incremen-
tal parser, they found significant effects of unlexi-
calized surprisal on RTs (see also Boston et al. for
a similar approach and results for German texts).
However, they failed to find an effect for lexical-
ized surprisal, over and above forward transitional
probability. Roark et al. (2009) also looked at the
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effects of syntactic and lexical surprisal, using RT
data for short narrative texts. However, their es-
timates of these two surprisal values differ from
those described above: In order to tease apart se-
mantic and syntactic effects, they used Demberg
and Keller’s lexicalized surprisal as a total sur-
prisal measure, which they decompose into syn-
tactic and lexical components. Their results show
significant effects of both syntactic and lexical
surprisal, although the latter was found to hold
only for closed class words. Lack of a wider effect
was attributed to data sparsity: The models were
trained on the relatively small Brown corpus (over
one million words from 500 samples of American
English text), so that surprisal estimates for the
less frequent content words would not have been
accurate enough.

Using the same training and experimental lan-
guage samples as Demberg and Keller (2008),
and only unlexicalized surprisal estimates, Frank
(2009) and Frank and Bod (2011) focused on
comparing different language models, including
various n-gram models, PSGs and recurrent net-
works (RNN). The latter were found to be the bet-
ter predictors of RTs, and PSGs could not explain
any variance in RT over and above the RNNs,
suggesting that human processing relies on linear
rather than hierarchical representations.

Summing up, the only models taking into ac-
count actual words that have been consistently
shown to simulate human behaviour with natural-
istic text samples are bigram models.1 A possi-
ble limitation in previous studies can be found in
the stimuli employed. In reading real newspaper
texts, prior knowledge of current affairs is likely
to highly influence RTs, however, this source of
variability cannot be accounted for by the mod-
els. In addition, whereas the models treat each
sentence as an independent unit, in the text cor-
pora employed they make up coherent texts, and
are therefore clearly dependent. Thirdly, the stim-
uli used by Demberg and Keller (2008) comprise
a very particular linguistic style: journalistic edi-
torials, reducing the ability to generalize conclu-
sions to language in general. Finally, failure to
find lexical surprisal effects can also be attributed
to the training texts. Larger corpora are likely to
be needed for training language models on actual

1Although Smith and Levy (2008) report an effect of tri-
grams, they did not check if it exceeded that of simpler bi-
grams.

words than on POS (both the Brown corpus and
the WSJ are relatively small), and in addition, the
particular journalistic style of the WSJ might not
be the best alternative for modeling human be-
haviour. Although similarity between the train-
ing and experimental data sets (both from news-
paper sources) can improve the linguistic perfor-
mance of the models, their ability to simulate hu-
man behaviour might be limited: Newspaper texts
probably form just a small fraction of a person’s
linguistic experience. This study thus aims to
tackle some of the identified limitations: Rather
than cohesive texts, independent sentences, from
a narrative style are used as experimental stim-
uli for which word-reading times are collected
(as explained in Section 3). In addition, as dis-
cussed in the following section, language mod-
els are trained on a larger corpus, from a more
representative language sample. Following Frank
(2009) and Frank and Bod (2011), two contrasting
types of models are employed: hierarchical PSGs
and linear RNNs.

2 Models

2.1 Training data

The training texts were extracted from the writ-
ten section of the British National Corpus (BNC),
a collection of language samples from a variety
of sources, designed to provide a comprehensive
representation of current British English. A total
of 702,412 sentences, containing only the 7,754
most frequent words (the open-class words used
by Andrews et al., 2009, plus the 200 most fre-
quent words in English) were selected, making up
a 7.6-million-word training corpus. In addition to
providing a larger amount of data than the WSJ,
this training set thus provides a more representa-
tive language sample.

2.2 Experimental sentences

Three hundred and sixty-one sentences, all com-
prehensible out of context and containing only
words included in the subset of the BNC used
to train the models, were randomly selected from
three freely accessible on-line novels2 (for addi-
tional details, see Frank, 2012). The fictional
narrative provides a good contrast to the pre-

2Obtained from www.free-online-novels.com.
Having not been published elsewhere, it is unlikely partici-
pants had read the novels previously.
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viously examined newspaper editorials from the
Dundee corpus, since participants did not need
prior knowledge regarding the details of the sto-
ries, and a less specialised language and style
were employed. In addition, the randomly se-
lected sentences did not make up coherent texts
(in contrast, Roark et al., 2009, employed short
stories), so that they were independent from each
other, both for the models and the readers.

2.3 Part-of-speech tagging

In order to produce POS-based surprisal esti-
mates, versions of both the training and exper-
imental texts with their words replaced by POS
were developed: The BNC sentences were parsed
by the Stanford Parser, version 1.6.7 (Klein and
Manning, 2003), whilst the experimental texts
were tagged by an automatic tagger (Tsuruoka
and Tsujii, 2005), with posterior review and cor-
rection by hand following the Penn Treebank
Project Guidelines (Santorini, 1991). By training
language models and subsequently running them
on the POS versions of the texts, unlexicalized
surprisal values were estimated.

2.4 Phrase-structure grammars

The Treebank formed by the parsed BNC sen-
tences served as training data for Roark’s (2001)
incremental parser. Following Frank and Bod
(2011), a range of grammars was induced, dif-
fering in the features of the tree structure upon
which rule probabilities were conditioned. In
four grammars, probabilities depended on the left-
hand side’s ancestors, from one up to four levels
up in the parse tree (these grammars will be de-
noted a1 to a4). In four other grammars (s1 to
s4), the ancestors’ left siblings were also taken
into account. In addition, probabilities were con-
ditioned on the current head node in all grammars.
Subsequently, Roark’s (2001) incremental parser
parsed the experimental sentences under each of
the eight grammars, obtaining eight surprisal val-
ues for each word. Since earlier research (Frank,
2009) showed that decreasing the parser’s base
beam width parameter improves performance, it
was set to 10−18 (the default being 10−12).

2.5 Recurrent neural network

The RNN (see Figure 1) was trained in three
stages, each taking the selected (unparsed) BNC
sentences as training data.

7,754 word types

probability distribution

over 7,754 word types

400

400

500

200

Figure 1: Architecture of neural network language
model, and its three learning stages. Numbers indicate
the number of units in each network layer.

Stage 1: Developing word representations

Neural network language models can bene-
fit from using distributed word representations:
Each word is assigned a vector in a continu-
ous, high-dimensional space, such that words that
are paradigmatically more similar are closer to-
gether (e.g., Bengio et al., 2003; Mnih and Hin-
ton, 2007). Usually, these representations are
learned together with the rest of the model, but
here we used a more efficient approach in which
word representations are learned in an unsuper-
vised manner from simple co-occurrences in the
training data. First, vectors of word co-occurrence
frequencies were developed using Good-Turing
(Gale and Sampson, 1995) smoothed frequency
counts from the training corpus. Values in the
vector corresponded to the smoothed frequencies
with which each word directly preceded or fol-
lowed the represented word. Thus, each word
w was assigned a vector (fw,1, ..., fw,15508), such
that fw,v is the number of times word v directly
precedes (for v ≤ 7754) or follows (for v >
7754) word w. Next, the frequency counts were
transformed into Pointwise Mutual Information
(PMI) values (see Equation 2), following Bulli-
naria and Levy’s (2007) findings that PMI pro-
duced more psychologically accurate predictions
than other measures:
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PMI(w, v) = log

(
fw,v

∑
i,j fi,j∑

i fi,v
∑

j fw,j

)
(2)

Finally, the 400 columns with the highest vari-
ance were selected from the 7754×15508-matrix
of row vectors, making them more computation-
ally manageable, but not significantly less infor-
mative.

Stage 2: Learning temporal structure
Using the standard backpropagation algorithm,

a simple recurrent network (SRN) learned to pre-
dict, at each point in the training corpus, the next
word’s vector given the sequence of word vectors
corresponding to the sentence so far. The total
corpus was presented five times, each time with
the sentences in a different random order.

Stage 3: Decoding predicted word
representations

The distributed output of the trained SRN
served as training input to the feedforward “de-
coder” network, that learned to map the dis-
tributed representations back to localist ones.
This network, too, used standard backpropaga-
tion. Its output units had softmax activation func-
tions, so that the output vector constitutes a prob-
ability distribution over word types. These trans-
late directly into surprisal values, which were col-
lected over the experimental sentences at ten in-
tervals over the course of Stage 3 training (after
presenting 2K, 5K, 10K, 20K, 50K, 100K, 200K,
and 350K sentences, and after presenting the full
training corpus once and twice). These will be
denoted by RNN-1 to RNN-10.

A much simpler RNN model suffices for ob-
taining unlexicalized surprisal. Here, we used
the same models as described by Frank and Bod
(2011), albeit trained on the POS tags of our
BNC training corpus. These models employed
so-called Echo State Networks (ESN; Jaeger and
Haas, 2004), which are RNNs that do not develop
internal representations because weights of input
and recurrent connections remain fixed at ran-
dom values (only the output connection weights
are trained). Networks of six different sizes were
used. Of each size, three networks were trained,
using different random weights. The best and
worst model of each size were discarded to reduce
the effect of the random weights.

3 Experiment

3.1 Procedure

Text display followed a self-paced reading
paradigm: Sentences were presented on a com-
puter screen one word at a time, with onset of
the next word being controlled by the subject
through a key press. The time between word
onset and subsequent key press was recorded as
the RT (measured in milliseconds) on that word
by that subject.3 Words were presented centrally
aligned in the screen, and punctuation marks ap-
peared with the word that preceded them. A fixed-
width font type (Courier New) was used, so that
physical size of a word equalled number of char-
acters. Order of presentation was randomized for
each subject. The experiment was time-bounded
to 40 minutes, and the number of sentences read
by each participant varied between 120 and 349,
with an average of 224. Yes-no comprehension
questions followed 46% of the sentences.

3.2 Participants

A total of 117 first year psychology students took
part in the experiment. Subjects unable to an-
swer correctly to more than 20% of the questions
and 47 participants who were non-native English
speakers were excluded from the analysis, leaving
a total of 54 subjects.

3.3 Design

The obtained RTs served as the dependent vari-
able against which a mixed-effects multiple re-
gression analysis with crossed random effects for
subjects and items (Baayen et al., 2008) was per-
formed. In order to control for low-level lexical
factors that are known to influence RTs, such as
word length or frequency, a baseline regression
model taking them into account was built. Subse-
quently, the decrease in the model’s deviance, af-
ter the inclusion of surprisal as a fixed factor to the
baseline, was assessed using likelihood tests. The
resulting χ2 statistic indicates the extent to which
each surprisal estimate accounts for RT, and can
thus serve as a measure of the psychological ac-
curacy of each model.

However, this kind of analysis assumes that RT
for a word reflects processing of only that word,

3The collected RT data are available for download at
www.stefanfrank.info/EACL2012.
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but spill-over effects (in which processing diffi-
culty at word wt shows up in the RT on wt+1)
have been found in self-paced and natural read-
ing (Just et al., 1982; Rayner, 1998; Rayner and
Pollatsek, 1987). To evaluate these effects, the
decrease in deviance after adding surprisal of the
previous item to the baseline was also assessed.

The following control predictors were included
in the baseline regression model:

Lexical factors:
• Number of characters: Both physical size

and number of characters have been found
to affect RTs for a word (Rayner and Pollat-
sek, 1987), but the fixed-width font used in
the experiment assured number of characters
also encoded physical word length.

• Frequency and forward transitional proba-
bility: The effects of these two factors have
been repeatedly reported (e.g. Juhasz and
Rayner, 2003; Rayner, 1998). Given the high
correlations between surprisal and these two
measures, their inclusion in the baseline as-
sures that the results can be attributed to pre-
dictability in context, over and above fre-
quency and bigram probability. Frequency
was estimated from occurrence counts of
each word in the full BNC corpus (written
section). The same transformation (nega-
tive logarithm) was applied as for computing
surprisal, thus obtaining “unconditional” and
bigram surprisal values.

• Previous word lexical factors: Lexical fac-
tors for the previous word were included in
the analysis to control for spill-over effects.

Temporal factors and autocorrelation:
RT data over naturalistic texts violate the re-

gression assumption of independence of obser-
vations in several ways, and important word-by-
word sequential correlations exist. In order to en-
sure validity of the statistical analysis, as well as
providing a better model fit, the following factors
were also included:

• Sentence position: Fatigue and practice ef-
fects can influence RTs. Sentence position
in the experiment was included both as linear
and quadratic factor, allowing for the model-
ing of initial speed-up due to practice, fol-
lowed by a slowing down due to fatigue.

• Word position: Low-level effects of word or-
der, not related to predictability itself, were
modeled by including word position in the
sentence, both as a linear and quadratic fac-
tor (some of the sentences were quite long,
so that the effect of word position is unlikely
to be linear).

• Reading time for previous word: As sug-
gested by Baayen and Milin (2010), includ-
ing RT on the previous word can control for
several autocorrelation effects.

4 Results

Data were analysed using the free statistical soft-
ware package R (R Development Core Team,
2009) and the lme4 library (Bates et al., 2011).
Two analyses were performed for each language
model, using surprisal for either current or pre-
vious word as the dependent variable. Unlikely
reading times (lower than 50ms or over 3000ms)
were removed from the analysis, as were clitics,
words followed by punctuation, words follow-
ing punctuation or clitics (since factors for pre-
vious word were included in the analysis), and
sentence-initial words, leaving a total of 132,298
data points (between 1,335 and 3,829 per subject).

4.1 Baseline model

Theoretical considerations guided the selection
of the initial predictors presented above, but an
empirical approach led actual regression model
building. Initial models with the original set of
fixed effects, all two-way interactions, plus ran-
dom intercepts for subjects and items were evalu-
ated, and least significant factors were removed
one at a time, until only significant predictors
were left (|t| > 2). A different strategy was
used to assess which by-subject and by item ran-
dom slopes to include in the model. Given the
large number of predictors, starting from the sat-
urated model with all random slopes generated
non-convergence problems and excessively long
running times. By-subject and by-item random
slopes for each fixed effect were therefore as-
sessed individually, using likelihood tests. The
final baseline model included by-subject random
intercepts, by-subject random slopes for sentence
position and word position, and by-item slopes for
previous RT. All factors (random slopes and fixed
effects) were centred and standardized to avoid
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Figure 2: Psychological accuracy (combined effect of current and previous surprisal) against linguistic accuracy
of the different models. Numbered labels denote the maximum number of levels up in the tree from which
conditional information is used (PSG); point in training when estimates were collected (word-based RNN); or
network size (POS-based RNN).

multicollinearity-related problems.

4.2 Surprisal effects

All model categories (PSGs and RNNs) produced
lexicalized surprisal estimates that led to a signif-
icant (p < 0.05) decrease in deviance when in-
cluded as a fixed factor in the baseline, with pos-
itive coefficients: Higher surprisal led to longer
RTs. Significant effects were also found for their
unlexicalized counterparts, albeit with consider-
ably smaller χ2-values.

Both for the lexicalized and unlexicalized ver-
sions, these effects persisted whether surprisal for
the previous or current word was taken as the in-
dependent variable. However, the effect size was
much larger for previous surprisal, indicating the
presence of strong spill-over effects (e.g. lexical-
ized PSG-s3: current surprisal: χ2(1) = 7.29,
p = 0.007; previous surprisal: χ2(1) = 36.73,
p� 0.001).

From hereon, only results for the combined ef-
fect of both (inclusion of previous and current
surprisal as fixed factors in the baseline) are re-
ported. Figure 2 shows the psychological accu-
racy of each model (χ2(2) values) plotted against
its linguistic accuracy (i.e., its quality as a lan-
guage model, measured by the negative aver-
age surprisal on the experimental sentences: the
higher this value, the “less surprised” the model

is by the test corpus). For the lexicalized models,
RNNs clearly outperform PSGs. Moreover, the
RNN’s accuracy increases as training progresses
(the highest psychological accuracy is achieved
at point 8, when 350K training sentences were
presented). The PSGs taking into account sib-
ling nodes are slightly better than their ancestor-
only counterparts (the best psychological model
is PSG-s3). Contrary to the trend reported by
Frank and Bod (2011), the unlexicalized PSGs
and RNNs reach similar levels of psychological
accuracy, with the PSG-s4 achieving the highest
χ2-value.

Model comparison χ2(2) p-value

PSG over RNN 12.45 0.002
RNN over PSG 30.46 �0.001

Table 1: Model comparison between best performing
word-based PSG and RNN.

Although RNNs outperform PSGs in the lexi-
calized estimates, comparisons between the best
performing model (i.e. highest χ2) in each cate-
gory showed both were able to explain variance
over and above each other (see Table 1). It is
worth noting, however, that if comparisons are
made amongst models including surprisal for cur-
rent, but not previous word, the PSG is unable
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to explain a significant amount of variance over
and above the RNN (χ2(1) = 2.28; p = 0.13).4

Lexicalized models achieved greater psychologi-
cal accuracy than their unlexicalized counterparts,
but the latter could still explain a small amount of
variance over and above the former (see Table 2).5

Model comparison χ2(2) p-value

Best models overall:

POS- over word-based 10.40 0.006
word- over POS-based 47.02 �0.001

PSGs:

POS- over word-based 6.89 0.032
word- over POS-based 25.50 �0.001

RNNs:

POS- over word-based 5.80 0.055
word- over POS-based 49.74 �0.001

Table 2: Word- vs. POS-based models: comparisons
between best models overall, and best models within
each category.

4.3 Differences across word classes
In order to make sure that the lexicalized sur-
prisal effects found were not limited to closed-
class words (as Roark et al., 2009, report), a fur-
ther model comparison was performed by adding
by-POS random slopes of surprisal to the models
containing the baseline plus surprisal. If particu-
lar syntactic categories were contributing to the
overall effect of surprisal more than others, in-
cluding such random slopes would lead to addi-
tional variance being explained. However, this
was not the case: inclusion of by-POS random
slopes of surprisal did not lead to a significant im-
provement in model fit (PSG: χ2(1) = 0.86, p =
0.35; RNN: χ2(1) = 3.20, p = 0.07).6

5 Discussion

The present study aimed to find further evidence
for surprisal as a wide-coverage account of lan-
guage processing difficulty, and indeed, the re-

4Best models in this case were PSG-a3 and RNN-7.
5Since best performing lexicalized and unlexicalized

models belonged to different groups: RNN and PSG, respec-
tively, Table 2 also shows comparisons within model type.

6Comparison was made on the basis of previous word
surprisal (best models in this case were PSG-s3 and RNN-
9).

sults show the ability of lexicalized surprisal to
explain a significant amount of variance in RT
data for naturalistic texts, over and above that
accounted for by other low-level lexical factors,
such as frequency, length, and forward transi-
tional probability. Although previous studies had
presented results supporting such a probabilistic
language processing account, evidence for word-
based surprisal was limited: Brouwer et al. (2010)
only examined a specific psycholinguistic phe-
nomenon, rather than a random language sample;
Demberg and Keller (2008) reported effects that
were only significant for POS but not word-based
surprisal; and Smith and Levy (2008) found an
effect of lexicalized surprisal (according to a tri-
gram model), but did not assess whether simpler
predictability estimates (i.e., by a bigram model)
could have accounted for those effects.

Demberg and Keller’s (2008) failure to find lex-
icalized surprisal effects can be attributed both to
the language corpus used to train the language
models, as well as to the experimental texts used.
Both were sourced from newspaper texts: As
training corpora these are unrepresentative of a
person’s linguistic experience, and as experimen-
tal texts they are heavily dependent on partici-
pant’s world knowledge. Roark et al. (2009), in
contrast, used a more representative, albeit rela-
tively small, training corpus, as well as narrative-
style stimuli, thus obtaining RTs less dependent
on participant’s prior knowledge. With such an
experimental set-up, they were able to demon-
strate the effects of lexical surprisal for RT of
closed-class, but not open-class, words, which
they attributed to their differential frequency and
to training-data sparsity: The limited Brown cor-
pus would have been enough to produce accurate
estimates of surprisal for function words, but not
for the less frequent content words. A larger train-
ing corpus, constituting a broad language sample,
was used in our study, and the detected surprisal
effects were shown to hold across syntactic cate-
gory (modeling slopes for POS separately did not
improve model fit). However, direct comparison
with Roark et al.’s results is not possible: They
employed alternative definitions of structural and
lexical surprisal, which they derived by decom-
posing the total surprisal as obtained with a fully
lexicalized PSG model.

In the current study, a similar approach to that
taken by Demberg and Keller (2008) was used to
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define structural (or unlexicalized), and lexical-
ized surprisal, but the results are strikingly differ-
ent: Whereas Demberg and Keller report a signif-
icant effect for POS-based estimates, but not for
word-based surprisal, our results show that lexi-
calized surprisal is a far better predictor of RTs
than its unlexicalized counterpart. This is not sur-
prising, given that while the unlexicalized mod-
els only have access to syntactic sources of in-
formation, the lexicalized models, like the hu-
man parser, can also take into account lexical co-
occurrence trends. However, when a training cor-
pus is not large enough to accurately capture the
latter, it might still be able to model the former,
given the higher frequency of occurrence of each
possible item (POS vs. word) in the training data.
Roark et al. (2009) also included in their analysis
a POS-based surprisal estimate, which lost signif-
icance when the two components of the lexical-
ized surprisal were present, suggesting that such
unlexicalized estimates can be interpreted only as
a coarse version of the fully lexicalized surprisal,
incorporating both syntactic and lexical sources
of information at the same time. The results pre-
sented here do not replicate this finding: The best
unlexicalized estimates were able to explain ad-
ditional variance over and above the best word-
based estimates. However, this comparison con-
trasted two different model types: a word-based
RNN and a POS-based PSG, so that the observed
effects could be attributed to the model represen-
tations (hierarchical vs. linear) rather than to the
item of analysis (POS vs. words). Within-model
comparisons showed that unlexicalized estimates
were still able to account for additional variance,
although only reaching significance at the 0.05
level for the PSGs.

Previous results reported by Frank (2009) and
Frank and Bod (2011) regarding the higher psy-
chological accuracy of RNNs and the inability of
the PSGs to explain any additional variance in
RT, were not replicated. Although for the word-
based estimates RNNs outperform the PSGs, we
found both to have independent effects. Further-
more, in the POS-based analysis, performance of
PSGs and RNNs reaches similarly high levels of
psychological accuracy, with the best-performing
PSG producing slightly better results than the
best-performing RNN. This discrepancy in the re-
sults could reflect contrasting reading styles in
the two studies: natural reading of newspaper

texts, or self-paced reading of independent, nar-
rative sentences. The absence of global context,
or the unnatural reading methodology employed
in the current experiment, could have led to an
increased reliance on hierarchical structure for
sentence comprehension. The sources and struc-
tures relied upon by the human parser to elabo-
rate upcoming-word expectations could therefore
be task-dependent. On the other hand, our re-
sults show that the independent effects of word-
based PSG estimates only become apparent when
investigating the effect of surprisal of the previous
word. That is, considering only the current word’s
surprisal, as in Frank and Bod’s analysis, did not
reveal a significant contribution of PSGs over and
above RNNs. Thus, additional effects of PSG sur-
prisal might only be apparent when spill-over ef-
fects are investigated by taking previous word sur-
prisal as a predictor of RT.

6 Conclusion

The results here presented show that lexicalized
surprisal can indeed model RT over naturalistic
texts, thus providing a wide-coverage account of
language processing difficulty. Failure of previ-
ous studies to find such an effect could be at-
tributed to the size or nature of the training cor-
pus, suggesting that larger and more general cor-
pora are needed to model successfully both the
structural and lexical regularities used by the hu-
man parser to generate predictions. Another cru-
cial finding presented here is the importance of
spill-over effects: Surprisal of a word had a much
larger influence on RT of the following item than
of the word itself. Previous studies where lexi-
calized surprisal was only analysed in relation to
current RT could have missed a significant effect
only manifested on the following item. Whether
spill-over effects are as important for different RT
collection paradigms (e.g., eye-tracking) remains
to be tested.
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Abstract

In this paper we study spectral learning
methods for non-deterministic split head-
automata grammars, a powerful hidden-
state formalism for dependency parsing.
We present a learning algorithm that, like
other spectral methods, is efficient and non-
susceptible to local minima. We show
how this algorithm can be formulated as
a technique for inducing hidden structure
from distributions computed by forward-
backward recursions. Furthermore, we
also present an inside-outside algorithm
for the parsing model that runs in cubic
time, hence maintaining the standard pars-
ing costs for context-free grammars.

1 Introduction

Dependency structures of natural language sen-
tences exhibit a significant amount of non-local
phenomena. Historically, there have been two
main approaches to model non-locality: (1) in-
creasing the order of the factors of a dependency
model (e.g. with sibling and grandparent relations
(Eisner, 2000; McDonald and Pereira, 2006; Car-
reras, 2007; Martins et al., 2009; Koo and Collins,
2010)), and (2) using hidden states to pass in-
formation across factors (Matsuzaki et al., 2005;
Petrov et al., 2006; Musillo and Merlo, 2008).

Higher-order models have the advantage that
they are relatively easy to train, because estimat-
ing the parameters of the model can be expressed
as a convex optimization. However, they have
two main drawbacks. (1) The number of param-
eters grows significantly with the size of the fac-
tors, leading to potential data-sparsity problems.
A solution to address the data-sparsity problem

is to explicitly tell the model what properties of
higher-order factors need to be remembered. This
can be achieved by means of feature engineering,
but compressing such information into a state of
bounded size will typically be labor intensive, and
will not generalize across languages. (2) Increas-
ing the size of the factors generally results in poly-
nomial increases in the parsing cost.

In principle, hidden variable models could
solve some of the problems of feature engineering
in higher-order factorizations, since they could
automatically induce the information in a deriva-
tion history that should be passed across factors.
Potentially, they would require less feature engi-
neering since they can learn from an annotated
corpus an optimal way to compress derivations
into hidden states. For example, one line of work
has added hidden annotations to the non-terminals
of a phrase-structure grammar (Matsuzaki et al.,
2005; Petrov et al., 2006; Musillo and Merlo,
2008), resulting in compact grammars that ob-
tain parsing accuracies comparable to lexicalized
grammars. A second line of work has modeled
hidden sequential structure, like in our case, but
using PDFA (Infante-Lopez and de Rijke, 2004).
Finally, a third line of work has induced hidden
structure from the history of actions of a parser
(Titov and Henderson, 2007).

However, the main drawback of the hidden
variable approach to parsing is that, to the best
of our knowledge, there has not been any convex
formulation of the learning problem. As a result,
training a hidden-variable model is both expen-
sive and prone to local minima issues.

In this paper we present a learning algorithm
for hidden-state split head-automata grammars
(SHAG) (Eisner and Satta, 1999). In this for-
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malism, head-modifier sequences are generated
by a collection of finite-state automata. In our
case, the underlying machines are probabilistic
non-deterministic finite state automata (PNFA),
which we parameterize using the operator model
representation. This representation allows the use
of simple spectral algorithms for estimating the
model parameters from data (Hsu et al., 2009;
Bailly, 2011; Balle et al., 2012). In all previous
work, the algorithms used to induce hidden struc-
ture require running repeated inference on train-
ing data—e.g. Expectation-Maximization (Demp-
ster et al., 1977), or split-merge algorithms. In
contrast, spectral methods are simple and very ef-
ficient —parameter estimation is reduced to com-
puting some data statistics, performing SVD, and
inverting matrices.

The main contributions of this paper are:

• We present a spectral learning algorithm for
inducing PNFA with applications to head-
automata dependency grammars. Our for-
mulation is based on thinking about the dis-
tribution generated by a PNFA in terms of
the forward-backward recursions.

• Spectral learning algorithms in previous
work only use statistics of prefixes of se-
quences. In contrast, our algorithm is able
to learn from substring statistics.

• We derive an inside-outside algorithm for
non-deterministic SHAG that runs in cubic
time, keeping the costs of CFG parsing.

• In experiments we show that adding non-
determinism improves the accuracy of sev-
eral baselines. When we compare our algo-
rithm to EM we observe a reduction of two
orders of magnitude in training time.

The paper is organized as follows. Next section
describes the necessary background on SHAG
and operator models. Section 3 introduces Op-
erator SHAG for parsing, and presents a spectral
learning algorithm. Section 4 presents a parsing
algorithm. Section 5 presents experiments and
analysis of results, and section 6 concludes.

2 Preliminaries

2.1 Head-Automata Dependency Grammars
In this work we use split head-automata gram-
mars (SHAG) (Eisner and Satta, 1999; Eis-

ner, 2000), a context-free grammatical formal-
ism whose derivations are projective dependency
trees. We will use xi:j = xixi+1 · · ·xj to de-
note a sequence of symbols xt with i ≤ t ≤ j.
A SHAG generates sentences s0:N , where sym-
bols st ∈ X with 1 ≤ t ≤ N are regular words
and s0 = ? 6∈ X is a special root symbol. Let
X̄ = X ∪ {?}. A derivation y, i.e. a depen-
dency tree, is a collection of head-modifier se-
quences 〈h, d, x1:T 〉, where h ∈ X̄ is a word,
d ∈ {LEFT, RIGHT} is a direction, and x1:T is
a sequence of T words, where each xt ∈ X is
a modifier of h in direction d. We say that h is
the head of each xt. Modifier sequences x1:T are
ordered head-outwards, i.e. among x1:T , x1 is the
word closest to h in the derived sentence, and xT

is the furthest. A derivation y of a sentence s0:N

consists of a LEFT and a RIGHT head-modifier se-
quence for each st. As special cases, the LEFT se-
quence of the root symbol is always empty, while
the RIGHT one consists of a single word corre-
sponding to the head of the sentence. We denote
by Y the set of all valid derivations.

Assume a derivation y contains 〈h, LEFT, x1:T 〉
and 〈h, RIGHT, x′1:T ′〉. Let L(y, h) be the derived
sentence headed by h, which can be expressed as
L(y, xT ) · · · L(y, x1) h L(y, x′1) · · · L(y, x′T ′).1

The language generated by a SHAG are the
strings L(y, ?) for any y ∈ Y .

In this paper we use probabilistic versions of
SHAG where probabilities of head-modifier se-
quences in a derivation are independent of each
other:

P(y) =
∏

〈h,d,x1:T 〉∈y

P(x1:T |h, d) . (1)

In the literature, standard arc-factored models fur-
ther assume that

P(x1:T |h, d) =

T+1∏
t=1

P(xt|h, d, σt) , (2)

where xT+1 is always a special STOP word, and σt

is the state of a deterministic automaton generat-
ing x1:T+1. For example, setting σ1 = FIRST and
σt>1 = REST corresponds to first-order models,
while setting σ1 = NULL and σt>1 = xt−1 corre-
sponds to sibling models (Eisner, 2000; McDon-
ald et al., 2005; McDonald and Pereira, 2006).

1Throughout the paper we assume we can distinguish the
words in a derivation, irrespective of whether two words at
different positions correspond to the same symbol.
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2.2 Operator Models
An operator model A with n states is a tuple
〈α1, α

>
∞, {Aa}a∈X 〉, where Aa ∈ Rn×n is an op-

erator matrix and α1, α∞ ∈ Rn are vectors. A
computes a function f : X ∗ → R as follows:

f(x1:T ) = α>∞ AxT · · · Ax1 α1 . (3)

One intuitive way of understanding operator
models is to consider the case where f computes
a probability distribution over strings. Such a dis-
tribution can be described in two equivalent ways:
by making some independence assumptions and
providing the corresponding parameters, or by ex-
plaining the process used to compute f . This is
akin to describing the distribution defined by an
HMM in terms of a factorization and its corre-
sponding transition and emission parameters, or
using the inductive equations of the forward al-
gorithm. The operator model representation takes
the latter approach.

Operator models have had numerous applica-
tions. For example, they can be used as an alter-
native parameterization of the function computed
by an HMM (Hsu et al., 2009). Consider an HMM
with n hidden states and initial-state probabilities
π ∈ Rn, transition probabilities T ∈ Rn×n, and
observation probabilities Oa ∈ Rn×n for each
a ∈ X , with the following meaning:

• π(i) is the probability of starting at state i,

• T (i, j) is the probability of transitioning
from state j to state i,

• Oa is a diagonal matrix, such that Oa(i, i) is
the probability of generating symbol a from
state i.

Given an HMM, an equivalent operator model
can be defined by setting α1 = π, Aa = TOa

and α∞ = ~1. To see this, let us show that the for-
ward algorithm computes the expression in equa-
tion (3). Let σt denote the state of the HMM
at time t. Consider a state-distribution vector
αt ∈ Rn, where αt(i) = P(x1:t−1, σt = i). Ini-
tially α1 = π. At each step in the chain of prod-
ucts (3), αt+1 = Axt αt updates the state dis-
tribution from positions t to t + 1 by applying
the appropriate operator, i.e. by emitting symbol
xt and transitioning to the new state distribution.
The probability of x1:T is given by

∑
i αT+1(i).

Hence, Aa(i, j) is the probability of generating

symbol a and moving to state i given that we are
at state j.

HMM are only one example of distributions
that can be parameterized by operator models.
In general, operator models can parameterize any
PNFA, where the parameters of the model corre-
spond to probabilities of emitting a symbol from
a state and moving to the next state.

The advantage of working with operator mod-
els is that, under certain mild assumptions on the
operator parameters, there exist algorithms that
can estimate the operators from observable statis-
tics of the input sequences. These algorithms are
extremely efficient and are not susceptible to local
minima issues. See (Hsu et al., 2009) for theoret-
ical proofs of the learnability of HMM under the
operator model representation.

In the following, we write x = xi:j ∈ X ∗ to
denote sequences of symbols, and use Axi:j as a
shorthand for Axj · · ·Axi . Also, for convenience
we assume X = {1, . . . , l}, so that we can index
vectors and matrices by symbols in X .

3 Learning Operator SHAG

We will define a SHAG using a collection of op-
erator models to compute probabilities. Assume
that for each possible head h in the vocabulary X̄
and each direction d ∈ {LEFT, RIGHT} we have
an operator model that computes probabilities of
modifier sequences as follows:

P(x1:T |h, d) = (αh,d
∞ )> Ah,d

xT
· · · Ah,d

x1
αh,d

1 .

Then, this collection of operator models defines
an operator SHAG that assigns a probability to
each y ∈ Y according to (1). To learn the model
parameters, namely 〈αh,d

1 , αh,d
∞ , {Ah,d

a }a∈X 〉 for
h ∈ X̄ and d ∈ {LEFT, RIGHT}, we use spec-
tral learning methods based on the works of Hsu
et al. (2009), Bailly (2011) and Balle et al. (2012).

The main challenge of learning an operator
model is to infer a hidden-state space from ob-
servable quantities, i.e. quantities that can be com-
puted from the distribution of sequences that we
observe. As it turns out, we cannot recover the
actual hidden-state space used by the operators
we wish to learn. The key insight of the spectral
learning method is that we can recover a hidden-
state space that corresponds to a projection of the
original hidden space. Such projected space is
equivalent to the original one in the sense that we
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can find operators in the projected space that pa-
rameterize the same probability distribution over
sequences.

In the rest of this section we describe an algo-
rithm for learning an operator model. We will as-
sume a fixed head word and direction, and drop h
and d from all terms. Hence, our goal is to learn
the following distribution, parameterized by oper-
ators α1, {Aa}a∈X , and α∞:

P(x1:T ) = α>∞ AxT · · · Ax1 α1 . (4)

Our algorithm shares many features with the
previous spectral algorithms of Hsu et al. (2009)
and Bailly (2011), though the derivation given
here is based upon the general formulation of
Balle et al. (2012). The main difference is that
our algorithm is able to learn operator models
from substring statistics, while algorithms in pre-
vious works were restricted to statistics on pre-
fixes. In principle, our algorithm should extract
much more information from a sample.

3.1 Preliminary Definitions
The spectral learning algorithm will use statistics
estimated from samples of the target distribution.
More specifically, consider the function that com-
putes the expected number of occurrences of a
substring x in a random string x′ drawn from P:

f(x) = E(x v] x
′)

=
∑

x′∈X ∗
(x v] x

′)P(x′)

=
∑

p,s∈X ∗
P(pxs) , (5)

where x v] x
′ denotes the number of times x ap-

pears in x′. Here we assume that the true values
of f(x) for bigrams are known, though in practice
the algorithm will work with empirical estimates
of these.

The information about f known by the algo-
rithm is organized in matrix form as follows. Let
P ∈ Rl×l be a matrix containing the value of f(x)
for all strings of length two, i.e. bigrams.2. That
is, each entry in P ∈ Rl×l contains the expected
number of occurrences of a given bigram:

P (b, a) = E(ab v] x) . (6)
2In fact, while we restrict ourselves to strings of length

two, an analogous algorithm can be derived that considers
longer strings to define P . See (Balle et al., 2012) for details.

Furthermore, for each b ∈ X let Pb ∈ Rl×l denote
the matrix whose entries are given by

Pb(c, a) = E(abc v] x) , (7)

the expected number of occurrences of trigrams.
Finally, we define vectors p1 ∈ Rl and p∞ ∈ Rl

as follows: p1(a) =
∑

s∈X ∗ P(as), the probabil-
ity that a string begins with a particular symbol;
and p∞(a) =

∑
p∈X ∗ P(pa), the probability that

a string ends with a particular symbol.
Now we show a particularly useful way to ex-

press the quantities defined above in terms of the
operators 〈α1, α

>
∞, {Aa}a∈X 〉 of P. First, note

that each entry of P can be written in this form:

P (b, a) =
∑

p,s∈X ∗
P(pabs) (8)

=
∑

p,s∈X ∗
α>∞ As Ab Aa Ap α1

= (α>∞
∑

s∈X ∗
As) Ab Aa(

∑
p∈X ∗

Ap α1) .

It is not hard to see that, since P is a probability
distribution over X ∗, actually α>∞

∑
s∈X ∗ As =

~1>. Furthermore, since
∑

p∈X ∗ Ap =∑
k≥0(

∑
a∈X Aa)k = (I −

∑
a∈X Aa)−1,

we write α̃1 = (I −
∑

a∈X Aa)−1α1. From (8) it
is natural to define a forward matrix F ∈ Rn×l

whose ath column contains the sum of all hidden-
state vectors obtained after generating all prefixes
ended in a:

F (:, a) = Aa

∑
p∈X ∗

Ap α1 = Aa α̃1 . (9)

Conversely, we also define a backward matrix
B ∈ Rl×n whose ath row contains the probability
of generating a from any possible state:

B(a, :) = α>∞
∑

s∈X ∗
AsAa = ~1>Aa . (10)

By plugging the forward and backward matri-
ces into (8) one obtains the factorization P =
BF . With similar arguments it is easy to see
that one also has Pb = BAbF , p1 = B α1, and
p>∞ = α>∞ F . Hence, ifB and F were known, one
could in principle invert these expressions in order
to recover the operators of the model from em-
pirical estimations computed from a sample. In
the next section we show that in fact one does not
need to know B and F to learn an operator model
for P, but rather that having a “good” factorization
of P is enough.
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3.2 Inducing a Hidden-State Space

We have shown that an operator model A com-
puting P induces a factorization of the matrix P ,
namely P = BF . More generally, it turns out that
when the rank of P equals the minimal number of
states of an operator model that computes P, then
one can prove a duality relation between opera-
tors and factorizations of P . In particular, one can
show that, for any rank factorization P = QR, the
operators given by ᾱ1 = Q+p1, ᾱ>∞ = p>∞R

+,
and Āa = Q+PaR

+, yield an operator model for
P. A key fact in proving this result is that the func-
tion P is invariant to the basis chosen to represent
operator matrices. See (Balle et al., 2012) for fur-
ther details.

Thus, we can recover an operator model for P
from any rank factorization of P , provided a rank
assumption on P holds (which hereafter we as-
sume to be the case). Since we only have access
to an approximation of P , it seems reasonable to
choose a factorization which is robust to estima-
tion errors. A natural such choice is the thin SVD
decomposition of P (i.e. using top n singular vec-
tors), given by: P = U(ΣV >) = U(U>P ).
Intuitively, we can think of U and U>P as pro-
jected backward and forward matrices. Now that
we have a factorization of P we can construct an
operator model for P as follows: 3

ᾱ1 = U>p1 , (11)

ᾱ>∞ = p>∞(U>P )+ , (12)

Āa = U>Pa(U>P )+ . (13)

Algorithm 1 presents pseudo-code for an algo-
rithm learning operators of a SHAG from train-
ing head-modifier sequences using this spectral
method. Note that each operator model in the

3To see that equations (11-13) define a model for P, one
must first see that the matrix M = F (ΣV >)+ is invertible
with inverse M−1 = U>B. Using this and recalling that
p1 = Bα1, Pa = BAaF , p>∞ = α>∞F , one obtains that:

ᾱ1 = U>Bα1 = M−1α1 ,

ᾱ>∞ = α>∞F (U>BF )+ = α>∞M ,

Āa = U>BAaF (U>BF )+ = M−1AaM .

Finally:

P(x1:T ) = α>∞ AxT · · ·Ax1 α1

= α>∞MM−1AxTM · · ·M−1Ax1MM−1α1

= ᾱ>∞ĀxT · · · Āx1 ᾱ1

Algorithm 1 Learn Operator SHAG
inputs:
• An alphabet X
• A training set TRAIN = {〈hi, di, xi

1:T 〉}Mi=1

• The number of hidden states n

1: for each h ∈ X̄ and d ∈ {LEFT, RIGHT} do
2: Compute an empirical estimate from TRAIN of

statistics matrices p̂1, p̂∞, P̂ , and {P̂a}a∈X
3: Compute the SVD of P̂ and let Û be the matrix

of top n left singular vectors of P̂
4: Compute the observable operators for h and d:
5: α̂h,d

1 = Û>p̂1

6: (α̂h,d
∞ )> = p̂>∞(Û>P̂ )+

7: Âh,d
a = Û>P̂a(Û>P̂ )+ for each a ∈ X

8: end for
9: return Operators 〈α̂h,d

1 , α̂h,d
∞ , Âh,d

a 〉
for each h ∈ X̄ , d ∈ {LEFT, RIGHT}, a ∈ X

SHAG is learned separately. The running time
of the algorithm is dominated by two computa-
tions. First, a pass over the training sequences to
compute statistics over unigrams, bigrams and tri-
grams. Second, SVD and matrix operations for
computing the operators, which run in time cubic
in the number of symbols l. However, note that
when dealing with sparse matrices many of these
operations can be performed more efficiently.

4 Parsing Algorithms

Given a sentence s0:N we would like
to find its most likely derivation, ŷ =
argmaxy∈Y(s0:N ) P(y). This problem, known as
MAP inference, is known to be intractable for
hidden-state structure prediction models, as it
involves finding the most likely tree structure
while summing out over hidden states. We use
a common approximation to MAP based on first
computing posterior marginals of tree edges (i.e.
dependencies) and then maximizing over the
tree structure (see (Park and Darwiche, 2004)
for complexity of general MAP inference and
approximations). For parsing, this strategy is
sometimes known as MBR decoding; previous
work has shown that empirically it gives good
performance (Goodman, 1996; Clark and Cur-
ran, 2004; Titov and Henderson, 2006; Petrov
and Klein, 2007). In our case, we use the
non-deterministic SHAG to compute posterior
marginals of dependencies. We first explain the
general strategy of MBR decoding, and then
present an algorithm to compute marginals.
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Let (si, sj) denote a dependency between head
word i and modifier word j. The posterior
or marginal probability of a dependency (si, sj)
given a sentence s0:N is defined as

µi,j = P((si, sj) | s0:N ) =
∑

y∈Y(s0:N ) : (si,sj)∈y

P(y) .

To compute marginals, the sum over derivations
can be decomposed into a product of inside and
outside quantities (Baker, 1979). Below we de-
scribe an inside-outside algorithm for our gram-
mars. Given a sentence s0:N and marginal scores
µi,j , we compute the parse tree for s0:N as

ŷ = argmax
y∈Y(s0:N )

∑
(si,sj)∈y

logµi,j (14)

using the standard projective parsing algorithm
for arc-factored models (Eisner, 2000). Overall
we use a two-pass parsing process, first to com-
pute marginals and then to compute the best tree.

4.1 An Inside-Outside Algorithm

In this section we sketch an algorithm to com-
pute marginal probabilities of dependencies. Our
algorithm is an adaptation of the parsing algo-
rithm for SHAG by Eisner and Satta (1999) to
the case of non-deterministic head-automata, and
has a runtime cost of O(n2N3), where n is the
number of states of the model, and N is the
length of the input sentence. Hence the algorithm
maintains the standard cubic cost on the sentence
length, while the quadratic cost on n is inher-
ent to the computations defined by our model in
Eq. (3). The main insight behind our extension
is that, because the computations of our model in-
volve state-distribution vectors, we need to extend
the standard inside/outside quantities to be in the
form of such state-distribution quantities.4

Throughout this section we assume a fixed sen-
tence s0:N . Let Y(xi:j) be the set of derivations
that yield a subsequence xi:j . For a derivation y,
we use root(y) to indicate the root word of it,
and use (xi, xj) ∈ y to refer a dependency in y
from head xi to modifier xj . Following Eisner

4Technically, when working with the projected operators
the state-distribution vectors will not be distributions in the
formal sense. However, they correspond to a projection of a
state distribution, for some projection that we do not recover
from data (namely M−1 in footnote 3). This projection has
no effect on the computations because it cancels out.

and Satta (1999), we use decoding structures re-
lated to complete half-constituents (or “triangles”,
denoted C) and incomplete half-constituents (or
“trapezoids”, denoted I), each decorated with a di-
rection (denoted L and R). We assume familiarity
with their algorithm.

We define θI,R
i,j ∈ Rn as the inside score-vector

of a right trapezoid dominated by dependency
(si, sj),

θI,R
i,j =

∑
y∈Y(si:j) : (si,sj)∈y ,

y={〈si,R,x1:t〉} ∪ y′ , xt=sj

P(y′)αsi,R(x1:t) . (15)

The term P(y′) is the probability of head-modifier
sequences in the range si:j that do not involve
si. The term αsi,R(x1:t) is a forward state-
distribution vector —the qth coordinate of the
vector is the probability that si generates right
modifiers x1:t and remains at state q. Similarly,
we define φI,R

i,j ∈ Rn as the outside score-vector
of a right trapezoid, as

φI,R
i,j =

∑
y∈Y(s0:isj:n) : root(y)=s0,
y={〈si,R,xt:T 〉} ∪ y′ , xt=sj

P(y′)βsi,R(xt+1:T ) , (16)

where βsi,R(xt+1:T ) ∈ Rn is a backward state-
distribution vector —the qth coordinate is the
probability of being at state q of the right au-
tomaton of si and generating xt+1:T . Analogous
inside-outside expressions can be defined for the
rest of structures (left/right triangles and trape-
zoids). With these quantities, we can compute
marginals as

µi,j =

{
(φI,R

i,j )> θI,R
i,j Z

−1 if i < j ,

(φI,L
i,j)> θI,L

i,j Z
−1 if j < i ,

(17)

where Z=
∑

y∈Y(s0:N)P(y) = (α?,R
∞ )> θC,R

0,N .
Finally, we sketch the equations for computing

inside scores in O(N3) time. The outside equa-
tions can be derived analogously (see (Paskin,
2001)). For 0 ≤ i < j ≤ N :

θC,R
i,i = αsi,R

1 (18)

θC,R
i,j =

j∑
k=i+1

θI,R
i,k

(
(αsk,R
∞ )> θC,R

k,j

)
(19)

θI,R
i,j =

j∑
k=i

Asi,R
sj

θC,R
i,k

(
(α

sj ,L
∞ )> θC,L

k+1,j

)
(20)
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5 Experiments

The goal of our experiments is to show that in-
corporating hidden states in a SHAG using oper-
ator models can consistently improve parsing ac-
curacy. A second goal is to compare the spec-
tral learning algorithm to EM, a standard learning
method that also induces hidden states.

The first set of experiments involve fully unlex-
icalized models, i.e. parsing part-of-speech tag se-
quences. While this setting falls behind the state-
of-the-art, it is nonetheless valid to analyze empir-
ically the effect of incorporating hidden states via
operator models, which results in large improve-
ments. In a second set of experiments, we com-
bine the unlexicalized hidden-state models with
simple lexicalized models. Finally, we present
some analysis of the automaton learned by the
spectral algorithm to see the information that is
captured in the hidden state space.

5.1 Fully Unlexicalized Grammars
We trained fully unlexicalized dependency gram-
mars from dependency treebanks, that is, X are
PoS tags and we parse PoS tag sequences. In
all cases, our modifier sequences include special
START and STOP symbols at the boundaries. 5 6

We compare the following SHAG models:

• DET: a baseline deterministic grammar with
a single state.
• DET+F: a deterministic grammar with two

states, one emitting the first modifier of a
sequence, and another emitting the rest (see
(Eisner and Smith, 2010) for a similar deter-
ministic baseline).
• SPECTRAL: a non-deterministic grammar

with n hidden states trained with the spectral
algorithm. n is a parameter of the model.
• EM: a non-deterministic grammar with n

states trained with EM. Here, we estimate
operators 〈α̂1, α̂∞, Â

h,d
a 〉 using forward-

backward for the E step. To initialize, we
mimicked an HMM initialization: (1) we set
α̂1 and α̂∞ randomly; (2) we created a ran-
dom transition matrix T ∈ Rn×n; (3) we

5Even though the operators α1 and α∞ of a PNFA ac-
count for start and stop probabilities, in preliminary experi-
ments we found that having explicit START and STOP sym-
bols results in more accurate models.

6Note that, for parsing, the operators for the START and
STOP symbols can be packed into α1 and α∞ respectively.
One just defines α′1 = ASTART α1 and α′>∞ = α>∞ ASTOP.
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Figure 1: Accuracy curve on English development set
for fully unlexicalized models.

created a diagonal matrix Oh,d
a ∈ Rn×n,

where Oh,d
a (i, i) is the probability of gener-

ating symbol a from h and d (estimated from
training); (4) we set Âh,d

a = TOh,d
a .

We trained SHAG models using the standard
WSJ sections of the English Penn Treebank (Mar-
cus et al., 1994). Figure 1 shows the Unlabeled
Attachment Score (UAS) curve on the develop-
ment set, in terms of the number of hidden states
for the spectral and EM models. We can see
that DET+F largely outperforms DET7, while the
hidden-state models obtain much larger improve-
ments. For the EM model, we show the accuracy
curve after 5, 10, 25 and 100 iterations.8

In terms of peak accuracies, EM gives a slightly
better result than the spectral method (80.51% for
EM with 15 states versus 79.75% for the spectral
method with 9 states). However, the spectral al-
gorithm is much faster to train. With our Matlab
implementation, it took about 30 seconds, while
each iteration of EM took from 2 to 3 minutes,
depending on the number of states. To give a con-
crete example, to reach an accuracy close to 80%,
there is a factor of 150 between the training times
of the spectral method and EM (where we com-
pare the peak performance of the spectral method
versus EM at 25 iterations with 13 states).

7For parsing with deterministic SHAG we employ MBR
inference, even though Viterbi inference can be performed
exactly. In experiments on development data DET improved
from 62.65% using Viterbi to 68.52% using MBR, and
DET+F improved from 72.72% to 74.80%.

8We ran EM 10 times under different initial conditions
and selected the run that gave the best absolute accuracy after
100 iterations. We did not observe significant differences
between the runs.
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DET DET+F SPECTRAL EM
WSJ 69.45% 75.91% 80.44% 81.68%

Table 1: Unlabeled Attachment Score of fully unlexi-
calized models on the WSJ test set.

Table 1 shows results on WSJ test data, se-
lecting the models that obtain peak performances
in development. We observe the same behavior:
hidden-states largely improve over deterministic
baselines, and EM obtains a slight improvement
over the spectral algorithm. Comparing to previ-
ous work on parsing WSJ PoS sequences, Eisner
and Smith (2010) obtained an accuracy of 75.6%
using a deterministic SHAG that uses informa-
tion about dependency lengths. However, they
used Viterbi inference, which we found to per-
form worse than MBR inference (see footnote 7).

5.2 Experiments with Lexicalized
Grammars

We now turn to combining lexicalized determinis-
tic grammars with the unlexicalized grammars ob-
tained in the previous experiment using the spec-
tral algorithm. The goal behind this experiment
is to show that the information captured in hidden
states is complimentary to head-modifier lexical
preferences.

In this case X consists of lexical items, and we
assume access to the PoS tag of each lexical item.
We will denote as ta and wa the PoS tag and word
of a symbol a ∈ X̄ . We will estimate condi-
tional distributions P(a | h, d, σ), where a ∈ X
is a modifier, h ∈ X̄ is a head, d is a direction,
and σ is a deterministic state. Following Collins
(1999), we use three configurations of determin-
istic states:

• LEX: a single state.
• LEX+F: two distinct states for first modifier

and rest of modifiers.
• LEX+FCP: four distinct states, encoding:

first modifier, previous modifier was a coor-
dination, previous modifier was punctuation,
and previous modifier was some other word.

To estimate P we use a back-off strategy:

P(a|h, d, σ) = PA(ta|h, d, σ)PB(wa|ta, h, d, δ)

To estimate PA we use two back-off levels,
the fine level conditions on {wh, d, σ} and the
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Figure 2: Accuracy curve on English development set
for lexicalized models.

coarse level conditions on {th, d, σ}. For PB we
use three levels, which from fine to coarse are
{ta, wh, d, σ}, {ta, th, d, σ} and {ta}. We follow
Collins (1999) to estimate PA and PB from a tree-
bank using a back-off strategy.

We use a simple approach to combine lexical
models with the unlexical hidden-state models we
obtained in the previous experiment. Namely, we
use a log-linear model that computes scores for
head-modifier sequences as

s(〈h, d, x1:T 〉) = log Psp(x1:T |h, d) (21)

+ log Pdet(x1:T |h, d) ,

where Psp and Pdet are respectively spectral and
deterministic probabilistic models. We tested
combinations of each deterministic model with
the spectral unlexicalized model using different
number of states. Figure 2 shows the accuracies of
single deterministic models, together with combi-
nations using different number of states. In all
cases, the combinations largely improve over the
purely deterministic lexical counterparts, suggest-
ing that the information encoded in hidden states
is complementary to lexical preferences.

5.3 Results Analysis

We conclude the experiments by analyzing the
state space learned by the spectral algorithm.
Consider the space Rn where the forward-state
vectors lie. Generating a modifier sequence corre-
sponds to a path through the n-dimensional state
space. We clustered sets of forward-state vectors
in order to create a DFA that we can use to visu-
alize the phenomena captured by the state space.
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Figure 3: DFA approximation for the generation of NN
left modifier sequences.

To build a DFA, we computed the forward vec-
tors corresponding to frequent prefixes of modi-
fier sequences of the development set. Then, we
clustered these vectors using a Group Average
Agglomerative algorithm using the cosine simi-
larity measure (Manning et al., 2008). This simi-
larity measure is appropriate because it compares
the angle between vectors, and is not affected by
their magnitude (the magnitude of forward vec-
tors decreases with the number of modifiers gen-
erated). Each cluster i defines a state in the DFA,
and we say that a sequence x1:t is in state i if its
corresponding forward vector at time t is in clus-
ter i. Then, transitions in the DFA are defined us-
ing a procedure that looks at how sequences tra-
verse the states. If a sequence x1:t is at state i at
time t − 1, and goes to state j at time t, then we
define a transition from state i to state j with la-
bel xt. This procedure may require merging states
to give a consistent DFA, because different se-
quences may define different transitions for the
same states and modifiers. After doing a merge,
new merges may be required, so the procedure
must be repeated until a DFA is obtained.

For this analysis, we took the spectral model
with 9 states, and built DFA from the non-
deterministic automata corresponding to heads
and directions where we saw largest improve-

ments in accuracy with respect to the baselines.
A DFA for the automaton (NN, LEFT) is shown

in Figure 3. The vectors were originally divided
in ten clusters, but the DFA construction required
two state mergings, leading to a eight state au-
tomaton. The state named I is the initial state.
Clearly, we can see that there are special states
for punctuation (state 9) and coordination (states
1 and 5). States 0 and 2 are harder to interpret.
To understand them better, we computed an esti-
mation of the probabilities of the transitions, by
counting the number of times each of them is
used. We found that our estimation of generating
STOP from state 0 is 0.67, and from state 2 it is
0.15. Interestingly, state 2 can transition to state 0
generating prp$, POS or DT, that are usual end-
ings of modifier sequences for nouns (recall that
modifiers are generated head-outwards, so for a
left automaton the final modifier is the left-most
modifier in the sentence).

6 Conclusion

Our main contribution is a basic tool for inducing
sequential hidden structure in dependency gram-
mars. Most of the recent work in dependency
parsing has explored explicit feature engineering.
In part, this may be attributed to the high cost of
using tools such as EM to induce representations.
Our experiments have shown that adding hidden-
structure improves parsing accuracy, and that our
spectral algorithm is highly scalable.

Our methods may be used to enrich the rep-
resentational power of more sophisticated depen-
dency models. For example, future work should
consider enhancing lexicalized dependency gram-
mars with hidden states that summarize lexical
dependencies. Another line for future research
should extend the learning algorithm to be able
to capture vertical hidden relations in the depen-
dency tree, in addition to sequential relations.
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Abstract

Kernel based methods dominate the current
trend for various relation extraction tasks
including protein-protein interaction (PPI)
extraction. PPI information is critical in un-
derstanding biological processes. Despite
considerable efforts, previously reported
PPI extraction results show that none of the
approaches already known in the literature
is consistently better than other approaches
when evaluated on different benchmark PPI
corpora. In this paper, we propose a
novel hybrid kernel that combines (auto-
matically collected) dependency patterns,
trigger words, negative cues, walk fea-
tures and regular expression patterns along
with tree kernel and shallow linguistic ker-
nel. The proposed kernel outperforms the
exiting state-of-the-art approaches on the
BioInfer corpus, the largest PPI benchmark
corpus available. On the other four smaller
benchmark corpora, it performs either bet-
ter or almost as good as the existing ap-
proaches. Moreover, empirical results show
that the proposed hybrid kernel attains con-
siderably higher precision than the existing
approaches, which indicates its capability
of learning more accurate models. This also
demonstrates that the different types of in-
formation that we use are able to comple-
ment each other for relation extraction.

1 Introduction

Kernel methods are considered the most effective
techniques for various relation extraction (RE)
tasks on both general (e.g. newspaper text) and
specialized (e.g. biomedical text) domains. In
particular, as the importance of syntactic struc-
tures for deriving the relationships between en-
tities in text has been growing, several graph

and tree kernels have been designed and experi-
mented.

Early RE approaches more or less fall in one of
the following categories: (i) exploitation of statis-
tics about co-occurrences of entities, (ii) usage of
patterns and rules, and (iii) usage of flat features
to train machine learning (ML) classifiers. These
approaches have been studied for a long period
and have their own pros and cons. Exploitation
of co-occurrence statistics results in high recall
but low precision, while rule or pattern based ap-
proaches can increase precision but suffer from
low recall. Flat feature based ML approaches em-
ploy various kinds of linguistic, syntactic or con-
textual information and integrate them into the
feature space. They obtain relatively good results
but are hindered by drawbacks of limited feature
space and excessive feature engineering. Kernel
based approaches have become an attractive alter-
native solution, as they can exploit huge amount
of features without an explicit representation.

In this paper, we propose a new hybrid kernel
for RE. We apply the kernel to Protein–protein
interaction (PPI) extraction, the most widely re-
searched topic in biomedical relation extraction.
PPI1 information is very critical in understanding
biological processes. Considerable progress has
been made for this task. Nevertheless, empirical
results of previous studies show that none of the
approaches already known in the literature is con-
sistently better than other approaches when evalu-
ated on different benchmark PPI corpora (see Ta-
ble 4). This demands further study and innovation

1PPIs occur when two or more proteins bind together,
and are integral to virtually all cellular processes, such as
metabolism, signalling, regulation, and proliferation (Tikk
et al., 2010).
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of new approaches that are sensitive to the varia-
tions of complex linguistic constructions.

The proposed hybrid kernel is the composition
of one tree kernel and two feature based kernels
(one of them is already known in the literature
and the other is proposed in this paper for the first
time). The novelty of the newly proposed feature
based kernel is that it envisages to accommodate
the advantages of pattern based approaches. More
precisely:

1. We propose a new feature based kernel (de-
tails in Section 4.1) by using syntactic de-
pendency patterns, trigger words, negative
cues, regular expression (henceforth, regex)
patterns and walk features (i.e. e-walks and
v-walks)2.

2. The syntactic dependency patterns are au-
tomatically collected from a type of depen-
dency subgraph (we call it reduced graph,
more details in Section 4.1.1) during run-
time.

3. We only use the regex patterns, trigger words
and negative cues mentioned in the literature
(Ono et al., 2001; Fundel et al., 2007; Bui et
al., 2010). The objective is to verify whether
we can exploit knowledge which is already
known and used.

4. We propose a hybrid kernel by combin-
ing the proposed feature based kernel (out-
lined above) with the Shallow Linguistic
(SL) kernel (Giuliano et al., 2006) and the
Path-enclosed Tree (PET) kernel (Moschitti,
2004).

The aim of our work is to take advantage of
different types of information (i.e., dependency
patterns, regex patterns, trigger words, negative
cues, syntactic dependencies among words and
constituent parse trees) and their different repre-
sentations (i.e. flat features, tree structures and
graphs) which can complement each other to learn
more accurate models.

2The syntactic dependencies of the words of a sentence
create a dependency graph. A v-walk feature consists of
(wordi − dependency typei,i+1 − wordi+1), and an e-
walk feature is composed of (dependency typei−1,i −
wordi − dependency typei,i+1). Note that, in a depen-
dency graph, the words are nodes while the dependency
types are edges.

The remainder of the paper is organized as fol-
lows. In Section 2, we briefly review previous
work. Section 3 lists the datasets. Then, in Sec-
tion 4, we define our proposed hybrid kernel and
describe its individual component kernels. Sec-
tion 5 outlines the experimental settings. Follow-
ing that, empirical results are discussed in Section
6. Finally, we conclude with a summary of our
study as well as suggestions for further improve-
ment of our approach.

2 Related Work

In this section, we briefly discuss some of the
recent work on PPI extraction. Several RE ap-
proaches have been reported to date for the PPI
task, most of which are kernel based methods.
Tikk et al. (2010) reported a benchmark evalu-
ation of various kernels on PPI extraction. An
interesting finding is that the Shallow Linguis-
tic (SL) kernel (Giuliano et al., 2006) (to be dis-
cussed in Section 4.2), despite its simplicity, is on
par with the best kernels in most of the evaluation
settings.

Kim et al. (2010) proposed walk-weighted sub-
sequence kernel using e-walks, partial matches,
non-contiguous paths, and different weights for
different sub-structures (which are used to capture
structural similarities during kernel computation).
Miwa et al. (2009a) proposed a hybrid kernel,
which combines the all-paths graph (APG) kernel
(Airola et al., 2008), the bag-of-words kernel, and
the subset tree kernel (Moschitti, 2006) (applied
on the shortest dependency paths between target
protein pairs). They used multiple parser inputs.
The system is regarded as the current state-of-the-
art PPI extraction system because of its high re-
sults on different PPI corpora (see the results in
Table 4).

As an extension of their work, they boosted sys-
tem performance by training on multiple PPI cor-
pora instead of on a single corpus and adopting
a corpus weighting concept with support vector
machine (SVM) which they call SVM-CW (Miwa
et al., 2009b). Since most of their results are re-
ported by training on the combination of multi-
ple corpora, it is not possible to compare them
directly with the results published in the other re-
lated works (that usually adopt 10-fold cross vali-
dation on a single PPI corpus). To be comparable
with the vast majority of the existing work, we
also report results using 10-fold cross validation
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Corpus Sentences Positive pairs Negative pairs

BioInfer 1,100 2,534 7,132

AIMed 1,955 1,000 4,834

IEPA 486 335 482

HPRD50 145 163 270

LLL 77 164 166

Table 1: Basic statistics of the 5 benchmark PPI cor-
pora.

on single corpora.
Apart from the approaches described above,

there also exist other studies that used kernels for
PPI extraction (e.g. subsequence kernel (Bunescu
and Mooney, 2006)).

A notable exception is the work published by
Bui et al. (2010). They proposed an approach that
consists of two phases. In the first phase, their
system categorizes the data into different groups
(i.e. subsets) based on various properties and pat-
terns. Later they classify candidate PPI pairs in-
side each of the groups using SVM trained with
features specific for the corresponding group.

3 Data

There are 5 benchmark corpora for the PPI task
that are frequently used: HPRD50 (Fundel et al.,
2007), IEPA (Ding et al., 2002), LLL (Nédellec,
2005), BioInfer (Pyysalo et al., 2007) and AIMed
(Bunescu et al., 2005). These corpora adopt dif-
ferent PPI annotation formats. For a comparative
evaluation Pyysalo et al. (2008) put all of them
in a common format which has become the stan-
dard evaluation format for the PPI task. In our
experiments, we use the versions of the corpora
converted to such format.

Table 1 shows various statistics regarding the 5
(converted) corpora.

4 Proposed Hybrid Kernel

The hybrid kernel that we propose is as follows:

KHybrid (R1, R2) = KTPWF (R1, R2)
+ KSL (R1, R2) + w * KPET (R1, R2)

where KTPWF stands for the new feature
based kernel (henceforth, TPWF kernel) com-
puted using flat features collected by exploiting
patterns, trigger words, negative cues and walk
features. KSL and KPET stand for the Shallow
Linguistic (SL) kernel and the Path-enclosed Tree

(PET) kernel respectively. w is a multiplicative
constant used for the PET kernel. It allows the
hybrid kernel to assign more (or less) weight to
the information obtained using tree structures de-
pending on the corpus. The proposed hybrid ker-
nel is valid according to the closure properties of
kernels.

Both the TPWF and SL kernels are linear ker-
nels, while PET kernel is computed using Unlex-
icalized Partial Tree (uPT) kernel (Severyn and
Moschitti, 2010). The following subsections ex-
plain each of the individual kernels in more detail.

4.1 Proposed TPWF Kernel
4.1.1 Reduced graph, trigger words,

negative cues and dependency patterns
For each of the candidate entity pairs, we

construct a type of subgraph from the depen-
dency graph formed by the syntactic dependen-
cies among the words of a sentence. We call it
“reduced graph” and define it in the follow-
ing way:

A reduced graph is a subgraph
of the dependency graph of a sentence
which includes:
• the two candidate entities and their

governor nodes up to their least
common governor (if exists).
• dependent nodes (if exist) of all the

nodes added in the previous step.
• the immediate governor(s) (if ex-

ists) of the least common governor.

Figure 1 shows an example of a reduced graph.
A reduced graph is an extension of the smallest
common subgraph of the dependency graph that
aims at overcoming its limitations. It is a known
issue that the smallest common subgraph (or sub-
tree) sometimes does not contain cue words. Pre-
viously, Chowdhury et al. (2011a) proposed a lin-
guistically motivated extension of the minimal
(i.e. smallest) common subtree (which includes
the candidate entity pairs), known as Mildly Ex-
tended Dependency Tree (MEDT). However, the
rules used for MEDT are too constrained. Our ob-
jective in constructing the reduced graph is to in-
clude any potential modifier(s) or cue word(s) that
describes the relation between the given pair of
entities. Sometimes such modifiers or cue words
are not directly dependent (syntactically) on any
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BioInfer AIMed IEPA HPRD50 LLL

P R F P R F P R F P R F P R F

Only walk features 51.8 71.2 60.0 48.7 63.2 55.0 61.0 75.2 67.4 60.2 65.0 62.5 64.6 87.8 74.4

Features: dep. patterns, 53.8 68.8 60.4 50.6 63.9 56.5 63.9 74.6 68.9 65.0 71.8 68.2 66.5 89.6 76.4

trigger, neg. cues, walks

Features: dep. patterns, 53.5 68.6 60.1 52.5 62.9 57.2 63.8 74.6 68.8 65.1 69.9 67.5 67.4 88.4 76.5

trigger, neg. cues, walks,

regex patterns

Table 2: Results of the proposed TPWF feature based kernel on 5 benchmark PPI corpora before and after adding
features collected using dependency patterns, regex patterns, trigger words and negative cues to the walk features.
The TPWF kernel is a component of the new hybrid kernel.

Figure 1: Dependency graph for the sentence “A pVHL mutant containing a P154L substitution does not promote
degradation of HIF1-Alpha” generated by the Stanford parser. The edges with blue dots form the smallest
common subgraph for the candidate entity pair pVHL and HIF1-Alpha, while the edges with red dots form the
reduced graph for the pair.

of the entities (of the candidate pair). Rather they
are dependent on some other word(s) which is de-
pendent on one (or both) of the entities. The word
“not” in Figure 1 is one such example. The re-
duced graph aims to preserve these cue words.

The following types of features are collected
from the reduced graph of a candidate pair:

1. HasTriggerWord: whether the least common
governor(s) of the target entity pairs inside
the reduced graph matches any trigger word.

2. Trigger-X: whether the least common gov-
ernor(s) of the target entity pairs inside the
reduced graph matches the trigger word ‘X’.

3. HasNegWord: whether the reduced graph
contains any negative word.

4. DepPattern-i: whether the reduced graph
contains all the syntactic dependencies of the
i-th pattern of dependency pattern list.

The dependency pattern list is automatically
constructed from the training data during the
learning phase. Each pattern is a set of syntactic
dependencies of the corresponding reduced graph

of a (positive or negative) entity pair in the train-
ing data. For example, the dependency pattern for
the reduced graph in Figure 1 is {det, amod, part-
mod, nsubj, aux, neg, dobj, prep of}. The same
dependency pattern might be constructed for mul-
tiple (positive or negative) entity pairs. However,
if it is constructed for both positive and negative
pairs, it has to be discarded from the pattern list.

The dependency patterns allow some kind of
underspecification as they do not contain the lex-
ical items (i.e. words) but contain the likely com-
bination of syntactic dependencies that a given re-
lated pair of entities would pose inside their re-
duced graph.

The list of trigger words contains 144 words
previously used by Bui et al. (2010) and Fundel
et al. (2007). The list of negative cues contain 18
words, most of which are mentioned in Fundel et
al. (2007).

4.1.2 Walk features
We extract e-walk and v-walk features from

the Mildly Extended Dependency Tree (MEDT)
(Chowdhury et al., 2011a) of each candidate pair.
Reduced graphs sometimes include some unin-
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BioInfer AIMed IEPA HPRD50 LLL

Pos. / Neg. 2,534 / 7,132 1,000 / 4,834 335 / 482 163 / 270 164 / 166

P R F P R F P R F P R F P R F

Proposed TPWF kernel 53.8 68.8 60.4 50.6 63.9 56.5 63.9 74.6 68.9 65.0 71.8 68.2 66.5 89.6 76.4

(without regex)

Proposed TPWF kernel 53.5 68.6 60.1 52.5 62.9 57.2 63.8 74.6 68.8 65.1 69.9 67.5 67.4 88.4 76.5

(with regex)

SL kernel 60.8 65.8 63.2 56.2 64.4 60.0 73.3 71.9 72.6 62.0 65.0 63.5 74.9 85.4 79.8

PET kernel 72.8 74.9 73.9 44.8 72.8 55.5 70.7 77.9 74.2 65.0 73.0 68.8 72.1 89.6 79.9

Proposed hybrid kernel 80.0 71.4 75.5 64.2 58.2 61.1 81.1 69.3 74.7 72.9 59.5 65.5 70.4 95.7 81.1

(PET + SL + TPWF

(without regex))

Proposed hybrid kernel 80.1 72.0 75.9 64.4 58.3 61.2 79.3 69.6 74.1 71.9 61.4 66.2 70.6 95.1 81.0

(PET + SL + TPWF

(with regex))

Table 3: Results of the proposed hybrid kernel and its individual components. Pos. and Neg. refer to number
positive and negative relations respectively. PET refers to the path-enclosed tree kernel, SL refers to the shallow
linguistic kernel, and TPWF refers to the kernel computed using trigger, pattern, negative cue and walk features.

formative words which produce uninformative
walk features. Hence, they are not suitable for
walk feature generation. MEDT suits better for
this purpose. The walk features extracted from
MEDTs have the following properties:

• The directionality of the edges (or nodes) in
an e-walk (or v-walk) is not considered. In
other words, e.g., pos(stimulatory)−amod−
pos(effects) and pos(effects) − amod −
pos(stimulatory) are treated as the same fea-
ture.

• The v-walk features are of the form (posi −
dependency typei,i+1−posi+1). Here, posi is
the POS tag of wordi, i is the governor node
and i + 1 is the dependent node.

• The e-walk features are of the form
(dep. typei−1,i − posi − dep. typei,i+1) and
(dep. typei−1,i − lemmai − dep. typei,i+1).
Here, lemmai is the lemmatized form of
wordi.

• Usually, the e-walk features are con-
structed using dependency types be-
tween {governor of X, node X} and
{node X, dependent of X}. However,
we also extract e-walk features from
the dependency types between any two
dependents and their common governor

(i.e. {node X, dependent 1 of X} and
{node X, dependent 2 of X}).

Apart from the above types of features, we also
add features for lemmas of the immediate preced-
ing and following words of the candidate entities.
These feature names are augmented with -1 or +1
depending on whether the corresponding words
are preceded or followed by a candidate entity.

4.1.3 Regular expression patterns
We use a set of 22 regex patterns as binary

features. These patterns were previously used
by Ono et al. (2001) and Bui et al. (2010).
If there is a match for a pattern (e.g. “En-
tity 1.*activates.*Entity 2” where Entity 1 and
Entity 2 form the candidate entity pair) in a given
sentence, value 1 is added for the feature (i.e., pat-
tern) inside the feature vector.

4.2 Shallow Linguistic (SL) Kernel
The Shallow Linguistic (SL) kernel was proposed
by Giuliano et al. (2006). It is one of the best
performing kernels applied on different biomedi-
cal RE tasks such as PPI and DDI (drug-drug in-
teraction) extraction (Tikk et al., 2010; Segura-
Bedmar et al., 2011; Chowdhury and Lavelli,
2011b; Chowdhury et al., 2011c). It is defined
as follows:

KSL (R1, R2) = KLC (R1, R2) + KGC

(R1, R2)
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BioInfer AIMed IEPA HPRD50 LLL

Pos. / Neg. 2,534 / 7,132 1,000 / 4,834 335 / 482 163 / 270 164 / 166

P R F P R F P R F P R F P R F

SL kernel – – – 60.9 57.2 59.0 – – – – – – – – –
(Giuliano et al., 2006)

APG kernel 56.7 67.2 61.3 52.9 61.8 56.4 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.8

(Airola et al., 2008)

Hybrid kernel and 65.7 71.1 68.1 55.0 68.8 60.8 67.5 78.6 71.7 68.5 76.1 70.9 77.6 86.0 80.1

multiple parser input

(Miwa et al., 2009a)

SVM-CW, multiple – – 67.6 – – 64.2 – – 74.4 – – 69.7 – – 80.5

parser input and graph,

walk and BOW features

(Miwa et al., 2009b)

kBSPS kernel 49.9 61.8 55.1 50.1 41.4 44.6 58.8 89.7 70.5 62.2 87.1 71.0 69.3 93.2 78.1

(Tikk et al., 2010)

Walk weighted 61.8 54.2 57.6 61.4 53.3 56.6 73.8 71.8 72.9 66.7 69.2 67.8 76.9 91.2 82.4

subsequence kernel

(Kim et al., 2010)

2 phase extraction 61.7 57.5 60.0 55.3 68.5 61.2 – – – – – – – – –
(Bui et al., 2010)

Our proposed hybrid 80.0 71.4 75.5 64.2 58.2 61.1 81.1 69.3 74.7 72.9 59.5 65.5 70.4 95.7 81.1

kernel (PET + SL +

TPWF without regex)

Table 4: Comparison of the results on the 5 benchmark PPI corpora. Pos. and Neg. refer to number positive and
negative relations respectively. The underlined numbers indicate the best results for the corresponding corpus
reported by any of the existing state-of-the-art approaches. The results of Bui et al. (2010) on LLL, HPRD50,
and IEPA are not reported since thy did not use all the positive and negative examples during cross validation.
Miwa et al. (2009b) showed that better results can be obtained using multiple corpora for training. However,
we consider only those results of their experiments where they used single training corpus as it is the standard
evaluation approach adopted by all the other studies on PPI extraction for comparing results. All the results of
the previous approaches reported in this table are directly quoted from their respective original papers.

where KSL, KGC and KLC correspond to SL,
global context (GC) and local context (LC) ker-
nels respectively. The GC kernel exploits contex-
tual information of the words occurring before,
between and after the pair of entities (to be in-
vestigated for RE) in the corresponding sentence;
while the LC kernel exploits contextual informa-
tion surrounding individual entities.

4.3 Path-enclosed tree (PET) Kernel

The path-enclosed tree (PET) kernel3 was first
proposed by Moschitti (2004) for semantic role
labeling. It was later successfully adapted by
Zhang et al. (2005) and other works for relation
extraction on general texts (such as newspaper do-

3Also known as shortest path-enclosed tree (SPT) kernel.

main). A PET is the smallest common subtree of a
phrase structure tree that includes the two entities
involved in a relation.

A tree kernel calculates the similarity between
two input trees by counting the number of com-
mon sub-structures. Different techniques have
been proposed to measure such similarity. We use
the Unlexicalized Partial Tree (uPT) kernel (Sev-
eryn and Moschitti, 2010) for the computation of
the PET kernel since a comparative evaluation by
Chowdhury et al. (2011a) reported that uPT ker-
nels achieve better results for PPI extraction than
the other techniques used for tree kernel compu-
tation.
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5 Experimental Settings

We have followed the same criteria commonly
used for the PPI extraction tasks, i.e. abstract-
wise 10-fold cross validation on individual corpus
and one-answer-per-occurrence criterion. In fact,
we have used exactly the same (abstract-wise)
fold splitting of the 5 benchmark (converted) cor-
pora used by Tikk et al. (2010) for benchmarking
various kernel methods4.

The Charniak-Johnson reranking parser (Char-
niak and Johnson, 2005), along with a self-trained
biomedical parsing model (McClosky, 2010), has
been used for tokenization, POS-tagging and
parsing of the sentences. Before parsing the sen-
tences, all the entities are blinded by assigning
names as EntityX where X is the entity index.
In each example, the POS tags of the two can-
didate entities are changed to EntityX . The
parse trees produced by the Charniak-Johnson
reranking parser are then processed by the Stan-
ford parser5 (Klein and Manning, 2003) to obtain
syntactic dependencies according to the Stanford
Typed Dependency format.

The Stanford parser often skips some syntactic
dependencies in output. We use the following two
rules to add some of such dependencies:

• If there is a “conj and” or “conj or” depen-
dency between two words X and Y, then X
should be dependent on any word Z on which
Y is dependent and vice versa.

• If there are two verbs X and Y such that in-
side the corresponding sentence they have
only the word “and” or “or” between them,
then any word Z dependent on X should be
also dependent on Y and vice versa.

Our system exploits SVM-LIGHT-TK6 (Mos-
chitti, 2006; Joachims, 1999). We made minor
changes in the toolkit to compute the proposed
hybrid kernel. The ratio of negative and positive
examples has been used as the value of the cost-
ratio-factor parameter. We have done parameter
tuning following the approach described by Hsu
et al. (2003).

4Downloaded from http://informatik.hu-
berlin.de/forschung /gebiete/wbi/ppi-benchmark .

5http://nlp.stanford.edu/software/lex-parser.shtml
6http://disi.unitn.it/moschitti/Tree-Kernel.htm

6 Results and Discussion

To measure the contribution of the features col-
lected from the reduced graphs (using dependency
patterns, trigger words and negative cues) and
regex patterns, we have applied the new TPWF
kernel on the 5 PPI corpora before and after using
these features. Results shown in Table 2 clearly
indicate that usage of these features improve the
performance. The improvement of performance
is primarily due to the usage of dependency pat-
terns which resulted in higher precision for all the
corpora.

We have tried to measure the contribution of
the regex patterns. However, from the empirical
results a clear trend does not emerge (see Table
2).

Table 3 shows a comparison among the re-
sults of the proposed hybrid kernel and its indi-
vidual components. As we can see, the overall
results of the hybrid kernel (with and without us-
ing regex pattern features) are better than those
by any of its individual component kernels. Inter-
estingly, precision achieved on the 4 benchmark
corpora (other than the smallest corpus LLL) is
much higher for the hybrid kernel than for the in-
dividual components. This strongly indicates that
these different types of information (i.e. depen-
dency patterns, regex patterns, triggers, negative
cues, syntactic dependencies among words and
constituent parse trees) and their different repre-
sentations (i.e. flat features, tree structures and
graphs) can complement each other to learn more
accurate models.

Table 4 shows a comparison of the PPI extrac-
tion results of our proposed hybrid kernel with
those of other state-of-the-art approaches. Since
the contribution of regex patterns in the perfor-
mance of the hybrid kernel was not relevant (as
Tables 2 and 3 show), we used the results of pro-
posed hybrid kernel without regex for the compar-
ison. As we can see, the proposed kernel achieves
significantly higher results on the BioInfer corpus,
the largest benchmark PPI corpus (2,534 positive
PPI pair annotations) available, than any of the
existing approaches. Moreover, the results of the
proposed hybrid kernel are on par with the state-
of-the-art results on the other smaller corpora.

Furthermore, empirical results show that the
proposed hybrid kernel attains considerably
higher precision than the existing approaches.
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Since a dependency pattern, by construction,
contains all the syntactic dependencies inside the
corresponding reduced graph, it may happen that
some of the dependencies (e.g. det or determiner)
are not informative for classifying the label of the
corresponding class label (i.e., positive or nega-
tive relation) of the pattern. Their presence in-
side a pattern might make it unnecessarily rigid
and less general. So, we tried to identify and dis-
card such non informative dependencies by mea-
suring probabilities of the dependencies with re-
spect to the class label and then removing any of
them which has probability lower than a threshold
(we tried with different threshold values). But do-
ing so decreased the performance. This suggests
that the syntactic dependencies of a dependency
pattern are not independent of each other even if
some of them might have low probability (with
respect to the class label) individually. We plan to
further investigate whether there could be differ-
ent criteria for identifying non informative depen-
dencies. For the work reported in this paper, we
used the dependency patterns as they are initially
constructed.

We also did experiments to see whether collect-
ing features for trigger words from the whole re-
duced graph would help. But that also decreased
performance. This suggests that trigger words are
more likely to appear in the least common gover-
nors.

7 Conclusion

In this paper, we have proposed a new hybrid
kernel for RE that combines two vector based
kernels and a tree kernel. The proposed kernel
outperforms any of the exiting approaches by a
wide margin on the BioInfer corpus, the largest
PPI benchmark corpus available. On the other
four smaller benchmark corpora, it performs ei-
ther better or almost as good as the existing state-
of-the art approaches.

We have also proposed a novel feature based
kernel, called TPWF kernel, using (automatically
collected) dependency patterns, trigger words,
negative cues, walk features and regular expres-
sion patterns. The TPWF kernel is used as a com-
ponent of the new hybrid kernel.

Empirical results show that the proposed hy-
brid kernel achieves considerably higher precision
than the existing approaches, which indicates its
capability of learning more accurate models. This

also demonstrates that the different types of infor-
mation that we use are able to complement each
other for relation extraction.

We believe there are at least three ways to
further improve the proposed approach. First
of all, the 22 regular expression patterns (col-
lected from Ono et al. (2001) and Bui et al.
(2010)) are applied at the level of the sen-
tences and this sometimes produces unwanted
matches. For example, consider the sentence
“X activates Y and inhibits Z” where X, Y,
and Z are entities. The pattern “Entity1. ∗
activates. ∗Entity2” matches both the X–Y and
X–Z pairs in the sentence. But only the X–Y pair
should be considered. So, the patterns should
be constrained to reduce the number of unwanted
matches. For example, they could be applied on
smaller linguistic units than full sentences. Sec-
ondly, different techniques could be used to iden-
tify less-informative syntactic dependencies in-
side dependency patterns to make them more ac-
curate and effective. Thirdly, usage of automati-
cally collected paraphrases of regular expression
patterns instead of the patterns directly could be
also helpful. Weakly supervised collection of
paraphrases for RE has been already investigated
(e.g. Romano et al. (2006)) and, hence, can be
tried for improving the TPWF kernel (which is a
component of the proposed hybrid kernel).
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Abstract

Coordination disambiguation remains a dif-
ficult sub-problem in parsing despite the
frequency and importance of coordination
structures. We propose a method for disam-
biguating coordination structures. In this
method, dual decomposition is used as a
framework to take advantage of both HPSG
parsing and coordinate structure analysis
with alignment-based local features. We
evaluate the performance of the proposed
method on the Genia corpus and the Wall
Street Journal portion of the Penn Tree-
bank. Results show it increases the per-
centage of sentences in which coordination
structures are detected correctly, compared
with each of the two algorithms alone.

1 Introduction

Coordination structures often give syntactic ambi-
guity in natural language. Although a wrong anal-
ysis of a coordination structure often leads to a
totally garbled parsing result, coordination disam-
biguation remains a difficult sub-problem in pars-
ing, even for state-of-the-art parsers.

One approach to solve this problem is a gram-
matical approach. This approach, however, of-
ten fails in noun and adjective coordinations be-
cause there are many possible structures in these
coordinations that are grammatically correct. For
example, a noun sequence of the form “n0 n1

and n2 n3” has as many as five possible struc-
tures (Resnik, 1999). Therefore, a grammatical
approach is not sufficient to disambiguate coor-
dination structures. In fact, the Stanford parser
(Klein and Manning, 2003) and Enju (Miyao and
Tsujii, 2004) fail to disambiguate a sentence I am

a freshman advertising and marketing major. Ta-
ble 1 shows the output from them and the correct
coordination structure.

The coordination structure above is obvious to
humans because there is a symmetry of conjuncts
(-ing) in the sentence. Coordination structures of-
ten have such structural and semantic symmetry
of conjuncts. One approach is to capture local
symmetry of conjuncts. However, this approach
fails in VP and sentential coordinations, which
can easily be detected by a grammatical approach.
This is because conjuncts in these coordinations
do not necessarily have local symmetry.

It is therefore natural to think that consider-
ing both the syntax and local symmetry of con-
juncts would lead to a more accurate analysis.
However, it is difficult to consider both of them
in a dynamic programming algorithm, which has
been often used for each of them, because it ex-
plodes the computational and implementational
complexity. Thus, previous studies on coordina-
tion disambiguation often dealt only with a re-
stricted form of coordination (e.g. noun phrases)
or used a heuristic approach for simplicity.

In this paper, we present a statistical analysis
model for coordination disambiguation that uses
the dual decomposition as a framework. We con-
sider both of the syntax, and structural and se-
mantic symmetry of conjuncts so that it outper-
forms existing methods that consider only either
of them. Moreover, it is still simple and requires
only O(n4) time per iteration, where n is the num-
ber of words in a sentence. This is equal to that
of coordination structure analysis with alignment-
based local features. The overall system still has a
quite simple structure because we need just slight
modifications of existing models in this approach,
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Stanford parser/Enju
I am a ( freshman advertising ) and (
marketing major )

Correct coordination structure
I am a freshman ( ( advertising and mar-
keting ) major )

Table 1: Output from the Stanford parser, Enju and the
correct coordination structure

so we can easily add other modules or features for
future.

The structure of this paper is as follows. First,
we describe three basic methods required in the
technique we propose: 1) coordination structure
analysis with alignment-based local features, 2)
HPSG parsing, and 3) dual decomposition. Fi-
nally, we show experimental results that demon-
strate the effectiveness of our approach. We com-
pare three methods: coordination structure anal-
ysis with alignment-based local features, HPSG
parsing, and the dual-decomposition-based ap-
proach that combines both.

2 Related Work

Many previous studies for coordination disam-
biguation have focused on a particular type of NP
coordination (Hogan, 2007). Resnik (1999) dis-
ambiguated coordination structures by using se-
mantic similarity of the conjuncts in a taxonomy.
He dealt with two kinds of patterns, [n0 n1 and
n2 n3] and [n1 and n2 n3], where ni are all nouns.
He detected coordination structures based on sim-
ilarity of form, meaning and conceptual associa-
tion between n1 and n2 and between n1 and n3.
Nakov and Hearst (2005) used the Web as a train-
ing set and applied it to a task that is similar to
Resnik’s.

In terms of integrating coordination disam-
biguation with an existing parsing model, our ap-
proach resembles the approach by Hogan (2007).
She detected noun phrase coordinations by find-
ing symmetry in conjunct structure and the depen-
dency between the lexical heads of the conjuncts.
They are used to rerank the n-best outputs of the
Bikel parser (2004), whereas two models interact
with each other in our method.

Shimbo and Hara (2007) proposed an
alignment-based method for detecting and dis-
ambiguating non-nested coordination structures.

They disambiguated coordination structures
based on the edit distance between two conjuncts.
Hara et al. (2009) extended the method, dealing
with nested coordinations as well. We used their
method as one of the two sub-models.

3 Background

3.1 Coordination structure analysis with
alignment-based local features

Coordination structure analysis with alignment-
based local features (Hara et al., 2009) is a hy-
brid approach to coordination disambiguation that
combines a simple grammar to ensure consistent
global structure of coordinations in a sentence,
and features based on sequence alignment to cap-
ture local symmetry of conjuncts. In this section,
we describe the method briefly.

A sentence is denoted by x = x1...xk, where xi

is the i-th word of x. A coordination boundaries
set is denoted by y = y1...yk, where

yi =


(bl, el, br, er) (if xi is a coordinating

conjunction having left
conjunct xbl

...xel
and

right conjunct xbr ...xer)
null (otherwise)

In other words, yi has a non-null value
only when it is a coordinating conjunction.
For example, a sentence I bought books and
stationary has a coordination boundaries set
(null, null, null, (3, 3, 5, 5), null).

The score of a coordination boundaries set is
defined as the sum of score of all coordinating
conjunctions in the sentence.

score(x, y) =

k∑
m=1

score(x, ym)

=
k∑

m=1

w · f(x, ym) (1)

where f(x, ym) is a real-valued feature vector of
the coordination conjunct xm. We used almost the
same feature set as Hara et al. (2009): namely, the
surface word, part-of-speech, suffix and prefix of
the words, and their combinations. We used the
averaged perceptron to tune the weight vector w.

Hara et al. (2009) proposed to use a context-
free grammar to find a properly nested coordina-
tion structure. That is, the scoring function Eq (1)
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COORD Coordination.
CJT Conjunct.

N Non-coordination.
CC Coordinating conjunction like “and”.
W Any word.

Table 2: Non-terminals

Rules for coordinations:
COORDi,m → CJTi,jCCj+1,k−1CJTk,m

Rules for conjuncts:
CJTi,j → (COORD|N)i,j

Rules for non-coordinations:
Ni,k → COORDi,jNj+1,k

Ni,j →Wi,i(COORD|N)i+1,j

Ni,i →Wi,i

Rules for pre-terminals:
CCi,i → (and|or|but|, |; |+|+/−)i

CCi,i+1 → (, |; )i(and|or|but)i+1

CCi,i+2 → (as)i(well)i+1(as)i+2

Wi,i → ∗i

Table 3: Production rules

is only defined on the coordination structures that
are licensed by the grammar. We only slightly ex-
tended their grammar for convering more variety
of coordinating conjunctions.

Table 2 and Table 3 show the non-terminals and
production rules used in the model. The only ob-
jective of the grammar is to ensure the consistency
of two or more coordinations in a sentence, which
means for any two coordinations they must be ei-
ther non-overlapping or nested coordinations. We
use a bottom-up chart parsing algorithm to out-
put the coordination boundaries with the highest
score. Note that these production rules don’t need
to be isomorphic to those of HPSG parsing and
actually they aren’t. This is because the two meth-
ods interact only through dual decomposition and
the search spaces defined by the methods are con-
sidered separately.

This method requires O(n4) time, where n is
the number of words. This is because there are
O(n2) possible coordination structures in a sen-
tence, and the method requires O(n2) time to get
a feature vector of each coordination structure.

3.2 HPSG parsing

HPSG (Pollard and Sag, 1994) is one of the
linguistic theories based on lexicalized grammar
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PHON list of string

SYNSEM
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category
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head
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SUBJ list of synsem
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and unbounded dependencies. SEM feature rep-
resents the semantics of a constituent, and in this
study it expresses a predicate-argument structure.
Figure 2 presents the Subject-Head Schema

and the Head-Complement Schema1 defined in
(Pollard and Sag, 1994). In order to express gen-
eral constraints, schemata only provide sharing of
feature values, and no instantiated values.
Figure 3 has an example of HPSG parsing

of the sentence “Spring has come.” First, each
of the lexical entries for “has” and “come” are
unified with a daughter feature structure of the
Head-Complement Schema. Unification provides
the phrasal sign of the mother. The sign of the
larger constituent is obtained by repeatedly apply-
ing schemata to lexical/phrasal signs. Finally, the
phrasal sign of the entire sentence is output on the
top of the derivation tree.

3 Acquiring HPSG from the Penn
Treebank

As discussed in Section 1, our grammar devel-
opment requires each sentence to be annotated
with i) a history of rule applications, and ii) ad-
ditional annotations to make the grammar rules
be pseudo-injective. In HPSG, a history of rule
applications is represented by a tree annotated
with schema names. Additional annotations are

1The value of category has been presented for simplicity,
while the other portions of the sign have been omitted.
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required because HPSG schemata are not injec-
tive, i.e., daughters’ signs cannot be uniquely de-
termined given the mother. The following annota-
tions are at least required. First, the HEAD feature
of each non-head daughter must be specified since
this is not percolated to the mother sign. Second,
SLASH/REL features are required as described in
our previous study (Miyao et al., 2003a). Finally,
the SUBJ feature of the complement daughter in
the Head-Complement Schema must be specified
since this schema may subcategorize an unsatu-
rated constituent, i.e., a constituent with a non-
empty SUBJ feature. When the corpus is anno-
tated with at least these features, the lexical en-
tries required to explain the sentence are uniquely
determined. In this study, we define partially-
specified derivation trees as tree structures anno-
tated with schema names and HPSG signs includ-
ing the specifications of the above features.
We describe the process of grammar develop-

ment in terms of the four phases: specification,
externalization, extraction, and verification.

3.1 Specification
General grammatical constraints are defined in
this phase, and in HPSG, they are represented
through the design of the sign and schemata. Fig-
ure 1 shows the definition for the typed feature
structure of a sign used in this study. Some more
features are defined for each syntactic category al-

Figure 1: subject-head schema (left) and head-
complement schema (right); taken from Miyao et al.
(2004).

formalism. In a lexicalized grammar, quite a
small numbers of schemata are used to explain
general grammatical constraints, compared with
other theories. On the other hand, rich word-
specific characteristics are embedded in lexical
entries. Both of schemata and lexical entries
are represented by typed feature structures, and
constraints in parsing are checked by unification
among them. Figure 1 shows examples of HPSG
schema.

Figure 2 shows an HPSG parse tree of the sen-
tence “Spring has come.” First, the lexical en-
tries of “has” and “come” are joined by head-
complement schema. Unification gives the HPSG
sign of mother. After applying schemata to HPSG
signs repeatedly, the HPSG sign of the whole sen-
tence is output.

We use Enju for an English HPSG parser
(Miyao et al., 2004). Figure 3 shows how a co-
ordination structure is built in the Enju grammar.
First, a coordinating conjunction and the right
conjunct are joined by coord right schema. Af-
terwards, the parent and the left conjunct are
joined by coord left schema.

The Enju parser is equipped with a disam-
biguation model trained by the maximum entropy
method (Miyao and Tsujii, 2008). Since we do
not need the probability of each parse tree, we
treat the model just as a linear model that defines
the score of a parse tree as the sum of feature
weights. The features of the model are defined
on local subtrees of a parse tree.

The Enju parser takes O(n3) time since it uses
the CKY algorithm, and each cell in the CKY
parse table has at most a constant number of edges
because we use beam search algorithm. Thus, we
can regard the parser as a decoder for a weighted
CFG.

3.3 Dual decomposition

Dual decomposition is a classical method to solve
complex optimization problems that can be de-
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and unbounded dependencies. SEM feature rep-
resents the semantics of a constituent, and in this
study it expresses a predicate-argument structure.
Figure 2 presents the Subject-Head Schema

and the Head-Complement Schema1 defined in
(Pollard and Sag, 1994). In order to express gen-
eral constraints, schemata only provide sharing of
feature values, and no instantiated values.
Figure 3 has an example of HPSG parsing

of the sentence “Spring has come.” First, each
of the lexical entries for “has” and “come” are
unified with a daughter feature structure of the
Head-Complement Schema. Unification provides
the phrasal sign of the mother. The sign of the
larger constituent is obtained by repeatedly apply-
ing schemata to lexical/phrasal signs. Finally, the
phrasal sign of the entire sentence is output on the
top of the derivation tree.

3 Acquiring HPSG from the Penn
Treebank

As discussed in Section 1, our grammar devel-
opment requires each sentence to be annotated
with i) a history of rule applications, and ii) ad-
ditional annotations to make the grammar rules
be pseudo-injective. In HPSG, a history of rule
applications is represented by a tree annotated
with schema names. Additional annotations are

1The value of category has been presented for simplicity,
while the other portions of the sign have been omitted.
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required because HPSG schemata are not injec-
tive, i.e., daughters’ signs cannot be uniquely de-
termined given the mother. The following annota-
tions are at least required. First, the HEAD feature
of each non-head daughter must be specified since
this is not percolated to the mother sign. Second,
SLASH/REL features are required as described in
our previous study (Miyao et al., 2003a). Finally,
the SUBJ feature of the complement daughter in
the Head-Complement Schema must be specified
since this schema may subcategorize an unsatu-
rated constituent, i.e., a constituent with a non-
empty SUBJ feature. When the corpus is anno-
tated with at least these features, the lexical en-
tries required to explain the sentence are uniquely
determined. In this study, we define partially-
specified derivation trees as tree structures anno-
tated with schema names and HPSG signs includ-
ing the specifications of the above features.
We describe the process of grammar develop-

ment in terms of the four phases: specification,
externalization, extraction, and verification.

3.1 Specification
General grammatical constraints are defined in
this phase, and in HPSG, they are represented
through the design of the sign and schemata. Fig-
ure 1 shows the definition for the typed feature
structure of a sign used in this study. Some more
features are defined for each syntactic category al-

Figure 2: HPSG parsing; taken from Miyao et al.
(2004).
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Figure 3: Construction of coordination in Enju

composed into efficiently solvable sub-problems.
It is becoming popular in the NLP community
and has been shown to work effectively on sev-
eral NLP tasks (Rush et al., 2010).

We consider an optimization problem

arg max
x

(f(x) + g(x)) (2)

which is difficult to solve (e.g. NP-hard), while
arg maxx f(x) and arg maxx g(x) are effectively
solvable. In dual decomposition, we solve

min
u

max
x,y

(f(x) + g(y) + u(x− y))

instead of the original problem.
To find the minimum value, we can use a sub-

gradient method (Rush et al., 2010). The subgra-
dient method is given in Table 4. As the algorithm

u(1) ← 0
for k = 1 to K do

x(k) ← arg maxx(f(x) + u(k)x)
y(k) ← arg maxy(g(y)− u(k)y)
if x = y then

return u(k)

end if
u(k+1) ← uk − ak(x

(k) − y(k))
end for
return u(K)

Table 4: The subgradient method

shows, you can use existing algorithms and don’t
need to have an exact algorithm for the optimiza-
tion problem, which are features of dual decom-
position.

If x(k) = y(k) occurs during the algorithm, then
we simply take x(k) as the primal solution, which
is the exact answer. If not, we simply take x(K),
the answer of coordination structure analysis with
alignment-based features, as an approximate an-
swer to the primal solution. The answer does not
always solve the original problem Eq (2), but pre-
vious works (e.g., (Rush et al., 2010)) has shown
that it is effective in practice. We use it in this
paper.

4 Proposed method

In this section, we describe how we apply dual
decomposition to the two models.

4.1 Notation

We define some notations here. First we describe
weighted CFG parsing, which is used for both
coordination structure analysis with alignment-
based features and HPSG parsing. We follows the
formulation by Rush et al., (2010). We assume a
context-free grammar in Chomsky normal form,
with a set of non-terminals N . All rules of the
grammar are either the form A→ BC or A→ w
where A, B,C ∈ N and w ∈ V . For rules of the
form A→ w we refer to A as the pre-terminal for
w.

Given a sentence with n words, w1w2...wn, a
parse tree is a set of rule productions of the form
⟨A → BC, i, k, j⟩ where A,B, C ∈ N , and
1 ≤ i ≤ k ≤ j ≤ n. Each rule production rep-
resents the use of CFG rule A→ BC where non-
terminal A spans words wi...wj , non-terminal B
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spans word wi...wk, and non-terminal C spans
word wk+1...wj if k < j, and the use of CFG
rule A→ wi if i = k = j.

We now define the index set for the coordina-
tion structure analysis as

Icsa = {⟨A→ BC, i, k, j⟩ : A,B, C ∈ N,

1 ≤ i ≤ k ≤ j ≤ n}

Each parse tree is a vector y = {yr : r ∈ Icsa},
with yr = 1 if rule r is in the parse tree, and yr =
0 otherwise. Therefore, each parse tree is repre-
sented as a vector in {0, 1}m, where m = |Icsa|.
We use Y to denote the set of all valid parse-tree
vectors. The set Y is a subset of {0, 1}m.

In addition, we assume a vector θcsa = {θcsa
r :

r ∈ Icsa} that specifies a score for each rule pro-
duction. Each θcsa

r can take any real value. The
optimal parse tree is y∗ = arg maxy∈Y y · θcsa

where y · θcsa =
∑

r yr · θcsa
r is the inner product

between y and θcsa.
We use similar notation for HPSG parsing. We

define Ihpsg , Z and θhpsg as the index set for
HPSG parsing, the set of all valid parse-tree vec-
tors and the weight vector for HPSG parsing re-
spectively.

We extend the index sets for both the coor-
dination structure analysis with alignment-based
features and HPSG parsing to make a constraint
between the two sub-problems. For the coor-
dination structure analysis with alignment-based
features we define the extended index set to be
I ′csa = Icsa

∪
Iuni where

Iuni = {(a, b, c) : a, b, c ∈ {1...n}}

Here each triple (a, b, c) represents that word
wc is recognized as the last word of the right
conjunct and the scope of the left conjunct or
the coordinating conjunction is wa...wb

1. Thus
each parse-tree vector y will have additional com-
ponents ya,b,c. Note that this representation is
over-complete, since a parse tree is enough to
determine unique coordination structures for a
sentence: more explicitly, the value of ya,b,c is

1This definition is derived from the structure of a co-
ordination in Enju (Figure 3). The triples show where
the coordinating conjunction and right conjunct are in
coord right schema, and the left conjunct and partial coor-
dination are in coord left schema. Thus they alone enable
not only the coordination structure analysis with alignment-
based features but Enju to uniquely determine the structure
of a coordination.

1 if rule COORDa,c → CJTa,bCC , CJT ,c or
COORD ,c → CJT , CCa,bCJT ,c is in the parse
tree; otherwise it is 0.

We apply the same extension to the HPSG in-
dex set, also giving an over-complete representa-
tion. We define za,b,c analogously to ya,b,c.

4.2 Proposed method
We now describe the dual decomposition ap-
proach for coordination disambiguation. First, we
define the set Q as follows:

Q = {(y, z) : y ∈ Y, z ∈ Z, ya,b,c = za,b,c

for all (a, b, c) ∈ Iuni}

Therefore, Q is the set of all (y, z) pairs that
agree on their coordination structures. The coor-
dination structure analysis with alignment-based
features and HPSG parsing problem is then to
solve

max
(y,z)∈Q

(y · θcsa + γz · θhpsg) (3)

where γ > 0 is a parameter dictating the relative
weight of the two models and is chosen to opti-
mize performance on the development test set.

This problem is equivalent to

max
z∈Z

(g(z) · θcsa + γz · θhpsg) (4)

where g : Z → Y is a function that maps a
HPSG tree z to its set of coordination structures
z = g(y).

We solve this optimization problem by using
dual decomposition. Figure 4 shows the result-
ing algorithm. The algorithm tries to optimize
the combined objective by separately solving the
sub-problems again and again. After each itera-
tion, the algorithm updates the weights u(a, b, c).
These updates modify the objective functions for
the two sub-problems, encouraging them to agree
on the same coordination structures. If y(k) =
z(k) occurs during the iterations, then the algo-
rithm simply returns y(k) as the exact answer. If
not, the algorithm returns the answer of coordina-
tion analysis with alignment features as a heuristic
answer.

It is needed to modify original sub-problems
for calculating (1) and (2) in Table 4. We modified
the sub-problems to regard the score of u(a, b, c)
as a bonus/penalty of the coordination. The mod-
ified coordination structure analysis with align-
ment features adds u(k)(i, j, m) and u(k)(j+1, l−
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u(1)(a, b, c)← 0 for all (a, b, c) ∈ Iuni
for k = 1 to K do

y(k) ← argmaxy∈Y(y · θcsa −
∑

(a,b,c)∈Iuni u
(k)(a, b, c)ya,b,c) ... (1)

z(k) ← argmaxz∈Z(z · θhpsg +
∑

(a,b,c)∈Iuni u
(k)(a, b, c)za,b,c) ... (2)

if y(k)(a, b, c) = z(k)(a, b, c) for all (a, b, c) ∈ Iuni then
return y(k)

end if
for all (a, b, c) ∈ Iuni do

u(k+1)(a, b, c)← u(k)(a, b, c)− ak(y(k)(a, b, c)− z(k)(a, b, c))
end for

end for
return y(K)

Figure 4: Proposed algorithm

w · f(x, (i, j, l,m)) to the score of the sub-
tree, when the rule production COORDi,m →
CJTi,jCCj+1,l−1CJTl,m is applied.

The modified Enju adds u(k)(i, j, l) when co-
ord left schema is applied, where word wc

is recognized as a coordinating conjunction
and left side of its scope is wa...wb, or co-
ord right schema is applied, where word wc

is recognized as a coordinating conjunction and
right side of its scope is wa...wb.

5 Experiments

5.1 Test/Training data
We trained the alignment-based coordination
analysis model on both the Genia corpus (?)
and the Wall Street Journal portion of the Penn
Treebank (?), and evaluated the performance of
our method on (i) the Genia corpus and (ii) the
Wall Street Journal portion of the Penn Treebank.
More precisely, we used HPSG treebank con-
verted from the Penn Treebank and Genia, and
further extracted the training/test data for coor-
dination structure analysis with alignment-based
features using the annotation in the Treebank. Ta-
ble ?? shows the corpus used in the experiments.

The Wall Street Journal portion of the Penn
Treebank has 2317 sentences from WSJ articles,
and there are 1356 COOD tags in the sentences,
while the Genia corpus has 1754 sentences from
MEDLINE abstracts, and there are 1848 COOD
tags in the sentences. COOD tags are further
subcategorized into phrase types such as NP-
COOD or VP-COOD. Table ?? shows the per-
centage of each phrase type in all COOD tags.
It indicates the Wall Street Journal portion of the

COORD WSJ Genia
NP 63.7 66.3
VP 13.8 11.4
ADJP 6.8 9.6
S 11.4 6.0
PP 2.4 5.1
Others 1.9 1.5

Table 6: The percentage of each conjunct type (%) of
each test set

Penn Treebank has more VP-COOD tags and S-
COOD tags, while the Genia corpus has more
NP-COOD tags and ADJP-COOD tags.

5.2 Implementation of sub-problems

We used Enju (?) for the implementation of
HPSG parsing, which has a wide-coverage prob-
abilistic HPSG grammar and an efficient parsing
algorithm, while we re-implemented Hara et al.,
(2009)’s algorithm with slight modifications.

5.2.1 Step size
We used the following step size in our algo-

rithm (Figure ??). First, we initialized a0, which
is chosen to optimize performance on the devel-
opment set. Then we defined ak = a0 · 2−ηk ,
where ηk is the number of times that L(u(k′)) >
L(u(k

′−1)) for k′ ≤ k.

5.3 Evaluation metric

We evaluated the performance of the tested meth-
ods by the accuracy of coordination-level brack-
eting (?); i.e., we count each of the coordination
scopes as one output of the system, and the system

Figure 4: Proposed algorithm

1, m), as well as adding w · f(x, (i, j, l, m)) to
the score of the subtree, when the rule produc-
tion COORDi,m → CJTi,jCCj+1,l−1CJTl,m is
applied.

The modified Enju adds u(k)(a, b, c) when
coord right schema is applied, where word
wa...wb is recognized as a coordinating conjunc-
tion and the last word of the right conjunct is
wc, or coord left schema is applied, where word
wa...wb is recognized as the left conjunct and the
last word of the right conjunct is wc.

5 Experiments

5.1 Test/Training data

We trained the alignment-based coordination
analysis model on both the Genia corpus (Kim
et al., 2003) and the Wall Street Journal portion
of the Penn Treebank (Marcus et al., 1993), and
evaluated the performance of our method on (i)
the Genia corpus and (ii) the Wall Street Jour-
nal portion of the Penn Treebank. More precisely,
we used HPSG treebank converted from the Penn
Treebank and Genia, and further extracted the
training/test data for coordination structure analy-
sis with alignment-based features using the anno-
tation in the Treebank. Table 5 shows the corpus
used in the experiments.

The Wall Street Journal portion of the Penn
Treebank in the test set has 2317 sentences from
WSJ articles, and there are 1356 coordinations
in the sentences, while the Genia corpus in the
test set has 1764 sentences from MEDLINE ab-
stracts, and there are 1848 coordinations in the
sentences. Coordinations are further subcatego-

COORD WSJ Genia
NP 63.7 66.3
VP 13.8 11.4
ADJP 6.8 9.6
S 11.4 6.0
PP 2.4 5.1
Others 1.9 1.5

Table 6: The percentage of each conjunct type (%) of
each test set

rized into phrase types such as a NP coordination
or PP coordination. Table 6 shows the percentage
of each phrase type in all coordianitons. It indi-
cates the Wall Street Journal portion of the Penn
Treebank has more VP coordinations and S co-
ordianitons, while the Genia corpus has more NP
coordianitons and ADJP coordiations.

5.2 Implementation of sub-problems

We used Enju (Miyao and Tsujii, 2004) for
the implementation of HPSG parsing, which has
a wide-coverage probabilistic HPSG grammar
and an efficient parsing algorithm, while we re-
implemented Hara et al., (2009)’s algorithm with
slight modifications.

5.2.1 Step size

We used the following step size in our algo-
rithm (Figure 4). First, we initialized a0, which
is chosen to optimize performance on the devel-
opment set. Then we defined ak = a0 · 2−ηk ,
where ηk is the number of times that L(u(k′)) >
L(u(k′−1)) for k′ ≤ k.
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Task (i) Task (ii)
Training WSJ (sec. 2–21) + Genia (No. 1–1600) WSJ (sec. 2–21)
Development Genia (No. 1601–1800) WSJ (sec. 22)
Test Genia (No. 1801–1999) WSJ (sec. 23)

Table 5: The corpus used in the experiments

Proposed Enju CSA
Precision 72.4 66.3 65.3
Recall 67.8 65.5 60.5
F1 70.0 65.9 62.8

Table 7: Results of Task (i) on the test set. The preci-
sion, recall, and F1 (%) for the proposed method, Enju,
and Coordination structure analysis with alignment-
based features (CSA)

5.3 Evaluation metric

We evaluated the performance of the tested meth-
ods by the accuracy of coordination-level bracket-
ing (Shimbo and Hara, 2007); i.e., we count each
of the coordination scopes as one output of the
system, and the system output is regarded as cor-
rect if both of the beginning of the first output
conjunct and the end of the last conjunct match
annotations in the Treebank (Hara et al., 2009).

5.4 Experimental results of Task (i)

We ran the dual decomposition algorithm with a
limit of K = 50 iterations. We found the two
sub-problems return the same answer during the
algorithm in over 95% of sentences.

We compare the accuracy of the dual decompo-
sition approach to two baselines: Enju and coor-
dination structure analysis with alignment-based
features. Table 7 shows all three results. The dual
decomposition method gives a statistically signif-
icant gain in precision and recall over the two
methods2.

Table 8 shows the recall of coordinations of
each type. It indicates our re-implementation of
CSA and Hara et al. (2009) have a roughly simi-
lar performance, although their experimental set-
tings are different. It also shows the proposed
method took advantage of Enju and CSA in NP
coordination, while it is likely just to take the an-
swer of Enju in VP and sentential coordinations.
This means we might well use dual decomposi-

2p < 0.01 (by chi-square test)
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Figure 5: Performance of the approach as a function of
K of Task (i) on the development set. accuracy (%):
the percentage of sentences that are correctly parsed.
certificates (%): the percentage of sentences for which
a certificate of optimality is obtained.

tion only on NP coordinations to have a better re-
sult.

Figure 5 shows performance of the approach as
a function of K, the maximum number of iter-
ations of dual decomposition. The graphs show
that values of K much less than 50 produce al-
most identical performance to K = 50 (with
K = 50, the accuracy of the method is 73.4%,
with K = 20 it is 72.6%, and with K = 1 it
is 69.3%). This means you can use smaller K in
practical use for speed.

5.5 Experimental results of Task (ii)

We also ran the dual decomposition algorithm
with a limit of K = 50 iterations on Task (ii).
Table 9 and 10 show the results of task (ii). They
show the proposed method outperformed the two
methods statistically in precision and recall3.

Figure 6 shows performance of the approach as
a function of K, the maximum number of iter-
ations of dual decomposition. The convergence
speed for WSJ was faster than that for Genia. This
is because a sentence of WSJ often have a simpler
coordination structure, compared with that of Ge-
nia.

3p < 0.01 (by chi-square test)
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COORD # Proposed Enju CSA # Hara et al. (2009)
Overall 1848 67.7 63.3 61.9 3598 61.5
NP 1213 67.5 61.4 64.1 2317 64.2
VP 208 79.8 78.8 66.3 456 54.2
ADJP 193 58.5 59.1 54.4 312 80.4
S 111 51.4 52.3 34.2 188 22.9
PP 110 64.5 59.1 57.3 167 59.9
Others 13 78.3 73.9 65.2 140 49.3

Table 8: The number of coordinations of each type (#), and the recall (%) for the proposed method, Enju,
coordination structure analysis with alignment-based features (CSA) , and Hara et al. (2009) of Task (i) on the
development set. Note that Hara et al. (2009) uses a different test set and different annotation rules, although its
test data is also taken from the Genia corpus. Thus we cannot compare them directly.

Proposed Enju CSA
Precision 76.3 70.7 66.0
Recall 70.6 69.0 60.1
F1 73.3 69.9 62.9

Table 9: Results of Task (ii) on the test set. The preci-
sion, recall, and F1 (%) for the proposed method, Enju,
and Coordination structure analysis with alignment-
based features (CSA)

COORD # Proposed Enju CSA
Overall 1017 71.6 68.1 60.7
NP 573 76.1 71.0 67.7
VP 187 62.0 62.6 47.6
ADJP 73 82.2 75.3 79.5
S 141 64.5 62.4 42.6
PP 19 52.6 47.4 47.4
Others 24 62.5 70.8 54.2

Table 10: The number of coordinations of each type
(#), and the recall (%) for the proposed method, Enju,
and coordination structure analysis with alignment-
based features (CSA) of Task (ii) on the development
set.

6 Conclusion and Future Work

In this paper, we presented an efficient method for
detecting and disambiguating coordinate struc-
tures. Our basic idea was to consider both gram-
mar and symmetries of conjuncts by using dual
decomposition. Experiments on the Genia corpus
and the Wall Street Journal portion of the Penn
Treebank showed that we could obtain statisti-
cally significant improvement in accuracy when
using dual decomposition.

We would need a further study in the follow-
ing points of view: First, we should evaluate our
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accuracy certificates 

Figure 6: Performance of the approach as a function of
K of Task (ii) on the development set. accuracy (%):
the percentage of sentences that are correctly parsed.
certificates (%): the percentage of sentences for which
a certificate of optimality is provided.

method with corpus in different domains. Be-
cause characteristics of coordination structures
differs from corpus to corpus, experiments on
other corpus would lead to a different result. Sec-
ond, we would want to add some features to coor-
dination structure analysis with alignment-based
local features such as ontology. Finally, we can
add other methods (e.g. dependency parsing) as
sub-problems to our method by using the exten-
sion of dual decomposition, which can deal with
more than two sub-problems.
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Abstract

In this paper, we address statistical ma-
chine translation of public conference talks.
Modeling the style of this genre can be very
challenging given the shortage of available
in-domain training data. We investigate the
use of a hybrid LM, where infrequent words
are mapped into classes. Hybrid LMs are
used to complement word-based LMs with
statistics about the language style of the
talks. Extensive experiments comparing
different settings of the hybrid LM are re-
ported on publicly available benchmarks
based on TED talks, from Arabic to English
and from English to French. The proposed
models show to better exploit in-domain
data than conventional word-based LMs for
the target language modeling component of
a phrase-based statistical machine transla-
tion system.

1 Introduction

The translation of TED conference talks1 is an
emerging task in the statistical machine transla-
tion (SMT) community (Federico et al., 2011).
The variety of topics covered by the speeches, as
well as their specific language style, make this a
very challenging problem.

Fixed expressions, colloquial terms, figures of
speech and other phenomena recurrent in the talks
should be properly modeled to produce transla-
tions that are not only fluent but that also em-
ploy the right register. In this paper, we propose
a language modeling technique that leverages in-
domain training data for style adaptation.

1http://www.ted.com/talks

Hybrid class-based LMs are trained on text
where only infrequent words are mapped to Part-
of-Speech (POS) classes. In this way, topic-
specific words are discarded and the model fo-
cuses on generic words that we assume more use-
ful to characterize the language style. The factor-
ization of similar expressions made possible by
this mixed text representation yields a better n-
gram coverage, but with a much higher discrimi-
native power than POS-level LMs.

Hybrid LM also differs from POS-level LM in
that it uses a word-to-class mapping to determine
POS tags. Consequently, it doesn’t require the de-
coding overload of factored models nor the tag-
ging of all parallel data used to build phrase ta-
bles. A hybrid LM trained on in-domain data can
thus be easily added to an existing baseline sys-
tem trained on large amounts of background data.

The proposed models are used in addition to
standard word-based LMs, in the framework of
log-linear phrase-based SMT.

The remainder of this paper is organized as fol-
lows. After discussing the language style adapta-
tion problem, we will give an overview of relevant
work. In the following sections we will describe
in detail hybrid LM and its possible variants. Fi-
nally, we will present an empirical analysis of the
proposed technique, including intrinsic evaluation
and SMT experiments.

2 Background

Our working scenario is the translation of TED
talks transcripts as proposed by the IWSLT Eval-
uation Campaign2. This genre covers a variety
of topics ranging from business to psychology.
The available training material – both parallel and

2http://www.iwslt2011.org
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Beginning of Sentence: [s] End of Sentence: [/s]
TED NEWS TED NEWS

1st [s] Thank you . [/s] 1st [s] ( AP ) - 1st [s] Thank you . [/s] 1st ” he said . [/s]
2 [s] Thank you very much 2 [s] WASHINGTON ( ... 2 you very much . [/s] 2 ” she said . [/s]
3 [s] I ’m going to 3 [s] NEW YORK ( AP 3 in the world . [/s] 3 , he said . [/s]
4 [s] And I said , 4 [s] ( CNN ) – 4 and so on . [/s] 4 ” he said . [/s]
5 [s] I don ’t know 5 [s] NEW YORK ( R... 5 , you know . [/s] 5 in a statement . [/s]
6 [s] He said , “ 6 [s] He said : “ 6 of the world . [/s] 6 the United States . [/s]
7 [s] I said , “ 7 [s] ” I don ’t 7 around the world . [/s] 7 to this report . [/s]
8 [s] And of course , 8 [s] It was last updated 8 . Thank you . [/s] 8 ” he added . [/s]
9 [s] And one of the 9 [s] At the same time 9 the United States . [/s] 9 , police said . [/s]
10 [s] And I want to ... 10 all the time . [/s] 10 , officials said . [/s]
11 [s] And that ’s what 69 [s] I don ’t know 11 to do it . [/s] ...
12 [s] We ’re going to 612 [s] I ’m going to 12 and so forth . [/s] 13 in the world . [/s]
13 [s] And I think that 2434 [s] ” I said , 13 don ’t know . [/s] 17 around the world . [/s]
14 [s] And you can see 7034 [s] He said , “ 14 to do that . [/s] 46 of the world . [/s]
15 [s] And this is a 8199 [s] And I said , 15 in the future . [/s] 129 all the time . [/s]
16 [s] And this is the 8233 [s] Thank you very much 16 the same time . [/s] 157 and so on . [/s]
17 [s] And he said , ... 17 , you know ? [/s] 1652 , you know . [/s]
18 [s] So this is a ∅ [s] Thank you . [/s] 18 to do this . [/s] 5509 you very much . [/s]

Table 1: Common sentence-initial and sentence-final 5-grams, as ranked by frequency, in the TED and NEWS
corpora. Numbers denote the frequency rank.

monolingual – consists of a rather small collection
of TED talks plus a variety of large out-of-domain
corpora, such as news stories and UN proceed-
ings.

Given the diversity of topics, the in-domain
data alone cannot ensure sufficient coverage to an
SMT system. The addition of background data
can certainly improve the n-gram coverage and
thus the fluency of our translations, but it may also
move our system towards an unsuitable language
style, such as that of written news.

In our study, we focus on the subproblem of
target language modeling and consider two En-
glish text collections, namely the in-domain TED
and the out-of-domain NEWS3, summarized in
Table 2. Because of its larger size – two orders
of magnitude – the NEWS corpus can provide a
better LM coverage than the TED on the test data.
This is reflected both on perplexity and on the av-
erage length of the context (or history h) actually

3http://www.statmt.org/wmt11/translation-task.html

LM Data |S| |W | |V | PP h5g

TED-En 124K 2.4M 51K 112 1.7
NEWS-En 30.7M 782M 2.2M 104 2.5

Table 2: Training data and coverage statistics of two
5-gram LMs used for the TED task: number of sen-
tences and tokens, vocabulary size; perplexity and av-
erage word history.

used by these two LMs to score the test’s refer-
ence translations. Note that the latter measure is
bounded at the LM order minus one, and is in-
versely proportional to the number of back-offs
performed by the model. Hence, we use this value
to estimate how well an n-gram LM fits the test
data. Indeed, despite the genre mismatch, the per-
plexity of a NEWS 5-gram LM on the TED-2010
test reference translations is 104 versus 112 for
the in-domain LM, and the average history size is
2.5 versus 1.7 words.

TED NEWS
1st , 1st the
... ...
9 I 40 I

12 you 64 you
90 actually 965 actually
268 stuff 2479 guy
370 guy 2861 stuff
436 amazing 4706 amazing

Table 3: Excerpts from TED and NEWS training vo-
cabularies, as ranked by frequency. Numbers denote
the frequency rank.

Yet we observe that the style of public speeches
is much better represented in the in-domain cor-
pus than in the out-of-domain one. For instance,
let us consider the vocabulary distribution4 of the

4Hesitations and filler words, typical of spoken language,
are not covered in our study because they are generally not
reported in the TED talk transcripts.
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two corpora (Table 3). The very first forms, as
ranked by frequency, are quite similar in the two
corpora. However, there are important excep-
tions: the pronouns I and you are among the top
20 frequent forms in the TED, while in the NEWS
they are ranked only 40th and 64th respectively.
Other interesting cases are the words actually,
stuff, guy and amazing, all ranked about 10 times
higher in the TED than in the NEWS corpus.

We can also analyze the most typical ways
to start and end a sentence in the two text col-
lections. As shown in Table 1, the frequency
ranking of sentence-initial and sentence-final 5-
grams in the in-domain corpus is notably different
from the out-of-domain one. TED’s most frequent
sentence-initial 5-gram “[s] Thank you . [/s] ” is
not at all attested in the NEWS corpus. As for
the 4th most common sentence start “[s] And I
said ,” is only ranked 8199th in the NEWS, and
so on. Notably, the top ranked NEWS 5-grams in-
clude names of cities (Washington, New York) and
of news agency (AP, Reuters). As regards sen-
tence endings, we observe similar contrasts: for
instance, the word sequence “and so on . [/s] ”
is ranked 4th in the TED and 157th in the NEWS
while “, you know . [/s] ” is 5th in the TED and
only 1652th in the NEWS.

These figures confirm that the talks have a spe-
cific language style, remarkably different from
that of the written news genre. In summary, talks
are characterized by a massive use of first and sec-
ond persons, by shorter sentences, and by more
colloquial lexical and syntactic constructions.

3 Related Work

The brittleness of n-gram LMs in case of mis-
match between training and task data is a well
known issue (Rosenfeld, 2000). So called do-
main adaptation methods (Bellegarda, 2004) can
improve the situation, once a limited amount
of task specific data become available. Ideally,
domain-adaptive LMs aim to improve model ro-
bustness under changing conditions, involving
possible variations in vocabulary, syntax, content,
and style. Most of the known LM adaption tech-
niques (Bellegarda, 2004), however, address all
these variations in a holistic way. A possible rea-
son for this is that LM adaptation methods were
originally developed under the automatic speech
recognition framework, which typically assumes
the presence of one single LM. The progressive

adoption of the log-linear modeling framework in
many NLP tasks has recently introduced the use
of multiple LM components (features), which per-
mit to naturally factor out and integrate different
aspects of language into one model. In SMT, the
factored model (Koehn and Hoang, 2007), for in-
stance, permits to better tailor the LM to the task
syntax, by complementing word-based n-grams
with a part-of-speech (POS) LM , that can be es-
timated even on a limited amount of task-specific
data. Besides many works addressing holistic LM
domain adaptation for SMT, e.g. Foster and Kuhn
(2007), recently methods were also proposed to
explicitly adapt the LM to the discourse topic of a
talk (Ruiz and Federico, 2011). Our work makes
another step in this direction by investigating hy-
brid LMs that try to explicitly represent the speak-
ing style of the talk genre. As a difference from
standard class-based LMs (Brown et al., 1992) or
the more recent local LMs (Monz, 2011), which
are used to predict sequences of classes or word-
class pairs, our hybrid LM is devised to pre-
dict sequences of classes interleaved by words.
While we do not claim any technical novelty in
the model itself, to our knowledge a deep investi-
gation of hybrid LMs for the sake of style adap-
tation is definitely new. Finally, the term hybrid
LM was inspired by Yazgan and Saraçlar (2004),
which called with this name a LM predicting se-
quences of words and sub-words units, devised to
let a speech recognizer detect out-of-vocabulary-
words.

4 Hybrid Language Model

Hybrid LMs are n-gram models trained on a
mixed text representation where each word is ei-
ther mapped to a class or left as is. This choice
is made according to a measure of word common-
ness and is univocal for each word type.

The rationale is to discard topic-specific words,
while preserving those words that best character-
ize the language style (note that word frequency
is computed on the in-domain corpus only). Map-
ping non-frequent terms to classes naturally leads
to a shorter tail in the frequency distribution, as
visualized by Figure 1. A model trained on such
data has a better n-gram coverage of the test set
and may take advantage of a larger context when
scoring translation hypotheses.

As classes, we use deterministically assigned
POS tags, obtained by first tagging the data with
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Figure 1: Type frequency distribution in the English
TED corpus before and after POS-mapping of words
with less than 500 occurrences (25% of tokens). The
rank in the frequency list (x-axis) is plotted against the
respective frequency in logarithmic scale. Types with
less than 20 occurrences are omitted from the graph.

Tree Tagger (Schmid, 1994) and then choosing
the most likely tag for each word type. In this
way, we avoid the overload of searching for the
best tagging decisions at run-time at the cost of
a slightly higher imprecision (see Section 5.1).
The hybridly mapped data is used to train a high-
order n-gram LM that is plugged into an SMT de-
coder as an additional feature on target word se-
quences. During the translation process, words
are mapped to their class just before querying the
hybrid LM, therefore translation models can be
trained on plain un-tagged data.

As exemplified in Table 4, hybrid LMs can
draw useful statistics on the context of common
words even from a small corpus such as the TED.
To have an idea of data sparseness, consider that
in the unprocessed TED corpus the most frequent
5-gram containing the common word guy occurs
only 3 times. After the mapping of words with
frequency <500, the highest 5-gram frequency
grows to 17, the second one to 9, and so on.

guy 598 actually 3978
a guy VBN NP NP 17 [s] This is actually a 20
guy VBN NP NP , 9 [s] It ’s actually a 17

guy , NP NP , 8 , you can actually VB 13
a guy called NP NP 8 is actually a JJ NN 13

this guy , NP NP 6 This is actually a NN 12
guy VBN NP NP . 6 [s] And this is actually 12
by a guy VBN NP 5 [s] And that ’s actually 10

a JJ guy . [/s] 5 , but it ’s actually 10
I was VBG this guy 4 NN , it ’s actually 9
guy VBN NP . [/s] 4 we’re actually going to 8

Table 4: Most common hybrid 5-grams containing the
words guy and actually, along with absolute frequency.

4.1 Word commonness criteria
The most intuitive way to measure word common-
ness is by absolute term frequency (F ). We will
use this criterion in most of our experiments. A
finer solution would be to also consider the com-
monness of a word across different talks. At this
end, we propose to use the fdf statistics, that is the
product of relative term f requency and document
f requency5:

fdfw =
c(w)∑
w′ c(w′)

× c(dw)
c(d)

where dw are the documents (talks) containing at
least one occurrence of the word w.

If available, real talk boundaries can be used
to define the documents. Alternatively, we can
simply split the corpus into chunks of fixed size.
In this work we use this approximation.

Another issue is how to set the threshold. In-
dependently from the chosen commonness mea-
sure, we can reason in terms of the ratio of tokens
that are mapped to POS classes (WP ). For in-
stance, in our experiments with English, we can
set the threshold to F=500 and observe that WP

corresponds to 25% of the tokens (and 99% of the
types). In the same corpus, a similar ratio is ob-
tained with fdf =0.012.

In our study, we consider three ratios WP ={.25,
.50, .75} that correspond to different levels of lan-
guage modeling: from a domain-generic word-
level LM to a lexically anchored POS-level LM.

4.2 Handling morphology
Token frequency-based measures may not be suit-
able for languages other than English. When
translating into French, for instance, we have to
deal with a much richer morphology.

As a solution we can use lemmas, univocally
assigned to word types in the same manner as
POS tags. Lemmas can be employed in two ways:
only for word selection, as a frequency measure,
or also for word representation, as a mapping for
common words. In the former, we preserve in-
flected variants that may be useful to model the
language style, but we also risk to see n-gram cov-
erage decrease due to the presence of rare types.
In the latter, only canonical forms and POS tags

5This differs from the tf-idf widely used in information
retrieval, which is used to measure the relevance of a term in
a document. Instead, we measure commonness of a term in
the whole corpus.
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appear in the processed text, thus introducing a
further level of abstraction from the original text.

Here follows a TED sentence in its original
version (first line) and after three different hy-
brid mappings – namely WP =.25, WP =.25 with
lemma forms, and WP =.50:

Now you laugh, but that quote has kind of a sting to it, right.

Now you VB , but that NN has kind of a NN to it, right.
Now you VB , but that NN have kind of a NN to it, right.
RB you VB , CC that NN VBZ NN of a NN to it, RB .

5 Evaluation

In this section we perform an intrinsic evaluation
of the proposed LM technique, then we measure
its impact on translation quality when integrated
into a state-of-the-art phrase-based SMT system.

5.1 Intrinsic evaluation

We analyze here a set of hybrid LMs trained on
the English TED corpus by varying the ratio of
POS-mapped words and the word representation
technique (word vs lemma). All models were
trained with the IRSTLM toolkit (Federico et al.,
2008), using a very high n-gram order (10) and
Witten-Bell smoothing.

First, we estimate an upper bound of the POS
tagging errors introduced by deterministic tag-
ging. At this end, the hybridly mapped data is
compared with the actual output of Tree Tagger on
the TED training corpus (see Table 5). Naturally,
the impact of tagging errors correlates with the ra-
tio of POS-mapped tokens, as no error is counted
on non-mapped tokens. For instance, we note that
the POS error rate is only 1.9% in our primary set-
ting, WP =.25 and word representation, whereas
on a fully POS-mapped text it is 6.6%. Note that
the English tag set used by Tree Tagger includes
43 classes.

Now we focus on the main goal of hybrid text
representation, namely increasing the coverage of
the in-domain LM on the test data. Here too, we
measure coverage by the average length of word
history h used to score the test reference transla-
tions (see Section 2). We do not provide perplex-
ity figures, since these are not directly compara-
ble across models with different vocabularies. As
shown by Table 5, n-gram coverage increases with
the ratio of POS-mapped tokens, ranging from 1.7
on an all-words LM to 4.4 on an all-POS LM. Of

Hybrid 10g LM |V | POS-Err h10g

all words 51299 0.0% 1.7
all lemmas 38486 0.0% 1.9
.25 POS/words 475 1.9% 2.7
.50 POS/words 93 4.1% 3.5
.75 POS/words 50 5.7% 4.1
allPOS 43 6.6% 4.4
.25 POS/lemmas 302 1.8% 2.8
.25 POS/words(fdf) 301 1.9% 2.7

Table 5: Comparison of LMs obtained from different
hybrid mappings of the English TED corpus: vocabu-
lary size, POS error rate, and average word history on
IWSLT–tst2010’s reference translations.

course, the more words are mapped, the less dis-
criminative our model will be. Thus, choosing the
best hybrid mapping means finding the best trade-
off between coverage and informativeness.

We also applied hybrid LM to the French lan-
guage, again using Tree Tagger to create the POS
mapping. The tag set in this case comprises 34
classes and the POS error rate with WP =.25 is
1.2% (compare with 1.9% in English). As previ-
ously discussed, morphology has a notable effect
on the modeling of French. In fact, the vocabu-
lary reduction obtained by mapping all the words
to their most probable lemma is -45% (57959 to
31908 types in the TED corpus), while in English
it is only -25%.

5.2 SMT baseline
Our SMT experiments address the translation of
TED talks from Arabic to English and from En-
glish to French. The training and test datasets
were provided by the organizers of the IWSLT11
evaluation, and are summarized in Table 6.
Marked in bold are the corpora used for hybrid
LM training. Dev and test sets have a single ref-
erence translation.

For both language pairs, we set up com-
petitive phrase-based systems6 using the Moses
toolkit (Koehn et al., 2007). The decoder fea-
tures a statistical log-linear model including a
phrase translation model and a phrase reordering
model (Tillmann, 2004; Koehn et al., 2005), two
word-based language models, distortion, word
and phrase penalties. The translation and re-
ordering models are obtained by combining mod-
els independently trained on the available paral-

6The SMT systems used in this paper are thoroughly de-
scribed in (Ruiz et al., 2011).
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Corpus |S| |W | `

AR-EN
TED 90K 1.7M 18.9
UN 7.9M 220M 27.8

EN
TED 124K 2.4M 19.5
NEWS 30.7M 782M 25.4

AR test
dev2010 934 19K 20.0
tst2010 1664 30K 18.1

EN-FR
TED 105K 2.0M 19.5
UN 11M 291M 26.5
NEWS 111K 3.1M 27.6

FR
TED 107K 2.2M 20.6
NEWS 11.6M 291M 25.2

EN test
dev2010 934 20K 21.5
tst2010 1664 32K 19.1

Table 6: IWSLT11 training and test data statistics:
number of sentences |S|, number of tokens |W | and
average sentence length `. Token numbers are com-
puted on the target language, except for the test sets.

lel corpora: namely TED and NEWS for Arabic-
English; TED, NEWS and UN for English-
French. To this end we applied the fill-up method
(Nakov, 2008; Bisazza et al., 2011) in which out-
of-domain phrase tables are merged with the in-
domain table by adding only new phrase pairs.
Out-of-domain phrases are marked with a binary
feature whose weight is tuned together with the
SMT system weights.

For each target language, two standard 5-gram
LMs are trained separately on the monolingual
TED and NEWS datasets, and log-linearly com-
bined at decoding time. In the Arabic-English
task, we use a hierarchical reordering model (Gal-
ley and Manning, 2008; Hardmeier et al., 2011),
while in the English-French task we use a default
word-based bidirectional model. The distortion
limit is set to the default value of 6. Note that
the use of large n-gram LMs and of lexicalized
reordering models was shown to wipe out the im-
provement achievable by POS-level LM (Kirch-
hoff and Yang, 2005; Birch et al., 2007).

Concerning data preprocessing we apply stan-
dard tokenization to the English and French text,
while for Arabic we use an in-house tokenizer that
removes diacritics and normalizes special charac-
ters and digits. Arabic text is then segmented with
AMIRA (Diab et al., 2004) according to the ATB
scheme7. The Arabic-English system uses cased

7The Arabic Treebank tokenization scheme isolates con-
junctions w+ and f+, prepositions l+, k+, b+, future marker
s+, pronominal suffixes, but not the article Al+.

translation models, while the English-French sys-
tem uses lowercased models and a standard re-
casing post-process.

Feature weights are tuned on dev2010 by
means of a minimum error training procedure
(MERT) (Och, 2003). Following suggestions by
Clark et al. (2011) and Cettolo et al. (2011) on
controlling optimizer instability, we run MERT
four times on the same configuration and use the
average of the resulting weights to evaluate trans-
lation performance.

5.3 Hybrid LM integration

As previously stated, hybrid LMs are trained only
on in-domain data and are added to the log-linear
decoder as an additional target LM. To this end,
we use the class-based LM implementation pro-
vided in Moses and IRSTLM, which applies the
word-to-class mapping to translation hypotheses
before LM querying8. The order of the additional
LM is set to 10 in the Arabic-English evaluation
and 7 in the English-French, as these appeared to
be the best settings in preliminary tests.

Translation quality is measured by BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005) and TER (Snover et al., 2006)9. To
test whether differences among systems are statis-
tically significant we use approximate randomiza-
tion as done in (Riezler and Maxwell, 2005)10.

Model variants. The effect on MT quality of
various hybrid LM variants is shown in Table 7.
Note that allPOS and allLemmas refer to deter-
ministically assigned POS tags and lemmas, re-
spectively. Concerning the ratio of POS-mapped
tokens, the best performing values are WP =.25 in
Arabic-English and WP =.50 in English-French.
These hybrid mappings outperform all the uni-
form representations (words, lemmas and POS)
with statistically significant BLEU and METEOR
improvements.

The fdf experiment involves the use of doc-
ument frequency for the selection of common
words. Its performance is very close to that of hy-

8Detailed instructions on how to build and use hybrid
LMs can be found at http://hlt.fbk.eu/people/bisazza.

9We use case-sensitive BLEU and TER, but case-
insensitive METEOR to enable the use of paraphrase tables
distributed with the tool (version 1.3).

10Translation scores and significance tests were com-
puted with the Multeval toolkit (Clark et al., 2011):
https://github.com/jhclark/multeval.
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(a) Arabic to English, IWSLT–tst2010

Added InDomain 10gLM BLEU↑MET ↑ TER ↓
.00 POS/words (all words)† 26.1 30.5 55.4
.00 POS/lemmas (all lem.) 26.0 30.5 55.4

1.0 POS/words (all POS)† 25.9 30.6 55.3

.25 POS/words† 26.5 30.6 54.7

.50 POS/words 26.5 30.6 54.9

.75 POS/words 26.3 30.7 55.0

.25 POS/words(fdf) 26.5 30.7 54.7

.25 POS/lemmaF 26.4 30.6 54.8

.25 POS/lemmas 26.5 30.8 54.6

(b) English to French, IWSLT–tst2010

Added InDomain 7gLM BLEU↑MET ↑ TER ↓
.00 POS/words (all words) 31.1 52.5 49.9
.00 POS/lemmas (all lem.)† 31.2 52.6 49.7

1.0 POS/words (all POS)† 31.4 52.8 49.8

.25 POS/lemmas† 31.5 52.9 49.7

.50 POS/lemmas 31.9 53.3 49.5

.75 POS/lemmas 31.7 53.2 49.6

.50 POS/lemmas(fdf) 31.9 53.3 49.5

.50 POS/lemmaF 31.6 53.0 49.6

.50 POS/words 31.7 53.1 49.5

Table 7: Comparison of various hybrid LM variants. Translation quality is measured with BLEU, METEOR and
TER (all in percentage form). The settings used for weight tuning are marked with †. Best models according to
all metrics are highlighted in bold.

brid LMs simply based on term frequency; only
METEOR gains 0.1 points in Arabic-English. A
possible reason for this is that document fre-
quency was computed on fixed-size text chunks
rather than on real document boundaries (see Sec-
tion 4.1). The lemmaF experiment refers to the
use of canonical forms for frequency measuring:
this technique does not seem to help in either lan-
guage pair. Finally, we compare the use of lem-
mas versus surface forms to represent common
words. As expected, lemmas appear to be help-
ful for French language modeling. Interestingly
this is also the case for English, even if by a small
margin (+0.2 METEOR, -0.1 TER).

Summing up, hybrid mapping appears as a
winning strategy compared to uniform map-
ping. Although differences among LM variants
are small, the best model in Arabic-English is
.25-POS/lemmas, which can be thought of as
a domain-generic lemma-level LM. In English-
French, instead, the highest scores are achieved
by .50-POS/lemmas or .50-POS/lemmas(fdf), that
is POS-level LM with few frequently occurring
lexical anchors (vocabulary size 59). An inter-
pretation of this result is that, for French, mod-
eling the syntax is more helpful than modeling
the style. We also suspect that the French TED
corpus is more irregular and diverse with respect
to the style, than its English counterpart. In fact,
while the English corpus include transcripts of
talks given by English speakers, the French one is
mostly a collection of (human) translations. Typi-
cal features of the speech style may have been lost
in this process.

Comparison with baseline. In Table 8 the
best performing hybrid LM is compared against
the baseline that only includes the standard LMs
described in Section 5.2. To complete our eval-
uation, we also report the effect of an in-domain
LM trained on 50 word classes induced from the
corpus by maximum-likelihood based clustering
(Och, 1999).

In the two language pairs, both types of LM
result in consistent improvements over the base-
line. However, the gains achieved by the hybrid
approach are larger and all statistically signifi-
cant. The hybrid approach is significantly bet-
ter than the unsupervised one by TER in Arabic-
English and by BLEU and METEOR in English-
French (these siginificances are not reported in

(a) Arabic to English, IWSLT–tst2010

Added InDomain BLEU↑ MET ↑ TER ↓
10g LM
none (baseline) 26.0 30.4 55.6
unsup. classes 26.4◦ 30.8• 55.1◦

hybrid 26.5•(+.5) 30.8•(+.4) 54.6•(-1.0)

(b) English to French, IWSLT–tst2010

Added InDomain BLEU↑ MET ↑ TER ↓
7g LM
none (baseline) 31.2 52.7 49.8
unsup. classes 31.5 52.9 49.6
hybrid 31.9•(+.7) 53.3•(+.6) 49.5◦(-.3)

Table 8: Final MT results: baseline vs unsupervised
word classes-based LM and best hybrid LM. Statis-
tically significant improvements over the baseline are
marked with • at the p < .01 and ◦ at the p < .05 level.

445



the table for clarity). The proposed method ap-
pears to better leverage the available in-domain
data, achieving improvements according to all
metrics: +0.5/+0.4/-1.0 BLEU/METEOR/TER
in Arabic-English and +0.7/-0.6/-0.3 in English-
French, without requiring any bitext annotation or
decoder modification.

Talk-level analysis. To conclude the study,
we analyze the effect of our best hybrid LM
on Arabic-English translation quality, at the sin-
gle talk level. The test used in the experiments
(tst2010) consists of 11 transcripts with an av-
erage length of 151±73 sentences. For each
talk, we compare the baseline BLEU score with
that obtained by adding a .25-POS/lemmas hybrid
LM. Results are presented in Figure 2. The dark
and light columns denote baseline and hybrid-LM
BLEU scores, respectively, and refer to the left y-
axis. Additional data points, plotted on the right
y-axis in reverse order, represent talk-level per-
plexities (PP) of a standard 5-gram LM trained
on TED (◦) and those of the .25-POS/lemmas
10-gram hybrid LM (M), computed on reference
translations.

What emerges first is a dramatic variation of
performance among the speeches, with baseline
BLEU scores ranging from 33.95 on talk “00” to
only 12.42 on talk “02”. The latter talk appears as
a corner case also according to perplexities (397
by word LM and 111 by hybrid LM). Notably, the
perplexities of the two LMs correlate well with
each other, but the hybrid’s PP is much more sta-
ble across talks: its standard deviation is only 14
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Figure 2: Talk-level evaluation on Arabic-English
(IWSLT-tst2010). Left y-axis: BLEU impact of a .25-
POS/lemma hybrid LM. Right y-axis: perplexities by
word LM and by hybrid LM.

points, while that of the word-based PP is 79. The
BLEU improvement given by hybrid LM, how-
ever modest, is consistent across the talks, with
only two outliers: a drop of -0.2 on talk “00”, and
a drop of -0.7 on talk “02”. The largest gain (+1.1)
is observed on talk “10”, from 16.8 to 17.9 BLEU.

6 Conclusions

We have proposed a language modeling technique
that leverages the in-domain data for SMT style
adaptation. Trained to predict mixed sequences
of POS classes and frequent words, hybrid LMs
are devised to capture typical lexical and syntactic
constructions that characterize the style of speech
transcripts.

Compared to standard language models, hy-
brid LMs generalize better to the test data and
partially compensate for the disproportion be-
tween in-domain and out-of-domain training data.
At the same time, hybrid LMs show more dis-
criminative power than merely POS-level LMs.
The integration of hybrid LMs into a competi-
tive phrase-based SMT system is straightforward
and leads to consistent improvements on the TED
task, according to three different translation qual-
ity metrics.

Target language modeling is only one aspect
of the statistical translation problem. Now that
the usability of the proposed method has been as-
sessed for language modeling, future work will
address the extension of the idea to the modeling
of phrase translation and reordering.
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Abstract

In this paper, we extend the work on using
latent cross-language topic models for iden-
tifying word translations across compara-
ble corpora. We present a novel precision-
oriented algorithm that relies on per-topic
word distributions obtained by the bilin-
gual LDA (BiLDA) latent topic model.
The algorithm aims at harvesting only the
most probable word translations across lan-
guages in a greedy fashion, without any
prior knowledge about the language pair,
relying on a symmetrization process and
the one-to-one constraint. We report our re-
sults for Italian-English and Dutch-English
language pairs that outperform the current
state-of-the-art results by a significant mar-
gin. In addition, we show how to use the al-
gorithm for the construction of high-quality
initial seed lexicons of translations.

1 Introduction

Bilingual lexicons serve as an invaluable resource
of knowledge in various natural language pro-
cessing tasks, such as dictionary-based cross-
language information retrieval (Carbonell et al.,
1997; Levow et al., 2005) and statistical machine
translation (SMT) (Och and Ney, 2003). In or-
der to construct high quality bilingual lexicons for
different domains, one usually needs to possess
parallel corpora or build such lexicons by hand.
Compiling such lexicons manually is often an ex-
pensive and time-consuming task, whereas the
methods for mining the lexicons from parallel cor-
pora are not applicable for language pairs and do-
mains where such corpora is unavailable or miss-
ing. Therefore the focus of researchers turned to
comparable corpora, which consist of documents

with partially overlapping content, usually avail-
able in abundance. Thus, it is much easier to build
a high-volume comparable corpus. A representa-
tive example of such a comparable text collection
is Wikipedia, where one may observe articles dis-
cussing the similar topic, but strongly varying in
style, length and vocabulary, while still sharing a
certain amount of main concepts (or topics).

Over the years, several approaches for min-
ing translations from non-parallel corpora have
emerged (Rapp, 1995; Fung and Yee, 1998; Rapp,
1999; Diab and Finch, 2000; Déjean et al., 2002;
Chiao and Zweigenbaum, 2002; Gaussier et al.,
2004; Fung and Cheung, 2004; Morin et al., 2007;
Haghighi et al., 2008; Shezaf and Rappoport,
2010; Laroche and Langlais, 2010), all sharing
the same Firthian assumption, often called the
distributionial hypothesis (Harris, 1954), which
states that words with a similar meaning are likely
to appear in similar contexts across languages.
All these methods have examined different rep-
resentations of word contexts and different meth-
ods for matching words across languages, but they
all have in common a need for a seed lexicon of
translations to efficiently bridge the gap between
languages. That seed lexicon is usually crawled
from the Web or obtained from parallel corpora.
Recently, Li et al. (2011) have proposed an ap-
proach that improves precision of the existing
methods for bilingual lexicon extraction, based
on improving the comparability of the corpus un-
der consideration, prior to extracting actual bilin-
gual lexicons. Other methods such as (Koehn and
Knight, 2002) try to design a bootstrapping algo-
rithm based on an initial seed lexicon of transla-
tions and various lexical evidences. However, the
quality of their initial seed lexicon is disputable,
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since the construction of their lexicon is language-
pair biased and cannot be completely employed
on distant languages. It solely relies on unsatis-
factory language-pair independent cross-language
clues such as words shared across languages.

Recent work from Vulić et al.(2011) utilized
the distributional hypothesis in a different direc-
tion. It attempts to abrogate the need of a seed lex-
icon as a prerequisite for bilingual lexicon extrac-
tion. They train a cross-language topic model on
document-aligned comparable corpora and intro-
duce different methods for identifying word trans-
lations across languages, underpinned by per-
topic word distributions from the trained topic
model. Due to the fact that they deal with compa-
rable Wikipedia data, their translation model con-
tains a lot of noise, and some words are poorly
translated simply because there are not enough
occurrences in the corpus. The goal of this work is
to design an algorithm which will learn to harvest
only the most probable translations from the per-
word topic distributions. The translations learned
by the algorithm then might serve as a highly ac-
curate, precision-based initial seed lexicon, which
can then be used as a tool for translating source
word vectors into the target language. The key ad-
vantage of such a lexicon lies in the fact that there
is no language-pair dependent prior knowledge
involved in its construction (e.g., orthographic
features). Hence, it is completely applicable to
any language pair for which there exist sufficient
comparable data for training of the topic model.

Since comparable corpora often construct a
very noisy environment, it is of the utmost impor-
tance for a precision-oriented algorithm to learn
when to stop the process of matching words, and
which candidate pairs are surely not translations
of each other. The method described in this paper
follows this intuition: while extracting a bilingual
lexicon, we try to rematch words, keeping only
the most confident candidate pairs and disregard-
ing all the others. After that step, the most con-
fident candidate pairs might be used with some
of the existing context-based techniques to find
translations for the words discarded in the pre-
vious step. The algorithm is based on: (1) the
assumption of symmetry, and (2) the one-to-one
constraint. The idea of symmetrization has been
borrowed from the symmetrization heuristics in-
troduced for word alignments in SMT (Och and
Ney, 2003), where the intersection heuristics is

employed for a precision-oriented algorithm. In
our setting, it basically means that we keep a
translation pair (wSi , w

T
j ) if and only if, after the

symmetrization process, the top translation candi-
date for the source word wSi is the target word wTi
and vice versa. The one-to-one constraint aims
at matching the most confident candidates during
the early stages of the algorithm, and then exclud-
ing them from further search. The utility of the
constraint for parallel corpora has already been
evaluated by Melamed (2000).

The remainder of the paper is structured as
follows. Section 2 gives a brief overview of
the methods, relying on per-topic word distribu-
tions, which serve as the tool for computing cross-
language similarity between words. In Section
3, we motivate the main assumptions of the al-
gorithm and describe the full algorithm. Sec-
tion 4 justifies the underlying assumptions of
the algorithm by providing comparisons with a
current-state-of-the-art system for Italian-English
and Dutch-English language pairs. It also con-
tains another set of experiments which inves-
tigates the potential of the algorithm in build-
ing a language-pair unbiased seed lexicon, and
compares the lexicon with other seed lexicons.
Finally, Section 5 lists conclusion and possible
paths of future work.

2 Calculating Initial Cross-Language
Word Similarity

This section gives a quick overview of the Cue
method, the TI method, and their combination,
described by Vulić et al.(2011), which proved to
be the most efficient and accurate for identify-
ing potential word translations once the cross-
language BiLDA topic model is trained and the
associated per-topic distributions are obtained for
both source and target corpora. The BiLDA
model we use is a natural extension of the stan-
dard LDA model and, along with the definition of
per-topic word distributions, has been presented
in (Ni et al., 2009; De Smet and Moens, 2009;
Mimno et al., 2009). BiLDA takes advantage of
the document alignment by using a single variable
that contains the topic distribution θ. This vari-
able is language-independent, because it is shared
by each of the paired bilingual comparable doc-
uments. Topics for each document are sampled
from θ, from which the words are then sampled
in conjugation with the vocabulary distribution φ
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Figure 1: The bilingual LDA (BiLDA) model

(for language S) and ψ (for language T).

2.1 Cue Method
A straightforward approach to express similarity
between words tries to emphasize the associative
relation in a natural way - modeling the proba-
bility P (wT2 |wS1 ), i.e. the probability that a tar-
get word wT2 will be generated as a response to a
cue source word wS1 , where the link between the
words is established via the shared topic space:
P (wT2 |wS1 ) =

∑K
k=1 P (wT2 |zk)P (zk|wS1 ), where

K denotes the number of cross-language topics.

2.2 TI Method
This approach constructs word vectors over a
shared space of cross-language topics, where val-
ues within vectors are the TF-ITF scores (term
frequency - inverse topic frequency), computed
in a completely analogical manner as the TF-
IDF scores for the original word-document space
(Manning and Schütze, 1999). Term frequency,
given a source word wSi and a topic zk, measures
the importance of the word wSi within the particu-
lar topic zk, while inverse topical frequency (ITF)
of the word wSi measures the general importance
of the source word wSi across all topics. The fi-
nal TF-ITF score for the source word wSi and the
topic zk is given by TF −ITFi,k = TFi,k ·ITFi.

The TF-ITF scores for target words associated
with target topics are calculated in an analogical
manner and the standard cosine similarity is then
used to find the most similar target word vectors
for a given source word vector.

2.3 Combining the Methods
Topic models have the ability to build clusters of
words which might not always co-occur together

in the same textual units and therefore add ex-
tra information of potential relatedness. These
two methods for automatic bilingual lexicon ex-
traction interpret and exploit underlying per-topic
word distributions in different ways, so combin-
ing the two should lead to even better results. The
two methods are linearly combined, with the over-
all score given by:

SimTI+Cue(w
S
1 , w

T
2 ) = λSimTI(w

S
1 , w

T
2 )

+ (1− λ)SimCue(w
S
1 , w

T
2 ) (1)

Both methods posses several desirable proper-
ties. According to Griffiths et al. (2007), the con-
ditioning for the Cue method automatically com-
promises between word frequency and semantic
relatedness since higher frequency words tend to
have higher probability across all topics, but the
distribution over topics P (zk|wS1 ) ensures that se-
mantically related topics dominate the sum. The
similar phenomenon is captured by the TI method
by the usage of TF, which rewards high frequency
words, and ITF, which assigns a higher impor-
tance for words semantically more related to a
specific topic. These properties are incorporated
in the combination of the methods. As the final
result, the combined method provides, for each
source word, a ranked list of target words with as-
sociated scores that measure the strength of cross-
language similarity. The higher the score, the
more confident a translation pair is. We will use
this observation in the next section during the al-
gorithm construction.

The lexicon constructed by solely applying the
combination of these methods without any addi-
tional assumptions will serve as a baseline in the
results section.

3 Constructing the Algorithm

This section explains the underlying assumptions
of the algorithm: the assumption of symmetry
and the one-to-one assumption. Finally, it pro-
vides the complete outline of the algorithm.

3.1 Assumption of Symmetry
First, we start with the intuition that the assump-
tion of symmetry strengthens the confidence of a
translation pair. In other words, if the most prob-
able translation candidate for a source word wS1 is
a target word wT2 and, vice versa, the most prob-
able translation candidate of the target word wT2
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is the source word wS1 , and their TI+Cue scores
are above a certain threshold, we can claim that
the words wS1 and wT2 are a translation pair. The
definition of the symmetric relation can also be
relaxed. Instead of observing only one top can-
didate from the lists, we can observe top N can-
didates from both sides and include them in the
search space, and then re-rank the potential candi-
dates taking into account their associated TI+Cue
scores and their respective positions in the list.
We will call N the search space depth. Here is
the outline of the re-ranking method if the search
space consists of the top N candidates on both
sides:

1. Given is a source word wSs , for which we ac-
tually want to find the most probable trans-
lation candidate. Initialize an empty list
Finals = {} in which target language
candidates with their recalculated associated
scores will be stored.

2. Obtain TI+Cue scores for all target words.
Keep only N best scoring target candidates:
{wTs,1, . . . , wTs,N} along with their respective
scores.

3. For each target candidate from
{wTs,1, . . . , wTs,N} acquire TI+Cue scores
over the entire source vocabulary. Keep only
N best scoring source language candidates.
Each word wTs,i ∈ {wTs,1, . . . , wTs,N} now
has a list of N source language candidates
associated with it: {wSi,1, wSi,2 . . . , wSi,N}.

4. For each target candidate word wTs,i ∈
{wTs,1, . . . , wTs,N}, do as follows:
(a) If one of the words from the associated

list is the given source word wSs , re-
member: (1) the position m, denoting
how high in the list the word wSs was
found, and (2) the associated TI+Cue
score SimTI+Cue(w

T
s,i, w

S
i,m = wSs ).

Calculate:
(i) G1,i = SimTI+Cue(w

S
s , w

T
s,i)/i

(ii) G2,i = SimTI+Cue(w
T
s,i, w

S
i,m)/m

Following that, calculate GMi, the ge-
ometric mean of the values G1,i and
G2,i

1: GMi =
√
G1,i ·G2,i. Add a tu-

1Scores G1,i and G2,i are structured in such a way to
balance between positions in the ranked lists and the TI+Cue
scores, since they reward candidate words which have high
TI+Cue scores associated with them, and penalize words if
they are found lower in the list of potential candidates.

ple (wTs,i, GMi) to the list Finals.
(b) If we have reached the end of the list

for the target candidate word wTs,i with-
out finding the given source word wSs ,
and i < N , continue with the next word
wTs,i+1. Do not add any tuple to Finals
in this step.

5. If the list Finals is not empty, sort the tuples
in the list in descending order according to
their GMi scores. The first element of the
sorted list contains a word wTs,high, the final
translation candidate of the source word wSs .
If the list Finals is not empty, the final re-
sult of this process will be the cross-language
word translation pair (wSs , w

T
s,high).

We will call this symmetrization process the
symmetrizing re-ranking. It attempts at push-
ing the correct cross-language synonym to the top
of the candidates list, taking into account both
the strength of similarities defined through the
TI+Cue scores in both directions, and positions
in ranked lists. A blatant example depicting how
this process helps boost precision is presented in
Figure 2. We can also design a thresholded variant
of this procedure by imposing an extra constraint.
When calculating target language candidates for
the source word wSs in Step 2, we proceed fur-
ther only if the first target candidate scores above
a certain threshold P and, additionally, in Step 3,
we keep lists of N source language candidates
for only those target words for which the first
source language candidate in their respective list
scored above the same threshold P . We will call
this procedure the thresholded symmetrizing re-
ranking, and this version will be employed in the
final algorithm.

3.2 One-to-one Assumption

Melamed (2000) has already established that most
source words in parallel corpora tend to translate
to only one target word. That tendency is modeled
by the one-to-one assumption, which constrains
each source word to have at most one translation
on the target side. Melamed’s paper reports that
this bias leads to a significant positive impact on
precision and recall of bilingual lexicon extraction
from parallel corpora. This assumption should
also be reasonable for many types of comparable
corpora such as Wikipedia or news corpora, which
are topically aligned or cover similar themes. We
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abdij monasterymonkabbey kloostermonnikbenedictijnkloostermonnikabdijabdijmonnikklooster0.22370.15860.1155 0.30490.17400.13380.22660.14940.11310.25490.14960.1288
Figure 2: An example where the assumption of symmetry and the one-to-one assumption clearly help boost
precision. If we keep top Nc = 3 candidates from both sides, the algorithm is able to detect that the correct
Dutch-English translation pair is (abdij, abbey). The TI+Cue method without any assumptions would result with
an indirect association (abdij, monastery). If only the one-to-one assumption was present, the algorithm would
greedily learn the correct direct association (monastery, klooster), remove those words from their respective
vocabularies and then again result with another indirect association (abdij, monk). By additionally employing
the assumption of symmetry with the re-ranking method from Subsection 3.1, the algorithm correctly learns
the translation pair (abdij, abbey). Correct translation pairs (klooster, monastery) and (monnik, monk) are also
obtained. Again here, the pair (monnik, monk) would not be obtained without the one-to-one assumption.

will prove that the assumption leads to better pre-
cision scores even for bilingual lexicon extraction
from such comparable data. The intuition be-
hind introducing this constraint is fairly simple.
Without the assumption, the similarity scores be-
tween source and target words are calculated in-
dependently of each other. We will illustrate the
problem arising from the independence assump-
tion with an example.

Suppose we have an Italian word arcipelago,
and we would like to detect its correct English
translation (archipelago). However, after the
TI+Cue method is employed, and even after the
symmetrizing re-ranking process from the previ-
ous step is used, we still acquire a wrong transla-
tion candidate pair (arcipelago, island). Why is
that so? The word (arcipelago) (or its translation)
and the acquired translation (island) are semanti-

cally very close, and therefore have similar distri-
butions over cross-language topics, but island is a
much more frequent term. The TI+Cue method
concludes that two words are potential trans-
lations whenever their distributions over cross-
language topics are much more similar than ex-
pected by chance. Moreover, it gives a preference
to more frequent candidates, so it will eventually
end up learning an indirect association2 between
words arcipelago and island. The one-to-one as-
sumption should mitigate the problem of such in-
direct associations if we design our algorithm in
such a way that it learns the most confident direct
associations2 first:

2A direct association, as defined in (Melamed, 2000), is
an association between two words (in this setting found by
the TI+Cue method) where the two words are indeed mutual
translations. Otherwise, it is an indirect association.
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1. Learn the correct direct association pair
(isola, island).

2. Remove the words isola and island from
their respective vocabularies.

3. Since island is not in the vocabulary, the
indirect association between arcipelago and
island is not present any more. The algo-
rithm learns the correct direct association
(arcipelago, archipelago).

3.3 The Algorithm
3.3.1 One-Vocabulary-Pass
First, we will provide a version of the algorithm
with a fixed threshold P which completes only
one pass through the source vocabulary. Let V S

denote a given source vocabulary, and let V T de-
note a given target vocabulary. We need to define
several parameters of the algorithm. Let N0 be
the initial maximum search space depth for the
thresholded symmetrizing re-ranking procedure.
In Figure 2, the current depth Nc is 3, while the
maximum depth might be set to a value higher
than 3. The algorithm with the fixed threshold P
proceeds as follows:

1. Initialize the maximum search space depth
NM = N0. Initialize an empty lexicon L.

2. For each source word wSs ∈ V S do:
(a) Set the current search space depthNc =

1.3

(b) Perform the thresholded symmetrizing
re-ranking procedure with the current
search space set toNc and the threshold
P . If a translation pair (wSs , w

T
s,high) is

found, go to the Sub-step 2(d).
(c) If a translation pair is not found, and

Nc < NM , increment the current
search space Nc = Nc+1 and return to
the previous Sub-step 2(b). If a trans-
lation pair is not found and Nc = NM ,
return to Step 2 and proceed with the
next word.

(d) For the found translation pair
(wSs , w

T
s,high), remove words wSs

and wTs,high from their respective

3The intuition here is simple – we are trying to detect
a direct association as high as possible in the list. In other
words, if the first translation candidate for the source word
isola is the target word island, and, vice versa, the first
translation candidate for the target word island is isola, we
do not need to expand our search depth, because these two
words are the most likely translations.

vocabularies: V S = V S − {wSs } and
V T = V T − {wTs,high} to satisfy the
one-to-one constraint. Add the pair
(wSs , w

T
s,high) to the lexicon L.

We will name this procedure the one-
vocabulary-pass and employ it later in an iter-
ative algorithm with a varying threshold and a
varying maximum search space depth.

3.3.2 The Final Algorithm
Let us now define P0 as the initial threshold, let
Pf be the threshold at which we stop decreas-
ing the value for threshold and start expanding
our maximum search space depth for the thresh-
olded symmetrizing re-ranking, and let decp be a
value for which we decrease the current threshold
in each step. Finally, let Nf be the limit for the
maximum search space depth, andNM denote the
current maximum search space depth. The final
algorithm is given by:

1. Initialize the maximum search space depth
NM = N0 and the starting threshold P =
P0. Initialize an empty lexicon Lfinal.

2. Check the stopping criterion: If NM > Nf ,
go to Step 5, otherwise continue with Step 3.

3. Perform the one-vocabulary-pass with the
current values of P and NM . Whenever a
translation pair is found, it is added to the
lexicon Lfinal. Additionally, we can also
save the threshold and the depth at which that
pair was found.

4. Decrease P : P = P − decp, and check
if P < Pf . If still not P < Pf , go to
Step 3 and perform the one-vocabulary-pass
again. Otherwise, if P < Pf and there are
still unmatched words in the source vocab-
ulary, reset P : P = P0, increment NM :
NM = NM + 1 and go to Step 2.

5. Return Lfinal as the final output of the algo-
rithm.

The parameters of the algorithm model its be-
havior. Typically, we would like to setP0 to a high
value, and N0 to a low value, which makes our
constraints strict and narrows our search space,
and consequently, extracts less translation pairs
in the first steps of the algorithm, but the set
of those translation pairs should be highly accu-
rate. Once it is not possible to extract any more
pairs with such strict constraints, the algorithm re-
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laxes them by lowering the threshold and expand-
ing the search space by incrementing the max-
imum search space depth. The algorithm may
leave some of the source words unmatched, which
is also dependent on the parameters of the algo-
rithm, but, due to the one-to-one assumption, that
scenario also occurs whenever a target vocabulary
contains more words than a source vocabulary.

The number of operations of the algorithm also
depends on the parameters, but it mostly depends
on the sizes of the given vocabularies. The com-
plexity isO(|V S ||V T |), but the algorithm is com-
putationally feasible even for large vocabularies.

4 Results and Discussion

4.1 Training Collections

The data used for training of the models is col-
lected from various sources and varies strongly in
theme, style, length and its comparableness. In
order to reduce data sparsity, we keep only lem-
matized non-proper noun forms.

For Italian-English language pair, we use
18, 898 Wikipedia article pairs to train BiLDA,
covering different themes with different scopes
and subtopics being addressed. Document align-
ment is established via interlingual links from the
Wikipedia metadata. Our vocabularies consist of
7, 160 Italian nouns and 9, 116 English nouns.

For Dutch-English language pair, we use 7, 602
Wikipedia article pairs, and 6, 206 Europarl doc-
ument pairs, and combine them for training.4 Our
final vocabularies consist of 15, 284 Dutch nouns
and 12, 715 English nouns.

Unlike, for instance, Wikipedia articles, where
document alignment is established via interlin-
gual links, in some cases it is necessary to perform
document alignment as the initial step. Since our
work focuses on Wikipedia data, we will not get
into detail with algorithms for document align-
ment. An IR-based method for document align-
ment is given in (Utiyama and Isahara, 2003;
Munteanu and Marcu, 2005), and a feature-based
method can be found in (Vu et al., 2009).

4.2 Experimental Setup

All our experiments rely on BiLDA training
with comparable data. Corpora and software for

4In case of Europarl, we use only the evidence of docu-
ment alignment during the training and do not benefit from
the parallelness of the sentences in the corpus.

BiLDA training are obtained from Vulić et al.
(2011). We train the BiLDA model with 2000
topics using Gibbs sampling, since that number
of topics displays the best performance in their
paper. The linear interpolation parameter for the
combined TI+Cue method is set to λ = 0.1.

The parameters of the algorithm, adjusted on a
set of 500 randomly sampled Italian words, are set
to the following values in all experiments, except
where noted different: P0 = 0.20, Pf = 0.00,
decp = 0.01, N0 = 3, and Nf = 10.

The initial ground truth for our source vocab-
ularies has been constructed by the freely avail-
able Google Translate tool. The final ground truth
for our test sets has been established after we
have manually revised the list of pairs obtained by
Google Translate, deleting incorrect entries and
adding additional correct entries. All translation
candidates are evaluated against this benchmark
lexicon.

4.3 Experiment I: Do Our Assumptions Help
Lexicon Extraction?

With this set of experiments, we wanted to test
whether both the assumption of symmetry and
the one-to-one assumption are useful in improv-
ing precision of the initial TI+Cue lexicon extrac-
tion method. We compare three different lexicon
extraction algorithms: (1) the basic TI+Cue ex-
traction algorithm (LALG-BASIC) which serves
as the baseline algorithm5, (2) the algorithm from
Section 3, but without the one-to-one assump-
tion (LALG-SYM), meaning that if we find a
translation pair, we still keep words from the
translation pair in their respective vocabularies,
and (3) the complete algorithm from Section 3
(LALG-ALL). In order to evaluate these lexicon
extraction algorithms for both Italian-English and
Dutch-English, we have constructed a test set of
650 Italian nouns, and a test set of 1000 Dutch
nouns of high and medium frequency. Precision
scores for both language pairs and for all lexicon
extraction algorithms are provided in Table 1.

Based on these results, it is clearly visible that
both assumptions our algorithm makes are valid

5We have also tested whether LALG-BASIC outperforms
a method modeling direct co-occurrence, that uses cosine
to detect similarity between word vectors consisting of TF-
IDF scores in the shared document space (Cimiano et al.,
2009). Precision using that method is significantly lower,
e.g. 0.5538 vs. 0.6708 of LALG-BASIC for Italian-English.
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LEX Algorithm Italian-English Dutch-English
LALG-BASIC 0.6708 0.6560
LALG-SYM 0.6862 0.6780
LALG-ALL 0.7215 0.7170

Table 1: Precision scores on our test sets for the 3 dif-
ferent lexicon extraction algorithms.

and contribute to better overall scores. Therefore
in all further experiments we will use the LALG-
ALL extraction algorithm.

4.4 Experiment II: How Does Thresholding
Affect Precision?

The next set of experiments aims at exploring how
precision scores change while we gradually de-
crease threshold values. The main goal of these
experiments is to detect when to stop with the ex-
traction of translation candidates in order to pre-
serve a lexicon of only highly accurate transla-
tions. We have fixed the maximum search space
depth N0 = Nf = 3. We used the same test sets
from Experiment I. Figure 3 displays the change
of precision in relation to different threshold val-
ues, where we start harvesting translations from
the threshold P0 = 0.2 down to Pf = 0.0. Since
our goal is to extract as many correct translation
pairs as possible, but without decreasing the pre-
cision scores, we have also examined what impact
this gradual decrease of threshold also has on the
number of extracted translations. We have opted
for the Fβ measure (van Rijsbergen, 1979):

Fβ = (1 + β2)
Precision ·Recall

β2 · Precision+Recall
(2)

Since our task is precision-oriented, we have set
β = 0.5. F0.5 measure values precision as twice
as important as recall. The F0.5 scores are also
provided in Figure 3.

4.5 Experiment III: Building a Seed Lexicon

Finally, we wanted to test how many accurate
translation pairs our best scoring LALG-ALL al-
gorithm is able to acquire from the entire source
vocabulary, with very high precision still remain-
ing paramount. The obtained highly-precise seed
lexicon then might be employed for an additional
bootstrapping procedure similar to (Koehn and
Knight, 2002; Fung and Cheung, 2004) or sim-
ply for translating context vectors as in (Gaussier
et al., 2004).
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Figure 3: Precision and F0.5 scores in relation to
threshold values. We can observe that the algorithm
retrieves only highly accurate translations for both lan-
guage pairs while the threshold goes down from value
0.2 to 0.1, while precision starts to drop significantly
after the threshold of 0.1. F0.5 scores also reach their
peaks within that threshold region.

If we do not know anything about a given lan-
guage pair, we can only use words shared across
languages as lexical clues for the construction of
a seed lexicon. It often leads to a low precision
lexicon, since many false friends are detected.

For Italian-English, we have found 431 nouns
shared between the two languages, of which 350
were correct translations, leading to a precision
of 0.8121. As an illustration, if we take the
first 431 translation pairs retrieved by LALG-
ALL, there are 427 correct translation pairs, lead-
ing to a precision of 0.9907. Some pairs do
not share any orthographic similarities: (uccello,
bird), (tastiera, keyboard), (salute, health), (terre-
moto, earthquake) etc.

Following Koehn and Knight (2002), we have
also employed simple transformation rules for the
adoption of words from one language to another.
The rules specific to the Italian-English transla-
tion process that have been employed are: (R1) if
an Italian noun ends in−ione, but not in−zione,
strip the final e to obtain the corresponding En-
glish noun. Otherwise, strip the suffix −zione,
and append −tion; (R2) if a noun ends in −ia,
but not in −zia or −fia, replace the suffix −ia
with −y. If a noun ends in −zia, replace the suf-
fix with −cy and if a noun ends in −fia, replace
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Italian-English Dutch-English
Lexicon # Correct Precision F0.5 # Correct Precision F0.5

LEX-1 350 0.8121 0.1876 898 0.8618 0.2308
LEX-2 766 0.8938 0.3473 1376 0.9011 0.3216

LEX-LALG 782 0.8958 0.3524 1106 0.9559 0.2778
LEX-1+LEX-LALG 1070 0.8785 0.4290 1860 0.9082 0.3961
LEX-R+LEX-LALG 1141 0.9239 0.4548 1507 0.9642 0.3500
LEX-2+LEX-LALG 1429 0.8926 0.5102 2261 0.9217 0.4505

Table 2: A comparison of different lexicons. For lexicons employing our LALG-ALL algorithm, only translation
candidates that scored above the threshold P = 0.11 have been kept.

it with −phy. Similar rules have been introduced
for Dutch-English: the suffix −tie is replaced by
−tion, −sie by −sion, and −teit by −ty.

Finally, we have compared the results of the
following constructed lexicons:

• A lexicon containing only words shared
across languages (LEX-1).
• A lexicon containing shared words and trans-

lation pairs found by applying the language-
specific transformation rules (LEX-2).
• A lexicon containing only translation pairs

obtained by the LALG-ALL algorithm that
score above a certain threshold P (LEX-
LALG).
• A combination of the lexicons LEX-1 and

LEX-LALG (LEX-1+LEX-LALG). Non-
matching duplicates are resolved by taking
the translation pair from LEX-LALG as the
correct one. Note that this lexicon is com-
pletely language-pair independent.
• A lexicon combining only translation pairs

found by applying the language-specific
transformation rules and LEX-LALG (LEX-
R+LEX-LALG).
• A combination of the lexicons LEX-2 and

LEX-LALG, where non-matching dupli-
cates are resolved by taking the translation
pair from LEX-LALG if it is present in
LEX-1, and from LEX-2 otherwise (LEX-
2+LEX-LALG).

According to the results from Table 2, we can
conclude that adding translation pairs extracted
by our LALG-ALL algorithm has a major posi-
tive impact on both precision and coverage. Ob-
taining results for two different language pairs
proves that the approach is generic and appli-
cable to any other language pairs. The previ-
ous approach relying on work from Koehn and

Knight (2002) has been outperformed in terms of
precision and coverage. Additionally, we have
shown that adding simple translation rules for lan-
guages sharing same roots might lead to even bet-
ter scores (LEX-2+LEX-LALG). However, it is
not always possible to rely on such knowledge,
and the usefulness of the designed LALG-ALL
algorithm really comes to the fore when the algo-
rithm is applied on distant language pairs which
do not share many words and cognates, and word
translation rules cannot be easily established. In
such cases, without any prior knowledge about the
languages involved in a translation process, one is
left with the linguistically unbiased LEX-1+LEX-
LALG lexicon, which also displays a promising
performance.

5 Conclusions and Future Work
We have designed an algorithm that focuses on ac-
quiring and keeping only highly confident trans-
lation candidates from multilingual comparable
corpora. By employing the algorithm we have
improved precision scores of the methods rely-
ing on per-topic word distributions from a cross-
language topic model. We have shown that the al-
gorithm is able to produce a highly reliable bilin-
gual seed lexicon even when all other lexical clues
are absent, thus making our algorithm suitable
even for unrelated language pairs. In future work,
we plan to further improve the algorithm and use
it as a source of translational evidence for differ-
ent alignment tasks in the setting of non-parallel
corpora.
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Abstract

Previous work on treebank parsing with
discontinuous constituents using Linear
Context-Free Rewriting systems (LCFRS)
has been limited to sentences of up to 30
words, for reasons of computational com-
plexity. There have been some results on
binarizing an LCFRS in a manner that min-
imizes parsing complexity, but the present
work shows that parsing long sentences with
such an optimally binarized grammar re-
mains infeasible. Instead, we introduce a
technique which removes this length restric-
tion, while maintaining a respectable accu-
racy. The resulting parser has been applied
to a discontinuous treebank with favorable
results.

1 Introduction

Discontinuity in constituent structures (cf. figure 1
& 2) is important for a variety of reasons. For
one, it allows a tight correspondence between
syntax and semantics by letting constituent struc-
ture express argument structure (Skut et al., 1997).
Other reasons are phenomena such as extraposi-
tion and word-order freedom, which arguably re-
quire discontinuous annotations to be treated sys-
tematically in phrase-structures (McCawley, 1982;
Levy, 2005). Empirical investigations demon-
strate that discontinuity is present in non-negligible
amounts: around 30% of sentences contain dis-
continuity in two German treebanks (Maier and
Søgaard, 2008; Maier and Lichte, 2009). Re-
cent work on treebank parsing with discontinuous
constituents (Kallmeyer and Maier, 2010; Maier,
2010; Evang and Kallmeyer, 2011; van Cranen-
burgh et al., 2011) shows that it is feasible to
directly parse discontinuous constituency anno-
tations, as given in the German Negra (Skut et al.,

SBARQ

SQ

VP

WHNP MD NP VB .

What should I do ?

Figure 1: A tree with WH-movement from the Penn
treebank, in which traces have been converted to dis-
continuity. Taken from Evang and Kallmeyer (2011).

1997) and Tiger (Brants et al., 2002) corpora, or
those that can be extracted from traces such as in
the Penn treebank (Marcus et al., 1993) annota-
tion. However, the computational complexity is
such that until now, the length of sentences needed
to be restricted. In the case of Kallmeyer and
Maier (2010) and Evang and Kallmeyer (2011) the
limit was 25 words. Maier (2010) and van Cranen-
burgh et al. (2011) manage to parse up to 30 words
with heuristics and optimizations, but no further.
Algorithms have been suggested to binarize the
grammars in such a way as to minimize parsing
complexity, but the current paper shows that these
techniques are not sufficient to parse longer sen-
tences. Instead, this work presents a novel form
of coarse-to-fine parsing which does alleviate this
limitation.

The rest of this paper is structured as follows.
First, we introduce linear context-free rewriting
systems (LCFRS). Next, we discuss and evalu-
ate binarization strategies for LCFRS. Third, we
present a technique for approximating an LCFRS

by a PCFG in a coarse-to-fine framework. Lastly,
we evaluate this technique on a large corpus with-
out the usual length restrictions.
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ROOT

S

VP

PROAV VAFIN NN NN VVPP $.

Danach habe Kohlenstaub Feuer gefangen .

Afterwards had coal dust fire caught .

Figure 2: A discontinuous tree from the Negra corpus.
Translation: After that coal dust had caught fire.

2 Linear Context-Free Rewriting
Systems

Linear Context-Free Rewriting Systems (LCFRS;
Vijay-Shanker et al., 1987; Weir, 1988) subsume
a wide variety of mildly context-sensitive for-
malisms, such as Tree-Adjoining Grammar (TAG),
Combinatory Categorial Grammar (CCG), Min-
imalist Grammar, Multiple Context-Free Gram-
mar (MCFG) and synchronous CFG (Vijay-Shanker
and Weir, 1994; Kallmeyer, 2010). Furthermore,
they can be used to parse dependency struc-
tures (Kuhlmann and Satta, 2009). Since LCFRS

subsumes various synchronous grammars, they are
also important for machine translation. This makes
it possible to use LCFRS as a syntactic backbone
with which various formalisms can be parsed by
compiling grammars into an LCFRS, similar to the
TuLiPa system (Kallmeyer et al., 2008). As all
mildly context-sensitive formalisms, LCFRS are
parsable in polynomial time, where the degree
depends on the productions of the grammar. In-
tuitively, LCFRS can be seen as a generalization
of context-free grammars to rewriting other ob-
jects than just continuous strings: productions are
context-free, but instead of strings they can rewrite
tuples, trees or graphs.

We focus on the use of LCFRS for parsing with
discontinuous constituents. This follows up on
recent work on parsing the discontinuous anno-
tations in German corpora with LCFRS (Maier,
2010; van Cranenburgh et al., 2011) and work on
parsing the Wall Street journal corpus in which
traces have been converted to discontinuous con-
stituents (Evang and Kallmeyer, 2011). In the case
of parsing with discontinuous constituents a non-

ROOT(ab)→ S(a) $.(b)

S(abcd)→ VAFIN(b) NN(c) VP2(a, d)

VP2(a, bc)→ PROAV(a) NN(b) VVPP(c)

PROAV(Danach)→ ε

VAFIN(habe)→ ε

NN(Kohlenstaub)→ ε

NN(Feuer)→ ε

VVPP(gefangen)→ ε

$.(.)→ ε

Figure 3: The productions that can be read off from the
tree in figure 2. Note that lexical productions rewrite to
ε, because they do not rewrite to any non-terminals.

terminal may cover a tuple of discontinuous strings
instead of a single, contiguous sequence of termi-
nals. The number of components in such a tuple
is called the fan-out of a rule, which is equal to
the number of gaps plus one; the fan-out of the
grammar is the maximum fan-out of its production.
A context-free grammar is a LCFRS with a fan-out
of 1. For convenience we will will use the rule
notation of simple RCG (Boullier, 1998), which
is a syntactic variant of LCFRS, with an arguably
more transparent notation.

A LCFRS is a tuple G = 〈N,T, V, P, S〉. N
is a finite set of non-terminals; a function dim :
N → N specifies the unique fan-out for every non-
terminal symbol. T and V are disjoint finite sets
of terminals and variables. S is the distinguished
start symbol with dim(S) = 1. P is a finite set of
rewrite rules (productions) of the form:

A(α1, . . . αdim(A))→B1(X
1
1 , . . . , X

1
dim(B1))

. . . Bm(Xm
1 , . . . , X

m
dim(Bm))

for m ≥ 0, where A, B1, . . . , Bm ∈ N ,
each Xi

j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Aj)
and αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(Ai).

Productions must be linear: if a variable occurs
in a rule, it occurs exactly once on the left hand
side (LHS), and exactly once on the right hand side
(RHS). A rule is ordered if for any two variables
X1 andX2 occurring in a non-terminal on the RHS,
X1 precedes X2 on the LHS iff X1 precedes X2

on the RHS.
Every production has a fan-out determined by

the fan-out of the non-terminal symbol on the left-
hand side. Apart from the fan-out productions also
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have a rank: the number of non-terminals on the
right-hand side. These two variables determine
the time complexity of parsing with a grammar. A
production can be instantiated when its variables
can be bound to non-overlapping spans such that
for each component αi of the LHS, the concatena-
tion of its terminals and bound variables forms a
contiguous span in the input, while the endpoints
of each span are non-contiguous.

As in the case of a PCFG, we can read off LCFRS

productions from a treebank (Maier and Søgaard,
2008), and the relative frequencies of productions
form a maximum likelihood estimate, for a prob-
abilistic LCFRS (PLCFRS), i.e., a (discontinuous)
treebank grammar. As an example, figure 3 shows
the productions extracted from the tree in figure 2.

3 Binarization

A probabilistic LCFRS can be parsed using a CKY-
like tabular parsing algorithm (cf. Kallmeyer and
Maier, 2010; van Cranenburgh et al., 2011), but
this requires a binarized grammar.1 Any LCFRS

can be binarized. Crescenzi et al. (2011) state
“while CFGs can always be reduced to rank two
(Chomsky Normal Form), this is not the case for
LCFRS with any fan-out greater than one.” How-
ever, this assertion is made under the assumption of
a fixed fan-out. If this assumption is relaxed then
it is easy to binarize either deterministically or, as
will be investigated in this work, optimally with
a dynamic programming approach. Binarizing an
LCFRS may increase its fan-out, which results in
an increase in asymptotic complexity. Consider
the following production:

X(pqrs)→ A(p, r) B(q) C(s) (1)

Henceforth, we assume that non-terminals on the
right-hand side are ordered by the order of their
first variable on the left-hand side. There are two
ways to binarize this production. The first is from
left to right:

X(ps)→XAB(p) C(s) (2)

XAB(pqr)→A(p, r) B(q) (3)

This binarization maintains the fan-out of 1. The
second way is from right to left:

X(pqrs)→A(p, r) XBC(q, s) (4)

XBC(q, s)→B(q) C(s) (5)
1Other algorithms exist which support n-ary productions,

but these are less suitable for statistical treebank parsing.

This binarization introduces a production with
a fan-out of 2, which could have been avoided.
After binarization, an LCFRS can be parsed in
O(|G| · |w|p) time, where |G| is the size of the
grammar, |w| is the length of the sentence. The de-
gree p of the polynomial is the maximum parsing
complexity of a rule, defined as:

parsing complexity := ϕ+ ϕ1 + ϕ2 (6)

where ϕ is the fan-out of the left-hand side and
ϕ1 and ϕ2 are the fan-outs of the right-hand side
of the rule in question (Gildea, 2010). As Gildea
(2010) shows, there is no one to one correspon-
dence between fan-out and parsing complexity: it
is possible that parsing complexity can be reduced
by increasing the fan-out of a production. In other
words, there can be a production which can be bi-
narized with a parsing complexity that is minimal
while its fan-out is sub-optimal. Therefore we fo-
cus on parsing complexity rather than fan-out in
this work, since parsing complexity determines the
actual time complexity of parsing with a grammar.
There has been some work investigating whether
the increase in complexity can be minimized ef-
fectively (Gómez-Rodrı́guez et al., 2009; Gildea,
2010; Crescenzi et al., 2011).

More radically, it has been suggested that the
power of LCFRS should be limited to well-nested
structures, which gives an asymptotic improve-
ment in parsing time (Gómez-Rodrı́guez et al.,
2010). However, there is linguistic evidence that
not all language use can be described in well-
nested structures (Chen-Main and Joshi, 2010).
Therefore we will use the full power of LCFRS in
this work—parsing complexity is determined by
the treebank, not by a priori constraints.

3.1 Further binarization strategies
Apart from optimizing for parsing complexity, for
linguistic reasons it can also be useful to parse
the head of a constituent first, yielding so-called
head-driven binarizations (Collins, 1999). Addi-
tionally, such a head-driven binarization can be
‘Markovized’–i.e., the resulting production can be
constrained to apply to a limited amount of hor-
izontal context as opposed to the full context in
the original constituent (e.g., Klein and Manning,
2003), which can have a beneficial effect on accu-
racy. In the notation of Klein and Manning (2003)
there are two Markovization parameters: h and
v. The first parameter describes the amount of
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original
p = 4, ϕ = 2

X

XB,C,D,E

B

XC,D,E
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right branching
p = 5, ϕ = 2

X

XB,C,D,E

XB,C,D
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optimal
p = 4, ϕ = 2

X

XB

B XE

XD

A X C Y D E

0 1 2 3 4 5

head-driven
p = 5, ϕ = 2

X

XD

XA

XB

B

A X C Y D E

0 1 2 3 4 5

optimal head-driven
p = 4, ϕ = 2

Figure 4: The four binarization strategies. C is the head node. Underneath each tree is the maximum parsing
complexity and fan-out among its productions.

horizontal context for the artificial labels of a bi-
narized production. In a normal form binarization,
this parameter equals infinity, because the bina-
rized production should only apply in the exact
same context as the context in which it originally
belongs, as otherwise the set of strings accepted
by the grammar would be affected. An artificial
label will have the form XA,B,C for a binarized
production of a constituent X that has covered
children A, B, and C of X . The other extreme,
h = 1, enables generalizations by stringing parts
of binarized constituents together, as long as they
share one non-terminal. In the previous example,
the label would become just XA, i.e., the pres-
ence of B and C would no longer be required,
which enables switching to any binarized produc-
tion that has covered A as the last node. Limit-
ing the amount of horizontal context on which a
production is conditioned is important when the
treebank contains many unique constituents which
can only be parsed by stringing together different
binarized productions; in other words, it is a way
of dealing with the data sparseness about n-ary
productions in the treebank.

The second parameter describes parent annota-
tion, which will not be investigated in this work;
the default value is v = 1 which implies only in-
cluding the immediate parent of the constituent
that is being binarized; including grandparents is a
way of weakening independence assumptions.

Crescenzi et al. (2011) also remark that
an optimal head-driven binarization allows for
Markovization. However, it is questionable
whether such a binarization is worthy of the name
Markovization, as the non-terminals are not intro-
duced deterministically from left to right, but in
an arbitrary fashion dictated by concerns of pars-
ing complexity; as such there is not a Markov
process based on a meaningful (e.g., temporal) or-

dering and there is no probabilistic interpretation
of Markovization in such a setting.

To summarize, we have at least four binarization
strategies (cf. figure 4 for an illustration):

1. right branching: A right-to-left binarization.
No regard for optimality or statistical tweaks.

2. optimal: A binarization which minimizes pars-
ing complexity, introduced in Gildea (2010).
Binarizing with this strategy is exponential in
the resulting optimal fan-out (Gildea, 2010).

3. head-driven: Head-outward binarization with
horizontal Markovization. No regard for opti-
mality.

4. optimal head-driven: Head-outward binariza-
tion with horizontal Markovization. Min-
imizes parsing complexity. Introduced in
and proven to be NP-hard by Crescenzi et al.
(2011).

3.2 Finding optimal binarizations

An issue with the minimal binarizations is that
the algorithm for finding them has a high compu-
tational complexity, and has not been evaluated
empirically on treebank data.2 Empirical inves-
tigation is interesting for two reasons. First of
all, the high computational complexity may not
be relevant with constant factors of constituents,
which can reasonably be expected to be relatively
small. Second, it is important to establish whether
an asymptotic improvement is actually obtained
through optimal binarizations, and whether this
translates to an improvement in practice.

Gildea (2010) presents a general algorithm to
binarize an LCFRS while minimizing a given scor-
ing function. We will use this algorithm with two
different scoring functions.

2Gildea (2010) evaluates on a dependency bank, but does
not report whether any improvement is obtained over a naive
binarization.
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Figure 5: The distribution of parsing complexity
among productions in binarized grammars read off from
NEGRA-25. The y-axis has a logarithmic scale.

The first directly optimizes parsing complexity.
Given a (partially) binarized constituent c, the func-
tion returns a tuple of scores, for which a linear
order is defined by comparing elements starting
from the most significant (left-most) element. The
tuples contain the parsing complexity p, and the
fan-out ϕ to break ties in parsing complexity; if
there are still ties after considering the fan-out, the
sum of the parsing complexities of the subtrees of
c is considered, which will give preference to a bi-
narization where the worst case complexity occurs
once instead of twice. The formula is then:

opt(c) = 〈p, ϕ, s〉

The second function is the similar except that
only head-driven strategies are accepted. A head-
driven strategy is a binarization in which the head
is introduced first, after which the rest of the chil-
dren are introduced one at a time.

opt-hd(c) =

{
〈p, ϕ, s〉 if c is head-driven
〈∞,∞,∞〉 otherwise

Given a (partial) binarization c, the score should
reflect the maximum complexity and fan-out in
that binarization, to optimize for the worst case, as
well as the sum, to optimize the average case. This
aspect appears to be glossed over by Gildea (2010).
Considering only the score of the last production in
a binarization produces suboptimal binarizations.

3.3 Experiments
As data we use version 2 of the Negra (Skut et al.,
1997) treebank, with the common training, devel-
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Figure 6: The distribution of parsing complexity among
productions in Markovized, head-driven grammars read
off from NEGRA-25. The y-axis has a logarithmic scale.

opment and test splits (Dubey and Keller, 2003).
Following common practice, punctuation, which
is left out of the phrase-structure in Negra, is re-
attached to the nearest constituent.

In the course of experiments it was discovered
that the heuristic method for punctuation attach-
ment used in previous work (e.g., Maier, 2010;
van Cranenburgh et al., 2011), as implemented in
rparse,3 introduces additional discontinuity. We
applied a slightly different heuristic: punctuation
is attached to the highest constituent that contains a
neighbor to its right. The result is that punctuation
can be introduced into the phrase-structure with-
out any additional discontinuity, and thus without
artificially inflating the fan-out and complexity of
grammars read off from the treebank. This new
heuristic provides a significant improvement: in-
stead of a fan-out of 9 and a parsing complexity of
19, we obtain values of 4 and 9 respectively.

The parser is presented with the gold part-of-
speech tags from the corpus. For reasons of effi-
ciency we restrict sentences to 25 words (includ-
ing punctuation) in this experiment: NEGRA-25.
A grammar was read off from the training part
of NEGRA-25, and sentences of up to 25 words
in the development set were parsed using the re-
sulting PLCFRS, using the different binarization
schemes. First with a right-branching, right-to-left
binarization, and second with the minimal bina-
rization according to parsing complexity and fan-

3Available from http://www.wolfgang-maier.net/
rparse/downloads. Retrieved March 25th, 2011
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right optimal
branching optimal head-driven head-driven

Markovization v=1, h=∞ v=1, h=∞ v=1, h=2 v=1, h=2
fan-out 4 4 4 4
complexity 8 8 9 8
labels 12861 12388 4576 3187
clauses 62072 62097 53050 52966
time to binarize 1.83 s 46.37 s 2.74 s 28.9 s
time to parse 246.34 s 193.94 s 2860.26 s 716.58 s
coverage 96.08 % 96.08 % 98.99 % 98.73 %
F1 score 66.83 % 66.75 % 72.37 % 71.79 %

Table 1: The effect of binarization strategies on parsing efficiency, with sentences from the development section of
NEGRA-25.

out. The last two binarizations are head-driven
and Markovized—the first straightforwardly from
left-to-right, the latter optimized for minimal pars-
ing complexity. With Markovization we are forced
to add a level of parent annotation to tame the
increase in productivity caused by h = 1.

The distribution of parsing complexity (mea-
sured with eq. 6) in the grammars with different
binarization strategies is shown in figure 5 and
6. Although the optimal binarizations do seem
to have some effect on the distribution of parsing
complexities, it remains to be seen whether this
can be cashed out as a performance improvement
in practice. To this end, we also parse using the
binarized grammars.

In this work we binarize and parse with
disco-dop introduced in van Cranenburgh et al.
(2011).4 In this experiment we report scores of the
(exact) Viterbi derivations of a treebank PLCFRS;
cf. table 1 for the results. Times represent CPU

time (single core); accuracy is given with a gener-
alization of PARSEVAL to discontinuous structures,
described in Maier (2010).

Instead of using Maier’s implementation of dis-
continuous F1 scores in rparse, we employ a vari-
ant that ignores (a) punctuation, and (b) the root
node of each tree. This makes our evaluation in-
comparable to previous results on discontinuous
parsing, but brings it in line with common practice
on the Wall street journal benchmark. Note that
this change yields scores about 2 or 3 percentage
points lower than those of rparse.

Despite the fact that obtaining optimal bina-

4All code is available from: http://github.com/
andreasvc/disco-dop.

rizations is exponential (Gildea, 2010) and NP-
hard (Crescenzi et al., 2011), they can be computed
relatively quickly on this data set.5 Importantly, in
the first case there is no improvement on fan-out
or parsing complexity, while in the head-driven
case there is a minimal improvement because of a
single production with parsing complexity 15 with-
out optimal binarization. On the other hand, the
optimal binarizations might still have a significant
effect on the average case complexity, rather than
the worst-case complexities. Indeed, in both cases
parsing with the optimal grammar is faster; in the
first case, however, when the time for binariza-
tion is considered as well, this advantage mostly
disappears.

The difference in F1 scores might relate to the
efficacy of Markovization in the binarizations. It
should be noted that it makes little theoretical
sense to ‘Markovize’ a binarization when it is not
a left-to-right or right-to-left binarization, because
with an optimal binarization the non-terminals of
a constituent are introduced in an arbitrary order.

More importantly, in our experiments, these
techniques of optimal binarizations did not scale
to longer sentences. While it is possible to obtain
an optimal binarization of the unrestricted Negra
corpus, parsing long sentences with the resulting
grammar remains infeasible. Therefore we need to
look at other techniques for parsing longer sen-
tences. We will stick with the straightforward

5The implementation exploits two important optimiza-
tions. The first is the use of bit vectors to keep track of which
non-terminals are covered by a partial binarization. The sec-
ond is to skip constituents without discontinuity, which are
equivalent to CFG productions.
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head-driven, head-outward binarization strategy,
despite this being a computationally sub-optimal
binarization.

One technique for efficient parsing of LCFRS is
the use of context-summary estimates (Kallmeyer
and Maier, 2010), as part of a best-first parsing
algorithm. This allowed Maier (2010) to parse
sentences of up to 30 words. However, the calcu-
lation of these estimates is not feasible for longer
sentences and large grammars (van Cranenburgh
et al., 2011).

Another strategy is to perform an online approx-
imation of the sentence to be parsed, after which
parsing with the LCFRS can be pruned effectively.
This is the strategy that will be explored in the
current work.

4 Context-free grammar approximation
for coarse-to-fine parsing

Coarse-to-fine parsing (Charniak et al., 2006) is
a technique to speed up parsing by exploiting the
information that can be gained from parsing with
simpler, coarser grammars—e.g., a grammar with
a smaller set of labels on which the original gram-
mar can be projected. Constituents that do not
contribute to a full parse tree with a coarse gram-
mar can be ruled out for finer grammars as well,
which greatly reduces the number of edges that
need to be explored. However, by changing just
the labels only the grammar constant is affected.
With discontinuous treebank parsing the asymp-
totic complexity of the grammar also plays a major
role. Therefore we suggest to parse not just with
a coarser grammar, but with a coarser grammar
formalism, following a suggestion in van Cranen-
burgh et al. (2011).

This idea is inspired by the work of Barthélemy
et al. (2001), who apply it in a non-probabilistic
setting where the coarse grammar acts as a guide to
the non-deterministic choices of the fine grammar.
Within the coarse-to-fine approach the technique
becomes a matter of pruning with some probabilis-
tic threshold. Instead of using the coarse gram-
mar only as a guide to solve non-deterministic
choices, we apply it as a pruning step which also
discards the most suboptimal parses. The basic
idea is to extract a grammar that defines a superset
of the language we want to parse, but with a fan-
out of 1. More concretely, a context-free grammar
can be read off from discontinuous trees that have
been transformed to context-free trees by the pro-

cedure introduced in Boyd (2007). Each discontin-
uous node is split into a set of new nodes, one for
each component; for example a node NP2 will be
split into two nodes labeled NP*1 and NP*2 (like
Barthélemy et al., we mark components with an
index to reduce overgeneration). Because Boyd’s
transformation is reversible, chart items from this
grammar can be converted back to discontinuous
chart items, and can guide parsing of an LCFRS.
This guiding takes the form of a white list. Af-
ter parsing with the coarse grammar, the result-
ing chart is pruned by removing all items that
fail to meet a certain criterion. In our case this
is whether a chart item is part of one of the k-best
derivations—we use k = 50 in all experiments (as
in van Cranenburgh et al., 2011). This has simi-
lar effects as removing items below a threshold
of marginalized posterior probability; however,
the latter strategy requires computation of outside
probabilities from a parse forest, which is more
involved with an LCFRS than with a PCFG. When
parsing with the fine grammar, whenever a new
item is derived, the white list is consulted to see
whether this item is allowed to be used in further
derivations; otherwise it is immediately discarded.
This coarse-to-fine approach will be referred to as
CFG-CTF, and the transformed, coarse grammar
will be referred to as a split-PCFG.

Splitting discontinuous nodes for the coarse
grammar introduces new nodes, so obviously we
need to binarize after this transformation. On the
other hand, the coarse-to-fine approach requires a
mapping between the grammars, so after reversing
the transformation of splitting nodes, the resulting
discontinuous trees must be binarized (and option-
ally Markovized) in the same manner as those on
which the fine grammar is based.

To resolve this tension we elect to binarize twice.
The first time is before splitting discontinuous
nodes, and this is where we introduce Markoviza-
tion. This same binarization will be used for the
fine grammar as well, which ensures the models
make the same kind of generalizations. The sec-
ond binarization is after splitting nodes, this time
with a binary normal form (2NF; all productions
are either unary, binary, or lexical).

Parsing with this grammar proceeds as fol-
lows. After obtaining an exhaustive chart from
the coarse stage, the chart is pruned so as to only
contain items occurring in the k-best derivations.
When parsing in the fine stage, each new item is
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Figure 7: Transformations for a context-free coarse grammar. From left to right: the original constituent,
Markovized with v = 1, h = 1, discontinuities resolved, normal form (second binarization).

model train dev test rules labels fan-out complexity

Split-PCFG 17988 975 968 57969 2026 1 3
PLCFRS 17988 975 968 55778 947 4 9
Disco-DOP 17988 975 968 2657799 702246 4 9

Table 2: Some statistics on the coarse and fine grammars read off from NEGRA-40.

looked up in this pruned coarse chart, with multi-
ple lookups if the item is discontinuous (one for
each component).

To summarize, the transformation happens in
four steps (cf. figure 7 for an illustration):

1. Treebank tree: Original (discontinuous) tree
2. Binarization: Binarize discontinuous tree, op-

tionally with Markovization
3. Resolve discontinuity: Split discontinuous

nodes into components, marked with indices
4. 2NF: A binary normal form is applied; all pro-

ductions are either unary, binary, or lexical.

5 Evaluation

We evaluate on Negra with the same setup as in
section 3.3. We report discontinuous F1 scores as
well as exact match scores. For previous results on
discontinuous parsing with Negra, see table 3. For
results with the CFG-CTF method see table 4.

We first establish the viability of the CFG-CTF

method on NEGRA-25, with a head-driven v = 1,
h = 2 binarization, and reporting again the scores
of the exact Viterbi derivations from a treebank
PLCFRS versus a PCFG using our transformations.
Figure 8 compares the parsing times of LCFRS

with and without the new CFG-CTF method. The
graph shows a steep incline for parsing with LCFRS

directly, which makes it infeasible to parse longer
sentences, while the CFG-CTF method is faster for
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Figure 8: Efficiency of parsing PLCFRS with and with-
out coarse-to-fine. The latter includes time for both
coarse & fine grammar. Datapoints represent the aver-
age time to parse sentences of that length; each length
is made up of 20–40 sentences.

sentences of length > 22 despite its overhead of
parsing twice.

The second experiment demonstrates the CFG-
CTF technique on longer sentences. We restrict the
length of sentences in the training, development
and test corpora to 40 words: NEGRA-40. As a first
step we apply the CFG-CTF technique to parse with
a PLCFRS as the fine grammar, pruning away all
items not occurring in the 10,000 best derivations
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words PARSEVAL Exact
(F1) match

DPSG: Plaehn (2004) ≤ 15 73.16 39.0
PLCFRS: Maier (2010) ≤ 30 71.52 31.65
Disco-DOP: van Cranenburgh et al. (2011) ≤ 30 73.98 34.80

Table 3: Previous work on discontinuous parsing of Negra.

words PARSEVAL Exact
(F1) match

PLCFRS, dev set ≤ 25 72.37 36.58
Split-PCFG, dev set ≤ 25 70.74 33.80
Split-PCFG, dev set ≤ 40 66.81 27.59
CFG-CTF, PLCFRS, dev set ≤ 40 67.26 27.90
CFG-CTF, Disco-DOP, dev set ≤ 40 74.27 34.26
CFG-CTF, Disco-DOP, test set ≤ 40 72.33 33.16
CFG-CTF, Disco-DOP, dev set ∞ 73.32 33.40
CFG-CTF, Disco-DOP, test set ∞ 71.08 32.10

Table 4: Results on NEGRA-25 and NEGRA-40 with the CFG-CTF method. NB: As explained in section 3.3, these
F1 scores are incomparable to the results in table 3; for comparison, the F1 score for Disco-DOP on the dev set
≤ 40 is 77.13 % using that evaluation scheme.

from the PCFG chart. The result shows that the
PLCFRS gives a slight improvement over the split--
pcfg, which accords with the observation that the
latter makes stronger independence assumptions
in the case of discontinuity.

In the next experiments we turn to an all-
fragments grammar encoded in a PLCFRS using
Goodman’s (2003) reduction, to realize a (dis-
continuous) Data-Oriented Parsing (DOP; Scha,
1990) model—which goes by the name of Disco-
DOP (van Cranenburgh et al., 2011). This provides
an effective yet conceptually simple method to
weaken the independence assumptions of treebank
grammars. Table 2 gives statistics on the gram-
mars, including the parsing complexities. The fine
grammar has a parsing complexity of 9, which
means that parsing with this grammar has com-
plexity O(|w|9). We use the same parameters as
van Cranenburgh et al. (2011), except that unlike
van Cranenburgh et al., we can use v = 1, h = 1
Markovization, in order to obtain a higher cover-
age. The DOP grammar is added as a third stage in
the coarse-to-fine pipeline. This gave slightly bet-
ter results than substituting the the DOP grammar
for the PLCFRS stage. Parsing with NEGRA-40
took about 11 hours and 4 GB of memory. The

same model from NEGRA-40 can also be used to
parse the full development set, without length re-
strictions, establishing that the CFG-CTF method
effectively eliminates any limitation of length for
parsing with LCFRS.

6 Conclusion

Our results show that optimal binarizations are
clearly not the answer to parsing LCFRS efficiently,
as they do not significantly reduce parsing com-
plexity in our experiments. While they provide
some efficiency gains, they do not help with the
main problem of longer sentences.

We have presented a new technique for large-
scale parsing with LCFRS, which makes it possible
to parse sentences of any length, with favorable
accuracies. The availability of this technique may
lead to a wider acceptance of LCFRS as a syntactic
backbone in computational linguistics.
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François Barthélemy, Pierre Boullier, Philippe De-
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Abstract

It is not always clear how the differences
in intrinsic evaluation metrics for a parser
or classifier will affect the performance of
the system that uses it. We investigate the
relationship between the intrinsic evalua-
tion scores of an interpretation component
in a tutorial dialogue system and the learn-
ing outcomes in an experiment with human
users. Following the PARADISE method-
ology, we use multiple linear regression to
build predictive models of learning gain,
an important objective outcome metric in
tutorial dialogue. We show that standard
intrinsic metrics such as F-score alone do
not predict the outcomes well. However,
we can build predictive performance func-
tions that account for up to 50% of the vari-
ance in learning gain by combining fea-
tures based on standard evaluation scores
and on the confusion matrix entries. We
argue that building such predictive mod-
els can help us better evaluate performance
of NLP components that cannot be distin-
guished based on F-score alone, and illus-
trate our approach by comparing the cur-
rent interpretation component in the system
to a new classifier trained on the evaluation
data.

1 Introduction

Much of the work in natural language processing
relies on intrinsic evaluation: computing standard
evaluation metrics such as precision, recall and F-
score on the same data set to compare the perfor-
mance of different approaches to the same NLP
problem. However, once a component, such as
a parser, is included in a larger system, it is not
always clear that improvements in intrinsic eval-
uation scores will translate into improved over-
all system performance. Therefore, extrinsic or

task-based evaluation can be used to complement
intrinsic evaluations. For example, NLP com-
ponents such as parsers and co-reference resolu-
tion algorithms could be compared in terms of
how much they contribute to the performance of
a textual entailment (RTE) system (Sammons et
al., 2010; Yuret et al., 2010); parser performance
could be evaluated by how well it contributes to
an information retrieval task (Miyao et al., 2008).

However, task-based evaluation can be difficult
and expensive for interactive applications. Specif-
ically, task-based evaluation for dialogue systems
typically involves collecting data from a number
of people interacting with the system, which is
time-consuming and labor-intensive. Thus, it is
desirable to develop an off-line evaluation pro-
cedure that relates intrinsic evaluation metrics to
predicted interaction outcomes, reducing the need
to conduct experiments with human participants.

This problem can be addressed via the use of
the PARADISE evaluation methodology for spo-
ken dialogue systems (Walker et al., 2000). In a
PARADISE study, after an initial data collection
with users, a performance function is created to
predict an outcome metric (e.g., user satisfaction)
which can normally only be measured through
user surveys. Typically, a multiple linear regres-
sion is used to fit a predictive model of the desired
metric based on the values of interaction param-
eters that can be derived from system logs with-
out additional user studies (e.g., dialogue length,
word error rate, number of misunderstandings).

PARADISE models have been used extensively
in task-oriented spoken dialogue systems to estab-
lish which components of the system most need
improvement, with user satisfaction as the out-
come metric (Möller et al., 2007; Möller et al.,
2008; Walker et al., 2000; Larsen, 2003). In tu-
torial dialogue, PARADISE studies investigated
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which manually annotated features predict learn-
ing outcomes, to justify new features needed in
the system (Forbes-Riley et al., 2007; Rotaru and
Litman, 2006; Forbes-Riley and Litman, 2006).

We adapt the PARADISE methodology to eval-
uating individual NLP components, linking com-
monly used intrinsic evaluation scores with ex-
trinsic outcome metrics. We describe an evalua-
tion of an interpretation component of a tutorial
dialogue system, with student learning gain as the
target outcome measure. We first describe the
evaluation setup, which uses standard classifica-
tion accuracy metrics for system evaluation (Sec-
tion 2). We discuss the results of the intrinsic sys-
tem evaluation in Section 3. We then show that
standard evaluation metrics do not serve as good
predictors of system performance for the system
we evaluated. However, adding confusion matrix
features improves the predictive model (Section
4). We argue that in practical applications such
predictive metrics should be used alongside stan-
dard metrics for component evaluations, to bet-
ter predict how different components will perform
in the context of a specific task. We demonstrate
how this technique can help differentiate the out-
put quality between a majority class baseline, the
system’s output, and the output of a new classifier
we trained on our data (Section 5). Finally, we
discuss some limitations and possible extensions
to this approach (Section 6).

2 Evaluation Procedure

2.1 Data Collection

We collected transcripts of students interacting
with BEETLE II (Dzikovska et al., 2010b), a tu-
torial dialogue system for teaching conceptual
knowledge in the basic electricity and electron-
ics domain. The system is a learning environment
with a self-contained curriculum targeted at stu-
dents with no knowledge of high school physics.
When interacting with the system, students spend
3-5 hours going through pre-prepared reading ma-
terial, building and observing circuits in a simula-
tor, and talking with a dialogue-based computer
tutor via a text-based chat interface.

During the interaction, students can be asked
two types of questions. Factual questions require
them to name a set of objects or a simple prop-
erty, e.g., “Which components in circuit 1 are in
a closed path?” or “Are bulbs A and B wired

in series or in parallel”. Explanation and defi-
nition questions require longer answers that con-
sist of 1-2 sentences, e.g., “Why was bulb A on
when switch Z was open?” (expected answer “Be-
cause it was still in a closed path with the bat-
tery”) or “What is voltage?” (expected answer
“Voltage is the difference in states between two
terminals”). We focus on the performance of the
system on these long-answer questions, since re-
acting to them appropriately requires processing
more complex input than factual questions.

We collected a corpus of 35 dialogues from
paid undergraduate volunteers interacting with the
system as part of a formative system evaluation.
Each student completed a multiple-choice test as-
sessing their knowledge of the material before and
after the session. In addition, system logs con-
tained information about how each student’s utter-
ance was interpreted. The resulting data set con-
tains 3426 student answers grouped into 35 sub-
sets, paired with test results. The answers were
then manually annotated to create a gold standard
evaluation corpus.

2.2 BEETLE II Interpretation Output

The interpretation component of BEETLE II uses
a syntactic parser and a set of hand-authored rules
to extract the domain-specific semantic represen-
tations of student utterances from the text. The
student answer is first classified with respect to its
domain-specific speech act, as follows:

• Answer: a contentful expression to which
the system responds with a tutoring action,
either accepting it as correct or remediating
the problems as discussed in (Dzikovska et
al., 2010a).

• Help request: any expression indicating that
the student does not know the answer and
without domain content.

• Social: any expression such as “sorry” which
appears to relate to social interaction and has
no recognizable domain content.

• Uninterpretable: the system could not arrive
at any interpretation of the utterance. It will
respond by identifying the likely source of
error, if possible (e.g., a word it does not un-
derstand) and asking the student to rephrase
their utterance (Dzikovska et al., 2009).
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If the student utterance was determined to be an
answer, it is further diagnosed for correctness as
discussed in (Dzikovska et al., 2010b), using a do-
main reasoner together with semantic representa-
tions of expected correct answers supplied by hu-
man tutors. The resulting diagnosis contains the
following information:

• Consistency: whether the student statement
correctly describes the facts mentioned in
the question and the simulation environment:
e.g., student saying “Switch X is closed” is
labeled inconsistent if the question stipulated
that this switch is open.

• Diagnosis: an analysis of how well the stu-
dent’s explanation matches the expected an-
swer. It consists of 4 parts

– Matched: parts of the student utterance
that matched the expected answer

– Contradictory: parts of the student ut-
terance that contradict the expected an-
swer

– Extra: parts of the student utterance that
do not appear in the expected answer

– Not-mentioned: parts of the expected
answer missing from the student utter-
ance.

The speech act and the diagnosis are passed to
the tutorial planner which makes decisions about
feedback. They constitute the output of the inter-
pretation component, and its quality is likely to
affect the learning outcomes, therefore we need
an effective way to evaluate it. In future work,
performance of individual pipeline components
could also be evaluated in a similar fashion.

2.3 Data Annotation
The general idea of breaking down the student an-
swer into correct, incorrect and missing parts is
common in tutorial dialogue systems (Nielsen et
al., 2008; Dzikovska et al., 2010b; Jordan et al.,
2006). However, representation details are highly
system specific, and difficult and time-consuming
to annotate. Therefore we implemented a simpli-
fied annotation scheme which classifies whole an-
swers as correct, partially correct but incomplete,
or contradictory, without explicitly identifying the
correct and incorrect parts. This makes it easier to
create the gold standard and still retains useful in-
formation, because tutoring systems often choose

the tutoring strategy based on the general answer
class (correct, incomplete, or contradictory). In
addition, this allows us to cast the problem in
terms of classifier evaluation, and to use standard
classifier evaluation metrics. If more detailed an-
notations were available, this approach could eas-
ily be extended, as discussed in Section 6.

We employed a hierarchical annotation scheme
shown in Figure 1, which is a simplification of
the DeMAND coding scheme (Campbell et al.,
2009). Student utterances were first annotated
as either related to domain content, or not con-
taining any domain content, but expressing the
student’s metacognitive state or attitudes. Utter-
ances expressing domain content were then coded
with respect to their correctness, as being fully
correct, partially correct but incomplete, contain-
ing some errors (rather than just omissions) or
irrelevant1. The “irrelevant” category was used
for utterances which were correct in general but
which did not directly answer the question. Inter-
annotator agreement for this annotation scheme
on the corpus was κ = 0.69.

The speech acts and diagnoses logged by the
system can be automatically mapped into our an-
notation labels. Help requests and social acts
are assigned the “non-content” label; answers
are assigned a label based on which diagnosis
fields were filled: “contradictory” for those an-
swers labeled as either inconsistent, or contain-
ing something in the contradictory field; “incom-
plete” if there is something not mentioned, but
something matched as well, and “irrelevant” if
nothing matched (i.e., the entire expected answer
is in not-mentioned). Finally, uninterpretable ut-
terances are treated as unclassified, analogous to a
situation where a statistical classifier does not out-
put a label for an input because the classification
probability is below its confidence threshold.

This mapping was then compared against the
manually annotated labels to compute the intrin-
sic evaluation scores for the BEETLE II interpreter
described in Section 3.

3 Intrinsic Evaluation Results

The interpretation component of BEETLE II was
developed based on the transcripts of 8 sessions

1Several different subcategories of non-content utter-
ances, and of contradictory utterances, were recorded. How-
ever, they resulting classes were too small and so were col-
lapsed into a single category for purposes of this study.
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Category Subcategory Description
Non-content Metacognitive and social expressions without domain content, e.g., “I

don’t know”, “I need help”, “you are stupid”
Content The utterance includes domain content.

correct The student answer is fully correct
pc incomplete The student said something correct, but incomplete, with some parts of

the expected answer missing
contradictory The student’s answer contains something incorrect or contradicting the

expected answer, rather than just an omission
irrelevant The student’s statement is correct in general, but it does not answer the

question.

Figure 1: Annotation scheme used in creating the gold standard

Label Count Frequency
correct 1438 0.43
pc incomplete 796 0.24
contradictory 808 0.24
irrelevant 105 0.03
non content 232 0.07

Table 1: Distribution of annotated labels in the evalu-
ation corpus

of students interacting with earlier versions of the
system. These sessions were completed prior to
the beginning of the experiment during which our
evaluation corpus was collected, and are not in-
cluded in the corpus. Thus, the corpus constitutes
unseen testing data for the BEETLE II interpreter.

Table 1 shows the distribution of codes in
the annotated data. The distribution is unbal-
anced, and therefore in our evaluation results we
use two different ways to average over per-class
evaluation scores. Macro-average combines per-
class scores disregarding the class sizes; micro-
average weighs the per-class scores by class size.
The overall classification accuracy (defined as the
number of correctly classified instances out of all
instances) is mathematically equivalent to micro-
averaged recall; however, macro-averaging better
reflects performance on small classes, and is com-
monly used for unbalanced classification prob-
lems (see, e.g., (Lewis, 1991)).

The detailed evaluation results are presented
in Table 2. We will focus on two metrics: the
overall classification accuracy (listed as “micro-
averaged recall” as discussed above), and the
macro-averaged F score.

The majority class baseline is to assign “cor-
rect” to every instance. Its overall accuracy is

43%, the same as BEETLE II. However, this is
obviously not a good choice for a tutoring sys-
tem, since students who make mistakes will never
get tutoring feedback. This is reflected in a much
lower value of the F score (0.12 macroaverage F
score for baseline vs. 0.44 for BEETLE II). Note
also that there is a large difference in the micro-
and macro- averaged scores. It is not immediately
clear which of these metrics is the most important,
and how they relate to actual system performance.
We discuss machine learning models to help an-
swer this question in the next section.

4 Linking Evaluation Measures to
Outcome Measures

Although the intrinsic evaluation shows that the
BEETLE II interpreter performs better than the
baseline on the F score, ultimately system devel-
opers are not interested in improving interpreta-
tion for its own sake: they want to know whether
the time spent on improvements, and the compli-
cations in system design which may accompany
them, are worth the effort. Specifically, do such
changes translate into improvement in overall sys-
tem performance?

To answer this question without running expen-
sive user studies we can build a model which pre-
dicts likely outcomes based on the data observed
so far, and then use the model’s predictions as an
additional evaluation metric. We chose a multiple
linear regression model for this task, linking the
classification scores with learning gain as mea-
sured during the data collection. This approach
follows the general PARADISE approach (Walker
et al., 2000), but while PARADISE is typically
used to determine which system components need
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Label baseline BEETLE II
prec. recall F1 prec. recall F1

correct 0.43 1.00 0.60 0.93 0.52 0.67
pc incomplete 0.00 0.00 0.00 0.42 0.53 0.47
contradictory 0.00 0.00 0.00 0.57 0.22 0.31
irrelevant 0.00 0.00 0.00 0.17 0.15 0.16
non-content 0.00 0.00 0.00 0.91 0.41 0.57
macroaverage 0.09 0.20 0.12 0.60 0.37 0.44
microaverage 0.18 0.43 0.25 0.70 0.43 0.51

Table 2: Intrinsic Evaluation Results for the BEETLE II and a majority class baseline

the most improvement, we focus on finding a bet-
ter performance metric for a single component
(interpretation), using standard evaluation scores
as features.

Recall from Section 2.1 that each participant
in our data collection was given a pre-test and
a post-test, measuring their knowledge of course
material. The test score was equal to the propor-
tion of correctly answered questions. The normal-
ized learning gain, post−pre

1−pre is a metric typically
used to assess system quality in intelligent tutor-
ing, and this is the metric we are trying to model.

Thus, the training data for our model consists of
35 instances, each corresponding to a single dia-
logue and the learning gain associated with it. We
can compute intrinsic evaluation scores for each
dialogue, in order to build a model that predicts
that student’s learning gain based on these scores.
If the model’s predictions are sufficiently reliable,
we can also use them for predicting the learning
gain that a student could achieve when interacting
with a new version of the interpretation compo-
nent for the system, not yet tested with users. We
can then use the predicted score to compare dif-
ferent implementations and choose the one with
the highest predicted learning gain.

4.1 Features

Table 4 lists the feature sets we used. We tried two
basic types of features. First, we used the eval-
uation scores reported in the previous section as
features. Second, we hypothesized that some er-
rors that the system makes are likely to be worse
than others from a tutoring perspective. For ex-
ample, if the student gives a contradictory answer,
accepting it as correct may lead to student miscon-
ceptions; on the other hand, calling an irrelevant
answer “partially correct but incomplete” may be
less of a problem. Therefore, we computed sepa-

rate confusion matrices for each student. We nor-
malized each confusion matrix cell by the total
number of incorrect classifications for that stu-
dent. We then added features based on confusion
frequencies to our feature set.2

Ideally, we should add 20 different features to
our model, corresponding to every possible con-
fusion. However, we are facing a sparse data
problem, illustrated by the overall confusion ma-
trix for the corpus in Table 3. For example,
we only observed 25 instances where a contra-
dictory utterance was miscategorized as correct
(compared to 200 “contradictory–pc incomplete”
confusions), and so for many students this mis-
classification was never observed, and predictions
based on this feature are not likely to be reliable.
Therefore, we limited our features to those mis-
classifications that occurred at least twice for each
student (i.e., at least 70 times in the entire cor-
pus). The list of resulting features is shown in the
“conf” row of Table 4. Since only a small num-
ber of features was included, this limits the appli-
cability of the model we derived from this data
set to the systems which make similar types of
confusions. However, it is still interesting to in-
vestigate whether confusion probabilities provide
additional information compared to standard eval-
uation metrics. We discuss how better coverage
could be obtained in Section 6.

4.2 Regression Models

Table 5 shows the regression models we obtained
using different feature sets. All models were ob-
tained using stepwise linear regression, using the
Akaike information criterion (AIC) for variable

2We also experimented with using % unclassified as an
additional feature, since % of rejections is known to be a
problem for spoken dialogue systems. However, it did not
improve the models, and we do not report it here for brevity.
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Actual
Predicted contradictory correct irrelevant non-content pc incomplete
contradictory 175 86 3 0 43
correct 25 752 1 4 26
irrelevant 31 12 16 4 29
non-content 1 3 2 95 3
pc incomplete 200 317 40 28 419

Table 3: Confusion matrix for BEETLE II. System predicted values are in rows; actual values in columns.

selection implemented in the R stepwise regres-
sion library. As measures of model quality, we re-
port R2, the percentage of variance accounted for
by the models (a typical measure of fit in regres-
sion modeling), and mean squared error (MSE).
These were estimated using leave-one-out cross-
validation, since our data set is small.

We used feature ablation to evaluate the contri-
bution of different features. First, we investigated
models using precision, recall or F-score alone.
As can be seen from the table, precision is not pre-
dictive of learning gain, while F-score and recall
perform similarly to one another, withR2 = 0.12.
In comparison, the model using only confusion
frequencies has substantially higher estimated R2

and a lower MSE.3 In addition, out of the 3 con-
fusion features, only one is selected as predictive.
This supports our hypothesis that different types
of errors may have different importance within a
practical system.

The confusion frequency feature chosen by
the stepwise model (“predicted-pc incomplete-
actual-contradictory”) has a reasonable theoret-
ical justification. Previous research shows that
students who give more correct or partially cor-
rect answers, either in human-human or human-
computer dialogue, exhibit higher learning gains,
and this has been established for different sys-
tems and tutoring domains (Litman et al., 2009).
Consequently, % of contradictory answers is neg-
atively predictive of learning gain. It is reasonable
to suppose, as predicted by our model, that sys-
tems that do not identify such answers well, and
therefore do not remediate them correctly, will do
worse in terms of learning outcomes.

Based on this initial finding, we investigated
the models that combined either F scores or the

3The decrease in MSE is not statistically significant, pos-
sibly because of the small data set. However, since we ob-
serve the same pattern of results across our models, it is still
useful to examine.

full set of intrinsic evaluation scores with confu-
sion frequencies. Note that if the full set of met-
rics (precision, recall, F score) is used, the model
derives a more complex formula which covers
about 33% of the variance. Our best models,
however, combine the averaged scores with con-
fusion frequencies, resulting in a higher R2 and
a lower MSE (22% relative decrease between the
“scores.f” and “conf+scores.f” models in the ta-
ble). This shows that these features have comple-
mentary information, and that combining them in
an application-specific way may help to predict
how the components will behave in practice.

5 Using prediction models in evaluation

The models from Table 5 can be used to compare
different possible implementations of the inter-
pretation component, under the assumption that
the component with a higher predicted learning
gain score is more appropriate to use in an ITS.
To show how our predictive models can be used
in making implementation decisions, we compare
three possible choices for an interpretation com-
ponent: the original BEETLE II interpreter, the
baseline classifier described earlier, and a new de-
cision tree classifier trained on our data.

We built a decision tree classifier using the
Weka implementation of C4.5 pruned decision
trees, with default parameters. As features, we
used lexical similarity scores computed by the
Text::Similarity package4. We computed
8 features: the similarity between student answer
and either the expected answer text or the question
text, using 4 different scores: raw number of over-
lapping words, F1 score, lesk score and cosine
score. Its intrinsic evaluation scores are shown in
Table 6, estimated using 10-fold cross-validation.

We can compare BEETLE II and baseline clas-
sifier using the “scores.all” model. The predicted

4http://search.cpan.org/dist/Text-Similarity/
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Name Variables
scores.fm fmeasure.microaverage, fmeasure.macroaverage, fmeasure.correct,

fmeasure.contradictory, fmeasure.pc incomplete,fmeasure.non-content,
fmeasure.irrelevant

scores.precision precision.microaverage, precision.macroaverage, precision.correct,
precision.contradictory, precision.pc incomplete,precision.non-content,
precision.irrelevant

scores.recall recall.microaverage, recall.macroaverage, recall.correct, recall.contradictory,
recall.pc incomplete,recall.non-content, recall.irrelevant

scores.all scores.fm + scores.precision + scores.recall
conf Freq.predicted.contradictory.actual.correct,

Freq.predicted.pc incomplete.actual.correct,
Freq.predicted.pc incomplete.actual.contradictory

Table 4: Feature sets for regression models

Variables Cross-
validation

R2

Cross-
validation

MSE

Formula

scores.f 0.12
(0.02)

0.0232
(0.0302)

0.32
+ 0.56 ∗ fmeasure.microaverage

scores.precision 0.00
(0.00)

0.0242
(0.0370)

0.61

scores.recall 0.12
(0.02)

0.0232
(0.0310)

0.37
+ 0.56 ∗ recall.microaverage

conf 0.25
(0.03)

0.0197
(0.0262)

0.74
− 0.56 ∗
Freq.predicted.pc incomplete.actual.contradictory

scores.all 0.33
(0.03)

0.0218
(0.0264)

0.63
+ 4.20 ∗ fmeasure.microaverage
− 1.30 ∗ precision.microaverage
− 2.79 ∗ recall.microaverage
− 0.07 ∗ recall.non− content

conf+scores.f 0.36
(0.03)

0.0179
(0.0281)

0.52
− 0.66 ∗
Freq.predicted.pc incomplete.actual.contradictory
+ 0.42 ∗ fmeasure.correct
− 0.07 ∗ fmeasure.non− content

full
(conf+scores.all)

0.49
(0.02)

0.0189
(0.0248)

0.88
− 0.68 ∗
Freq.predicted.pc incomplete.actual.contradictory
− 0.06 ∗ precision.non domain
+ 0.28 ∗ recall.correct
− 0.79 ∗ precision.microaverage
+ 0.65 ∗ fmeasure.microaverage

Table 5: Regression models for learning gain. R2 and MSE estimated with leave-one-out cross-validation.
Standard deviation in parentheses.
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score for BEETLE II is 0.66. The predicted
score for the baseline is 0.28. We cannot use
the models based on confusion scores (“conf”,
“conf+scores.f” or “full”) for evaluating the base-
line, because the confusions it makes are always
to predict that the answer is correct when the
actual label is “incomplete” or “contradictory”.
Such situations were too rare in our training data,
and therefore were not included in the models (as
discussed in Section 4.1). Additional data will
need to be collected before this model can rea-
sonably predict baseline behavior.

Compared to our new classifier, BEETLE II has
lower overall accuracy (0.43 vs. 0.53), but per-
forms micro- and macro- averaged scores. BEE-
TLE II precision is higher than that of the classi-
fier. This is not unexpected given how the system
was designed: since misunderstandings caused
dialogue breakdown in pilot tests, the interpreter
was built to prefer rejecting utterances as uninter-
pretable rather than assigning them to an incorrect
class, leading to high precision but lower recall.

However, we can use all our predictive models
to evaluate the classifier. We checked the the con-
fusion matrix (not shown here due to space lim-
itations), and saw that the classifier made some
of the same types of confusions that BEETLE II
interpreter made. On the “scores.all” model, the
predicted learning gain score for the classifier is
0.63, also very close to BEETLE II. But with the
“conf+scores.all” model, the predicted score is
0.89, compared to 0.59 for BEETLE II, indicating
that we should prefer the newly built classifier.

Looking at individual class performance, the
classifier performs better than the BEETLE II in-
terpreter on identifying “correct” and “contradic-
tory” answers, but does not do as well for par-
tially correct but incomplete, and for irrelevant an-
swers. Using our predictive performance metric
highlights the differences between the classifiers
and effectively helps determine which confusion
types are the most important.

One limitation of this prediction, however, is
that the original system’s output is considerably
more complex: the BEETLE II interpreter explic-
itly identifies correct, incorrect and missing parts
of the student answer which are then used by the
system to formulate adaptive feedback. This is
an important feature of the system because it al-
lows for implementation of strategies such as ac-
knowledging and restating correct parts of the an-

Label prec. recall F1
correct 0.66 0.76 0.71
pc incomplete 0.38 0.34 0.36
contradictory 0.40 0.35 0.37
irrelevant 0.07 0.04 0.05
non-content 0.62 0.76 0.68
macroaverage 0.43 0.45 0.43
microaverage 0.51 0.53 0.52

Table 6: Intrinsic evaluation scores for our newly built
classifier.

swer. However, we could still use a classifier to
“double-check” the interpreter’s output. If the
predictions made by the original interpreter and
the classifier differ, and in particular when the
classifier assigns the “contradictory” label to an
answer, BEETLE II may choose to use a generic
strategy for contradictory utterances, e.g. telling
the student that their answer is incorrect without
specifying the exact problem, or asking them to
re-read portions of the material.

6 Discussion and Future Work

In this paper, we proposed an approach for cost-
sensitive evaluation of language interpretation
within practical applications. Our approach is
based on the PARADISE methodology for dia-
logue system evaluation (Walker et al., 2000).
We followed the typical pattern of a PARADISE
study, but instead of relying on a variety of fea-
tures that characterize the interaction, we used
scores that reflect only the performance of the
interpretation component. For BEETLE II we
could build regression models that account for
nearly 50% variance in the desired outcomes, on
par with models reported in earlier PARADISE
studies (Möller et al., 2007; Möller et al., 2008;
Walker et al., 2000; Larsen, 2003). More impor-
tantly, we demonstrated that combining averaged
scores with features based on confusion frequen-
cies improves prediction quality and allows us to
see differences between systems which are not ob-
vious from the scores alone.

Previous work on task-based evaluation of NLP
components used RTE or information extraction
as target tasks (Sammons et al., 2010; Yuret et al.,
2010; Miyao et al., 2008), based on standard cor-
pora. We specifically targeted applications which
involve human-computer interaction, where run-
ning task-based evaluations is particularly expen-
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sive, and building a predictive model of system
performance can simplify system development.

Our evaluation data limited the set of features
that we could use in our models. For most con-
fusion features, there were not enough instances
in the data to build a model that would reliably
predict learning gain for those cases. One way
to solve this problem would be to conduct a user
study in which the system simulates random er-
rors appearing some of the time. This could pro-
vide the data needed for more accurate models.

The general pattern we observed in our data
is that a model based on F-scores alone predicts
only a small proportion of the variance. If a full
set of metrics (including F-score, precision and
recall) is used, linear regression derives a more
complex equation, with different weights for pre-
cision and recall. Instead of the linear model, we
may consider using a model based on Fβ score,
Fβ = (1 + β2) PR

β2P+R
, and fitting it to the data to

derive the β weight rather than using the standard
F1 score. We plan to investigate this in the future.

Our method would apply to a wide range of
systems. It can be used straightforwardly with
many current spoken dialogue systems which rely
on classifiers to support language understanding
in domains such as call routing and technical sup-
port (Gupta et al., 2006; Acomb et al., 2007).
We applied it to a system that outputs more com-
plex logical forms, but we showed that we could
simplify its output to a set of labels which still
allowed us to make informed decisions. Simi-
lar simplifications could be derived for other sys-
tems based on domain-specific dialogue acts typ-
ically used in dialogue management. For slot-
based systems, it may be useful to consider con-
cept accuracy for recognizing individual slot val-
ues. Finally, for tutoring systems it is possible
to annotate the answers on a more fine-grained
level. Nielsen et al. (2008) proposed an annota-
tion scheme based on the output of a dependency
parser, and trained a classifier to identify individ-
ual dependencies as “expressed”, “contradicted”
or “unaddressed”. Their system could be evalu-
ated using the same approach.

The specific formulas we derived are not likely
to be highly generalizable. It is a well-known
limitation of PARADISE evaluations that models
built based on one system often do not perform
well when applied to different systems (Möller et
al., 2008). But using them to compare implemen-

tation variants during the system development,
without re-running user evaluations, can provide
important information, as we illustrated with an
example of evaluating a new classifier we built for
our interpretation task. Moreover, the confusion
frequency feature that our models picked is con-
sistent with earlier results from a different tutor-
ing domain (see Section 4.2). Thus, these models
could provide a starting point when making sys-
tem development choices, which can then be con-
firmed by user evaluations in new domains.

The models we built do not fully account for
the variance in the training data. This is expected,
since interpretation performance is not the only
factor influencing the objective outcome: other
factors, such choosing the the appropriate tutor-
ing strategy, are also important. Similar models
could be built for other system components to ac-
count for their contribution to the variance. Fi-
nally, we could consider using different learning
algorithms. Möller et al. (2008) examined deci-
sion trees and neural networks in addition to mul-
tiple linear regression for predicting user satisfac-
tion in spoken dialogue. They found that neural
networks had the best prediction performance for
their task. We plan to explore other learning algo-
rithms for this task as part of our future work.

7 Conclusion

In this paper, we described an evaluation of an
interpretation component of a tutorial dialogue
system using predictive models that link intrin-
sic evaluation scores with learning outcomes. We
showed that adding features based on confusion
frequencies for individual classes significantly
improves the prediction. This approach can be
used to compare different implementations of lan-
guage interpretation components, and to decide
which option to use, based on the predicted im-
provement in a task-specific target outcome met-
ric trained on previous evaluation data.
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Abstract

We describe a set of experiments using au-
tomatically labelled data to train supervised
classifiers for multi-class emotion detection
in Twitter messages with no manual inter-
vention. By cross-validating between mod-
els trained on different labellings for the
same six basic emotion classes, and testing
on manually labelled data, we conclude that
the method is suitable for some emotions
(happiness, sadness and anger) but less able
to distinguish others; and that different la-
belling conventions are more suitable for
some emotions than others.

1 Introduction

We present a set of experiments into classify-
ing Twitter messages into the six basic emotion
classes of (Ekman, 1972). The motivation behind
this work is twofold: firstly, to investigate the pos-
sibility of detecting emotions of multiple classes
(rather than purely positive or negative sentiment)
in such short texts; and secondly, to investigate
the use of distant supervision to quickly bootstrap
large datasets and classifiers without the need for
manual annotation.

Text classification according to emotion and
sentiment is a well-established research area. In
this and other areas of text analysis and classifica-
tion, recent years have seen a rise in use of data
from online sources and social media, as these
provide very large, often freely available datasets
(see e.g. (Eisenstein et al., 2010; Go et al., 2009;
Pak and Paroubek, 2010) amongst many others).
However, one of the challenges this poses is that
of data annotation: given very large amounts of
data, often consisting of very short texts, written

in unconventional style and without accompany-
ing metadata, audio/video signals or access to the
author for disambiguation, how can we easily pro-
duce a gold-standard labelling for training and/or
for evaluation and test? One possible solution
that is becoming popular is crowd-sourcing the la-
belling task, as the easy access to very large num-
bers of annotators provided by tools such as Ama-
zon’s Mechanical Turk can help with the problem
of dataset size; however, this has its own attendant
problems of annotator reliability (see e.g. (Hsueh
et al., 2009)), and cannot directly help with the in-
herent problem of ambiguity – using many anno-
tators does not guarantee that they can understand
or correctly assign the author’s intended interpre-
tation or emotional state.

In this paper, we investigate a different ap-
proach via distant supervision (see e.g. (Mintz
et al., 2009)). By using conventional markers of
emotional content within the texts themselves as
a surrogate for explicit labels, we can quickly re-
trieve large subsets of (noisily) labelled data. This
approach has the advantage of giving us direct
access to the authors’ own intended interpreta-
tion or emotional state, without relying on third-
party annotators. Of course, the labels themselves
may be noisy: ambiguous, vague or not having
a direct correspondence with the desired classi-
fication. We therefore experiment with multiple
such conventions with apparently similar mean-
ings – here, emoticons (following (Read, 2005))
and Twitter hashtags – allowing us to examine the
similarity of classifiers trained on independent la-
bels but intended to detect the same underlying
class. We also investigate the precision and cor-
respondence of particular labels with the desired
emotion classes by testing on a small set of man-
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ually labelled data.
We show that the success of this approach de-

pends on both the conventional markers chosen
and the emotion classes themselves. Some emo-
tions are both reliably marked by different con-
ventions and distinguishable from other emotions;
this seems particularly true for happiness, sadness
and anger, indicating that this approach can pro-
vide not only the basic distinction required for
sentiment analysis but some more finer-grained
information. Others are either less distinguishable
from short text messages, or less reliably marked.

2 Related Work

2.1 Emotion and Sentiment Classification

Much research in this area has concentrated on the
related tasks of subjectivity classification (distin-
guishing objective from subjective texts – see e.g.
(Wiebe and Riloff, 2005)); and sentiment classifi-
cation (classifying subjective texts into those that
convey positive, negative and neutral sentiment –
see e.g. (Pang and Lee, 2008)). We are interested
in emotion detection: classifying subjective texts
according to a finer-grained classification of the
emotions they convey, and thus providing richer
and more informative data for social media anal-
ysis than simple positive/negative sentiment. In
this study we confine ourselves to the six basic
emotions identified by Ekman (1972) as being
common across cultures; other finer-grained clas-
sifications are of course available.

2.1.1 Emotion Classification
The task of emotion classification is by nature

a multi-class problem, and classification experi-
ments have therefore achieved lower accuracies
than seen in the binary problems of sentiment and
subjectivity classification. Danisman and Alpko-
cak (2008) used vector space models for the same
six-way emotion classification we examine here,
and achieved F-measures around 32%; Seol et al.
(2008) used neural networks for an 8-way clas-
sification (hope, love, thank, neutral, happy, sad,
fear, anger) and achieved per-class accuracies of
45% to 65%. Chuang and Wu (2004) used su-
pervised classifiers (SVMs) and manually defined
keyword features over a seven-way classification
consisting of the same six-class taxonomy plus a
neutral category, and achieved an average accu-
racy of 65.5%, varying from 56% for disgust to

74% for anger. However, they achieved signifi-
cant improvements using acoustic features avail-
able in their speech data, improving accuracies up
to a maximum of 81.5%.

2.2 Conventions
As we are using text data, such intonational and
prosodic cues are unavailable, as are the other
rich sources of emotional cues we obtain from
gesture, posture and facial expression in face-to-
face communication. However, the prevalence of
online text-based communication has led to the
emergence of textual conventions understood by
the users to perform some of the same functions
as these acoustic and non-verbal cues. The most
familiar of these is the use of emoticons, either
Western-style (e.g. :), :-( etc.) or Eastern-style
(e.g. (ˆ_ˆ), (>_<) etc.). Other conventions
have emerged more recently for particular inter-
faces or domains; in Twitter data, one common
convention is the use of hashtags to add or em-
phasise emotional content – see (1).

(1) a. Best day in ages! #Happy :)

b. Gets so #angry when tutors don’t email
back... Do you job idiots!

Linguistic and social research into the use of
such conventions suggests that their function is
generally to emphasise or strengthen the emo-
tion or sentiment conveyed by a message, rather
than to add emotional content which would not
otherwise be present. Walther and D’Addario
(2001) found that the contribution of emoticons
towards the sentiment of a message was out-
weighed by the verbal content, although nega-
tive ones tended to shift interpretation towards the
negative. Ip (2002) experimented with emoticons
in instant messaging, with the results suggesting
that emoticons do not add positivity or negativ-
ity but rather increase valence (making positive
messages more positive and vice versa). Similarly
Derks et al. (2008a; 2008b) found that emoticons
are used in strengthening the intensity of a ver-
bal message (although they serve other functions
such as expressing humour), and hypothesized
that they serve similar functions to actual non-
verbal behavior; Provine et al. (2007) also found
that emoticons are used to “punctuate” messages
rather than replace lexical content, appearing in
similar grammatical locations to verbal laughter
and preserving phrase structure.
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2.3 Distant Supervision

These findings suggest, of course, that emoticons
and related conventional markers are likely to be
useful features for sentiment and emotion classifi-
cation. They also suggest, though, that they might
be used as surrogates for manual emotion class la-
bels: if their function is often to complement the
verbal content available in messages, they should
give us a way to automatically label messages ac-
cording to emotional class, while leaving us with
messages with enough verbal content to achieve
reasonable classification.

This approach has been exploited in several
ways in recent work; Tanaka et al. (2005) used
Japanese-style emoticons as classification labels,
and Go et al. (2009) and Pak and Paroubek (2010)
used Western-style emoticons to label and classify
Twitter messages according to positive and nega-
tive sentiment, using traditional supervised clas-
sification methods. The highest accuracies ap-
pear to have been achieved by Go et al. (2009),
who used various combinations of features (un-
igrams, bigrams, part-of-speech tags) and clas-
sifiers (Naı̈ve Bayes, maximum entropy, and
SVMs), achieving their best accuracy of 83.0%
with unigram and bigram features and a maxi-
mum entropy; using only unigrams with a SVM
classifier achieved only slightly lower accuracy at
82.2%. Ansari (2010) then provides an initial in-
vestigation into applying the same methods to six-
way emotion classification, treating each emotion
independently as a binary classification problem
and showing that accuracy varied with emotion
class as well as with dataset size. The highest ac-
curacies achieved were up to 81%, but these were
on very small datasets (e.g. 81.0% accuracy on
fear, but with only around 200 positive and nega-
tive data instances).

We view this approach as having several ad-
vantages; apart from the ease of data collection
it allows by avoiding manual annotation, it gives
us access to the author’s own intended interpeta-
tions, as the markers are of course added by the
authors themselves at time of writing. In some
cases such as the examples of (1) above, the emo-
tion conveyed may be clear to a third-party anno-
tator; but in others it may not be clear at all with-
out the marker – see (2):

(2) a. Still trying to recover from seeing the
#bluewaffle on my TL #disgusted #sick

b. Leftover ToeJams with Kettle Salt and
Vinegar chips. #stress #sadness #comfort
#letsturnthisfrownupsidedown

3 Methodology

We used a collection of Twitter messages, all
marked with emoticons or hashtags correspond-
ing to one of Ekman (1972)’s six emotion classes.
For emoticons, we used Ansari (2010)’s taxon-
omy, taken from the Yahoo messenger classifica-
tion. For hashtags, we used emotion names them-
selves together with the main related adjective –
both are used commonly on Twitter in slightly
different ways as shown in (3); note that emo-
tion names are often used as marked verbs as well
as nouns. Details of the classes and markers are
given in Table 1.

(3) a. Gets so #angry when tutors don’t email
back... Do you job idiots!

b. I’m going to say it, Paranormal Activity
2 scared me and I didn’t sleep well last
night because of it. #fear #demons

c. Girls that sleep w guys without even fully
getting to know them #disgust me

Messages with multiple conventions (see (4))
were collected and used in the experiments, ensur-
ing that the marker being used as a label in a par-
ticular experiment was not available as a feature in
that experiment. Messages with no markers were
not collected. While this prevents us from exper-
imenting with the classification of neutral or ob-
jective messages, it would require manual anno-
tation to distinguish these from emotion-carrying
messages which are not marked. We assume that
any implementation of the techniques we investi-
gate here would be able to use a preliminary stage
of subjectivity and/or sentiment detection to iden-
tify these messages, and leave this aside here.

(4) a. just because people are celebs they dont
reply to your tweets! NOT FAIR #Angry
:( I wish They would reply! #Please

Data was collected from Twitter’s Streaming
API service.1 This provides a 1-2% random sam-
ple of all tweets with no constraints on language

1See http://dev.twitter.com/docs/
streaming-api.

484



Table 1: Conventional markers used for emotion
classes.

happy :-) :) ;-) :D :P 8) 8-| <@o
sad :-( :( ;-( :-< :’(
anger :-@ :@
fear :| :-o :-O

surprise :s :S
disgust :$ +o(
happy #happy #happiness
sad #sad #sadness
anger #angry #anger
fear #scared #fear

surprise #surprised #surprise
disgust #disgusted #disgust

or location. These are collected in near real time
and stored in a local database. An English lan-
guage selection filter was applied; scripts collect-
ing each conventional marker set were alternated
throughout different times of day and days of the
week to avoid any bias associated with e.g. week-
ends or mornings. The numbers of messages col-
lected varied with the popularity of the markers
themselves: for emoticons, we obtained a max-
imum of 837,849 (for happy) and a minimum
of 10,539 for anger; for hashtags, a maximum
of 10,219 for happy and a minimum of 536 for
disgust. 2

Classification in all experiments was using sup-
port vector machines (SVMs) (Vapnik, 1995) via
the LIBSVM implementation of Chang and Lin
(2001) with a linear kernel and unigram features.
Unigram features included all words and hashtags
(other than those used as labels in relevant exper-
iments) after removal of URLs and Twitter user-
names. Some improvement in performance might
be available using more advanced features (e.g.
n-grams), other classification methods (e.g. maxi-
mum entropy, as lexical features are unlikely to be
independent) and/or feature weightings (e.g. the
variant of TFIDF used for sentiment classification
by Martineau (2009)). Here, our interest is more
in the difference between the emotion and con-
vention marker classes - we leave investigation of

2One possible way to increase dataset sizes for the rarer
markers might be to include synonyms in the hashtag names
used; however, people’s use and understanding of hashtags is
not straightforwardly predictable from lexical form. Instead,
we intend to run a longer-term data gathering exercise.

absolute performance for future work.

4 Experiments

Throughout, the markers (emoticons and/or hash-
tags) used as labels in any experiment were re-
moved before feature extraction in that experi-
ment – labels were not used as features.

4.1 Experiment 1: Emotion detection
To simulate the task of detecting emotion classes
from a general stream of messages, we first built
for each convention type C and each emotion
class E a dataset DC

E of size N containing (a)
as positive instances, N/2 messages containing
markers of the emotion class E and no other
markers of type C, and (b) as negative instances,
N/2 messages containing markers of type C of
any other emotion class. For example, the posi-
tive instance set for emoticon-marked angerwas
based on those tweets which contained :-@ or
:@, but none of the emoticons from the happy,
sad, surprise, disgust or fear classes;
any hashtags were allowed, including those as-
sociated with emotion classes. The negative in-
stance set contained a representative sample of
the same number of instances, with each having
at least one of the happy, sad, surprise,
disgust or fear emoticons but not containing
:-@ or :@.

This of course excludes messages with no emo-
tional markers; for this to act as an approximation
of the general task therefore requires a assump-
tion that unmarked messages reflect the same dis-
tribution over emotion classes as marked mes-
sages. For emotion-carrying but unmarked mes-
sages, this does seem intuitively likely, but re-
quires investigation. For neutral objective mes-
sages it is clearly false, but as stated above we as-
sume a preliminary stage of subjectivity detection
in any practical application.

Performance was evaluated using 10-fold
cross-validation. Results are shown as the bold
figures in Table 2; despite the small dataset
sizes in some cases, a χ2 test shows all to be
significantly different from chance. The best-
performing classes show accuracies very similar
to those achieved by Go et al. (2009) for their bi-
nary positive/negative classification, as might be
expected; for emoticon markers, the best classes
are happy, sad and anger; interestingly the
best classes for hashtag markers are not the same

485



Table 2: Experiment 1: Within-class results. Same-
convention (bold) figures are accuracies over 10-fold
cross-validation; cross-convention (italic) figures are
accuracies over full sets.

Train
Convention Test emoticon hashtag
emoticon happy 79.8% 63.5%
emoticon sad 79.9% 65.5%
emoticon anger 80.1% 62.9%
emoticon fear 76.2% 58.5%
emoticon surprise 77.4% 48.2%
emoticon disgust 75.2% 54.6%
hashtag happy 67.7% 82.5%
hashtag sad 67.1% 74.6%
hashtag anger 62.8% 74.7%
hashtag fear 60.6% 77.2%
hashtag surprise 51.9% 67.4%
hashtag disgust 64.6% 78.3%

– happy performs best, but disgust and fear
outperform sad and anger, and surprise
performs particularly badly. For sad, one reason
may be a dual meaning of the tag #sad (one emo-
tional and one expressing ridicule); for anger
one possibility is the popularity on Twitter of the
game “Angry Birds”; for surprise, the data
seems split between two rather distinct usages,
ones expressing the author’s emotion, but one ex-
pressing an intended effect on the audience (see
(5)). However, deeper analysis is needed to estab-
lish the exact causes.

(5) a. broke 100 followers. #surprised im glad
that the HOFF is one of them.

b. Who’s excited for the Big Game? We
know we are AND we have a #surprise
for you!

To investigate whether the different conven-
tion types actually convey similar properties (and
hence are used to mark similar messages) we then
compared these accuracies to those obtained by
training classifiers on the dataset for a different
convention: in other words, for each emotion
class E, train a classifier on dataset DC1

E and test
on DC2

E . As the training and testing sets are dif-
ferent, we now test on the entire dataset rather
than using cross-validation. Results are shown as
the italic figures in Table 2; a χ2 test shows all
to be significantly different from the bold same-
convention results. Accuracies are lower overall,

but the highest figures (between 63% and 68%)
are achieved for happy, sad and anger; here
perhaps we can have some confidence that not
only are the markers acting as predictable labels
themselves, but also seem to be labelling the same
thing (and therefore perhaps are actually labelling
the emotion we are hoping to label).

4.2 Experiment 2: Emotion discrimination

To investigate whether these independent clas-
sifiers can be used in multi-class classification
(distinguishing emotion classes from each other
rather than just distinguishing one class from a
general “other” set), we next cross-tested the clas-
sifiers between emotion classes: training models
on one emotion and testing on the others – for
each convention type C and each emotion class
E1, train a classifier on dataset DC

E1 and test on
DC

E2, D
C
E3 etc. The datasets in Experiment 1 had

an uneven balance of emotion classes (including a
high proportion of happy instances) which could
bias results; for this experiment, therefore, we cre-
ated datasets with an even balance of emotions
among the negative instances. For each conven-
tion type C and each emotion class E1, we built
a dataset DC

E1 of size N containing (a) as pos-
itive instances, N/2 messages containing mark-
ers of the emotion class E1 and no other mark-
ers of type C, and (b) as negative instances, N/2
messages consisting of N/10 messages contain-
ing only markers of class E2, N/10 messages
containing only markers of class E3 etc. Results
were then generated as in Experiment 1.

Within-class results are shown in Table 3 and
are similar to those obtained in Experiment 1;
again, differences between bold/italic results are
statistically significant. Cross-class results are
shown in Table 4. The happy class was well
distinguished from other emotion classes for both
convention types (i.e. cross-class classification
accuracy is low compared to the within-class fig-
ures in italics and parentheses). The sad class
also seems well distinguished when using hash-
tags as labels, although less so when using emoti-
cons. However, other emotion classes show a sur-
prisingly high cross-class performance in many
cases – in other words, they are producing dis-
appointingly similar classifiers.

This poor discrimination for negative emotion
classes may be due to ambiguity or vagueness in
the label, similarity of the verbal content associ-
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Table 4: Experiment 2: Cross-class results. Same-class figures from 10-fold cross-validation are shown in
(italics) for comparison; all other figures are accuracies over full sets.

Train
Convention Test happy sad anger fear surprise disgust
emoticon happy (78.1%) 17.3% 39.6% 26.7% 28.3% 42.8%
emoticon sad 16.5% (78.9%) 59.1% 71.9% 69.9% 55.5%
emoticon anger 29.8% 67.0% (79.7%) 74.2% 76.4% 67.5%
emoticon fear 27.0% 69.9% 64.4% (75.3%) 74.0% 61.2%
emoticon surprise 25.4% 69.9% 67.7% 76.3% (78.1%) 66.4%
emoticon disgust 42.2% 54.4% 61.1% 64.2% 64.1% (73.9%)
hashtag happy (81.1%) 10.7% 45.3% 47.8% 52.7% 43.4%
hashtag sad 13.8% (77.9%) 47.7% 49.7% 46.5% 54.2%
hashtag anger 44.6% 45.2% (74.3%) 72.0% 63.0% 62.9%
hashtag fear 45.0% 50.4% 68.6% (74.7%) 63.9% 60.7%
hashtag surprise 51.5% 45.7% 67.4% 70.7% (70.2%) 64.2%
hashtag disgust 40.4% 53.5% 74.7% 71.8% 70.8% (74.2%)

Table 3: Experiment 2: Within-class results. Same-
convention (bold) figures are accuracies over 10-fold
cross-validation; cross-convention (italic) figures are
accuracies over full sets.

Train
Convention Test emoticon hashtag
emoticon happy 78.1% 61.2%
emoticon sad 78.9% 60.2%
emoticon anger 79.7% 63.7%
emoticon fear 75.3% 55.9%
emoticon surprise 78.1% 53.1%
emoticon disgust 73.9% 51.5%
hashtag happy 68.7% 81.1%
hashtag sad 65.4% 77.9%
hashtag anger 63.9% 74.3%
hashtag fear 58.9% 74.7%
hashtag surprise 51.8% 70.2%
hashtag disgust 55.4% 74.2%

ated with the emotions, or of genuine frequent co-
presence of the emotions. Given the close lex-
ical specification of emotions in hashtag labels,
the latter reasons seem more likely; however, with
emoticon labels, we suspect that the emoticons
themselves are often used in ambiguous or vague
ways.

As one way of investigating this directly, we
tested classifiers across labelling conventions as
well as across emotion classes, to determine
whether the (lack of) cross-class discrimination
holds across convention marker types. In the
case of ambiguity or vagueness of emoticons,

we would expect emoticon-trained models to fail
to discriminate hashtag-labelled test sets, but
hashtag-trained models to discriminate emoticon-
labelled test sets well; if on the other hand the
cause lies in the overlap of verbal content or the
emotions themselves, the effect should be simi-
lar in either direction. This experiment also helps
determine in more detail whether the labels used
label similar underlying properties.

Table 5 shows the results. For the three classes
happy, sad and perhaps anger, models trained
using emoticon labels do a reasonable job of dis-
tinguishing classes in hashtag-labelled data, and
vice versa. However, for the other classes, dis-
crimination is worse. Emoticon-trained mod-
els appear to give (undesirably) higher perfor-
mance across emotion classes in hashtag-labelled
data (for the problematic non-happy classes).
Hashtag-trained models perform around the ran-
dom 50% level on emoticon-labelled data for
those classes, even when tested on nominally
the same emotion as they are trained on. For
both label types, then, the lower within-class and
higher cross-class performance with these nega-
tive classes (fear, surprise, disgust) sug-
gests that these emotion classes are genuinely
hard to tell apart (they are all negative emotions,
and may use similar words), or are simply of-
ten expressed simultaneously. The higher perfor-
mance of emoticon-trained classifiers compared
to hashtag-trained classifiers, though, also sug-
gests vagueness or ambiguity in emoticons: data
labelled with emoticons nominally thought to be
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Table 5: Experiment 2: Cross-class, cross-convention results (train on hashtags, test on emoticons and vice
versa). All figures are accuracies over full sets. Accuracies over 60% are shown in bold.

Train
Convention Test happy sad anger fear surprise disgust
emoticon happy 61.2% 40.4% 44.1% 47.4% 52.0% 45.9%
emoticon sad 38.3% 60.2% 55.1% 51.5% 47.1% 53.9%
emoticon anger 47.0% 48.0% 63.7% 56.2% 50.9% 56.6%
emoticon fear 39.8% 57.7% 57.1% 55.9% 50.8% 56.1%
emoticon surprise 43.7% 55.2% 59.2% 58.4% 53.1% 54.0%
emoticon disgust 51.5% 48.0% 53.5% 55.1% 53.1% 51.5%
hashtag happy 68.7% 32.5% 43.6% 32.1% 35.4% 50.4%
hashtag sad 33.8% 65.4% 53.2% 65.0% 61.8% 48.8%
hashtag anger 43.9% 55.5% 63.9% 59.6% 60.4% 53.0%
hashtag fear 44.3% 54.6% 56.1% 58.9% 61.5% 54.3%
hashtag surprise 54.2% 45.3% 49.8% 49.9% 51.8% 52.3%
hashtag disgust 41.5% 57.6% 61.6% 62.2% 59.3% 55.4%

associated with surprise produces classifiers
which perform well on data labelled with many
other hashtag classes, suggesting that those emo-
tions were present in the training data. Con-
versely, the more specific hashtag labels produce
classifiers which perform poorly on data labelled
with emoticons and which thus contains a range
of actual emotions.

4.3 Experiment 3: Manual labelling

To confirm whether either (or both) set of auto-
matic (distant) labels do in fact label the under-
lying emotion class intended, we used human an-
notators via Amazon’s Mechanical Turk to label
a set of 1,000 instances. These instances were all
labelled with emoticons (we did not use hashtag-
labelled data: as hashtags are so lexically close to
the names of the emotion classes being labelled,
their presence may influence labellers unduly)3

and were evenly distributed across the 6 classes,
in so far as indicated by the emoticons. Labellers
were asked to choose the primary emotion class
(from the fixed set of six) associated with the mes-
sage; they were also allowed to specify if any
other classes were also present. Each data in-
stance was labelled by three different annotators.

Agreement between labellers was poor over-
all. The three annotators unanimously agreed in
only 47% of cases overall; although two of three
agreed in 83% of cases. Agreement was worst

3Although, of course, one may argue that they do the
same for their intended audience of readers – in which case,
such an effect is legitimate.

for the three classes already seen to be prob-
lematic: surprise, fear and disgust. To
create our dataset for this experiment, we there-
fore took only instances which were given the
same primary label by all labellers – i.e. only
those examples which we could take as reliably
and unambiguously labelled. This gave an un-
balanced dataset, with numbers varying from 266
instances for happy to only 12 instances for
each of surprise and fear. Classifiers were
trained using the datasets from Experiment 2. Per-
formance is shown in Table 6; given the imbal-
ance between class numbers in the test dataset,
evaluation is given as recall, precision and F-score
for the class in question rather than a simple accu-
racy figure (which is biased by the high proportion
of happy examples).

Table 6: Experiment 3: Results on manual labels.
Train Class Precision Recall F-score

emoticon happy 79.4% 75.6% 77.5%
emoticon sad 43.5% 73.2% 54.5%
emoticon anger 62.2% 37.3% 46.7%
emoticon fear 6.8% 63.6% 12.3%
emoticon surprise 15.0% 90.0% 25.7%
emoticon disgust 8.3% 25.0% 12.5%
hashtag happy 78.9% 51.9% 62.6%
hashtag sad 47.9% 81.7% 60.4%
hashtag anger 58.2% 76.0% 65.9%
hashtag fear 10.1% 81.8% 18.0%
hashtag surprise 5.9% 60.0% 10.7%
hashtag disgust 6.7% 66.7% 11.8%
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Again, results for happy are good, and cor-
respond fairly closely to the levels of accuracy
reported by Go et al. (2009) and others for the
binary positive/negative sentiment detection task.
Emoticons give significantly better performance
than hashtags here. Results for sad and anger
are reasonable, and provide a baseline for fur-
ther experiments with more advanced features and
classification methods once more manually anno-
tated data is available for these classes. In con-
trast, hashtags give much better performance with
these classes than the (perhaps vague or ambigu-
ous) emoticons.

The remaining emotion classes, however, show
poor performance for both labelling conventions.
The observed low precision and high recall can be
adjusted using classifier parameters, but F-scores
are not improved. Note that Experiment 1 shows
that both emoticon and hashtag labels are to some
extent predictable, even for these classes; how-
ever, Experiment 2 shows that they may not be
reliably different to each other, and Experiment 3
tells us that they do not appear to coincide well
with human annotator judgements of emotions.
More reliable labels may therefore be required;
although we do note that the low reliability of
the human annotations for these classes, and the
correspondingly small amount of annotated data
used in this evaluation, means we hesitate to draw
strong conclusions about fear, surprise and
disgust. An approach which considers multi-
ple classes to be associated with individual mes-
sages may also be beneficial: using majority-
decision labels rather than unanimous labels im-
proves F-scores for surprise to 23-35% by in-
cluding many examples also labelled as happy
(although this gives no improvements for other
classes).

5 Survey

To further detemine whether emoticons used
as emotion class labels are ambiguous or vague
in meaning, we set up a web survey to exam-
ine whether people could reliably classify these
emoticons.

5.1 Method
Our survey asked people to match up which of
the six emotion classes (selected from a drop-
down menu) best matched each emoticon. Each
drop-down menu included a ‘Not Sure’ option.

To avoid any effect of ordering, the order of the
emoticon list and each drop-down menu was ran-
domised every time the survey page was loaded.
The survey was distributed via Twitter, Facebook
and academic mailing lists. Respondents were not
given the opportunity to give their own definitions
or to provide finer-grained classifications, as we
wanted to establish purely whether they would re-
liably associate labels with the six emotions in our
taxonomy.

5.2 Results
The survey was completed by 492 individuals;
full results are shown in Table 7. It demonstrated
agreement with the predefined emoticons for sad
and most of the emoticons for happy (people
were unsure what 8-| and <@o meant). For all
the emoticons listed as anger, surprise and
disgust, the survey showed that people are reli-
ably unsure as to what these mean. For the emoti-
con :-o there was a direct contrast between the
defined meaning and the survey meaning; the def-
inition of this emoticon following Ansari (2010)
was fear, but the survey reliably assigned this to
surprise.

Given the small scale of the survey, we hesi-
tate to draw strong conclusions about the emoti-
con meanings themselves (in fact, recent conver-
sations with schoolchildren – see below – have in-
dicated very different interpretations from these
adult survey respondents). However, we do con-
clude that for most emotions outside happy and
sad, emoticons may indeed be an unreliable la-
bel; as hashtags also appear more reliable in the
classification experiments, we expect these to be
a more promising approach for fine-grained emo-
tion discrimination in future.

6 Conclusions

The approach shows reasonable performance at
individual emotion label prediction, for both
emoticons and hashtags. For some emotions (hap-
piness, sadness and anger), performance across
label conventions (training on one, and testing on
the other) is encouraging; for these classes, per-
formance on those manually labelled examples
where annotators agree is also reasonable. This
gives us confidence not only that the approach
produces reliable classifiers which can predict the
labels, but that these classifiers are actually de-
tecting the desired underlying emotional classes,
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Table 7: Survey results showing the defined emotion, the most popular emotion from the survey, the percentage
of votes this emotion received, and the χ2 significance test for the distribution of votes. These are indexed by
emoticon.

Emoticon Defined Emotion Survey Emotion % of votes Significance of votes distribution
:-) Happy Happy 94.9 χ2 = 3051.7 (p < 0.001)
:) Happy Happy 95.5 χ2 = 3098.2 (p < 0.001)
;-) Happy Happy 87.4 χ2 = 2541 (p < 0.001)
:D Happy Happy 85.7 χ2 = 2427.2 (p < 0.001)
:P Happy Happy 59.1 χ2 = 1225.4 (p < 0.001)
8) Happy Happy 61.9 χ2 = 1297.4 (p < 0.001)
8-| Happy Not Sure 52.2 χ2 = 748.6 (p < 0.001)
<@o Happy Not Sure 84.6 χ2 = 2335.1 (p < 0.001)
:-( Sad Sad 91.3 χ2 = 2784.2 (p < 0.001)
:( Sad Sad 89.0 χ2 = 2632.1 (p < 0.001)
;-( Sad Sad 67.9 χ2 = 1504.9 (p < 0.001)
:-< Sad Sad 56.1 χ2 = 972.59 (p < 0.001)
:’( Sad Sad 80.7 χ2 = 2116 (p < 0.001)
:-@ Anger Not Sure 47.8 χ2 = 642.47 (p < 0.001)
:@ Anger Not Sure 50.4 χ2 = 691.6 (p < 0.001)
:s Surprise Not Sure 52.2 χ2 = 757.7 (p < 0.001)
:$ Disgust Not Sure 62.8 χ2 = 1136 (p < 0.001)
+o( Disgust Not Sure 64.2 χ2 = 1298.1 (p < 0.001)
:| Fear Not Sure 55.1 χ2 = 803.41 (p < 0.001)
:-o Fear Surprise 89.2 χ2 = 2647.8 (p < 0.001)

without requiring manual annotation. We there-
fore plan to pursue this approach with a view to
improving performance by investigating training
with combined mixed-convention datasets, and
cross-training between classifiers trained on sepa-
rate conventions.

However, this cross-convention performance is
much better for some emotions (happiness, sad-
ness and anger) than others (fear, surprise and dis-
gust). Indications are that the poor performance
on these latter emotion classes is to a large de-
gree an effect of ambiguity or vagueness of the
emoticon and hashtag conventions we have used
as labels here; we therefore intend to investi-
gate other conventions with more specific and/or
less ambiguous meanings, and the combination
of multiple conventions to provide more accu-
rately/specifically labelled data. Another possi-
bility might be to investigate approaches to anal-
yse emoticons semantically on the basis of their
shape, or use features of such an analysis – see
(Ptaszynski et al., 2010; Radulovic and Milikic,
2009) for some interesting recent work in this di-
rection.
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Abstract
We present experiments with part-of-
speech tagging for Bulgarian, a Slavic lan-
guage with rich inflectional and deriva-
tional morphology. Unlike most previous
work, which has used a small number of
grammatical categories, we work with 680
morpho-syntactic tags. We combine a large
morphological lexicon with prior linguis-
tic knowledge and guided learning from a
POS-annotated corpus, achieving accuracy
of 97.98%, which is a significant improve-
ment over the state-of-the-art for Bulgarian.

1 Introduction

Part-of-speech (POS) tagging is the task of as-
signing each of the words in a given piece of text a
contextually suitable grammatical category. This
is not trivial since words can play different syn-
tactic roles in different contexts, e.g., can is a
noun in “I opened a can of coke.” but a verb in
“I can write.” Traditionally, linguists have classi-
fied English words into the following eight basic
POS categories: noun, pronoun, adjective, verb,
adverb, preposition, conjunction, and interjection;
this list is often extended a bit, e.g., with deter-
miners, particles, participles, etc., but the number
of categories considered is rarely more than 15.

Computational linguistics works with a larger
inventory of POS tags, e.g., the Penn Treebank
(Marcus et al., 1993) uses 48 tags: 36 for part-
of-speech, and 12 for punctuation and currency
symbols. This increase in the number of tags
is partially due to finer granularity, e.g., there
are special tags for determiners, particles, modal
verbs, cardinal numbers, foreign words, existen-
tial there, etc., but also to the desire to encode
morphological information as part of the tags.

For example, there are six tags for verbs in the
Penn Treebank: VB (verb, base form; e.g., sing),
VBD (verb, past tense; e.g., sang), VBG (verb,
gerund or present participle; e.g., singing), VBN
(verb, past participle; e.g., sung) VBP (verb, non-
3rd person singular present; e.g., sing), and VBZ
(verb, 3rd person singular present; e.g., sings);
these tags are morpho-syntactic in nature. Other
corpora have used even larger tagsets, e.g., the
Brown corpus (Kučera and Francis, 1967) and the
Lancaster-Oslo/Bergen (LOB) corpus (Johansson
et al., 1986) use 87 and 135 tags, respectively.

POS tagging poses major challenges for mor-
phologically complex languages, whose tagsets
encode a lot of additional morpho-syntactic fea-
tures (for most of the basic POS categories), e.g.,
gender, number, person, etc. For example, the
BulTreeBank (Simov et al., 2004) for Bulgarian
uses 680 tags, while the Prague Dependency Tree-
bank (Hajič, 1998) for Czech has over 1,400 tags.

Below we present experiments with POS tag-
ging for Bulgarian, which is an inflectional lan-
guage with rich morphology. Unlike most previ-
ous work, which has used a reduced set of POS
tags, we use all 680 tags in the BulTreeBank. We
combine prior linguistic knowledge and statistical
learning, achieving accuracy comparable to that
reported for state-of-the-art systems for English.

The remainder of the paper is organized as fol-
lows: Section 2 provides an overview of related
work, Section 3 describes Bulgarian morphology,
Section 4 introduces our approach, Section 5 de-
scribes the datasets, Section 6 presents our exper-
iments in detail, Section 7 discusses the results,
Section 8 offers application-specific error analy-
sis, and Section 9 concludes and points to some
promising directions for future work.
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2 Related Work

Most research on part-of-speech tagging has fo-
cused on English, and has relied on the Penn Tree-
bank (Marcus et al., 1993) and its tagset for train-
ing and evaluation. The task is typically addressed
as a sequential tagging problem; one notable ex-
ception is the work of Brill (1995), who proposed
non-sequential transformation-based learning.

A number of different sequential learning
frameworks have been tried, yielding 96-97%
accuracy: Lafferty et al. (2001) experimented
with conditional random fields (CRFs) (95.7%
accuracy), Ratnaparkhi (1996) used a maximum
entropy sequence classifier (96.6% accuracy),
Brants (2000) employed a hidden Markov model
(96.6% accuracy), Collins (2002) adopted an av-
eraged perception discriminative sequence model
(97.1% accuracy). All these models fix the order
of inference from left to right.

Toutanova et al. (2003) introduced a cyclic de-
pendency network (97.2% accuracy), where the
search is bi-directional. Shen et al. (2007) have
further shown that better results (97.3% accu-
racy) can be obtained using guided learning, a
framework for bidirectional sequence classifica-
tion, which integrates token classification and in-
ference order selection into a single learning task
and uses a perceptron-like (Collins and Roark,
2004) passive-aggressive classifier to make the
easiest decisions first. Recently, Tsuruoka et al.
(2011), proposed a simple perceptron-based clas-
sifier applied from left to right but augmented
with a lookahead mechanism that searches the
space of future actions, yielding 97.3% accuracy.

For morphologically complex languages, the
problem of POS tagging typically includes mor-
phological disambiguation, which yields a much
larger number of tags. For example, for Arabic,
Habash and Rambow (2005) used support vector
machines (SVM), achieving 97.6% accuracy with
139 tags from the Arabic Treebank (Maamouri et
al., 2003). For Czech, Hajič et al. (2001) com-
bined a hidden Markov model (HMM) with lin-
guistic rules, which yielded 95.2% accuracy using
an inventory of over 1,400 tags from the Prague
Dependency Treebank (Hajič, 1998). For Ice-
landic, Dredze and Wallenberg (2008) reported
92.1% accuracy with 639 tags developed for the
Icelandic frequency lexicon (Pind et al., 1991),
they used guided learning and tag decomposition:

First, a coarse POS class is assigned (e.g., noun,
verb, adjective), then, additional fine-grained
morphological features like case, number and
gender are added, and finally, the proposed tags
are further reconsidered using non-local features.
Similarly, Smith et al. (2005) decomposed the
complex tags into factors, where models for pre-
dicting part-of-speech, gender, number, case, and
lemma are estimated separately, and then com-
posed into a single CRF model; this yielded com-
petitive results for Arabic, Korean, and Czech.

Most previous work on Bulgarian POS tagging
has started with large tagsets, which were then
reduced. For example, Dojchinova and Mihov
(2004) mapped their initial tagset of 946 tags to
just 40, which allowed them to achieve 95.5%
accuracy using the transformation-based learning
of Brill (1995), and 98.4% accuracy using manu-
ally crafted linguistic rules. Similarly, Georgiev
et al. (2009), who used maximum entropy and
the BulTreeBank (Simov et al., 2004), grouped
its 680 fine-grained POS tags into 95 coarse-
grained ones, and thus improved their accuracy
from 90.34% to 94.4%. Simov and Osenova
(2001) used a recurrent neural network to predict
(a) 160 morpho-syntactic tags (92.9% accuracy)
and (b) 15 POS tags (95.2% accuracy).

Some researchers did not reduce the tagset:
Savkov et al. (2011) used 680 tags (94.7% ac-
curacy), and Tanev and Mitkov (2002) used 303
tags and the BULMORPH morphological ana-
lyzer (Krushkov, 1997), achieving P=R=95%.

3 Bulgarian Morphology

Bulgarian is an Indo-European language from the
Slavic language group, written with the Cyrillic
alphabet and spoken by about 9-12 million peo-
ple. It is also a member of the Balkan Sprachbund
and thus differs from most other Slavic languages:
it has no case declensions, uses a suffixed definite
article (which has a short and a long form for sin-
gular masculine), and lacks verb infinitive forms.
It further uses special evidential verb forms to ex-
press unwitnessed, retold, and doubtful activities.

Bulgarian is an inflective language with very
rich morphology. For example, Bulgarian verbs
have 52 synthetic wordforms on average, while
pronouns have altogether more than ten grammat-
ical features (not necessarily shared by all pro-
nouns), including case, gender, person, number,
definiteness, etc.
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This rich morphology inevitably leads to ambi-
guity proliferation; our analysis of BulTreeBank
shows four major types of ambiguity:

1. Between the wordforms of the same lexeme,
i.e., in the paradigm. For example, divana,
an inflected form of divan (‘sofa’, mascu-
line), can mean (a) ‘the sofa’ (definite, singu-
lar, short definite article) or (b) a count form,
e.g., as in dva divana (‘two sofas’).

2. Between two or more lexemes, i.e., conver-
sion. For example, kato can be (a) a subor-
dinator meaning ‘as, when’, or (b) a preposi-
tion meaning ‘like, such as’.

3. Between a lexeme and an inflected wordform
of another lexeme, i.e., across-paradigms.
For example, politika can mean (a) ‘the
politician’ (masculine, singular, definite,
short definite article) or (b) ‘politics’ (fem-
inine, singular, indefinite).

4. Between the wordforms of two or more
lexemes, i.e., across-paradigms and quasi-
conversion. For example, v�rvi can mean
(a) ‘walks’ (verb, 2nd or 3rd person, present
tense) or (b) ‘strings, laces’ (feminine, plu-
ral, indefinite).

Some morpho-syntactic ambiguities in Bulgar-
ian are occasional, but many are systematic, e.g.,
neuter singular adjectives have the same forms
as adverbs. Overall, most ambiguities are local,
and thus arguably resolvable using n-grams, e.g.,
compare hubavo dete (‘beautiful child’), where
hubavo is a neuter adjective, and “Pe� hubavo.”
(‘I sing beautifully.’), where it is an adverb of
manner. Other ambiguities, however, are non-
local and may require discourse-level analysis,
e.g., “Vid�h go.” can mean ‘I saw him.’, where
go is a masculine pronoun, or ’I saw it.’, where
it is a neuter pronoun. Finally, there are ambi-
guities that are very hard or even impossible1 to
resolve, e.g., “Deteto vleze veselo.” can mean
both ‘The child came in happy.’ (veselo is an ad-
jective) and ‘The child came in happily.’ (it is an
adverb); however, the latter is much more likely.

1The problem also exists for English, e.g., the annotators
of the Penn Treebank were allowed to use tag combinations
for inherently ambiguous cases: JJ|NN (adjective or noun as
prenominal modifier), JJ|VBG (adjective or gerund/present
participle), JJ|VBN (adjective or past participle), NN|VBG
(noun or gerund), and RB|RP (adverb or particle).

In many cases, strong domain preferences exist
about how various systematic ambiguities should
be resolved. We made a study for the newswire
domain, analyzing a corpus of 546,029 words,
and we found that ambiguity type 2 (lexeme-
lexeme) prevailed for functional parts-of-speech,
while the other types were more frequent for in-
flecting parts-of-speech. Below we show the most
frequent types of morpho-syntactic ambiguities
and their frequency in our corpus:

• na: preposition (‘of’) vs. emphatic particle,
with a ratio of 28,554 to 38;

• da: auxiliary particle (‘to’) vs. affirmative
particle, with a ratio of 12,035 to 543;

• e: 3rd person present auxiliary verb (‘to be’)
vs. particle (‘well’) vs. interjection (‘wow’),
with a ratio of 9,136 to 21 to 5;

• singular masculine noun with a short definite
article vs. count form of a masculine noun,
with a ratio of 6,437 to 1,592;

• adverb vs. neuter singular adjective, with a
ratio of 3,858 to 1,753.

Overall, the following factors should be taken
into account when modeling Bulgarian morpho-
syntax: (1) locality vs. non-locality of grammat-
ical features, (2) interdependence of grammatical
features, and (3) domain-specific preferences.

4 Method

We used the guided learning framework described
in (Shen et al., 2007), which has yielded state-of-
the-art results for English and has been success-
fully applied to other morphologically complex
languages such as Icelandic (Dredze and Wallen-
berg, 2008); we found it quite suitable for Bul-
garian as well. We used the feature set defined in
(Shen et al., 2007), which includes the following:

1. The feature set of Ratnaparkhi (1996), in-
cluding prefix, suffix and lexical, as well as
some bigram and trigram context features;

2. Feature templates as in (Ratnaparkhi, 1996),
which have been shown helpful in bidirec-
tional search;

3. More bigram and trigram features and bi-
lexical features as in (Shen et al., 2007).

Note that we allowed prefixes and suffixes of
length up to 9, as in (Toutanova et al., 2003) and
(Tsuruoka and Tsujii, 2005).
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We further extended the set of features with
the tags proposed for the current word token by a
morphological lexicon, which maps words to pos-
sible tags; it is exhaustive, i.e., the correct tag is
always among the suggested ones for each token.

We also used 70 linguistically-motivated, high-
precision rules in order to further reduce the num-
ber of possible tags suggested by the lexicon.
The rules are similar to those proposed by Hin-
richs and Trushkina (2004) for German; we im-
plemented them as constraints in the CLaRK sys-
tem (Simov et al., 2003).

Here is an example of a rule: If a wordform
is ambiguous between a masculine count noun
(Ncmt) and a singular short definite masculine
noun (Ncmsh), the Ncmt tag should be chosen if
the previous token is a numeral or a number.

The 70 rules were developed by linguists based
on observations over the training dataset only.
They target primarily the most frequent cases of
ambiguity, and to a lesser extent some infrequent
but very problematic cases. Some rules operate
over classes of words, while other refer to partic-
ular wordforms. The rules were designed to be
100% accurate on our training dataset; our exper-
iments show that they are also 100% accurate on
the test and on the development dataset.

Note that some of the rules are dependent on
others, and thus the order of their cascaded appli-
cation is important. For example, the wordform �

is ambiguous between an accusative feminine sin-
gular short form of a personal pronoun (‘her’) and
an interjection (‘wow’). To handle this properly,
the rule for interjection, which targets sentence
initial positions, followed by a comma, needs to
be executed first. The rule for personal pronouns
is only applied afterwards.

Word Tags
To$i Ppe-os3m

obaqe Cc; Dd
n�ma Afsi; Vnitf-o3s; Vnitf-r3s;

Vpitf-o2s; Vpitf-o3s; Vpitf-r3s
v�zmo�nost Ncfsi

da Ta;Tx
sledi Ncfpi; Vpitf-o2s; Vpitf-o3s; Vpitf-r3s;

Vpitz–2s

. . . . . .

Table 1: Sample fragment showing the possible tags
suggested by the lexicon. The tags that are further
filtered by the rules are in italic; the correct tag is bold.

The rules are quite efficient at reducing the POS
ambiguity. On the test dataset, before the rule ap-
plication, 34.2% of the tokens (excluding punctu-
ation) had more than one tag in our morphological
lexicon. This number is reduced to 18.5% after
the cascaded application of the 70 linguistic rules.
Table 1 illustrates the effect of the rules on a small
sentence fragment. In this example, the rules have
left only one tag (the correct one) for three of the
ambiguous words. Since the rules in essence de-
crease the average number of tags per token, we
calculated that the lexicon suggests 1.6 tags per
token on average, and after the application of the
rules this number decreases to 1.44 per token.

5 Datasets

5.1 BulTreeBank
We used the latest version of the BulTree-
Bank (Simov and Osenova, 2004), which contains
20,556 sentences and 321,542 word tokens (four
times less than the English Penn Treebank), anno-
tated using a total of 680 unique morpho-syntactic
tags. See (Simov et al., 2004) for a detailed de-
scription of the BulTreeBank tagset.

We split the data into training/development/test
as shown in Table 2. Note that only 552 of all 680
tag types were used in the training dataset, and
the development and the test datasets combined
contain a total of 128 new tag types that were not
seen in the training dataset. Moreover, 32% of the
word types in the development dataset and 31%
of those in the testing dataset do not occur in the
training dataset. Thus, data sparseness is an issue
at two levels: word-level and tag-level.

Dataset Sentences Tokens Types Tags
Train 16,532 253,526 38,659 552
Dev 2,007 32,995 9,635 425
Test 2,017 35,021 9,627 435

Table 2: Statistics about our datasets.

5.2 Morphological Lexicon
In order to alleviate the data sparseness issues,
we further used a large morphological lexicon for
Bulgarian, which is an extended version of the
dictionary described in (Popov et al., 1998) and
(Popov et al., 2003). It contains over 1.5M in-
flected wordforms (for 110K lemmata and 40K
proper names), each mapped to a set of possible
morpho-syntactic tags.
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6 Experiments and Evaluation

State-of-the-art POS taggers for English typically
build a lexicon containing all tags a word type has
taken in the training dataset; this lexicon is then
used to limit the set of possible tags that an input
token can be assigned, i.e., it imposes a hard con-
straint on the possibilities explored by the POS
tagger. For example, if can has only been tagged
as a verb and as a noun in the training dataset,
it will be only assigned those two tags at test
time; other tags such as adjective, adverb and pro-
noun will not be considered. Out-of-vocabulary
words, i.e., those that were not seen in the train-
ing dataset, are constrained as well, e.g., to a small
set of frequent open-class tags.

In our experiments, we used a morphological
lexicon that is much larger than what could be
built from the training corpus only: building a
lexicon from the training corpus only is of lim-
ited utility since one can hardly expect to see in
the training corpus all 52 synthetic forms a verb
can possibly have. Moreover, we did not use the
tags listed in the lexicon as hard constraints (ex-
cept in one of our baselines); instead, we experi-
mented with a different, non-restrictive approach:
we used the lexicon’s predictions as features or
soft constraints, i.e., as suggestions only, thus al-
lowing each token to take any possible tag. Note
that for both known and out-of-vocabulary words
we used all 680 tags rather than the 552 tags ob-
served in the training dataset; we could afford to
explore this huge search space thanks to the effi-
ciency of the guided learning framework. Allow-
ing all 680 tags on training helped the model by
exposing it to a larger set of negative examples.

We combined these lexicon features with stan-
dard features extracted from the training corpus.
We further experimented with the 70 contextual
linguistic rules, using them (a) as soft and (b) as
hard constraints. Finally, we set four baselines:
three that do not use the lexicon and one that does.

Accuracy (%)
# Baselines (token-level)
1 MFT + unknowns are wrong 78.10
2 MFT + unknowns are Ncmsi 78.52
3 MFT + guesser for unknowns 79.49
4 MFT + lexicon tag-classes 94.40

Table 3: Most-frequent-tag (MFT) baselines.

6.1 Baselines

First, we experimented with the most-frequent-
tag baseline, which is standard for POS tagging.
This baseline ignores context altogether and as-
signs each word type the POS tag it was most
frequently seen with in the training dataset; ties
are broken randomly. We coped with word types
not seen in the training dataset using three sim-
ple strategies: (a) we considered them all wrong,
(b) we assigned them Ncmsi, which is the most
frequent open-class tag in the training dataset, or
(c) we used a very simple guesser, which assigned
Ncfsi, Ncnsi, Ncfsi, and Ncmsf, if the target word
ended by -a, -o, -i, and -�t, respectively, other-
wise, it assigned Ncmsi. The results are shown
in lines 1-3 of Table 3: we can see that the token-
level accuracy ranges in 78-80% for (a)-(c), which
is relatively high, given that we use a large inven-
tory of 680 morpho-syntactic tags.

We further tried a baseline that uses the above-
described morphological lexicon, in addition to
the training dataset. We first built two frequency
lists, containing respectively (1) the most frequent
tag in the training dataset for each word type, as
before, and (2) the most frequent tag in the train-
ing dataset for each class of tags that can be as-
signed to some word type, according to the lexi-
con. For example, the most frequent tag for poli-
tika is Ncfsi, and the most frequent tag for the
tag-class {Ncmt;Ncmsi} is Ncmt.

Given a target word type, this new baseline first
tries to assign it the most frequent tag from the
first list. If this is not possible, which happens
(i) in case of ties or (ii) when the word type was
not seen on training, it extracts the tag-class from
the lexicon and consults the second list. If there
is a single most frequent tag in the corpus for this
tag-class, it is assigned; otherwise a random tag
from this tag-class is selected.

Line 4 of Table 3 shows that this latter baseline
achieves a very high accuracy of 94.40%. Note,
however, that this is over-optimistic: the lexicon
contains a tag-class for each word type in our test-
ing dataset, i.e., while there can be word types
not seen in the training dataset, there are no word
types that are not listed in the lexicon. Thus, this
high accuracy is probably due to a large extent
to the scale and quality of our morphological lexi-
con, and it might not be as strong with smaller lex-
icons; we plan to investigate this in future work.
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6.2 Lexicon Tags as Soft Constraints

We experimented with three types of features:

1. Word-related features only;

2. Word-related features + the tags suggested
by the lexicon;

3. Word-related features + the tags suggested
by the lexicon but then further filtered using
the 70 contextual linguistic rules.

Table 4 shows the sentence-level and the token-
level accuracy on the test dataset for the three
kinds of features: shown on lines 1, 3 and 4, re-
spectively. We can see that using the tags pro-
posed by the lexicon as features (lines 3 and 4)
has a major positive impact, yielding up to 49%
error reduction at the token-level and up to 37%
at the sentence-level, as compared to using word-
related features alone (line 1).

Interestingly, filtering the tags proposed by the
lexicon using the 70 contextual linguistic rules
yields a minor decrease in accuracy both at the
word token-level and at the sentence-level (com-
pare line 4 to line 2). This is surprising since
the linguistic rules are extremely reliable: they
were designed to be 100% accurate on the train-
ing dataset, and we found them experimentally to
be 100% correct on the development and on the
testing dataset as well.

One possible explanation is that by limiting the
set of available tags for a given token at training
time, we prevent the model from observing some
potentially useful negative examples. We tested
this hypothesis by using the unfiltered lexicon
predictions at training time but then making use
of the filtered ones at testing time; the results are
shown on line 5. We can observe a small increase
in accuracy compared to line 4: from 97.80% to
97.84% at the token-level, and from 70.30% to
70.40% at the sentence-level. Although these dif-
ferences are tiny, they suggest that having more
negative examples at training is helpful.

We can conclude that using the lexicon as a
source of soft constraints has a major positive im-
pact, e.g., because it provides access to impor-
tant external knowledge that is complementary
to what can be learned from the training corpus
alone; the improvements when using linguistic
rules as soft constraints are more limited.

6.3 Linguistic Rules as Hard Constraints
Next, we experimented with using the suggestions
of the linguistic rules as hard constraints. Table 4
shows that this is a very good idea. Comparing
line 1 to line 2, which do not use the morpholog-
ical lexicon, we can see very significant improve-
ments: from 95.72% to 97.20% at the token-level
and from 52.95% to 64.50% at the sentence-level.
The improvements are smaller but still consistent
when the morphological lexicon is used: compar-
ing lines 3 and 4 to lines 6 and 7, respectively, we
see an improvement from 97.83% to 97.91% and
from 97.80% to 97.93% at the token-level, and
about 1% absolute at the sentence-level.

6.4 Increasing the Beam Size
Finally, we increased the beam size of guided
learning from 1 to 3 as in (Shen et al., 2007).
Comparing line 7 to line 8 in Table 4, we can see
that this yields further token-level improvement:
from 97.93% to 97.98%.

7 Discussion

Table 5 compares our results to previously re-
ported evaluation results for Bulgarian. The
first four lines show the token-level accuracy for
standard POS tagging tools trained and evalu-
ated on the BulTreeBank:2 TreeTagger (Schmid,
1994), which uses decision trees, TnT (Brants,
2000), which uses a hidden Markov model,
SVMtool (Giménez and Màrquez, 2004), which
is based on support vector machines, and
ACOPOST (Schröder, 2002), implementing the
memory-based model of Daelemans et al. (1996).
The following lines report the token-level accu-
racy reported in previous work, as compared to
our own experiments using guided learning.

We can see that we outperform by a very large
margin (92.53% vs. 97.98%, which represents
73% error reduction) the systems from the first
four lines, which are directly comparable to our
experiments: they are trained and evaluated on the
BulTreeBank using the full inventory of 680 tags.

We further achieved statistically significant im-
provement (p < 0.0001; Pearson’s chi-squared
test (Plackett, 1983)) over the best pervious result
on 680 tags: from 94.65% to 97.98%, which rep-
resents 62.24% error reduction at the token-level.

2We used the pre-trained TreeTagger; for the rest, we re-
port the accuracy given on the Webpage of the BulTreeBank:
www.bultreebank.org/taggers/taggers.html
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Lexicon Linguistic Rules (applied to filter): Beam Accuracy (%)
# (source of) (a) the lexicon features (b) the output tags size Sentence-level Token-level
1 – – – 1 52.95 95.72
2 – – yes 1 64.50 97.20
3 features – – 1 70.40 97.83
4 features yes – 1 70.30 97.80
5 features yes, for test only – 1 70.40 97.84
6 features – yes 1 71.34 97.91
7 features yes yes 1 71.69 97.93
8 features yes yes 3 71.94 97.98

Table 4: Evaluation results on the test dataset. Line 1 shows the evaluation results when using features derived
from the text corpus only; these features are used by all systems in the table. Line 2 further uses the contextual
linguistic rules to limit the set of possible POS tags that can be predicted. Note that these rules (1) consult the
lexicon, and (2) always predict a single POS tag. Line 3 uses the POS tags listed in the lexicon as features, i.e.,
as soft suggestions only. Line 4 is like line 3, but the list of feature-tags proposed by the lexicon is filtered by
the contextual linguistic rules. Line 5 is like line 4, but the linguistic rules filtering is only applied at test time;
it is not done on training. Lines 6 and 7 are similar to lines 3 and 4, respectively, but here the linguistic rules
are further applied to limit the set of possible POS tags that can be predicted, i.e., the rules are used as hard
constraints. Finally, line 8 is like line 7, but here the beam size is increased to 3.

Overall, we improved over almost all previ-
ously published results. Our accuracy is sec-
ond only to the manual rules approach of Do-
jchinova and Mihov (2004). Note, however, that
they used 40 tags only, i.e., their inventory is 17
times smaller than ours. Moreover, they have op-
timized their tagset specifically to achieve very
high POS tagging accuracy by choosing not to at-
tempt to resolve some inherently hard systematic
ambiguities, e.g., they do not try to choose be-
tween second and third person past singular verbs,
whose inflected forms are identical in Bulgarian
and hard to distinguish when the subject is not
present (Bulgarian is a pro-drop language).

In order to compare our results more closely
to the smaller tagsets in Table 5, we evaluated
our best model with respect to (a) the first letter
of the tag only (which is part-of-speech only, no
morphological information; 13 tags), e.g., Ncmsf
becomes N, and (b) the first two letters of the
tag (POS + limited morphological information;
49 tags), e.g., Ncmsf becomes Nc. This yielded
99.30% accuracy for (a) and 98.85% for (b).
The latter improves over (Dojchinova and Mihov,
2004), while using a bit larger number of tags.

Our best token-level accuracy of 97.98% is
comparable and even slightly better than the state-
of-the-art results for English: 97.33% when using
Penn Treebank data only (Shen et al., 2007), and
97.50% for Penn Treebank plus some additional
unlabeled data (Søgaard, 2011). Of course, our
results are only indirectly comparable to English.

Still, our performance is impressive because
(1) our model is trained on 253,526 tokens only
while the standard training sections 0-18 of the
Penn Treebank contain a total of 912,344 tokens,
i.e., almost four times more, and (2) we predict
680 rather than just 48 tags as for the Penn Tree-
bank, which is 14 times more.

Note, however, that (1) we used a large exter-
nal morphological lexicon for Bulgarian, which
yielded about 50% error reduction (without it,
our accuracy was 95.72% only), and (2) our
train/dev/test sentences are generally shorter, and
thus arguably simpler for a POS tagger to analyze:
we have 17.4 words per test sentence in the Bul-
TreeBank vs. 23.7 in the Penn Treebank.

Our results also compare favorably to the state-
of-the-art results for other morphologically com-
plex languages that use large tagsets, e.g., 95.2%
for Czech with 1,400+ tags (Hajič et al., 2001),
92.1% for Icelandic with 639 tags (Dredze and
Wallenberg, 2008), 97.6% for Arabic with 139
tags (Habash and Rambow, 2005).

8 Error Analysis

In this section, we present error analysis with re-
spect to the impact of the POS tagger’s perfor-
mance on other processing steps in a natural lan-
guage processing pipeline, such as lemmatization
and syntactic dependency parsing.

First, we explore the most frequently confused
pairs of tags for our best-performing POS tagging
system; these are shown in Table 6.
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Accuracy
Tool/Authors Method # Tags (token-level, %)
*TreeTagger Decision Trees 680 89.21
*ACOPOST Memory-based Learning 680 89.91
*SVMtool Support Vector Machines 680 92.22
*TnT Hidden Markov Model 680 92.53
(Georgiev et al., 2009) Maximum Entropy 680 90.34
(Simov and Osenova, 2001) Recurrent Neural Network 160 92.87
(Georgiev et al., 2009) Maximum Entropy 95 94.43
(Savkov et al., 2011) SVM + Lexicon + Rules 680 94.65
(Tanev and Mitkov, 2002) Manual Rules 303 95.00(=P=R)
(Simov and Osenova, 2001) Recurrent Neural Network 15 95.17
(Dojchinova and Mihov, 2004) Transformation-based Learning 40 95.50
(Dojchinova and Mihov, 2004) Manual Rules + Lexicon 40 98.40

Guided Learning 680 95.72
Guided Learning + Lexicon 680 97.83

This work Guided Learning + Lexicon + Rules 680 97.98
Guided Learning + Lexicon + Rules 49 98.85
Guided Learning + Lexicon + Rules 13 99.30

Table 5: Comparison to previous work for Bulgarian. The first four lines report evaluation results for various
standard POS tagging tools, which were retrained and evaluated on the BulTreeBank. The following lines report
token-level accuracy for previously published work, as compared to our own experiments using guided learning.

We can see that most of the wrong tags share
the same part-of-speech (indicated by the initial
uppercase letter), such as V for verb, N for noun,
etc. This means that most errors refer to the mor-
phosyntactic features. For example, personal or
impersonal verb; definite or indefinite feminine
noun; singular or plural masculine adjective, etc.
At the same time, there are also cases, where the
error has to do with the part-of-speech label itself.
For example, between an adjective and an adverb,
or between a numeral and an indefinite pronoun.

We want to use the above tagger to develop
(1) a rule-based lemmatizer, using the morpholog-
ical lexicon, e.g., as in (Plisson et al., 2004), and
(2) a dependency parser like MaltParser (Nivre et
al., 2007), trained on the dependency part of the
BulTreeBank. We thus study the potential impact
of wrong tags on the performance of these tools.

The lemmatizer relies on the lexicon and uses
string transformation functions defined via two
operations – remove and concatenate:

if tag = Tag then
{remove OldEnd; concatenate NewEnd}

where Tag is the tag of the wordform, OldEnd is
the string that has to be removed from the end of
the wordform, and NewEnd is the string that has
to be concatenated to the beginning of the word-
form in order to produce the lemma.

Here is an example of such a rule:

if tag = Vpitf-o1s then
{remove oh; concatenate a}

The application of the above rule to the past
simple verb form qetoh (‘I read’) would remove
oh, and then concatenate a. The result would be
the correct lemma qeta (‘to read’).

Such rules are generated for each wordform in
the morphological lexicon; the above functional
representation allows for compact representation
in a finite state automaton. Similar rules are ap-
plied to the unknown words, where the lemma-
tizer tries to guess the correct lemma.

Obviously, the applicability of each rule cru-
cially depends on the output of the POS tagger.
If the tagger suggests the correct tag, then the
wordform would be lemmatized correctly. Note
that, in some cases of wrongly assigned POS tags
in a given context, we might still get the correct
lemma. This is possible in the majority of the
erroneous cases in which the part-of-speech has
been assigned correctly, but the wrong grammat-
ical alternative has been selected. In such cases,
the error does not influence lemmatization.

In order to calculate the proportion of such
cases, we divided each tag into two parts:
(a) grammatical features that are common for all
wordforms of a given lemma, and (b) features that
are specific to the wordform.
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Freq. Gold Tag Proposed Tag
43 Ansi Dm
23 Vpitf-r3s Vnitf-r3s
16 Npmsh Npmsi
14 Vpiif-r3s Vniif-r3s
13 Npfsd Npfsi
12 Dm Ansi
12 Vpitcam-smi Vpitcao-smi
12 Vpptf-r3p Vpitf-r3p
11 Vpptf-r3s Vpptf-o3s
10 Mcmsi Pfe-os-mi
10 Ppetas3n Ppetas3m
10 Ppetds3f Psot–3–f
9 Npnsi Npnsd
9 Vpptf-o3s Vpptf-r3s
8 Dm A-pi
8 Ppxts Ppxtd
7 Mcfsi Pfe-os-fi
7 Npfsi Npfsd
7 Ppetas3m Ppetas3n
7 Vnitf-r3s Vpitf-r3s
7 Vpitcam-p-i Vpitcao-p-i

Table 6: Most frequently confused pairs of tags.

The part-of-speech features are always deter-
mined by the lemma. For example, Bulgarian
verbs have the lemma features aspect and tran-
sitivity. If they are correct, then the lemma is pre-
dicted also correctly, regardless of whether cor-
rect or wrong on the grammatical features. For
example, if the verb participle form (aorist or
imperfect) has its correct aspect and transitivity,
then it is lemmatized also correctly, regardless
of whether the imperfect or aorist features were
guessed correctly; similarly, for other error types.
We evaluated these cases for the 711 errors in our
experiment, and we found that 206 of them (about
29%) were non-problematic for lemmatization.

For the MaltParser, we encode most of the
grammatical features of the wordforms as spe-
cific features for the parser. Hence, it is much
harder to evaluate the problematic cases due to
the tagger. Still, we were able to make an es-
timation of some cases. Our strategy was to ig-
nore the grammatical features that do not always
contribute to the syntactic behavior of the word-
forms. Such grammatical features for the verbs
are aspect and tense. Thus, proposing perfective
instead of imperfective for a verb or present in-
stead of past tense would not cause problems for
the MaltParser. Among our 711 errors, 190 cases
(or about 27%) were not problematic for parsing.

Finally, we should note that there are two spe-
cial classes of tokens for which it is generally
hard to predict some of the grammatical features:
(1) abbreviations and (2) numerals written with
digits. In sentences, they participate in agreement
relations only if they are pronounced as whole
phrases; unfortunately, it is very hard for the tag-
ger to guess such relations since it does not have
at its disposal enough features, such as the inflec-
tion of the numeral form, that might help detect
and use the agreement pattern.

9 Conclusion and Future Work

We have presented experiments with part-of-
speech tagging for Bulgarian, a Slavic language
with rich inflectional and derivational morphol-
ogy. Unlike most previous work for this language,
which has limited the number of possible tags, we
used a very rich tagset of 680 morpho-syntactic
tags as defined in the BulTreeBank. By com-
bining a large morphological lexicon with prior
linguistic knowledge and guided learning from a
POS-annotated corpus, we achieved accuracy of
97.98%, which is a significant improvement over
the state-of-the-art for Bulgarian. Our token-level
accuracy is also comparable to the best results re-
ported for English.

In future work, we want to experiment with a
richer set of features, e.g., derived from unlabeled
data (Søgaard, 2011) or from the Web (Umansky-
Pesin et al., 2010; Bansal and Klein, 2011). We
further plan to explore ways to decompose the
complex Bulgarian morpho-syntactic tags, e.g., as
proposed in (Simov and Osenova, 2001) and
(Smith et al., 2005). Modeling long-distance
syntactic dependencies (Dredze and Wallenberg,
2008) is another promising direction; we believe
this can be implemented efficiently using poste-
rior regularization (Graca et al., 2009) or expecta-
tion constraints (Bellare et al., 2009).
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Abstract

Whether automatically extracted or human
generated, open-domain factual knowledge
is often available in the form of semantic
annotations (e.g., composed-by) that take
one or more specific instances (e.g., rhap-
sody in blue, george gershwin) as their ar-
guments. This paper introduces a method
for converting flat sets of instance-level
annotations into hierarchically organized,
concept-level annotations, which capture
not only the broad semantics of the desired
arguments (e.g., ‘People’ rather than ‘Loca-
tions’), but also the correct level of general-
ity (e.g., ‘Composers’ rather than ‘People’,
or ‘Jazz Composers’). The method refrains
from encoding features specific to a partic-
ular domain or annotation, to ensure imme-
diate applicability to new, previously un-
seen annotations. Over a gold standard of
semantic annotations and concepts that best
capture their arguments, the method sub-
stantially outperforms three baselines, on
average, computing concepts that are less
than one step in the hierarchy away from
the corresponding gold standard concepts.

1 Introduction

Background: Knowledge about the world can
be thought of as semantic assertions or anno-
tations, at two levels of granularity: instance
level (e.g., rhapsody in blue, tristan und isolde,
george gershwin, richard wagner) and concept
level (e.g., ‘Musical Compositions’, ‘Works of
Art’, ‘Composers’). Instance-level annotations
correspond to factual knowledge that can be
found in repositories extracted automatically from
text (Banko et al., 2007; Wu and Weld, 2010)

∗Contributions made during an internship at Google.

or manually created within encyclopedic re-
sources (Remy, 2002). Such facts could state, for
instance, that rhapsody in blue was composed-
by george gershwin, or that tristan und isolde
was composed-by richard wagner. In compar-
ison, concept-level annotations more concisely
and effectively capture the underlying semantics
of the annotations by identifying the concepts cor-
responding to the arguments, e.g., ‘Musical Com-
positions’ are composed-by ‘Composers’.

The frequent occurrence of instances, relative
to more abstract concepts, in Web documents and
popular Web search queries (Barr et al., 2008;
Li, 2010), is both an asset and a liability from
the point of view of knowledge acquisition. On
one hand, it makes instance-level annotations rel-
atively easy to find, either from manually created
resources (Remy, 2002; Bollacker et al., 2008),
or extracted automatically from text (Banko et
al., 2007). On the other hand, it makes concept-
level annotations more difficult to acquire di-
rectly. While “Rhapsody in Blue was composed
by George Gershwin [..]” may occur in some
form within Web documents, the more abstract
“Musical compositions are composed by musi-
cians [..]” is unlikely to occur. A more practical
approach to collecting concept-level annotations
is to indirectly derive them from already plenti-
ful instance-level annotations, effectively distill-
ing factual knowledge into more abstract, concise
and generalizable knowledge.

Contributions: This paper introduces a method
for converting flat sets of specific, instance-
level annotations into hierarchically organized,
concept-level annotations. As illustrated in Fig-
ure 1, the resulting annotations must capture not
just the broad semantics of the desired arguments
(e.g., ‘People’ rather than ‘Locations’ or ‘Prod-
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People

Composers Musicians

Composers by genre Cellists Singers

Baroque Composers Jazz Composers

Annotations

Conceptual hierarchy

composed−by    lives−in    instrument−played    sung−by

Figure 1: Hierarchical Semantic Annotations: The
attachment of semantic annotations (e.g., composed-
by) into a conceptual hierarchy, a portion of which is
shown in the diagram, requires the identification of the
correct concept at the correct level of generality (e.g.,
‘Composers’ rather than ‘Jazz Composers’ or ‘Peo-
ple’, for the right argument of composed-by).

ucts’, as the right argument of the annotation
composed-by), but actually identify the concepts
at the correct level of generality/specificity (e.g.,
‘Composers’ rather than ‘Artists’ or ‘Jazz Com-
posers’) in the underlying conceptual hierarchy.

To ensure portability to new, previously unseen
annotations, the proposed method avoids encod-
ing features specific to a particular domain or an-
notation. In particular, the use of annotations’ la-
bels (composed-by) as lexical features might be
tempting, but would anchor the annotation model
to that particular annotation. Instead, the method
relies only on features that generalize across an-
notations. Over a gold standard of semantic anno-
tations and concepts that best capture their argu-
ments, the method substantially outperforms three
baseline methods. On average, the method com-
putes concepts that are less than one step in the
hierarchy away from the corresponding gold stan-
dard concepts of the various annotations.

2 Hierarchical Semantic Annotations

2.1 Task Description
Data Sources: The computation of hierarchical
semantic annotations relies on the following data
sources:
• a target annotation r (e.g., acted-in) that takes

M arguments;
• N annotations I={<i1j , . . . , iMj>}Nj=1 of

r at instance level, e.g., {<leonardo dicaprio,
inception>, <milla jovovich, fifth element>} (in
this example, M=2);
• mappings {i→c} from instances to con-

cepts to which they belong, e.g., milla jovovich
→ ‘American Actors’, milla jovovich → ‘People
from Kiev’, milla jovovich→ ‘Models’;

• mappings {cs→cg} from more specific con-
cepts to more general concepts, as encoded in a
hierarchy H , e.g., ‘American Actors’→‘Actors’,
‘People from Kiev’→‘People from Ukraine’,
‘Actors’→‘Entertainers’.

Thus, the main inputs are the conceptual hi-
erarchy H , and the instance-level annotations I .
The hierarchy contains instance-to-concept map-
pings, as well as specific-to-general concept map-
pings. Via transitivity, instances (milla jovovich)
and concepts (‘American Actors’) may be im-
mediate children of more general concepts (‘Ac-
tors’), or transitive descendants of more general
concepts (‘Entertainers’). The hierarchy is not re-
quired to be a tree; in particular, a concept may
have multiple parent concepts. The instance-level
annotations may be created collaboratively by hu-
man contributors, or extracted automatically from
Web documents or some other data source.
Goal: Given the data sources, the goal is to de-
termine to which concept c in the hierarchy H the
arguments of the target concept-level annotation
r should be attached. While the left argument of
acted-in could attach to ‘American Actors’, ‘Peo-
ple from Kiev’, ‘Entertainers’ or ‘People’, it is
best attached to the concept ‘Actors’. The goal
is to select the concept c that most appropriately
generalizes across the instances. Over the set I
of instance-level annotations, selecting a method
for this goal can be thought of as a minimization
problem. The metric to be minimized is the sum
of the distances between each predicted concept c
and the correct concept cgold, where the distance
is the number of edges between c and cgold in H .
Intuitions and Challenges: Given instances such
as milla jovovich that instantiate an argument of
an annotation like acted-in, the conceptual hierar-
chy can be used to propagate the annotation up-
wards, from instances to their concepts, then in
turn further upwards to more general concepts.
The best concept would be one of the many can-
didate concepts reached during propagation. In-
tuitively, when compared to other candidate con-
cepts, a higher proportion of the descendant in-
stances of the best concept should instantiate (or
match) the annotation. At the same time, rela-
tive to other candidate concepts, the best concept
should have more descendant instances.

While the intuitions seem clear, their inclu-
sion in a working method faces a series of prac-
tical challenges. First, the data sources may be
noisy. One form of noise is missing or erroneous
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Conceptual hierarchy
Entities

Locations People

Singers Actors

American Actors English Actors

Instance-level annotations
acted-in(leonardo dicaprio, inception)
acted-in(milla jovovich, fifth element)
acted-in(judy dench, casino royale)
acted-in(colin firth, the king’s speech)

Instance to concept mappings
leonardo dicaprio: American Actors
milla jovovich: American Actors
judy dench: English Actors
colin firth: English Actors

Candidate concepts
Entities
People
Actors
American Actors
English Actors

Raw statistics
Entities, 4, 0.01 . . .
People, 3, 0.1 . . .
Actors, 2, 0.7 . . .
American Actors, 1, 0.9 . . .
English Actors, 1, 0.8 . . .

Features Depth, Instance Percent . . .

Query logs
fifth element actors
fifth element costumes
inception quotes
out of africa actors
the king’s speech oscars

Classified data
0, People-Actors, 3/2, 0.1/0.7 . . .
1, Actors-People, 2/3, 0.7/0.1 . . .
1, Actors-American Actors, 2/1, 0.7/0.9 . . .
0, American Actors-Actors, 1/2, 0.9/0.7 . . .
.
.
.

Training/testing data
People-Actors, 3/2, 0.1/0.7 . . .
Actors-People, 2/3, 0.7/0.1 . . .
Actors-American Actors, 2/1, 0.7/0.9 . . .
American Actors-Actors, 1/2, 0.9/0.7 . . .
.
.
.

Ranked data (for Concept-level annotations)
4, Actors
3, People
2, American Actors
1, English Actors
0, Entities

Concept-level annotations
acted-in(Actors, ?)

Figure 2: Method Overview: Inferring concept-level annotations from instance-level annotations.

instance-level annotations, which may artificially
skew the distribution of matching instances to-
wards a less than optimal region in the hierarchy.
If the input annotations for acted-in are available
almost exhaustively for all descendant instances
of ‘American Actors’, and are available for only a
few of the descendant instances of ‘Belgian Ac-
tors’, ‘Italian Actors’ etc., then the distribution
over the hierarchy may incorrectly suggest that
the left argument of acted-in is ‘American Actors’
rather than the more general ‘Actors’. In another
example, if virtually all instances that instantiate
the left argument of the annotation won-award are
mapped to the concept ‘Award Winning Actors’,
then it would be difficult to distinguish ‘Award
Winning Actors’ from the more general ‘Actors’
or ‘People’, as best concept to be computed for
the annotation. Another type of noise is missing
or erroneous edges in the hierarchy, which could
artificially direct propagation towards irrelevant
regions of the hierarchy, or prevent propagation
from even reaching relevant regions of the hier-
archy. For example, if the hierarchy incorrectly
maps ‘Actors’ to ‘Entertainment’, then ‘Entertain-
ment’ and its ancestor concepts incorrectly be-
come candidate concepts during propagation for
the left argument of acted-in. Conversely, if miss-
ing edges caused ‘Actors’ to not have any children
in the hierarchy, then ‘Actors’ would not even be
reached and considered as a candidate concept
during propagation.

Second, to apply evidence collected from some
annotations to a new annotation, the evidence
must generalize across annotations. However,
collected evidence or statistics may vary widely
across annotations. Observing that 90% of all de-
scendant instances of the concept ‘Actors’ match
an annotation acted-in constitutes strong evidence
that ‘Actors’ is a good concept for acted-in. In
contrast, observing that only 0.09% of all descen-
dant instances of the concept ‘Football Teams’
match won-super-bowl should not be as strong
negative evidence as the percentage suggests.

2.2 Inferring Concept-Level Annotations

Determining Candidate Concepts: As illus-
trated in the left part of Figure 2, the first step to-
wards inferring concept-level from instance-level
annotations is to propagate the instances that in-
stantiate a particular argument of the annota-
tion, upwards in the hierarchy. Starting from the
left arguments of the annotation acted-in, namely
leonardo dicaprio, milla jovovich etc., the prop-
agation reaches their parent concepts ‘American
Actors’, ‘English Actors’, then their parent and
ancestor concepts ‘Actors’, ‘People’, ‘Entities’
etc. The concepts reached during upward prop-
agation become candidate concepts. In subse-
quent steps, the candidates are modeled, scored
and ranked such that ideally the best concept is
ranked at the top.
Ranking Candidate Concepts: The identifica-
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tion of a ranking function is cast as a semi-
supervised learning problem. Given the cor-
rect (gold) concept of an annotation, it would be
tempting to employ binary classification directly,
by marking the correct concept as a positive ex-
ample, and all other candidate concepts as nega-
tive examples. Unfortunately, this would produce
a highly imbalanced training set, with thousands
of negative examples and, more importantly, with
only one positive example. Another disadvan-
tage of using binary classification directly is that
it is difficult to capture the preference for concepts
closer in the hierarchy to the correct concept, over
concepts many edges away. Finally, the absolute
values of the features that might be employed may
be comparable within an annotation, but incompa-
rable across annotations, which reduces the porta-
bility of the resulting model to new annotations.

To address the above issues, the ranking func-
tion proposed does not construct training exam-
ples from raw features collected for each indi-
vidual candidate concept. Instead, it constructs
training examples from pairwise comparisons of
a candidate concept with another candidate con-
cept. Concretely, a pairwise comparison is la-
beled as a positive example if the first concept is
closer to the correct concept than the second, or as
negative otherwise. The pairwise formulation has
three immediate advantages. First, it accomodates
the preference for concepts closer to the gold con-
cept. Second, the pairwise formulation produces
a larger, more balanced training set. Third, deci-
sions of whether the first concept being compared
is more relevant than the second are more likely to
generalize across annotations, than absolute deci-
sions of whether (and how much) a particular con-
cept is relevant for a given annotation.

Compiling Ranking Features: The features are
grouped into four categories: (A) annotation co-
occurrence features, (B) concept features, (C) ar-
gument co-occurrence features, and (D) combina-
tion features, as described below.

(A) Annotation Co-occurrence Features: The
annotation co-occurrence features emphasize how
well an annotation applies to a concept. These
features include (1) MATCHED INSTANCES the
number of descendant instances of the concept
that appear with the annotation, (2) INSTANCE
PERCENT the percentage of matched instances in
the concept, (3) MORE THAN THREE MATCHING
INSTANCES and (4) MORE THAN TEN MATCH-
ING INSTANCES, which indicate when the match-

ing descendant instances might be noise.
Also in this category are features that relay in-

formation about the candidate concept’s children
concepts. These features include (1) MATCHED
CHILDREN the number of child concepts con-
taining at least one matching instance, (2) CHIL-
DREN PERCENT the percentage of child concepts
with at least one matching instance, (3) AVG IN-
STANCE PERCENT CHILDREN the average per-
centage of matching descendant instances of the
child concepts, and (4) INSTANCE PERCENT TO
INSTANCE PERCENT CHILDREN the ratio be-
tween INSTANCE PERCENT and AVERAGE IN-
STANCE PERCENT OF CHILDREN. The last fea-
ture is meant to capture dramatic changes in per-
centages when moving in the hierarchy from child
concepts to the candidate concept in question.

(B) Concept Features: Concept features ap-
proximate the generality of the concepts: (1)
NUM INSTANCES the number of descendant in-
stances of the concept, (2) NUM CHILDREN the
number of child concepts, and (3) DEPTH the dis-
tance to the concept’s farthest descendant.

(C) Argument Co-occurrence Features: The ar-
gument co-occurrence features model the likeli-
hood that an annotation applies to a concept by
looking at co-occurrences with another argument
of the same annotation. Intuitively, if a con-
cept representing one argument has a high co-
occurrence with an instance that is some other ar-
gument, a relationship more likely exists between
members of the concept and the instance. For ex-
ample, given acted-in, ‘Actors’ is likely to have a
higher co-occurrence with casablanca than ‘Peo-
ple’ is. These features are generated from a set of
Web queries. Therefore, the collected values are
likely to be affected by different noise than that
present in the original dataset. For every concept
and instance pair from the arguments of a given
annotation, they feature the number of times each
of the tokens in the concept appears in the same
query with each of the tokens in the instance,
normalizing to the respective number of tokens.
The procedure generates, for each candidate con-
cept, an average co-occurrence score (AVG CO-
OCCURRENCE) and a total co-occurrence score
(TOTAL CO-OCCURRENCE) over all instances the
concept is paired with.

(D) Combination Features: The last group
of features are combinations of the above fea-
tures: (1) DEPTH, INSTANCE PERCENT which is
DEPTH multiplied by INSTANCE PERCENT, and
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Concept Distance Match Total Match Total AvgInst Depth Avg Total
ToCorrect Inst Inst Child Child PercOfChild Cooccur Cooccur

People 4 36512 879423 22 29 4% 14 0.67 33506
Actors 0 29101 54420 6 10 32% 6 2.08 99971

English Actors 2 3091 5922 3 4 37% 3 2.75 28378

Labeled Concept Pair Annotation Co-occurrence Concept Arg Co-occurrence Combination
Features Features Features Features

Concept Label Match Inst Match Child AvgInst Num Num Depth Avg Total Depth DepthInst
Pair Inst Perc Child Perc PercChild Inst Child Cooccur Cooccur InstPerc PercChild

People-Actors 0 1.25 0.08 3.67 1.26 0.13 1.25 3.67 2.33 0.32 0.34 0.18 0.66
Actors-People 1 0.8 12.88 0.27 0.79 7.65 0.8 0.27 0.43 3.11 2.98 5.52 1.51

Actors-English Actors 1 9.41 1.02 2.0 0.8 0.87 9.41 2.0 2.0 0.76 3.52 2.05 4.1
English Actors-Actors 0 0.11 0.98 0.5 1.25 1.15 0.11 0.5 0.5 1.32 0.28 0.49 0.24
English Actors-People 1 0.08 12.57 0.14 0.99 8.82 0.08 0.14 0.21 4.12 0.85 2.69 0.37
People-English Actors 0 11.81 0.08 7.33 1.01 0.11 11.81 7.33 4.67 0.24 1.18 0.37 2.72

Table 1: Training/Testing Examples: The top table shows examples of raw statistics gathered for three candidate
concepts for the left argument of the annotation acted-in. The second table shows the training/testing examples
generated from these concepts and statistics. Each example represents a pair of concepts which is labeled positive
if the first concept is closer to the correct concept than the second concept. Features shown here are the ratio
between a statistic for the first concept and a statistic for the second (e.g. DEPTH for Actors-English Actors is 2
as ‘Actors’ has depth of 6 and ‘English Actors’ has depth of 3). Some features omitted due to space constraints.

(2) DEPTH, INSTANCE PERCENT, CHILDREN,
which is the DEPTH multipled by the INSTANCE
PERCENT multiplied by MATCHED CHILDREN.
Both these features seek to balance the perceived
relevance of an annotation to a candidate concept,
with the generality of the candidate concept.
Generating Learning Examples: For a given
annotation, the ranking features described so far
are computed for each candidate concept (e.g.,
‘Movie Actors’, ‘Models’, ‘Actors’). However,
the actual training and testing examples are gener-
ated for pairs of candidate concepts (e.g., <‘Film
Actors’, ‘Models’>, <‘Film Actors’, ‘Actors’>,
<‘Models, ‘Actors’>). A training example rep-
resents a comparison between two candidate con-
cepts, and specifies which of the two is more rele-
vant. To create training and testing examples, the
values of the features of the first concept in the
pair are respectively combined with the values of
the features of the second concept in the pair to
produce values corresponding to the entire pair.

Following classification of testing examples,
concepts are ranked according to the number of
other concepts which they are classified as more
relevant than. Table 1 shows examples of train-
ing/testing data.

3 Experimental Setting

3.1 Data Sources
Conceptual Hierarchy: The experiments com-
pute concept-level annotations relative to a con-

ceptual hierarchy derived automatically from the
Wikipedia (Remy, 2002) category network, as de-
scribed in (Ponzetto and Navigli, 2009). The hi-
erarchy filters out edges (e.g., from ‘British Film
Actors’ to ‘Cinema of the United Kingdom’) from
the Wikipedia category network that do not corre-
spond to IsA relations. A concept in the hierarchy
is a Wikipedia category (e.g., ‘English Film Ac-
tors’) that has zero or more Wikipedia categories
as child concepts, and zero or more Wikipedia
categories (e.g., ‘English People by Occupation’,
‘British Film Actors’) as parent concepts. Each
concept in the hierarchy has zero or more in-
stances, which are the Wikipedia articles listed (in
Wikipedia) under the respective categories (e.g.,
colin firth is an instance of ‘English Actors’).

Instance-Level Annotations: The experiments
exploit a set of binary instance-level annotations
(e.g., acted-in, composed) among Wikipedia in-
stances, as available in Freebase (Bollacker et
al., 2008). The annotation is a Freebase prop-
erty (e.g., /music/composition/composer). Inter-
nally, the left and right arguments are Freebase
topic identifiers mapped to their corresponding
Wikipedia articles (e.g., /m/03f4k mapped to the
Wikipedia article on george gershwin). In this pa-
per, the derived annotations and instances are dis-
played in a shorter, more readable form for con-
ciseness and clarity. As features do not use the
label of the annotation, labels are never used in
the experiments and evaluation.
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Web Search Queries: The argument co-
occurrence features described above are com-
puted over a set of around 100 million
anonymized Web search queries from 2010.

3.2 Experimental Runs

The experimental runs exploit ranking features
described in the previous section, employing:
• one of three learning algorithms: naive Bayes

(NAIVEBAYES), maximum entropy (MAXENT),
or perceptron (PERCEPTRON) (Mitchell, 1997),
chosen for their scalability to larger datasets via
distributed implementations.
• one of three ways of combining the values

of features collected for individual candidate con-
cepts into values of features for pairs of candidate
concepts: the raw ratio of the values of the re-
spective features of the two concepts (0 when the
denominator is 0); the ratio scaled to the interval
[0, 1]; or a binary value indicating which of the
values is larger.

For completeness, the experiments include
three additional, baseline runs. Each baseline
computes scores for all candidate concepts based
on the respective metric; then candidate concepts
are ranked in decreasing order of their scores. The
baselines metrics are:
• INSTPERCENT ranks candidate concepts by

the percentage of matched instances that are de-
scendants of the concept. It emphasizes concepts
which are “proven” to belong to the annotation;
• ENTROPY ranks candidate concepts by the

entropy (Shannon, 1948) of the proportion of
matched descendant instances of the concept;
• AVGDEPTH ranks candidate concepts by

their distances to half of the maximum hierarchy
height, emphasizing a balance of generality and
specificity.

3.3 Evaluation Procedure

Gold Standard of Concept-Level Annotations:
A random, weighted sample of 200 annotation la-
bels (e.g., corresponding to composed-by, play-
instrument) is selected, out of the set of labels
of all instance-level annotations collected from
Freebase. During sampling, the weights are the
counts of distinct instance-level annotations (e.g.,
<rhapsody in blue, george gershwin>) avail-
able for the label. The arguments of the anno-
tation labels are then manually annotated with
a gold concept, which is the category from the
Wikipedia hierarchy that best captures their se-

mantics. The manual annotation is carried out
independently by two human judges, who then
verify each other’s work and discard inconsisten-
cies. For example, the gold concept of the left
argument of composed-by is annotated to be the
Wikipedia category ‘Musical Compositions’. In
the process, some annotation labels are discarded,
when (a) it is not clear what concept captures an
argument (e.g., for the right argument of function-
of-building), or (b) more than 5000 candidate con-
cepts are available via propagation for one of the
arguments, which would cause too many train-
ing or testing examples to be generated via con-
cept pairs, and slow down the experiments. The
retained 139 annotation labels, whose arguments
have been labeled with their respective gold con-
cepts, form the gold standard for the experiments.
More precisely, an entry in the resulting gold stan-
dard consists of an annotation label, one of its
arguments being considered (left or right), and
a gold concept that best captures that argument.
The set of annotation labels from the gold stan-
dard is quite diverse and covers many domains of
potential interest, e.g., has-company(‘Industries’,
‘Companies’), written-by(‘Films’, ‘Screenwrit-
ers’), member-of (‘Politicians’,‘Political Parties’),
or part-of-movement(‘Artists’, ‘Art Movements’).
Evaluation Metric: Following previous work
on selectional preferences (Kozareva and Hovy,
2010; Ritter et al., 2010), each entry in the gold
standard, (i.e., each argument for a given annota-
tion) is evaluated separately. Experimental runs
compute a ranked list of candidate concepts for
each entry in the gold standard. In theory, a com-
puted candidate concept is better if it is closer
semantically to the gold concept. In practice,
the accuracy of a ranked list of candidate con-
cepts, relative to the gold concept of the anno-
tation label, is measured by two scoring metrics
that correspond to the mean reciprocal rank score
(MRR) (Voorhees and Tice, 2000) and a modifi-
cation of it (DRR) (Paşca and Alfonseca, 2009):

MRR =
1

N

N∑
i=1

max
rank

1

ranki

N is the number of annotations and ranki is the
rank of the gold concept in the returned list for
MRR. An annotation ai receives no credit for
MRR if the gold concept does not appear in the
corresponding ranked list.

DRR =
1

N

N∑
i=1

max
rank

1

ranki × (1 + Len)

For DRR, ranki is the rank of a candidate con-
cept in the returned list and Len is the length of
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Annotation (Number of Candidate Concepts) Examples of Instances Top Ranked Concepts
Composers compose Musical Compositions (3038) aaron copland; black sabbath Music by Nationality; Composers; Classical

Composers
Musical Compositions composed-by Composers (1734) we are the champions; yor-

ckscher marsch
Musical Compositions; Compositions by
Composer; Classical Music

Foods contain Nutrients (1112) acca sellowiana; lasagna Foods; Edible Plants; Food Ingredients
Organizations has-boardmember People (3401) conocophillips; spence school Companies by Stock Exchange; Companies

Listed on the NYSE; Companies
Educational Organizations has-graduate Alumni (4072) air force institute of technology;

deering high school
Education by Country; Schools by Country;
Universities and Colleges by Country

Television Actors guest-role Fictional Characters (4823) melanie griffith; patti laBelle Television Actors by Nationality; Actors;
American Actors

Musical Groups has-member Musicians (2287) steroid maximus; u2 Musical Groups; Musical Groups by Genre;
Musical Groups by Nationality

Record Labels represent Musician (920) columbia records; vandit Record Labels; Record Labels by Country;
Record Labels by Genre

Awards awarded-to People (458) academy award for best original
song; erasmus prize

Film Awards; Awards; Grammy Awards

Foods contain Nutrients (177) lycopene; glutamic acid Carboxylic Acids ; Acids; Essential Nutrients
Architects design Buildings and Structures (4811) 20 times square; berkeley build-

ing
Buildings and Structures; Buildings and Struc-
tures by Architect; Houses by Country

People died-from Causes of Death (577) malaria; skiing Diseases; Infectious Diseases; Causes of
Death

Art Directors direct Films (1265) batman begins; the lion king Films; Films by Director; Film
Episodes guest-star Television Actors (1067) amy poehler; david caruso Television Actors by Nationality; Actors;

American Actors
Television Network has-tv-show Television Series (2492) george of the jungle; great expec-

tations
Television Series by Network; Television Se-
ries; Television Series by Genre

Musicians play Musical Instruments (423) accordion; tubular bell Musical Instruments; Musical Instruments by
Nationality; Percussion Instruments

Politicians member-of Political Parties (938) independent moralizing front;
national coalition party

Political Parties; Political Parties by Country;
Political Parties by Ideology

Table 2: Concepts Computed for Gold-Standard Annotations: Examples of entries from the gold standard and
counts of candidate concepts (Wikipedia categories) reached from upward propagation of instances (Wikipedia
instances). The target gold concept is shown in bold. Also shown are examples of Wikipedia instances, and the
top concepts computed by the best-performing learning algorithm for the respective gold concepts.

the minimum path in the hierarchy between the
concept and the gold concept. Len is minimum
(0) if the candidate concept is the same as the gold
standard concept. A given annotation ai receives
no credit for DRR if no path is found between the
returned concepts and the gold concept.

As an illustration, for a single annotation, the
right argument of composed-by, the ranked list
of concepts returned by an experimental may
be [‘Symphonies by Anton Bruckner’, ‘Sym-
phonies by Joseph Haydn’, ‘Symphonies by Gus-
tav Mahler’, ‘Musical Compositions’, ..], with the
gold concept being ‘Musical Compositions’. The
length of the path between ‘Symphonies by An-
ton Bruckner’ etc. and ‘Musical Compositions’ is
2 (via ‘Symphonies’). Therefore, the MRR score
would be 0.25 (given by the fourth element of
the ranked list), whereas the DRR score would be
0.33 (given by the first element of the ranked list).

MRR and DRR are computed in five-fold cross
validation. Concretely, the gold standard is split
into five folds such that the sets of annotation la-
bels in each fold are disjoint. Thus, none of

the annotation labels in testing appears in train-
ing. This restriction makes the evaluation more
rigurous and conservative as it actually assesses
the extent the models learned are applicable to
new, previously unseen annotation labels. If
this restriction were relaxed, the baselines would
preform equivalently as they do not depend on
the training data, but the learned methods would
likely do better.

4 Evaluation Results

4.1 Quantitative Results
Conceptual Hierarchy: The conceptual hierar-
chy contains 108,810 Wikipedia categories, and
its maximum depth, measured as the distance
from a concept to its farthest descendant, is 16.
Candidate Concepts: On average, for the gold
standard, the method propagates a given annota-
tion from instances to 1,525 candidate concepts,
from which the single best concept must be deter-
mined. The left part of Table 2 illustrates the num-
ber of candidate concepts reached during propa-
gation for a sample of annotations.
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Experimental Run Accuracy
N=1 N=20

MRR DRR MRR DRR
→With raw-ratio features:

NAIVEBAYES 0.021 0.180 0.054 0.222
MAXENT 0.029 0.168 0.045 0.208

PERCEPTRON 0.029 0.176 0.045 0.216
→With scaled-ratio features:

NAIVEBAYES 0.050 0.170 0.112 0.243
MAXENT 0.245 0.456 0.430 0.513

PERCEPTRON 0.245 0.391 0.367 0.461
→With binary features:

NAIVEBAYES 0.115 0.297 0.224 0.361
MAXENT 0.165 0.390 0.293 0.441

PERCEPTRON 0.180 0.332 0.330 0.429
→ For baselines:

INSTPERCENT 0.029 0.173 0.045 0.224
ENTROPY 0.000 0.110 0.007 0.136

AVGDEPTH 0.007 0.018 0.028 0.045

Table 3: Precision Results: Accuracy of ranked lists
of concepts (Wikipedia categories) computed by var-
ious runs, as an average over the gold standard of
concept-level annotations, considering the top N can-
didate concepts computed for each gold standard entry.

4.2 Qualitative Results

Precision: Table 3 compares the precision of the
ranked lists of candidate concepts produced by the
experimental runs. The MRR and DRR scores in
the table consider either at most 20 of the concepts
in the ranked list computed by a given experimen-
tal run, or only the first, top ranked computed con-
cept. Note that, in the latter case, the MRR and
DRR scores are equivalent to precision@1 scores.

Several conclusions can be drawn from the re-
sults. First, as expected by definition of the
scoring metrics, DRR scores are higher than the
stricter MRR scores, as they give partial credit
to concepts that, while not identical to the gold
concepts, are still close approximations. This is
particularly noticeable for the runs MAXENT and
PERCEPTRON with raw-ratio features (4.6 and
4.8 times higher respectively). Second, among
the baselines, INSTPERCENT is the most accu-
rate, with the computed concepts identifying the
gold concept strictly at rank 22 on average (for
an MRR score 0.045), and loosely at an aver-
age of 4 steps away from the gold concept (for
a DRR score of 0.224). Third, the accuracy of
the learning algorithms varies with how the pair-
wise feature values are combined. Overall, raw-
ratio feature values perform the worst, and scaled-
ratio the best, with binary in-between. Fourth,
the scores of the best experimental run, MAXENT
with scaled-ratio features, are 0.430 (MRR) and

0.513 (DRR) over the top 20 computed concepts,
and 0.245 (MRR) and 0.456 (DRR) when consid-
ering only the first concept. These scores corre-
spond to the ranked list being less than one step
away in the hierarchy. The very first computed
concept exactly matches the gold concept in about
one in four cases, and is slightly more than one
step away from it. In comparison, the very first
concept computed by the best baseline matches
the gold concept in about one in 35 cases (0.029
MRR), and is about 6 steps away (0.173 DRR).
The accuracies of the various learning algorithms
(not shown) were also measured and correlated
roughly with the MRR and DRR scores.
Discussion: The baseline runs INSTPERCENT
and ENTROPY produce categories that are far
too specific. For the gold annotation composed-
by(‘Composers’, ‘Musical Compositions’), INST-
PERCENT produces ‘Scottish Flautists’ for the left
argument and ‘Operas by Ernest Reyer’ for the
right. AVGDEPTH does not suffer from over-
specification, but often produces concepts that
have been reached via propagation, yet are not
close to the gold concept. For composed-by,
AVGDEPTH produces ‘Film’ for the left argument
and ‘History by Region’ for the right.

4.3 Error Analysis

The right part of Table 2 provides a more de-
tailed view into the best performing experimental
run, showing actual ranked lists of concepts pro-
duced for a sample of the gold standard entries
by MAXENT with scaled-ratio. A separate analy-
sis of the results indicates that the most common
cause of errors is noise in the conceptual hier-
archy, in the form of unbalanced instance-level
annotations and missing hierarchy edges. Un-
balanced annotations are annotations where cer-
tain subtrees of the hierarchy are artificially more
populated than other subtrees. For the left argu-
ment of the annotation has-profession, 0.05% of
‘New York Politicians’ are matched but 70% of
‘Bushrangers’ are matched. Such imbalances may
be inherent to how annotations are added to Free-
base: different human contributors may add new
annotations to particular portions of Freebase, but
miss other relevant portions.

The results are also affected by missing edges
in the hierarchy. Of the more than 100K con-
cepts in the hierarchy, 3479 are roots of subhier-
archies that are mutually disconnected. Exam-
ples are ‘People by Region’, ‘Shades of Red’, and
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‘Members of the Parliament of Northern Ireland’,
all of which should have parents in the hierarchy.
If a few edges are missing in a particular region
of the hierarchy, the method can recover, but if so
many edges are missing that a gold concept has
very few descendants, then propagation can be
substantially affected. In the worst case, the gold
concept becomes disconnected, and thus will be
missing from the set of candidate concepts com-
piled during propagation. For example, for the
annotation team-color(‘Sports Clubs’, ‘Colors’),
the only descendant concept of ‘Colors’ in the hi-
erarchy is ‘Horse Coat Colors’, meaning that the
gold concept ‘Colors’ is not reached during prop-
agation from instances upwards in the hierarchy.

5 Related Work

Similar to the task of attaching a semantic anno-
tation to the concept in a hierarchy that has the
best level of generality is the task of finding se-
lectional preferences for relations. Most relevant
to this paper is work that seeks to find the appro-
priate concept in a hierarchy for an argument of
a specific relation (Ribas, 1995; McCarthy, 1997;
Li and Abe, 1998). Li and Abe (1998) address
this problem by attempting to identify the best tree
cut in a hierarchy for an argument of a given verb.
They use the minimum description length princi-
ple to select a set of concepts from a hierarchy to
represent the selectional preferences. This work
makes several limiting assumptions including that
the hierarchy is a tree, and every instance belongs
to just one concept. Clark and Weir (2002) inves-
tigate the task of generalizing a single relation-
concept pair. A relation is propagated up a hier-
archy until a chi-square test determines the differ-
ence between the probability of the child and par-
ent concepts to be significant where the probabili-
ties are relation-concept frequencies. This method
has no direct translation to the task discussed here;
it is unclear how to choose the correct concept if
instances generalize to different concepts.

In other research on selectional preferences,
Pantel et al. (2007), Kozareva and Hovy (2010)
and Ritter et al. (2010) focus on generating ad-
missible arguments for relations, and Erk (2007)
and Bergsma et al. (2008) investigate classifying
a relation-instance pair as plausible or not.

Important to this paper is the Wikipedia cate-
gory network (Remy, 2002) and work on refin-
ing it. Ponzetto and Navigli (2009) disambiguate
Wikipedia categories by using WordNet synsets

and use this semantic information to construct a
taxonomy. The resulting taxonomy is the concep-
tual hierarchy used in the evaluation.

Another related area of work is the discovery of
relations between concepts. Nastase and Strube
(2008) use Wikipedia category names and cate-
gory structure to generate a set of relations be-
tween concepts. Yan et al. (2009) discover re-
lations between Wikipedia concepts via deep lin-
guistic information and Web frequency informa-
tion. Mohamed et al. (2011) generate candi-
date relations by coclustering text contexts for ev-
ery pair of concepts in a hierarchy. In a sense,
this area of research is complementary to that dis-
cussed in this paper. These methods induce new
relations, and the proposed method can be used
to find appropriate levels of generalization for the
arguments of any given relation.

6 Conclusions

This paper introduces a method to convert flat sets
of instance-level annotations to hierarchically or-
ganized, concept-level annotations. The method
determines the appropriate concept for a given se-
mantic annotation in three stages. First, it propa-
gates annotations upwards in the hierarchy, form-
ing a set of candidate concepts. Second, it classi-
fies each candidate concept as more or less appro-
priate than each other candidate concept within an
annotation. Third, it ranks candidate concepts by
the number of other concepts relative to which it
is classified as more appropriate. Because the fea-
tures are comparisons between concepts within a
single semantic annotation, rather than consider-
ations of individual concepts, the method is able
to generalize across annotations, and can thus be
applied to new, previously unseen annotations.
Experiments demonstrate that, on average, the
method is able to identify the concept of a given
annotation’s argument within one hierarchy edge
of the gold concept.

The proposed method can take advantage of
existing work on open-domain information ex-
traction. The output of such work is usually
instance-level annotations, although often at sur-
face level (non-disambiguated arguments) rather
than semantic level (disambiguated arguments).
After argument disambiguation (e.g., (Dredze et
al., 2010)), the annotations can be used as input
to determining concept-level annotations. Thus,
the method has the potential to generalize any
existing database of instance-level annotations to
concept-level annotations.
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Abstract

We present a model of semantic processing
of spoken language that (a) is robust against
ill-formed input, such as can be expected
from automatic speech recognisers, (b) re-
spects both syntactic and pragmatic con-
straints in the computation of most likely
interpretations, (c) uses a principled, ex-
pressive semantic representation formalism
(RMRS) with a well-defined model the-
ory, and (d) works continuously (produc-
ing meaning representations on a word-
by-word basis, rather than only for full
utterances) and incrementally (computing
only the additional contribution by the new
word, rather than re-computing for the
whole utterance-so-far).
We show that the joint satisfaction of syn-
tactic and pragmatic constraints improves
the performance of the NLU component
(around 10 % absolute, over a syntax-only
baseline).

1 Introduction

Incremental processing for spoken dialogue sys-
tems (i. e., the processing of user input even while
it still may be extended) has received renewed at-
tention recently (Aist et al., 2007; Baumann et
al., 2009; Buß and Schlangen, 2010; Skantze and
Hjalmarsson, 2010; DeVault et al., 2011; Purver
et al., 2011). Most of the practical work, how-
ever, has so far focussed on realising the poten-
tial for generating more responsive system be-
haviour through making available processing re-
sults earlier (e. g. (Skantze and Schlangen, 2009)),
but has otherwise followed a typical pipeline ar-
chitecture where processing results are passed
only in one direction towards the next module.

In this paper, we investigate whether the other
potential advantage of incremental processing—
providing “higher-level”-feedback to lower-level
modules, in order to improve subsequent process-
ing of the lower-level module—can be realised as
well. Specifically, we experimented with giving a
syntactic parser feedback about whether semantic
readings of nominal phrases it is in the process of
constructing have a denotation in the given con-
text or not. Based on the assumption that speak-
ers do plan their referring expressions so that they
can successfully refer, we use this information to
re-rank derivations; this in turn has an influence
on how the derivations are expanded, given con-
tinued input. As we show in our experiments, for
a corpus of realistic dialogue utterances collected
in a Wizard-of-Oz setting, this strategy led to an
absolute improvement in computing the intended
denotation of around 10 % over a baseline (even
more using a more permissive metric), both for
manually transcribed test data as well as for the
output of automatic speech recognition.

The remainder of this paper is structured as fol-
lows: We discuss related work in the next section,
and then describe in general terms our model and
its components. In Section 4 we then describe the
data resources we used for the experiments and
the actual implementation of the model, the base-
lines for comparison, and the results of our exper-
iments. We close with a discussion and an outlook
on future work.

2 Related Work

The idea of using real-world reference to inform
syntactic structure building has been previously
explored by a number of authors. Stoness et al.
(2004, 2005) describe a proof-of-concept imple-
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mentation of a “continuous understanding” mod-
ule that uses reference information in guiding a
bottom-up chart-parser, which is evaluated on a
single dialogue transcript. In contrast, our model
uses a probabilistic top-down parser with beam
search (following Roark (2001)) and is evalu-
ated on a large number of real-world utterances
as processed by an automatic speech recogniser.
Similarly, DeVault and Stone (2003) describe a
system that implements interaction between a
parser and higher-level modules (in this case, even
more principled, trying to prove presuppositions),
which however is also only tested on a small, con-
structed data-set.

Schuler (2003) and Schuler et al. (2009) present
a model where information about reference is
used directly within the speech recogniser, and
hence informs not only syntactic processing but
also word recognition. To this end, the processing
is folded into the decoding step of the ASR, and
is realised as a hierarchical HMM. While techni-
cally interesting, this approach is by design non-
modular and restricted in its syntactic expressiv-
ity.

The work presented here also has connections
to work in psycholinguistics. Padó et al. (2009)
present a model that combines syntactic and se-
mantic models into one plausibility judgement
that is computed incrementally. However, that
work is evaluated for its ability to predict reading
time data and not for its accuracy in computing
meaning.

3 The Model

3.1 Overview

Described abstractly, the model computes the
probability of a syntactic derivation (and its ac-
companying logical form) as a combination of a
syntactic probability (as in a typical PCFG) and
a semantic or pragmatic plausibility.1 The prag-
matic plausibility here comes from the presuppo-
sition that the speaker intended her utterance to
successfully refer, i. e. to have a denotation in the
current situation (a unique one, in the case of def-
inite reference). Hence, readings that do have a
denotation are preferred over those that do not.

1Note that, as described below, in the actual implemen-
tation the weights given to particular derivations are not real
probabilities anymore, as derivations fall out of the beam and
normalisation is not performed after re-weighting.

The components of our model are described in
the following sections: first the parser which com-
putes the syntactic probability in an incremental,
top-down manner; the semantic construction al-
gorithm which associates (underspecified) logi-
cal forms to derivations; the reference resolution
component that computes the pragmatic plausi-
bility; and the combination that incorporates the
feedback from this pragmatic signal.

3.2 Parser

Roark (2001) introduces a strategy for incremen-
tal probabilistic top-down parsing and shows that
it can compete with high-coverage bottom-up
parsers. One of the reasons he gives for choosing
a top-down approach is that it enables fully left-
connected derivations, where at every process-
ing step new increments directly find their place
in the existing structure. This monotonically en-
riched structure can then serve as a context for in-
cremental language understanding, as the author
claims, although this part is not further developed
by Roark (2001). He discusses a battery of dif-
ferent techniques for refining his results, mostly
based on grammar transformations and on con-
ditioning functions that manipulate a derivation
probability on the basis of local linguistic and lex-
ical information.

We implemented a basic version of his parser
without considering additional conditioning or
lexicalizations. However, we applied left-facto-
rization to parts of the grammar to delay cer-
tain structural decisions as long as possible. The
search-space is reduced by using beam search. To
match the next token, the parser tries to expand
the existing derivations. These derivations are
stored in a priorized queue, which means that the
most probable derivation will always be served
first. Derivations resulting from rule expansions
are kept in the current queue, derivations result-
ing from a successful lexical match are pushed in
a new queue. The parser proceeds with the next
most probable derivation until the current queue
is empty or until a threshhold is reached at which
remaining analyses are pruned. This threshhold
is determined dynamically: If the probability of
the current derivation is lower than the product of
the best derivation’s probability on the new queue,
the number of derivations in the new queue, and a
base beam factor (an initial parameter for the size
of the search beam), then all further old deriva-
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P=0.002646
S=[adja, N1, VZ, S!]

FormulaIU
...

CandidateAnalysisIU
LD=[n1/nadj-nz, nadj/adja, i(nn)]

P=0.000441
S=[adja, NZ, VZ, S!]

FormulaIU
[ [l0:a1:e2]

{ [l42:a43:x44] [l29:a30:x14] [l0:a1:e2] }
ARG1(a1,x8),

l6:a7:addressee(x8),
l0:a1:_nehmen(e2),
ARG2(a1,x14),
BV(a13,x14),
RSTR(a13,h21),
BODY(a13,h22),
l12:a13:_def(),

l18:a19:_winkel(x14),
ARG1(a40,x14),
ARG2(a40,x44),
l39:a40:_in(e41),
qeq(h21,l18)]

CandidateAnalysisIU
LD=[nz/pp-nz, pp/appr-np, m(appr)]

P=0.0178605
S=[NP, NZ, VZ, S!]

TagIU
appr

FormulaIU
...

CandidateAnalysisIU
LD=[nz/advp-nz, advp/adv, i(appr)]

P=0.0003969
S=[adv, NZ, VZ, S!]

FormulaIU
...

CandidateAnalysisIU
LD=[nz/eps, vz/advp-vz, advp/adv, i(appr)]

P=0.00007938
S=[adv, VZ, S!]

TagIU
$TopOfTags

TextualWordIU
nimm

TextualWordIU
den

TextualWordIU
winkel

TextualWordIU
in

TextualWordIU
$TopOfWords

Figure 1: An example network of incremental units, including the levels of words, POS-tags, syntactic derivations
and logical forms. See section 3 for a more detailed description.

tions are pruned. Due to probabilistic weighing
and the left factorization of the rules, left recur-
sion poses no direct threat in such an approach.

Additionally, we implemented three robust lex-
ical operations: insertions consume the current
token without matching it to the top stack item;
deletions can “consume” a requested but actu-
ally non-existent token; repairs adjust unknown
tokens to the requested token. These robust op-
erations have strong penalties on the probability
to make sure they will survive in the derivation
only in critical situations. Additionally, only a
single one of them is allowed to occur between
the recognition of two adjacent input tokens.

Figure 1 illustrates this process for the first few
words of the example sentence “nimm den winkel
in der dritten reihe” (take the bracket in the third
row), using the incremental unit (IU) model to
represent increments and how they are linked; see
(Schlangen and Skantze, 2009).2 Here, syntactic

2Very briefly: rounded boxes in the Figures represent
IUs, and dashed arrows link an IU to its predecessor on the
same level, where the levels correspond to processing stages.
The Figure shows the levels of input words, POS-tags, syn-
tactic derivations and logical forms. Multiple IUs sharing

derivations (“CandidateAnalysisIUs”) are repre-
sented by three features: a list of the last parser ac-
tions of the derivation (LD), with rule expansions
or (robust) lexical matches; the derivation proba-
bility (P); and the remaining stack (S), where S*
is the grammar’s start symbol and S! an explicit
end-of-input marker. (To keep the Figure small,
we artificially reduced the beam size and cut off
alternatives paths, shown in grey.)

3.3 Semantic Construction Using RMRS

As a novel feature, we use for the representation
of meaning increments (that is, the contributions
of new words and syntactic constructions) as well
as for the resulting logical forms the formalism
Robust Minimal Recursion Semantics (Copestake,
2006). This is a representation formalism that was
originally constructed for semantic underspecifi-
cation (of scope and other phenomena) and then
adapted to serve the purposes of semantics repre-

the same predecessor can be regarded as alternatives. Solid
arrows indicate which information from a previous level an
IU is grounded in (based on); here, every semantic IU is
grounded in a syntactic IU, every syntactic IU in a POS-tag-
IU, and so on.
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sentations in heterogeneous situations where in-
formation from deep and shallow parsers must be
combined. In RMRS, meaning representations of
a first order logic are underspecified in two ways:
First, the scope relationships can be underspeci-
fied by splitting the formula into a list of elemen-
tary predications (EP) which receive a label ` and
are explicitly related by stating scope constraints
to hold between them (e.g. qeq-constraints). This
way, all scope readings can be compactly repre-
sented. Second, RMRS allows underspecification
of the predicate-argument-structure of EPs. Ar-
guments are bound to a predicate by anchor vari-
ables a, expressed in the form of an argument re-
lation ARGREL(a,x). This way, predicates can
be introduced without fixed arity and arguments
can be introduced without knowing which predi-
cates they are arguments of. We will make use of
this second form of underspecification and enrich
lexical predicates with arguments incrementally.

Combining two RMRS structures involves at
least joining their list of EPs and ARGRELs and
of scope constraints. Additionally, equations be-
tween the variables can connect two structures,
which is an essential requirement for semantic
construction. A semantic algebra for the combi-
nation of RMRSs in a non-lexicalist setting is de-
fined in (Copestake, 2007). Unsaturated semantic
increments have open slots that need to be filled
by what is called the hook of another structure.
Hook and slot are triples [`:a:x] consisting of a
label, an anchor and an index variable. Every vari-
able of the hook is equated with the corresponding
one in the slot. This way the semantic representa-
tion can grow monotonically at each combinatory
step by simply adding predicates, constraints and
equations.

Our approach differs from (Copestake, 2007)
only in the organisation of the slots: In an incre-
mental setting, a proper semantic representation
is desired for every single state of growth of the
syntactic tree. Typically, RMRS composition as-
sumes that the order of semantic combination is
parallel to a bottom-up traversal of the syntactic
tree. Yet, this would require for every incremental
step first to calculate an adequate underspecified
semantic representation for the projected nodes
on the lower right border of the tree and then to
proceed with the combination not only of the new
semantic increments but of the complete tree. For
our purposes, it is more elegant to proceed with

semantic combination in synchronisation with the
syntactic expansion of the tree, i.e. in a top-down
left-to-right fashion. This way, no underspecifica-
tion of projected nodes and no re-interpretation of
already existing parts of the tree is required. This,
however, requires adjustments to the slot structure
of RMRS. Left-recursive rules can introduce mul-
tiple slots of the same sort before they are filled,
which is not allowed in the classic (R)MRS se-
mantic algebra, where only one named slot of
each sort can be open at a time. We thus organize
the slots as a stack of unnamed slots, where mul-
tiple slots of the same sort can be stored, but only
the one on top can be accessed. We then define
a basic combination operation equivalent to for-
ward function composition (as in standard lambda
calculus, or in CCG (Steedman, 2000)) and com-
bine substructures in a principled way across mul-
tiple syntactic rules without the need to represent
slot names.

Each lexical items receives a generic represen-
tation derived from its lemma and the basic se-
mantic type (individual, event, or underspecified
denotations), determined by its POS tag. This
makes the grammar independent of knowledge
about what later (semantic) components will ac-
tually be able to process (“understand”).3 Parallel
to the production of syntactic derivations, as the
tree is expanded top-down left-to-right, seman-
tic macros are activated for each syntactic rule,
composing the contribution of the new increment.
This allows for a monotonic semantics construc-
tion process that proceeds in lockstep with the
syntactic analysis.

Figure 1 (in the ”FormulaIU” box) illustrates
the results of this process for our example deriva-
tion. Again, alternatives paths have been cut to
keep the size of the illustration small. Notice that,
apart from the end-of-input marker, the stack of
semantic slots (in curly brackets) is always syn-
chronized with the parser’s stack.

3.4 Computing Noun Phrase Denotations

Formally, the task of this module is, given a model
M of the current context, to compute the set of
all variable assignments such that M satisfies φ:
G = {g | M |=g φ}. If |G| > 1, we say that φ
refers ambiguously; if |G| = 1, it refers uniquely;

3This feature is not used in the work presented here, but
it could be used for enabling the system to learn the meaning
of unknown words.

517



and if |G| = 0, it fails to refer. This process does
not work directly on RMRS formulae, but on ex-
tracted and unscoped first-order representations of
their nominal content.

3.5 Parse Pruning Using Reference
Information

After all possible syntactic hypotheses at an in-
crement have been derived by the parser and
the corresponding semantic representations have
been constructed, reference resolution informa-
tion can be used to re-rank the derivations. If
pragmatic feedback is enabled, the probability of
every reprentation that does not resolve in the cur-
rent context is degraded by a constant factor (we
used 0.001 in our experiments described below,
determined by experimentation). The degradation
thus changes the derivation order in the parsing
queue for the next input item and increases the
chances of degraded derivations to be pruned in
the following parsing step.

4 Experiments and Results

4.1 Data

We use data from the Pentomino puzzle piece do-
main (which has been used before for example
by (Fernández and Schlangen, 2007; Schlangen et
al., 2009)), collected in a Wizard-of-Oz study. In
this specific setting, users gave instructions to the
system (the wizard) in order to manipulate (select,
rotate, mirror, delete) puzzle pieces on an upper
board and to put them onto a lower board, reach-
ing a pre-specified goal state. Figure 2 shows an
example configuration. Each participant took part
in several rounds in which the distinguishing char-
acteristics for puzzle pieces (color, shape, pro-
posed name, position on the board) varied widely.
In total, 20 participants played 284 games.

We extracted the semantics of an utterance
from the wizard’s response action. In some cases,
such a mapping was not possible to do (e. g. be-
cause the wizard did not perform a next action,
mimicking a non-understanding by the system),
or potentially unreliable (if the wizard performed
several actions at or around the end of the utter-
ance). We discarded utterances without a clear se-
mantics alignment, leaving 1687 semantically an-
notated user utterances. The wizard of course was
able to use her model of the previous discourse for
resolving references, including anaphoric ones; as

Figure 2: The game board used in the study, as pre-
sented to the player: (a) the current state of the game
on the left, (b) the goal state to be reached on the right.

our study does not focus on these, we have dis-
regarded another 661 utterances in which pieces
are referred to by pronouns, leaving us with 1026
utterances for evaluation. These utterances con-
tained on average 5.2 words (median 5 words;
std dev 2 words).

In order to test the robustness of our method,
we generated speech recognition output using an
acoustic model trained for spontaneous (German)
speech. We used leave-one-out language model
training, i. e. we trained a language model for ev-
ery utterance to be recognized which was based
on all the other utterances in the corpus. Unfor-
tunately, the audio recordings of the first record-
ing day were too quiet for successful recognition
(with a deletion rate of 14 %). We thus decided
to limit the analysis for speech recognition out-
put to the remaining 633 utterances from the other
recording days. On this part of the corpus word
error rate (WER) was at 18 %.

The subset of the full corpus that we used for
evaluation, with the utterances selected according
to the criteria described above, nevertheless still
only consists of natural, spontaneous utterances
(with all the syntactic complexity that brings) that
are representative for interactions in this type of
domain.

4.2 Grammar and Resolution Model

The grammar used in our experiments was hand-
constructed, inspired by a cursory inspection of
the corpus and aiming to reach good coverage
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Words Predicates Status
nimm nimm(e) -1
nimm den nimm(e,x) def(x) 0
nimm den Winkel nimm(e,x) def(x) winkel(x) 0
nimm den Winkel in nimm(e,x) def(x) winkel(x) in(x,y) 0
nimm den Winkel in der nimm(e,x) def(x) winkel(x) in(x,y) def(y) 0
nimm den Winkel in der dritten nimm(e,x) def(x) winkel(x) in(x,y) def(y) third(y) 1
nimm den Winkel in der dritten Reihe nimm(e,x) def(x) winkel(x) in(x,y) def(y) third(y) row(y) 1

Table 1: Example of logical forms (flattened into first-order base-language formulae) and reference resolution
results for incrementally parsing and resolving ‘nimm den winkel in der dritten reihe’

for a core fragment. We created 30 rules, whose
weights were also set by hand (as discussed be-
low, this is an obvious area for future improve-
ment), sparingly and according to standard intu-
itions. When parsing, the first step is the assign-
ment of a POS tag to each word. This is done by
a simple lookup tagger that stores the most fre-
quent tag for each word (as determined on a small
subset of our corpus).4

The situation model used in reference resolu-
tion is automatically derived from the internal
representation of the current game state. (This
was recorded in an XML-format for each utter-
ance in our corpus.) Variable assignments were
then derived from the relevant nominal predicate
structures,5 consisting of extracted simple pred-
ications, e. g. red(x) and cross(x) for the NP in
a phrase such as “take the red cross”. For each
unique predicate argument X in these EP struc-
tures (such as as x above), the set of domain ob-
jects that satisfied all predicates of which X was
an argument were determined. For example for
the phrase above, X mapped to all elements that
were red and crosses.

Finally, the size of these sets was determined:
no elements, one element, or multiple elements,
as described above. Emptiness of at least one set
denoted that no resolution was possible (for in-
stance, if no red crosses were available, x’s set
was empty), uniqueness of all sets denoted that
an exact resolution was possible while multiple
elements in at least some sets denoted ambiguity.
This status was then leveraged for parse pruning,
as per Section 3.5.

A more complex example using the scene de-
picted in Figure 2 and the sentence “nimm den

4A more sophisticated approach has recently been pro-
posed by Beuck et al. (2011); this could be used in our setup.

5The domain model did not allow making a plausibility
judgement based on verbal resolution.

winkel in der dritten reihe” (take the bracket in the
third row) is shown in Table 1. The first column
shows the incremental word hypothesis string, the
second the set of predicates derived from the most
recent RMRS representation and the third the res-
olution status (-1 for no resolution, 0 for some res-
olution and 1 for a unique resolution).

4.3 Baselines and Evaluation Metric
4.3.1 Variants / Baselines

To be able to accurately quantify and assess the
effect of our reference-feedback strategy, we im-
plemented different variants / baselines. These all
differ in how, at each step, the reading is deter-
mined that is evaluated against the gold standard,
and are described in the following:

In the Just Syntax (JS) variant, we simply take
single-best derivation, as determined by syntax
alone and evaluate this.

The External Filtering (EF) variant adds in-
formation from reference resolution, but keeps
it separate from the parsing process. Here, we
look at the 5 highest ranking derivations (as de-
termined by syntax alone), and go through them
beginning at the highest ranked, picking the first
derivation where reference resolution can be per-
formed uniquely; this reading is then put up for
evaluation. If there is no such reading, the highest
ranking one will be put forward for evaluation (as
in JS).

Syntax/Pragmatics Interaction (SPI) is the
variant described in the previous section. Here,
all active derivations are sent to the reference res-
olution module, and are re-weighted as described
above; after this has been done, the highest-
ranking reading is evaluated.

Finally, the Combined Interaction and Fil-
tering (CIF) variant combines the previous two
strategies, by using reference-feedback in com-
puting the ranking for the derivations, and then
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again using reference-information to identify the
most promising reading within the set of 5 highest
ranking ones.

4.3.2 Metric
When a reading has been identified according

to one of these methods, a score s is computed as
follows: s = 1, if the correct referent (according
to the gold standard) is computed as the denota-
tion for this reading; s = 0 if no unique referent
can be computed, but the correct one is part of the
set of possible referents; s = −1 if no referent
can be computed at all, or the correct one is not
part of the set of those that are computed.

As this is done incrementally for each word
(adding the new word to the parser chart), for an
utterance of length m we get a sequence of m
such numbers. (In our experiments we treat the
“end of utterance” signal as a pseudo-word, since
knowing that an utterance has concluded allows
the parser to close off derivations and remove
those that are still requiring elements. Hence, we
in fact have sequences of m+1 numbers.) A com-
bined score for the whole utterance is computed
according to the following formula:

su =
m∑

n=1

(sn ∗ n/m)

(where sn is the score at position n). The fac-
tor n/m causes “later” decisions to count more
towards the final score, reflecting the idea that
it is more to be expected (and less harmful) to
be wrong early on in the utterance, whereas the
longer the utterance goes on, the more pressing
it becomes to get a correct result (and the more
damaging if mistakes are made).6

Note that this score is not normalised by utter-
ance length m; the maximally achievable score
being (m + 1)/2. This has the additional ef-
fect of increasing the weight of long utterances
when averaging over the score of all utterances;
we see this as desirable, as the analysis task be-
comes harder the longer the utterance is.

We use success in resolving reference to eval-
uate the performance of our parsing and semantic
construction component, where more tradition-
ally, metrics like parse bracketing accuracy might

6This metric compresses into a single number some of
the concerns of the incremental metrics developed in (Bau-
mann et al., 2011), which can express more fine-grainedly
the temporal development of hypotheses.

be used. But as we are building this module for an
interactive system, ultimately, accuracy in recov-
ering meaning is what we are interested in, and so
we see this not just as a proxy, but actually as a
more valuable metric. Moreover, this metric can
be applied at each incremental step, which is not
clear how to do with more traditional metrics.

4.4 Experiments

Our parser, semantic construction and reference
resolution modules are implemented within the
InproTK toolkit for incremental spoken dialogue
systems development (Schlangen et al., 2010). In
this toolkit, incremental hypotheses are modified
as more information becomes available over time.
Our modules support all such modifications (i. e.
also allow to revert their states and output if word
input is revoked).

As explained in Section 4.1, we used offline
recognition results in our evaluation. However,
the results would be identical if we were to use
the incremental speech recognition output of In-
proTK directly.

The system performs several times faster than
real-time on a standard workstation computer. We
thus consider it ready to improve practical end-to-
end incremental systems which perform within-
turn actions such as those outlined in (Buß and
Schlangen, 2010).

The parser was run with a base-beam factor of
0.01; this parameter may need to be adjusted if a
larger grammar was used.

4.5 Results

Table 2 shows an overview of the experiment re-
sults. The table lists, separately for the manual
transcriptions and the ASR transcripts, first the
number of times that the final reading did not re-
solve at all, or to a wrong entitiy; did not uniquely
resolve, but included the correct entity in its de-
notiation; or did uniquely resolve to the correct
entity (-1, 0, and 1, respectively). The next lines
show “strict accuracy” (proportion of “1” among
all results) at the end of utterance, and “relaxed
accuracy” (which allows ambiguity, i.e., is the set
{0, 1}). incr.scr is the incremental score as de-
scribed above, which includes in the evaluation
the development of references and not just the fi-
nal state. (And in that sense, is the most appro-
priate metric here, as it captures the incremental
behaviour.) This score is shown both as absolute
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JS EF SPI CIF

tr
an

sc
ri

pt

−1 563 518 364 363
0 197 198 267 268
1 264 308 392 392

str.acc. 25.7 % 30.0 % 38.2 % 38.2 %
rel.acc. 44.9 % 49.3 % 64.2 % 64.3 %
incr.scr −1568 −1248 −536 −504

avg.incr.scr −1.52 −1.22 −0.52 −0.49
re

co
gn

tio
n

−1 362 348 254 255
0 122 121 173 173
1 143 158 196 195

str.acc. 22.6 % 25.0 % 31.0 % 30.8 %
rel.acc. 41.2 % 44.1 % 58.3 % 58.1 %
incr.scr −1906 −1730 −1105 −1076

avg.incr.scr −1.86 −1.69 −1.01 −1.05

Table 2: Results of the Experiments. See text for explanation of metrics.

number as well as averaged for each utterance.

As these results show, the strategy of provid-
ing the parser with feedback about the real-world
utility of constructed phrases (in the form of refer-
ence decisions) improves the parser, in the sense
that it helps the parser to successfully retrieve the
intended meaning more often compared to an ap-
proach that only uses syntactic information (JS)
or that uses pragmatic information only outside
of the main programme: 38.2 % strict or 64.2 %
relaxed for SPI over 25.7 % / 44.9 % for JS, an
absolute improvement of 12.5 % for strict or even
more, 19.3 %, for the relaxed metric; the incre-
mental metric shows that this advantage holds not
only at the final word, but also consistently within
the utterance, the average incremental score for
an utterance being −0.49 for SPI and −1.52
for JS. The improvement is somewhat smaller
against the variant that uses some reference infor-
mation, but does not integrate this into the parsing
process (EF), but it is still consistently present.
Adding such n-best-list processing to the output
of the parser+reference-combination (as variant
CIF does) finally does not further improve the
performance noticeably. When processing par-
tially defective material (the output of the speech
recogniser), the difference between the variants
is maintained, showing a clear advantage of SPI,
although performance of all variants is degraded
somewhat.

Clearly, accuracy is rather low for the base-
line condition (JS); this is due to the large num-

ber of non-standard constructions in our sponta-
neous material (e.g., utterances like “löschen, un-
ten” (delete, bottom) which we did not try to cover
with syntactic rules, and which may not even con-
tain NPs. The SPI condition can promote deriva-
tions resulting from robust rules (here, deletion)
which then can refer. In general though state-of-
the art grammar engineering may narrow the gap
between JS and SPI – this remains to be tested –
but we see as an advantage of our approach that
it can improve over the (easy-to-engineer) set of
core grammar rules.

5 Conclusions

We have described a model of semantic process-
ing of natural, spontaneous speech that strives
to jointly satisfy syntactic and pragmatic con-
straints (the latter being approximated by the as-
sumption that referring expressions are intended
to indeed successfully refer in the given context).
The model is robust, accepting also input of the
kind that can be expected from automatic speech
recognisers, and incremental, that is, can be fed
input on a word-by-word basis, computing at each
increment only exactly the contribution of the new
word. Lastly, as another novel contribution, the
model makes use of a principled formalism for se-
mantic representation, RMRS (Copestake, 2006).

While the results show that our approach of
combining syntactic and pragmatic information
can work in a real-world setting on realistic
data—previous work in this direction has so far
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only been at the proof-of-concept stage—there is
much room for improvement. First, we are now
exploring ways of bootstrapping a grammar and
derivation weights from hand-corrected parses.
Secondly, we are looking at making the variable
assignment / model checking function probabilis-
tic, assigning probabilities (degree of strength of
belief) to candidate resolutions (as for example
the model of Schlangen et al. (2009) does). An-
other next step—which will be very easy to take,
given the modular nature of the implementation
framework that we have used—will be to integrate
this component into an interactive end-to-end sys-
tem, and testing other domains in the process.
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Abstract

In this paper we extend our work described
in (Dinu et al., 2011) by adding more con-
jugational rules to the labelling system in-
troduced there, in an attempt to capture
the entire dataset of Romanian verbs ex-
tracted from (Barbu, 2007), and we em-
ploy machine learning techniques to predict
a verb’s correct label (which says what con-
jugational pattern it follows) when only the
infinitive form is given.

1 Introduction

Using only a restricted group of verbs, in (Dinu
et al., 2011) we validated the hypothesis that pat-
terns can be identified in the conjugation of the
Romanian (partially irregular) verb and that these
patterns can be learnt automatically so that, given
the infinitive of a verb, its correct conjugation
for the indicative present tense can be produced.
In this paper, we extend our investigation to the
whole dataset described in (Barbu, 2008) and at-
tempt to capture, beside the general ending pat-
terns during conjugation, as much of the phono-
logical alternations occuring in the stem of verbs
(apophony) from the dataset as we can.

Traditionally, Romanian has received a Latin-
inspired classification of verbs into 4 (or some-
times 5) conjugational classes based on the ending
of their infinitival form alone (Costanzo, 2011).
However, this infinitive-based classification has
proved itself inadequate due to its inability to ac-
count for the behavior of partially irregular verbs
(whose stems have a smaller number of allo-
morphs than the completely irregular) during their
conjugation.

There have been, thus, numerous attempts
throughout the history of Romanian Linguistics

to give other conjugational classifications based
on the way the verb actually conjugates. Lom-
bard (1955), looking at a corpus of 667 verbs,
combined the traditional 4 classes with the way in
which the biggest two subgroups conjugate (one
using the suffix ”ez”, the other ”esc”) and ar-
rived at 6 classes. Ciompec (Ciompec et. al.,
1985 in Costanzo, 2011) proposed 10 conjuga-
tional classes, while Felix (1964) proposed 12,
both of them looking at the inflection of the verbs
and number of allomorphs of the stem. Romalo
(1968, p. 5-203) produced a list of 38 verb types,
which she eventually reduced to 10.

For the purpose of machine translation, Moisil
(1960) proposed 5 regrouped classes of verbs,
with numerous subgroups, and introduced the
method of letters with variable values, while Pa-
pastergiou et al. (2007) have recently developed
a classification from a (second) language acquisi-
tion point of view, dividing the 1st and 4th tradi-
tional classes into 3 and respectively 5 subclasses,
each with a different conjugational pattern, and
offering rules for alternations in the stem.

Of the more extensive classifications, Barbu
(2007) distinguished 41 conjugational classes for
all tenses and 30 for the indicative present alone,
covering a whole corpus of more that 7000 con-
temporary Romanian verbs, a corpus which was
also used in the present paper. However, her
classes were developed on the basis of the suf-
fixes each verb receives during conjugation, and
the classification system did not take into account
the alternations occuring in the stem of irregular
and partially irregular verbs. The system of rules
presented below took into account both the end-
ings pattern and the type of stem alternation for
each verb.

In what follows we describe our method for la-
beling the dataset and finding a model able to pre-
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dict the labels.

2 Approach

The problem which we are aiming to solve is to
determine how to conjugate a verb, given its in-
finitive form. The traditional infinitive-based clas-
sification taught in school does not take one all the
way to solving this problem. Many conjugational
patterns exist within each of these four classes.

2.1 Labeling the dataset

Following our own observations, the alternations
identified in (Papastergiou et al., 2007) and the
classes of suffix patterns given in (Barbu, 2007),
we developed a number of conjugational rules
which were narrowed down to the 30 most pro-
ductive in relation to the dataset. Each of these
30 rules (or patterns) contains 6 regular expres-
sions through which the rule models how a (dif-
ferent) type of Romanian verb conjugates in the
indicative present. They each consist of 6 reg-
ular expressions because there are three persons
(first, second, and third) times two numbers (sin-
gular and plural).

Rule 10, for example, models, as stated in
the list that follows, how verbs of the type
”a cânta” (to sing) conjugate in the indicative
present, by having the first regular expression
model the first person singular form ”(eu) cânt”
(in regular expression format: ˆ(.+)$), the sec-
ond, model the second person singular form ”(tu)
cânţi” (ˆ(.+)ţi$), the third, model the third per-
son singular form ”(ei) cântă” (ˆ(.+)ă$), and so
forth. Thus, rule 10 catches the alternation t→ţ
for the 2nd person singular, while modelling a
particular type of verb class with a particular set
of suffixes. Note that the dot accepts any letter
in the Romanian alphabet and that, for each of
the six forms, the value of the capturing groups
(those between brackets) remains constant, in this
case cân. These groups correspond to all parts of
the stem that remain unchanged and ensure that,
given the infinitive and the regular expressions,
one can work backwards and produce the correct
conjugation.

For a clearer understanding of one such rule,
Table 1 shows an example of how the verb ”a
tresălta” is modeled by rule 14.

Below, we list all the rules used, with the stem
alternations they capture and an example of a verb

Person Regexp Example
1st singular ˆ(.+)a(.+)t$ tresalt
2nd singular ˆ(.+)a(.+)ţi$ tresalţi
3rd singular ˆ(.+)a(.+)tă$ tresaltă
1st plural ˆ(.+)ă(.+)tăm$ tresăltăm
2nd plural ˆ(.+)ă(.+)taţi$ tresăltaţi
3rd plural ˆ(.+)a(.+)tă$ tresaltă

Table 1: Rule 14 modelling ”a tresălta”

that they model. Note that, when we say (no) al-
ternation, we mean (no) alternation in the stem.
So the difference between rules 1, 20, 22, and the
sort lies in the suffix that is added to the stem
for each verb form. They may share some suf-
fixes, but not all and/or not for the same person
and number.

1. no alternation; ”a spera” (to hope);

2. alternation: ă→e for the 2nd person singular;
”a număra” (to count);

3. no alternation; ”a intra” (to enter), stem ends
in ”tr”, ”pl”, ”bl” or ”fl” which determines
the addition of ”u” at the end of the 1st per-
son singular form;

4. alternation: it lacks t→ţ for the 2nd person
singular, which otherwise normally occurs;
”a mişca” (to move), stem ends in ”şca”;

5. no alternation; ”a tăia” (to cut), ends in ”ia”
and has a vowel before;

6. no alternation; ”a speria” (to scare), ends in
”ia” and has a consonant before;

7. no alternation; ”a dansa” (to dance), conju-
gated with the suffix ”ez”;

8. no alternation; ”a copia” (to copy), conju-
gated with a modified ”ez” due to the stem
ending in ”ia”;

9. altenation c→ch(e) or g→gh(e); ”a parca”
(to park), conjugated with ”ez”, ending in
”ca” or ”ga”;

10. alternation: t→ţ for the 2nd person singular;
”a cânta” (to sing);

11. alternation: s→ş which replaces the usual
t→ţ for the 2nd person singular; ”a exista”
(to exist);
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12. alternation: a→ea for the 3rd person singular
and plural, t→ţ for the 2nd person singular;
”a deştepta” (to awake/arouse);

13. alternation: e→ea for the 3rd person singular
and plural, t→ţ for the 2nd person singular;
”a deşerta” (to empty);

14. alternation: ă→a for all the forms except the
1st and 2nd person plural; ”a tresălta” (to
start, to take fright);

15. alternation: ă→a in the 3rd person singular
and plural, ă→e in the 2nd person singular;
”a desfăta” (to delight);

16. alternation: ă→a for all the forms except for
the 1st and 2nd person plural; ”a părea” (to
seem);

17. alternation: d→z for the 2nd person singu-
lar due to palatalization, along with ă→e; ”a
vedea” (to see), stem ends in ”d”;

18. alternation: ă→a for all forms except the 1st
and 2nd person plural, d→z for the 2nd per-
son singular due to palatalization; ”a cădea”
(to fall);

19. no alternation; ”a veghea” (to watch over),
conjugates with another type of ”ez” ending
pattern;

20. no alternations; ”a merge” (to walk), receives
the typical ending pattern for the third conju-
gational class;

21. alternation: t→ţ for the 2nd person singular;
”a promite” (to promise);

22. no alternation; ”a scrie” (to write);

23. alternations: şt→sc for the 1st person singu-
lar and 3rd person plural; ”a naşte” (to give
birth), ends in ”şte”;

24. alternation: ”n” is deleted from the stem in
the 2nd person singular; ”a pune” (to put),
ends in ”ne”;

25. alternation: d→z in the 2nd person singular
due to palatalization; ”a crede” (to believe),
stem ends in ”d”;

26. no alternation; ”a sui” (to climb), ends in
”ui”, ”ăi”, or ”âi”;

27. no alternation; ”a citi” (to read), conjugates
with the suffix ”esc” ;

28. this type preserves the ”i” from the infinitive;
”a locui” (to reside), ends in ”ăi”, ”oi”, or ui”
and conjugates with ”esc”;

29. alternation: o→oa in the 3rd person singular
and plural; end in ”ı̂”, ”a omorı̂” (to kill);

30. no alternation; ”a hotărı̂” (to decide), ends in
”ı̂” and conjugates with ”ăsc”, a variant of
”esc”

2.2 Classifiers and features

Each infinitive in the dataset received a label cor-
responding to the first rule that correctly produces
a conjugation for it. This was implemented in
order to reduce the ambiguity of the data, which
was due to some verbs having alternate conjuga-
tion patterns. The unlabeled verbs were thrown
out, while the labeled ones were used to train and
evaluate a classifier.

The context sensitive nature of the alternations
leads to the idea that n-gram character windows
are useful. In the preprocessing step, the list of in-
finitives is transformed to a sparse matrix whose
lines correspond to samples, and whose features
are the occurence or the frequency of a specific n-
gram. This feature extraction step has three free
parameters: the maximum n-gram length, the op-
tional binarization of the features (taking only bi-
nary occurences instead of counts), and the op-
tional appending of a terminator character. The
terminator character allows the classifier to iden-
tify and assign a different weight to the n-grams
that overlap with the suffix of the string.

For example, consider the English infinitive to
walk. We will assume the following illustrative
values for the parameters: n-gram size of 3 and
appending the terminator character. Firstly, a ter-
minator is appended to the end, yielding the string
walk$. Subsequently, the string is broken into 1, 2
and 3-grams: w, a, l, k, $, wa, al, lk, k$, wal, alk,
lk$. Next, this list is turned into a vector using a
standard process. We have first built a dictionary
of all the n-grams from the whole dataset. These,
in order, encode the features. The verb (to) walk
is therefore encoded as a row vector with ones in
the columns corresponding to the features w, a,
etc. and zeros in the rest. In this particular case,
there is no difference between binary and count
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rule no. verbs
1 547
2 8
3 18
4 5
5 8
6 16
7 3330
8 273
9 89

10 4
11 5
12 4
13 106
14 13
15 5

rule no. verbs
16 13
17 6
18 4
19 14
20 124
21 25
22 15
23 7
24 41
25 51
26 185
27 1554
28 486
29 5
30 27

Table 2: Number of verbs captured by each of our rules

features because all of the n-grams of this short
verb occur only once. But for a verb such as (to)
tantalize, the feature corresponding to the 2-gram
ta would get a value of 2 in a count reprezentation,
but only a value of 1 in a binary one.

The system was put together using the scikit-
learn machine learning library for Python (Pe-
dregosa et al., 2011), which provides a fast, scal-
able implementation of linear support vector ma-
chines based on liblinear (Fan et al., 2008), along
with n-gram extraction and grid search function-
ality.

3 Results

Tabel 2 shows how well the rules fitted the dataset.
Out of 7,295 verbs in the dataset, 349 were uncap-
tured by our rules. As expected, the rule capturing
the most verbs (3,330) is the one modelling those
from the 1st conjugational class (whose infinitives
end in ”a”) which conjugate with the ”ez” suffix
and are regular, namely rule 7, created for verbs
like ”a dansa”. The second largest class, also as
expected, is the one belonging to verbs from the
4th conjugational group (whose infinitives end in
”i”), which are regular, meaning no alternation in
the stem, and conjugate with the ”esc” suffix. This
class is modeled by rule number 27.

The support vector classifier was evaluated
using a 10-fold cross-validation. The multi-
class problem is treated using the one-versus-all
scheme. The parameters chosen by grid search are
a maximum n-gram length of 5, with appended

terminator and with non-binarized (count) fea-
tures. The estimated correct classification rate is
90.64%, with a weighted averaged precision of
80.90%, recall of 90.64% and F1 score of 89.89%.
Appending the artificial terminator character ’$’
consistently improves accuracy by around 0.7%.
Because each word was represented as a bag of
character n-grams instead of a continuous string,
and because, by its nature, a SVM yields sparse
solutions, combined with the evaluation using
cross-validation, we can safely say that the model
does not overfit and indeed learns useful decision
boundaries.

4 Conclusions and Future Works

Our results show that the labelling system based
on the verb conjugation model we developed can
be learned with reasonable accuracy. In the future,
we plan to develop a multiple tiered labelling sys-
tem that will allow for general alternations, such
as the ones occuring as a result of palatalization,
to be defined only once for all verbs that have
them, taking cues from the idea of letters with
multiple values. This, we feel, will highly im-
prove the acuracy of the classifier.
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Abstract

We evaluate measures of contextual fitness
on the task of detecting real-word spelling
errors. For that purpose, we extract nat-
urally occurring errors and their contexts
from the Wikipedia revision history. We
show that such natural errors are better
suited for evaluation than the previously
used artificially created errors. In partic-
ular, the precision of statistical methods
has been largely over-estimated, while the
precision of knowledge-based approaches
has been under-estimated. Additionally, we
show that knowledge-based approaches can
be improved by using semantic relatedness
measures that make use of knowledge be-
yond classical taxonomic relations. Finally,
we show that statistical and knowledge-
based methods can be combined for in-
creased performance.

1 Introduction

Measuring the contextual fitness of a term in its
context is a key component in different NLP ap-
plications like speech recognition (Inkpen and
Désilets, 2005), optical character recognition
(Wick et al., 2007), co-reference resolution (Bean
and Riloff, 2004), or malapropism detection (Bol-
shakov and Gelbukh, 2003). The main idea is al-
ways to test what fits better into the current con-
text: the actual term or a possible replacement that
is phonetically, structurally, or semantically simi-
lar. We are going to focus on malapropism detec-
tion as it allows evaluating measures of contex-
tual fitness in a more direct way than evaluating
in a complex application which always entails in-
fluence from other components, e.g. the quality of

the optical character recognition module (Walker
et al., 2010).

A malapropism or real-word spelling error oc-
curs when a word is replaced with another cor-
rectly spelled word which does not suit the con-
text, e.g. “People with lots of honey usually
live in big houses.”, where ‘money’ was replaced
with ‘honey’. Besides typing mistakes, a major
source of such errors is the failed attempt of au-
tomatic spelling correctors to correct a misspelled
word (Hirst and Budanitsky, 2005). A real-word
spelling error is hard to detect, as the erroneous
word is not misspelled and fits syntactically into
the sentence. Thus, measures of contextual fitness
are required to detect words that do not fit their
contexts.

Existing measures of contextual fitness can be
categorized into knowledge-based (Hirst and Bu-
danitsky, 2005) and statistical methods (Mays et
al., 1991; Wilcox-OHearn et al., 2008). Both
test the lexical cohesion of a word with its con-
text. For that purpose, knowledge-based ap-
proaches employ the structural knowledge en-
coded in lexical-semantic networks like WordNet
(Fellbaum, 1998), while statistical approaches
rely on co-occurrence counts collected from large
corpora, e.g. the Google Web1T corpus (Brants
and Franz, 2006).

So far, evaluation of contextual fitness mea-
sures relied on artificial datasets (Mays et al.,
1991; Hirst and Budanitsky, 2005) which are cre-
ated by taking a sentence that is known to be cor-
rect, and replacing a word with a similar word
from the vocabulary. This has a couple of dis-
advantages: (i) the replacement might be a syn-
onym of the original word and perfectly valid in
the given context, (ii) the generated error might
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be very unlikely to be made by a human, and
(iii) inserting artificial errors often leads to un-
natural sentences that are quite easy to correct,
e.g. if the word class has changed. However,
even if the word class is unchanged, the origi-
nal word and its replacement might still be vari-
ants of the same lemma, e.g. a noun in singu-
lar and plural, or a verb in present and past form.
This usually leads to a sentence where the error
can be easily detected using syntactical or statis-
tical methods, but is almost impossible to detect
for knowledge-based measures of contextual fit-
ness, as the meaning of the word stays more or
less unchanged. To estimate the impact of this is-
sue, we randomly sampled 1,000 artificially cre-
ated real-word spelling errors1 and found 387 sin-
gular/plural pairs and 57 pairs which were in an-
other direct relation (e.g. adjective/adverb). This
means that almost half of the artificially created
errors are not suited for an evaluation targeted at
finding optimal measures of contextual fitness, as
they over-estimate the performance of statistical
measures while underestimating the potential of
semantic measures. In order to investigate this
issue, we present a framework for mining natu-
rally occurring errors and their contexts from the
Wikipedia revision history. We use the resulting
English and German datasets to evaluate statisti-
cal and knowledge-based measures.

We make the full experimental framework pub-
licly available2 which will allow reproducing our
experiments as well as conducting follow-up ex-
periments. The framework contains (i) methods
to extract natural errors from Wikipedia, (ii) ref-
erence implementations of the knowledge-based
and the statistical methods, and (iii) the evalua-
tion datasets described in this paper.

2 Mining Errors from Wikipedia

Measures of contextual fitness have previously
been evaluated using artificially created datasets,
as there are very few sources of sentences with
naturally occurring errors and their corrections.
Recently, the revision history of Wikipedia has
been introduced as a valuable knowledge source
for NLP (Nelken and Yamangil, 2008; Yatskar et
al., 2010). It is also a possible source of natural
errors, as it is likely that Wikipedia editors make

1The same artificial data as described in Section 3.2.
2http://code.google.com/p/dkpro-spelling-asl/

real-word spelling errors at some point, which
are then corrected in subsequent revisions of the
same article. The challenge lies in discriminating
real-word spelling errors from all sorts of other
changes, including non-word spelling errors, re-
formulations, or the correction of wrong facts.
For that purpose, we apply a set of precision-
oriented heuristics narrowing down the number
of possible error candidates. Such an approach
is feasible, as the high number of revisions in
Wikipedia allows to be extremely selective.

2.1 Accessing the Revision Data
We access the Wikipedia revision data using
the freely available Wikipedia Revision Toolkit
(Ferschke et al., 2011) together with the JWPL
Wikipedia API (Zesch et al., 2008a).3 The API
outputs plain text converted from Wiki-Markup,
but the text still contains a small portion of left-
over markup and other artifacts. Thus, we per-
form additional cleaning steps removing (i) to-
kens with more than 30 characters (often URLs),
(ii) sentences with less than 5 or more than 200
tokens, and (iii) sentences containing a high frac-
tion of special characters like ‘:’ usually indicat-
ing Wikipedia-specific artifacts like lists of lan-
guage links. The remaining sentences are part-of-
speech tagged and lemmatized using TreeTagger
(Schmid, 2004). Using these cleaned and anno-
tated articles, we form pairs of adjacent article re-
visions (ri and ri+1).

2.2 Sentence Alignment
Fully aligning all sentences of the adjacent revi-
sions is a quite costly operation, as sentences can
be split, joined, replaced, or moved in the arti-
cle. However, we are only looking for sentence
pairs which are almost identical except for the
real-word spelling error and its correction. Thus,
we form all sentence pairs and then apply an ag-
gressive but cheap filter that rules out all sentences
which (i) are equal, or (ii) whose lengths differ
more than a small number of characters. For the
resulting much smaller subset of sentence pairs,
we compute the Jaro distance (Jaro, 1995) be-
tween each pair. If the distance exceeds a cer-
tain threshold tsim (0.05 in this case), we do not
further consider the pair. The small amount of re-
maining sentence pairs is passed to the sentence
pair filter for in-depth inspection.

3http://code.google.com/p/jwpl/
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2.3 Sentence Pair Filtering

The sentence pair filter further reduces the num-
ber of remaining sentence pairs by applying a set
of heuristics including surface level and semantic
level filters. Surface level filters include:

Replaced Token Sentences need to consist of
identical tokens, except for one replaced token.

No Numbers The replaced token may not be a
number.

UPPER CASE The replaced token may not be
in upper case.

Case Change The change should not only in-
volve case changes, e.g. changing ‘english’ into
‘English’.

Edit Distance The edit distance between the
replaced token and its correction need to be be-
low a certain threshold.

After applying the surface level filters, the re-
maining sentence pairs are well-formed and con-
tain exactly one changed token at the same posi-
tion in the sentence. However, the change does
not need to characterize a real-word spelling er-
ror, but could also be a normal spelling error or a
semantically motivated change. Thus, we apply a
set of semantic filters:

Vocabulary The replaced token needs to occur
in the vocabulary. We found that even quite com-
prehensive word lists discarded too many valid
errors as Wikipedia contains articles from a very
wide range of domains. Thus, we use a frequency
filter based on the Google Web1T n-gram counts
(Brants and Franz, 2006). We filter all sentences
where the replaced token has a very low unigram
count. We experimented with different values and
found 25,000 for English and 10,000 for German
to yield good results.

Same Lemma The original token and the re-
placed token may not have the same lemma, e.g.
‘car’ and ‘cars’ would not pass this filter.

Stopwords The replaced token should not be in
a short list of stopwords (mostly function words).

Named Entity The replaced token should not
be part of a named entity. For this purpose, we
applied the Stanford NER (Finkel et al., 2005).

Normal Spelling Error We apply the Jazzy
spelling detector4 and rule out all cases in which
it is able to detect the error.

Semantic Relation If the original token and the
replaced token are in a close lexical-semantic rela-

4http://jazzy.sourceforge.net/

tions, the change is likely to be semantically mo-
tivated, e.g. if “house” was replaced with “hut”.
Thus, we do not consider cases, where we detect
a direct semantic relation between the original and
the replaced term. For this purpose, we use Word-
Net (Fellbaum, 1998) for English and GermaNet
(Lemnitzer and Kunze, 2002) for German.

3 Resulting Datasets

3.1 Natural Error Datasets

Using our framework for mining real-word
spelling errors in context, we extracted an En-
glish dataset5, and a German dataset6. Although
the output generally was of high quality, man-
ual post-processing was necessary7, as (i) for
some pairs the available context did not provide
enough information to decide which form was
correct, and (ii) a problem that might be spe-
cific to Wikipedia – vandalism. The revisions are
full of cases where words are replaced with simi-
lar sounding but greasy alternatives. A relatively
mild example is “In romantic comedies, there is
a love story about a man and a woman who fall
in love, along with silly or funny comedy farts.”,
where ‘parts’ was replaced with ‘farts’ only to be
changed back shortly afterwards by a Wikipedia
vandalism hunter. We removed all cases that re-
sulted from obvious vandalism. For further ex-
periments, a small list of offensive terms could be
added to the stopword list to facilitate this pro-
cess.

A connected problem is correct words that get
falsely corrected by Wikipedia editors (without
the malicious intend from the previous examples,
but with similar consequences). For example, the
initially correct sentence “Dung beetles roll it into
a ball, sometimes being up to 50 times their own
weight.” was ‘corrected’ by exchanging weight
with wait. We manually removed such obvious
mistakes, but are still left with some borderline
cases. In the sentence “By the 1780s the goals
of England were so full that convicts were often
chained up in rotting old ships.” the obvious error

5Using a revision dump from April 5, 2011.
6Using a revision dump from August 13, 2010.
7The most efficient and precise way of finding real-word

spelling errors would of course be to apply measures of con-
textual fitness. However, the resulting dataset would then
only contain errors that are detectable by the measures we
want to evaluate – a clearly unacceptable bias. Thus, a cer-
tain amount of manual validation is inevitable.
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‘goal’ was changed by some Wikipedia editor to
‘jail’. However, actually it should have been the
old English form for jail ‘gaol’ which can be de-
duced when looking at the full context and later
versions of the article. We decided to not remove
these rare cases, because ‘jail’ is a valid correction
in this context.

After manual inspection, we are left with 466
English and 200 German errors. Given that we
restricted our experiment to 5 million English and
German revisions, much larger datasets can be ex-
tracted if the whole revision history is taken into
account. Our snapshot of the English Wikipedia
contains 305·106 revisions. Even if not all of them
correspond to article revisions, it is safe to assume
that more than 10,000 real-word spelling errors
can be extracted from this version of Wikipedia.

Using the same amount of source revisions, we
found significantly more English than German er-
rors. This might be due to (i) English having more
short nouns or verbs than German that are more
likely to be confused with each other, and (ii) the
English Wikipedia being known to attract a larger
amount of non-native editors which might lead to
higher rates of real-word spelling errors. How-
ever, this issue needs to be further investigated
e.g. based on comparable corpora build on the ba-
sis of different language editions of Wikipedia.
Further refining the identification of real-word er-
rors in Wikipedia would allow evaluating how fre-
quent such errors actually occur, and how long
it takes the Wikipedia editors to detect them. If
errors persist over a long time, using measures
of contextual fitness for detection would be even
more important.

Another interesting observation is that the av-
erage edit distance is around 1.4 for both datasets.
This means that a substantial proportion of errors
involve more than one edit operation. Given that
many measures of contextual fitness allow at most
one edit, many naturally occurring errors will not
be detected. However, allowing a larger edit dis-
tance enormously increases the search space re-
sulting in increased run-time and possibly de-
creased detection precision due to more false pos-
itives.

3.2 Artificial Error Datasets

In contrast to the quite challenging process of
mining naturally occurring errors, creating artifi-
cial errors is relatively straightforward. From a

corpus that is known to be free of spelling errors,
sentences are randomly sampled. For each sen-
tence, a random word is selected and all strings
with edit distance smaller than a given threshold
(2 in our case) are generated. If one of those gen-
erated strings is a known word from the vocabu-
lary, it is picked as the artificial error.

Previous work on evaluating real-word spelling
correction (Hirst and Budanitsky, 2005; Wilcox-
OHearn et al., 2008; Islam and Inkpen, 2009)
used a dataset sampled from the Wall Street Jour-
nal corpus which is not freely available. Thus, we
created a comparable English dataset of 1,000 ar-
tificial errors based on the easily available Brown
corpus (Francis W. Nelson and Kuçera, 1964).8

Additionally, we created a German dataset with
1,000 artificial errors based on the TIGER cor-
pus.9

4 Measuring Contextual Fitness

There are two main approaches for measuring the
contextual fitness of a word in its context: the
statistical (Mays et al., 1991) and the knowledge-
based approach (Hirst and Budanitsky, 2005).

4.1 Statistical Approach

Mays et al. (1991) introduced an approach based
on the noisy-channel model. The model assumes
that the correct sentence s is transmitted through
a noisy channel adding ‘noise’ which results in a
word w being replaced by an error e leading the
wrong sentence s′ which we observe. The prob-
ability of the correct word w given that we ob-
serve the error e can be computed as P (w|e) =
P (w) · P (e|w). The channel model P (e|w) de-
scribes how likely the typist is to make an error.
This is modeled by the parameter α.10 The re-
maining probability mass (1 − α) is distributed
equally among all words in the vocabulary within
an edit distance of 1 (edits(w)):

P (e|w) =

{
α if e = w

(1− α)/|edits(w)| if e 6= w

The source model P (w) is estimated using a
trigram language model, i.e. the probability of the

8http://www.archive.org/details/BrownCorpus (CC-by-na).
9http://www.ims.uni-stuttgart.de/projekte/TIGER/

The corpus contains 50,000 sentences of German newspaper
text, and is freely available under a non-commercial license.

10We optimize α on a held-out development set of errors.
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intended word wi is computed as the conditional
probability P (wi|wi−1wi−2). Hence, the proba-
bility of the correct sentence s = w1 . . . wn can
be estimated as

P (s) =
n+2∏
i=1

P (wi|wi−1wi−2)

The set of candidate sentences Sc contains all ver-
sions of the observed sentence s′ derived by re-
placing one word with a word from edits(w),
while all other words in the sentence remain
unchanged. The correct sentence s is those
sentence from Sc that maximizes P (s|s′) =
arg maxs∈Sc

P (s) · P (s′|s).

4.2 Knowledge Based Approach

Hirst and Budanitsky (2005) introduced a
knowledge-based approach that detects real-word
spelling errors by checking the semantic relations
of a target word with its context. For this pur-
pose, they apply WordNet as the source of lexical-
semantic knowledge.

The algorithm flags all words as error can-
didates and then applies filters to remove those
words from further consideration that are unlikely
to be errors. First, the algorithm removes all
closed-class word candidates as well as candi-
dates which cannot be found in the vocabulary.
Candidates are then tested for having lexical co-
hesion with their context, by (i) checking whether
the same surface form or lemma appears again in
the context, or (ii) a semantically related concept
is found in the context. In both cases, the candi-
date is removed from the list of candidates. For
each remaining possible real-word spelling error,
edits are generated by inserting, deleting, or re-
placing characters up to a certain edit distance
(usually 1). Each edit is then tested for lexical
cohesion with the context. If at least one of it fits
into the context, the candidate is selected as a real-
word error.

Hirst and Budanitsky (2005) use two additional
filters: First, they remove candidates that are
“common non-topical words”. It is unclear how
the list of such words was compiled. Their list
of examples contains words like ‘find’ or ‘world’
which we consider to be perfectly valid candi-
dates. Second, they also applied a filter using a
list of known multi-words, as the probability for
words to accidentally form multi-words is low.

Dataset P R F

Artificial-English .77 .50 .60
Natural-English .54 .26 .35

Artificial-German .90 .49 .63
Natural-German .77 .20 .32

Table 1: Performance of the statistical approach using
a trigram model based on Google Web1T.

It is unclear which list was used. We could use
multi-words from WordNet, but coverage would
be rather limited. We decided not to use both fil-
ters in order to better assess the influence of the
underlying semantic relatedness measure on the
overall performance.

The knowledge based approach uses semantic
relatedness measures to determine the cohesion
between a candidate and its context. In the exper-
iments by Budanitsky and Hirst (2006), the mea-
sure by (Jiang and Conrath, 1997) yields the best
results. However, a wide range of other measures
have been proposed, cf. (Zesch and Gurevych,
2010). Some measures using a wider defini-
tion of semantic relatedness (Gabrilovich and
Markovitch, 2007; Zesch et al., 2008b) instead
of only using taxonomic relations in a knowledge
source.

As semantic relatedness measures usually re-
turn a numeric value, we need to determine a
threshold θ in order to come up with a binary
related/unrelated decision. Budanitsky and Hirst
(2006) used a characteristic gap in the stan-
dard evaluation dataset by Rubenstein and Good-
enough (1965) that separates unrelated from re-
lated word pairs. We do not follow this approach,
but optimize the threshold on a held-out develop-
ment set of real-word spelling errors.

5 Results & Discussion

In this section, we report on the results obtained
in our evaluation of contextual fitness measures
using artificial and natural errors in English and
German.

5.1 Statistical Approach

Table 1 summarizes the results obtained by the
statistical approach using a trigram model based
on the Google Web1T data (Brants and Franz,
2006). On the English artificial errors, we ob-
serve a quite high F-measure of .60 that drops to
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Dataset N-gram model Size P R F

Art-En
Google Web

7 · 1011 .77 .50 .60
7 · 1010 .78 .48 .59
7 · 109 .76 .42 .54

Wikipedia 2 · 109 .72 .37 .49

Nat-En
Google Web

7 · 1011 .54 .26 .35
7 · 1010 .51 .23 .31
7 · 109 .46 .19 .27

Wikipedia 2 · 109 .49 .19 .27

Art-De
Google Web

8 · 1010 .90 .49 .63
8 · 109 .90 .47 .61
8 · 108 .88 .36 .51

Wikipedia 7 · 108 .90 .37 .52

Nat-De
Google Web

8 · 1010 .77 .20 .32
8 · 109 .68 .14 .23
8 · 108 .65 .10 .17

Wikipedia 7 · 108 .70 .13 .22

Table 2: Influence of the n-gram model on the perfor-
mance of the statistical approach.

.35 when switching to the naturally occurring er-
rors which we extracted from Wikipedia. On the
German dataset, we observe almost the same per-
formance drop (from .63 to .32).

These observations correspond to our earlier
analysis where we showed that the artificial data
contains many cases that are quite easy to correct
using a statistical model, e.g. where a plural form
of a noun is replaced with its singular form (or
vice versa) as in “I bought a car.” vs. “I bought
a cars.”. The naturally occurring errors often con-
tain much harder contexts, as shown in the fol-
lowing example: “Through the open window they
heard sounds below in the street: cartwheels, a
tired horse’s plodding step, vices.” where ‘vices’
should be corrected to ‘voices’. While the lemma
‘voice’ is clearly semantically related to other
words in the context like ‘hear’ or ‘sound’, the
position at the end of the sentence is especially
difficult for the trigram-based statistical approach.
The only trigram that connects the error to the
context is (‘step’, ‘,’, vices/voices) which will
probably yield a low frequency count even for
very large trigram models. Higher order n-gram
models would help, but suffer from the usual data-
sparseness problems.

Influence of the N-gram Model For building
the trigram model, we used the Google Web1T
data, which has some known quality issues and is

Dataset P R F

Artificial-English .26 .15 .19
Natural-English .29 .18 .23

Artificial-German .47 .16 .24
Natural-German .40 .13 .19

Table 3: Performance of the knowledge-based ap-
proach using the JiangConrath semantic relatedness
measure.

not targeted towards the Wikipedia articles from
which we sampled the natural errors. Thus, we
also tested a trigram model based on Wikipedia.
However, it is much smaller than the Web model,
which leads us to additionally testing smaller Web
models. Table 2 summarizes the results.

We observe that “more data is better data” still
holds, as the largest Web model always outper-
forms the Wikipedia model in terms of recall. If
we reduce the size of the Web model to the same
order of magnitude as the Wikipedia model, the
performance of the two models is comparable.
We would have expected to see better results for
the Wikipedia model in this setting, but its higher
quality does not lead to a significant difference.

Even if statistical approaches quite reliably de-
tect real-word spelling errors, the size of the re-
quired n-gram models remains a serious obstacle
for use in real-world applications. The English
Web1T trigram model is about 25GB, which cur-
rently is not suited for being applied in settings
with limited storage capacities e.g. for intelligent
input assistance in mobile devices. As we have
seen above, using smaller models will decrease
recall to a point where hardly any error will be de-
tected anymore. Thus, we will now have a look on
knowledge-based approaches which are less de-
manding in terms of the required resources.

5.2 Knowledge-based Approach

Table 3 shows the results for the knowledge-based
measure. In contrast to the statistical approach,
the results on the artificial errors are not higher
than on the natural errors, but almost equal for
German and even lower for English; another piece
of evidence supporting our view that the proper-
ties of artificial datasets over-estimate the perfor-
mance of statistical measures.

Influence of the Relatedness Measure As was
pointed out before, Budanitsky and Hirst (2006)
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Dataset Measure θ P R F

Art-En

JiangConrath 0.5 .26 .15 .19
Lin 0.5 .22 .17 .19
Lesk 0.5 .19 .16 .17

ESA-Wikipedia 0.05 .43 .13 .20
ESA-Wiktionary 0.05 .35 .20 .25
ESA-Wordnet 0.05 .33 .15 .21

Nat-En

JiangConrath 0.5 .29 .18 .23
Lin 0.5 .26 .21 .23
Lesk 0.5 .19 .19 .19

ESA-Wikipedia 0.05 .48 .14 .22
ESA-Wiktionary 0.05 .39 .21 .27
ESA-Wordnet 0.05 .36 .15 .21

Table 4: Performance of knowledge-based approach
using different relatedness measures.

show that the measure by Jiang and Conrath
(1997) yields the best results in their experi-
ments on malapropism detection. In addition, we
test another path-based measure by Lin (1998),
the gloss-based measure by Lesk (1986), and
the ESA measure (Gabrilovich and Markovitch,
2007) based on concept vectors from Wikipedia,
Wiktionary, and WordNet. Table 4 summarizes
the results. In contrast to the findings of Budanit-
sky and Hirst (2006), JiangConrath is not the best
path-based measure, as Lin provides equal or bet-
ter performance. Even more importantly, other
(non path-based) measures yield better perfor-
mance than both path-based measures. Especially
ESA based on Wiktionary provides a good over-
all performance, while ESA based on Wikipedia
provides excellent precision. The advantage of
ESA over the other measure types can be ex-
plained with its ability to incorporate semantic re-
lationships beyond classical taxonomic relations
(as used by path-based measures).

5.3 Combining the Approaches

The statistical and the knowledge-based approach
use quite different methods to assess the con-
textual fitness of a word in its context. This
makes it worthwhile trying to combine both ap-
proaches. We ran the statistical method (using the
full Wikipedia trigram model) and the knowledge-
based method (using the ESA-Wiktionary related-
ness measure) in parallel and then combined the
resulting detections using two strategies: (i) we
merge the detections of both approaches in order
to obtain higher recall (‘Union’), and (ii) we only

Dataset Comb.-Strategy P R F

Artificial-English
Best-Single .77 .50 .60
Union .52 .55 .54
Intersection .91 .15 .25

Natural-English
Best-Single .54 .26 .35
Union .40 .36 .38
Intersection .82 .11 .19

Table 5: Results obtained by a combination of the best
statistical and knowledge-based configuration. ‘Best-
Single’ is the best precision or recall obtained by a sin-
gle measure. ‘Union’ merges the detections of both
approaches. ‘Intersection’ only detects an error if both
methods agree on a detection.

count an error as detected if both methods agree
on a detection (‘Intersection’). When compar-
ing the combined results in Table 5 with the best
precision or recall obtained by a single measure
(‘Best-Single’), we observe that precision can be
significantly improved using the ‘Union’ strategy,
while recall is only moderately improved using
the ‘Intersect’ strategy. This means that (i) a large
subset of errors is detected by both approaches
that due to their different sources of knowledge
mutually reinforce the detection leading to in-
creased precision, and (ii) a small but otherwise
undetectable subset of errors requires considering
detections made by one approach only.

6 Related Work

To our knowledge, we are the first to create a
dataset of naturally occurring errors based on the
revision history of Wikipedia. Max and Wis-
niewski (2010) used similar techniques to create
a dataset of errors from the French Wikipedia.
However, they target a wider class of errors in-
cluding non-word spelling errors, and their class
of real-word errors conflates malapropisms as
well as other types of changes like reformulations.
Thus, their dataset cannot be easily used for our
purposes and is only available in French, while
our framework allows creating datasets for all ma-
jor languages with minimal manual effort.

Another possible source of real-word spelling
errors are learner corpora (Granger, 2002), e.g.
the Cambridge Learner Corpus (Nicholls, 1999).
However, annotation of errors is difficult and
costly (Rozovskaya and Roth, 2010), only a small
fraction of observed errors will be real-word
spelling errors, and learners are likely to make dif-
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ferent mistakes than proficient language users.
Islam and Inkpen (2009) presented another sta-

tistical approach using the Google Web1T data
(Brants and Franz, 2006) to create the n-gram
model. It slightly outperformed the approach by
Mays et al. (1991) when evaluated on a corpus of
artificial errors based on the WSJ corpus. How-
ever, the results are not directly comparable, as
Mays et al. (1991) used a much smaller n-gram
model and our results in Section 5.1 show that
the size of the n-gram model has a large influence
on the results. Eventually, we decided to use the
Mays et al. (1991) approach in our study, as it is
easier to adapt and augment.

In a re-evaluation of the statistical model by
Mays et al. (1991), Wilcox-OHearn et al. (2008)
found that it outperformed the knowledge-based
method by Hirst and Budanitsky (2005) when
evaluated on a corpus of artificial errors based on
the WSJ corpus. This is consistent with our find-
ings on the artificial errors based on the Brown
corpus, but - as we have seen in the previous sec-
tion - evaluation on the naturally occurring errors
shows a different picture. They also tried to im-
prove the model by permitting multiple correc-
tions and using fixed-length context windows in-
stead of sentences, but obtained discouraging re-
sults.

All previously discussed methods are unsuper-
vised in a way that they do not rely on any training
data with annotated errors. However, real-word
spelling correction has also been tackled by su-
pervised approaches (Golding and Schabes, 1996;
Jones and Martin, 1997; Carlson et al., 2001).
Those methods rely on predefined confusion-sets,
i.e. sets of words that are often confounded e.g.
{peace, piece} or {weather, whether}. For each
set, the methods learn a model of the context in
which one or the other alternative is more proba-
ble. This yields very high precision, but only for
the limited number of previously defined confu-
sion sets. Our framework for extracting natural
errors could be used to increase the number of
known confusion sets.

7 Conclusions and Future Work

In this paper, we evaluated two main approaches
for measuring the contextual fitness of terms: the
statistical approach by Mays et al. (1991) and
the knowledge-based approach by Hirst and Bu-
danitsky (2005) on the task of detecting real-

word spelling errors. For that purpose, we ex-
tracted a dataset with naturally occurring errors
and their contexts from the Wikipedia revision
history. We show that evaluating measures of con-
textual fitness on this dataset provides a more re-
alistic picture of task performance. In particular,
using artificial datasets over-estimates the perfor-
mance of the statistical approach, while it under-
estimates the performance of the knowledge-
based approach.

We show that n-gram models targeted towards
the domain from which the errors are sampled
do not improve the performance of the statisti-
cal approach if larger n-gram models are avail-
able. We further show that the performance of
the knowledge-based approach can be improved
by using semantic relatedness measures that in-
corporate knowledge beyond the taxonomic rela-
tions in a classical lexical-semantic resource like
WordNet. Finally, by combining both approaches,
significant increases in precision or recall can be
achieved.

In future work, we want to evaluate a wider
range of contextual fitness measures, and learn
how to combine them using more sophisticated
combination strategies. Both - the statistical as
well as the knowledge-based approach - will ben-
efit from a better model of the typist, as not all
edit operations are equally likely (Kernighan et
al., 1990). On the side of the error extraction, we
are going to further improve the extraction pro-
cess by incorporating more knowledge about the
revisions. For example, vandalism is often re-
verted very quickly, which can be detected when
looking at the full set of revisions of an article.

We hope that making the experimental frame-
work publicly available will foster future research
in this field, as our results on the natural errors
show that the problem is still quite challenging.
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Abstract

We investigate the problem of domain
adaptation for parallel data in Statistical
Machine Translation (SMT). While tech-
niques for domain adaptation of monolin-
gual data can be borrowed for parallel data,
we explore conceptual differences between
translation model and language model do-
main adaptation and their effect on per-
formance, such as the fact that translation
models typically consist of several features
that have different characteristics and can
be optimized separately. We also explore
adapting multiple (4–10) data sets with no
a priori distinction between in-domain and
out-of-domain data except for an in-domain
development set.

1 Introduction

The increasing availability of parallel corpora
from various sources, welcome as it may be,
leads to new challenges when building a statis-
tical machine translation system for a specific
domain. The task of determining which par-
allel texts should be included for training, and
which ones hurt translation performance, is te-
dious when performed through trial-and-error.
Alternatively, methods for a weighted combina-
tion exist, but there is conflicting evidence as to
which approach works best, and the issue of de-
termining weights is not adequately resolved.

The picture looks better in language mod-
elling, where model interpolation through per-
plexity minimization has become a widespread
method of domain adaptation. We investigate the
applicability of this method for translation mod-
els, and discuss possible applications.

We move the focus away from a binary com-
bination of in-domain and out-of-domain data. If
we can scale up the number of models whose con-
tributions we weight, this reduces the need for a
priori knowledge about the fitness1 of each poten-
tial training text, and opens new research oppor-
tunities, for instance experiments with clustered
training data.

2 Domain Adaptation for Translation
Models

To motivate efforts in domain adaptation, let us
review why additional training data can improve,
but also decrease translation quality.

Adding more training data to a translation sys-
tem is easy to motivate through the data sparse-
ness problem. Koehn and Knight (2001) show
that translation quality correlates strongly with
how often a word occurs in the training corpus.
Rare words or phrases pose a problem in sev-
eral stages of MT modelling, from word align-
ment to the computation of translation probabil-
ities through Maximum Likelihood Estimation.
Unknown words are typically copied verbatim to
the target text, which may be a good strategy for
named entities, but is often wrong otherwise. In
general, more data allows for a better word align-
ment, a better estimation of translation probabili-
ties, and for the consideration of more context (in
phrase-based or syntactic SMT).

A second effect of additional data is not nec-
essarily positive. Translations are inherently am-
biguous, and a strong source of ambiguity is the

1We borrow this term from early evolutionary biology to
emphasize that the question in domain adaptation is not how
“good” or “bad” the data is, but how well-adapted it is to the
task at hand.
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domain of a text. The German word “Wort” (engl.
word) is typically translated as floor in Europarl,
a corpus of Parliamentary Proceedings (Koehn,
2005), owing to the high frequency of phrases
such as you have the floor, which is translated into
German as Sie haben das Wort. This translation
is highly idiomatic and unlikely to occur in other
contexts. Still, adding Europarl as out-of-domain
training data shifts the probability distribution of
p(t|“Wort”) in favour of p(“floor”|“Wort”), and
may thus lead to improper translations.

We will refer to the two problems as the data
sparseness problem and the ambiguity problem.
Adding out-of-domain data typically mitigates the
data sparseness problem, but exacerbates the am-
biguity problem. The net gain (or loss) of adding
more data changes from case to case. Because
there are (to our knowledge) no tools that predict
this net effect, it is a matter of empirical investi-
gation (or, in less suave terms, trial-and-error), to
determine which corpora to use.2

From this understanding of the reasons for and
against out-of-domain data, we formulate the fol-
lowing hypotheses:

1. A weighted combination can control the con-
tribution of the out-of-domain corpus on the
probability distribution, and thus limit the
ambiguity problem.

2. A weighted combination eliminates the need
for data selection, offering a robust baseline
for domain-specific machine translation.

We will discuss three mixture modelling tech-
niques for translation models. Our aim is to adapt
all four features of the standard Moses SMT trans-
lation model: the phrase translation probabilities
p(t|s) and p(s|t), and the lexical weights lex(t|s)
and lex(s|t).3

2.1 Linear Interpolation

A well-established approach in language mod-
elling is the linear interpolation of several mod-
els, i.e. computing the weighted average of the in-

2A frustrating side-effect is that these findings rarely gen-
eralize. For instance, we were unable to reproduce the find-
ing by Ceauşu et al. (2011) that patent translation systems
are highly domain-sensitive and suffer from the inclusion of
parallel training data from other patent subdomains.

3We can ignore the fifth feature, the phrase penalty,
which is a constant.

dividual model probabilities. It is defined as fol-
lows:

p(x|y;λ) =

n∑
i=1

λipi(x|y) (1)

with λi being the interpolation weight of each
model i, and with (

∑
i λi) = 1.

For SMT, linear interpolation of translation
models has been used in numerous systems. The
approaches diverge in how they set the inter-
polation weights. Some authors use uniform
weights (Cohn and Lapata, 2007), others em-
pirically test different interpolation coefficients
(Finch and Sumita, 2008; Yasuda et al., 2008;
Nakov and Ng, 2009; Axelrod et al., 2011), others
apply monolingual metrics to set the weights for
TM interpolation (Foster and Kuhn, 2007; Koehn
et al., 2010).

There are reasons against all these approaches.
Uniform weights are easy to implement, but give
little control. Empirically, it has been shown that
they often do not perform optimally (Finch and
Sumita, 2008; Yasuda et al., 2008). An opti-
mization of BLEU scores on a development set is
promising, but slow and impractical. There is no
easy way to integrate linear interpolation into log-
linear SMT frameworks and perform optimization
through MERT. Monolingual optimization objec-
tives such as language model perplexity have the
advantage of being well-known and readily avail-
able, but their relation to the ambiguity problem
is indirect at best.

Linear interpolation is seemingly well-defined
in equation 1. Still, there are a few implemen-
tation details worth pointing out. If we directly
interpolate each feature in the translation model,
and define the feature values of non-occurring
phrase pairs as 0, this disregards the meaning of
each feature. If we estimate p(x|y) via MLE as in
equation 2, and c(y) = 0, then p(x|y) is strictly
speaking undefined. Alternatively to a naive al-
gorithm, which treats unknown phrase pairs as
having a probability of 0, which results in a defi-
cient probability distribution, we propose and im-
plement the following algorithm. For each value
pair (x, y) for which we compute p(x|y), we re-
place λi with 0 for all models i with p(y) =
0, then renormalize the weight vector λ to 1.
We do this for p(t|s) and lex(t|s), but not for
p(s|t) and lex(s|t), the reasoning being the con-
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sequences for perplexity minimization (see sec-
tion 2.4). Namely, we do not want to penalize
a small in-domain model for having a high out-
of-vocabulary rate on the source side, but we do
want to penalize models that know the source
phrase, but not its correct translation. A sec-
ond modification pertains to the lexical weights
lex(s|t) and lex(t|s), which form no true proba-
bility distribution, but are derived from the indi-
vidual word translation probabilities of a phrase
pair (see (Koehn et al., 2003)). We propose to
not interpolate the features directly, but the word
translation probabilities which are the basis of the
lexical weight computation. The reason for this is
that word pairs are less sparse than phrase pairs,
so that we can even compute lexical weights for
phrase pairs which are unknown in a model.4

2.2 Weighted Counts
Weighting of different corpora can also be imple-
mented through a modified Maximum Likelihood
Estimation. The traditional equation for MLE is:

p(x|y) =
c(x, y)

c(y)
=

c(x, y)∑
x′ c(x′, y)

(2)

where c denotes the count of an observation, and
p the model probability. If we generalize the for-
mula to compute a probability from n corpora,
and assign a weight λi to each, we get5:

p(x|y;λ) =

∑n
i=1 λici(x, y)∑n

i=1

∑
x′ λici(x′, y)

(3)

The main difference to linear interpolation is
that this equation takes into account how well-
evidenced a phrase pair is. This includes the dis-
tinction between lack of evidence and negative ev-
idence, which is missing in a naive implementa-
tion of linear interpolation.

Translation models trained with weighted
counts have been discussed before, and have
been shown to outperform uniform ones in some
settings. However, researchers who demon-
strated this fact did so with arbitrary weights (e.g.
(Koehn, 2002)), or by empirically testing differ-
ent weights (e.g. (Nakov and Ng, 2009)). We do
not know of any research on automatically deter-
mining weights for this method, or which is not
limited to two corpora.

4For instance if the word pairs (the,der) and (man,Mann)
are known, but the phrase pair (the man, der Mann) is not.

5Unlike equation 1, equation 3 does not require that
(
∑

i λi) = 1.

2.3 Alternative Paths

A third method is using multiple translation mod-
els as alternative decoding paths (Birch et al.,
2007), an idea which Koehn and Schroeder (2007)
first used for domain adaptation. This approach
has the attractive theoretical property that adding
new models is guaranteed to lead to equal or bet-
ter performance, given the right weights. At best,
a model is beneficial with appropriate weights. At
worst, we can set the feature weights so that the
decoding paths of one model are never picked for
the final translation. In practice, each translation
model adds 5 features and thus 5 more dimensions
to the weight space, which leads to longer search,
search errors, and/or overfitting. The expectation
is that, at least with MERT, using alternative de-
coding paths does not scale well to a high number
of models.

A suboptimal choice of weights is not the only
weakness of alternative paths, however. Let us
assume that all models have the same weights.
Note that, if a phrase pair occurs in several mod-
els, combining models through alternative paths
means that the decoder selects the path with the
highest probability, whereas with linear interpo-
lation, the probability of the phrase pair would
be the (weighted) average of all models. Select-
ing the highest-scoring phrase pair favours statis-
tical outliers and hence is the less robust decision,
prone to data noise and data sparseness.

2.4 Perplexity Minimization

In language modelling, perplexity is frequently
used as a quality measure for language models
(Chen and Goodman, 1998). Among other appli-
cations, language model perplexity has been used
for domain adaptation (Foster and Kuhn, 2007).
For translation models, perplexity is most closely
associated with EM word alignment (Brown et
al., 1993) and has been used to evaluate different
alignment algorithms (Al-Onaizan et al., 1999).

We investigate translation model perplexity
minimization as a method to set model weights
in mixture modelling. For the purpose of opti-
mization, the cross-entropy H(p), the perplexity
2H(p), and other derived measures are equivalent.
The cross-entropy H(p) is defined as:6

6See (Chen and Goodman, 1998) for a short discussion
of the equation. In short, a lower cross-entropy indicates that
the model is better able to predict the development set.
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H(p) = −
∑
x,y

p̃(x, y) log2 p(x|y) (4)

The phrase pairs (x, y) whose probability we
measure, and their empirical probability p̃ need
to be extracted from a development set, whereas
p is the model probability. To obtain the phrase
pairs, we process the development set with the
same word alignment and phrase extraction tools
that we use for training, i.e. GIZA++ and heuris-
tics for phrase extraction (Och and Ney, 2003).
The objective function is the minimization of the
cross-entropy, with the weight vector λ as argu-
ment:

λ̂ = arg min
λ

−
∑
x,y

p̃(x, y) log2 p(x|y;λ) (5)

We can fill in equations 1 or 3 for p(x|y;λ). The
optimization itself is convex and can be done with
off-the-shelf software.7 We use L-BFGS with
numerically approximated gradients (Byrd et al.,
1995).

Perplexity minimization has the advantage that
it is well-defined for both weighted counts and lin-
ear interpolation, and can be quickly computed.
Other than in language modelling, where p(x|y)
is the probability of a word given a n-gram his-
tory, conditional probabilities in translation mod-
els express the probability of a target phrase given
a source phrase (or vice versa), which connects
the perplexity to the ambiguity problem. The
higher the probability of “correct” phrase pairs,
the lower the perplexity, and the more likely
the model is to successfully resolve the ambigu-
ity. The question is in how far perplexity min-
imization coincides with empirically good mix-
ture weights.8 This depends, among others, on
the other model components in the SMT frame-
work, for instance the language model. We will
not evaluate perplexity minimization against em-
pirically optimized mixture weights, but apply it
in situations where the latter is infeasible, e.g. be-
cause of the number of models.

7A quick demonstration of convexity: equation 1 is
affine; equation 3 linear-fractional. Both are convex in the
domain R>0. Consequently, equation 4 is also convex be-
cause it is the weighted sum of convex functions.

8There are tasks for which perplexity is known to be un-
reliable, e.g. for comparing models with different vocabular-
ies. However, such confounding factors do not affect the op-
timization algorithm, which works with a fixed set of phrase
pairs, and merely varies λ.

Our main technical contributions are as fol-
lows: Additionally to perplexity optimization for
linear interpolation, which was first applied by
Foster et al. (2010), we propose perplexity opti-
mization for weighted counts (equation 3), and a
modified implementation of linear interpolation.
Also, we independently perform perplexity mini-
mization for all four features of the standard SMT
translation model: the phrase translation proba-
bilities p(t|s) and p(s|t), and the lexical weights
lex(t|s) and lex(s|t).

3 Other Domain Adaptation Techniques

So far, we discussed mixture modelling for trans-
lation models, which is only a subset of domain
adaptation techniques in SMT.

Mixture-modelling for language models is well
established (Foster and Kuhn, 2007). Language
model adaptation serves the same purpose as
translation model adaptation, i.e. skewing the
probability distribution in favour of in-domain
translations. This means that LM adaptation may
have similar effects as TM adaptation, and that
the two are to some extent redundant. Foster and
Kuhn (2007) find that “both TM and LM adap-
tation are effective”, but that “combined LM and
TM adaptation is not better than LM adaptation
on its own”.

A second strand of research in domain adap-
tation is data selection, i.e. choosing a subset of
the training data that is considered more relevant
for the task at hand. This has been done for lan-
guage models using techniques from information
retrieval (Zhao et al., 2004), or perplexity (Lin et
al., 1997; Moore and Lewis, 2010). Data selec-
tion has also been proposed for translation mod-
els (Axelrod et al., 2011). Note that for transla-
tion models, data selection offers an unattractive
trade-off between the data sparseness and the am-
biguity problem, and that the optimal amount of
data to select is hard to determine.

Our discussion of mixture-modelling is rela-
tively coarse-grained, with 2-10 models being
combined. Matsoukas et al. (2009) propose an ap-
proach where each sentence is weighted accord-
ing to a classifier, and Foster et al. (2010) ex-
tend this approach by weighting individual phrase
pairs. These more fine-grained methods need not
be seen as alternatives to coarse-grained ones.
Foster et al. (2010) combine the two, apply-
ing linear interpolation to combine the instance-
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weighted out-of-domain model with an in-domain
model.

4 Evaluation

Apart from measuring the performance of the ap-
proaches introduced in section 2, we want to in-
vestigate the following open research questions.

1. Does an implementation of linear interpola-
tion that is more closely tailored to trans-
lation modelling outperform a naive imple-
mentation?

2. How do the approaches perform outside a
binary setting, i.e. when we do not work
with one in-domain and one out-of-domain
model, but with a higher number of models?

3. Can we apply perplexity minimization to
other translation model features such as the
lexical weights, and if yes, does a separate
optimization of each translation model fea-
ture improve performance?

4.1 Data and Methods

In terms of tools and techniques used, we mostly
adhere to the work flow described for the WMT
2011 baseline system9. The main tools are Moses
(Koehn et al., 2007), SRILM (Stolcke, 2002), and
GIZA++ (Och and Ney, 2003), with settings as
described in the WMT 2011 guide. We report
two translation measures: BLEU (Papineni et al.,
2002) and METEOR 1.3 (Denkowski and Lavie,
2011). All results are lowercased and tokenized,
measured with five independent runs of MERT
(Och and Ney, 2003) and MultEval (Clark et al.,
2011) for resampling and significance testing.

We compare three baselines and four transla-
tion model mixture techniques. The three base-
lines are a purely in-domain model, a purely out-
of-domain model, and a model trained on the con-
catenation of the two, which corresponds to equa-
tion 3 with uniform weights. Additionally, we
evaluate perplexity optimization with weighted
counts and the two implementations of linear in-
terpolation contrasted in section 2.1. The two lin-
ear interpolations that are contrasted are a naive
one, i.e. a direct, unnormalized interpolation of

9http://www.statmt.org/wmt11/baseline.
html

Data set sentences words (fr)
Alpine (in-domain) 220k 4 700k
Europarl 1 500k 44 000k
JRC Acquis 1 100k 24 000k
OpenSubtitles v2 2 300k 18 000k
Total train 5 200k 91 000k
Dev 1424 33 000
Test 991 21 000

Table 1: Parallel data sets for German – French trans-
lation task.

Data set sentences words
Alpine (in-domain) 650k 13 000k
News-commentary 150k 4 000k
Europarl 2 000k 60 000k
News 25 000k 610 000k
Total 28 000k 690 000k

Table 2: Monolingual French data sets for German –
French translation task.

all translation model features, and a modified one
that normalizes λ for each phrase pair (s, t) for
p(t|s) and recomputes the lexical weights based
on interpolated word translation probabilites. The
fourth weighted combination is using alternative
decoding paths with weights set through MERT.
The four weighted combinations are evaluated
twice: once applied to the original four or ten par-
allel data sets, once in a binary setting in which
all out-of-domain data sets are first concatenated.

Since we want to concentrate on translation
model domain adaptation, we keep other model
components, namely word alignment and the lex-
ical reordering model, constant throughout the ex-
periments. We contrast two language models. An
unadapted, out-of-domain language model trained
on data sets provided for the WMT 2011 transla-
tion task, and an adapted language model which is
the linear interpolation of all data sets, optimized
for minimal perplexity on the in-domain develop-
ment set.

While unadapted language models are becom-
ing more rare in domain adaptation research, they
allow us to contrast different TM mixtures with-
out the effect on performance being (partially)
hidden by language model adaptation with the
same effect.

The first data set is a DE–FR translation sce-
nario in the domain of mountaineering. The in-
domain corpus is a collection of Alpine Club pub-
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lications (Volk et al., 2010). As parallel out-of-
domain dataset, we use Europarl, a collection of
parliamentary proceedings (Koehn, 2005), JRC-
Acquis, a collection of legislative texts (Stein-
berger et al., 2006), and OpenSubtitles v2, a par-
allel corpus extracted from film subtitles10 (Tiede-
mann, 2009). For language modelling, we use in-
domain data and data from the 2011 Workshop
on Statistical Machine Translation. The respec-
tive sizes of the data sets are listed in tables 1 and
2.

As the second data set, we use the Haitian Cre-
ole – English data from the WMT 2011 featured
translation task. It consists of emergency SMS
sent in the wake of the 2010 Haiti earthquake.
Originally, Microsoft Research and CMU oper-
ated under severe time constraints to build a trans-
lation system for this language pair. This limits
the ability to empirically verify how much each
data set contributes to translation quality, and in-
creases the importance of automated and quick
domain adaptation methods.

Note that both data sets have a relatively high
ratio of in-domain to out-of-domain parallel train-
ing data (1:20 for DE–EN and 1:5 for HT–EN)
Previous research has been performed with ratios
of 1:100 (Foster et al., 2010) or 1:400 (Axelrod
et al., 2011). Since domain adaptation becomes
more important when the ratio of IN to OUT is
low, and since such low ratios are also realistic11,
we also include results for which the amount of
in-domain parallel data has been restricted to 10%
of the available data set.

We used the same development set for lan-
guage/translation model adaptation and setting
the global model weights with MERT. While it
is theoretically possible that MERT will give too
high weights to models that are optimized on the
same development set, we found no empirical evi-
dence for this in experiments with separate devel-
opment sets.

4.2 Results

The results are shown in tables 5 and 6. In the
DE–FR translation task, results vary between 13.5
and 18.9 BLEU points; in the HT–EN task, be-
tween 24.3 and 33.8. Unsurprisingly, an adapted

10http://www.opensubtitles.org
11We predict that the availability of parallel data will

steadily increase, most data being out-of-domain for any
given task.

Data set units words (en)
SMS (in-domain) 16 500 380 000
Medical 1 600 10 000
Newswire 13 500 330 000
Glossary 35 700 90 000
Wikipedia 8 500 110 000
Wikipedia NE 10 500 34 000
Bible 30 000 920 000
Haitisurf dict 3 700 4000
Krengle dict 1 600 2 600
Krengle 650 4 200
Total train 120 000 1 900 000
Dev 900 22 000
Test 1274 25 000

Table 3: Parallel data sets for Haiti Creole – English
translation task.

Data set sentences words
SMS (in-domain) 16k 380k
News 113 000k 2 650 000k

Table 4: Monolingual English data sets for Haiti Cre-
ole – English translation task.

LM performs better than an out-of-domain one,
and using all available in-domain parallel data is
better than using only part of it. The same is not
true for out-of-domain data, which highlights the
problem discussed in the introduction. For the
DE–FR task, adding 86 million words of out-of-
domain parallel data to the 5 million in-domain
data set does not lead to consistent performance
gains. We observe a decrease of 0.3 BLEU points
with an out-of-domain LM, and an increase of 0.4
BLEU points with an adapted LM. The out-of-
domain training data has a larger positive effect
if less in-domain data is available, with a gain of
1.4 BLEU points. The results in the HT–EN trans-
lation task (table 6) paint a similar picture. An
interesting side note is that even tiny amounts of
in-domain parallel data can have strong effects on
performance. A training set of 1600 emergency
SMS (38 000 tokens) yields a comparable perfor-
mance to an out-of-domain data set of 1.5 million
tokens.

As to the domain adaptation experiments,
weights optimized through perplexity minimiza-
tion are significantly better in the majority of
cases, and never significantly worse, than uniform
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System
out-of-domain LM adapted LM

full IN TM full IN TM small IN TM
BLEU METEOR BLEU METEOR BLEU METEOR

in-domain 16.8 35.9 17.9 37.0 15.7 33.5
out-of-domain 13.5 31.3 14.8 32.3 14.8 32.3
counts (concatenation) 16.5 35.7 18.3 37.3 17.1 35.4
binary in/out
weighted counts 17.4 36.6 18.7 37.9 17.6 36.2
linear interpolation (naive) 17.4 36.7 18.8 37.9 17.6 36.1
linear interpolation (modified) 17.2 36.5 18.9 38.0 17.6 36.2
alternative paths 17.2 36.5 18.6 37.8 17.4 36.0
4 models
weighted counts 17.3 36.6 18.8 37.8 17.4 36.0
linear interpolation (naive) 17.1 36.5 18.5 37.7 17.3 35.9
linear interpolation (modified) 17.2 36.5 18.7 37.9 17.3 36.0
alternative paths 17.0 36.2 18.3 37.4 16.3 35.1

Table 5: Domain adaptation results DE–FR. Domain: Alpine texts. Full IN TM: Using the full in-domain parallel
corpus; small IN TM: using 10% of available in-domain parallel data.

weights.12 However, the difference is smaller for
the experiments with an adapted language model
than for those with an out-of-domain one, which
confirms that the benefit of language model adap-
tation and translation model adaptation are not
fully cumulative. Performance-wise, there seems
to be no clear winner between weighted counts
and the two alternative implementations of lin-
ear interpolation. We can still argue for weighted
counts on theoretical grounds. A weighted MLE
(equation 3) returns a true probability distribution,
whereas a naive implementation of linear interpo-
lation results in a deficient model. Consequently,
probabilities are typically lower in the naively in-
terpolated model, which results in higher (worse)
perplexities. While the deficiency did not affect
MERT or decoding negatively, it might become
problematic in other applications, for instance if
we want to use an interpolated model as a compo-
nent in a second perplexity-based combination of
models.13

When moving from a binary setting with
one in-domain and one out-of-domain transla-
tion model (trained on all available out-of-domain
data) to 4–10 translation models, we observe a
serious performance degradation for alternative
paths, while performance of the perplexity opti-

12This also applies to linear interpolation with uniform
weights, which is not shown in the tables.

13Specifically, a deficient model would be dispreferred by
the perplexity minimization algorithm.

mization methods does not change significantly.
This is positive for perplexity optimization be-
cause it demonstrates that it requires less a priori
information, and opens up new research possibil-
ities, i.e. experiments with different clusterings of
parallel data. The performance degradation for
alternative paths is partially due to optimization
problems in MERT, but also due to a higher sus-
ceptibility to statistical outliers, as discussed in
section 2.3.14

A pessimistic interpretation of the results
would point out that performance gains compared
to the best baseline system are modest or even
inexistent in some settings. However, we want
to stress two important points. First, we often
do not know a priori whether adding an out-of-
domain data set boosts or weakens translation per-
formance. An automatic weighting of data sets re-
duces the need for trial-and-error experimentation
and is worthwhile even if a performance increase
is not guaranteed. Second, the potential impact
of a weighted combination depends on the trans-
lation scenario and the available data sets. Gen-
erally, we expect non-uniform weighting to have
a bigger impact when the models that are com-
bined are more dissimilar (in terms of fitness for
the task), and if the ratio of in-domain to out-of-
domain data is low. Conversely, there are situa-

14We empirically verified this weakness in a synthetic ex-
periment with a randomly split training corpus and identical
weights for each path.
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System
out-of-domain LM adapted LM

full IN TM full IN TM small IN TM
BLEU METEOR BLEU METEOR BLEU METEOR

in-domain 30.4 30.7 33.4 31.7 29.7 28.6
out-of-domain 24.3 28.0 28.9 30.2 28.9 30.2
counts (concatenation) 30.3 31.2 33.6 32.4 31.3 31.3
binary in/out
weighted counts 31.0 31.6 33.8 32.4 31.5 31.3
linear interpolation (naive) 30.8 31.4 33.7 32.4 31.9 31.3
linear interpolation (modified) 30.8 31.5 33.7 32.4 31.7 31.2
alternative paths 30.8 31.3 33.2 32.4 29.8 30.7
10 models
weighted counts 31.0 31.5 33.5 32.3 31.8 31.5
linear interpolation (naive) 30.9 31.4 33.8 32.4 31.9 31.3
linear interpolation (modified) 31.0 31.6 33.8 32.5 32.1 31.5
alternative paths 25.9 29.2 24.3 29.1 29.8 30.9

Table 6: Domain adaptation results HT–EN. Domain: emergency SMS. Full IN TM: Using the full in-domain
parallel corpus; small IN TM: using 10% of available in-domain parallel data.

tions where we actually expect a simple concate-
nation to be optimal, e.g. when the data sets have
very similar probability distributions.

4.2.1 Individually Optimizing Each TM
Feature

It is hard to empirically show how translation
model perplexity optimization compares to using
monolingual perplexity measures for the purpose
of weighting translation models, as e.g. done by
(Foster and Kuhn, 2007; Koehn et al., 2010). One
problem is that there are many different possible
configurations for the latter. We can use source
side or target side language models, operate with
different vocabularies, smoothing techniques, and
n-gram orders.

One of the theoretical considerations that
favour measuring perplexity on the translation
model rather than using monolingual measures
is that we can optimize each translation model
feature separately. In the default Moses transla-
tion model, the four features are p(s|t), lex(s|t),
p(t|s) and lex(t|s).

We empirically test different optimization
schemes as follows. We optimize perplexity on
each feature independently, obtaining 4 weight
vectors. We then compute one model with one
weight vector per feature (namely the feature that
the vector was optimized on), and four models
that use one of the weight vectors for all features.
A further model uses a weight vector that is the

weights
perplexity

BLEU
1 2 3 4

weighted counts
uniform 5.12 7.68 4.84 13.67 30.3
separate 4.68 6.62 4.24 8.57 31.0
1 4.68 6.84 4.50 10.86 30.3
2 4.78 6.62 4.48 10.54 30.3
3 4.86 7.31 4.24 9.15 30.8
4 5.33 7.87 4.52 8.57 30.9
average 4.72 6.71 4.38 9.95 30.4
linear interpolation (modified)
uniform 19.89 82.78 4.80 10.78 30.6
separate 5.45 8.56 4.28 8.85 31.0
1 5.45 8.79 4.40 8.89 30.8
2 5.71 8.56 4.54 8.91 30.9
3 6.46 11.88 4.28 9.07 31.0
4 6.12 10.86 4.47 8.85 30.9
average 5.73 9.72 4.34 8.89 30.9
LM 6.01 9.83 4.56 8.96 30.8

Table 7: Contrast between a separate optimization of
each feature and applying the weight vector optimized
on one feature to the whole model. HT–EN with out-
of-domain LM.
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average of the other four. For linear interpolation,
we also include a model whose weights have been
optimized through language model perplexity op-
timization, with a 3-gram language model (modi-
fied Knesey-Ney smoothing) trained on the target
side of each parallel data set.

Table 7 shows the results. In terms of BLEU

score, a separate optimization of each feature is a
winner in our experiment in that no other scheme
is better, with 8 of the 11 alternative weighting
schemes (excluding uniform weights) being sig-
nificantly worse than a separate optimization. The
differences in BLEU score are small, however,
since the alternative weighting schemes are gen-
erally felicitious in that they yield both a lower
perplexity and better BLEU scores than uniform
weighting. While our general expectation is that
lower perplexities correlate with higher transla-
tion performance, this relation is complicated by
several facts. Since the interpolated models are
deficient (i.e. their probabilities do not sum to 1),
perplexities for weighted counts and our imple-
mentation of linear interpolation cannot be com-
pard. Also, note that not all features are equally
important for decoding. Their weights in the log-
linear model are set through MERT and vary be-
tween optimization runs.

5 Conclusion

This paper contributes to SMT domain adaptation
research in several ways. We expand on work
by (Foster et al., 2010) in establishing transla-
tion model perplexity minimization as a robust
baseline for a weighted combination of translation
models.15 We demonstrate perplexity optimiza-
tion for weighted counts, which are a natural ex-
tension of unadapted MLE training, but are of lit-
tle prominence in domain adaptation research. We
also show that we can separately optimize the four
variable features in the Moses translation model
through perplexity optimization.

We break with prior domain adaptation re-
search in that we do not rely on a binary clustering
of in-domain and out-of-domain training data. We
demonstrate that perplexity minimization scales
well to a higher number of translation models.
This is not only useful for domain adaptation, but
for various tasks that profit from mixture mod-

15The source code is available in the Moses repository
http://github.com/moses-smt/mosesdecoder

elling. We envision that a weighted combination
could be useful to deal with noisy datasets, or ap-
plied after a clustering of training data.
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Abstract

This paper describes Subcat-LMF, an ISO-
LMF compliant lexicon representation for-
mat featuring a uniform representation
of subcategorization frames (SCFs) for
the two languages English and German.
Subcat-LMF is able to represent SCFs at a
very fine-grained level. We utilized Subcat-
LMF to standardize lexicons with large-
scale SCF information: the English Verb-
Net and two German lexicons, i.e., a subset
of IMSlex and GermaNet verbs. To evalu-
ate our LMF-model, we performed a cross-
lingual comparison of SCF coverage and
overlap for the standardized versions of the
English and German lexicons. The Subcat-
LMF DTD, the conversion tools and the
standardized versions of VerbNet and IMS-
lex subset are publicly available.1

1 Introduction

Computational lexicons providing accurate
lexical-syntactic information, such as subcatego-
rization frames (SCFs) are vital for many NLP
applications involving parsing and word sense
disambiguation. In parsing, SCFs have been
successfully used to improve the output of sta-
tistical parsers (Klenner (2007), Deoskar (2008),
Sigogne et al. (2011)) which is particularly
significant in high-precision domain-independent
parsing. In word sense disambiguation, SCFs
have been identified as important features for
verb sense disambiguation (Brown et al., 2011),
which is due to the correlation of verb senses and
SCFs (Andrew et al., 2004).

SCFs specify syntactic arguments of verbs and
other predicate-like lexemes, e.g. the verb say

1http://www.ukp.tu-darmstadt.de/data/uby

takes two arguments that can be realized, for in-
stance, as noun phrase and that-clause as in He
says that the window is open.

Although a number of freely available, large-
scale and accurate SCF lexicons exist, e.g. COM-
LEX (Grishman et al., 1994), VerbNet (Kipper
et al., 2008) for English, availability and limita-
tions in size and coverage remain an inherent is-
sue. This applies even more to languages other
than English.

One particular approach to address this issue is
the combination and integration of existing man-
ually built SCF lexicons. Lexicon integration
has widely been adopted for increasing the cover-
age of lexicons regarding lexical-semantic infor-
mation types, such as semantic roles, selectional
restrictions, and word senses (e.g., Shi and Mi-
halcea (2005), the Semlink project2, Navigli and
Ponzetto (2010), Niemann and Gurevych (2011),
Meyer and Gurevych (2011)).

Currently, SCFs are represented idiosyncrati-
cally in existing SCF lexicons. However, inte-
gration of SCFs requires a common, interopera-
ble representation format. Monolingual SCF in-
tegration based on a common representation for-
mat has already been addressed by King and
Crouch (2005) and just recently by Necsulescu et
al. (2011) and Padró et al. (2011). However, nei-
ther King and Crouch (2005) nor Necsulescu et
al. (2011) or Padró et al. (2011) make use of ex-
isting standards in order to create a uniform SCF
representation for lexicon merging. The defini-
tion of an interoperable representation format ac-
cording to an existing standard, such as the ISO
standard Lexical Markup Framework (LMF, ISO
24613:2008, see Francopoulo et al. (2006)), is the

2http://verbs.colorado.edu/semlink/
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prerequisite for re-using this format in different
contexts, thus contributing to the standardization
and interoperability of language resources.

While LMF models exist that cover the rep-
resentation of SCFs (see Quochi et al. (2008),
Buitelaar et al. (2009)), their suitability for repre-
senting SCFs at a large scale remains unclear: nei-
ther of these LMF-models has been used for stan-
dardizing lexicons with a large number of SCFs,
such as VerbNet. Furthermore, the question of
their applicability to different languages has not
been investigated yet, a situation that is compli-
cated by the fact that SCFs are highly language-
specific.

The goal of this paper is to address these gaps
for the two languages English and German by pre-
senting a uniform LMF representation of SCFs
for English and German which is utilized for the
standardization of large-scale English and Ger-
man SCF lexicons. The contributions of this
paper are threefold: (1) We present the LMF
model Subcat-LMF, an LMF-compliant lexicon
representation format featuring a uniform and
very fine-grained representation of SCFs for En-
glish and German. Subcat-LMF is a subset of
Uby-LMF (Eckle-Kohler et al., 2012), the LMF
model of the large integrated lexical resource Uby
(Gurevych et al., 2012). (2) We convert lexicons
with large-scale SCF information to Subcat-LMF:
the English VerbNet and two German lexicons,
i.e., GermaNet (Kunze and Lemnitzer, 2002) and
a subset of IMSlex3 (Eckle-Kohler, 1999). (3) We
perform a comparison of these three lexicons re-
garding SCF coverage and SCF overlap, based on
the standardized representation.

The remainder of this paper is structured as fol-
lows: Section 2 gives a detailed description of
Subcat-LMF and section 3 demonstrates its use-
fulness for representing and cross-lingually com-
paring large-scale English and German lexicons.
Section 4 provides a discussion including related
work and section 5 concludes.

2 Subcat-LMF

2.1 ISO-LMF: a meta-model

LMF defines a meta-model of lexical resources,
covering NLP lexicons and Machine Readable
Dictionaries. This meta-model is based on the
Unified Modeling Language (UML) and speci-

3http://www.ims.uni-stuttgart.de/projekte/IMSLex/

fies a core package and a number of extensions
for modeling different types of lexicons, includ-
ing subcategorization lexicons.

The development of an LMF-compliant lexi-
con model requires two steps: in the first step,
the structure of the lexicon model has to be de-
fined by choosing a combination of the LMF core
package and zero to many extensions (i.e. UML
packages). While the LMF core package models
a lexicon in terms of lexical entries, each of which
is defined as the pairing of one to many forms and
zero to many senses, the LMF extensions provide
UML classes for different types of lexicon orga-
nization, e.g., covering the synset-based organiza-
tion of WordNet and the class-based organization
of VerbNet. The first step results in a set of UML
classes that are associated according to the UML
diagrams given in ISO LMF.

In the second step, these UML classes may be
enriched by attributes. While neither attributes
nor their values are given by the standard, the
standard states that both are to be linked to Data
Categories (DCs) defined in a Data Category Reg-
istry (DCR) such as ISOCat.4 DCs that are not
available in ISOCat may be defined and submit-
ted for standardization. The second step results in
a so-called Data Category Selection (DCS).

DCs specify the linguistic vocabulary used in
an LMF model. Consider as an example the
linguistic term direct object that often occurs in
SCFs of verbs taking an accusative NP as argu-
ment. In ISOCat, there are two different specifi-
cations of this term, one explicitly referring to the
capability of becoming the clause subject in pas-
sivization5, the other not mentioning passivization
at all.6 Consequently, the use of a DCR plays a
major role regarding the semantic interoperability
of lexicons (Ide and Pustejovsky, 2010). Different
resources that share a common definition of their
linguistic vocabulary are said to be semantically
interoperable.

2.2 Fleshing out ISO-LMF

Approach: We started our development of
Subcat-LMF with a thorough inspection of large-
scale English and German resources providing
SCFs for verbs, nouns, and adjectives. For

4http://www.isocat.org/, the implementation of the ISO
12620 DCR (Broeder et al., 2010).

5http://www.isocat.org/datcat/DC-1274
6http://www.isocat.org/datcat/DC-2263
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English, our analysis included VerbNet7 and
FrameNet syntactically annotated example sen-
tences from Ruppenhofer et al. (2010). For Ger-
man, we inspected GermaNet, SALSA annota-
tion guidelines (Burchardt et al., 2006) and IM-
Slex documentation (Eckle-Kohler, 1999). In ad-
dition, the EAGLES synopsis on morphosyntactic
phenomena8 (Calzolari and Monachini, 1996), as
well as the EAGLES recommendations on subcat-
egorization9 have been used to identify DCs rele-
vant for SCFs.

We specified Subcat-LMF by a DTD yielding
an XML serialization of ISO-LMF. Thus, existing
lexicons can be standardized, i.e. converted into
Subcat-LMF format, based on the DTD.10

Lexicon structure: Next, we defined the
lexicon structure of Subcat-LMF. In addition
to the core package, Subcat-LMF primarily
makes use of the LMF Syntax and Seman-
tics extension. Figure 1 shows the most
important classes of Subcat-LMF including
SynsemCorrespondence where the linking of
syntactic and semantic arguments is encoded. It
might by worth noting that both synsets from Ger-
maNet and verb classes from VerbNet can be rep-
resented in Subcat-LMF by using the Synset and
SubcategorizationFrameSet class.

Diverging linguistic properties of SCFs in
English and German: For verbs (and also for
predicate-like nouns and adjectives), SCFs spec-
ify the syntactic and morphosyntactic properties
of their arguments that have to be present in con-
crete realizations of these arguments within a sen-
tence. While some properties of syntactic argu-
ments in English and German correspond (both
English and German are Germanic languages and
hence closely related), there are other properties,
mainly morphosyntactic ones that diverge. By
way of examples, we illustrate some of these di-
vergences in the following (we contrast English
examples with their German equivalents):

• overt case marking in German:

He helps him. vs. Er hilft ihm. (dative)

• specific verb form in verb phrase arguments:
He suggested cleaning the house. (ing-form)

7SCFs in VerbNet also cover SCFs in VALEX, a lexicon
automatically extracted from corpora.

8http://www.ilc.cnr.it/EAGLES96/morphsyn/
9http://www.ilc.cnr.it/EAGLES96/synlex/

10Available at http://www.ukp.tu-darmstadt.de/data/uby

vs.
Er schlug vor, das Haus zu putzen. (to-
infinitive)

• morphosyntactic marking of verb phrase ar-
guments in the main clause: He managed to
win. (no marking) vs.
Er hat es geschafft zu gewinnen. (obligatory
es)

• morphosyntactic marking of clausal argu-
ments in the main clause: That depends on
who did it. (preposition) vs.
Das hängt davon ab, wer es getan hat.
(pronominal adverb)

Uniform Data Categories for English and Ger-
man: Thus, the main challenge in developing
Subcat-LMF has been the specification of DCs
(attributes and attribute values) in such a way,
that a uniform specification of SCFs in the two
languages English and German can be achieved.
The specification of DCs for Subcat-LMF in-
volved fleshing out ISO-LMF, because it is a
meta-standard in the sense that it provides only
few linguistic terms, i.e. DCs, and these DCs
are not linked to any DCR: in the Syntax Exten-
sion, the standard only provides 7 class names,
see Figure 1), complemented by 17 example at-
tributes given in an informative, non-binding An-
nex F. These are by far not sufficient to repre-
sent the fine-grained SCFs available in such large-
scale lexicons as VerbNet.

In contrast, the Syntax part of Subcat-LMF
comprises 58 DCs that are properly linked to
ISOCat DCs; a number of DCs were missing in
ISOCat, so we entered them ourselves.11 The
majority of the attributes in Subcat-LMF are at-
tached to the SyntacticArgument class. The
corresponding DCs can be divided into two main
groups:

Cross-lingually valid DCs for the spec-
ification of grammatical functions (e.g.
subject, prepositionalComplement)
and syntactic categories (e.g. nounPhrase,
prepositionalPhrase), see Table 1.

Partly language-specific morphosyntactic
DCs that further specify the syntactic arguments
(e.g. attribute case, attribute verbForm and

11The Subcat-LMF DCS is publicly available on the ISO-
Cat website.
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Figure 1: Selected classes of Subcat-LMF.

Values of grammaticalFunction Example
subject They arrived in time.
subjectComplement He becomes a teacher.
directObject He saw a rainbow.
objectComplement They elected him governor.
complement He told him a story.
prepositionalComplement It depends on several factors.
adverbialComplement They moved far away.
Values of syntacticCategory Example
nounPhrase The train stopped.
reflexive He drank himself sick.
expletive It is raining.
prepositionalPhrase It depends on several factors.
adverbPhrase They moved far away.
adjectivePhrase The light turned red.
verbPhrase She tried to exercise.
declarativeClause He says he agrees.
subordinateClause He believes that it works.

Table 1: Cross-lingually valid (English-German) attributes and values of the SyntacticArgument class.

values toInfinitive, bareInfinitive,

ingForm, participle), see Table 2.
In the class LexemeProperty, we introduced

an attribute syntacticProperty to encode
control and raising properties of verbs taking in-
finitival verb phrase arguments.12

In Subcat-LMF, syntactic arguments can be
specified by a selection of appropriate attribute-
value pairs. While all syntactic arguments are uni-
formly specified by a grammatical function and a
syntactic category, the use of the morphosyntactic
attributes depends on the particular type of syn-
tactic argument. Different phrase types are spec-

12Control or raising specify the co-reference between the
implicit subject of the infinitival argument and syntactic ar-
guments in the main clause, either the subject (subject con-
trol or raising) or direct object (object control or raising).

ified by different subsets of morphosyntactic at-
tributes, see Table 2. The following examples il-
lustrate some of these attributes:

• number: the number of a noun phrase argu-
ment can be lexically governed by the verb
as in These types of fish mix well together.

• verbForm: the verb form of a clausal com-
plement can be required to be a bare infini-
tive as in They demanded that he be there.

• tense: not only the verb form, but also the
tense of a verb phrase complement can be
lexically governed, e.g., to be a participle in
the past tense as in They had it removed.
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Morphosyntactic attributes and values NP PP VP C
case: nominative, genitive, dative, accusative x x
determiner: possessive, indefinite x x
number: singular, plural x
verbForm: toInfinitive, bareInfinitive, ingForm(!), Participle x x
tense: present, past x
complementizer: thatType, whType, yesNoType x
prepositionType: external ontological type, e.g. locative x x x
preposition: (string) (!) x x x
lexeme: (string) (!) x x

Table 2: Morphosyntactic attributes of SyntacticArgument and phrase types for which the attributes are
appropriate (NP: noun phrase, PP: prepositional phrase, VP: verb phrase, C: clause). Language-specific attributes
are marked by (!).

3 Utilizing Subcat-LMF

3.1 Standardizing large-scale lexicons
Lexicon Data: We converted VerbNet (VN) and
two German lexicons, i.e., GermaNet (GN) and
a subset of IMSlex (ILS) to Subcat-LMF format.
ILS has been developed independently from GN
and the lexicon data were published in Eckle-
Kohler (1999).

VN is organized in verb classes based on Levin-
style syntactic alternations (Levin, 1993): verbs
with common SCFs and syntactic alternation be-
havior that also share common semantic roles are
grouped into classes. VN (version 3.1) lists 568
frames that are encoded as phrase structure rules
(XML element SYNTAX), specifying phrase types
and semantic roles of the arguments, as well as se-
lectional, syntactic and morphosyntactic restric-
tions on the arguments. Additionally, a descrip-
tive specification of each frame is given (XML
element DESCRIPTION). The verb learn, for in-
stance, has the following VN frame:
DESCRIPTION (primary): NP V NP

SYNTAX: Agent V Topic

We extracted both the descriptive specifications
and the phrase structure rules, using the API
available for VN13, resulting in 682 unique VN
frames.14

GN provides detailed SCFs for verbs, in
contrast to the Princeton WordNet: GN version
6.0 from April 2011 accessed by the GN API15

lists 202 frames. GN SCFs are represented as a
13http://verbs.colorado.edu/verb-index/inspector/
14The VN API was used with the view options wrexyzsq

for verb frame pairs and ctuqw for verb class information.
15GermaNet Java API 2.0.2

dot-separated sequence of letter pairs. Each letter
pair specifies a syntactic argument: the first letter
encodes the grammatical function and the second
letter the syntactic category.16 For instance, the
following shows the GN code for transitive verbs:
NN.AN.

ILS is represented in delimiter-separated
values format and contains 784 verbs in total.
Of these 784 verbs, 740 of them are also present
in GN, and 44 are listed in ILS only. Although
ILS contains only verbs that take clausal ar-
guments and verb phrase arguments, a total
number of 220 SCFs is present in ILS, also
including SCFs without clausal and verb phrase
arguments. ILS lists for each verb lemma a
number of SCFs, thus specifying coarse-grained
verb senses given by a lemma-SCF pair.17 The
SCFs are represented as parenthesized lists. For
instance, the ILS SCF for transitive verbs is:
(subj(NPnom),obj(NPacc)).

Automatic Conversion: We implemented Java
tools for the conversion of VN, GN and ILS to
Subcat-LMF. These tools convert the source lexi-
cons based on a manual mapping of lexicon units
and terms (e.g., VN verb class, GN synset) to
Subcat-LMF. For the majority of SCFs, this map-
ping is defined on argument level. Lexical data
is extracted from the source lexicons by using the
native APIs (VN, GN) and additional Perl scripts.

16See http://www.sfs.uni-tuebingen.de/GermaNet/-
verb frames.shtml

17In addition, ILS provides a semantic class label for each
verb; however, these semantic labels are attached at lemma
level, i.e. they need to be disambiguated.
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# LexicalEntry # Sense # Subcat.Frame # SemanticPred.
LMF-VN 3962 31891 284 617
orig. VN (3962 verbs) (31891 groups of verb,

frame, sem.pred.)
(568 frames) (572 sem. Pred.)

LMF-GN 8626 12981 147 84
orig. GN (8626 verbs) (12981 verb-synset pairs) (202 GN frames) (no sem. Pred.)
LMF-ILS 784 3675 217 10
orig. ILS (784 verbs) (3675 verb-frame pairs) (220 SCFs) (no sem. Pred.)

Table 3: Evaluation of the automatic conversion. Numbers of Subcat-LMF instances in the converted lexicons
compared to numbers of corresponding units in original lexicons.

Evaluation of Automatic Conversion: Table 3
shows the mapping of the major source lexicon
units (such as verb-synset pairs) to Subcat-LMF
and lists the corresponding numbers of units.

For VN, groups of VN verb, frame and se-
mantic predicate have been mapped to LMF
senses. VN classes have been mapped to
SubcategorizationFrameSet. Thus, the
original VN-sense, a pairing of verb lemma and
class, can be recovered by grouping LMF senses
that share the same verb class. There is a signif-
icant difference between the original VN frames
and their Subcat-LMF representation: the seman-
tic information present in VN frames (seman-
tic roles and selectional restrictions) is mapped
to semantic arguments in Subcat-LMF, i.e. the
mapping splits VN frames into a purely syntac-
tic and a purely semantic part. Consequently,
the number of unique SCFs in the Subcat-LMF
version of VN is much smaller than the num-
ber of frames in the original VN. The conversion
tool creates for each sense (specifying a unique
verb, frame, semantic predicate combination) a
SynSemCorrespondence.
On the other hand, the Subcat-LMF version of VN
contains more semantic predicates than VN. This
is due to selectional restrictions for semantic ar-
guments that are specified in Subcat-LMF within
semantic predicates, in contrast to VN.

For GN, verb-synset pairs (i.e., GN lexical
units), have been mapped to LMF senses. Few
GN frame codes also specify semantic role in-
formation, e.g. manner, location. These were
mapped to the semantics part of Subcat-LMF re-
sulting in 84 semantic predicates that encode the
semantic role information in their semantic argu-
ments.

ILS specifies similar semantic role information

as GN; these few cases were mapped in the same
way as for GN. Therefore, the LMF version of
ILS, too, specifies less SCFs, but additional se-
mantic predicates not present in the original.

Discussion: Grammatical functions of argu-
ments are specified distinctly in the three lexicons.
While both GN and ILS specify grammatical
functions, they are not explicitly encoded in VN.
They have to be inferred on the basis of the phrase
structure rules given in the SYNTAX element. We
assigned subject to the noun phrase which di-
rectly precedes the verb and directObject to
the noun phrase directly following the verb and
having the semantic role Patient. The semantic
role information has to be considered at this point,
because not all noun phrase arguments are able
to become the subject in a corresponding passive
sentence. An example is the verb learn which
has the VN frame NP(Agent) V NP(Topic);
here, the Topic-NP is not able to become the sub-
ject of a corresponding passive sentence. We as-
signed the grammatical function complement to
all other phrase types.

Argument order constraints in SCFs are repre-
sented in LMF by a list implementation of syntac-
tic arguments. Most SCFs from VN require the
subject to be the first argument, reflecting the ba-
sic word order in English sentences. VN lists one
exception to this rule for the verb appear, illus-
trated by the example On the horizon appears a
ship.

Argument optionality in VN is expressed at the
semantic level and at the syntactic level in paral-
lel: it is explicitly specified at the semantic level
and implicitly specified at the syntactic level. At
the syntactic level, two SCF versions exist in VN,
one with the optional argument, the other without
it. In addition, the semantic predicate attached to
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these SCFs marks optional (semantic) arguments
by a ?-sign. GN, on the other hand, expresses
argument optionality at the level of syntactic ar-
guments, i.e., within the frame code. In Subcat-
LMF, optionality is represented at the syntactic
level by an (optional) attribute optional for syn-
tactic arguments, thus reflecting the explicit repre-
sentation used in GN and the implicit representa-
tion present in VN.18

GN frames specify syntactic alternations of ar-
gument realizations, e.g. adverbial complements
that can alternatively be realized as adverb phrase,
prepositional phrase or noun phrase. We encoded
this generalization in Subcat-LMF by introducing
attribute values for these aggregated syntactic cat-
egories.

3.2 Cross-lingual comparison of lexicons

Lexicons that are standardized according to
Subcat-LMF can be quantitatively compared re-
garding SCFs. For two lexicons, such a com-
parison gives answers to questions, such as: how
many SCFs are present in both lexicons (overlap-
ping SCFs), how many SCFs are only listed in one
of the lexicons (complementary SCFs). Answers
to these questions are important, for instance, for
assessing the potential gain in SCF coverage that
can be achieved by lexicon merging.

In order to validate our claim that Subcat-LMF
yields a cross-lingually uniform SCF represen-
tation, we contrast the monolingual comparison
of GN and ILS with the cross-lingual compari-
son of VN, GN and VN and ILS. Assuming that
our claim is valid, the cross-lingual comparisons
can be expected to yield similar results regard-
ing overlapping and complementary SCFs as the
monolingual comparison.

Comparison: The comparison of SCFs from
two lexicons that are in Subcat-LMF format can
be performed on the basis of the uniform DCs.
As Subcat-LMF is implemented in XML, we
compared string representations of SCFs. SCFs
from VN, GN and ILS were converted to strings
by concatenating attribute values of syntactic ar-
guments and lexemeProperty. We created
string representations of different granularities:
First, fine-grained, language-specific string SCFs
have been generated by concatenating all at-

18As a consequence, all semantic arguments specified in
the Subcat-LMF version of VN have a corresponding syn-
tactic argument.

tribute values apart from the attribute optional
which is specific to GN (resulting in a consid-
erably smaller number of SCFs in GN). Sec-
ond, fine-grained, but cross-lingual string SCFs
were considered; these omit the attributes case,
lexeme, preposition and the attribute value
ingForm. Finally, coarse-grained cross-lingual
string SCFs were compared. These only con-
tain the values of the attributes syntactic

category, complementizer and verbForm

(without the attribute value ingForm). For in-
stance, a coarse cross-lingual string SCF for tran-
sitive verbs is nounPhrasenounPhrase.

Table 4 lists the results of our quantitative com-
parison. For each lexicon pair, the number of
overlapping SCFs and the numbers of comple-
mentary SCFs are given. Regarding VN and the
German lexicons, the overlap at the language-
specific level is (close to) zero, which is due to the
specification of case, e.g. dative, for German ar-
guments. However, the numbers for cross-lingual
SCFs clearly validate our claim: the numbers of
overlapping SCFs for the German lexicon pair and
for the two German-English pairs are comparable,
ranging from 12 to 18 for the fine-grained SCFs
and from 20 to 21 for the coarse SCFs.

Based on the sets of cross-lingually overlap-
ping SCFs, we made an estimation on how many
high frequent verbs actually have SCFs that are
in the cross-lingual SCF overlap of an English-
German lexicon pair. For this, we used the lemma
frequency lists of the English and German WaCky
corpora (Baroni et al., 2009) and extracted verbs
from VN, GN and ILS that are on 100 top ranked
positions of these lists, starting from rank 100.19

Table 5 shows the results for the cross-lingual
SCF overlap between VN – GN and between VN
– ILS. While only around 40% of the high fre-
quent verbs have an SCF in the fine-grained SCF
overlap, more than 70% are in the coarse overlap
between VN – GN, and even more than 80% in
the coarse overlap between VN – ILS.

Analysis of results: The small numbers of
overlapping cross-lingual SCFs (relative to the to-
tal number of SCFs), at both levels of granularity,
indicate that the three lexicons each encode sub-
stantially different lexical-syntactic properties of

19Since the WaCky frequency lists do not contain POS in-
formation, our lists of extracted verbs contain some noise,
which we tolerated, because we aimed at an approximate es-
timate.
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language-specific cross-lingual cross-lingual
(fine-grained) (fine-grained) (coarse)

GN vs. ILS 72 GN 21 both, 196 ILS 61 GN, 23 both, 69 ILS 40 GN, 24 both, 23 ILS
VN vs. GN 284 VN, 0 both, 93 GN 96 VN, 15 both, 69 GN 29 VN, 24 both, 40 GN
VN vs. ILS 283 VN, 1 both, 216 ILS 93 VN, 18 both, 74 ILS 31 VN, 22 both, 25 ILS

Table 4: Comparison of lexicon pairs regarding SCF overlap and complementary SCFs.

VN-GN overlap VN-GN overlap VN-ILS overlap VN-ILS overlap
fine-grained (15 SCFs) coarse (24 SCFs) fine-grained (18 SCFs) coarse (22 SCFs)
43% VN verbs 85% VN verbs 41% VN verbs 84% VN verbs
41% GN verbs 71% GN verbs 43% ILS verbs 87% ILS verbs

Table 5: Percentage of 100 high frequent verbs from VN, GN, ILS with a SCF in the cross-lingual SCF overlap
(fine-grained vs. coarse) between VN – GN and VN – ILS.

verbs. This can at least partly be explained by the
historic development of these lexicons in differ-
ent contexts, e.g., Levin’s work on verb classes
(VN), Lexical Functional Grammar (ILS), as well
as their use for different purposes and applica-
tions.

Another reason of the small SCF overlap is
the comparison of strings derived from the XML
format. A more sophisticated representation for-
mat, notably one that provides semantic typing
and type hierarchies, e.g., OWL, could be em-
ployed to define hierarchies of grammatical func-
tions (e.g. direct object would be a sub-type of
complement) and other attributes. These would
presumably support the identification of further
overlapping SCFs.

During a subsequent qualitative analysis of the
overlapping and complementary SCFs, we col-
lected some enlightening background informa-
tion. Overlapping SCFs in the cross-lingual com-
parison (both fine-grained and coarse) include
prominent SCFs corresponding to transitive and
intransitive verbs, as well as verbs with that-
clause and verbs with to-infinitive.

GN and ILS are highly complementary regard-
ing SCFs: for instance, while many SCFs with ad-
verbial arguments are unique in GN, only ILS pro-
vides a fine-grained specification of prepositional
complements including the preposition, as well
as the case the preposition requires.20 VN, too,
contains a large number of SCFs with a detailed
specification of possible prepositions, partly spec-

20In German, prepositions govern the case of their noun
phrase.

ified as language-independent preposition types.
A large number of complementary SCFs in VN
vs. GN and GN vs. ILS are due to a diverging lin-
guistic analysis of extraposed subject clauses with
an es (it) in the main clause (e.g., It annoys him
that the train is late.). In GN, such clauses are not
specified as subject, whereas in VN and ILS they
are.

Regarding VN and ILS, only VN lists subject
control for verbs, while both VN and ILS list ob-
ject control and subject raising. GN, on the other
hand, does not specify control or raising at all.

4 Discussion

4.1 Previous Work

Merging SCFs: Previous work on merging SCF
lexicons has only been performed in a mono-
lingual setting and lacks the use of standards.
King and Crouch (2005) describe the process of
unifying several large-scale verb lexicons for En-
glish, including VN and WordNet. They perform
a conversion of these lexicons into a uniform, but
non-standard representation format, resulting in a
lexicon which is integrated at the level of verb
senses, SCFs and lexical-semantics. Thus, the re-
sult of their work is not applicable to cross-lingual
settings.

Necsulescu et al. (2011) and Padró et al. (2011)
report on approaches to automatic merging of
two Spanish SCF lexicons. As these lexicons
lack sense information apart from the SCFs, their
merging approach only works on a very coarse-
grained sense level given by lemma-SCF pairs.
The fully automatic merging approach described
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in (Padró et al., 2011) assumes that one of the lex-
icons to be integrated is already represented in the
target representation format, i.e. given two lexi-
cons, they map one lexicon to the format of the
other. Moreover, their approach requires a signif-
icant overlap of SCFs and verbs in any two lex-
icons to be merged. The authors state that it is
presently unclear, how much overlap is required
to obtain sufficiently precise merging results.

Standardizing SCFs: Much previous work on
standardizing NLP lexicons in LMF has focused
on WordNet-like resources. Soria et al. (2009) de-
scribe WordNet-LMF, an LMF model for repre-
senting wordnets which has been used in the KY-
OTO project.21 Later, WordNet-LMF has been
adapted by Henrich and Hinrichs (2010) to Ger-
maNet and by Toral et al. (2010) to the Ital-
ian WordNet. WordNet-LMF does not provide
the possibility to represent subcategorization at
all. The adaption of WordNet-LMF to GN (Hen-
rich and Hinrichs, 2010) allows SCFs to be re-
spresented as string values. However, this ex-
tension is not sufficient, because it provides no
means to model the syntax-semantics interface,
which specifies correspondences between syntac-
tic and semantic arguments of verbs and other
predicates. Quochi et al. (2008) report on an LMF
model that covers the syntax-semantics mapping
just mentioned; it has been used for standardizing
an Italian domain-specific lexicon. Buitelaar et al.
(2009) describe LexInfo, an LMF-model that is
used for lexicalizing ontologies. LexInfo is imple-
mented in OWL and specifies a linking of syntac-
tic and semantic arguments. For SCFs and argu-
ments, a type hierarchy is defined. In their paper,
Buitelaar et al. (2009) show only few SCFs and
do not indicate what kinds of SCFs can be repre-
sented with LexInfo in principle. On the LexInfo
website22, the current LexInfo version 2.0 can be
viewed, but no further documentation is given.
We inspected LexInfo version 2.0 and found that
it specifies a large number of fine-grained SCFs.
However, LexInfo has not been evaluated so far
on large-scale SCF lexicons, such as VerbNet.

4.2 Subcat-LMF
Subcat-LMF enables the uniform representation
of fine-grained SCFs across the two languages
English and German. By mapping large-scale

21http://www.kyoto-project.eu/
22See http://lexinfo.net/

SCF lexicons to Subcat-LMF, we have demon-
strated its usability for uniformly representing a
wide range of SCFs and other lexical-syntactic in-
formation types in English and German.

As our cross-lingual comparison of lexicons
has revealed many complementary SCFs in VN,
GN and ILS, mono- and cross-lingual alignments
of these lexicons at sense level would lead to a
major increase in SCF coverage. Moreover, the
cross-lingually uniform representation of SCFs
can be exploited for an additional alignment of
the lexicons at the level of SCF arguments. Such
a fine-grained alignment of SCFs can be used, for
instance, to project VN semantic roles to GN, thus
yielding a German resource for semantic role la-
beling (see Gildea and Jurafsky (2002), Swier and
Stevenson (2005)).

Subcat-LMF could be used for standardizing
further English and German lexicons. The auto-
matic conversion of lexicons to Subcat-LMF re-
quires the manual definition of a mapping, at least
for syntactic arguments. Furthermore, the auto-
matic merging approach by Padró et al. (2011)
could be tested for English: given our standard-
ized version of VN, other English SCF lexicons
could be merged fully automatically with the
Subcat-LMF version of VN.

5 Conclusion

Subcat-LMF contributes to fostering the standard-
ization of language resources and their interop-
erability at the lexical-syntactic level across En-
glish and German. The Subcat-LMF DTD in-
cluding links to ISOCat, all conversion tools,
and the standardized versions of VN and
ILS23 are publicly available at http://www.ukp.tu-
darmstadt.de/data/uby.
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Abstract

Text prediction is the task of suggesting
text while the user is typing. Its main aim
is to reduce the number of keystrokes that
are needed to type a text. In this paper, we
address the influence of text type and do-
main differences on text prediction quality.

By training and testing our text predic-
tion algorithm on four different text types
(Wikipedia, Twitter, transcriptions of con-
versational speech and FAQ) with equal
corpus sizes, we found that there is a clear
effect of text type on text prediction qual-
ity: training and testing on the same text
type gave percentages of saved keystrokes
between 27 and 34%; training on a differ-
ent text type caused the scores to drop to
percentages between 16 and 28%.

In our case study, we compared a num-
ber of training corpora for a specific data
set for which training data is sparse: ques-
tions about neurological issues. We found
that both text type and topic domain play
a role in text prediction quality. The
best performing training corpus was a set
of medical pages from Wikipedia. The
second-best result was obtained by leave-
one-out experiments on the test questions,
even though this training corpus was much
smaller (2,672 words) than the other cor-
pora (1.5 Million words).

1 Introduction

Text prediction is the task of suggesting text while
the user is typing. Its main aim is to reduce the
number of keystrokes that are needed to type a
text, thereby saving time. Text prediction algo-
rithms have been implemented for mobile devices,
office software (Open Office Writer), search en-
gines (Google query completion), and in special-

needs software for writers who have difficulties
typing (Garay-Vitoria and Abascal, 2006). In most
applications, the scope of the prediction is the
completion of the current word; hence the often-
used term ‘word completion’.

The most basic method for word completion is
checking after each typed character whether the
prefix typed since the last whitespace is unique
according to a lexicon. If it is, the algorithm sug-
gests to complete the prefix with the lexicon en-
try. The algorithm may also suggest to complete a
prefix even before the word’s uniqueness point is
reached, using statistical information on the pre-
vious context. Moreover, it has been shown that
significantly better prediction results can be ob-
tained if not only the prefix of the current word
is included as previous context, but also previ-
ous words (Fazly and Hirst, 2003) or characters
(Van den Bosch and Bogers, 2008).

In the current paper, we follow up on this work
by addressing the influence of text type and do-
main differences on text prediction quality. Brief
messages on mobile devices (such as text mes-
sages, Twitter and Facebook updates) are of a dif-
ferent style and lexicon than documents typed in
office software (Westman and Freund, 2010). In
addition, the topic domain of the text also influ-
ences its content. These differences may cause an
algorithm trained on one text type or domain to
perform poorly on another.

The questions that we aim to answer in this pa-
per are (1) “What is the effect of text type dif-
ferences on the quality of a text prediction algo-
rithm?” and (2) “What is the best choice of train-
ing data if domain- and text type-specific data is
sparse?”. To answer these questions, we perform
three experiments:

1. A series of within-text type experiments on
four different types of Dutch text: Wikipedia
articles, Twitter data, transcriptions of con-

561



versational speech and web pages of Fre-
quently Asked Questions (FAQ).

2. A series of across-text type experiments in
which we train and test on different text
types;

3. A case study using texts from a specific do-
main and text type: questions about neuro-
logical issues. Training data for this combi-
nation of language (Dutch), text type (FAQ)
and domain (medical/neurological) is sparse.
Therefore, we search for the type of training
data that gives the best prediction results for
this corpus. We compare the following train-
ing corpora:
• The corpora that we compared in the

text type experiments: Wikipedia, Twit-
ter, Speech and FAQ, 1.5 Million words
per corpus.

• A 1.5 Million words training corpus that
is of the same domain as the target data:
medical pages from Wikipedia;

• The 359 questions from the neuro-QA
data themselves, evaluated in a leave-
one-out setting (359 times training on
358 questions and evaluating on the re-
maining questions).

The prospective application of the third series
of experiments is the development of a text predic-
tion algorithm in an online care platform: an on-
line community for patients seeking information
about their illness. In this specific case the target
group is patients with language disabilities due to
neurological disorders.

The remainder of this paper is organized as fol-
lows: In Section 2 we give a brief overview of text
prediction methods discussed in the literature. In
Section 3 we present our approach to text predic-
tion. Sections 4 and 5 describe the experiments
that we carried out and the results we obtained.
We phrase our conclusions in Section 6.

2 Text prediction methods

Text prediction methods have been developed for
several different purposes. The older algorithms
were built as communicative devices for people
with disabilities, such as motor and speech impair-
ments. More recently, text prediction is developed
for writing with reduced keyboards, specifically
for writing (composing messages) on mobile de-
vices (Garay-Vitoria and Abascal, 2006).

All modern methods share the general idea that
previous context (which we will call the ‘buffer’)
can be used to predict the next block of charac-
ters (the ‘predictive unit’). If the user gets correct
suggestions for continuation of the text then the
number of keystrokes needed to type the text is
reduced. The unit to be predicted by a text pre-
diction algorithm can be anything ranging from a
single character (which actually does not save any
keystrokes) to multiple words. Single words are
the most widely used as prediction units because
they are recognizable at a low cognitive load for
the user, and word prediction gives good results
in terms of keystroke savings (Garay-Vitoria and
Abascal, 2006).

There is some variation among methods in the
size and type of buffer used. Most methods use
character n-grams as buffer, because they are pow-
erful and can be implemented independently of the
target language (Carlberger, 1997). In many al-
gorithms the buffer is cleared at the start of each
new word (making the buffer never larger than
the length of the current word). In the paper
by (Van den Bosch and Bogers, 2008), two ex-
tensions to the basic prefix-model are compared.
They found that an algorithm that uses the previ-
ous n characters as buffer, crossing word borders
without clearing the buffer, performs better than
both a prefix character model and an algorithm
that includes the full previous word as feature. In
addition to using the previously typed characters
and/or words in the buffer, word characteristics
such as frequency and recency could also be taken
into account (Garay-Vitoria and Abascal, 2006).

Possible evaluation measures for text predic-
tion are the proportion of words that are correctly
predicted, the percentage of keystrokes that could
maximally be saved (if the user would always
make the correct decision), and the time saved by
the use of the algorithm (Garay-Vitoria and Abas-
cal, 2006). The performance that can be obtained
by text prediction algorithms depends on the lan-
guage they are evaluated on. Lower results are ob-
tained for higher-inflected languages such as Ger-
man than for low-inflected languages such as En-
glish (Matiasek et al., 2002). In their overview of
text prediction systems, (Garay-Vitoria and Abas-
cal, 2006) report performance scores ranging from
29% to 56% of keystrokes saved.

An important factor that is known to influence
the quality of text prediction systems, is training
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set size (Lesher et al., 1999; Van den Bosch,
2011). The paper by (Van den Bosch, 2011) shows
log-linear learning curves for word prediction (a
constant improvement each time the training cor-
pus size is doubled), when the training set size is
increased incrementally from 102 to 3∗107 words.

3 Our approach to text prediction

We implement a text prediction algorithm for
Dutch, which is a productive compounding lan-
guage like German, but has a somewhat simpler
inflectional system. We do not focus on the effect
of training set size, but on the effect of text type
and topic domain differences.

Our approach to text prediction is largely in-
spired by (Van den Bosch and Bogers, 2008). We
experiment with two different buffer types that are
based on character n-grams:

• ‘Prefix of current word’ contains all char-
acters of only the word currently keyed in,
where the buffer shifts by one character posi-
tion with every new character.

• ‘Buffer15’ buffer also includes any other
characters keyed in belonging to previously
keyed-in words.

Modeling character history beyond the current
word can naturally be done with a buffer model in
which the buffer shifts by one position per charac-
ter, while a typical left-aligned prefix model (that
never shifts and fixes letters to their positional fea-
ture) would not be able to do this.

In the buffer, all characters from the text are
kept, including whitespace and punctuation. The
predictive unit is one token (word or punctuation
symbol). In both the buffer and the prediction la-
bel, any capitalization is kept. At each point in the
typing process, our algorithm gives one sugges-
tion: the word that is the most likely continuation
of the current buffer.

We save the training data as a classification data
set: each character in the buffer fills a feature slot
and the word that is to be predicted is the classi-
fication label. Figures 1 and 2 give examples of
each of the buffer types Prefix and Buffer15 that
we created for the text fragment “tot een niveau”
in the context “stelselmatig bij elke verkiezing tot
een niveau van’ ’(structurally with each election
to a level of ). We use the implementation of the
IGTree decision tree algorithm in TiMBL (Daele-
mans et al., 1997) to train our models.

3.1 Evaluation
We evaluate our algorithms on corpus data. This
means that we have to make assumptions about
user behaviour. We assume that the user confirms
a suggested word as soon as it is suggested cor-
rectly, not typing any additional characters before
confirming. We evaluate our text prediction al-
gorithms in terms of the percentage of keystrokes
saved K:

K =

∑n
i=0(Fi)−

∑n
i=0(Wi)∑n

i=0(Fi)
∗ 100 (1)

in which n is the number of words in the test
set, Wi is the number of keystrokes that have been
typed before the word i is correctly suggested
and Fi is the number of keystrokes that would be
needed to type the complete word i. For example,
our algorithm correctly predicts the word niveau
after the context i n g t o t e e n n i

v in the test set. Assuming that the user confirms
the word niveau at this point, three keystrokes
were needed for the prefix niv. So, Wi = 3 and
Fi = 6. The number of keystrokes needed for
whitespace and punctuation are unchanged: these
have to be typed anyway, independently of the
support by a text prediction algorithm.

4 Text type experiments

In this section, we describe the first and second se-
ries of experiments. The case study on questions
from the neurological domain is described in Sec-
tion 5.

4.1 Data
In the text type experiments, we evaluate our text
prediction algorithm on four different types of
Dutch text: Wikipedia, Twitter data, transcriptions
of conversational speech, and web pages of Fre-
quently Asked Questions (FAQ). The Wikipedia
corpus that we use is part of the Lassy cor-
pus (Van Noord, 2009); we obtained a version
from the summer of 2010.1 The Twitter data
are collected continuously and automatically fil-
tered for language by Erik Tjong Kim Sang (Tjong
Kim Sang, 2011). We used the tweets from all
users that posted at least 19 tweets (excluding
retweets) during one day in June 2011. This is
a set of 1 Million Twitter messages from 30,000

1http://www.let.rug.nl/vannoord/trees/Treebank/Machine/
NLWIKI20100826/COMPACT/
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e e een
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n niveau
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n i v niveau
n i v e niveau

n i v e a niveau
n i v e a u niveau

Figure 1: Example of buffer type ‘Prefix’ for the text fragment “(elke verkiezing) tot een niveau”. Un-
derscores represent whitespaces.

l k e v e r k i e z i n g tot
k e v e r k i e z i n g t tot
e v e r k i e z i n g t o tot

v e r k i e z i n g t o t tot
v e r k i e z i n g t o t een
e r k i e z i n g t o t e een
r k i e z i n g t o t e e een
k i e z i n g t o t e e n een
i e z i n g t o t e e n niveau
e z i n g t o t e e n n niveau
z i n g t o t e e n n i niveau
i n g t o t e e n n i v niveau
n g t o t e e n n i v e niveau
g t o t e e n n i v e a niveau

t o t e e n n i v e a u niveau

Figure 2: Example of buffer type ‘Buffer15’ for the text fragment “(elke verkiezing) tot een niveau”.
Underscores represent whitespaces.

different users. The transcriptions of conversa-
tional speech are from the Spoken Dutch Corpus
(CGN) (Oostdijk, 2000); for our experiments, we
only use the category ‘spontaneous speech’. We
obtained the FAQ data by downloading the first
1,000 pages that Google returns for the query ‘faq’
with the language restriction Dutch. After clean-
ing the pages from HTML and other coding, the
resulting corpus contained approximately 1.7 Mil-
lion words of questions and answers.

4.2 Within-text type experiments
For each of the four text types, we compare the
buffer types ‘Prefix’ and ‘Buffer15’. In each ex-
periment, we use 1.5 Million words from the cor-
pus to train the algorithm and 100,000 words to
test it. The results are in Table 1.

4.3 Across-text type experiments
We investigate the importance of text type differ-
ences for text prediction with a series of experi-
ments in which we train and test our algorithm on
texts of different text types. We keep the size of
the train and test sets the same: 1.5 Million words

and 100,000 words respectively. The results are in
Table 2.

4.4 Discussion of the results

Table 1 shows that for all text types, the buffer
of 15 characters that crosses word borders gives
better results than the prefix of the current word
only. We get a relative improvement of 35% (for
FAQ) to 62% (for Speech) of Buffer15 compared
to Prefix-only.

Table 2 shows that text type differences have
an influence on text prediction quality: all across-
text type experiments lead to lower results than
the within-text type experiments. From the re-
sults in Table 2, we can deduce that of the four
text types, speech and Twitter language resem-
ble each other more than they resemble the other
two, and Wikipedia and FAQ resemble each other
more. Twitter and Wikipedia data are the least
similar: training on Wikipedia data makes the text
prediction score for Twitter data drop from 29.2 to
16.5%.2

2Note that the results are not symmetric. For example,
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Table 1: Results from the within-text type experiments in terms of percentages of saved keystrokes.
Prefix means: ‘use the previous characters of the current word as features’. Buffer 15 means ‘use a buffer
of the previous 15 characters as features’.

Prefix Buffer15
Wikipedia 22.2% 30.5%
Twitter 21.3% 29.2%
Speech 20.7% 33.4%
FAQ 20.2% 27.2%

Table 2: Results from the across-text type experiments in terms of percentages of saved keystrokes, using
the best-scoring configuration from the within-text type experiments: a buffer of 15 characters

Trained on Tested on Wikipedia Tested on Twitter Tested on Speech Tested on FAQ
Wikipedia 30.5% 16.5% 22.3% 24.9%
Twitter 17.9% 29.2% 27.9% 20.7%
Speech 19.7% 22.5% 33.4% 21.0%
FAQ 22.6% 18.2% 22.9% 27.2%

5 Case study: questions about
neurological issues

Online care platforms aim to bring together pa-
tients and experts. Through this medium, patients
can find information about their illness, and get in
contact with fellow-sufferers. Patients who suffer
from neurological damage may have communica-
tive disabilities because their speaking and writ-
ing skills are impaired. For these patients, existing
online care platforms are often not easily accessi-
ble. Aphasia, for example, hampers the exchange
of information because the patient has problems
with word finding.

In the project ‘Communicatie en revalidatie
DigiPoli’ (ComPoli), language and speech tech-
nologies are implemented in the infrastructure of
an existing online care platform in order to fa-
cilitate communication for patients suffering from
neurological damage. Part of the online care plat-
form is a list of frequently asked questions about
neurological diseases with answers. A user can
browse through the questions using a chat-by-click
interface (Geuze et al., 2008). Besides reading the
listed questions and answers, the user has the op-
tion to submit a question that is not yet included in

training on Wikipedia, testing on Twitter gives a different re-
sult from training on Twitter, testing on Wikipedia. This is
due to the size and domain of the vocabularies in both data
sets and the richness of the contexts (in order for the algo-
rithm to predict a word, it has to have seen it in the train set).
If the test set has a larger vocabulary than the train set, a lower
proportion of words can be predicted than when it is the other
way around.

the list. The newly submitted questions are sent to
an expert who answers them and adds both ques-
tion and answer to the chat-by-click database. In
typing the question to be submitted, the user will
be supported by a text prediction application.

The aim of this section is to find the best train-
ing corpus for newly formulated questions in the
neurological domain. We realize that questions
formulated by users of a web interface are dif-
ferent from questions formulated by experts for
the purpose of a FAQ-list. Therefore, we plan to
gather real user data once we have a first version
of the user interface running online. For develop-
ing the text prediction algorithm that is behind the
initial version of the application, we aim to find
the best training corpus using the questions from
the chat-by-click data as training set.

5.1 Data

The chat-by-click data set on neurological issues
consists of 639 questions with corresponding an-
swers. A small sample of the data (translated to
English) is shown in Table 3. In order to create the
test data for our experiments, we removed dupli-
cate questions from the chat-by-click data, leaving
a set of 359 questions.3

In the previous sections, we used corpora of
100,000 words as test collections and we calcu-
lated the percentage of saved keystrokes over the

3Some questions and answers are repeated several times
in the chat-by-click data because they are located at different
places in the chat-by-click hierarchy.
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Table 3: A sample of the neuro-QA data, translated to English.
question 0 505 Can (P)LS be cured?
answer 0 505 Unfortunately, a real cure is not possible. However, things can be done to combat the effects of the

diseases, mainly relieving symptoms such as stiffness and spasticity. The phisical therapist and reha-
bilitation specialist can play a major role in symptom relief. Moreover, there are medications that can
reduce spasticity.

question 0 508 How is (P)LS diagnosed?
answer 0 508 The diagnosis PLS is difficult to establish, especially because the symptoms strongly resemble HSP

symptoms (Strumpell’s disease). Apart from blood and muscle research, several neurological examina-
tions will be carried out.

Table 4: Results for the neuro-QA questions only in terms of percentages of saved keystrokes, using
different training sets. The text prediction configuration used in all settings is Buffer15. The test samples
are 359 questions with an average length of 7.5 words. The percentages of saved keystrokes are means
over the 359 questions.

Training corpus # words Mean % of saved keystrokes in
neuro-QA questions (stdev)

OOV-rate

Twitter 1.5 Million 13.3% (12.5) 28.5%
Speech 1.5 Million 14.1% (13.2) 26.6%
Wikipedia 1.5 Million 16.1% (13.1) 19.4%
FAQ 1.5 Million 19.4% (15.6) 20.0%
Medical Wikipedia 1.5 Million 28.1% (16.5) 7.0%
Neuro-QA questions (leave-one-out) 2,672 26.5% (19.9) 17.8%

complete test corpus. In the reality of our case
study however, users will type only brief frag-
ments of text: the length of the question they want
to submit. This means that there is potentially a
large deviation in the effectiveness of the text pre-
diction algorithm per user, depending on the con-
tent of the small text they are typing. Therefore,
we decided to evaluate our training corpora sepa-
rately on each of the 359 unique questions, so that
we can report both mean and standard deviation
of the text prediction scores on small (realistically
sized) samples. The average number of words per
question is 7.5; the total size of the neuro-QA cor-
pus is 2,672 words.

5.2 Experiments
We aim to find the training set that gives the best
text prediction result for the neuro-QA questions.
We compare the following training corpora:

• The corpora that we compared in the text type
experiments: Wikipedia, Twitter, Speech and
FAQ, 1.5 Million words per corpus.

• A 1.5 Million words training corpus that is
of the same topic domain as the target data:
Wikipedia articles from the medical domain;

• The 359 questions from the neuro-QA data
themselves, evaluated in a leave-one-out set-
ting (359 times training on 358 questions and

evaluating on the remaining questions).

In order to create the ‘medical Wikipedia’ cor-
pus, we consulted the category structure of the
Wikipedia corpus. The Wikipedia category ‘Ge-
neeskunde’ (Medicine) contains 69,898 pages and
in the deeper nodes of the hierarchy we see many
non-medical pages, such as trappist beers (or-
dered under beer, booze, alcohol, Psychoactive
drug, drug, and then medicine). If we remove all
pages that are more than five levels under the ‘Ge-
neeskunde’ category root, 21,071 pages are left,
which contain fairly over the 1.5 Million words
that we need. We used the first 1.5 Million words
of the corpus in our experiments.

The text prediction results for the different cor-
pora are in Table 4. For each corpus, the out-of-
vocabulary rate is given: the percentage of words
in the Neuro-QA questions that do not occur in the
corpus.4

5.3 Discussion of the results
We measured the statistical significance of the
mean differences between all text prediction
scores using a Wilcoxon Signed Rank test on
paired results for the 359 questions. We found that

4The OOV-rate for the Neuro-QA corpus itself is the av-
erage of the OOV-rate of each leave-one-out experiment: the
proportion of words that only occur in one question.
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Figure 3: Empirical CDFs for text prediction scores on Neuro-QA data. Note that the curves that are at
the bottom-right side represent the better-performing settings.

the difference between the Twitter and Speech cor-
pora on the task is not significant (P = 0.18).
The difference between Neuro-QA and Medical
Wikipedia is significant with P = 0.02; all other
differences are significant with P < 0.01.

The Medical Wikipedia corpus and the leave-
one-out experiments on the Neuro-QA data give
better text prediction scores than the other corpora.
The Medical Wikipedia even scores slightly better
than the Neuro-QA data itself. Twitter and Speech
are the least-suited training corpora for the Neuro-
QA questions, and FAQ data gives a bit better re-
sults than a general Wikipedia corpus.

These results suggest that both text type and
topic domain play a role in text prediction qual-
ity, but the high scores for the Medical Wikipedia
corpus shows that topic domain is even more im-
portant than text type.5 The column ‘OOV-rate’
shows that this is probably due to the high cover-
age of terms in the Neuro-QA data by the Medical

5We should note here that we did not control for domain
differences between the four different text types. They are
intended to be ‘general domain’ but Wikipedia articles will
naturally be of different topics than conversational speech.

Wikipedia corpus.
Table 4 also shows that the standard devia-

tion among the 359 samples is relatively large.
For some questions, we 0% of the keystrokes are
saved, while for other, scores of over 80% are ob-
tained (by the Neuro-QA and Medical Wikipedia
training corpora). We further analyzed the differ-
ences between the training sets by plotting the Em-
pirical Cumulative Distribution Function (ECDF)
for each experiment. An ECDF shows the devel-
opment of text prediction scores (shown on the X-
axis) by walking through the test set in 359 steps
(shown on the Y-axis).

The ECDFs for our training corpora are in Fig-
ure 3. Note that the curves that are at the bottom-
right side represent the better-performing settings
(they get to a higher maximum after having seen
a smaller portion of the samples). From Figure 3,
it is again clear that the Neuro-QA and Medical
Wikipedia corpora outperform the other training
corpora, and that of the other four, FAQ is the best-
performing corpus. Figure 3 also shows a large
difference in the sizes of the starting percentiles:
The proportion of samples with a text prediction
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Figure 4: Histogram of text prediction scores
for the Neuro-QA questions trained on Medical
Wikipedia. Each bin represents 36 questions.

score of 0% is less than 10% for the Medical
Wikipedia up to more than 30% for Speech.

We inspected the questions that get a text pre-
diction score of 0%. We see many medical terms
in these questions, and many of the utterances are
not even questions, but multi-word terms repre-
senting topical headers in the chat-by-click data.
Seven samples get a zero-score in the output of all
six training corpora, e.g.:

• glycogenose III.
• potassium-aggrevated myotonias.

26 samples get a zero-score in the output of all
training corpora except for Medical Wikipedia and
Neuro-QA itself. These are mainly short headings
with domain-specific terms such as:

• idiopatische neuralgische amyotrofie.
• Markesbery-Griggs distale myopathie.
• oculopharyngeale spierdystrofie.

Interestingly, the ECDFs show that the Med-
ical Wikipedia and Neuro-QA corpora cross at
around percentile 70 (around the point of 40%
saved keystrokes). This indicates that although the
means of the two result samples are close to each
other, the distribution the scores for the individ-
ual questions is different. The histograms of both
distributions (Figures 4 and 5) confirm this: the
algorithm trained on the Medical Wikipedia cor-
pus leads a larger number of samples with scores

Histogram of text prediction scores for leave−one−out
 experiments on Neuro−QA questions
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Figure 5: Histogram of text prediction scores
for leave-one-out experiments on Neuro-QA ques-
tions. Each bin represents 36 questions.

around the mean, while the leave-one-out exper-
iments lead to a larger number of samples with
low prediction scores and a larger number of sam-
ples with high prediction scores. This is also re-
flected by the higher standard deviation for Neuro-
QA than for Medical Wikipedia.

Since both the leave-one-out training on the
Neuro-QA questions and the Medical Wikipedia
led to good results but behave differently for dif-
ferent portions of the test data, we also evaluated a
combination of both corpora on our test set: We
created training corpora consisting of the Medi-
cal Wikipedia corpus, complemented by 90% of
the Neuro-QA questions, testing on the remaining
10% of the Neuro-QA questions. This led to mean
percentage of saved keystrokes of 28.6%, not sig-
nificantly higher than just the Medical Wikipedia
corpus.

6 Conclusions

In Section 1, we asked two questions: (1) “What
is the effect of text type differences on the quality
of a text prediction algorithm?” and (2) “What is
the best choice of training data if domain- and text
type-specific data is sparse?”

By training and testing our text prediction al-
gorithm on four different text types (Wikipedia,
Twitter, transcriptions of conversational speech
and FAQ) with equal corpus sizes, we found that
there is a clear effect of text type on text prediction
quality: training and testing on the same text type
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gave percentages of saved keystrokes between 27
and 34%; training on a different text type caused
the scores to drop to percentages between 16 and
28%.

In our case study, we compared a number of
training corpora for a specific data set for which
training data is sparse: questions about neuro-
logical issues. We found significant differences
between the text prediction scores obtained with
the six training corpora: the Twitter and Speech
corpora were the least suited, followed by the
Wikipedia and FAQ corpus. The highest scores
were obtained by training the algorithm on the
medical pages from Wikipedia, immediately fol-
lowed by leave-one-out experiments on the 359
neurological questions. The large differences be-
tween the lexical coverage of the medical domain
played a central role in the scores for the different
training corpora.

Because we obtained good results by both
the Medical Wikipedia corpus and the neuro-QA
questions themselves, we opted for a combination
of both data types as training corpus in the initial
version of the online text prediction application.
Currently, a demonstration version of the appli-
cation is running for ComPoli-users. We hope to
collect questions from these users to re-train our
algorithm with more representative examples.
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Abstract

The search in patent databases is a risky
business compared to the search in other
domains. A single document that is relevant
but overlooked during a patent search can
turn into an expensive proposition. While
recent research engages in specialized mod-
els and algorithms to improve the effective-
ness of patent retrieval, we bring another
aspect into focus: the detection and ex-
ploitation of patent inconsistencies. In par-
ticular, we analyze spelling errors in the as-
signee field of patents granted by the United
States Patent & Trademark Office. We in-
troduce technology in order to improve re-
trieval effectiveness despite the presence of
typographical ambiguities. In this regard,
we (1) quantify spelling errors in terms of
edit distance and phonological dissimilarity
and (2) render error detection as a learn-
ing problem that combines word dissimi-
larities with patent meta-features. For the
task of finding all patents of a company,
our approach improves recall from 96.7%
(when using a state-of-the-art patent search
engine) to 99.5%, while precision is com-
promised by only 3.7%.

1 Introduction

Patent search forms the heart of most retrieval
tasks in the intellectual property domain—cf. Ta-
ble 1, which provides an overview of various user
groups along with their typical (•) and related (◦)
tasks. The due diligence task, for example, is
concerned with legal issues that arise while inves-
tigating another company. Part of an investiga-
tion is a patent portfolio comparison between one
or more competitors (Lupu et al., 2011). Within
all tasks recall is preferred over precision, a fact

which distinguishes patent search from general
web search. This retrieval constraint has produced
a variety of sophisticated approaches tailored to
the patent domain: citation analysis (Magdy and
Jones, 2010), the learning of section-specific re-
trieval models (Lopez and Romary, 2010), and au-
tomated query generation (Xue and Croft, 2009).
Each approach improves retrieval performance,
but what keeps them from attaining maximum ef-
fectiveness in terms of recall are the inconsisten-
cies found in patents: incomplete citation sets, in-
correctly assigned classification codes, and, not
least, spelling errors.

Our paper deals with spelling errors in an oblig-
atory and important field of each patent, namely,
the patent assignee name. Bibliographic fields are
widely used among professional patent searchers
in order to constrain keyword-based search ses-
sions (Joho et al., 2010). The assignee name is
particularly helpful for patentability searches and
portfolio analyses since it determines the com-
pany holding the patent. Patent experts address
these search tasks by formulating queries contain-
ing the company name in question, in the hope of
finding all patents owned by that company. A for-
mal and more precise description of this relevant
search task is as follows: Given a queryq which
specifies a company, and a setD of patents, de-
termine the setDq ⊂ D comprised of all patents
held by the respective company.

For this purpose, all assignee names in the
patents inD should be analyzed. LetA denote
the set of all assignee names inD, and leta ∼ q
denote the fact that an assignee namea ∈ A refers
to companyq. Then in the portfolio search task,
all patents filed undera are relevant. The retrieval
of Dq can thus be rendered as a query expansion
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Table 1: User groups and patent-search-related retrieval tasks in the patent domain (Hunt et al., 2007).

User group
Analyst Attorney Manager Inventor Investor Researcher

Patentability • ◦ • ◦
State of the art ◦ •

Patent search task Infringement •
Opposition • •
Due diligence • •
Portfolio • ◦ • •

task, whereq is expanded by the disjunction of
assignee namesAq with Aq = {a ∈ A | a ∼ q}.

While the trivial expansion ofq by the entire
setA ensures maximum recall but entails an un-
acceptable precision, the expansion ofq by the
empty set yields a reasonable baseline. The latter
approach is implemented in patent search engines
such as PatBase1 or FreePatentsOnline,2 which
return all patents where the company nameq oc-
curs as a substring of the assignee namea. This
baseline is simple but reasonable; due to trade-
mark law, a company nameq must be a unique
identifier (i.e. a key), and an assignee namea that
containsq can be considered as relevant. It should
be noted in this regard that|q| < |a| holds for
most elements inAq, since the assignee names
often contain company suffixes such as “Ltd”
or “Inc”.

Our hypothesis is that due to misspelled as-
signee names a substantial fraction of relevant
patents cannot be found by the baseline ap-
proach. In this regard, the types of spelling er-
rors in assignee names given in Table 2 should
be considered.

Table 2: Types of spelling errors with increasing
problem complexity according to Stein and Curatolo
(2006). The first row refers to lexical errors, whereas
the last two rows refer to phonological errors. For each
type, an example is given, where a misspelled com-
pany name is followed by the correctly spelled variant.

Spelling error type Example

Permutations or dropped letters → Whirpool Corporation
→ Whirlpool Corporation

Misremembering spelling details → Whetherford International
→ Weatherford International

Spelling out the pronunciation → Emulecks Corporation
→ Emulex Corporation

In order to raise the recall for portfolio search
without significantly impairing precision, an ap-

1www.patbase.com
2www.freepatentsonline.com

proach more sophisticated than the standard re-
trieval approach, which is the expansion ofq by
the empty set, is needed. Such an approach must
strive for an expansion ofq by a subset ofAq,
whereby this subset should be as large as possible.

1.1 Contributions

The paper provides a new solution to the problem
outlined. This solution employs machine learn-
ing on orthographic features, as well as on patent
meta features, to reliably detect spelling errors. It
consists of two steps: (1) the computation ofA+

q ,
the set of assignee names that are in a certain edit
distance neighborhood toq; and (2) the filtering of
A+

q , yielding the setA∗q , which contains those as-
signee names fromA+

q that are classified as mis-
spellings ofq. The power of our approach can be
seen from Table 3, which also shows a key result
of our research; a retrieval system that exploits
our classifier will miss only 0.5% of the relevant
patents, while retrieval precision is compromised
by only 3.7%.

Another contribution relates to a new, manu-
ally-labeled corpus comprising spelling errors in
the assignee field of patents (cf. Section 3). In
this regard, we consider the over 2 million patents
granted by the USPTO between 2001 and 2010.
Last, we analyze indications of deliberately in-
serted spelling errors (cf. Section 4).

Table 3: Mean average Precision, Recall, andF -
Measure (β = 2) for different expansion sets forq in
a portfolio search task, which is conducted on our test
corpus (cf. Section 3).

Expansion set forq Precision Recall F2

∅ (baseline) 0.993 0.967 0.968
A∗

q
(machine learning) 0.956 0.995 0.980

A (trivial) 0.001 1.0 0.005
A+

q
(edit distance) 0.274 1.0 0.672
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1.2 Causes for Inconsistencies in Patents

We identify the following six factors for inconsis-
tencies in the bibliographic fields of patents, in
particular for assignee names: (1) Misspellings
are introduced due to the lack of knowledge, the
lack of attention, and due to spelling disabili-
ties. Intellevate Inc. (2006) reports that 98%
of a sample of patents taken from the USPTO
database contain errors, most which are spelling
errors. (2) Spelling errors are only removed by the
USPTO upon request (U.S. Patent & Trademark
Office, 2010). (3) Spelling variations of inventor
names are permitted by the USPTO. The Manual
of Patent Examining Procedure (MPEP) states in
paragraph 605.04(b) that “if the applicant’s full
name is ’John Paul Doe,’ either ’John P. Doe’ or
’J. Paul Doe’ is acceptable.” Thus, it is valid to in-
troduce many different variations: with and with-
out initials, with and without a middle name, or
with and without suffixes. This convention ap-
plies to assignee names, too. (4) Companies of-
ten have branches in different countries, where
each branch has its own company suffix, e.g.,
“Limited” (United States), “GmbH” (Germany),
or “Kabushiki Kaisha” (Japan). Moreover, the
usage of punctuation varies along company suf-
fix abbreviations: “L.L.C.” in contrast to “LLC”,
for example. (5) Indexing errors emerge from
OCR processing patent applications, because sim-
ilar looking letters such as “e” versus “c” or “l”
versus “I” are likely to be misinterpreted. (6) With
the advent of electronic patent application filing,
the number of patent reexamination steps was re-
duced. As a consequence, the chance of unde-
tected spelling errors increases (Adams, 2010).

All of the mentioned factors add to a highly in-
consistent USPTO corpus.

2 Related Work

Information within a corpus can only be retrieved
effectively if the data is both accurate and unique
(Müller and Freytag, 2003). In order to yield data
that is accurate and unique, approaches to data
cleansing can be utilized to identify and remove
inconsistencies. Müller and Freytag (2003) clas-
sify inconsistencies, where duplicates of entities
in a corpus are part of a semantic anomaly. These
duplicates exist in a database if two or more dif-
ferent tuples refer to the same entity. With respect
to the bibliographic fields of patents, the assignee

names “Howlett-Packard” and “Hewett-Packard”
are distinct but refer to the same company. These
kinds of near-duplicates impede the identification
of duplicates (Naumann and Herschel, 2010).

Near-duplicate Detection The problem of
identifying near-duplicates is also known as
record linkage, or name matching; it is sub-
ject of active research (Elmagarmid et al., 2007).
With respect to text documents, slightly modi-
fied passages in these documents can be identi-
fied using fingerprints (Potthast and Stein, 2008).
On the other hand, for data fields which con-
tain natural language such as the assignee name
field, string similarity metrics (Cohen et al.,
2003) as well as spelling correction technol-
ogy are exploited (Damerau, 1964; Monge and
Elkan, 1997). String similarity metrics com-
pute a numeric value to capture the similarity
of two strings. Spelling correction algorithms,
by contrast, capture the likelihood for a given
word being a misspelling of another word. In
our analysis, the similarity metricSoftTfIdf is
applied, which performs best in name matching
tasks (Cohen et al., 2003), as well as the complete
range of spelling correction algorithms shown in
Figure 1: Soundex, which relies on similarity
hashing (Knuth, 1997), the Levenshtein distance,
which gives the minimum number of edits needed
to transform a word into another word (Leven-
shtein, 1966), and SmartSpell, a phonetic pro-
duction approach that computes the likelihood
of a misspelling (Stein and Curatolo, 2006). In
order to combine the strength of multiple met-
rics within a near-duplicate detection task, sev-
eral authors resort to machine learning (Bilenko
and Mooney, 2002; Cohen et al., 2003). Christen
(2006) concludes that it is important to exploit all
kinds of knowledge about the type of data in ques-
tion, and that inconsistencies are domain-specific.
Hence, an effective near-duplicate detection ap-
proach should employ domain-specific heuristics
and algorithms (Müller and Freytag, 2003). Fol-
lowing this argumentation, we augment various
word similarity assessments with patent-specific
meta-features.

Patent Search Commercial patent search en-
gines, such as PatBase and FreePatentsOnline,
handle near-duplicates in assignee names as fol-
lows. For queries which contain a company name
followed by a wildcard operator, PatBase suggests
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Figure 1: Classification of spelling correction methods
according to Stein and Curatolo (2006).

a set of additional companies (near-duplicates),
which can be considered alongside the company
name in question. These suggestions are solely
retrieved based on a trailing wildcard query. Each
additional company name can then be marked in-
dividually by a user to expand the original query.
In case the entire set of suggestions is consid-
ered, this strategy conforms to the expansion of
a query by the empty set, which equals a rea-
sonable baseline approach. This query expansion
strategy, however, has the following drawbacks:
(1) The strategy captures only inconsistencies that
succeed the given company name in the origi-
nal query. Thus, near-duplicates which contain
spelling errors in the company name itself are not
found. Even if PatBase would support left trailing
wildcards, then only the full combination of wild-
card expressions would cover all possible cases of
misspellings. (2) Given an acronym of a company
such as IBM, it is infeasible to expand the ab-
breviation to “International Business Machines”
without considering domain knowledge.

Query Expansion Methods for Patent Search
To date, various studies have investigated query
expansion techniques in the patent domain that
focus on prior-art search and invalidity search
(Magdy and Jones, 2011). Since we are dealing
with queries that comprise only a company name,
existing methods cannot be applied. Instead, the
near-duplicate task in question is more related to a
text reuse detection task discussed by Hagen and
Stein (2011); given a document, passages which
also appear identical or slightly modified in other
documents, have to be retrieved by using standard
keyword-based search engines. Their approach is
guided by the user-over-ranking hypothesis intro-
duced by Stein and Hagen (2011). It states that
“the best retrieval performance can be achieved
with queries returning about as many results as
can be considered at user site.” If we make use
of their terminology, then we can distinguish the

query expansion sets (cf. Table 3) into two cate-
gories: (1) The trivial as well as the edit distance
expansion sets areunderspecific, i.e., users cannot
cope with the large amount of irrelevant patents
returned; the precision is close to zero. (2) The
baseline approach, by contrast, isoverspecific;
it returns too few documents, i.e., the achieved
recall is not optimal. As a consequence, these
query expansion sets are not suitable for portfolio
search. Our approach, on the other hand, excels
in both precision and recall.

Query Spelling Correction Queries which are
submitted to standard web search engines differ
from queries which are posed to patent search en-
gines with respect to both length and language
diversity. Hence, research in the field of web
search is concerned with suggesting reasonable
alternatives to misspelled queries rather than cor-
recting single words (Li et al., 2011). Since stan-
dard spelling correction dictionaries (e.g. ASpell)
are not able to capture the rich language used in
web queries, large-scale knowledge sources such
as Wikipedia (Li et al., 2011), query logs (Chen
et al., 2007), and large n-gram corpora (Brants et
al., 2007) are employed. It should be noted that
the set of correctly written assignee names is un-
known for the USPTO patent corpus.

Moreover, spelling errors are modeled on the
basis of language models (Li et al., 2011). Okuno
(2011) proposes a generative model to encounter
spelling errors, where the original query is ex-
panded based on alternatives produced by a small
edit distance to the original query. This strategy
correlates to the trivial query expansion set (cf.
Section 1). Unlike using a small edit distance, we
allow a reasonable high edit distance to maximize
the recall.

Trademark Search The trademark search is
about identifying registered trademarks which are
similar to a new trademark application. Sim-
ilarities between trademarks are assessed based
on figurative and verbal criteria. In the former
case, the focus is on image-based retrieval tech-
niques. Trademarks are considered verbally simi-
lar for a variety of reasons, such as pronunciation,
spelling, and conceptual closeness, e.g., swapping
letters or using numbers for words. The verbal
similarity of trademarks, on the other hand, can
be determined by using techniques comparable
to near-duplicate detection: phonological parsing,
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fuzzy search, and edit distance computation (Fall
and Giraud-Carrier, 2005).

3 Detection of Spelling Errors

This section presents our machine learning ap-
proach to expand a company queryq; the classi-
fier c delivers the setA∗q = {a ∈ A | c(q, a) = 1},
an approximation of the ideal set of relevant as-
signee namesAq. As a classification technol-
ogy a support vector machine with linear kernel
is used, which receives each pair(q, a) as a six-
dimensional feature vector. For training and test
purposes we identified misspellings for 100 dif-
ferent company names. A detailed description of
the constructed test corpus and a report on the
classifiers performance is given in the remainder
of this section.

3.1 Feature Set

The feature set comprises six features, three of
them being orthographic similarity metrics, which
are computed for every pair(q, a). Each metric
compares a given company nameq with the first
|q| words of the assignee namea:

1. SoftTfIdf. The SoftTfIdf metric is consid-
ered, since the metric is suitable for the com-
parison of names (Cohen et al., 2003). The
metric incorporates the Jaro-Winkler met-
ric (Winkler, 1999) with a distance threshold
of 0.9. The frequency values for the similar-
ity computation are trained onA.

2. Soundex. The Soundex spelling correction
algorithm captures phonetic errors. Since the
algorithm computes hash values for bothq
anda, the feature is 1 if these hash values
are equal, 0 otherwise.

3. Levenshtein distance.The Levenshtein dis-
tance for(q, a) is normalized by the charac-
ter length ofq.

To obtain further evidence for a misspelling
in an assignee name, meta information about the
patents inD, to which the assignee name refers
to, is exploited. In this regard, the following three
features are derived:

1. Assignee Name Frequency.The number
of patents filed under an assignee namea:
FFreq (a) = Freq(a,D). We assume that the
probability of a misspelling to occur multi-
ple times is low, and thus an assignee name

with a misspelled company name has a low
frequency.

2. IPC Overlap. The IPC codes of a patent
specify the technological areas it applies
to. We assume that patents filed under the
same company name are likely to share the
same set of IPC codes, regardless whether
the company name is misspelled or not.
Hence, if we determine the IPC codes of
patents which containq in the assignee
name,IPC(q), and the IPC codes of patents
filed under assignee namea, IPC(a), then
the intersection size of the two sets serves as
an indicator for a misspelled company name
in a:

FIPC (q, a) =
IPC(q) ∩ IPC(a)
IPC(q) ∪ IPC(a)

3. Company Suffix Match. The suffix match
relies on the company suffixesSuffixes(q)
that occur in the assignee names ofA con-
taining q. Similar to the IPC overlap fea-
ture, we argue that if the company suffix
of a exists in the setSuffixes(q), a mis-
spelling ina is likely: FSuffixes(q, a) = 1
iff Suffixes(a) ∈ Suffixes(q).

3.2 Webis Patent Retrieval Assignee Corpus

A key contribution of our work is a new cor-
pus called Webis Patent Retrieval Assignee Cor-
pus 2012 (Webis-PRA-12). We compiled the cor-
pus in order to assess the impact of misspelled
companies on patent retrieval and the effective-
ness of our classifier to detect them.3 The corpus
is built on the basis of 2 132 825 patentsD granted
by the USPTO between 2001 and 2010; the patent
corpus is provided publicly by the USPTO in
XML format. Each patent contains bibliographic
fields as well as textual information such as the
abstract and the claims section. Since we are in-
terested in the assignee namea associated with
each patentd ∈ D, we parse each patent and ex-
tract the assignee name. This yields the setA of
202 846 different assignee names. Each assignee
name refers to a set of patents, which size varies
from 1 to 37 202 (the number of patents filed
under “International Business Machines Corpo-
ration”). It should be noted that for a portfolio

3The Webis-PRA-12 corpus is freely available via
www.webis.de/research/corpora
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Table 4: Statistics of spelling errors for the 100 companiesin the Webis-PRA-12 corpus. Considered are the
number of words and the number of letters in the company names, as well as the number of different company
suffixes that are used together with a company name (denoted as variants ofq)

Total Num. of words in q Num. of letters in q Num. of variants of q
1 2 3-4 2-10 11-15 16-35 1-5 6-15 16-96

Number of companies inQ 100 36 53 11 30 35 35 45 32 23
Avg. num. of misspellings inA 3.79 2.13 3.75 9.36 1.16 2.94 6.88 0.91 3.81 9.39

search task the number of patents which refer to
an assignee name matters for the computation of
precision and recall. If we, however, isolate the
task of detecting misspelled company names, then
it is also reasonable to weight each assignee name
equally and independently from the number of
patents it refers to. Both scenarios are addressed
in the experiments.

GivenA, the corpus construction task is to map
each assignee namea ∈ A to the company name
q it refers to. This gives for each company name
q the set of relevant assignee namesAq. For our
corpus, we do not constructAq for all company
names but take a selection of 100 company names
from the 2011 Fortune 500 ranking as our set of
company namesQ. Since the Fortune 500 rank-
ing contains only large companies, the test cor-
pus may appear to be biased towards these com-
panies. However, rather than the company size the
structural properties of a company name are de-
terminative; our sample includes short, medium,
and long company names, as well as company
names with few, medium, and many different
company suffixes. Table 4 shows the distribution
of company names inQ along these criteria in the
first row.

For each company nameq ∈ Q, we ap-
ply a semi-automated procedure to derive the
set of relevant assignee namesAq. In a first
step, all assignee names inA which do not re-
fer to the company nameq are filtered auto-
matically. From a preliminary evaluation we
concluded that the Levenshtein distanced(q, a)
with a relative threshold of|q|/2 is a reasonable
choice for this filtering step. The resulting sets
A+

q = {a ∈ A | d(q, a) ≤ |q|/2) contain, in total
overQ, 14 189 assignee names. These assignee
names are annotated by human assessors within a
second step to derive the final setAq for eachq ∈
Q. Altogether we identify 1 538 assignee names
that refer to the 100 companies inQ. With respect
to our classification task, the assignee names in
eachAq are positive examples; the remaining as-

signee namesA+
q \ Aq form the set of negative

examples (12 651 in total).
During the manual assessment, names of as-

signees which include the correct company name
q were distinguished from misspelled ones. The
latter holds true for 379 of the 1 538 assignee
names. These names are not retrievable by the
baseline system, and thus form the main target for
our classifier. The second row of Table 4 reports
on the distribution of the 379 misspelled assignee
names. As expectable, the longer the company
name, the more spelling errors occur. Compa-
nies which file patents under many different as-
signee names are likelier to have patents with mis-
spellings in the company name.

3.3 Classifier Performance

For the evaluation with the Webis-PRA-12 cor-
pus, we train a support vector machine,4 which
considers the six outlined features, and compare
it to the other expansion techniques. For the train-
ing phase, we use2/3 of the positive examples
to form a balanced training set of 1 025 posi-
tive and 1 025 negative examples. After 10-fold
cross validation, the achieved classification accu-
racy is 95.97%.

For a comparison of the expansion techniques
on the test set, which contains the examples not
considered in the training phase, two tasks are
distinguished: finding near duplicates in assignee
names (cf. Table 5, Columns 3–5), and finding all
patents of a company (cf. Table 5, Columns 6–8).
The latter refers to the actual task of portfo-
lio search. It can be observed that the perfor-
mance improvements on both tasks are pretty sim-
ilar. The baseline expansion∅ yields a recall
of 0.83 in the first task. The difference of 0.17
to a perfect recall can be addressed by consid-
ering query expansion techniques. If the triv-
ial expansionA is applied to the task the max-
imum recall can be achieved, which, however,

4We use the implementation of the WEKA toolkit with default
parameters.
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Table 5: The search results (macro-averaged) for two retrieval tasks and various expansion techniques. Besides
Precision and Recall, the F-Measure withβ = 2 is stated.

Misspelling detection Task: assignee names Task: patents
P R F2 P R F2

Baseline (∅) .975 .829 .838 .993 .967 .968
Trivial (A) .000 1.0 .001 .001 1.0 .005
Edit distance (A+

q ) .274 1.0 .499 .412 1.0 .672

SVM (Levenshtein) .752 .981 .853 .851 .991 .911
SVM (SoftTfIdf) .702 .980 .796 .826 .993 .886
SVM (Soundex) .433 .931 .624 .629 .984 .759
SVM (orthographic features) .856 .975 .922 .942 .990 .967
SVM (A∗

q , all features) .884 .975 .938 .956 .995 .980

is bought with precision close to zero. Using
the edit distance expansionA+

q yields a precision
of 0.274 while keeping the recall at maximum. Fi-
nally, the machine learning expansionA∗q leads
to a dramatic improvement (cf. Table 5, bottom
lines), whereas the exploitation of patent meta-
features significantly outperforms the exclusive
use of orthography-related features; the increase
in recall which is achieved byA∗q is statistically
significant (matched pairt-test) for both tasks (as-
signee names task:t = −7.6856, df = 99,
p = 0.00; patents task:t = −2.1113, df = 99,
p = 0.037). Note that when being applied as a
single feature none of the spelling metrics (Lev-
enshtein, SoftTfIdf, Soundex) is able to achieve
a recall close to 1 without significantly impairing
the precision.

4 Distribution of Spelling Errors

Encouraged by the promising retrieval results
achieved on the Webis-PRA-12 corpus, we ex-
tend the analysis of spelling errors in patents to
the entire USPTO corpus of granted patents be-
tween 2001 and 2010. The analysis focuses on
the following two research questions:

1. Are spelling errors an increasing issue in
patents? According to Adams (2010), the
amount of spelling errors should have been
increased in the last years due to the elec-
tronic patent filing process (cf. Section 1.2).
We address this hypothesis by analyzing the
distribution of spelling errors in company
names that occur in patents granted between
2001 and 2010.

2. Are misspellings introduced deliberately in
patents?We address this question by analyz-
ing the patents with respect to the eight tech-

nological areas based on the International
Patent Classification scheme IPC: A (Hu-
man necessities), B (Performing operations;
transporting), C (Chemistry; metallurgy),
D (Textiles; paper), E (Fixed constructions),
F (Mechanical engineering; lighting; heat-
ing; weapons; blasting), G (Physics), and
H (Electricity). If spelling errors are in-
troduced accidentally, then we expect them
to be uniformly distributed across all ar-
eas. A biased distribution, on the other
hand, indicates that errors might be in-
serted deliberately.

In the following, we compile a second corpus
on the basis of the entire setA of assignee names.
In order to yield a uniform distribution of the com-
panies across years, technological areas and coun-
tries, a set of 120 assignee names is extracted for
each dimension. After the removal of duplicates,
we revised these assignee names manually in or-
der to check (and correct) their spelling. Finally,
trailing business suffixes are removed, which re-
sults in a set of 3 110 company names. For each
company nameq, we generate the setA∗q as de-
scribed in Section 3.

The results of our analysis are shown in Table 6.
Table 6(a) refers to the first research question and
shows that the amount of misspellings in compa-
nies decreased over the years from 6.67% in 2001
to 4.74% in 2010 (cf. Row 3). These results let us
reject the hypothesis of Adams (2010). Neverthe-
less, the analysis provides evidence that spelling
errors are still an issue. For example, the company
identified with most spelling errors are “Konin-
klijke Philips Electronics” with 45 misspellings
in 2008, and “Centre National de la Recherche
Scientifique” with 28 misspellings in 2009. The
results are consistent with our findings with re-
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Table 6: Distribution of spelling errors for 3 110 company identifiers in the USPTO patents. The mean of spelling
errors per company identifier and the standard deviationσ refer to companies with misspellings. The last row in
each table shows the number of patents that are additionallyfound if the original queryq is expanded byA∗

q
.

(a) Distribution of spelling errors between the years 2001 and 2010.

Year
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

M
ea

su
re

Number of companies 1 028 1 066 1 115 1 151 1 219 1 261 1 274 1 210 1 224 1 268
Number of companies with misspellings 67 63 53 65 65 60 65 64 53 60
Companies with misspellings (%) 6.52 5.91 4.75 5.65 5.33 4.76 5.1 5.29 4.33 4.73
Mean 2.78 2.35 2.23 2.28 2.18 2.48 2.23 3.0 2.64 2.8
Standard deviationσ 4.62 3.3 3.63 3.13 2.8 3.55 2.87 6.37 4.71 4.6
Maximum misspellings per company 24 12 16 12 10 18 12 45 28 22
Additional number of patents 7.1 7.21 7.43 7.68 7.91 8.48 7.83 8.84 8.92 8.92

(b) Distribution of spelling errors based on the IPC scheme.

IPC code
A B C D E F G H

M
ea

su
re

Number of companies 954 1 231 811 277 412 771 1 232 949
Number of companies with misspellings 59 70 51 7 10 33 83 63
Companies with misspellings (%) 6.18 5.69 6.29 2.53 2.43 4.28 6.74 6.64
Mean 3.0 2.49 3.57 1.86 2.8 1.88 3.29 4.05
Standard deviationσ 5.28 3.65 7.03 1.99 4.22 2.31 5.72 7.13
Maximum misspellings per company 32 14 40 3 12 6 24 35
Additional number of patents 9.25 9.67 11.12 4.71 4.6 4.79 8.92 12.84

spect to the Fortune 500 sample (cf. Table 4),
where company names that are longer and pre-
sumably more difficult to write contain more
spelling errors.

In contrast to the uniform distribution of mis-
spellings over the years, the situation with re-
gard to the technological areas is different (cf. Ta-
ble 6(b)). Most companies are associated with
the IPC sections G and B, which both refer to
technical domains (cf. Table 6(b), Row 1). The
percentage of misspellings in these sections in-
creased compared to the spelling errors grouped
by year. A significant difference can be seen for
the sections D and E. Here, the number of as-
signed companies drops below 450 and the per-
centage of misspellings decreases significantly
from about 6% to 2.5%. These findings might
support the hypothesis that spelling errors are in-
serted deliberately in technical domains.

5 Conclusions

While researchers in the patent domain concen-
trate on retrieval models and algorithms to im-
prove the search performance, the original aspect
of our paper is that it points to a different (and or-
thogonal) research avenue: the analysis of patent

inconsistencies. With the analysis of spelling er-
rors in assignee names we made a first yet consid-
erable contribution in this respect; searches with
assignee constraints become a more sensible op-
eration. We showed how a special treatment of
spelling errors can significantly raise the effec-
tiveness of patent search. The identification of
this untapped potential, but also the utilization of
machine learning to combine patent features with
typography, form our main contributions.

Our current research broadens the application
of a patent spelling analysis. In order to iden-
tify errors that are introduced deliberately we
investigate different types of misspellings (edit
distance versus phonological). Finally, we con-
sider the analysis of acquisition histories of com-
panies as promising research direction: since
acquired companies often own granted patents,
these patents should be considered while search-
ing for the company in question in order to further
increase the recall.
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Abstract

We present UBY, a large-scale lexical-
semantic resource combining a wide range
of information from expert-constructed
and collaboratively constructed resources
for English and German. It currently
contains nine resources in two lan-
guages: English WordNet, Wiktionary,
Wikipedia, FrameNet and VerbNet,
German Wikipedia, Wiktionary and
GermaNet, and multilingual OmegaWiki
modeled according to the LMF standard.
For FrameNet, VerbNet and all collabora-
tively constructed resources, this is done
for the first time. Our LMF model captures
lexical information at a fine-grained level
by employing a large number of Data
Categories from ISOCat and is designed
to be directly extensible by new languages
and resources. All resources in UBY can
be accessed with an easy to use publicly
available API.

1 Introduction

Lexical-semantic resources (LSRs) are the foun-
dation of many NLP tasks such as word sense
disambiguation, semantic role labeling, question
answering and information extraction. They are
needed on a large scale in different languages.
The growing demand for resources is met nei-
ther by the largest single expert-constructed re-
sources (ECRs), such as WordNet and FrameNet,
whose coverage is limited, nor by collaboratively
constructed resources (CCRs), such as Wikipedia
and Wiktionary, which encode lexical-semantic
knowledge in a less systematic form than ECRs,
because they are lacking expert supervision.

Previously, there have been several indepen-
dent efforts of combining existing LSRs to en-
hance their coverage w.r.t. their breadth and depth,
i.e. (i) the number of lexical items, and (ii) the
types of lexical-semantic information contained
(Shi and Mihalcea, 2005; Johansson and Nugues,
2007; Navigli and Ponzetto, 2010b; Meyer and
Gurevych, 2011). As these efforts often targeted
particular applications, they focused on aligning
selected, specialized information types. To our
knowledge, no single work focused on modeling
a wide range of ECRs and CCRs in multiple lan-
guages and a large variety of information types in
a standardized format. Frequently, the presented
model is not easily scalable to accommodate an
open set of LSRs in multiple languages and the in-
formation mined automatically from corpora. The
previous work also lacked the aspects of lexicon
format standardization and API access. We be-
lieve that easy access to information in LSRs is
crucial in terms of their acceptance and broad ap-
plicability in NLP.

In this paper, we propose a solution to this. We
define a standardized format for modeling LSRs.
This is a prerequisite for resource interoperabil-
ity and the smooth integration of resources. We
employ the ISO standard Lexical Markup Frame-
work (LMF: ISO 24613:2008), a metamodel for
LSRs (Francopoulo et al., 2006), and Data Cate-
gories (DCs) selected from ISOCat.1 One of the
main challenges of our work is to develop a model
that is standard-compliant, yet able to express the
information contained in diverse LSRs, and that in
the long term supports the integration of the vari-
ous resources.

The main contributions of this paper can be

1http://www.isocat.org/
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summarized as follows: (1) We present an LMF-
based model for large-scale multilingual LSRs
called UBY-LMF. We model the lexical-semantic
information down to a fine-grained level of in-
formation (e.g. syntactic frames) and employ
standardized definitions of linguistic information
types from ISOCat. (2) We present UBY, a large-
scale LSR implementing the UBY-LMF model.
UBY currently contains nine resources in two
languages: English WordNet (WN, Fellbaum
(1998), Wiktionary2 (WKT-en), Wikipedia3 (WP-
en), FrameNet (FN, Baker et al. (1998)), and
VerbNet (VN, Kipper et al. (2008)); German Wik-
tionary (WKT-de), Wikipedia (WP-de), and Ger-
maNet (GN, Kunze and Lemnitzer (2002)), and
the English and German entries of OmegaWiki4

(OW), referred to as OW-en and OW-de. OW,
a novel CCR, is inherently multilingual – its ba-
sic structure are multilingual synsets, which are a
valuable addition to our multilingual UBY. Essen-
tial to UBY are the nine pairwise sense alignments
between resources, which we provide to enable
resource interoperability on the sense level, e.g.
by providing access to the often complementary
information for a sense in different resources. (3)
We present a Java-API which offers unified access
to the information contained in UBY.

We will make the UBY-LMF model, the re-
source UBY and the API freely available to the
research community.5 This will make it easy for
the NLP community to utilize UBY in a variety of
tasks in the future.

2 Related Work

The work presented in this paper concerns
standardization of LSRs, large-scale integration
thereof at the representational level, and the uni-
fied access to lexical-semantic information in the
integrated resources.

Standardization of resources. Previous work
includes models for representing lexical informa-
tion relative to ontologies (Buitelaar et al., 2009;
McCrae et al., 2011), and standardized single
wordnets (English, German and Italian wordnets)
in the ISO standard LMF (Soria et al., 2009; Hen-
rich and Hinrichs, 2010; Toral et al., 2010).

2http://www.wiktionary.org/
3http://www.wikipedia.org/
4http://www.omegawiki.org/
5http://www.ukp.tu-darmstadt.de/data/uby

McCrae et al. (2011) propose LEMON, a con-
ceptual model for lexicalizing ontologies as an
extension of the LexInfo model (Buitelaar et al.,
2009). LEMON provides an LMF-implementation
in the Web Ontology Language (OWL), which
is similar to UBY-LMF, as it also uses DCs
from ISOCat, but diverges further from the stan-
dard (e.g. by removing structural elements such
as the predicative representation class). While
we focus on modeling lexical-semantic informa-
tion comprehensively and at a fine-grained level,
the goal of LEMON is to support the linking be-
tween ontologies and lexicons. This goal entails
a task-targeted application: domain-specific lex-
icons are extracted from ontology specifications
and merged with existing LSRs on demand. As a
consequence, there is no available large-scale in-
stance of the LEMON model.

Soria et al. (2009) define WordNet-LMF, an
LMF model for representing wordnets used in
the KYOTO project, and Henrich and Hinrichs
(2010) do this for GN, the German wordnet.
These models are similar, but they still present
different implementations of the LMF meta-
model, which hampers interoperability between
the resources. We build upon this work, but ex-
tend it significantly: UBY goes beyond model-
ing a single ECR and represents a large number
of both ECRs and CCRs with very heterogeneous
content in the same format. Also, UBY-LMF
features deeper modeling of lexical-semantic in-
formation. Henrich and Hinrichs (2010), for
instance, do not explicitly model the argument
structure of subcategorization frames, since each
frame is represented as a string. In UBY-LMF,
we represent them at a fine-grained level neces-
sary for the transparent modeling of the syntax-
semantics interface.

Large-scale integration of resources. Most
previous research efforts on the integration of re-
sources targeted at world knowledge rather than
lexical-semantic knowledge. Well known exam-
ples are YAGO (Suchanek et al., 2007), or DBPe-
dia (Bizer et al., 2009).

Atserias et al. (2004) present the Meaning Mul-
tilingual Central Repository (MCR). MCR inte-
grates five local wordnets based on the Interlin-
gual Index of EuroWordNet (Vossen, 1998). The
overall goal of the work is to improve word sense
disambiguation. This work is similar to ours, as it
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aims at a large-scale multilingual resource and in-
cludes several resources. It is however restricted
to a single type of resource (wordnets) and fea-
tures a single type of lexical information (seman-
tic relations) specified upon synsets. Similarly,
de Melo and Weikum (2009) create a multilin-
gual wordnet by integrating wordnets, bilingual
dictionaries and information from parallel cor-
pora. None of these resources integrate lexical-
semantic information, such as syntactic subcate-
gorization or semantic roles.

McFate and Forbus (2011) present NULEX,
a syntactic lexicon automatically compiled from
WN, WKT-en and VN. As their goal is to cre-
ate an open-license resource to enhance syntactic
parsing, they enrich verbs and nouns in WN with
inflection information from WKT-en and syntac-
tic frames from VN. Thus, they only use a small
part of the lexical information present in WKT-en.

Padró et al. (2011) present their work on lex-
icon merging within the Panacea Project. One
goal of Panacea is to create a lexical resource de-
velopment platform that supports large-scale lex-
ical acquisition and can be used to combine exist-
ing lexicons with automatically acquired ones. To
this end, Padró et al. (2011) explore the automatic
integration of subcategorization lexicons. Their
current work only covers Spanish, and though
they mention the LMF standard as a potential data
model, they do not make use of it.

Shi and Mihalcea (2005) integrate FN, VN and
WN, and Palmer (2009) presents a combination of
Propbank, VN and FN in a resource called SEM-
LINK in order to enhance semantic role labeling.
Similar to our work, multiple resources are in-
tegrated, but their work is restricted to a single
language and does not cover CCRs, whose pop-
ularity and importance has grown tremendously
over the past years. In fact, with the excep-
tion of NULEX, CCRs have only been consid-
ered in the sense alignment of individual resource
pairs (Navigli and Ponzetto, 2010a; Meyer and
Gurevych, 2011).

API access for resources. An important factor
to the success of a large, integrated resource is a
single public API, which facilitates the access to
the information contained in the resource. The
most important LSRs so far can be accessed us-
ing various APIs, for instance the Java WordNet

API,6 or the Java-based Wikipedia API.7

With a stronger focus of the NLP community
on sharing data and reproducing experimental re-
sults these tools are becoming important as never
before. Therefore, a major design objective of
UBY is a single API. This is similar in spirit to the
motivation of Pradhan et al. (2007), who present
integrated access to corpus annotations as a main
goal of their work on standardizing and integrat-
ing corpus annotations in the OntoNotes project.

To summarize, related work focuses either on
the standardization of single resources (or a single
type of resource), which leads to several slightly
different formats constrained to these resources,
or on the integration of several resources in an
idiosyncratic format. CCRs have not been con-
sidered at all in previous work on resource stan-
dardization, and the level of detail of the model-
ing is insufficient to fully accommodate different
types of lexical-semantic information. API ac-
cess is rarely provided. This makes it hard for
the community to exploit their results on a large
scale. Thus, it diminishes the impact that these
projects might achieve upon NLP beyond their
original specific purpose, if their results were rep-
resented in a unified resource and could easily be
accessed by the community through a single pub-
lic API.

3 UBY – Data model

LMF defines a metamodel of LSRs in the Uni-
fied Modeling Language (UML). It provides a
number of UML packages and classes for model-
ing many different types of resources, e.g. word-
nets and multilingual lexicons. The design of
a standard-compliant lexicon model in LMF in-
volves two steps: in the first step, the structure
of the lexicon model has to be defined by choos-
ing a combination of the LMF core package and
zero to many extensions (i.e. UML packages). In
the second step, these UML classes are enriched
by attributes. To contribute to semantic interop-
erability, it is essential for the lexicon model that
the attributes and their values refer to Data Cat-
egories (DCs) taken from a reference repository.
DCs are standardized specifications of the terms
that are used for attributes and their values, or in
other words, the linguistic vocabulary occurring

6http://sourceforge.net/projects/jwordnet/
7http://code.google.com/p/jwpl/
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in a lexicon model. Consider, for instance, the
term lexeme that is defined differently in WN and
FN: in FN, a lexeme refers to a word form, not
including the sense aspect. In WN, on the con-
trary, a lexeme is an abstract pairing of mean-
ing and form. According to LMF, the DCs are
to be selected from ISOCat, the implementation
of the ISO 12620 Data Category Registry (DCR,
Broeder et al. (2010)), resulting in a Data Cate-
gory Selection (DCS).

Design of UBY-LMF. We have designed UBY-
LMF8 as a model of the union of various hetero-
geneous resources, namely WN, GN, FN, and VN
on the one hand and CCRs on the other hand.

Two design principles guided our development
of UBY-LMF: first, to preserve the information
available in the original resources and to uni-
formly represent it in UBY-LMF. Second, to be
able to extend UBY in the future by further lan-
guages, resources, and types of linguistic infor-
mation, in particular, alignments between differ-
ent LSRs.

Wordnets, FN and VN are largely complemen-
tary regarding the information types they provide,
see, e.g. Baker and Fellbaum (2009). Accord-
ingly, they use different organizational units to
represent this information. Wordnets, such as
WN and GN, primarily contain information on
lexical-semantic relations, such as synonymy, and
use synsets (groups of lexemes that are synony-
mous) as organizational units. FN focuses on
groups of lexemes that evoke the same prototypi-
cal situation (so-called semantic frames, Fillmore
(1982)) involving semantic roles (so-called frame
elements). VN, a large-scale verb lexicon, is or-
ganized in Levin-style verb classes (Levin, 1993)
(groups of verbs that share the same syntactic al-
ternations and semantic roles) and provides rich
subcategorization frames including semantic roles
and a specification of semantic predicates.

UBY-LMF employs several direct subclasses
of Lexicon in order to account for the various or-
ganization types found in the different LSRs con-
sidered. While the LexicalEntry class reflects
the traditional headword-based lexicon organiza-
tion, Synset represents synsets from wordnets,
SemanticPredicate models FN semantic
frames, and SubcategorizationFrameSet

corresponds to VN alternation classes.

8See www.ukp.tu-darmstadt.de/data/uby

SubcategorizationFrame is com-
posed of syntactic arguments, while
SemanticPredicate is composed of se-
mantic arguments. The linking between syntactic
and semantic arguments is represented by the
SynSemCorrespondence class.

The SenseAxis class is very important in
UBY-LMF, as it connects the different source
LSRs. Its role is twofold: first, it links the cor-
responding word senses from different languages,
e.g. English and German. Second, it represents
monolingual sense alignments, i.e. sense align-
ments between different lexicons in the same lan-
guage. The latter is a novel interpretation of
SenseAxis introduced by UBY-LMF.

The organization of lexical-semantic knowl-
edge found in WP, WKT, and OW can be mod-
eled with the classes in UBY-LMF as well. WP
primarily provides encyclopedic information on
nouns. It mainly consists of article pages which
are modeled as Senses in UBY-LMF.

WKT is in many ways similar to tradi-
tional dictionaries, because it enumerates senses
under a given headword on an entry page.
Thus, WKT entry pages can be represented by
LexicalEntries and WKT senses by Senses.

OW is different from WKT and WP, as it is or-
ganized in multilingual synsets. To model OW
in UBY-LMF, we split the synsets per language
and included them as monolingual Synsets in
the corresponding Lexicon (e.g., OW-en or OW-
de). The original multilingual information is pre-
served by adding a SenseAxis between corre-
sponding synsets in OW-en and OW-de.

The LMF standard itself contains only few lin-
guistic terms and does neither specify attributes
nor their values. Therefore, an important task in
developing UBY-LMF has been the specification
of attributes and their values along with the proper
attachment of attributes to LMF classes. In partic-
ular, this task involved selecting DCs from ISO-
Cat and, if necessary, adding new DCs to ISOCat.

Extensions in UBY-LMF. Although UBY-
LMF is largely compliant with LMF, the task of
building a homogeneous lexicon model for many
highly heterogeneous LSRs led us to extend LMF
in several ways: we added two new classes and
several new relationships between classes.

First, we were facing a huge variety of lexical-
semantic labels for many different dimensions of
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semantic classification. Examples of such dimen-
sions include ontological type (e.g. selectional re-
strictions in VN and FN), domain (e.g. Biology in
WN), style and register (e.g. labels in WKT, OW),
or sentiment (e.g. sentiment of lexical units in
FN). Since we aim at an extensible LMF-model,
capable of representing further dimensions of se-
mantic classification, we did not squeeze the in-
formation on semantic classes present in the con-
sidered LSRs into existing LMF classes. Instead,
we addressed this issue by introducing a more
general class, SemanticLabel, which is an op-
tional subclass of Sense, SemanticPredicate,
and SemanticArgument. This new class has
three attributes, encoding the name of the label,
its type (e.g. ontological, register, sentiment), and
a numeric quantification (e.g. sentiment strength).

Second, we attached the subclass Frequency
to most of the classes in UBY-LMF, in order to
encode frequency information. This is of partic-
ular importance when using the resource in ma-
chine learning applications. This extension of the
standard has already been made in WordNet-LMF
(Soria et al., 2009). Currently, the Frequency

class is used to keep corpus frequencies for lex-
ical units in FN, but we plan to use it for en-
riching many other classes with frequency in-
formation in future work, such as Senses or
SubcategorizationFrames.

Third, the representation of FN in LMF re-
quired adding two new relationships between
LMF classes: we added a relationship between
SemanticArgument and Definition, in or-
der to represent the definitions available for frame
elements in FN. In addition, we added a re-
lationship between the Context class and the
MonoLingualExternalRef, to represent the
links to annotated corpus sentences in FN.

Finally, WKT turned out to be hard to tackle,
because it contains a special kind of ambiguity in
the semantic relations and translation links listed
for senses: the targets of both relations and trans-
lation links are ambiguous, as they refer to lem-
mas (word forms), rather than to senses (Meyer
and Gurevych, 2010). These ambiguous rela-
tion targets could not directly be represented in
LMF, since sense and translation relations are
defined between senses. To resolve this, we
added a relationship between SenseRelation

and FormRepresentation, in order to encode
the ambiguous WKT relation target as a word

form. Disambiguating the WKT relation targets
to infer the target sense is left to future work.

A related issue occurred, when we mapped WN
to LMF. WN encodes morphologically related
forms as sense relations. UBY-LMF represents
these related forms not only as sense relations (as
in WordNet-LMF), but also at the morphologi-
cal level using the RelatedForm class from the
LMF Morphology extension. In LMF, however,
the RelatedForm class for morphologically re-
lated lexemes is not associated with the corre-
sponding sense in any way. Discarding the WN
information on the senses involved in a particular
morphological relation would lead to information
loss in some cases. Consider as an example the
WN verb buy (purchase) which is derivationally
related to the noun buy, while on the other hand
buy (accept as true, e.g. I can’t buy this story) is
not derivationally related to the noun buy. We ad-
dressed this issue by adding a sense attribute to
the RelatedForm class. Thus, in extension of
LMF, UBY-LMF allows sense relations to refer to
a form relation target and morphological relations
to refer to a sense relation target.

Data Categories in UBY-LMF. We encoun-
tered large differences in the availability of DCs
in ISOCat for the morpho-syntactic, lexical-
syntactic, and lexical-semantic parts of UBY-
LMF. Many DCs were missing in ISOCat and we
had to enter them ourselves. While this was feasi-
ble at the morpho-syntactic and lexical-syntactic
level, due to a large body of standardization re-
sults available, it was much harder at the lexical-
semantic level where standardization is still on-
going. At the lexical-semantic level, UBY-LMF
currently allows string values for a number of at-
tribute values, e.g. for semantic roles. We can eas-
ily integrate the results of the ongoing standard-
ization efforts into UBY-LMF in the future.

4 UBY – Population with information

4.1 Representing LSRs in UBY-LMF
UBY-LMF is represented by a DTD (as suggested
by the standard) which can be used to automat-
ically convert any given resource into the corre-
sponding XML format.9 This conversion requires
a detailed analysis of the resource to be converted,
followed by the definition of a mapping of the

9Therefore, UBY-LMF can be considered as a serializa-
tion of LMF.
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concepts and terms used in the original resource
to the UBY-LMF model. There are two major
tasks involved in the development of an automatic
conversion routine: first, the basic organizational
unit in the source LSR has to be identified and
mapped, e.g. synset in WN or semantic frame in
FN, and second, it has to be determined, how a
(LMF) sense is defined in the source LSR.

A notable aspect of converting resources into
UBY-LMF is the harmonization of linguistic ter-
minology used in the LSRs. For instance, a
WN Word and a GN Lexical Unit are mapped to
Sense in UBY-LMF.

We developed reusable conversion routines for
the future import of updated versions of the source
LSRs into UBY, provided the structure of the
source LSR remains stable. These conversion
routines extract lexical data from the source LSRs
by calling their native APIs (rather than process-
ing the underlying XML data). Thus, all lexical
information which can be accessed via the APIs
is converted into UBY-LMF.

Converting the LSRs introduced in the previ-
ous section yielded an instantiation of UBY-LMF
named UBY. The LexicalResource instance
UBY currently comprises 10 Lexicon instances,
one each for OW-de and OW-en, and one lexicon
each for the remaining eight LSRs.

4.2 Adding Sense Alignments

Besides the uniform and standardized representa-
tion of the single LSRs, one major asset of UBY

is the semantic interoperability of resources at the
sense level. In the following, we (i) describe how
we converted already existing sense alignments of
resources into LMF, and (ii) present a framework
to infer alignments automatically for any pair of
resources.

Existing Alignments. Previous work on sense
alignment yielded several alignments, such as
WN–WP-en (Niemann and Gurevych, 2011),
WN–WKT-en (Meyer and Gurevych, 2011) and
VN–FN (Palmer, 2009).

We converted these alignments into UBY-LMF
by creating a SenseAxis instance for each pair of
aligned senses. This involved mapping the sense
IDs from the proprietary alignment files to the
corresponding sense IDs in UBY.

In addition, we integrated the sense alignments
already present in OW and WP. Some OW en-

tries provide links to the corresponding WP page.
Also, the German and English language editions
of WP and OW are connected by inter-language
links between articles (Senses in UBY). We can
expect that these links have high quality, as they
were entered manually by users and are subject
to community control. Therefore, we straightfor-
wardly imported them into UBY.

Alignment Framework. Automatically creat-
ing new alignments is difficult because of word
ambiguities, different granularities of senses,
or language specific conceptualizations (Navigli,
2006). To support this task for a large number
of resources across languages, we have designed
a flexible alignment framework based on the
state-of-the-art method of Niemann and Gurevych
(2011). The framework is generic in order to al-
low alignments between different kinds of entities
as found in different resources, e.g. WN synsets,
FN frames or WP articles. The only requirement
is that the individual entities are distinguishable
by a unique identifier in each resource.

The alignment consists of the following steps:
First, we extract the alignment candidates for a
given resource pair, e.g. WN sense candidates for
a WKT-en entry. Second, we create a gold stan-
dard by manually annotating a subset of candi-
date pairs as “valid“ or “non-valid“. Then, we
extract the sense representations (e.g. lemmatized
bag-of-words based on glosses) to compute the
similarity of word senses (e.g. by cosine similar-
ity). The gold standard with corresponding sim-
ilarity values is fed into Weka (Hall et al., 2009)
to train a machine learning classifier, and in the
final step this classifier is used to automatically
classify the candidate sense pairs as (non-)valid
alignment. Our framework also allows us to train
on a combination of different similarity measures.

Using our framework, we were able to re-
produce the results reported by Niemann and
Gurevych (2011) and Meyer and Gurevych
(2011) based on the publicly available evaluation
datasets10 and the configuration details reported
in the corresponding papers.

Cross-Lingual Alignment. In order to align
word senses across languages, we extended the
monolingual sense alignment described above to
the cross-lingual setting. Our approach utilizes

10http://www.ukp.tu-darmstadt.de/data/sense-alignment/
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Moses,11 trained on the Europarl corpus. The
lemma of one of the two senses to be aligned
as well as its representations (e.g. the gloss) is
translated into the language of the other resource,
yielding a monolingual setting. E.g., the WN
synset {vessel, watercraft} with its gloss ’a craft
designed for water transportation’ is translated
into {Schiff, Wasserfahrzeug} and ’Ein Fahrzeug
für Wassertransport’, and then the candidate ex-
traction and all downstream steps can take place
in German. An inherent problem with this ap-
proach is that incorrect translations also lead to
invalid alignment candidates. However, these are
most probably filtered out by the machine learn-
ing classifier as the calculated similarity between
the sense representations (e.g. glosses) should be
low if the candidates do not match.

We evaluated our approach by creating a cross-
lingual alignment between WN and OW-de, i.e.
the concepts in OW with a German lexicaliza-
tion.12 To our knowledge, this is the first study on
aligning OW with another LSR. OW is especially
interesting for this task due to its multilingual con-
cepts, as described by Matuschek and Gurevych
(2011). The created gold standard could, for in-
stance, be re-used to evaluate alignments for other
languages in OW.

To compute the similarity of word senses, we
followed the approach by Niemann and Gurevych
(2011) while covering both translation directions.
We used the cosine similarity for comparing the
German OW glosses with the German translations
of WN glosses and cosine and personalized page
rank (PPR) similarity for comparison of the Ger-
man OW glosses translated into English with the
original English WN glosses. Note that PPR sim-
ilarity is not available for German as it is based
on WN. Thereby, we filtered out the OW con-
cepts without a German gloss which left us with
11,806 unique candidate pairs. We randomly se-
lected 500 WN synsets for analysis yielding 703
candidate pairs. These were manually annotated
as being (non-)alignments. For the subsequent
machine learning task we used a simple threshold-
based classifier and ten-fold cross validation.

Table 1 summarizes the results of different sys-
tem configurations. We observe that translation

11http://www.statmt.org/moses/
12OmegaWiki consists of interlinked language-

independent concepts to which lexicalizations in several
languages are attached.

Translation Similarity
direction measure P R F1

EN > DE Cosine (Cos) 0.666 0.575 0.594
DE > EN Cos 0.674 0.658 0.665
DE > EN PPR 0.721 0.712 0.716
DE > EN PPR + Cos 0.723 0.712 0.717

Table 1: Cross-lingual alignment results

into English works significantly better than into
German. Also, the more elaborate similarity mea-
sure PPR yields better results than cosine similar-
ity, while the best result is achieved by a combina-
tion of both. Niemann and Gurevych (2011) make
a similar observation for the monolingual setting.
Our F-measure of 0.717 in the best configuration
lies between the results of Meyer and Gurevych
(2011) (0.66) and Niemann and Gurevych (2011)
(0.78), and thus verifies the validity of the ma-
chine translation approach. Therefore, the best
alignment was subsequently integrated into UBY.

5 Evaluating UBY

We performed an intrinsic evaluation of UBY by
computing a number of resource statistics. Our
evaluation covers two aspects: first, it addresses
the question if our automatic conversion routines
work correctly. Second, it provides indicators for
assessing UBY in terms of the gain in coverage
compared to the single LSRs.

Correctness of conversion. Since we aim to
preserve the maximal amount of information from
the original LSRs, we should be able to replace
any of the original LSRs and APIs by UBY and
the UBY-API without losing information. As
the conversion is largely performed automatically,
systematic errors and information loss could be
introduced by a faulty conversion routine. In or-
der to detect such errors and to prove the correct-
ness of the automatic conversion and the result-
ing representation, we have compared the orig-
inal resource statistics of the classes and infor-
mation types in the source LSRs to the cor-
responding classes in their UBY counterparts.
For instance, the number of lexical relations in
WordNet has been compared to the number of
SenseRelations in the UBY WordNet lexi-
con.13

13For detailed analysis results see the UBY website.
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Lexical Sense
Lexicon Entry Sense Relation

FN 9,704 11,942 –
GN 83,091 93,407 329,213
OW-de 30,967 34,691 60,054
OW-en 51,715 57,921 85,952
WP-de 790,430 838,428 571,286
WP-en 2,712,117 2,921,455 3,364,083
WKT-de 85,575 72,752 434,358
WKT-en 335,749 421,848 716,595
WN 156,584 206,978 8,559
VN 3,962 31,891 –
UBY 4,259,894 4,691,313 5,300,941

Table 2: UBY resource statistics (selected classes).

Lexicon pair Languages SenseAxis
WN–WP-en EN–EN 50,351
WN–WKT-en EN–EN 99,662
WN–VN EN–EN 40,716
FN–VN EN–EN 17,529
WP-en–OW-en EN–EN 3,960
WP-de–OW-de DE–DE 1,097
WN–OW-de EN–DE 23,024
WP-en–WP-de EN–DE 463,311
OW-en–OW-de EN–DE 58,785
UBY All 758,435

Table 3: UBY alignment statistics.

Gain in coverage. UBY offers an increased
coverage compared to the single LSRs as reflected
in the resource statistics. Tables 2 and 3 show the
statistics on central classes in UBY. As UBY is
organized in several Lexicons, the number of
UBY lexical entries is the sum of the lexical en-
tries in all 10 Lexicons. Thus, UBY contains
more than 4.2 million lexical entries, 4.6 million
senses, 5.3 million semantic relations between
senses and more than 750,000 alignments. These
statistics represent the total numbers of lexical en-
tries, senses and sense relations in UBY without
filtering of identical (i.e. corresponding) lexical
entries, senses and relations. Listing the num-
ber of unique senses would require a full align-
ment between all integrated resources, which is
currently not available.

We can, however, show that UBY contains over
3.08 million unique lemma-POS combinations for
English and over 860,000 for German, over 3.94
million in total, see Table 4. Therefore, we as-
sessed the coverage on lemma level. Table 4 also

shows the number of lemmas with entries in one
or more than one lexicon, additionally split by
POS and language. Lemmas occurring only once
in UBY increase the coverage at lemma level. For
lemmas with parallel entries in several UBY lex-
icons, new information becomes available in the
form of additional sense definitions and comple-
mentary information types attached to lemmas.

Finally, the increase in coverage at sense level
can be estimated for senses that are aligned across
at least two UBY-lexicons. We gain access to
all available, partly complementary information
types attached to these aligned senses, e.g. seman-
tic relations, subcategorization frames, encyclo-
pedic or multilingual information. The number
of pairwise sense alignments provided by UBY is
given in Table 3. In addition, we computed how
many senses simultaneously take part in at least
two pairwise sense alignments. For English, this
applies to 31,786 senses, for which information
from 3 UBY lexicons is available.

EN Lexicons noun verb adjective

5 1 699 -
4 1,630 1,888 430
3 8,439 1,948 2,271
2 53,856 4,727 12,290
1 2,900,652 50,209 41,731
Σ (unique EN) 3,080,771
DE Lexicons noun verb adjective

4 1,546 - -
3 10,374 372 342
2 26,813 3,174 2,643
1 803,770 6,108 7,737
Σ (unique DE) 862,879

Table 4: Number of lemmas (split by POS and lan-
guage) with entries in i UBY lexicons, i = 1, . . . , 5.

6 Using UBY

UBY API. For convenient access to UBY, we
implemented a Java-API which is built around
the Hibernate14 framework. Hibernate allows to
easily store the XML data which results from
converting resources into Uby-LMF into a corre-
sponding SQL database.

Our main design principle was to keep the ac-
cess to the resource as simple as possible, despite
the rich and complex structure of UBY. Another

14http://www.hibernate.org/
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important design aspect was to ensure that the
functionality of the individual, resource-specific
APIs or user interfaces is mirrored in the UBY

API. This enables porting legacy applications to
our new resource. To facilitate the transition to
UBY, we plan to provide reference tables which
list the corresponding UBY-API operations for the
most important operations in the WN API, some
of which are shown in Table 5.

WN function UBY function
Dictionary UBY

getIndexWord(pos,
lemma)

getLexicalEntries(
pos, lemma)

IndexWord LexicalEntry
getLemma() getLemmaForm()

Synset Synset
getGloss() getDefinitionText()
getWords() getSenses()

Pointer SynsetRelation
getType() getRelName()

Word Sense
getPointers() getSenseRelations()

Table 5: Some equivalent operations in WN API and
UBY API.

While it is possible to limit access to single re-
sources by a parameter and thus mimic the behav-
ior of the legacy APIs (e.g. only retrieve Synsets
and their relations from WN), the true power of
UBY API becomes visible when no such con-
straints are applied. In this case, all imported re-
sources are queried to get one combined result,
while retaining the source of the respective in-
formation. On top of this, the information about
existing sense alignments across resources can be
accessed via SenseAxis relations, so that the re-
turned combined result covers not only the lexi-
cal, but also the sense level.

Community issues. One of the most important
reasons for UBY is creating an easy-to-use pow-
erful LSR to advance NLP research and develop-
ment. Therefore, community building around the
resource is one of our major concerns. To this end,
we will offer free downloads of the lexical data
and software presented in this paper under open li-
censes, namely: The UBY-LMF DTD, mappings
and conversion tools for existing resources and
sense alignments, the Java API, and, as far as li-

censing allows,15 already converted resources. If
resources cannot be made available for download,
the conversion tools will still allow users with ac-
cess to these resources to import them into UBY

easily. In this way, it will be possible for users to
build their “custom UBY” containing selected re-
sources. As the underlying resources are subject
to continuous change, updates of the correspond-
ing components will be made available on a regu-
lar basis.

7 Conclusions

We presented UBY, a large-scale, standardized
LSR containing nine widely used resources in two
languages: English WN, WKT-en, WP-en, FN
and VN, German WP-de, WKT-de, and GN, and
OW in English and German. As all resources
are modeled in UBY-LMF, UBY enables struc-
tural interoperability across resources and lan-
guages down to a fine-grained level of informa-
tion. For FN, VN and all of the CCRs in En-
glish and German, this is done for the first time.
Besides, by integrating sense alignments we also
enable the lexical-semantic interoperability of re-
sources. We presented a unified framework for
aligning any LSRs pairwise and reported on ex-
periments which align OW-de and WN. We will
release the UBY-LMF model, the resource and the
UBY-API at the time of publication.16 Due to the
added value and the large scale of UBY, as well as
its ease of use, we believe UBY will boost the per-
formance of NLP making use of lexical-semantic
knowledge.
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Abstract

We apply topic modelling to automatically
induce word senses of a target word, and
demonstrate that our word sense induction
method can be used to automatically de-
tect words with emergent novel senses, as
well as token occurrences of those senses.
We start by exploring the utility of stan-
dard topic models for word sense induction
(WSI), with a pre-determined number of
topics (=senses). We next demonstrate that
a non-parametric formulation that learns an
appropriate number of senses per word ac-
tually performs better at the WSI task. We
go on to establish state-of-the-art results
over two WSI datasets, and apply the pro-
posed model to a novel sense detection task.

1 Introduction

Word sense induction (WSI) is the task of auto-
matically inducing the different senses of a given
word, generally in the form of an unsupervised
learning task with senses represented as clusters
of token instances. It contrasts with word sense
disambiguation (WSD), where a fixed sense in-
ventory is assumed to exist, and token instances
of a given word are disambiguated relative to the
sense inventory. While WSI is intuitively appeal-
ing as a task, there have been no real examples of
WSI being successfully deployed in end-user ap-
plications, other than work by Schutze (1998) and
Navigli and Crisafulli (2010) in an information re-
trieval context. A key contribution of this paper
is the successful application of WSI to the lexico-
graphical task of novel sense detection, i.e. identi-
fying words which have taken on new senses over
time.

One of the key challenges in WSI is learning
the appropriate sense granularity for a given word,

i.e. the number of senses that best captures the
token occurrences of that word. Building on the
work of Brody and Lapata (2009) and others, we
approach WSI via topic modelling — using La-
tent Dirichlet Allocation (LDA: Blei et al. (2003))
and derivative approaches — and use the topic
model to determine the appropriate sense gran-
ularity. Topic modelling is an unsupervised ap-
proach to jointly learn topics — in the form of
multinomial probability distributions over words
— and per-document topic assignments — in the
form of multinomial probability distributions over
topics. LDA is appealing for WSI as it both as-
signs senses to words (in the form of topic alloca-
tion), and outputs a representation of each sense
as a weighted list of words. LDA offers a solu-
tion to the question of sense granularity determi-
nation via non-parametric formulations, such as
a Hierarchical Dirichlet Process (HDP: Teh et al.
(2006), Yao and Durme (2011)).

Our contributions in this paper are as follows.
We first establish the effectiveness of HDP for
WSI over both the SemEval-2007 and SemEval-
2010 WSI datasets (Agirre and Soroa, 2007; Man-
andhar et al., 2010), and show that the non-
parametric formulation is superior to a standard
LDA formulation with oracle determination of
sense granularity for a given word. We next
demonstrate that our interpretation of HDP-based
WSI is superior to other topic model-based ap-
proaches to WSI, and indeed, better than the best-
published results for both SemEval datasets. Fi-
nally, we apply our method to the novel sense de-
tection task based on a dataset developed in this
research, and achieve highly encouraging results.

2 Methodology

In topic modelling, documents are assumed to ex-
hibit multiple topics, with each document having
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its own distribution over topics. Words are gen-
erated in each document by first sampling a topic
from the document’s topic distribution, then sam-
pling a word from that topic. In this work we
use the topic models’s probabilistic assignment of
topics to words for the WSI task.

2.1 Data Representation and Pre-processing

In the context of WSI, topics form our sense rep-
resentation, and words in a sentence are gener-
ated conditioned on a particular sense of the target
word. The “document” in the WSI case is a sin-
gle sentence or a short document fragment con-
taining the target word, as we would not expect
to be able to generate a full document from the
sense of a single target word.1 In the case of the
SemEval datasets, we use the word contexts pro-
vided in the dataset, while in our novel sense de-
tection experiments, we use a context window of
three sentences, one sentence to either side of the
token occurrence of the target word.

As our baseline representation, we use a bag of
words, where word frequency is kept but not word
order. All words are lemmatised, and stopwords
and low frequency terms are removed.

We also experiment with the addition of po-
sitional context word information, as commonly
used in WSI. That is, we introduce an additional
word feature for each of the three words to the left
and right of the target word.

Padó and Lapata (2007) demonstrated the im-
portance of syntactic dependency relations in the
construction of semantic space models, e.g. for
WSD. Based on these findings, we include depen-
dency relations as additional features in our topic
models,2 but just for dependency relations that in-
volve the target word.

2.2 Topic Modelling

Topic models learn a probability distribution over
topics for each document, by simply aggregating
the distributions over topics for each word in the
document. In WSI terms, we take this distribu-
tion over topics for each target word (“instance”
in WSI parlance) as our distribution over senses
for that word.

1Notwithstanding the one sense per discourse heuristic
(Gale et al., 1992).

2We use the Stanford Parser to do part of speech tagging
and to extract the dependency relations (Klein and Manning,
2003; De Marneffe et al., 2006).

In our initial experiments, we use LDA topic
modelling, which requires us to set T , the num-
ber of topics to be learned by the model. The
LDA generative process is: (1) draw a latent
topic z from a document-specific topic distribu-
tion P (t = z|d) then; (2) draw a word w from
the chosen topic P (w|t = z). Thus, the probabil-
ity of producing a single copy of word w given a
document d is given by:

P (w|d) =

T∑
z=1

P (w|t = z)P (t = z|d).

In standard LDA, the user needs to specify the
number of topics T . In non-parametric variants of
LDA, the model dynamically learns the number of
topics as part of the topic modelling. The particu-
lar implementation of non-parametric topic model
we experiment with is Hierarchical Dirichlet Pro-
cess (HDP: Teh et al. (2006)),3 where, for each
document, a distribution of mixture components
P (t|d) is sampled from a base distribution G0

as follows: (1) choose a base distribution G0 ∼
DP (γ,H); (2) for each document d, generate dis-
tribution P (t|d) ∼ DP (α0, G0); (3) draw a la-
tent topic z from the document’s mixture compo-
nent distribution P (t|d), in the same manner as
for LDA; and (4) draw a word w from the chosen
topic P (w|t = z).4

For both LDA and HDP, we individually topic
model each target word, and determine the sense
assignment z for a given instance by aggregating
over the topic assignments for each word in the
instance and selecting the sense with the highest
aggregated probability, arg maxz P (t = z|d).

3 SemEval Experiments

To facilitate comparison of our proposed method
for WSI with previous approaches, we use the
dataset from the SemEval-2007 and SemEval-
2010 word sense induction tasks (Agirre and

3We use the C++ implementation of HDP
(http://www.cs.princeton.edu/˜blei/
topicmodeling.html) in our experiments.

4The two HDP parameters γ and α0 control the variabil-
ity of senses in the documents. In particular, γ controls the
degree of sharing of topics across documents — a high γ
value leads to more topics, as topics for different documents
are more dissimilar. α0, on the other hand, controls the de-
gree of mixing of topics within a document — a high α0 gen-
erates fewer topics, as topics are less homogeneous within a
document.
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Soroa, 2007; Manandhar et al., 2010). We first
experiment with the SemEval-2010 dataset, as it
includes explicit training and test data for each
target word and utilises a more robust evaluation
methodology. We then return to experiment with
the SemEval-2007 dataset, for comparison pur-
poses with other published results for topic mod-
elling approaches to WSI.

3.1 SemEval-2010
3.1.1 Dataset and Methodology

Our primary WSI evaluation is based on
the dataset provided by the SemEval-2010 WSI
shared task (Manandhar et al., 2010). The dataset
contains 100 target words: 50 nouns and 50 verbs.
For each target word, a fixed set of training and
test instances are supplied, typically 1 to 3 sen-
tences in length, each containing the target word.

The default approach to evaluation for the
SemEval-2010 WSI task is in the form of WSD
over the test data, based on the senses that have
been automatically induced from the training
data. Because the induced senses will likely vary
in number and nature between systems, the WSD
evaluation has to incorporate a sense alignment
step, which it performs by splitting the test in-
stances into two sets: a mapping set and an eval-
uation set. The optimal mapping from induced
senses to gold-standard senses is learned from the
mapping set, and the resulting sense alignment is
used to map the predictions of the WSI system to
pre-defined senses for the evaluation set. The par-
ticular split we use to calculate WSD effective-
ness in this paper is 80%/20% (mapping/test), av-
eraged across 5 random splits.5

The SemEval-2010 training data consists of ap-
proximately 163K training instances for the 100
target words, all taken from the web. The test
data is approximately 9K instances taken from a
variety of news sources. Following the standard
approach used by the participating systems in the
SemEval-2010 task, we induce senses only from
the training instances, and use the learned model
to assign senses to the test instances.

5A 60%/40% split is also provided as part of the task
setup, but the results are almost identical to those for the
80%/20% split, and so are omitted from this paper. The orig-
inal task also made use of V-measure and Paired F-score to
evaluate the induced word sense clusters, but have degen-
erate behaviour in correlating strongly with the number of
senses induced by the method (Manandhar et al., 2010), and
are hence omitted from this paper.

In our original experiments with LDA, we set
the number of topics (T ) for each target word to
the number of senses represented in the test data
for that word (varying T for each target word).
This is based on the unreasonable assumption that
we will have access to gold-standard information
on sense granularity for each target word, and is
done to establish an upper bound score for LDA.
We then relax the assumption, and use a fixed T
setting for each of sets of nouns (T = 7) and
verbs (T = 3), based on the average number of
senses from the test data in each case. Finally,
we introduce positional context features for LDA,
once again using the fixed T values for nouns and
verbs.

We next apply HDP to the WSI task, using
positional features, but learning the number of
senses automatically for each target word via the
model. Finally, we experiment with adding de-
pendency features to the model.

To summarise, we provide results for the fol-
lowing models:

1. LDA+Variable T : LDA with variable T
for each target word based on the number of
gold-standard senses.

2. LDA+Fixed T : LDA with fixed T for each
of nouns and verbs.

3. LDA+Fixed T+Position: LDA with fixed
T and extra positional word features.

4. HDP+Position: HDP (which automatically
learns T ), with extra positional word fea-
tures.

5. HDP+Position+Dependency: HDP with
both positional word and dependency fea-
tures.

We compare our models with two baselines
from the SemEval-2010 task: (1) Baseline Ran-
dom — randomly assign each test instance to one
of four senses; (2) Baseline MFS — most fre-
quent sense baseline, assigning all test instances
to one sense; and also a benchmark system
(UoY), in the form of the University of York sys-
tem (Korkontzelos and Manandhar, 2010), which
achieved the best overall WSD results in the orig-
inal SemEval-2010 task.

3.2 SemEval-2010 Results

The results of our experiments over the SemEval-
2010 dataset are summarised in Table 1.
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System WSD (80%/20%)
All Verbs Nouns

Baselines
Baseline Random 0.57 0.66 0.51
Baseline MFS 0.59 0.67 0.53

LDA
Variable T 0.64 0.69 0.60
Fixed T 0.63 0.68 0.59
Fixed T +Position 0.63 0.68 0.60

HDP
+Position 0.68 0.72 0.65
+Position+Dependency 0.68 0.72 0.65

Benchmark
UoY 0.62 0.67 0.59

Table 1: WSD F-score over the SemEval-2010 dataset

Looking first at the results for LDA, we see
that the first LDA approach (variable T ) is very
competitive, outperforming the benchmark sys-
tem. In this approach, however, we assume per-
fect knowledge of the number of gold senses of
each target word, meaning that the method isn’t
truly unsupervised. When we fixed T for each
of the nouns and verbs, we see a small drop in
F-score, but encouragingly the method still per-
forms above the benchmark. Adding positional
word features improves the results very slightly
for nouns.

When we relax the assumption on the number
of word senses in moving to HDP, we observe a
marked improvement in F-score over LDA. This
is highly encouraging and somewhat surprising,
as in hiding information about sense granularity
from the model, we have actually improved our
results. We return to discuss this effect below.
For the final feature, we add dependency features
to the HDP model (in addition to retaining the
positional word features), but see no movement
in the results.6 While the dependency features
didn’t reduce F-score, their utility is questionable
as the generation of the features from the Stanford
parser is computationally expensive.

To better understand these results, we present
the top-10 terms for each of the senses induced for
the word cheat in Table 2. These senses are learnt
using HDP with both positional word features
(e.g. husband #-1, indicating the lemma husband
to the immediate left of the target word) and de-
pendency features (e.g. cheat#prep on#wife). The
first observation to make is that senses 7, 8 and
9 are “junk” senses, in that the top-10 terms do

6An identical result was observed for LDA.

not convey a coherent sense. These topics are an
artifact of HDP: they are learnt at a much later
stage of the iterative process of Gibbs sampling
and are often smaller than other topics (i.e. have
more zero-probability terms). We notice that they
are assigned as topics to instances very rarely (al-
though they are certainly used to assign topics to
non-target words in the instances), and as such,
they do not present a real issue when assigning
the sense to an instance, as they are likely to be
overshadowed by the dominant senses.7 This con-
clusion is born out when we experimented with
manually filtering out these topics when assign-
ing instance to senses: there was no perceptible
change in the results, reinforcing our suggestion
that these topics do not impact on target word
sense assignment.

Comparing the results for HDP back to those
for LDA, HDP tends to learn almost double the
number of senses per target word as are in the
gold-standard (and hence are used for the “Vari-
able T ” version of LDA). Far from hurting our
WSD F-score, however, the extra topics are dom-
inated by junk topics, and boost WSD F-score for
the “genuine” topics. Based on this insight, we
ran LDA once again with variable T (and posi-
tional and dependency features), but this time set-
ting T to the value learned by HDP, to give LDA
the facility to use junk topics. This resulted in an
F-score of 0.66 across all word classes (verbs =
0.71, nouns = 0.62), demonstrating that, surpris-
ingly, even for the same T setting, HDP achieves
superior results to LDA. I.e., not only does HDP
learn T automatically, but the topic model learned
for a given T is superior to that for LDA.

Looking at the other senses discovered for
cheat, we notice that the model has induced a
myriad of senses: the relationship sense of cheat
(senses 1, 3 and 4, e.g. husband cheats); the exam
usage of cheat (sense 2); the competition/game
usage of cheat (sense 5); and cheating in the po-
litical domain (sense 6). Although the senses are
possibly “split” a little more than desirable (e.g.
senses 1, 3 and 4 arguably describe the same
sense), the overall quality of the produced senses

7In the WSD evaluation, the alignment of induced senses
to the gold senses is learnt automatically based on the map-
ping instances. E.g. if all instances that are assigned sense
a have gold sense x, then sense a is mapped to gold sense
x. Therefore, if the proportion of junk senses in the map-
ping instances is low, their influence on WSD results will be
negligible.
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Sense Num Top-10 Terms
1 cheat think want ... love feel tell guy cheat#nsubj#include find
2 cheat student cheating test game school cheat#aux#to teacher exam study
3 husband wife cheat wife #1 tiger husband #-1 cheat#prep on#wife ... woman cheat#nsubj#husband
4 cheat woman relationship cheating partner reason cheat#nsubj#man woman #-1 cheat#aux#to spouse
5 cheat game play player cheating poker cheat#aux#to card cheated money
6 cheat exchange china chinese foreign cheat #-2 cheat #2 china #-1 cheat#aux#to team
7 tina bette kirk walk accuse mon pok symkyn nick star
8 fat jones ashley pen body taste weight expectation parent able
9 euro goal luck fair france irish single 2000 cheat#prep at#point complain

Table 2: The top-10 terms for each of the senses induced for the verb cheat by the HDP model (with positional
word and dependency features)

is encouraging. Also, we observe a spin-off ben-
efit of topic modelling approaches to WSI: the
high-ranking words in each topic can be used to
gist the sense, and anecdotally confirm the impact
of the different feature types (i.e. the positional
word and dependency features).

3.3 Comparison with other Topic Modelling
Approaches to WSI

The idea of applying topic modelling to WSI is
not entirely new. Brody and Lapata (2009) pro-
posed an LDA-based model which assigns differ-
ent weights to different feature sets (e.g. unigram
tokens vs. dependency relations), using a “lay-
ered” feature representation. They carry out ex-
tensive parameter optimisation of both the (fixed)
number of senses, number of layers, and size of
the context window.

Separately, Yao and Durme (2011) proposed
the use of non-parametric topic models in WSI.
The authors preprocess the instances slightly dif-
ferently, opting to remove the target word from
each instance and stem the tokens. They also
tuned the hyperparameters of the topic model to
optimise the WSI effectiveness over the evalua-
tion set, and didn’t use positional or dependency
features.

Both of these papers were evaluated over
only the SemEval-2007 WSI dataset (Agirre and
Soroa, 2007), so we similarly apply our HDP
method to this dataset for direct comparability. In
the remainder of this section, we refer to Brody
and Lapata (2009) as BL, and Yao and Durme
(2011) as YVD.

The SemEval-2007 dataset consists of roughly
27K instances, for 65 target verbs and 35 target
nouns. BL report on results only over the noun
instances, so we similarly restrict our attention to

System F-Score
BL 0.855
YVD 0.857
SemEval Best (I2R) 0.868
Our method (default parameters) 0.842
Our method (tuned parameters) 0.869

Table 3: F-score for the SemEval-2007 WSI task, for
our HDP method with default and tuned parameter set-
tings, as compared to competitor topic modelling and
other approaches to WSI

the nouns in this paper. Training data was not pro-
vided as part of the original dataset, so we fol-
low the approach of BL and YVD in construct-
ing our own training dataset for each target word
from instances extracted from the British National
Corpus (BNC: Burnard (2000)).8 Both BL and
YVD separately report slightly higher in-domain
results from training on WSJ data (the SemEval-
2007 data was taken from the WSJ). For the pur-
poses of model comparison under identical train-
ing settings, however, it is appropriate to report on
results for only the BNC.

We experiment with both our original method
(with both positional word and dependency fea-
tures, and default parameter settings for HDP)
without any parameter tuning, and the same
method with the tuned parameter settings of
YVD, for direct comparability. We present the re-
sults in Table 3, including the results for the best-
performing system in the original SemEval-2007
task (I2R: Niu et al. (2007)).

The results are enlightening: with default pa-
rameter settings, our methodology is slightly be-
low the results of the other three models. Bear

8In creating the training dataset, each instance is made
up of the sentence the target word occurs in, as we as one
sentence to either side of that sentence, i.e. 3 sentences in
total per instance.
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in mind, however, that the two topic modelling-
based approaches were tuned extensively to the
dataset. When we use the tuned hyperparame-
ter settings of YVD, our results rise around 2.5%
to surpass both topic modelling approaches, and
marginally outperform the I2R system from the
original task. Recall that both BL and YVD report
higher results again using in-domain training data,
so we would expect to see further gains again over
the I2R system in following this path.

Overall, these results agree with our findings
over the SemEval-2010 dataset (Section 3.2), un-
derlining the viability of topic modelling to auto-
mated word sense induction.

3.4 Discussion
As part of our preprocessing, we remove all stop-
words (other than for the positional word and de-
pendency features), as described in Section 2.1.
We separately experimented with not removing
stopwords, based on the intuition that prepositions
such as to and on can be informative in determin-
ing word sense based on local context. The results
were markedly worse, however. We also tried ap-
pending part of speech information to each word
lemma, but the resulting data sparseness meant
that results dropped marginally.

When determining the sense for an instance, we
aggregate the sense assignments for each word in
the instance (not just the target word). An alter-
nate strategy is to use only the target word topic
assignment, but again, the results for this strategy
were inferior to the aggregate method.

In the SemEval-2007 experiments (Sec-
tion 3.3), we found that YVD’s hyperparameter
settings yielded better results than the default
settings. We experimented with parameter tuning
over the SemEval-2010 dataset (including YVD’s
optimal setting on the 2007 dataset), but found
that the default setting achieved the best overall
results: although the WSD F-score improved a
little for nouns, it worsened for verbs. This obser-
vation is not unexpected: as the hyperparameters
were optimised for nouns in their experiments,
the settings might not be appropriate for verbs.
This also suggests that their results may be due in
part to overfitting the SemEval-2007 data.

4 Identifying Novel Senses

Having established the effectiveness of our ap-
proach at WSI, we next turn to an application of

WSI, in identifying words which have taken on
novel senses over time, based on analysis of di-
achronic data. Our topic modelling approach is
particularly attractive for this task as, not only
does it jointly perform type-level WSI, and token-
level WSD based on the induced senses (in as-
signing topics to each instance), but it is possible
to gist the induced senses via the contents of the
topic (typically using the topic words with highest
marginal probability).

The meanings of words can change over time;
in particular, words can take on new senses. Con-
temporary examples of new word-senses include
the meanings of swag and tweet as used below:

1. We all know Frankie is adorable, but does he
have swag? [swag = ‘style’]

2. The alleged victim gave a description of the
man on Twitter and tweeted that she thought
she could identify him. [tweet = ‘send a mes-
sage on Twitter’]

These senses of swag and tweet are not included
in many dictionaries or computational lexicons —
e.g., neither of these senses is listed in Wordnet
3.0 (Fellbaum, 1998) — yet appear to be in regu-
lar usage, particularly in text related to pop culture
and online media.

The manual identification of such new word-
senses is a challenge in lexicography over and
above identifying new words themselves, and
is essential to keeping dictionaries up-to-date.
Moreover, lexicons that better reflect contempo-
rary usage could benefit NLP applications that use
sense inventories.

The challenge of identifying changes in word
sense has only recently been considered in com-
putational linguistics. For example, Sagi et al.
(2009), Cook and Stevenson (2010), and Gulor-
dava and Baroni (2011) propose type-based mod-
els of semantic change. Such models do not
account for polysemy, and appear best-suited to
identifying changes in predominant sense. Bam-
man and Crane (2011) use a parallel Latin–
English corpus to induce word senses and build
a WSD system, which they then apply to study
diachronic variation in word senses. Crucially, in
this token-based approach there is a clear connec-
tion between word senses and tokens, making it
possible to identify usages of a specific sense.

Based on the findings in Section 3.2, here we
apply the HDP method for WSI to the task of
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identifying new word-senses. In contrast to Bam-
man and Crane (2011) our token-based approach
does not require parallel text to induce senses.

4.1 Method
Given two corpora — a reference corpus which
we take to represent standard usage, and a second
corpus of newer texts — we identify senses that
are novel to the second corpus compared to the
reference corpus. For a given word w, we pool
all usages of w in the reference corpus and sec-
ond corpus, and run the HDP WSI method on this
super-corpus to induce the senses of w. We then
tag all usages of w in both corpora with their sin-
gle most-likely automatically-induced sense.

Intuitively, if a word w is used in some sense
s in the second corpus, and w is never used in
that sense in the reference corpus, then w has ac-
quired a new sense, namely s. We capture this
intuition into a novelty score (“Nov”) that indi-
cates whether a given word w has a new sense in
the second corpus, s, compared to the reference
corpus, r, as below:

Nov(w) = max

({
ps(ti)− pr(ti)

pr(ti)
: ti ∈ T

})
(1)

where ps(ti) and pr(ti) are the probability of
sense ti in the second corpus and reference cor-
pus, respectively, calculated using smoothed max-
imum likelihood estimates, and T is the set of
senses induced for w. Novelty is high if there is
some sense t that has much higher relative fre-
quency in s than r and that is also relatively infre-
quent in r.

4.2 Data
Because we are interested in the identification of
novel word-senses for applications such as lexi-
con maintenance, we focus on relatively newly-
coined word-senses. In particular, we take the
written portion of the BNC — consisting primar-
ily of British English text from the late 20th cen-
tury — as our reference corpus, and a similarly-
sized random sample of documents from the
ukWaC (Ferraresi et al., 2008) — a Web corpus
built from the .uk domain in 2007 which in-
cludes a wide range of text types — as our sec-
ond corpus. Text genres are represented to dif-
ferent extents in these corpora with, for example,
text types related to the Internet being much more
common in the ukWaC. Such differences are a

noted challenge for approaches to identifying lex-
ical semantic differences between corpora (Peirs-
man et al., 2010), but are difficult to avoid given
the corpora that are available. We use TreeTagger
(Schmid, 1994) to tokenise and lemmatise both
corpora.

Evaluating approaches to identifying seman-
tic change is a challenge, particularly due to the
lack of appropriate evaluation resources; indeed,
most previous approaches have used very small
datasets (Sagi et al., 2009; Cook and Stevenson,
2010; Bamman and Crane, 2011). Because this
is a preliminary attempt at applying WSI tech-
niques to identifying new word-senses, our evalu-
ation will also be based on a rather small dataset.

We require a set of words that are known to
have acquired a new sense between the late 20th
and early 21st centuries. The Concise Oxford
English Dictionary aims to document contempo-
rary usage, and has been published in numerous
editions including Thompson (1995, COD95) and
Soanes and Stevenson (2008, COD08). Although
some of the entries have been substantially re-
vised between editions, many have not, enabling
us to easily identify new senses amongst the en-
tries in COD08 relative to COD95. A manual lin-
ear search through the entries in these dictionaries
would be very time consuming, but by exploit-
ing the observation that new words often corre-
spond to concepts that are culturally salient (Ayto,
2006), we can quickly identify some candidates
for words that have taken on a new sense.

Between the time periods of our two corpora,
computers and the Internet have become much
more mainstream in society. We therefore ex-
tracted all entries from COD08 containing the
word computing (which is often used as a topic la-
bel in this dictionary) that have a token frequency
of at least 1000 in the BNC. We then read the
entries for these 87 lexical items in COD95 and
COD08 and identified those which have a clear
computing sense in COD08 that was not present
in COD95. In total we found 22 such items. This
process, along with all the annotation in this sec-
tion, is carried out by a native English-speaking
author of this paper.

To ensure that the words identified from the
dictionaries do in fact have a new sense in the
ukWaC sample compared to the BNC, we exam-
ine the usage of these words in the corpora. We
extract a random sample of 100 usages of each
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lemma from the BNC and ukWaC sample and
annotate these usages as to whether they corre-
spond to the novel sense or not. This binary dis-
tinction is easier than fine-grained sense annota-
tion, and since we do not use these annotations
for formal evaluation — only for selecting items
for our dataset — we do not carry out an inter-
annotator agreement study here. We eliminate any
lemma for which we find evidence of the novel
sense in the BNC, or for which we do not find
evidence of the novel sense in the ukWaC sam-
ple.9 We further check word sketches (Kilgarriff
and Tugwell, 2002)10 for each of these lemmas
in the BNC and ukWaC for collocates that likely
correspond to the novel sense; we exclude any
lemma for which we find evidence of the novel
sense in the BNC, or fail to find evidence of the
novel sense in the ukWaC sample. At the end
of this process we have identified the following
5 lemmas that have the indicated novel senses in
the ukWaC compared to the BNC: domain (n) “In-
ternet domain”; export (v) “export data”; mirror
(n) “mirror website”; poster (n) “one who posts
online”; and worm (n) “malicious program”. For
each of the 5 lemmas with novel senses, a sec-
ond annotator — also a native English-speaking
author of this paper — annotated the sample of
100 usages from the ukWaC. The observed agree-
ment and unweighted Kappa between the two an-
notators is 97.2% and 0.92, respectively, indicat-
ing that this is indeed a relatively easy annotation
task. The annotators discussed the small number
of disagreements to reach consensus.

For our dataset we also require items that have
not acquired a novel sense in the ukWaC sample.
For each of the above 5 lemmas we identified a
distractor lemma of the same part-of-speech that
has a similar frequency in the BNC, and that has
not undergone sense change between COD95 and
COD08. The 5 distractors are: cinema (n); guess
(v); symptom (n); founder (n); and racism (n).

4.3 Results

We compute novelty (“Nov”, Equation 1) for all
10 items in our dataset, based on the output of the

9We use the IMS Open Corpus Workbench (http://
cwb.sourceforge.net/) to extract the usages of our
target lemmas from the corpora. This extraction process fails
in some cases, and so we also eliminate such items from our
dataset.

10http://www.sketchengine.co.uk/

Lemma Novelty Freq. ratio Novel sense freq.
domain (n) 116.2 2.60 41
worm (n) 68.4 1.04 30
mirror (n) 38.4 0.53 10
guess (v) 16.5 0.93 –
export (v) 13.8 0.88 28
founder (n) 11.0 1.20 –
cinema (n) 9.7 1.30 –
poster (n) 7.9 1.83 4
racism (n) 2.4 0.98 –
symptom (n) 2.1 1.16 –

Table 4: Novelty score (“Nov”), ratio of frequency in
the ukWaC sample and BNC, and frequency of the
novel sense in the manually-annotated 100 instances
from the ukWaC sample (where applicable), for all
lemmas in our dataset. Lemmas shown in boldface
have a novel sense in the ukWaC sample compared to
the BNC.

topic modelling. The results are shown in column
“Novelty” in Table 4. The lemmas with a novel
sense have higher novelty scores than the distrac-
tors according to a one-sided Wilcoxon rank sum
test (p < .05).

When a lemma takes on a new sense, it might
also increase in frequency. We therefore also con-
sider a baseline in which we rank the lemmas by
the ratio of their frequency in the second and ref-
erence corpora. These results are shown in col-
umn “Freq. ratio” in Table 4. The difference be-
tween the frequency ratios for the lemmas with a
novel sense, and the distractors, is not significant
(p > .05).

Examining the frequency of the novel senses —
shown in column “Novel sense freq.” in Table 4
— we see that the lowest-ranked lemma with a
novel sense, poster, is also the lemma with the
least-frequent novel sense. This result is unsur-
prising as our novelty score will be higher for
higher-frequency novel senses. The identification
of infrequent novel senses remains a challenge.

The top-ranked topic words for the sense cor-
responding to the maximum in Equation 1 for
the highest-ranked distractor, guess, are the fol-
lowing: @card@, post, ..., n’t, comment, think,
subject, forum, view, guess. This sense seems
to correspond to usages of guess in the context
of online forums, which are better represented
in the ukWaC sample than the BNC. Because of
the challenges posed by such differences between
corpora (discussed in Section 4.2) we are unsur-
prised to see such an error, but this could be ad-
dressed in the future by building comparable cor-
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Lemma
Topic Selection Methodology

Nov Oracle (single topic) Oracle (multiple topics)
Precision Recall F-score Precision Recall F-score Precision Recall F-score

domain (n) 1.00 0.29 0.45 1.00 0.56 0.72 0.97 0.88 0.92
export (v) 0.93 0.96 0.95 0.93 0.96 0.95 0.90 1.00 0.95
mirror (n) 0.67 1.00 0.80 0.67 1.00 0.80 0.67 1.00 0.80
poster (n) 0.00 0.00 0.00 0.44 1.00 0.62 0.44 1.00 0.62
worm (n) 0.93 0.90 0.92 0.93 0.90 0.92 0.86 1.00 0.92

Table 5: Results for identifying the gold-standard novel senses based on the three topic selection methodologies
of: (1) Nov; (2) oracle selection of a single topic; and (3) oracle selection of multiple topics.

pora for use in this application.
Having demonstrated that our method for iden-

tifying novel senses can distinguish lemmas that
have a novel sense in one corpus compared to an-
other from those that do not, we now consider
whether this method can also automatically iden-
tify the usages of the induced novel sense.

For each lemma with a gold-standard novel
sense, we define the automatically-induced novel
sense to be the single sense corresponding to the
maximum in Equation 1. We then compute the
precision, recall, and F-score of this novel sense
with respect to the gold-standard novel sense,
based on the 100 annotated tokens for each of
the 5 lemmas with a novel sense. The results are
shown in the first three numeric columns of Ta-
ble 5.

In the case of export and worm the results are
remarkably good, with precision and recall both
over 0.90. For domain, the low recall is a result of
the majority of usages of the gold-standard novel
sense (“Internet domain”) being split across two
induced senses — the top-two highest ranked in-
duced senses according to Equation 1. The poor
performance for poster is unsurprising due to the
very low frequency of this lemma’s gold-standard
novel sense.

These results are based on our novelty rank-
ing method (“Nov”), and the assumption that
the novel sense will be represented in a single
topic. To evaluate the theoretical upper-bound
for a topic-ranking method which uses our HDP-
based WSI method and selects a single topic to
capture the novel sense, we next evaluate an op-
timal topic selection approach. In the middle
three numeric columns of Table 5, we present re-
sults for an experimental setup in which the sin-
gle best induced sense — in terms of F-score —
is selected as the novel sense by an oracle. We
see big improvements in F-score for domain and
poster. This encouraging result suggests refining

the sense selection heuristic could theoretically
improve our method for identifying novel senses,
and that the topic modelling approach proposed
in this paper has considerable promise for auto-
matic novel sense detection. Of particular note is
the result for poster: although the gold-standard
novel sense of poster is rare, all of its usages are
grouped into a single topic.

Finally, we consider whether an oracle which
can select the best subset of induced senses — in
terms of F-score — as the novel sense could of-
fer further improvements. In this case — results
shown in the final three columns of Table 5 —
we again see an increase in F-score to 0.92 for
domain. For this lemma the gold-standard novel
sense usages were split across multiple induced
topics, and so we are unsurprised to find that a
method which is able to select multiple topics as
the novel sense performs well. Based on these
findings, in future work we plan to consider alter-
native formulations of novelty.

5 Conclusion

We propose the application of topic modelling
to the task of word sense induction (WSI), start-
ing with a simple LDA-based methodology with
a fixed number of senses, and culminating in
a nonparametric method based on a Hierarchi-
cal Dirichlet Process (HDP), which automatically
learns the number of senses for a given target
word. Our HDP-based method outperforms all
methods over the SemEval-2010 WSI dataset, and
is also superior to other topic modelling-based
approaches to WSI based on the SemEval-2007
dataset. We applied the proposed WSI model to
the task of identifying words which have taken on
new senses, including identifying the token oc-
currences of the new word sense. Over a small
dataset developed in this research, we achieved
highly encouraging results.
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Abstract

Machine learning has become the dominant approach to building natural-language processing sys-
tems. However, current approaches generally require a great deal of laboriously constructed human-
annotated training data. Ideally, a computer would be able to acquire language like a child by being
exposed to linguistic input in the context of a relevant but ambiguous perceptual environment. As
a step in this direction, we have developed systems that learn to sportscast simulated robot soccer
games and to follow navigation instructions in virtual environments by simply observing sample hu-
man linguistic behavior in context. This work builds on our earlier work on supervised learning of
semantic parsers that map natural language into a formal meaning representation. In order to apply
such methods to learning from observation, we have developed methods that estimate the meaning of
sentences given just their ambiguous perceptual context.
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Abstract

Microblogging websites such as Twitter
offer a wealth of insight into a popu-
lation’s current mood. Automated ap-
proaches to identify general sentiment to-
ward a particular topic often perform two
steps: Topic Identification and Sentiment
Analysis. Topic Identification first identi-
fies tweets that are relevant to a desired
topic (e.g., a politician or event), and Sen-
timent Analysis extracts each tweet’s atti-
tude toward the topic. Many techniques for
Topic Identification simply involve select-
ing tweets using a keyword search. Here,
we present an approach that instead uses
distant supervision to train a classifier on
the tweets returned by the search. We show
that distant supervision leads to improved
performance in the Topic Identification task
as well in the downstream Sentiment Anal-
ysis stage. We then use a system that incor-
porates distant supervision into both stages
to analyze the sentiment toward President
Obama expressed in a dataset of tweets.
Our results better correlate with Gallup’s
Presidential Job Approval polls than pre-
vious work. Finally, we discover a sur-
prising baseline that outperforms previous
work without a Topic Identification stage.

1 Introduction

Social networks and blogs contain a wealth of
data about how the general public views products,
campaigns, events, and people. Automated algo-
rithms can use this data to provide instant feed-
back on what people are saying about a topic.
Two challenges in building such algorithms are
(1) identifying topic-relevant posts, and (2) iden-
tifying the attitude of each post toward the topic.
This paper studies distant supervision (Mintz et
al., 2009) as a solution to both challenges. We

apply our approach to the problem of predicting
Presidential Job Approval polls from Twitter data,
and we present results that improve on previous
work in this area. We also present a novel base-
line that performs remarkably well without using
topic identification.

Topic identification is the task of identifying
text that discusses a topic of interest. Most pre-
vious work on microblogs uses simple keyword
searches to find topic-relevant tweets on the as-
sumption that short tweets do not need more so-
phisticated processing. For instance, searches for
the name “Obama” have been assumed to return
a representative set of tweets about the U.S. Pres-
ident (O’Connor et al., 2010). One of the main
contributions of this paper is to show that keyword
search can lead to noisy results, and that the same
keywords can instead be used in a distantly super-
vised framework to yield improved performance.

Distant supervision uses noisy signals in text
as positive labels to train classifiers. For in-
stance, the token “Obama” can be used to iden-
tify a series of tweets that discuss U.S. President
Barack Obama. Although searching for token
matches can return false positives, using the re-
sulting tweets as positive training examples pro-
vides supervision from a distance. This paper ex-
periments with several diverse sets of keywords
to train distantly supervised classifiers for topic
identification. We evaluate each classifier on a
hand-labeled dataset of political and apolitical
tweets, and demonstrate an improvement in F1
score over simple keyword search (.39 to .90 in
the best case). We also make available the first la-
beled dataset for topic identification in politics to
encourage future work.

Sentiment analysis encompasses a broad field
of research, but most microblog work focuses
on two moods: positive and negative sentiment.
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Algorithms to identify these moods range from
matching words in a sentiment lexicon to training
classifiers with a hand-labeled corpus. Since la-
beling corpora is expensive, recent work on Twit-
ter uses emoticons (i.e., ASCII smiley faces such
as :-( and :-)) as noisy labels in tweets for distant
supervision (Pak and Paroubek, 2010; Davidov et
al., 2010; Kouloumpis et al., 2011). This paper
presents new analysis of the downstream effects
of topic identification on sentiment classifiers and
their application to political forecasting.

Interest in measuring the political mood of
a country has recently grown (O’Connor et al.,
2010; Tumasjan et al., 2010; Gonzalez-Bailon et
al., 2010; Carvalho et al., 2011; Tan et al., 2011).
Here we compare our sentiment results to Presi-
dential Job Approval polls and show that the sen-
timent scores produced by our system are posi-
tively correlated with both the Approval and Dis-
approval job ratings.

In this paper we present a method for cou-
pling two distantly supervised algorithms for
topic identification and sentiment classification on
Twitter. In Section 4, we describe our approach to
topic identification and present a new annotated
corpus of political tweets for future study. In Sec-
tion 5, we apply distant supervision to sentiment
analysis. Finally, Section 6 discusses our sys-
tem’s performance on modeling Presidential Job
Approval ratings from Twitter data.

2 Previous Work

The past several years have seen sentiment anal-
ysis grow into a diverse research area. The idea
of sentiment applied to microblogging domains is
relatively new, but there are numerous recent pub-
lications on the subject. Since this paper focuses
on the microblog setting, we concentrate on these
contributions here.

The most straightforward approach to senti-
ment analysis is using a sentiment lexicon to la-
bel tweets based on how many sentiment words
appear. This approach tends to be used by appli-
cations that measure the general mood of a popu-
lation. O’Connor et al. (2010) use a ratio of posi-
tive and negative word counts on Twitter, Kramer
(2010) counts lexicon words on Facebook, and
Thelwall (2011) uses the publicly available Sen-
tiStrength algorithm to make weighted counts of
keywords based on predefined polarity strengths.

In contrast to lexicons, many approaches in-
stead focus on ways to train supervised classi-
fiers. However, labeled data is expensive to cre-
ate, and examples of Twitter classifiers trained on
hand-labeled data are few (Jiang et al., 2011). In-
stead, distant supervision has grown in popular-
ity. These algorithms use emoticons to serve as
semantic indicators for sentiment. For instance,
a sad face (e.g., :-() serves as a noisy label for a
negative mood. Read (2005) was the first to sug-
gest emoticons for UseNet data, followed by Go
et al. (Go et al., 2009) on Twitter, and many others
since (Bifet and Frank, 2010; Pak and Paroubek,
2010; Davidov et al., 2010; Kouloumpis et al.,
2011). Hashtags (e.g., #cool and #happy) have
also been used as noisy sentiment labels (Davi-
dov et al., 2010; Kouloumpis et al., 2011). Fi-
nally, multiple models can be blended into a sin-
gle classifier (Barbosa and Feng, 2010). Here, we
adopt the emoticon algorithm for sentiment analy-
sis, and evaluate it on a specific domain (politics).

Topic identification in Twitter has received
much less attention than sentiment analysis. The
majority of approaches simply select a single
keyword (e.g., “Obama”) to represent their topic
(e.g., “US President”) and retrieve all tweets that
contain the word (O’Connor et al., 2010; Tumas-
jan et al., 2010; Tan et al., 2011). The underlying
assumption is that the keyword is precise, and due
to the vast number of tweets, the search will re-
turn a large enough dataset to measure sentiment
toward that topic. In this work, we instead use
a distantly supervised system similar in spirit to
those recently applied to sentiment analysis.

Finally, we evaluate the approaches presented
in this paper on the domain of politics. Tumasjan
et al. (2010) showed that the results of a recent
German election could be predicted through fre-
quency counts with remarkable accuracy. Most
similar to this paper is that of O’Connor et al.
(2010), in which tweets relating to President
Obama are retrieved with a keyword search and
a sentiment lexicon is used to measure overall
approval. This extracted approval ratio is then
compared to Gallup’s Presidential Job Approval
polling data. We directly compare their results
with various distantly supervised approaches.

3 Datasets

The experiments in this paper use seven months of
tweets from Twitter (www.twitter.com) collected
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between June 1, 2009 and December 31, 2009.
The corpus contains over 476 million tweets la-
beled with usernames and timestamps, collected
through Twitter’s ‘spritzer’ API without keyword
filtering. Tweets are aligned with polling data in
Section 6 using their timestamps.

The full system is evaluated against the pub-
licly available daily Presidential Job Approval
polling data from Gallup1. Every day, Gallup asks
1,500 adults in the United States about whether
they approve or disapprove of “the job Presi-
dent Obama is doing as president.” The results
are compiled into two trend lines for Approval
and Disapproval ratings, as shown in Figure 1.
We compare our positive and negative sentiment
scores against these two trends.

4 Topic Identification

This section addresses the task of Topic Identi-
fication in the context of microblogs. While the
general field of topic identification is broad, its
use on microblogs has been somewhat limited.
Previous work on the political domain simply uses
keywords to identify topic-specific tweets (e.g.,
O’Connor et al. (2010) use “Obama” to find pres-
idential tweets). This section shows that distant
supervision can use the same keywords to build a
classifier that is much more robust to noise than
approaches that use pure keyword search.

4.1 Distant Supervision
Distant supervision uses noisy signals to identify
positive examples of a topic in the face of unla-
beled data. As described in Section 2, recent sen-
timent analysis work has applied distant supervi-
sion using emoticons as the signals. The approach
extracts tweets with ASCII smiley faces (e.g., :)
and ;)) and builds classifiers trained on these pos-
itive examples. We apply distant supervision to
topic identification and evaluate its effectiveness
on this subtask.

As with sentiment analysis, we need to collect
positive and negative examples of tweets about
the target topic. Instead of emoticons, we extract
positive tweets containing one or more predefined
keywords. Negative tweets are randomly chosen
from the corpus. Examples of positive and neg-
ative tweets that can be used to train a classifier
based on the keyword “Obama” are given here:

1http://gallup.com/poll/113980/gallup-daily-obama-job-
approval.aspx

ID Type Keywords
PC-1 Obama obama
PC-2 General republican, democrat, senate,

congress, government
PC-3 Topic health care, economy, tax cuts,

tea party, bailout, sotomayor
PC-4 Politician obama, biden, mccain, reed,

pelosi, clinton, palin
PC-5 Ideology liberal, conservative, progres-

sive, socialist, capitalist

Table 1: The keywords used to select positive training
sets for each political classifier (a subset of all PC-3
and PC-5 keywords are shown to conserve space).

positive: LOL, obama made a bears refer-
ence in green bay. uh oh.

negative: New blog up! It regards the new
iPhone 3G S: <URL>

We then use these automatically extracted
datasets to train a multinomial Naive Bayes classi-
fier. Before feature collection, the text is normal-
ized as follows: (a) all links to photos (twitpics)
are replaced with a single generic token, (b) all
non-twitpic URLs are replaced with a token, (c)
all user references (e.g., @MyFriendBob) are col-
lapsed, (d) all numbers are collapsed to INT, (e)
tokens containing the same letter twice or more
in a row are condensed to a two-letter string (e.g.
the word ahhhhh becomes ahh), (f) lowercase the
text and insert spaces between words and punctu-
ation. The text of each tweet is then tokenized,
and the tokens are used to collect unigram and bi-
gram features. All features that occur fewer than
10 times in the training corpus are ignored.

Finally, after training a classifier on this dataset,
every tweet in the corpus is classified as either
positive (i.e., relevant to the topic) or negative
(i.e., irrelevant). The positive tweets are then sent
to the second sentiment analysis stage.

4.2 Keyword Selection

Keywords are the input to our proposed distantly
supervised system, and of course, the input to pre-
vious work that relies on keyword search. We
evaluate classifiers based on different keywords to
measure the effects of keyword selection.

O’Connor et al. (2010) used the keywords
“Obama” and “McCain”, and Tumasjan et al.
(2010) simply extracted tweets containing Ger-
many’s political party names. Both approaches
extracted matching tweets, considered them rele-
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Gallup Daily Obama Job Approval Ratings

Figure 1: Gallup presidential job Approval and Disapproval ratings measured between June and Dec 2009.

vant (correctly, in many cases), and applied sen-
timent analysis. However, different keywords
may result in very different extractions. We in-
stead attempted to build a generic “political” topic
classifier. To do this, we experimented with the
five different sets of keywords shown in Table 1.
For each set, we extracted all tweets matching
one or more keywords, and created a balanced
positive/negative training set by then selecting
negative examples randomly from non-matching
tweets. A couple examples of ideology (PC-5) ex-
tractions are shown here:

You often hear of deontologist libertarians
and utilitarian liberals but are there any
Aristotelian socialists?

<url> - Then, slather on a liberal amount
of plaster, sand down smooth, and paint
however you want. I hope this helps!

The second tweet is an example of the noisy
nature of keyword extraction. Most extractions
are accurate, but different keywords retrieve very
different sets of tweets. Examples for the political
topics (PC-3) are shown here:

RT @PoliticalMath: hope the president’s
health care predictions <url> are better
than his stimulus predictions <url>

@adamjschmidt You mean we could have
chosen health care for every man woman
and child in America or the Iraq war?

Each keyword set builds a classifier using the ap-
proach described in Section 4.1.

4.3 Labeled Datasets

In order to evaluate distant supervision against
keyword search, we created two new labeled
datasets of political and apolitical tweets.

The Political Dataset is an amalgamation of all
four keyword extractions (PC-1 is a subset of PC-
4) listed in Table 1. It consists of 2,000 tweets ran-

domly chosen from the keyword searches of PC-
2, PC-3, PC-4, and PC-5 with 500 tweets from
each. This combined dataset enables an evalua-
tion of how well each classifier can identify tweets
from other classifiers. The General Dataset con-
tains 2,000 random tweets from the entire corpus.
This dataset allows us to evaluate how well clas-
sifiers identify political tweets in the wild.

This paper’s authors initially annotated the
same 200 tweets in the General Dataset to com-
pute inter-annotator agreement. The Kappa was
0.66, which is typically considered good agree-
ment. Most disagreements occurred over tweets
about money and the economy. We then split the
remaining portions of the two datasets between
the two annotators. The Political Dataset con-
tains 1,691 political and 309 apolitical tweets, and
the General Dataset contains 28 political tweets
and 1,978 apolitical tweets. These two datasets of
2000 tweets each are publicly available for future
evaluation and comparison to this work2.

4.4 Experiments

Our first experiment addresses the question of
keyword variance. We measure performance on
the Political Dataset, a combination of all of our
proposed political keywords. Each keyword set
contributed to 25% of the dataset, so the eval-
uation measures the extent to which a classifier
identifies other keyword tweets. We classified
the 2000 tweets with the five distantly supervised
classifiers and the one “Obama” keyword extrac-
tor from O’Connor et al. (2010).

Results are shown on the left side of Figure 2.
Precision and recall calculate correct identifica-
tion of the political label. The five distantly super-
vised approaches perform similarly, and show re-
markable robustness despite their different train-
ing sets. In contrast, the keyword extractor only

2http://www.usna.edu/cs/nchamber/data/twitter
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Figure 2: Five distantly supervised classifiers and the Obama keyword classifier. Left panel: the Political Dataset
of political tweets. Right panel: the General Dataset representative of Twitter as a whole.

captures about a quarter of the political tweets.
PC-1 is the distantly supervised analog to the
Obama keyword extractor, and we see that dis-
tant supervision increases its F1 score dramati-
cally from 0.39 to 0.90.

The second evaluation addresses the question
of classifier performance on Twitter as a whole,
not just on a political dataset. We evaluate on the
General Dataset just as on the Political Dataset.
Results are shown on the right side of Figure 2.
Most tweets posted to Twitter are not about pol-
itics, so the apolitical label dominates this more
representative dataset. Again, the five distant
supervision classifiers have similar results. The
Obama keyword search has the highest precision,
but drastically sacrifices recall. Four of the five
classifiers outperform keyword search in F1 score.

4.5 Discussion

The Political Dataset results show that distant su-
pervision adds robustness to a keyword search.
The distantly supervised “Obama” classifier (PC-
1) improved the basic “Obama” keyword search
by 0.51 absolute F1 points. Furthermore, dis-
tant supervision doesn’t require additional human
input, but simply adds a trained classifier. Two
example tweets that an Obama keyword search
misses but that its distantly supervised analog
captures are shown here:

Why does Congress get to opt out of the
Obummercare and we can’t. A company
gets fined if they don’t comply. Kiss free-
dom goodbye.

I agree with the lady from california, I am
sixty six years old and for the first time in

my life I am ashamed of our government.

These results also illustrate that distant supervi-
sion allows for flexibility in construction of the
classifier. Different keywords show little change
in classifier performance.

The General Dataset experiment evaluates clas-
sifier performance in the wild. The keyword ap-
proach again scores below those trained on noisy
labels. It classifies most tweets as apolitical and
thus achieves very low recall for tweets that are
actually about politics. On the other hand, distant
supervision creates classifiers that over-extract
political tweets. This is a result of using balanced
datasets in training; such effects can be mitigated
by changing the training balance. Even so, four
of the five distantly trained classifiers score higher
than the raw keyword approach. The only under-
performer was PC-1, which suggests that when
building a classifier for a relatively broad topic
like politics, a variety of keywords is important.

The next section takes the output from our clas-
sifiers (i.e., our topic-relevant tweets) and eval-
uates a fully automated sentiment analysis algo-
rithm against real-world polling data.

5 Targeted Sentiment Analysis

The previous section evaluated algorithms that
extract topic-relevant tweets. We now evaluate
methods to distill the overall sentiment that they
express. This section compares two common ap-
proaches to sentiment analysis.

We first replicated the technique used in
O’Connor et al. (2010), in which a lexicon of pos-
itive and negative sentiment words called Opin-
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ionFinder (Wilson and Hoffmann, 2005) is used
to evaluate the sentiment of each tweet (others
have used similar lexicons (Kramer, 2010; Thel-
wall et al., 2010)). We evaluate our full distantly
supervised approach to theirs. We also experi-
mented with SentiStrength, a lexicon-based pro-
gram built to identify sentiment in online com-
ments of the social media website, MySpace.
Though MySpace is close in genre to Twitter, we
did not observe a performance gain. All reported
results thus use OpinionFinder to facilitate a more
accurate comparison with previous work.

Second, we built a distantly supervised system
using tweets containing emoticons as done in pre-
vious work (Read, 2005; Go et al., 2009; Bifet and
Frank, 2010; Pak and Paroubek, 2010; Davidov
et al., 2010; Kouloumpis et al., 2011). Although
distant supervision has previously been shown to
outperform sentiment lexicons, these evaluations
do not consider the extra topic identification step.

5.1 Sentiment Lexicon
The OpinionFinder lexicon is a list of 2,304 pos-
itive and 4,151 negative sentiment terms (Wilson
and Hoffmann, 2005). We ignore neutral words
in the lexicon and we do not differentiate between
weak and strong sentiment words. A tweet is la-
beled positive if it contains any positive terms, and
negative if it contains any negative terms. A tweet
can be marked as both positive and negative, and
if a tweet contains words in neither category, it
is marked neutral. This procedure is the same as
used by O’Connor et al. (2010). The sentiment
scores Spos and Sneg for a given set of N tweets
are calculated as follows:

Spos =

∑
x 1{xlabel = positive}

N
(1)

Spos =

∑
x 1{xlabel = negative}

N
(2)

where 1{xlabel = positive} is 1 if the tweet x is
labeled positive, and N is the number of tweets in
the corpus. For the sake of comparison, we also
calculate a sentiment ratio as done in O’Connor
et al. (2010):

Sratio =

∑
x 1{xlabel = positive}∑
x 1{xlabel = negative}

(3)

5.2 Distant Supervision
To build a trained classifier, we automatically gen-
erated a positive training set by searching for

tweets that contain at least one positive emoti-
con and no negative emoticons. We generated a
negative training set using an analogous process.
The emoticon symbols used for positive sentiment
were :) =) :-) :] =] :-] :} :o) :D =D :-D :P =P
:-P C:. Negative emoticons were :( =( :-( :[ =[
:-[ :{ :-c :c} D: D= :S :/ =/ :-/ :’( : (. Using this
data, we train a multinomial Naive Bayes classi-
fier using the same method used for the political
classifiers described in Section 4.1. This classifier
is then used to label topic-specific tweets as ex-
pressing positive or negative sentiment. Finally,
the three overall sentiment scores Spos, Sneg, and
Sratio are calculated from the results.

6 Predicting Approval Polls

This section uses the two-stage Targeted Senti-
ment Analysis system described above in a real-
world setting. We analyze the sentiment of Twit-
ter users toward U.S. President Barack Obama.
This allows us to both evaluate distant supervision
against previous work on the topic, and demon-
strate a practical application of the approach.

6.1 Experiment Setup

The following experiments combine both topic
identification and sentiment analysis. The previ-
ous sections described six topic identification ap-
proaches, and two sentiment analysis approaches.
We evaluate all combinations of these systems,
and compare their final sentiment scores for each
day in the nearly seven-month period over which
our dataset spans.

Gallup’s Daily Job Approval reports two num-
bers: Approval and Disapproval. We calculate in-
dividual sentiment scores Spos and Sneg for each
day, and compare the two sets of trends using
Pearson’s correlation coefficient. O’Connor et al.
do not explicitly evaluate these two, but instead
use the ratio Sratio. We also calculate this daily
ratio from Gallup for comparison purposes by di-
viding the Approval by the Disapproval.

6.2 Results and Discussion

The first set of results uses the lexicon-based clas-
sifier for sentiment analysis and compares the dif-
ferent topic identification approaches. The first
table in Table 2 reports Pearson’s correlation co-
efficient with Gallup’s Approval and Disapproval
ratings. Regardless of the Topic classifier, all
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Sentiment Lexicon
Topic Classifier Approval Disapproval

keyword -0.22 0.42
PC-1 -0.65 0.71
PC-2 -0.61 0.71
PC-3 -0.51 0.65
PC-4 -0.49 0.60
PC-5 -0.65 0.74

Distantly Supervised Sentiment
Topic Classifier Approval Disapproval

keyword 0.27 0.38
PC-1 0.71 0.73
PC-2 0.33 0.46
PC-3 0.05 0.31
PC-4 0.08 0.26
PC-5 0.54 0.62

Table 2: Correlation between Gallup polling data and
the extracted sentiment with a lexicon (trends shown
in Figure 3) and distant supervision (Figure 4).

Sentiment Lexicon
keyword PC-1 PC-2 PC-3 PC-4 PC-5

.22 .63 .46 .33 .27 .61

Distantly Supervised Sentiment
keyword PC-1 PC-2 PC-3 PC-4 PC-5

.40 .64 .46 .30 .28 .60

Table 3: Correlation between Gallup Approval / Dis-
approval ratio and extracted sentiment ratio scores.

systems inversely correlate with Presidential Ap-
proval. However, they correlate well with Dis-
approval. Figure 3 graphically shows the trend
lines for the keyword and the distantly supervised
system PC-1. The visualization illustrates how
the keyword-based approach is highly influenced
by day-by-day changes, whereas PC-1 displays a
much smoother trend.

The second set of results uses distant supervi-
sion for sentiment analysis and again varies the
topic identification approach. The second table
in Table 2 gives the correlation numbers and Fig-
ure 4 shows the keyword and PC-1 trend lines.The
results are widely better than when a lexicon is
used for sentiment analysis. Approval is no longer
inversely correlated, and two of the distantly su-
pervised systems strongly correlate (PC-1, PC-5).

The best performing system (PC-1) used dis-
tant supervision for both topic identification and
sentiment analysis. Pearson’s correlation coeffi-

cient for this approach is 0.71 with Approval and
0.73 with Disapproval.

Finally, we compute the ratio Sratio between
the positive and negative sentiment scores (Equa-
tion 3) to compare to O’Connor et al. (2010). Ta-
ble 3 shows the results. The distantly supervised
topic identification algorithms show little change
between a sentiment lexicon or a classifier. How-
ever, O’Connor et al.’s keyword approach im-
proves when used with a distantly supervised sen-
timent classifier (.22 to .40). Merging Approval
and Disapproval into one ratio appears to mask
the sentiment lexicon’s poor correlation with Ap-
proval. The ratio may not be an ideal evalua-
tion metric for this reason. Real-world interest in
Presidential Approval ratings desire separate Ap-
proval and Disapproval scores, as Gallup reports.
Our results (Table 2) show that distant supervi-
sion avoids a negative correlation with Approval,
but the ratio hides this important advantage.

One reason the ratio may mask the negative
Approval correlation is because tweets are often
classified as both positive and negative by a lexi-
con (Section 5.1). This could explain the behav-
ior seen in Figure 3 in which both the positive and
negative sentiment scores rise over time. How-
ever, further experimentation did not rectify this
pattern. We revised Spos and Sneg to make binary
decisions for a lexicon: a tweet is labeled posi-
tive if it strictly contains more positive words than
negative (and vice versa). Correlation showed lit-
tle change. Approval was still negatively corre-
lated, Disapproval positive (although less so in
both), and the ratio scores actually dropped fur-
ther. The sentiment ratio continued to hide the
poor Approval performance by a lexicon.

6.3 New Baseline: Topic-Neutral Sentiment

Distant supervision for sentiment analysis outper-
forms that with a sentiment lexicon (Table 2).
Distant supervision for topic identification further
improves the results (PC-1 v. keyword). The
best system uses distant supervision in both stages
(PC-1 with distantly supervised sentiment), out-
performing the purely keyword-based algorithm
of O’Connor et al. (2010). However, the question
of how important topic identification is has not yet
been addressed here or in the literature.

Both O’Connor et al. (2010) and Tumasjan et
al. (2010) created joint systems with two topic
identification and sentiment analysis stages. But
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Sentiment Lexicon

Figure 3: Presidential job approval and disapproval calculated using two different topic identification techniques,
and using a sentiment lexicon for sentiment analysis. Gallup polling results are shown in black.

Distantly Supervised Sentiment

Figure 4: Presidential job approval sentiment scores calculated using two different topic identification techniques,
and using the emoticon classifier for sentiment analysis. Gallup polling results are shown in black.

Topic-Neutral Sentiment

Figure 5: Presidential job approval sentiment scores calculated using the entire twitter corpus, with two different
techniques for sentiment analysis. Gallup polling results are shown in black for comparison.
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Topic-Neutral Sentiment
Algorithm Approval Disapproval

Distant Sup. 0.69 0.74
Keyword Lexicon -0.63 0.69

Table 4: Pearson’s correlation coefficient of Sentiment
Analysis without Topic Identification.

what if the topic identification step were removed
and sentiment analysis instead run on the entire
Twitter corpus? To answer this question, we
ran the distantly supervised emoticon classifier to
classify all tweets in the 7 months of Twitter data.
For each day, we computed the positive and neg-
ative sentiment scores as above. The evaluation is
identical, except for the removal of topic identifi-
cation. Correlation results are shown in Table 4.

This baseline parallels the results seen when
topic identification is used: the sentiment lexi-
con is again inversely correlated with Approval,
and distant supervision outperforms the lexicon
approach in both ratings. This is not surpris-
ing given previous distantly supervised work on
sentiment analysis (Go et al., 2009; Davidov et
al., 2010; Kouloumpis et al., 2011). However,
our distant supervision also performs as well as
the best performing topic-specific system. The
best performing topic classifier, PC-1, correlated
with Approval with r=0.71 (0.69 here) and Dis-
approval with r=0.73 (0.74 here). Computing
overall sentiment on Twitter performs as well as
political-specific sentiment. This unintuitive re-
sult suggests a new baseline that all topic-based
systems should compute.

7 Discussion

This paper introduces a new methodology for
gleaning topic-specific sentiment information.
We highlight four main contributions here.

First, this work is one of the first to evaluate
distant supervision for topic identification. All
five political classifiers outperformed the lexicon-
driven keyword equivalent that has been widely
used in the past. Our model achieved .90 F1 com-
pared to the keyword .39 F1 on our political tweet
dataset. On twitter as a whole, distant supervision
increased F1 by over 100%. The results also sug-
gest that performance is relatively insensitive to
the specific choice of seed keywords that are used
to select the training set for the political classifier.

Second, the sentiment analysis experiments

build upon what has recently been shown in the
literature: distant supervision with emoticons is
a valuable methodology. We also expand upon
prior work by discovering drastic performance
differences between positive and negative lexi-
con words. The OpinionFinder lexicon failed
to correlate (inversely) with Gallup’s Approval
polls, whereas a distantly trained classifier cor-
related strongly with both Approval and Disap-
proval (Pearson’s .71 and .73). We only tested
OpinionFinder and SentiStrength, so it is possible
that another lexicon might perform better. How-
ever, our results suggest that lexicons vary in their
quality across sentiment, and distant supervision
may provide more robustness.

Third, our results outperform previous work on
Presidential Job Approval prediction (O’Connor
et al., 2010). We presented two novel approaches
to the domain: a coupled distantly supervised sys-
tem, and a topic-neutral baseline, both of which
outperform previous results. In fact, the baseline
surprisingly matches or outperforms the more so-
phisticated approaches that use topic identifica-
tion. The baseline correlates .69 with Approval
and .74 with Disapproval. This suggests a new
baseline that should be used in all topic-specific
sentiment applications.

Fourth, we described and made available two
new annotated datasets of political tweets to facil-
itate future work in this area.

Finally, Twitter users are not a representative
sample of the U.S. population, yet the high corre-
lation between political sentiment on Twitter and
Gallup ratings makes these results all the more
intriguing for polling methodologies. Our spe-
cific 7-month period of time differs from previous
work, and thus we hesitate to draw strong con-
clusions from our comparisons or to extend im-
plications to non-political domains. Future work
should further investigate distant supervision as a
tool to assist topic detection in microblogs.
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Abstract

Open issue trackers are a type of social me-
dia that has received relatively little atten-
tion from the text-mining community. We
investigate the problems inherent in learn-
ing to triage bug reports from time-varying
data. We demonstrate that concept drift is
an important consideration. We show the
effectiveness of online learning algorithms
by evaluating them on several bug report
datasets collected from open issue trackers
associated with large open-source projects.
We make this collection of data publicly
available.

1 Introduction

There has been relatively little research to date
on applying machine learning and Natural Lan-
guage Processing techniques to automate soft-
ware project workflows. In this paper we address
the problem of bug report triage.

1.1 Issue tracking

Large software projects typically track defect re-
ports, feature requests and other issue reports us-
ing an issue tracker system. Open source projects
tend to use trackers which are open to both devel-
opers and users. If the product has many users its
tracker can receive an overwhelming number of
issue reports: Mozilla was receiving almost 300
reports per day in 2006 (Anvik et al. 2006). Some-
one has to monitor those reports and triage them,
that is decide which component they affect and
which developer or team of developers should be
responsible for analyzing them and fixing the re-
ported defects. An automated agent assisting the
staff responsible for such triage has the potential

to substantially reduce the time and cost of this
task.

1.2 Issue trackers as social media

In a large software project with a loose, not
strictly hierarchical organization, standards and
practices are not exclusively imposed top-down
but also tend to spontaneously arise in a bottom-
up fashion, arrived at through interaction of in-
dividual developers, testers and users. The indi-
viduals involved may negotiate practices explic-
itly, but may also imitate and influence each other
via implicitly acquired reputation and status. This
process has a strong emergent component: an in-
formal taxonomy may arise and evolve in an is-
sue tracker via the use of free-form tags or labels.
Developers, testers and users can attach tags to
their issue reports in order to informally classify
them. The issue tracking software may give users
feedback by informing them which tags were fre-
quently used in the past, or suggest tags based
on the content of the report or other information.
Through this collaborative, feedback driven pro-
cess involving both human and machine partici-
pants, an evolving consensus on the label inven-
tory and semantics typically arises, without much
top-down control (Halpin et al. 2007).

This kind of emergent taxonomy is known as
a folksonomy or collaborative tagging and is
very common in the context of social web appli-
cations. Large software projects, especially those
with open policies and little hierarchical struc-
tures, tend to exhibit many of the same emergent
social properties as the more prototypical social
applications. While this is a useful phenomenon,
it presents a special challenge from the machine-
learning point of view.
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1.3 Concept drift

Many standard supervised approaches in
machine-learning assume a stationary distribution
from which training examples are independently
drawn. The set of training examples is processed
as a batch, and the resulting learned decision
function (such as a classifier) is then used on test
items, which are assumed to be drawn from the
same stationary distribution.

If we need an automated agent which uses hu-
man labels to learn to tag objects the batch learn-
ing approach is inadequate. Examples arrive one-
by-one in a stream, not as a batch. Even more
importantly, both the output (label) distribution
and the input distribution from which the exam-
ples come are emphatically not stationary. As a
software project progresses and matures, the type
of issues reported is going to change. As project
members and users come and go, the vocabulary
they use to describe the issues will vary. As the
consensus tag folksonomy emerges, the label and
training example distribution will evolve. This
phenomenon is sometimes referred to as concept
drift (Widmer and Kubat 1996, Tsymbal 2004).

Early research on learning to triage tended to
either not notice the problem (Čubranić and Mur-
phy 2004), or acknowledge but not address it (An-
vik et al. 2006): the evaluation these authors used
assigned bug reports randomly to training and
evaluation sets, discarding the temporal sequenc-
ing of the data stream.

Bhattacharya and Neamtiu (2010) explicitly
address the issue of online training and evalua-
tion. In their setup, the system predicts the out-
put for an item based only on items preceding it
in time. However, their approach to incremen-
tal learning is simplistic: they use a batch clas-
sifier, but retrain it from scratch after receiving
each training example. A fully retrained batch
classifier will adapt only slowly to changing data
stream, as more recent example have no more in-
fluence on the decision function that less recent
ones.

Tamrawi et al. (2011) propose an incremental
approach to bug triage: the classes are ranked
according to a fuzzy set membership function,
which is based on incrementally updated fea-
ture/class co-occurrence counts. The model is ef-
ficient in online classification, but also adapts only
slowly.

1.4 Online learning

This paucity of research on online learning from
issue tracker streams is rather surprising, given
that truly incremental learners have been well-
known for many years. In fact one of the first
learning algorithms proposed was Rosenblatt’s
perceptron, a simple mistake-driven discrimina-
tive classification algorithm (Rosenblatt 1958). In
the current paper we address this situation and
show that by using simple, standard online learn-
ing methods we can improve on batch or pseudo-
online learning. We also show that when using
a sophisticated state-of-the-art stochastic gradient
descent technique the performance gains can be
quite large.

1.5 Contributions

Our main contributions are the following: Firstly,
we explicitly show that concept-drift is pervasive
and serious in real bug report streams. We then
address this problem by leveraging state-of-the-
art online learning techniques which automati-
cally track the evolving data stream and incremen-
tally update the model after each data item. We
also adopt the continuous evaluation paradigm,
where the learner predicts the output for each ex-
ample before using it to update the model. Sec-
ondly, we address the important issue of repro-
ducibility in research in bug triage automation
by making available the data sets which we col-
lected and used, in both their raw and prepro-
cessed forms.

2 Open issue-tracker data

Open source software repositories and their as-
sociated issue trackers are a naturally occurring
source of large amounts of (partially) labeled data.
There seems to be growing interest in exploiting
this rich resource as evidenced by existing publi-
cations as well as the appearance of a dedicated
workshop (Working Conference on Mining Soft-
ware Repositories).

In spite of the fact that the data is publicly avail-
able in open repositories, it is not possible to di-
rectly compare the results of the research con-
ducted on bug triage so far: authors use non-
trivial project-specific filtering, re-labeling and
pre-processing heuristics; these steps are usually
not specified in enough detail that they could be
easily reproduced.
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Field Meaning
Identifier Issue ID
Title Short description of issue
Description Content of issue report, which

may include steps to reproduce,
error messages, stack traces etc.

Author ID of report submitter
CCS List of IDs of people CC’d on

the issue report
Labels List of tags associated with is-

sue
Status Label describing the current sta-

tus of the issue (e.g. Invalid,
Fixed, Won’t Fix)

Assigned To ID of person who has been as-
signed to deal with the issue

Published Date on which issue report was
submitted

Table 1: Issue report record

To help remedy this situation we decided to col-
lect data from several open issue trackers, use the
minimal amount of simple preprocessing and fil-
ter heuristics to get useful input data, and publicly
share both the raw and preprocessed data.

We designed a simple record type which acts
as a common denominator for several tracker for-
mats. Thus we can use a common representation
for issue reports from various trackers. The fields
in our record are shown in Table 1.

Below we describe the issue trackers used
and the datasets we build from them. As dis-
cussed above (and in more detail in Section 4.1),
we use progressive validation rather than a split
into training and test set. However, in order
to avoid developing on the test data, we split
each data stream into two substreams, by assign-
ing odd-numbered examples to the test stream
and the even-numbered ones to the development
stream. We can use the development stream for
exploratory data analysis and feature and param-
eter tuning, and then use progressive validation to
evaluate on entirely unseen test data. Below we
specify the size and number of unique labels in
the development sets; the test sets are very similar
in size.

Chromium Chromium is the open source-
project behind Google’s Chrome browser
(http://code.google.com/p/
chromium/). We retrieved all the bugs
from the issue tracker, of which 66,704 have one

of the closed statuses. We generated two data sets
from the Chromium issues:

• Chromium SUBCOMPONENT. Chromium
uses special tags to help triage the bug re-
ports. Tags prefixed with Area- specify
which subcomponent of the project the bug
should be routed to. In some cases more
than one Area- tag is present. Since this
affects less than 1% of reports, for simplic-
ity we treat these as single, compound labels.
The development set contains 31,953 items,
and 75 unique output labels.

• Chromium ASSIGNED. In this dataset the
output is the value of the assignedTo
field. We discarded issues where the
field was left empty, as well as the
ones which contained the placeholder value
all-bugs-test.chromium.org. The
development set contains 16,154 items and
591 unique output labels.

Android Android is a mobile operating sys-
tem project (http://code.google.com/
p/android/). We retrieved all the bugs reports,
of which 6,341 had a closed status. We generated
two datasets:

• Android SUBCOMPONENT. The reports
which are labeled with tags prefixed with
Component-. The development set con-
tains 888 items and 12 unique output labels.

• Android ASSIGNED. The output label is the
value of the assignedTo field. We dis-
carded issues with the field left empty. The
development set contains 718 items and 72
unique output labels.

Firefox Firefox is the well-known web-browser
project (https://bugzilla.mozilla.
org).

We obtained a total of 81,987 issues with a
closed status.

• Firefox ASSIGNED. We discarded issues
where the field was left empty, as well as
the ones which contained a placeholder value
(nobody). The development set contains
12,733 items and 503 unique output labels.

Launchpad Launchpad is an issue tracker
run by Canonical Ltd for mostly Ubuntu-related
projects (https://bugs.launchpad.
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net/). We obtained a total of 99,380 issues with
a closed status.

• Launchpad ASSIGNED. We discarded issues
where the field was left empty. The devel-
opment set contains 18,634 items and 1,970
unique output labels.

3 Analysis of concept drift

In the introduction we have hypothesized that in
issue tracker streams concept drift would be an
especially acute problem. In this section we show
how class distributions evolve over time in the
data we collected.

A time-varying distribution is difficult to sum-
marize with a single number, but it is easy to ap-
preciate in a graph. Figures 1 and 2 show concept
drift for several of our data streams. The horizon-
tal axis indexes the position in the data stream.
The vertical axis shows the class proportions at
each position, averaged over a window containing
7% of all the examples in the stream, i.e. in each
thin vertical bar the proportion of colors used cor-
responds to the smoothed class distribution at a
particular position in the stream.

Consider the plot for Chromium SUBCOMPO-
NENT. We can see that a bit before the middle
point in the stream class proportions change quite
dramatically: The orange BROWSERUI and vio-
let MISC almost disappears, while blue INTER-
NALS, pink UI and dark red UNDEFINED take
over. This likely corresponds to an overhaul in the
label inventory and/or recommended best practice
for triage in this project. There are also more
gradual and smaller scale changes throughout the
data stream.

The Android SUBCOMPONENT stream con-
tains much less data so the plot is less smooth, but
there are clear transitions in this image also. We
see that light blue GOOGLE all but disappears after
about two thirds point and the proportion of vio-
let TOOLS and light-green DALVIK dramatically
increases.

In Figure 2 we see the evolution of class pro-
portions in the ASSIGNED datasets. Each plot’s
idiosyncratic shape illustrates that there is wide
variation in the amount and nature of concept drift
in different software project issue trackers.

Figure 1: SUBCOMPONENT class distribution change
over time

4 Experimental results

In an online setting it is important to use an evalu-
ation regime which closely mimics the continuous
use of the system in a real-life situation.

4.1 Progressive validation
When learning from data streams the standard
evaluation methodology where data is split into a
separate training and test set is not applicable. An
evaluation regime know as progressive validation
has been used to accurately measure the general-
ization performance of online algorithms (Blum
et al. 1999). Under progressive evaluation, an in-
put example from a temporally ordered sequence
is sent to the learner, which returns the prediction.
The error incurred on this example is recorded,
and the true output is only then sent to the learner
which may update its model based on it. The fi-
nal error is the mean of the per-example errors.
Thus even though there is no separate test set, the
prediction for each input is generated based on a
model trained on examples which do not include
it.

In previous work on bug report triage, Bhat-
tacharya and Neamtiu (2010) and Tamrawi et al.
(2011) used an evaluation scheme (close to) pro-
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Figure 2: ASSIGNED class distribution change over time

gressive validation. They omit the initial 1
11

th of
the examples from the mean.

4.2 Mean reciprocal rank
A bug report triaging agent is most likely to be
used in a semi-automatic workflow, where a hu-
man triager is presented with a ranked list of
possible outputs (component labels or developer
IDs). As such it is important to evaluate not only
accuracy of the top ranking suggesting, but rather
the quality of the whole ranked list.

Previous research (Bhattacharya and Neamtiu
2010, Tamrawi et al. 2011) made an attempt at
approximating this criterion by reporting scores
which indicate whether the true output is present
in the top n elements of the ranking, for several
values of n. Here we suggest borrowing the mean
reciprocal rank (MRR) metric from the informa-
tion retrieval domain (Voorhees 2000). It is de-
fined as the mean of the reciprocals of the rank at
which the true output is found:

MRR =
1

N

N∑
i=1

rank(i)−1

where rank(i) indicates the rank of the ith true
output. MRR has the advantage of providing a
single number which summarizes the quality of

whole rankings for all the examples. MRR is also
a special case of Mean Average Precision when
there is only one true output per item.

4.3 Input representation
Since in this paper we focus on the issues related
to concept drift and online learning, we kept the
feature set relatively simple. We preprocess the
text in the issue report title and description fields
by removing HTML markup, tokenizing, lower-
casing and removing most punctuation. We then
extracted the following feature types:

• Title unigram and bigram counts

• Description unigram and bigram counts

• Author ID (binary indicator feature)

• Year, month and day of submission (binary
indicator features)

4.4 Models
We tested a simple online baseline, a pseudo-
online algorithm which uses a batch model and
repeatedly retrains it, an online model used in pre-
vious research on bug triage and two generic on-
line learning algorithms.

Window Frequency Baseline This baseline
does not use any input features. It outputs the
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ranked list of labels for the current item based
on the relative frequencies of output labels in the
window of k previous items. We tested windows
of size 100 and 1000 and report the better result.

SVM Minibatch This model uses the mul-
ticlass linear Support Vector Machine model
(Crammer and Singer 2002) as implemented in
SVM Light (Joachims 1999). SVM is known
as a state-of-the-art batch model in classification
in general and in text categorization in particu-
lar. The output classes for an input example are
ranked according to the value of the discriminant
values returned by the SVM classifier. In order
to adapt the model to an online setting we retrain
it every n examples on the window of k previous
examples. The parameters n and k can have large
influence on the prediction, but it is not clear how
to set them when learning from streams. Here we
chose the values (100,1000) based on how feasi-
ble the run time was and on the performance dur-
ing exploratory experiments on Chromium SUB-
COMPONENT. Interestingly, keeping the window
parameter relatively small helps performance: a
window of 1,000 works better than a window of
5,000.

Perceptron We implemented a single-pass on-
line multiclass Perceptron with a constant learn-
ing rate. It maintains a weight vector for each
output seen so far: the prediction function ranks
outputs according to the inner product of the cur-
rent example with the corresponding weight vec-
tor. The update function takes the true output and
the predicted output. If they are not equal, the
current input is subtracted from the weight vector
corresponding to the predicted output and added
to the weight vector corresponding to the true out-
put (see Algorithm 1). We hash each feature to an
integer value and use it as the feature’s index in
the weight vectors in order to bound memory us-
age in an online setting (Weinberger et al. 2009).
The Perceptron is a simple but strong baseline for
online learning.

Bugzie This is the model described in Tamrawi
et al. (2011). The output classes are ranked ac-
cording to the fuzzy set membership function de-
fined as follows:

µ(y,X) = 1−
∏
x∈X

(
1− n(y, x)

n(y) + n(x)− n(y, x)

)

Algorithm 1 Multiclass online perceptron
function PREDICT(Y,W,x)

return {(y,WT
y x) | y ∈ Y }

procedure UPDATE(W,x, ŷ, y)
if ŷ 6= y then

Wŷ ←Wŷ − x
Wy ←Wy + x

where y is the output label, X the set of features
in the input issue report, n(y, x) the number of ex-
amples labeled as y which contain feature x, n(y)
number of examples labeled y and n(x) number
of examples containing feature x. The counts are
updated online. Tamrawi et al. (2011) also use
two so called caches: the label cache keeps the
j% most recent labels and the term cache the k
most significant features for each label. Since
in Tamrawi et al. (2011)’s experiments the label
cache did not affect the results significantly, here
we always set j to 100%. We select the optimal
k parameter from {100, 1000, 5000} based on the
development set.

Regression with Stochastic Gradient Descent
This model performs online multiclass learning
by means of a reduction to regression. The re-
gressor is a linear model trained using Stochastic
Gradient Descent (Zhang 2004). SGD updates the
current parameter vector w(t) based on the gradi-
ent of the loss incurred by the regressor on the
current example (x(t), y(t)):

w(t+1) = w(t) − η(t)∇L(y(t),w(t)Tx(t))

The parameter η(t) is the learning rate at time t,
and L is the loss function. We use the squared
loss:

L(y, ŷ) = (y − ŷ)2

We reduce multiclass learning to regression us-
ing a one-vs-all-type scheme, by effectively trans-
forming an example (x, y) ∈ X × Y into |Y |
(x′, y′) ∈ X ′ × {0, 1} examples, where Y is the
set of labels seen so far. The transform T is de-
fined as follows:

T (x, y) = {(x′, I(y = y′)) | y′ ∈ Y, x′h(i,y′) = xi}

where h(i, y′) composes the index i with the label
y′ (by hashing).

For a new input x the ranking of the outputs
y ∈ Y is obtained according to the value of the
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prediction of the base regressor on the binary ex-
ample corresponding to each class label.

As our basic regression learner we use the ef-
ficient implementation of regression via SGD,
Vowpal Wabbit (VW) (Langford et al. 2011). VW
implements setting adaptive individual learning
rates for each feature as proposed by Duchi et al.
(2010), McMahan and Streeter (2010).

This is appropriate when there are many sparse
features, and is especially useful in learning from
text from fast evolving data. The features such
as unigram and bigram counts that we rely on are
notoriously sparse, and this is exacerbated by the
change over time in bug report streams.

4.5 Results

Figures 3 and 4 show the progressive validation
results on all the development data streams. The
horizontal lines indicate the mean MRR scores for
the whole stream. The curves show a moving av-
erage of MRR in a window comprised of 7% of
the total number of items. In most of the plots it is
evident how the prediction performance depends
on the concept drift illustrated in the plots in Sec-
tion 3: for example on Chromium SUBCOMPO-
NENT the performance of all the models drops a
bit before the midpoint in the stream while the
learners adapt to the change in label distribution
that is happening at this time. This is especially
pronounced for Bugzie, since it is not able to learn
from mistakes and adapt rapidly, but simply accu-
mulates counts.

For five out of the six datasets, Regression SGD
gives the best overall performance. On Launch-
pad ASSIGNED, Bugzie scores higher – we inves-
tigate this anomaly below.

Another observation is that the window-based
frequency baseline can be quite hard to beat:
In three out of the six cases, the minibatch
SVM model is no better than the baseline.
Bugzie sometimes performs quite well, but for
Chromium SUBCOMPONENT and Firefox AS-
SIGNED it scores below the baseline.

Regarding the quality of the different datasets,
an interesting indicator is the relative error reduc-
tion by the best model over the baseline (see Ta-
ble 2). It is especially hard to extract meaning-
ful information about the labeling from the inputs
on the Firefox ASSIGNED dataset. One possible
cause of this can be that the assignment labeling
practices in this project are not consistent: this im-

Dataset RER
Chromium SUB 0.36
Android SUB 0.38
Chromium AS 0.21
Android AS 0.19
Firefox AS 0.16
Launchpad AS 0.49

Table 2: Best model’s error relative to baseline on the
development set

Task Model MRR Acc
Chromium Window 0.5747 0.3467

SVM 0.5766 0.4535
Perceptron 0.5793 0.4393
Bugzie 0.4971 0.2638
Regression 0.7271 0.5672

Android Window 0.5209 0.3080
SVM 0.5459 0.4255
Perceptron 0.5892 0.4390
Bugzie 0.6281 0.4614
Regression 0.7012 0.5610

Table 3: SUBCOMPONENT evaluation results on test
set.

pression seems to be born out by informal inspec-
tion.

On the other hand as the scores in Table 2
indicate, Chromium SUBCOMPONENT, Android
SUBCOMPOMENT and Launchpad ASSIGNED

contain enough high-quality signal for the best
model to substantially outperform the label fre-
quency baseline.

On Launchpad ASSIGNED Regression SGD
performs worse than Bugzie. The concept drift
plot for these data suggests one reason: there is
very little change in class distribution over time
as compared to the other datasets. In fact, even
though the issue reports in Launchpad range from
year 2005 to 2011, the more recent ones are heav-
ily overrepresented: 84% of the items in the de-
velopment data are from 2011. Thus fast adap-
tation is less important in this case and Bugzie is
able to perform well.

On the other hand, the reason for the less than
stellar score achieved with Regression SGD is due
to another special feature of this dataset: it has
by far the largest number of labels, almost 2,000.
This degrades the performance for the one-vs-all
scheme we use with SGD Regression. Prelim-
inary investigation indicates that the problem is
mostly caused by our application of the “hash-
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Figure 3: SUBCOMPONENT evaluation results on the
development set

ing trick” to feature-label pairs (see section 4.4),
which leads to excessive collisions with very large
label sets. Our current implementation can use at
most 29 bit-sized hashes which is insufficient for
datasets like Launchpad ASSIGNED. We are cur-
rently removing this limitation and we expect it
will lead to substantial gains on massively multi-
class problems.

In Tables 3 and 4 we present the overall MRR
results on the test data streams. The picture is sim-
ilar to the development data discussed above.

5 Discussion and related work

Our results show that by choosing the appropri-
ate learner for the scenario of learning from data
streams, we can achieve much better results than
by attempting to twist batch algorithm to fit the
online learning setting. Even a simple and well-
know algorithm such as Perceptron can be effec-
tive, but by using recent advances in research on
SGD algorithms we can obtain substantial im-
provements on the best previously used approach.
Below we review the research on bug report triage
most relevant to our work.

Čubranić and Murphy (2004) seems to be the
first attempt to automate bug triage. The authors
cast bug triage as a text classification task and use

Task Model MRR Acc
Chromium Window 0.0999 0.0472

SVM 0.0908 0.0550
Perceptron 0.1817 0.1128
Bugzie 0.2063 0.0960
Regression 0.3074 0.2157

Android Window 0.3198 0.1684
SVM 0.2541 0.1684
Perceptron 0.3225 0.2057
Bugzie 0.3690 0.2086
Regression 0.4446 0.2951

Firefox Window 0.5695 0.4426
SVM 0.4604 0.4166
Perceptron 0.5191 0.4306
Bugzie 0.5402 0.4100
Regression 0.6367 0.5245

Launchpad Window 0.0725 0.0337
SVM 0.1006 0.0704
Perceptron 0.3323 0.2607
Bugzie 0.5271 0.4339
Regression 0.4702 0.3879

Table 4: ASSIGNED evaluation results on test set

the data representation (bag of words) and learn-
ing algorithm (Naive Bayes) typical for text clas-
sification at the time. They collect over 15,000
bug reports from the Eclipse project. The max-
imum accuracy they report is 30% which was
achieved by using 90% of the data for training.

In Anvik et al. (2006) the authors experiment
with three learning algorithms: Naive Bayes,
SVM and Decision Tree: SVM performs best in
their experiments. They evaluate using precision
and recall rather than accuracy. They report re-
sults on the Eclipse and Firefox projects, with pre-
cision 57% and 64% respectively, but very low re-
call (7% and 2%).

Matter et al. (2009) adopt a different approach
to bug triage. In addition to the project’s issue
tracker data, they use also the source-code ver-
sion control data. They build an expertise model
for each developer which is a word count vec-
tor of the source code changes committed. They
also build a word count vector for each bug report,
and use the cosine between the report and the ex-
pertise model to rank developers. Using this ap-
proach (with a heuristic term weighting scheme)
they report 33.6% accuracy on Eclipse.

Bhattacharya and Neamtiu (2010) acknowl-
edge the evolving nature of bug report streams
and attempt to apply incremental learning meth-
ods to bug triage. They use a two-step approach:
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Figure 4: ASSIGNED evaluation results on the development set

first they predict the most likely developer to as-
sign to a bug using a classifier. In a second step
they rank candidate developers according to how
likely they were to take over a bug from the de-
veloper predicted in the first step. Their approach
to incremental learning simply involves fully re-
training a batch classifier after each item in the
data stream. They test their approach on fixed
bugs in Mozilla and Eclipse, reporting accuracies
of 27.5% and 38.2% respectively.

Tamrawi et al. (2011) propose the Bugzie
model where developers are ranked according to
the fuzzy set membership function as defined
in section 4.4. They also use the label (devel-
oper) cache and term cache to speed up pro-
cessing and make the model adapt better to the
evolving data stream. They evaluate Bugzie and
compare its performance to the models used in
Bhattacharya and Neamtiu (2010) on seven issue
trackers: Bugzie has superior performance on all
of them ranging from 29.9% to 45.7% for top-1
output. They do not use separate validation sets
for system development and parameter tuning.

In comparison to Bhattacharya and Neamtiu
(2010) and Tamrawi et al. (2011), here we focus
much more on the analysis of concept drift in data

streams and on the evaluation of learning under its
constraints. We also show that for evolving issue
tracker data, in a large majority of cases SGD Re-
gression handily outperforms Bugzie.

6 Conclusion

We demonstrate that concept drift is a real, perva-
sive issue for learning from issue tracker streams.
We show how to adapt to it by leveraging recent
research in online learning algorithms. We also
make our dataset collection publicly available to
enable direct comparisons between different bug
triage systems.1

We have identified a good learning framework
for mining bug reports: in future we would like
to explore smarter ways of extracting useful sig-
nals from the data by using more linguistically
informed preprocessing and higher-level features
such as word classes.
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Abstract

Informal and formal (“T/V”) address in dia-
logue is not distinguished overtly in mod-
ern English, e.g. by pronoun choice like
in many other languages such as French
(“tu”/“vous”). Our study investigates the
status of the T/V distinction in English liter-
ary texts. Our main findings are: (a) human
raters can label monolingual English utter-
ances as T or V fairly well, given sufficient
context; (b), a bilingual corpus can be ex-
ploited to induce a supervised classifier for
T/V without human annotation. It assigns
T/V at sentence level with up to 68% accu-
racy, relying mainly on lexical features; (c),
there is a marked asymmetry between lex-
ical features for formal speech (which are
conventionalized and therefore general) and
informal speech (which are text-specific).

1 Introduction

In many Indo-European languages, there are two
pronouns corresponding to the English you. This
distinction is generally referred to as the T/V di-
chotomy, from the Latin pronouns tu (informal, T)
and vos (formal, V) (Brown and Gilman, 1960).
The V form (such as Sie in German and Vous in
French) can express neutrality or polite distance
and is used to address social superiors. The T
form (German du, French tu) is employed towards
friends or addressees of lower social standing, and
implies solidarity or lack of formality.

English used to have a T/V distinction until the
18th century, using you as V pronoun and thou
for T. However, in contemporary English, you has
taken over both uses, and the T/V distinction is not
marked anymore. In NLP, this makes generation
in English and translation into English easy. Con-
versely, many NLP tasks suffer from the lack of

information about formality, e.g. the extraction of
social relationships or, notably, machine transla-
tion from English into languages with a T/V dis-
tinction which involves a pronoun choice.

In this paper, we investigate the possibility to
recover the T/V distinction for (monolingual) sen-
tences of 19th and 20th-century English such as:

(1) Can I help you, Sir? (V)
(2) You are my best friend! (T)

After describing the creation of an English corpus
of T/V labels via annotation projection (Section 3),
we present an annotation study (Section 4) which
establishes that taggers can indeed assign T/V la-
bels to monolingual English utterances in context
fairly reliably. Section 5 investigates how T/V is
expressed in English texts by experimenting with
different types of features, including words, seman-
tic classes, and expressions based on Politeness
Theory. We find word features to be most reliable,
obtaining an accuracy of close to 70%.

2 Related Work

There is a large body of work on the T/V distinc-
tion in (socio-)linguistics and translation studies,
covering in particular the conditions governing
T/V usage in different languages (Kretzenbacher
et al., 2006; Schüpbach et al., 2006) and the diffi-
culties in translation (Ardila, 2003; Künzli, 2010).
However, many observations from this literature
are difficult to operationalize. Brown and Levin-
son (1987) propose a general theory of politeness
which makes many detailed predictions. They as-
sume that the pragmatic goal of being polite gives
rise to general communication strategies, such as
avoiding to lose face (cf. Section 5.2).

In computational linguistics, it is a common
observation that for almost every language pair,
there are distinctions that are expressed overtly
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Please permit me to ask 
you a question.

Darf ich Sie etwas fragen?

Step 2: copy T/V class 
label to English sentence

Step 1: German pronoun 
provides overt T/V label

V Vprojection

Figure 1: T/V label induction for English sentences in
a parallel corpus with annotation projection

in one language, but remain covert in the other.
Examples include morphology (Fraser, 2009) and
tense (Schiehlen, 1998). A technique that is often
applied in such cases is annotation projection, the
use of parallel corpora to copy information from a
language where it is overtly realized to one where
it is not (Yarowsky and Ngai, 2001; Hwa et al.,
2005; Bentivogli and Pianta, 2005).

The phenomenon of formal and informal ad-
dress has been considered in the contexts of transla-
tion into (Hobbs and Kameyama, 1990; Kanayama,
2003) and generation in Japanese (Bateman, 1988).
Li and Yarowsky (2008) learn pairs of formal and
informal constructions in Chinese with a para-
phrase mining strategy. Other relevant recent stud-
ies consider the extraction of social networks from
corpora (Elson et al., 2010). A related study is
(Bramsen et al., 2011) which considers another
sociolinguistic distinction, classifying utterances
as “upspeak” and “downspeak” based on the social
relationship between speaker and addressee.

This paper extends a previous pilot study
(Faruqui and Padó, 2011). It presents more an-
notation, investigates a larger and better motivated
feature set, and discusses the findings in detail.

3 A Parallel Corpus of Literary Texts

This section discusses the construction of T/V gold
standard labels for English sentences. We obtain
these labels from a parallel English–German cor-
pus using the technique of annotation projection
(Yarowsky and Ngai, 2001) sketched in Figure 1:
We first identify the T/V status of German pro-
nouns, then copy this T/V information onto the
corresponding English sentence.

3.1 Data Selection and Preparation

Annotation projection requires a parallel corpus.
We found commonly used parallel corpora like EU-
ROPARL (Koehn, 2005) or the JRC Acquis corpus
(Steinberger et al., 2006) to be unsuitable for our

study since they either contain almost no direct
address at all or, if they do, just formal address (V).
Fortunately, for many literary texts from the 19th
and early 20th century, copyright has expired, and
they are freely available in several languages.

We identified 110 stories and novels among the
texts provided by Project Gutenberg (English) and
Project Gutenberg-DE (German)1 that were avail-
able in both languages, with a total of 0.5M sen-
tences per language. Examples are Dickens’ David
Copperfield or Tolstoy’s Anna Karenina. We ex-
cluded plays and poems, as well as 19th-century
adventure novels by Sir Walter Scott and James F.
Cooper which use anachronistic English for stylis-
tic reasons, including words that previously (until
the 16th century) indicated T (“thee”, “didst”).

We cleaned the English and German novels man-
ually by deleting the tables of contents, prologues,
epilogues, as well as chapter numbers and titles
occurring at the beginning of each chapter to ob-
tain properly parallel texts. The files were then
formatted to contain one sentence per line using
the sentence splitter and tokenizer provided with
EUROPARL (Koehn, 2005). Blank lines were
inserted to preserve paragraph boundaries. All
novels were lemmatized and POS-tagged using
TreeTagger (Schmid, 1994).2 Finally, they were
sentence-aligned using Gargantuan (Braune and
Fraser, 2010), an aligner that supports one-to-many
alignments, and word-aligned in both directions
using Giza++ (Och and Ney, 2003).

3.2 T/V Gold Labels for English Utterances

As Figure 1 shows, the automatic construction of
T/V labels for English involves two steps.

Step 1: Labeling German Pronouns as T/V.
German has three relevant personal pronouns for
the T/V distinction: du (T), sie (V), and ihr (T/V).
However, various ambiguities makes their interpre-
tation non-straightforward.

The pronoun ihr can both be used for plural T
address or for a somewhat archaic singular or plu-
ral V address. In principle, these usages should
be distinguished by capitalization (V pronouns
are generally capitalized in German), but many
T instances in our corpora informal use are nev-
ertheless capitalized. Additional, ihr can be the

1http://www.gutenberg.org, http://gutenberg.spiegel.de/
2It must be expected that the tagger degrades on this

dataset; however we did not quantify this effect.
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dative form of the 3rd person feminine pronoun sie
(she/her). These instances are neutral with respect
to T/V but were misanalysed by TreeTagger as in-
stances of the T/V lemma ihr. Since TreeTagger
does not provide person information, and we did
not want to use a full parser, we decided to omit
ihr/Ihr from consideration.3

Of the two remaining pronouns (du and sie), du
expresses (singular) T. A minor problem is pre-
sented by novels set in France, where du is used as
an nobiliary particle. These instances can be recog-
nised reliably since the names before and after du
are generally unknown to the German tagger. Thus
we do not interpret du as T if the word preceding
or succeeding it has “unknown” as its lemma.

The V pronoun, sie, doubles as the pronoun for
third person (she/they) when not capitalized. We
therefore interpret only capitalized instances of Sie
as V. Furthermore, we ignore utterance-initial po-
sitions, where all words are capitalized. This is
defined as tokens directly after a sentence bound-
ary (POS $.) or after a bracket (POS $().

These rules concentrate on precision rather than
recall. They leave many instances of German sec-
ond person pronouns unlabeled; however, this is
not a problem since we do not currently aim at
obtaining complete coverage on the English side
of our parallel corpus. From the 0.5M German sen-
tences, about 14% of the sentences were labeled
as T or V (37K for V and 28K for T). In a random
sample of roughly 300 German sentences which
we analysed, we did not find any errors. This puts
the precision of our heuristics at above 99%.

Step 2: Annotation Projection. We now copy
the information over onto the English side. We
originally intended to transfer T/V labels between
German and English word-aligned pronouns. How-
ever, we pronouns are not necessarily translated
into pronouns; additionally, we found word align-
ment accuracy for pronouns to be far from perfect,
due to the variability in function word translation.
For these reason, we decided to look at T/V labels
at the level of complete sentences, ignoring word
alignment. This is generally unproblematic – ad-
dress is almost always consistent within sentences:
of the 65K German sentences with T or V labels,
only 269 (< 0.5%) contain both T and V. Our pro-
jection on the English side results in 25K V and

3Instances of ihr as possessive pronoun occurred as well,
but could be filtered out on the basis of the POS tag.

Comparison No context In context
A1 vs. A2 75% (.49) 79% (.58)
A1 vs. GS 60% (.20) 70% (.40)
A2 vs. GS 65% (.30) 76% (.52)
(A1 ∩ A2) vs. GS 67% (.34) 79% (.58)

Table 1: Manual annotation for T/V on a 200-sentence
sample. Comparison among human annotators (A1 and
A2) and to projected gold standard (GS). All cells show
raw agreement and Cohen’s κ (in parentheses).

18K T sentences4, of which 255 (0.6%) are labeled
as both T and V. We exclude these sentences.

Note that this strategy relies on the direct cor-
respondence assumption (Hwa et al., 2005), that
is, it assumes that the T/V status of an utterance is
not changed in translation. We believe that this is
a reasonable assumption, given that T/V is deter-
mined by the social relation between interlocutors;
but see Section 4 for discussion.

3.3 Data Splitting

Finally, we divided our English data into train-
ing, development and test sets with 74 novels
(26K sentences), 19 novels (9K sentences) and
13 novels (8K sentences), respectively. The cor-
pus is available for download at http://www.
nlpado.de/~sebastian/data.shtml.

4 Human Annotation of T/V for English

This section investigates how well the T/V distinc-
tion can be made in English by human raters, and
on the basis of what information. Two annotators
with near native-speaker competence in English
were asked to label 200 random sentences from
the training set as T or V. Sentences were first pre-
sented in isolation (“no context”). Subsequently,
they were presented with three sentences pre- and
post-context each (“in context”).

Table 1 shows the results of the annotation
study. The first line compares the annotations
of the two annotators against each other (inter-
annotator agreement). The next two lines compare
the taggers’ annotations against the gold standard
labels projected from German (GS). The last line
compares the annotator-assigned labels to the GS
for the instances on which the annotators agree.
For all cases, we report raw accuracy and Co-
hen’s κ (1960), i.e. chance-corrected agreement.

4Our sentence aligner supports one-to-many alignments
and often aligns single German to multiple English sentences.
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We first observe that the T/V distinction is con-
siderably more difficult to make for individual
sentences (no context) than when the discourse is
available. In context, inter-annotator agreement in-
creases from 75% to 79%, and agreement with the
gold standard rises by 10%. It is notable that the
two annotators agree worse with one another than
with the gold standard (see below for discussion).
On those instances where they agree, Cohen’s κ
reaches 0.58 in context, which is interpreted as
approaching good agreement (Fleiss, 1981). Al-
though far from perfect, this inter-annotator agree-
ment is comparable to results for the annotation
of fine-grained word sense or sentiment (Navigli,
2009; Bermingham and Smeaton, 2009).

An analysis of disagreements showed that many
sentences can be uttered in both T and V contexts
and cannot be labeled without context:

(3) “And perhaps sometime you may see her.”

This case (gold label: V) is disambiguated by the
previous sentence which indicates a hierarchical
social relation between speaker and addressee:

(4) “And she is a sort of relation of your lord-
ship’s,” said Dawson. . . .

Still, even a three-sentence window is often not
sufficient, since the surrounding sentences may be
just as uninformative. In these cases, more global
information about the situation is necessary. Even
with perfect information, however, judgments can
sometimes deviate, as there are considerable “grey
areas” in T/V usage (Kretzenbacher et al., 2006).

In addition, social rules like T/V usage vary
in time and between countries (Schüpbach et al.,
2006). This helps to explain why annotators agree
better with one another than with the gold standard:
21st century annotators tend to be unfamiliar with
19th century T/V usage. Consider this example
from a book written in second person perspective:

(5) Finally, you acquaint Caroline with the
fatal result: she begins by consoling you.
“One hundred thousand francs lost! We
shall have to practice the strictest econ-
omy”, you imprudently add.5

Here, the author and translator use V to refer to the
reader, while today’s usage would almost certainly

5H. de Balzac: Petty Troubles of Married Life

be T, as presumed by both annotators. Conver-
sations between lovers or family members form
another example, where T is modern usage, but
the novels tend to use V:

(6) [...] she covered her face with the other
to conceal her tears. “Corinne!”, said Os-
wald, “Dear Corinne! My absence has
then rendered you unhappy!”6

In sum, our annotation study establishes that the
T/V distinction, although not realized by different
pronouns in English, can be recovered manually
from text, provided that discourse context is avail-
able. A substantial part of the errors is due to social
changes in T/V usage.

5 Monolingual T/V Modeling

The second part of the paper explores the auto-
matic prediction of the T/V distinction for English
sentences. Given the ability to create an English
training corpus with T/V labels with the annotation
projection methods described in Section 3.2, we
can phrase T/V prediction for English as a standard
supervised learning task. Our experiments have
a twin motivation: (a), on the NLP side, we are
mainly interested in obtaining a robust classifier
to assign the labels T and V to English sentences;
(b), on the sociolinguistic side, we are interested in
investigating through which features the categories
T and V are expressed in English.

5.1 Classification Framework
We phrase T/V labeling as a binary classification
task at the sentence level, performing the classifica-
tion with L2-regularized logistic regression using
the LibLINEAR library (Fan et al., 2008). Logis-
tic regression defines the probability that a binary
response variable y takes some value as a logit-
transformed linear combination of the features fi,
each of which is assigned a coefficient βi.

p(y = 1) =
1

1 + e−z
with z =

∑
i

βifi (7)

Regularization incorporates the size of the coef-
ficient vector β into the objective function, sub-
tracting it from the likelihood of the data given the
model. This allows the user to trade faithfulness
to the data against generalization.7

6A.L.G. de Staël: Corinne
7We use LIBLINEAR’s default parameters and set the

cost (regularization) parameter to 0.01.
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p(C|V )
p(C|T ) Words
4.59 Mister, sir, Monsieur, sirrah, . . .
2.36 Mlle., Mr., M., Herr, Dr., . . .
1.60 Gentlemen, patients, rascals, . . .

Table 2: 3 of the 400 clustering-based semantic classes
(classes most indicative for V)

5.2 Feature Types

We experiment with three features types that are
candidates to express the T/V English distinction.

Word Features. The intuition to use word fea-
tures draws on the parallel between T/V and infor-
mation retrieval tasks like document classification:
some words are presumably correlated with formal
address (like titles), while others should indicate
informal address (like first names). In a prelimi-
nary experiment, we noticed that in the absence of
further constraints, many of the most indicative fea-
tures are names of persons from particular novels
which are systematically addressed formally (like
Phileas Fogg from J. Vernes’ Around the world in
eighty days) or informally (like Mowgli, Baloo,
and Bagheera from R. Kipling’s Jungle Book).
These features clearly do not generalize to new
books. We therefore added a constraint to remove
all features which did not occur in at least three
novels. To reduce the number of word features to a
reasonable order of magnitude, we also performed
a χ2-based feature selection (Manning et al., 2008)
on the training set. Preliminary experiments es-
tablished that selecting the top 800 word features
yielded a model with good generalization.

Semantic Class Features. Our second feature
type is semantic class features. These can be seen
as another strategy to counteract the sparseness
at the level of word features. We cluster words
into 400 semantic classes on the basis of distribu-
tional and morphological similarity features which
are extracted from an unlabeled English collec-
tion of Gutenberg novels comprising more than
100M tokens, using the approach by Clark (2003).
These features measure how similar tokens are to
one another in terms of their occurrences in the
document and are useful in Named Entity Recog-
nition (Finkel and Manning, 2009). As features
in the T/V classification of a given sentence, we
simply count for each class the number of tokens
in this class present in the current sentence. For
illustration, Table 2 shows the three classes most

indicative for V, ranked by the ratio of probabilities
for T and V, estimated on the training set.

Politeness Theory Features. The third feature
type is based on the Politeness Theory (Brown
and Levinson, 1987). Brown and Levinson’s pre-
diction is that politeness levels will be detectable
in concrete utterances in a number of ways, e.g.
a higher use of conjunctive or hedges in polite
speech. Formal address (i.e., V as opposed to T) is
one such expression. Politeness Theory therefore
predicts that other politeness indicators should cor-
relate with the T/V classification. This holds in
particular for English, where pronoun choice is
unavailable to indicate politeness.

We constructed 16 features on the basis of Po-
liteness Theory predictions, that is, classes of ex-
pressions indicating either formality or informality.
From a computational perspective, the problem
with Politeness Theory predictions is that they are
only described qualitatively and by example, with-
out detailed lists. For each feature, we manually
identified around 10 words or multi-word relevant
expressions. Table 3 shows these 16 features with
their intended classes and some example expres-
sions. Similar to the semantic class features, the
value of each politeness feature is the sum of the
frequencies of its members in a sentence.

5.3 Context: Size and Type

As our annotation study in Section 4 found, con-
text is crucial for human annotators, and this pre-
sumably carries over to automatic methods human
annotators: if the features for a sentence are com-
puted just on that sentence, we will face extremely
sparse data. We experiment with symmetrical win-
dow contexts, varying the size between n = 0 (just
the target sentence) and n = 10 (target sentence
plus 10 preceding and 10 succeeding sentences).

This kind of simple “sentence context” makes an
important oversimplification, however. It lumps to-
gether material from different speech turns as well
as from “narrative” sentences, which may generate
misleading features. For example, narrative sen-
tences may refer to protagonists by their full names
including titles (strong features for V) even when
these protagonists are in T-style conversations:

(8) “You are the love of my life”, said Sir
Phileas Fogg.8 (T)

8J. Verne: Around the world in 80 days
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Class Example expressions Class Example expressions
Inclusion (T) let’s, shall we Exclamations (T) hey, yeah
Subjunctive I (T) can, will Subjunctive II (V) could, would
Proximity (T) this, here Distance (V) that, there
Negated question (V) didn’t I, hasn’t it Indirect question (V) would there, is there
Indefinites (V) someone, something Apologizing (V) bother, pardon
Polite adverbs (V) marvellous, superb Optimism (V) I hope, would you
Why + modal (V) why would(n’t) Impersonals (V) necessary, have to
Polite markers (V) please, sorry Hedges (V) in fact, I guess

Table 3: 16 Politeness theory-based features with intended classes and example expressions

Example (8) also demonstrates that narrative mate-
rial and direct speech may even be mixed within
individual sentences.

For these reasons, we introduce an alternative
concept of context, namely direct speech context,
whose purpose is to exclude narrative material. We
compute direct speech context in two steps: (a),
segmentation of sentences into chunks that are
either completely narrative or speech, and (b), la-
beling of chunks with a classifier that distinguishes
these two classes. The segmentation step (a) takes
place with a regular expression that subdivides sen-
tences on every occurrence of quotes (“ , ” , ’ , ‘,
etc.). As training data for the classification step
(b), we manually tagged 1000 chunks from our
training data as either B-DS (begin direct speech),
I-DS (inside direct speech) and O (outside direct
speech, i.e. narrative material).9 We used this
dataset to train the CRF-based sequence tagger
Mallet (McCallum, 2002) using all tokens, includ-
ing punctuation, as features.10 This tagger is used
to classify all chunks in our dataset, resulting in
output like the following example:

(9)

(B-DS) “I am going to see his Ghost!
(I-DS) It will be his Ghost not him!”
(O) Mr. Lorry quietly chafed the

hands that held his arm.11

Direct speech chunks belonging to the same sen-
tence are subsequently recombined.

We define the direct speech context of size n for
a given sentence as the n preceding and following
direct speech chunks that are labeled B-DS or I-DS
while skipping any chunks labeled O. Note that
this definition of direct speech context still lumps

9The labels are chosen after IOB notation conventions
(Ramshaw and Marcus, 1995).

10We also experimented with rule-based chunk labeling
based on quotes, but found the use of quotes too inconsistent.

11C. Dickens: A tale of two cities.
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Figure 2: Accuracy vs. number of sentences in context
(empty circles: sentence context; solid circles: direct
speech context)

together utterances by different speakers and can
therefore yield misleading features in the case of
asymmetric conversational situations, in addition
to possible direct speech misclassifications.

6 Experimental Evaluation

6.1 Evaluation on the Development Set

We first perform model selection on the develop-
ment set and then validate our results on the test
set (cf. Section 3.3).

Influence of Context. Figure 2 shows the influ-
ence of size and type of context, using only words
as features. Without context, we obtain a perfor-
mance of 61.1% (sentence context) and of 62.9%
(direct speech context). These numbers beat the
random baseline (50.0%) and the frequency base-
line (59.1%). The addition of more context further
improves performance substantially for both con-
text types. The ideal context size is fairly large,
namely 7 sentences and 8 direct speech chunks, re-
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Model Accuracy
Random Baseline 50.0
Frequency Baseline 59.1
Words 67.0∗∗
SemClass 57.5
PoliteClass 59.6
Words + SemClass 66.6∗∗

Words + PoliteClass 66.4∗∗

Words + PoliteClass + SemClass 66.2∗∗

Raw human IAA (no context) 75.0
Raw human IAA (in context) 79.0

Table 4: T/V classification accuracy on the develop-
ment set (direct speech context, size 8). ∗∗: Significant
difference to frequency baseline (p<0.01)

spectively. This indicates that sparseness is indeed
a major challenge, and context can become large
before the effects mentioned in Section 5.3 counter-
act the positive effect of more data. Direct speech
context outperforms sentence context throughout,
with a maximum accuracy of 67.0% as compared
to 65.2%, even though it shows higher variation,
which we attribute to the less stable nature of the
direct speech chunks and their automatically cre-
ated labels. From now on, we adopt a direct speech
context of size 8 unless specified differently.

Influence of Features. Table 4 shows the results
for different feature types. The best model (word
features only) is highly significantly better than
the frequency baseline (which it beats by 8%) as
determined by a bootstrap resampling test (Noreen,
1989). It gains 17% over the random baseline,
but is still more than 10% below inter-annotator
agreement in context, which is often seen as an
upper bound for automatic models.

Disappointingly, the comparison of the feature
groups yields a null result: We are not able to
improve over the results for just word features with
either the semantic class or the politeness features.
Neither feature type outperforms the frequency
baseline significantly (p>0.05). Combinations of
the different feature types also do worse than just
words. The differences between the best model
(just words) and the combination models are all
not significant (p>0.05). These negative results
warrant further analysis. It follows in Section 6.3.

6.2 Results on the Test Set
Table 5 shows the results of evaluating models
with the best feature set and with different context
sizes on the test set, in order to verify that we did

Model Accuracy ∆ to dev set
Frequency baseline 59.3 + 0.2
Words (no context) 62.5 - 0.4
Words (context size 6) 67.3 + 1.0
Words (context size 8) 67.5 + 0.5
Words (context size 10) 66.8 + 1.0

Table 5: T/V classification accuracy on the test set and
differences to dev set results (direct speech context)

not overfit on the development set when picking
the best model. The tendencies correspond well
to the development set: the frequency baseline is
almost identical, as are the results for the different
models. The differences to the development set
are all equal to or smaller than 1% accuracy, and
the best result at 67.5% is 0.5% better than on the
development set. This is a reassuring result, as our
model appears to generalize well to unseen data.

6.3 Analysis by Feature Types
The results from Section 6.1 motivate further anal-
ysis of the individual feature types.

Analysis of Word Features. Word features are
by far the most effective features. Table 6 lists
the top twenty words indicating T and V (ranked
by the ratio of probabilities for the two classes
on the training set). The list still includes some
proper names like Vrazumihin or Louis-Gaston
(even though all features have to occur in at least
three novels), but they are relatively infrequent.
The most prominent indicators for the formal class
V are titles (monsieur, (ma)’am) and instances of
formulaic language (Permit (me), Excuse (me)).
There are also some terms which are not straight-
forward indicators of formal address (angelic, stub-
bornness), but are associated with a high register.

There is a notable asymmetry between T and
V. The word features for T are considerably more
difficult to interpret. We find some forms of earlier
period English (thee, hast, thou, wilt) that result
from occasional archaic passages in the novels as
well first names (Louis-Gaston, Justine). Never-
theless, most features are not straightforward to
connect to specifically informal speech.

Analysis of Semantic Class Features. We
ranked the semantic classes we obtained by distri-
butional clustering in a similar manner to the word
features. Table 2 shows the top three classes in-
dicative for V. Almost all others of the 400 clusters
do not have a strong formal/informal association
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Top 20 words for V Top 20 words for T
Word w P (w|V )

P (w|T ) Word w P (w|T )
P (w|V )

Excuse 36.5 thee 94.3
Permit 35.0 amenable 94.3
’ai 29.2 stuttering 94.3
’am 29.2 guardian 94.3
stubbornness 29.2 hast 92.0
flights 29.2 Louis-Gaston 92.0
monsieur 28.6 lease-making 92.0
Vrazumihin 28.6 melancholic 92.0
mademoiselle 26.5 ferry-boat 92.0
angelic 26.5 Justine 92.0
Allow 24.5 Thou 66.0
madame 21.2 responsibility 63.8
delicacies 21.2 thou 63.8
entrapped 21.2 Iddibal 63.8
lack-a-day 21.2 twenty-fifth 63.8
ma 21.0 Chic 63.8
duke 18.0 allegiance 63.8
policeman 18.0 Jouy 63.8
free-will 18.0 wilt 47.0
Canon 18.0 shall 47.0

Table 6: Most indicative word features for T or V

but mix formal, informal, and neutral vocabulary.
This tendency is already apparent in class 3: Gen-
tlemen is clearly formal, while rascals is informal.
patients can belong to either class. Even in class
1, we find Sirrah, a contemptuous term used in ad-
dressing a man or boy with a low formality score
(p(w|V )/p(w|T ) = 0.22). From cluster 4 onward,
none of the clusters is strongly associated with ei-
ther V or T (p(c|V )/p(c|T ) ≈ 1).

Our interpretation of these observations is that
in contrast to text categorization, there is no clear-
cut topical or domain difference between T and V:
both categories co-occur with words from almost
any domain. In consequence, semantic classes do
not, in general, represent strong unambiguous indi-
cators. Similar to the word features, the situation
is worse for T than for V: there still are reasonably
strong features for V, the “marked” case, but it is
more difficult to find indicators for T.

Analysis of politeness features. A major reason
for the ineffectiveness of the Politeness Theory-
based features seems to be their low frequency:
in the best model, with a direct speech context of
size 8, only an average of 7 politeness features
was active for any given sentence. However, fre-
quency was not the only problem – the politeness
features were generally unable to discriminate well
between T and V. For all features, the values of

p(f |V )/p(f |T ) are between 0.9 and 1.3, that is,
the features were only weakly indicative of one of
the classes. Furthermore, not all features turned
out to be indicative of the class we designed them
for. The best indicator for V was the Indefinites
feature (somehow, someone cf. Table 3), as ex-
pected. In contrast, the best indicator for T was the
Negation question feature which was supposedly
an indicator for V (didn’t I, haven’t we).

A majority of politeness features (13 of the 16)
had p(f |V )/p(f |T ) values above 1, that is, were
indicative for the class V. Thus for this feature type,
like for the others, it appears to be more difficult to
identify T than to identify V. This negative result
can be attributed at least in part to our method of
hand-crafting lists of expressions for these features.
The inadvertent inclusion of overly general terms
V might be responsible for the features’ inability
to discriminate well, while we have presumably
missed specific terms which has hurt coverage.
This situation may in the future be remedied with
the semi-automatic acquisition of instantiations of
politeness features.

6.4 Analysis of Individual Novels

One possible hypothesis regarding the difficulty
of finding indicators for the class T is that indi-
cators for T tend to be more novel-specific than
indicators for V, since formal language is more
conventionalized (Brown and Levinson, 1987). If
this were the case, then our strategy of building
well-generalizing models by combining text from
different novels would naturally result in models
that have problems with picking up T features.

To investigate this hypothesis, we trained mod-
els with the best parameters as before (8-sentence
direct speech context, words as features). How-
ever, this time we trained novel-specific models,
splitting each novel into 50% training data and
50% testing data. We required novels to contain
more than 200 labeled sentences. This ruled out
most short stories, leaving us with 7 novels in the
test set. The results are shown in Table 7 and show
a clear improvement. The accuracy is 13% higher
than in our main experiment (67% vs. 80%), even
though the models were trained on considerably
less data. Six of the seven novels perform above
the 67.5% result from the main experiment.

The top-ranked features for T and V show a
much higher percentage of names for both T and
V than in the main experiment. This is to be ex-
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Novel Accuracy
H. Beecher-Stove: Uncle Tom’s Cabin 90.0
J. Spyri: Cornelli 88.3
E. Zola: Lourdes 83.9
H. de Balzac: Cousin Pons 82.3
C. Dickens: The Pickwick Papers 77.7
C. Dickens: Nicholas Nickleby 74.8
F. Hodgson Burnett: Little Lord 61.6
All (micro average) 80.0

Table 7: T/V prediction models for individual novels
(50% of each novel for training and 50% testing)

pected, since this experiment does not restrict itself
to features that occurred in at least three novels.
The price we pay for this is worse generalization to
other novels. There is also still a T/V asymmetry:
more top features are shared among the V lists of
individual novels and with the main experiment
V list than on the T side. Like in the main exper-
iment (cf. Section 6.3), V features indicate titles
and other features of elevated speech, while T fea-
tures mostly refer to novel-specific protagonists
and events. In sum, these results provide evidence
for a difference in status of T and V.

7 Discussion and Conclusions

In this paper, we have studied the distinction
between formal and information (T/V) address,
which is not expressed overtly through pronoun
choice or morphosyntactic marking in modern En-
glish. Our hypothesis was that the T/V distinction
can be recovered in English nevertheless. Our man-
ual annotation study has shown that annotators can
in fact tag monolingual English sentences as T or
V with reasonable accuracy, but only if they have
sufficient context. We exploited the overt informa-
tion from German pronouns to induce T/V labels
for English and used this labeled corpus to train a
monolingual T/V classifier for English. We exper-
imented with features based on words, semantic
classes, and Politeness Theory predictions.

With regard to our NLP goal of building a T/V
classifier, we conclude that T/V classification is
a phenomenon that can be modelled on the basis
of corpus features. A major factor in classifica-
tion performance is the inclusion of a wide context
to counteract sparse data, and more sophisticated
context definitions improve results. We currently
achieve top accuracies of 67%-68%, which still
leave room for improvement. We next plan to
couple our T/V classifier with a machine trans-

lation system for a task-based evaluation on the
translation of direct address into German and other
languages with different T/V pronouns.

Considering our sociolinguistic goal of deter-
mining the ways in which English realizes the T/V
distinction, we first obtained a negative result: only
word features perform well, while semantic classes
and politeness features do hardly better than a fre-
quency baseline. Notably, there are no clear “topi-
cal” divisions between T and V, like for example
in text categorization: almost all words are very
weakly correlated with either class, and seman-
tically similar words can co-occur with different
classes. Consequently, distributionally determined
semantic classes are not helpful for the distinction.
Politeness features are difficult to operationalize
with sufficiently high precision and recall.

An interesting result is the asymmetry between
the linguistic features for V and T at the lexical
level. V language appears to be more convention-
alized; the models therefore identified formulaic
expressions and titles as indicators for V. On the
other hand, very few such generic features exist for
the class T; consequently, the classifier has a hard
time learning good discriminating and yet generic
features. Those features that are indicative of T,
such as first names, are highly novel-specific and
were deliberately excluded from the main exper-
iment. When we switched to individual novels,
the models picked up such features, and accuracy
increased – at the cost of lower generalizability
between novels. A more technical solution to this
problem would be the training of a single-class
classifier for V, treating T as the “default” class
(Tax and Duin, 1999).

Finally, an error analysis showed that many er-
rors arise from sentences that are too short or un-
specific to determine T or V reliably. This points
to the fact that T/V should not be modelled as a
sentence-level classification task in the first place:
T/V is not a choice made for each sentence, but
one that is determined once for each pair of inter-
locutors and rarely changed. In future work, we
will attempt to learn social networks from novels
(Elson et al., 2010), which should provide con-
straints on all instances of communication between
a speaker and an addressee. However, the big – and
unsolved, as far as we know – challenge is to au-
tomatically assign turns to interlocutors, given the
varied and often inconsistent presentation of direct
speech turns in novels.
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Abstract

Better representations of plot structure
could greatly improve computational meth-
ods for summarizing and generating sto-
ries. Current representations lack abstrac-
tion, focusing too closely on events. We
present a kernel for comparing novelistic
plots at a higher level, in terms of the
cast of characters they depict and the so-
cial relationships between them. Our kernel
compares the characters of different nov-
els to one another by measuring their fre-
quency of occurrence over time and the
descriptive and emotional language associ-
ated with them. Given a corpus of 19th-
century novels as training data, our method
can accurately distinguish held-out novels
in their original form from artificially dis-
ordered or reversed surrogates, demonstrat-
ing its ability to robustly represent impor-
tant aspects of plot structure.

1 Introduction

Every culture has stories, and storytelling is one
of the key functions of human language. Yet while
we have robust, flexible models for the structure
of informative documents (for instance (Chen et
al., 2009; Abu Jbara and Radev, 2011)), current
approaches have difficulty representing the nar-
rative structure of fictional stories. This causes
problems for any task requiring us to model
fiction, including summarization and generation
of stories; Kazantseva and Szpakowicz (2010)
show that state-of-the-art summarizers perform
extremely poorly on short fictional texts1. A ma-
jor problem with applying models for informative

1Apart from Kazantseva, we know of one other at-
tempt to apply a modern summarizer to fiction, by the
artist Jason Huff, using Microsoft Word 2008’s extrac-
tive summary feature: http://jason-huff.com/

text to fiction is that the most important struc-
ture underlying the narrative—its plot—occurs at
a high level of abstraction, while the actual narra-
tion is of a series of lower-level events.

A short synopsis of Jane Austen’s novel Pride
and Prejudice, for example, is that Elizabeth Ben-
net first thinks Mr. Darcy is arrogant, but later
grows to love him. But this is not stated straight-
forwardly in the text; the reader must infer it from
the behavior of the characters as they participate
in various everyday scenes.

In this paper, we present the plot kernel, a
coarse-grained, but robust representation of nov-
elistic plot structure. The kernel evaluates the
similarity between two novels in terms of the
characters and their relationships, constructing
functional analogies between them. These are in-
tended to correspond to the labelings produced by
human literary critics when they write, for exam-
ple, that Elizabeth Bennet and Emma Woodhouse
are protagonists of their respective novels. By fo-
cusing on which characters and relationships are
important, rather than specifically how they inter-
act, our system can abstract away from events and
focus on more easily-captured notions of what
makes a good story.

The ability to find correspondences between
characters is key to eventually summarizing or
even generating interesting stories. Once we can
effectively model the kinds of people a romance
or an adventure story is usually about, and what
kind of relationships should exist between them,
we can begin trying to analyze new texts by com-
parison with familiar ones. In this work, we eval-
uate our system on the comparatively easy task

projects/autosummarize. Although this cannot be
treated as a scientific experiment, the results are unusably
bad; they consist mostly of short exclamations containing
the names of major characters.
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of recognizing acceptable novels (section 6), but
recognition is usually a good first step toward
generation—a recognition model can always be
used as part of a generate-and-rank pipeline, and
potentially its underlying representation can be
used in more sophisticated ways. We show a de-
tailed analysis of the character correspondences
discovered by our system, and discuss their po-
tential relevance to summarization, in section 9.

2 Related work

Some recent work on story understanding has fo-
cused on directly modeling the series of events
that occur in the narrative. McIntyre and Lapata
(2010) create a story generation system that draws
on earlier work on narrative schemas (Chambers
and Jurafsky, 2009). Their system ensures that
generated stories contain plausible event-to-event
transitions and are coherent. Since it focuses only
on events, however, it cannot enforce a global no-
tion of what the characters want or how they relate
to one another.

Our own work draws on representations that
explicitly model emotions rather than events. Alm
and Sproat (2005) were the first to describe sto-
ries in terms of an emotional trajectory. They an-
notate emotional states in 22 Grimms’ fairy tales
and discover an increase in emotion (mostly posi-
tive) toward the ends of stories. They later use this
corpus to construct a reasonably accurate clas-
sifier for emotional states of sentences (Alm et
al., 2005). Volkova et al. (2010) extend the hu-
man annotation approach using a larger number of
emotion categories and applying them to freely-
defined chunks instead of sentences. The largest-
scale emotional analysis is performed by Moham-
mad (2011), using crowd-sourcing to construct a
large emotional lexicon with which he analyzes
adult texts such as plays and novels. In this work,
we adopt the concept of emotional trajectory, but
apply it to particular characters rather than works
as a whole.

In focusing on characters, we follow Elson et
al. (2010), who analyze narratives by examining
their social network relationships. They use an
automatic method based on quoted speech to find
social links between characters in 19th century
novels. Their work, designed for computational
literary criticism, does not extract any temporal
or emotional structure.

A few projects attempt to represent story struc-

ture in terms of both characters and their emo-
tional states. However, they operate at a very de-
tailed level and so can be applied only to short
texts. Scheherazade (Elson and McKeown, 2010)
allows human annotators to mark character goals
and emotional states in a narrative, and indicate
the causal links between them. AESOP (Goyal et
al., 2010) attempts to learn a similar structure au-
tomatically. AESOP’s accuracy, however, is rel-
atively poor even on short fables, indicating that
this fine-grained approach is unlikely to be scal-
able to novel-length texts; our system relies on a
much coarser analysis.

Kazantseva and Szpakowicz (2010) summarize
short stories, although unlike the other projects
we discuss here, they explicitly try to avoid giving
away plot details—their goal is to create “spoiler-
free” summaries focusing on characters, settings
and themes, in order to attract potential readers.
They do find it useful to detect character men-
tions, and also use features based on verb aspect to
automatically exclude plot events while retaining
descriptive passages. They compare their genre-
specific system with a few state-of-the-art meth-
ods for summarizing news, and find it outper-
forms them substantially.

We evaluate our system by comparing real nov-
els to artificially produced surrogates, a procedure
previously used to evaluate models of discourse
coherence (Karamanis et al., 2004; Barzilay and
Lapata, 2005) and models of syntax (Post, 2011).
As in these settings, we anticipate that perfor-
mance on this kind of task will be correlated with
performance in applied settings, so we use it as an
easier preliminary test of our capabilities.

3 Dataset

We focus on the 19th century novel, partly fol-
lowing Elson et al. (2010) and partly because
these texts are freely available via Project Guten-
berg. Our main dataset is composed of romances
(which we loosely define as novels focusing on a
courtship or love affair). We select 41 texts, tak-
ing 11 as a development set and the remaining
30 as a test set; a complete list is given in Ap-
pendix A. We focus on the novels used in Elson
et al. (2010), but in some cases add additional ro-
mances by an already-included author. We also
selected 10 of the least romantic works as an out-
of-domain set; experiments on these are in section
8.
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4 Preprocessing

In order to compare two texts, we must first ex-
tract the characters in each and some features of
their relationships with one another. Our first step
is to split the text into chapters, and each chapter
into paragraphs; if the text contains a running di-
alogue where each line begins with a quotation
mark, we append it to the previous paragraph.
We segment each paragraph with MXTerminator
(Reynar and Ratnaparkhi, 1997) and parse it with
the self-trained Charniak parser (McClosky et al.,
2006). Next, we extract a list of characters, com-
pute dependency tree-based unigram features for
each character, and record character frequencies
and relationships over time.

4.1 Identifying characters

We create a list of possible character references
for each work by extracting all strings of proper
nouns (as detected by the parser), then discarding
those which occur less than 5 times. Grouping
these into a useful character list is a problem of
cross-document coreference.

Although cross-document coreference has been
extensively studied (Bhattacharya and Getoor,
2005) and modern systems can achieve quite high
accuracy on the TAC-KBP task, where the list
of available entities is given in advance (Dredze
et al., 2010), novelistic text poses a significant
challenge for the methods normally used. The
typical 19th-century novel contains many related
characters, often named after one another. There
are complicated social conventions determining
which titles are used for whom—for instance,
the eldest unmarried daughter of a family can be
called “Miss Bennet”, while her younger sister
must be “Miss Elizabeth Bennet”. And characters
often use nicknames, such as “Lizzie”.

Our system uses the multi-stage clustering
approach outlined in Bhattacharya and Getoor
(2005), but with some features specific to 19th
century European names. To begin, we merge all
identical mentions which contain more than two
words (leaving bare first or last names unmerged).
Next, we heuristically assign each mention a gen-
der (masculine, feminine or neuter) using a list of
gendered titles, then a list of male and female first
names2. We then merge mentions where each is
longer than one word, the genders do not clash,

2The most frequent names from the 1990 US census.

reply left-of-[name] 17
right-of-[name] feel 14
right-of-[name] look 10
right-of-[name] mind 7
right-of-[name] make 7

Table 1: Top five stemmed unigram dependency fea-
tures for “Miss Elizabeth Bennet”, protagonist of
Pride and Prejudice, and their frequencies.

and the first and last names are consistent (Char-
niak, 2001). We then merge single-word mentions
with matching multiword mentions if they appear
in the same paragraph, or if not, with the multi-
word mention that occurs in the most paragraphs.
When this process ends, we have resolved each
mention in the novel to some specific character.
As in previous work, we discard very infrequent
characters and their mentions.

For the reasons stated, this method is error-
prone. Our intuition is that the simpler method
described in Elson et al. (2010), which merges
each mention to the most recent possible coref-
erent, must be even more so. However, due to
the expense of annotation, we make no attempt to
compare these methods directly.

4.2 Unigram character features

Once we have obtained the character list, we use
the dependency relationships extracted from our
parse trees to compute features for each charac-
ter. Similar feature sets are used in previous work
in word classification, such as (Lin and Pantel,
2001). A few example features are shown in Table
1.

To find the features, we take each mention in
the corpus and count up all the words outside the
mention which depend on the mention head, ex-
cept proper nouns and stop words. We also count
the mention’s own head word, and mark whether
it appears to the right or the left (in general, this
word is a verb and the direction reflects the men-
tion’s role as subject or object). We lemmatize
all feature words with the WordNet (Miller et al.,
1990) stemmer. The resulting distribution over
words is our set of unigram features for the char-
acter. (We do not prune rare features, although
they have proportionally little influence on our
measurement of similarity.)
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Figure 1: Normalized frequency and emotions associated with “Miss Elizabeth Bennet”, protagonist of Pride
and Prejudice, and frequency of paragraphs about her and “Mr. Darcy”, smoothed and projected onto 50 basis
points.

4.3 Temporal relationships

We record two time-varying features for each
character, each taking one value per chapter. The
first is the character’s frequency as a proportion
of all character mentions in the chapter. The sec-
ond is the frequency with which the character is
associated with emotional language—their emo-
tional trajectory (Alm et al., 2005). We use the
strong subjectivity cues from the lexicon of Wil-
son et al. (2005) as a measurement of emotion.
If, in a particular paragraph, only one character
is mentioned, we count all emotional words in
that paragraph and add them to the character’s
total. To render the numbers comparable across
works, each paragraph subtotal is normalized by
the amount of emotional language in the novel as
a whole. Then the chapter score is the average
over paragraphs.

For pairwise character relationships, we count
the number of paragraphs in which only two char-
acters are mentioned, and treat this number (as a
proportion of the total) as a measurement of the
strength of the relationship between that pair3. El-
son et al. (2010) show that their method of find-
ing conversations between characters is more pre-
cise in showing whether a relationship exists, but
the co-occurrence technique is simpler, and we

3We tried also counting emotional language in these para-
graphs, but this did not seem to help in development experi-
ments.

care mostly about the strength of key relationships
rather than the existence of infrequent ones.

Finally, we perform some smoothing, by taking
a weighted moving average of each feature value
with a window of the three values on either side.
Then, in order to make it easy to compare books
with different numbers of chapters, we linearly in-
terpolate each series of points into a curve and
project it onto a fixed basis of 50 evenly spaced
points. An example of the final output is shown in
Figure 1.

5 Kernels

Our plot kernel k(x, y) measures the similarity
between two novels x and y in terms of the fea-
tures computed above. It takes the form of a
convolution kernel (Haussler, 1999) where the
“parts” of each novel are its characters u ∈ x,
v ∈ y and c is a kernel over characters:

k(x, y) =
∑
u∈x

∑
v∈y

c(u, v) (1)

We begin by constructing a first-order ker-
nel over characters, c1(u, v), which is defined in
terms of a kernel d over the unigram features and
a kernel e over the single-character temporal fea-
tures. We represent the unigram feature counts as
distributions pu(w) and pv(w), and compute their
similarity as the amount of shared mass, times a
small penalty of .1 for mismatched genders:

637



d(pu, pv) = exp(−α(1−
∑

wmin(pu(w), pv(w))))
×.1 I{genu = genv}

We compute similarity between a pair of time-
varying curves (which are projected onto 50
evenly spaced points) using standard cosine dis-
tance, which approximates the normalized inte-
gral of their product.

e(u, v) =

(
u • v√
‖u‖‖v‖

)β
(2)

The weights α and β are parameters of the sys-
tem, which scale d and e so that they are compa-
rable to one another, and also determine how fast
the similarity scales up as the feature sets grow
closer; we set them to 5 and 10 respectively.

We sum together the similarities of the char-
acter frequency and emotion curves to measure
overall temporal similarity between the charac-
ters. Thus our first-order character kernel c1 is:

c1(u, v) = d(pu, pv)(e(ufreq, vfreq)+e(uemo, vemo))

We use c1 and equation 1 to construct a first-
order plot kernel (which we call k1), and also as
an ingredient in a second-order character kernel
c2 which takes into account the curve of pairwise
frequencies û, u′ between two characters u and u′

in the same novel.

c2(u, v) = c1(u, v)
∑
u′∈x

∑
v′∈y

e(û, u′, v̂, v′)c1(u′, v′)

In other words, u is similar to v if, for some
relationships of u with other characters u′, there
are similar characters v′ who serves the same role
for v. We use c2 and equation 1 to construct our
full plot kernel k2.

5.1 Sentiment-only baseline
In addition to our plot kernel systems, we imple-
ment a simple baseline intended to test the effec-
tiveness of tracking the emotional trajectory of
the novel without using character identities. We
give our baseline access to the same subjectiv-
ity lexicon used for our temporal features. We
compute the number of emotional words used in
each chapter (regardless of which characters they

co-occur with), smoothed and normalized as de-
scribed in subsection 4.3. This produces a single
time-varying curve for each novel, representing
the average emotional intensity of each chapter.
We use our curve kernel e (equation 2) to mea-
sure similarity between novels.

6 Experiments

We evaluate our kernels on their ability to distin-
guish between real novels from our dataset and
artificial surrogate novels of three types. First, we
alter the order of a real novel by permuting its
chapters before computing features. We construct
one uniformally-random permutation for each test
novel. Second, we change the identities of the
characters by reassigning the temporal features
for the different characters uniformally at random
while leaving the unigram features unaltered. (For
example, we might assign the frequency, emotion
and relationship curves for “Mr. Collins” to “Miss
Elizabeth Bennet” instead.) Again, we produce
one test instance of this type for each test novel.
Third, we experiment with a more difficult order-
ing task by taking the chapters in reverse.

In each case, we use our kernel to perform
a ranking task, deciding whether k(x, y) >
k(x, yperm). Since this is a binary forced-choice
classification, a random baseline would score
50%. We evaluate performance in the case where
we are given only a single training document x,
and for a whole training set X , in which case we
combine the decisions using a weighted nearest
neighbor (WNN) strategy:∑

x∈X
k(x, y) >

∑
x∈X

k(x, yperm)

In each case, we perform the experiment in
a leave-one-out fashion; we include the 11 de-
velopment documents in X , but not in the test
set. Thus there are 1200 single-document compar-
isons and 30 with WNN. The results of our three
systems (the baseline, the first-order kernel k1 and
the second-order kernel k2) are shown in Table
2. (The sentiment-only baseline has no character-
specific features, and so cannot perform the char-
acter task.)

Using the full dataset and second-order kernel
k2, our system’s performance on these tasks is
quite good; we are correct 90% of the time for
order and character examples, and 67% for the

638



order character reverse
sentiment only 46.2 - 51.5
single doc k1 59.5 63.7 50.7
single doc k2 61.8 67.7 51.6
WNN sentiment 50 - 53
WNN k1 77 90 63
WNN k2 90 90 67

Table 2: Accuracy of kernels ranking 30 real novels
against artificial surrogates (chance accuracy 50%).

more difficult reverse cases. Results of this qual-
ity rely heavily on the WNN strategy, which trusts
close neighbors more than distant ones.

In the single training point setup, the system
is much less accurate. In this setting, the sys-
tem is forced to make decisions for all pairs of
texts independently, including pairs it considers
very dissimilar because it has failed to find any
useful correspondences. Performance for these
pairs is close to chance, dragging down overall
scores (52% for reverse) even if the system per-
forms well on pairs where it finds good correspon-
dences, enabling a higher WNN score (67%).

The reverse case is significantly harder than
order. This is because randomly permuting a
novel actually breaks up the temporal continuity
of the text—for instance, a minor character who
appeared in three adjacent chapters might now ap-
pear in three separate places. Reversing the text
does not cause this kind of disruption, so correctly
detecting a reversal requires the system to repre-
sent patterns with a distinct temporal orientation,
for instance an intensification in the main char-
acter’s emotions, or in the number of paragraphs
focusing on pairwise relationships, toward the end
of the text.

The baseline system is ineffective at detecting
either ordering or reversals4. The first-order ker-
nel k1 is as good as k2 in detecting character per-
mutations, but less effective on reorderings and
reversals. As we will show in section 9, k1 places
more emphasis on correspondences between mi-
nor characters and between places, while k2 is
more sensitive to protagonists and their relation-
ships, which carry the richest temporal informa-

4The baseline detects reversals as well as the plot kernels
given only a single point of comparison, but these results do
not transfer to the WNN strategy. This suggests that unlike
the plot kernels, the baseline is no more accurate for docu-
ments it considers similar than for those it judges are distant.

tion.

7 Significance testing

In addition to using our kernel as a classifier, we
can directly test its ability to distinguish real from
altered novels via a non-parametric two-sample
significance test, the Maximum Mean Discrep-
ancy (MMD) test (Gretton et al., 2007). Given
samples from a pair of distributions p and q and
a kernel k, this test determines whether the null
hypothesis that p and q are identically distributed
in the kernel’s feature space can be rejected. The
advantage of this test is that, since it takes all
pairwise comparisons (except self-comparisons)
within and across the classes into account, it uses
more information than our classification experi-
ments, and can therefore be more sensitive.

As in Gretton et al. (2007), we find an unbiased
estimate of the test statistic MMD2 for sample
sets x ∼ p, y ∼ q, each with m samples, by pair-
ing the two as z = (xi, yi) and computing:

MMD2(x, y) =
1

(m)(m− 1)

m∑
i 6=j

h(zi, zj)

h(zi, zj) = k(xi, xj)+k(yi, yj)−k(xi, yj)−k(xj , yi)

Intuitively, MMD2 approaches 0 if the ker-
nel cannot distinguish x from y and is positive
otherwise. The null distribution is computed by
the bootstrap method; we create null-distributed
samples by randomly swapping xi and yi in ele-
ments of z and computing the test statistic. We
use 10000 test permutations. Using both k1 and
k2, we can reject the null hypothesis that the dis-
tribution of novels is equal to order or characters
with p < .001; for reversals, we cannot reject the
null hypothesis.

8 Out-of-domain data

In our main experiments, we tested our kernel
only on romances; here we investigate its ability
to generalize across genres. We take as our train-
ing set X the same romances as above, but as our
test set Y a disjoint set of novels focusing mainly
on crime, children and the supernatural.

Our results (Table 3) are not appreciably differ-
ent from those of the in-domain experiments (Ta-
ble 2) considering the small size of the dataset.
This shows our system to be robust, but shallow;
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order character reverse
sentiment only 33.0 - 53.4
single doc k1 59.5 61.7 52.7
single doc k2 63.7 62.0 57.3
WNN sentiment 20 - 70
WNN k1 80 90 80
WNN k2 100 80 70

Table 3: Accuracy of kernels ranking 10 non-romance
novels against artificial surrogates, with 41 romances
used for comparison.

the patterns it can represent generalize acceptably
across domains, but this suggests it is describing
broad concepts like “main character” rather than
genre-specific ones like “female romantic lead”.

9 Character-level analysis

To gain some insight into exactly what kinds of
similarities the system picks up on when compar-
ing two works, we sorted the characters detected
by our system into categories and measured their
contribution to the kernel’s overall scores. We
selected four Jane Austen works from the devel-
opment set5 and hand-categorized each character
detected by our system. (We performed the cate-
gorization based on the most common full name
mention in each cluster. This name is usually a
good identifier for all the mentions in the cluster,
but if our coreference system has made an error, it
may not be.)

Our categorization for characters is intended to
capture the stereotypical plot dynamics of liter-
ary romance, sorting the characters according to
their gender and a simple notion of their plot func-
tion. The genders are female, male, plural (“the
Crawfords”) or not a character (“London”). The
functional classes are protagonist (used for the
female viewpoint character and her eventual hus-
band), marriageable (single men and women
who are seeking to marry within the story) and
other (older characters, children, and characters
married before the story begins).

We evaluate the pairwise kernel similarities
among our four works, and add up the propor-
tional contribution made by character pairs of
each type to the eventual score. (For instance,
the similarity between “Elizabeth Bennet” and

5Pride and Prejudice, Emma, Mansfield Park and Per-
suasion.

“Emma Woodhouse”, both labeled “female pro-
tagonist”, contributes 26% of the kernel similarity
between the works in which they appear.) We plot
these as Hinton-style diagrams in Figure 2. The
size of each black rectangle indicates the magni-
tude of the contribution. (Since kernel functions
are symmetric, we show only the lower diagonal.)

Under the kernel for unigram features, d
(top), the most common character types—non-
characters (almost always places) and non-
marriageable women—contribute most to the ker-
nel scores; this is especially true for places, since
they often occur with similar descriptive terms.
The diagram also shows the effect of the kernel’s
penalty for gender mismatches, since females pair
more strongly with females and males with males.
Character roles have relatively little impact.

The first-order kernel c1 (middle), which takes
into account frequency and emotion as well as un-
igrams, is much better than d at distinguishing
places from real characters, and assigns somewhat
more weight to protagonists.

Finally, c2 (bottom), which takes into account
second-order relationships, places much more
emphasis on female protagonists and much less
on places. This is presumably because the female
protagonists of Jane Austen’s novels are the view-
point characters, and the novels focus on their re-
lationships, while characters do not tend to have
strong relationships with places. An increased
tendency to match male marriageable characters
with marriageable females, and “other” males
with “other” females, suggests that c2 relies more
on character function and less on unigrams than
c1 when finding correspondences between char-
acters.

As we concluded in the previous section, the
frequent confusion between categories suggests
that the analogies we construct are relatively non-
specific. We might hope to create role-based sum-
mary of novels by finding their nearest neighbors
and then propagating the character categories (for
example, “ is the protagonist of this novel. She
lives at . She eventually marries , her other
suitors are and her older guardian is .”)
but the present system is probably not adequate
for the purpose. We expect that detecting a fine-
grained set of emotions will help to separate char-
acter functions more clearly.
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Figure 2: Affinity diagrams showing character types
contributing to the kernel similarity between four
works by Jane Austen.

10 Conclusions

This work presents a method for describing nov-
elistic plots at an abstract level. It has three main
contributions: the description of a plot in terms
of analogies between characters, the use of emo-
tional and frequency trajectories for individual
characters rather than whole works, and evalua-
tion using artificially disordered surrogate novels.
In future work, we hope to sharpen the analogies
we construct so that they are useful for summa-
rization, perhaps by finding an external standard
by which we can make the notion of “analogous”
characters precise. We would also like to investi-
gate what gains are possible with a finer-grained
emotional vocabulary.
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A List of texts
Dev set (11 works)

Austen Emma, Mansfield Park, Northanger
Abbey, Persuasion, Pride and Prej-
udice, Sense and Sensibility

Brontë, Emily Wuthering Heights

Burney Cecilia (1782) Hardy Tess of the D’Urbervilles
James The Ambassadors Scott Ivanhoe

Test set (30 works)
Braddon Aurora Floyd Brontë, Anne The Tenant of Wildfell Hall
Brontë, Charlotte Jane Eyre, Villette Bulwer-Lytton Zanoni
Disraeli Coningsby, Tancred Edgeworth The Absentee, Belinda, Helen
Eliot Adam Bede, Daniel Deronda, Mid-

dlemarch
Gaskell Mary Barton, North and South

Gissing In the Year of Jubilee, New Grub
Street

Hardy Far From the Madding Crowd, Jude
the Obscure, Return of the Native,
Under the Greenwood Tree

James The Wings of the Dove Meredith The Egoist, The Ordeal of Richard
Feverel

Scott The Bride of Lammermoor Thackeray History of Henry Esmond, History
of Pendennis, Vanity Fair

Trollope Doctor Thorne
Out-of-domain set (10 works)

Ainsworth The Lancashire Witches Bulwer-Lytton Paul Clifford
Dickens Oliver Twist, The Pickwick Papers Collins The Moonstone
Conan-Doyle A Study in Scarlet, The Sign of the

Four
Hughes Tom Brown’s Schooldays

Stevenson Treasure Island Stoker Dracula

Table 4: 19th century novels used in our study.
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Abstract

Morphological lexica are often imple-
mented on top of morphological paradigms,
corresponding to different ways of building
the full inflection table of a word. Compu-
tationally precise lexica may use hundreds
of paradigms, and it can be hard for a lex-
icographer to choose among them. To au-
tomate this task, this paper introduces the
notion of a smart paradigm. It is a meta-
paradigm, which inspects the base form and
tries to infer which low-level paradigm ap-
plies. If the result is uncertain, more forms
are given for discrimination. The number
of forms needed in average is a measure
of predictability of an inflection system.
The overall complexity of the system also
has to take into account the code size of
the paradigms definition itself. This pa-
per evaluates the smart paradigms imple-
mented in the open-source GF Resource
Grammar Library. Predictability and com-
plexity are estimated for four different lan-
guages: English, French, Swedish, and
Finnish. The main result is that predictabil-
ity does not decrease when the complex-
ity of morphology grows, which means that
smart paradigms provide an efficient tool
for the manual construction and/or auto-
matically bootstrapping of lexica.

1 Introduction

Paradigms are a cornerstone of grammars in the
European tradition. A classical Latin grammar
has five paradigms for nouns (“declensions”) and
four for verbs (“conjugations”). The modern ref-
erence on French verbs, Bescherelle (Bescherelle,
1997), has 88 paradigms for verbs. Swedish
grammars traditionally have, like Latin, five
paradigms for nouns and four for verbs, but a
modern computational account (Hellberg, 1978),

aiming for more precision, has 235 paradigms for
Swedish.

Mathematically, a paradigm is a function that
produces inflection tables. Its argument is a word
string (either a dictionary form or a stem), and
its value is an n-tuple of strings (the word forms):

P : String→ Stringn

We assume that the exponent n is determined by
the language and the part of speech. For instance,
English verbs might have n = 5 (for sing, sings,
sang, sung, singing), whereas for French verbs in
Bescherelle, n = 51. We assume the tuples to
be ordered, so that for instance the French sec-
ond person singular present subjunctive is always
found at position 17. In this way, word-paradigm
pairs can be easily converted to morphogical lex-
ica and to transducers that map form descriptions
to surface forms and back. A properly designed
set of paradigms permits a compact representation
of a lexicon and a user-friendly way to extend it.

Different paradigm systems may have different
numbers of paradigms. There are two reasons for
this. One is that traditional paradigms often in fact
require more arguments than one:

P : Stringm → Stringn

Here m ≤ n and the set of arguments is a subset
of the set of values. Thus the so-called fourth verb
conjugation in Swedish actually needs three forms
to work properly, for instance sitta, satt, suttit for
the equivalent of sit, sat, sat in English. In Hell-
berg (1978), as in the French Bescherelle, each
paradigm is defined to take exactly one argument,
and hence each vowel alternation pattern must be
a different paradigm.

The other factor that affects the number of
paradigms is the nature of the string operations
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allowed in the function P . In Hellberg (1978),
noun paradigms only permit the concatenation of
suffixes to a stem. Thus the paradigms are iden-
tified with suffix sets. For instance, the inflection
patterns bil–bilar (“car–cars”) and nyckel–nycklar
(“key–keys”) are traditionally both treated as in-
stances of the second declension, with the plural
ending ar and the contraction of the unstressed
e in the case of nyckel. But in Hellberg, the
word nyckel has nyck as its “technical stem”, to
which the paradigm numbered 231 adds the sin-
gular ending el and the plural ending lar.

The notion of paradigm used in this paper al-
lows multiple arguments and powerful string op-
erations. In this way, we will be able to reduce
the number of paradigms drastically: in fact, each
lexical category (noun, adjective, verb), will have
just one paradigm but with a variable number of
arguments. Paradigms that follow this design will
be called smart paradigms and are introduced
in Section 2. Section 3 defines the notions of
predictability and complexity of smart paradigm
systems. Section 4 estimates these figures for four
different languages of increasing richness in mor-
phology: English, Swedish, French, and Finnish.
We also evaluate the smart paradigms as a data
compression method. Section 5 explores some
uses of smart paradigms in lexicon building. Sec-
tion 6 compares smart paradigms with related
techniques such as morphology guessers and ex-
traction tools. Section 7 concludes.

2 Smart paradigms

In this paper, we will assume a notion of paradigm
that allows multiple arguments and arbitrary com-
putable string operations. As argued in (Ka-
plan and Kay, 1994) and amply demonstrated in
(Beesley and Karttunen, 2003), no generality is
lost if the string operators are restricted to ones
computable by finite-state transducers. Thus the
examples of paradigms that we will show (only
informally), can be converted to matching and re-
placements with regular expressions.

For example, a majority of French verbs can
be defined by the following paradigm, which
analyzes a variable-size suffix of the infinitive
form and dispatches to the Bescherelle paradigms
(identified by a number and an example verb):

mkV : String→ String51

mkV(s) =

• conj19finir(s), if s ends ir
• conj53rendre(s), if s ends re
• conj14assiéger(s), if s ends éger
• conj11jeter(s), if s ends eler or

eter
• conj10céder(s), if s ends éder
• conj07placer(s), if s ends cer
• conj08manger(s), if s ends ger
• conj16payer(s), if s ends yer
• conj06parler(s), if s ends er

Notice that the cases must be applied in the given
order; for instance, the last case applies only to
those verbs ending with er that are not matched
by the earlier cases.

Also notice that the above paradigm is just
like the more traditional ones, in the sense that
we cannot be sure if it really applies to a given
verb. For instance, the verb partir ends with ir
and would hence receive the same inflection as
finir; however, its real conjugation is number 26
in Bescherelle. That mkV uses 19 rather than
number 26 has a good reason: a vast majority of
ir verbs is inflected in this conjugation, and it is
also the productive one, to which new ir verbs are
added.

Even though there is no mathematical differ-
ence between the mkV paradigm and the tradi-
tional paradigms like those in Bescherelle, there
is a reason to call mkV a smart paradigm. This
name implies two things. First, a smart paradigm
implements some “artificial intelligence” to pick
the underlying “stupid” paradigm. Second, a
smart paradigm uses heuristics (informed guess-
ing) if string matching doesn’t decide the matter;
the guess is informed by statistics of the distribu-
tions of different inflection classes.

One could thus say that smart paradigms are
“second-order” or “meta-paradigms”, compared
to more traditional ones. They implement a
lot of linguistic knowledge and intelligence, and
thereby enable tasks such as lexicon building to
be performed with less expertise than before. For
instance, instead of “07” for foncer and “06”
for marcher, the lexicographer can simply write
“mkV” for all verbs instead of choosing from 88
numbers.

In fact, just “V”, indicating that the word is
a verb, will be enough, since the name of the
paradigm depends only on the part of speech.
This follows the model of many dictionaries and
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methods of language teaching, where character-
istic forms are used instead of paradigm identi-
fiers. For instance, another variant of mkV could
use as its second argument the first person plural
present indicative to decide whether an ir verb is
in conjugation 19 or in 26:

mkV : String2 → String51

mkV(s, t) =

• conj26partir(s), if for some x, s =
x+ir and t = x+ons
• conj19finir(s), if s ends with ir
• (all the other cases that can be rec-

ognized by this extra form)
• mkV(s) otherwise (fall-back to the

one-argument paradigm)

In this way, a series of smart paradigms is built
for each part of speech, with more and more ar-
guments. The trick is to investigate which new
forms have the best discriminating power. For
ease of use, the paradigms should be displayed to
the user in an easy to understand format, e.g. as a
table specifying the possible argument lists:

verb parler
verb parler, parlons
verb parler, parlons, parlera, parla, parlé
noun chien
noun chien, masculine
noun chien, chiens, masculine

Notice that, for French nouns, the gender is listed
as one of the pieces of information needed for
lexicon building. In many cases, it can be in-
ferred from the dictionary form just like the in-
flection; for instance, that most nouns ending e
are feminine. A gender argument in the smart
noun paradigm makes it possible to override this
default behaviour.

2.1 Paradigms in GF
Smart paradigms as used in this paper have been
implemented in the GF programming language
(Grammatical Framework, (Ranta, 2011)). GF is
a functional programming lnguage enriched with
regular expressions. For instance, the following
function implements a part of the one-argument
French verb paradigm shown above. It uses a case
expression to pattern match with the argument s;
the pattern _ matches anything, while + divides a
string to two pieces, and | expresses alternation.
The functions conj19finir etc. are defined

elsewhere in the library. Function application is
expressed without parentheses, by the juxtaposi-
tion of the function and the argument.

mkV : Str -> V
mkV s = case s of {

_ + "ir" -> conj19finir s ;
_ + ("eler"|"eter")

-> conj11jeter s ;
_ + "er" -> conj06parler s ;
}

The GF Resource Grammar Library1 has
comprehensive smart paradigms for 18 lan-
guages: Amharic, Catalan, Danish, Dutch, En-
glish, Finnish, French, German, Hindi, Italian,
Nepalese, Norwegian, Romanian, Russian, Span-
ish, Swedish, Turkish, and Urdu. A few other lan-
guages have complete sets of ”traditional” inflec-
tion paradigms but no smart paradigms.

Six languages in the library have comprehen-
sive morphological dictionaries: Bulgarian (53k
lemmas), English (42k), Finnish (42k), French
(92k), Swedish (43k), and Turkish (23k). They
have been extracted from other high-quality re-
sources via conversions to GF using the paradigm
systems. In Section 4, four of them will be used
for estimating the strength of the smart paradigms,
that is, the predictability of each language.

3 Cost, predictability, and complexity

Given a languageL, a lexical category C, and a set
P of smart paradigms for C, the predictability of
the morphology of C in L by P depends inversely
on the average number of arguments needed to
generate the correct inflection table for a word.
The lower the number, the more predictable the
system.

Predictability can be estimated from a lexicon
that contains such a set of tables. Formally, a
smart paradigm is a family Pm of functions

Pm : Stringm → Stringn

where m ranges over some set of integers from 1
to n, but need not contain all those integers. A
lexicon L is a finite set of inflection tables,

L = {wi : Stringn | i = 1, . . . ,ML}

1 Source code and documentation in http://www.
grammaticalframework.org/lib.
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As the n is fixed, this is a lexicon specialized to
one part of speech. A word is an element of the
lexicon, that is, an inflection table of size n.

An application of a smart paradigm Pm to a
word w ∈ L is an inflection table resulting from
applying Pm to the appropriate subset σm(w) of
the inflection table w,

Pm[w] = Pm(σm(w)) : Stringn

Thus we assume that all arguments are existing
word forms (rather than e.g. stems), or features
such as the gender.

An application is correct if

Pm[w] = w

The cost of a word w is the minimum number of
arguments needed to make the application correct:

cost(w) = argmin
m

(Pm[w] = w)

For practical applications, it is useful to require
Pm to be monotonic, in the sense that increasing
m preserves correctness.

The cost of a lexicon L is the average cost for
its words,

cost(L) =

ML∑
i=1

cost(wi)

ML

where ML is the number of words in the lexicon,
as defined above.

The predictability of a lexicon could be de-
fined as a quantity inversely dependent on its cost.
For instance, an information-theoretic measure
could be defined

predict(L) =
1

1 + log cost(L)

with the intuition that each added argument cor-
responds to a choice in a decision tree. However,
we will not use this measure in this paper, but just
the concrete cost.

The complexity of a paradigm system is de-
fined as the size of its code in a given coding
system, following the idea of Kolmogorov com-
plexity (Solomonoff, 1964). The notion assumes
a coding system, which we fix to be GF source
code. As the results are relative to the coding
system, they are only usable for comparing def-
initions in the same system. However, using GF

source code size rather than e.g. a finite automa-
ton size gives in our view a better approximation
of the “cognitive load” of the paradigm system,
its “learnability”. As a functional programming
language, GF permits abstractions comparable to
those available for human language learners, who
don’t need to learn the repetitive details of a finite
automaton.

We define the code complexity as the size of
the abstract syntax tree of the source code. This
size is given as the number of nodes in the syntax
tree; for instance,

• size(f(x1, . . . , xn)) = 1 +

n∑
i=1

size(xi)

• size(s) = 1, for a string literal s
Using the abstract syntax size makes it possible
to ignore programmer-specific variation such as
identifier size. Measurements of the GF Resource
Grammar Library show that code size measured
in this way is in average 20% of the size of source
files in bytes. Thus a source file of 1 kB has the
code complexity around 200 on the average.

Notice that code complexity is defined in a way
that makes it into a straightforward generaliza-
tion of the cost of a word as expressed in terms
of paradigm applications in GF source code. The
source code complexity of a paradigm application
is

size(Pm[w]) = 1 +m

Thus the complexity for a word w is its cost plus
one; the addition of one comes from the applica-
tion node for the function Pm and corresponds to
knowing the part of speech of the word.

4 Experimental results

We conducted experiments in four languages (En-
glish, Swedish, French and Finnish2), presented
here in order of morphological richness. We used
trusted full form lexica (i.e. lexica giving the com-
plete inflection table of every word) to compute
the predictability, as defined above, in terms of
the smart paradigms in GF Resource Grammar Li-
brary.

We used a simple algorithm for computing the
cost c of a lexicon L with a set Pm of smart
paradigms:

2This choice correspond to the set of language for which
both comprehensive smart paradigms and morphological
dictionaries were present in GF with the exception of Turk-
ish, which was left out because of time constraints.
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• set c := 0

• for each word wi in L,

– for each m in growing order for which
Pm is defined:
if Pm[w] = w, then c := c+m, else try
with next m

• return c

The average cost is c divided by the size of L.
The procedure presupposes that it is always

possible to get the correct inflection table. For
this to be true, the smart paradigms must have a
“worst case scenario” version that is able to gen-
erate all forms. In practice, this was not always
the case but we checked that the number of prob-
lematic words is so small that it wouldn’t be sta-
tistically significant. A typical problem word was
the equivalent of the verb be in each language.

Another source of deviation is that a lexicon
may have inflection tables with size deviating
from the number n that normally defines a lex-
ical category. Some words may be “defective”,
i.e. lack some forms (e.g. the singular form
in “plurale tantum” words), whereas some words
may have several variants for a given form (e.g.
learned and learnt in English). We made no ef-
fort to predict defective words, but just ignored
them. With variant forms, we treated a prediction
as correct if it matched any of the variants.

The above algorithm can also be used for help-
ing to select the optimal sets of characteristic
forms; we used it in this way to select the first
form of Swedish verbs and the second form of
Finnish nouns.

The results are collected in Table 1. The sec-
tions below give more details of the experiment in
each language.

4.1 English

As gold standard, we used the electronic version
of the Oxford Advanced Learner’s Dictionary of
Current English3 which contains about 40,000
root forms (about 70,000 word forms).

Nouns. We considered English nouns as hav-
ing only two forms (singular and plural), exclud-
ing the genitive forms which can be considered to
be clitics and are completely predictable. About

3available in electronic form at http://www.eecs.
qmul.ac.uk/˜mpurver/software.html

one third of the nouns of the lexicon were not in-
cluded in the experiment because one of the form
was missing. The vast majority of the remaining
15,000 nouns are very regular, with predictable
deviations such as kiss - kisses and fly - flies which
can be easily predicted by the smart paradigm.
With the average cost of 1.05, this was the most
predictable lexicon in our experiment.

Verbs. Verbs are the most interesting category
in English because they present the richest mor-
phology. Indeed, as shown by Table 1, the cost
for English verbs, 1.21, is similar to what we got
for morphologically richer languages.

4.2 Swedish

As gold standard, we used the SALDO lexicon
(Borin et al., 2008).

Nouns. The noun inflection tables had 8
forms (singular/plural indefinite/definite nomina-
tive/genitive) plus a gender (uter/neuter). Swedish
nouns are intrinsically very unpredictable, and
there are many examples of homonyms falling un-
der different paradigms (e.g. val - val “choice” vs.
val -valar “whale”). The cost 1.70 is the highest
of all the lexica considered. Of course, there may
be room for improving the smart paradigm.

Verbs. The verbs had 20 forms, which in-
cluded past participles. We ran two experiments,
by choosing either the infinitive or the present in-
dicative as the base form. In traditional Swedish
grammar, the base form of the verb is considered
to be the infinitive, e.g. spela, leka (“play” in
two different senses). But this form doesn’t dis-
tinguish between the “first” and the “second con-
jugation”. However, the present indicative, here
spelar, leker, does. Using it gives a predictive
power 1.13 as opposed to 1.22 with the infinitive.
Some modern dictionaries such as Lexin4 there-
fore use the present indicative as the base form.

4.3 French

For French, we used the Morphalou morpholog-
ical lexicon (Romary et al., 2004). As stated in
the documentation5 the current version of the lex-
icon (version 2.0) is not complete, and in par-
ticular, many entries are missing some or all in-
flected forms. So for those experiments we only

4http://lexin.nada.kth.se/lexin/
5http://www.cnrtl.fr/lexiques/

morphalou/LMF-Morphalou.php#body_3.4.11,
accessed 2011-11-04
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Table 1: Lexicon size and average cost for the nouns (N) and verbs (V) in four languages, with the percentage of
words correctly inferred from one and two forma (i.e. m = 1 and m ≤ 2, respectively).

Lexicon Forms Entries Cost m = 1 m ≤ 2

Eng N 2 15,029 1.05 95% 100%

Eng V 5 5,692 1.21 84% 95%

Swe N 9 59,225 1.70 46% 92%

Swe V 20 4,789 1.13 97% 97%

Fre N 3 42,390 1.25 76% 99%

Fre V 51 6,851 1.27 92% 94%

Fin N 34 25,365 1.26 87% 97%

Fin V 102 10,355 1.09 96% 99%

included entries where all the necessary forms
were presents.

Nouns: Nouns in French have two forms (sin-
gular and plural) and an intrinsic gender (mascu-
line or feminine), which we also considered to be
a part of the inflection table. Most of the unpre-
dictability comes from the impossibility to guess
the gender.

Verbs: The paradigms generate all of the sim-
ple (as opposed to compound) tenses given in tra-
ditional grammars such as the Bescherelle. Also
the participles are generated. The auxiliary verb
of compound tenses would be impossible to guess
from morphological clues, and was left out of
consideration.

4.4 Finnish

The Finnish gold standard was the KOTUS lexi-
con (Kotimaisten Kielten Tutkimuskeskus, 2006).
It has around 90,000 entries tagged with part
of speech, 50 noun paradigms, and 30 verb
paradigms. Some of these paradigms are rather
abstract and powerful; for instance, grade alterna-
tion would multiply many of the paradigms by a
factor of 10 to 20, if it was treated in a concate-
native way. For instance, singular nominative-
genitive pairs show alternations such as talo–talon
(“house”), katto–katon (“roof”), kanto–kannon
(“stub”), rako–raon (“crack”), and sato–sadon
(“harvest”). All of these are treated with one and
the same paradigm, which makes the KOTUS sys-
tem relatively abstract.

The total number of forms of Finnish nouns and
verbs is a question of definition. Koskenniemi
(Koskenniemi, 1983) reports 2000 for nouns and
12,000 for verbs, but most of these forms result by
adding particles and possessive suffixes in an ag-

glutinative way. The traditional number and case
count for nouns gives 26, whereas for verbs the
count is between 100 and 200, depending on how
participles are counted. Notice that the definition
of predictability used in this paper doesn’t depend
on the number of forms produced (i.e. not on n
but only on m); therefore we can simply ignore
this question. However, the question is interesting
if we think about paradigms as a data compression
method (Section 4.5).

Nouns. Compound nouns are a problem for
morphology prediction in Finnish, because inflec-
tion is sensitive to the vowel harmony and num-
ber of syllables, which depend on where the com-
pound boundary goes. While many compounds
are marked in KOTUS, we had to remove some
compounds with unmarked boundaries. Another
peculiarity was that adjectives were included in
nouns; this is no problem since the inflection pat-
terns are the same, if comparison forms are ig-
nored. The figure 1.26 is better than the one re-
ported in (Ranta, 2008), which is 1.42; the reason
is mainly that the current set of paradigms has a
better coverage of three-syllable nouns.

Verbs. Even though more numerous in forms
than nouns, Finnish verbs are highly predictable
(1.09).

4.5 Complexity and data compression

The cost of a lexicon has an effect on learnabil-
ity. For instance, even though Finnish words have
ten or a hundred times more forms than English
forms, these forms can be derived from roughly
the same number of characteristic forms as in En-
glish. But this is of course just a part of the truth:
it might still be that the paradigm system itself is
much more complex in some languages than oth-
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Table 2: Paradigm complexities for nouns and verbs
in the four languages, computed as the syntax tree size
of GF code.

language noun verb total
English 403 837 991
Swedish 918 1039 1884
French 351 2193 2541
Finnish 4772 3343 6885

ers.
Following the definitions of Section 3, we have

counted the the complexity of the smart paradigm
definitions for nouns and verbs in the different
languages in the GF Resource Grammar Library.
Notice that the total complexity of the system is
lower than the sum of the parts, because many
definitions (such as morphophonological transfor-
mations) are reused in different parts of speech.
The results are in Table 2.

These figures suggest that Finnish indeed has a
more complex morphology than French, and En-
glish is the simplest. Of course, the paradigms
were not implemented with such comparisons in
mind, and it may happen that some of the differ-
ences come from different coding styles involved
in the collaboratively built library. Measuring
code syntax trees rather than source code text neu-
tralizes some of this variation (Section 3).

Finally, we can estimate the power of smart
paradigms as a data compression function. In a
sense, a paradigm is a function designed for the
very purpose of compressing a lexicon, and one
can expect better compression than with generic
tools such as bzip2. Table 3 shows the compres-
sion rates for the same full-form lexica as used
in the predictability experiment (Table 1). The
sizes are in kilobytes, where the code size for
paradigms is calculated as the number of con-
structors multiplied by 5 (Section 3). The source
lexicon size is a simple character count, similar to
the full-form lexicon.

Unexpectedly, the compression rate of the
paradigms improves as the number of forms in
the full-form lexicon increases (see Table 1 for
these numbers). For English and French nouns,
bzip2 is actually better. But of course, unlike
the paradigms, it also gives a global compression
over all entries in the lexicon. Combining the
two methods by applying bzip2 to the source code

gives, for the Finnish verb lexicon, a file of 60 kB,
which implies a joint compression rate of 227.

That the compression rates for the code can be
higher than the numbers of forms in the full-form
lexicon is explained by the fact that the gener-
ated forms are longer than the base forms. For
instance, the full-form entry of the Finnish verb
uida (”swim”) is 850 bytes, which means that the
average form size is twice the size of the basic
form.

5 Smart paradigms in lexicon building

Building a high-quality lexicon needs a lot of
manual work. Traditionally, when one is not writ-
ing all the forms by hand (which would be almost
impossible in languages with rich morphology),
sets of paradigms are used that require the lexi-
cographer to specify the base form of the word
and an identifier for the paradigm to use. This has
several usability problems: one has to remember
all the paradigm identifiers and choose correctly
from them.

Smart paradigm can make this task easier, even
accessible to non-specialist, because of their abil-
ity to guess the most probable paradigm from a
single base form. As shown by Table 1, this is
more often correct than not, except for Swedish
nouns. If this information is not enough, only a
few more forms are needed, requiring only prac-
tical knowledge of the language. Usually (92% to
100% in Table 1), adding a second form (m = 2)
is enough to cover all words. Then the best prac-
tice for lexicon writing might be always to give
these two forms instead of just one.

Smart paradigms can also be used for an auto-
matic bootstrapping of a list of base forms into a
full form lexicon. As again shown by the last col-
umn of Table 1, one form alone can provide an
excellent first approximation in most cases. What
is more, it is often the case that uncaught words
belong to a limited set of “irregular” words, such
as the irregular verbs in many languages. All new
words can then be safely inferred from the base
form by using smart paradigms.

6 Related work

Smart paradigms were used for a study of Finnish
morphology in (Ranta, 2008). The present paper
can be seen as a generalization of that experiment
to more languages and with the notion of code
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Table 3: Comparison between using bzip2 and paradigms+lexicon source as a compression method. Sizes in
kB.

Lexicon Fullform bzip2 fullform/bzip2 Source fullform/source
Eng N 264 99 2.7 135 2.0
Eng V 245 78 3.2 57 4.4
Swe N 6,243 1,380 4.5 1,207 5.3
Swe V 840 174 4.8 58 15
Fre N 952 277 3.4 450 2.2
Fre V 3,888 811 4.8 98 40
Fin N 11,295 2,165 5.2 343 34
Fin V 13,609 2,297 5.9 123 114

complexity. Also the paradigms for Finnish are
improved here (cf. Section 4.4 above).

Even though smart paradigm-like descriptions
are common in language text books, there is to
our knowledge no computational equivalent to the
smart paradigms of GF. Finite state morphology
systems often have a function called a guesser,
which, given a word form, tries to guess either
the paradigm this form belongs to or the dictio-
nary form (or both). A typical guesser differs
from a smart paradigms in that it does not make
it possible to correct the result by giving more
forms. Examples of guessers include (Chanod
and Tapanainen, 1995) for French, (Hlaváčová,
2001) for Czech, and (Nakov et al., 2003) for Ger-
man.

Another related domain is the unsupervised
learning of morphology where machine learning
is used to automatically build a language mor-
phology from corpora (Goldsmith, 2006). The
main difference is that with the smart paradigms,
the paradigms and the guess heuristics are imple-
mented manually and with a high certainty; in un-
supervised learning of morphology the paradigms
are induced from the input forms with much lower
certainty. Of particular interest are (Chan, 2006)
and (Dreyer and Eisner, 2011), dealing with the
automatic extraction of paradigms from text and
investigate how good these can become. The main
contrast is, again, that our work deals with hand-
written paradigms that are correct by design, and
we try to see how much information we can drop
before losing correctness.

Once given, a set of paradigms can be used in
automated lexicon extraction from raw data, as in
(Forsberg et al., 2006) and (Clément et al., 2004),
by a method that tries to collect a sufficient num-

ber of forms to determine that a word belongs to a
certain paradigm. Smart paradigms can then give
the method to actually construct the full inflection
tables from the characteristic forms.

7 Conclusion

We have introduced the notion of smart
paradigms, which implement the linguistic
knowledge involved in inferring the inflection of
words. We have used the paradigms to estimate
the predictability of nouns and verbs in English,
Swedish, French, and Finnish. The main result
is that, with the paradigms used, less than two
forms in average is always enough. In half of the
languages and categories, one form is enough to
predict more than 90% of forms correctly. This
gives a promise for both manual lexicon building
and automatic bootstrapping of lexicon from
word lists.

To estimate the overall complexity of inflection
systems, we have also measured the size of the
source code for the paradigm systems. Unsurpris-
ingly, Finnish is around seven times as complex
as English, and around three times as complex as
Swedish and French. But this cost is amortized
when big lexica are built.

Finally, we looked at smart paradigms as a data
compression method. With simple morphologies,
such as English nouns, bzip2 gave a better com-
pression of the lexicon than the source code us-
ing paradigms. But with Finnish verbs, the com-
pression rate was almost 20 times higher with
paradigms than with bzip2.

The general conclusion is that smart paradigms
are a good investment when building morpho-
logical lexica, as they ease the task of both hu-
man lexicographers and automatic bootstrapping
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methods. They also suggest a method to assess
the complexity and learnability of languages, re-
lated to Kolmogorov complexity. The results in
the current paper are just preliminary in this re-
spect, since they might still tell more about par-
ticular implementations of paradigms than about
the languages themselves.

Acknowledgements
We are grateful to the anonymous referees for
valuable remarks and questions. The research
leading to these results has received funding from
the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement
no FP7-ICT-247914 (the MOLTO project).

References
[Beesley and Karttunen2003] Kenneth R. Beesley and

Lauri Karttunen. 2003. Finite State Morphology.
CSLI Publications.

[Bescherelle1997] Bescherelle. 1997. La conjugaison
pour tous. Hatier.

[Borin et al.2008] Lars Borin, Markus Forsberg, and
Lennart Lönngren. 2008. Saldo 1.0 (svenskt as-
sociationslexikon version 2). Språkbanken, 05.
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Abstract

We propose a novel method for learning
morphological paradigms that are struc-
tured within a hierarchy. The hierarchi-
cal structuring of paradigms groups mor-
phologically similar words close to each
other in a tree structure. This allows detect-
ing morphological similarities easily lead-
ing to improved morphological segmen-
tation. Our evaluation using (Kurimo et
al., 2011a; Kurimo et al., 2011b) dataset
shows that our method performs competi-
tively when compared with current state-of-
art systems.

1 Introduction

Unsupervised morphological segmentation of a
text involves learning rules for segmenting words
into their morphemes. Morphemes are the small-
est meaning bearing units of words. The learn-
ing process is fully unsupervised, using only raw
text as input to the learning system. For example,
the word respectively is split into morphemes re-
spect, ive and ly. Many fields, such as machine
translation, information retrieval, speech recog-
nition etc., require morphological segmentation
since new words are always created and storing
all the word forms will require a massive dictio-
nary. The task is even more complex, when mor-
phologically complicated languages (i.e. agglu-
tinative languages) are considered. The sparsity
problem is more severe for more morphologically
complex languages. Applying morphological seg-
mentation mitigates data sparsity by tackling the
issue with out-of-vocabulary (OOV) words.

In this paper, we propose a paradigmatic ap-
proach. A morphological paradigm is a pair

(StemList, SuffixList) such that each concatena-
tion of Stem+Suffix (where Stem ∈ StemList and
Suffix ∈ SuffixList) is a valid word form. The
learning of morphological paradigms is not novel
as there has already been existing work in this area
such as Goldsmith (2001), Snover et al. (2002),
Monson et al. (2009), Can and Manandhar (2009)
and Dreyer and Eisner (2011). However, none of
these existing approaches address learning of the
hierarchical structure of paradigms.

Hierarchical organisation of words help cap-
ture morphological similarities between words in
a compact structure by factoring these similarities
through stems, suffixes or prefixes. Our inference
algorithm simultaneously infers latent variables
(i.e. the morphemes) along with their hierarchical
organisation. Most hierarchical clustering algo-
rithms are single-pass, where once the hierarchi-
cal structure is built, the structure does not change
further.

The paper is structured as follows: section 2
gives the related work, section 3 describes the
probabilistic hierarchical clustering scheme, sec-
tion 4 explains the morphological segmenta-
tion model by embedding it into the clustering
scheme and describes the inference algorithm
along with how the morphological segmentation
is performed, section 5 presents the experiment
settings along with the evaluation scores, and fi-
nally section 6 presents a discussion with a com-
parison with other systems that participated in
Morpho Challenge 2009 and 2010 .

2 Related Work

We propose a Bayesian approach for learning of
paradigms in a hierarchy. If we ignore the hierar-
chical aspect of our learning algorithm, then our
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walk walking talked  talks

{walk}{0,ing} {talk}{ed,s} {quick}{0,ly}

quick quickly

{walk, talk, quick}{0,ed,ing,ly, s}

{walk, talk}{0,ed,ing,s}

Figure 1: A sample tree structure.

method is similar to the Dirichlet Process (DP)
based model of Goldwater et al. (2006). From
this perspective, our method can be understood
as adding a hierarchical structure learning layer
on top of the DP based learning method proposed
in Goldwater et al. (2006). Dreyer and Eisner
(2011) propose an infinite Diriclet mixture model
for capturing paradigms. However, they do not
address learning of hierarchy.

The method proposed in Chan (2006) also
learns within a hierarchical structure where La-
tent Dirichlet Allocation (LDA) is used to find
stem-suffix matrices. However, their work is su-
pervised, as true morphological analyses of words
are provided to the system. In contrast, our pro-
posed method is fully unsupervised.

3 Probabilistic Hierarchical Model

The hierarchical clustering proposed in this work
is different from existing hierarchical clustering
algorithms in two aspects:

• It is not single-pass as the hierarchical struc-
ture changes.

• It is probabilistic and is not dependent on a
distance metric.

3.1 Mathematical Definition

In this paper, a hierarchical structure is a binary
tree in which each internal node represents a clus-
ter.

Let a data set be D = {x1, x2, . . . , xn} and
T be the entire tree, where each data point xi is
located at one of the leaf nodes (see Figure 2).
Here, Dk denotes the data points in the branch
Tk. Each node defines a probabilistic model for
words that the cluster acquires. The probabilistic

Di

Dk

Dj

X1 X2 X3 X4

Figure 2: A segment of a tree with with internal nodes
Di, Dj , Dk having data points {x1, x2, x3, x4}. The
subtree below the internal node Di is called Ti, the
subtree below the internal node Dj is Tj , and the sub-
tree below the internal node Dk is Tk.

model can be denoted as p(xi|θ) where θ denotes
the parameters of the probabilistic model.

The marginal probability of data in any node
can be calculated as:

p(Dk) =

∫
p(Dk|θ)p(θ|β)dθ (1)

The likelihood of data under any subtree is de-
fined as follows:

p(Dk|Tk) = p(Dk)p(Dl|Tl)p(Dr|Tr) (2)

where the probability is defined in terms of left Tl

and right Tr subtrees. Equation 2 provides a re-
cursive decomposition of the likelihood in terms
of the likelihood of the left and the right sub-
trees until the leaf nodes are reached. We use the
marginal probability (Equation 1) as prior infor-
mation since the marginal probability bears the
probability of having the data from the left and
right subtrees within a single cluster.

4 Morphological Segmentation

In our model, data points are words to be clus-
tered and each cluster represents a paradigm. In
the hierarchical structure, words will be organised
in such a way that morphologically similar words
will be located close to each other to be grouped
in the same paradigms. Morphological similarity
refers to at least one common morpheme between
words. However, we do not make a distinction be-
tween morpheme types. Instead, we assume that
each word is organised as a stem+suffix combina-
tion.

4.1 Model Definition

Let a dataset DDD consist of words to be analysed,
where each word wi has a latent variable which is
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the split point that analyses the word into its stem
si and suffix mi:

DDD = {w1 = s1 + m1, . . . , wn = sn + mn}

The marginal likelihood of words in the node k
is defined such that:

p(Dk) = p(Sk)p(Mk)

= p(s1, s2, . . . , sn)p(m1,m2, . . . , mn)

The words in each cluster represents a
paradigm that consists of stems and suffixes. The
hierarchical model puts words sharing the same
stems or suffixes close to each other in the tree.
Each word is part of all the paradigms on the
path from the leaf node having that word to the
root. The word can share either its stem or suffix
with other words in the same paradigm. Hence,
a considerable number of words can be generated
through this approach that may not be seen in the
corpus.

We postulate that stems and suffixes are gen-
erated independently from each other. Thus, the
probability of a word becomes:

p(w = s + m) = p(s)p(m) (3)

We define two Dirichlet processes to generate
stems and suffixes independently:

Gs|βs, Ps ∼ DP (βs, Ps)

Gm|βm, Pm ∼ DP (βm, Pm)

s|Gs ∼ Gs

m|Gm ∼ Gm

where DP (βs, Ps) denotes a Dirichlet process
that generates stems. Here, βs is the concentration
parameter, which determines the number of stem
types generated by the Dirichlet process. The
smaller the value of the concentration parameter,
the less likely to generate new stem types the pro-
cess is. In contrast, the larger the value of concen-
tration parameter, the more likely it is to generate
new stem types, yielding a more uniform distribu-
tion over stem types. If βs < 1, sparse stems are
supported, it yields a more skewed distribution.
To support a small number of stem types in each
cluster, we chose βs < 1.

Here, Ps is the base distribution. We use the
base distribution as a prior probability distribu-
tion for morpheme lengths. We model morpheme

βs βm

Ps PmGs Gm

si mi

wi

L N

n

Figure 3: The plate diagram of the model, representing
the generation of a word wi from the stem si and the
suffix mi that are generated from Dirichlet processes.
In the representation, solid-boxes denote that the pro-
cess is repeated with the number given on the corner
of each box.

lengths implicitly through the morpheme letters:

Ps(si) =
∏

ci∈si

p(ci) (4)

where ci denotes the letters, which are distributed
uniformly. Modelling morpheme letters is a way
of modelling the morpheme length since shorter
morphemes are favoured in order to have fewer
factors in Equation 4 (Creutz and Lagus, 2005b).

The Dirichlet process, DP (βm, Pm), is defined
for suffixes analogously. The graphical represen-
tation of the entire model is given in Figure 3.

Once the probability distributions G =
{Gs, Gm} are drawn from both Dirichlet pro-
cesses, words can be generated by drawing a stem
from Gs and a suffix from Gm. However, we do
not attempt to estimate the probability distribu-
tions G; instead, G is integrated out. The joint
probability of stems is calculated by integrating
out Gs:

p(s1, s2, . . . , sM )

=

∫
p(Gs)

L∏
i=1

p(si|Gs)dGs
(5)

where L denotes the number of stem tokens. The
joint probability distribution of stems can be tack-
led as a Chinese restaurant process. The Chi-
nese restaurant process introduces dependencies
between stems. Hence, the joint probability of

656



stems S = {s1, . . . , sL} becomes:

p(s1, s2, . . . , sL)
= p(s1)p(s2|s1) . . . p(sM |s1, . . . , sM−1)

=
Γ(βs)

Γ(L + βs)
βK−1

s

K∏
i=1

Ps(si)
K∏

i=1

(nsi − 1)!

(6)
where K denotes the number of stem types. In
the equation, the second and the third factor corre-
spond to the case where novel stems are generated
for the first time; the last factor corresponds to the
case in which stems that have already been gener-
ated for nsi times previously are being generated
again. The first factor consists of all denominators
from both cases.

The integration process is applied for proba-
bility distributions Gm for suffixes analogously.
Hence, the joint probability of suffixes M =
{m1, . . . ,mN} becomes:

p(m1,m2, . . . , mN )
= p(m1)p(m2|m1) . . . p(mN |m1, . . . , mN−1)

=
Γ(α)

Γ(N + α)
αT

T∏
i=1

Pm(mi)
T∏

i=1

(nmi − 1)!

(7)
where T denotes the number of suffix types and
nmi is the number of stem types mi which have
been already generated.

Following the joint probability distribution of
stems, the conditional probability of a stem given
previously generated stems can be derived as:

p(si|S−si , βs, Ps)

=

 nS−si
si

L−1+βs
if si ∈ S−si

βs∗Ps(si)
L−1+βs

otherwise

(8)

where nS−si

si
denotes the number of stem in-

stances si that have been previously generated,
where S−si denotes the stem set excluding the
new instance of the stem si.

The conditional probability of a suffix given the
other suffixes that have been previously generated
is defined similarly:

p(mi|M−mi , βm, Pm)

=

 nM−mi
mi

N−1+βm
if mi ∈M−mi

βm∗Pm(mi)
N−1+βm

otherwise
(9)

where n
M−i

k

mi is the number of instances mi that
have been generated previously where M−mi

is

plugg+ed skew+ed

exclaim+ed

borrow+s borrow+ed

liken+s liken+ed

consist+s consist+ed

Figure 4: A portion of a sample tree.

the set of suffixes, excluding the new instance of
the suffix mi.

A portion of a tree is given in Figure 4. As
can be seen on the figure, all words are lo-
cated at leaf nodes. Therefore, the root node
of this subtree consists of words {plugg+ed,
skew+ed, exclaim+ed, borrow+s, borrow+ed,
liken+s, liken+ed, consist+s, consist+ed}.

4.2 Inference

The initial tree is constructed by randomly choos-
ing a word from the corpus and adding this into a
randomly chosen position in the tree. When con-
structing the initial tree, latent variables are also
assigned randomly, i.e. each word is split at a ran-
dom position (see Algorithm 1).

We use Metropolis Hastings algorithm (Hast-
ings, 1970), an instance of Markov Chain Monte
Carlo (MCMC) algorithms, to infer the optimal
hierarchical structure along with the morphologi-
cal segmentation of words (given in Algorithm 2).
During each iteration i, a leaf node Di = {wi =
si + mi} is drawn from the current tree structure.
The drawn leaf node is removed from the tree.
Next, a node Dk is drawn uniformly from the tree
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Algorithm 1 Creating initial tree.
1: input: data D = {w1 = s1 + m1, . . . , wn =

sn + mn},
2: initialise: root← D1 where

D1 = {w1 = s1 + m1}
3: initialise: c← n− 1
4: while c >= 1 do
5: Draw a word wj from the corpus.
6: Split the word randomly such that wj =

sj + mj

7: Create a new node Dj where Dj =
{wj = sj + mj}

8: Choose a sibling node Dk for Dj

9: Merge Dnew ← Dj ⊎Dk

10: Remove wj from the corpus
11: c← c− 1
12: end while
13: output: Initial tree

to make it a sibling node to Di. In addition to a
sibling node, a split point wi = s

′
i + m

′
i is drawn

uniformly. Next, the node Di = {wi = s
′
i + m

′
i}

is inserted as a sibling node to Dk. After updating
all probabilities along the path to the root, the new
tree structure is either accepted or rejected by ap-
plying the Metropolis-Hastings update rule. The
likelihood of data under the given tree structure is
used as the sampling probability.

We use a simulated annealing schedule to up-
date PAcc:

PAcc =

(
pnext(D|T )

pcur(D|T )

) 1
γ

(10)

where γ denotes the current temperature,
pnext(D|T ) denotes the marginal likelihood
of the data under the new tree structure, and
pcur(D|T ) denotes the marginal likelihood of
data under the latest accepted tree structure. If
(pnext(D|T ) > pcur(D|T )) then the update is
accepted (see line 9, Algorithm 2), otherwise, the
tree structure is still accepted with a probability
of pAcc (see line 14, Algorithm 2). In our
experiments (see section 5) we set γ to 2. The
system temperature is reduced in each iteration
of the Metropolis Hastings algorithm:

γ ← γ − η (11)

Most tree structures are accepted in the earlier
stages of the algorithm, however, as the tempera-

Algorithm 2 Inference algorithm
1: input: data D = {w1 = s1 + m1, . . . , wn =

sn + mn}, initial tree T , initial temperature
of the system γ, the target temperature of the
system κ, temperature decrement η

2: initialise: i ← 1, w ← wi = si + mi,
pcur(D|T )← p(D|T )

3: while γ > κ do
4: Remove the leaf node Di that has the

word wi = si + mi

5: Draw a split point for the word such that
wi = s

′
i + m

′
i

6: Draw a sibling node Dj

7: Dm ← Di ⊎Dj

8: Update pnext(D|T )
9: if pnext(D|T ) >= pcur(D|T ) then

10: Accept the new tree structure
11: pcur(D|T ) ← pnext(D|T )
12: else
13: random ∼ Normal(0, 1)

14: if random <
(

pnext(D|T )
pcur(D|T )

) 1
γ then

15: Accept the new tree structure
16: pcur(D|T ) ← pnext(D|T )
17: else
18: Reject the new tree structure
19: Re-insert the node Di at its pre-

vious position with the previous
split point

20: end if
21: end if
22: w ← wi+1 = si+1 + mi+1

23: γ ← γ − η
24: end while
25: output: A tree structure where each node

corresponds to a paradigm.

ture decreases only tree structures that lead lead to
a considerable improvement in the marginal prob-
ability p(D|T ) are accepted.

An illustration of sampling a new tree structure
is given in Figure 5 and 6. Figure 5 shows that
D0 will be removed from the tree in order to sam-
ple a new position on the tree, along with a new
split point of the word. Once the leaf node is re-
moved from the tree, the parent node is removed
from the tree, as the parent node D5 will consist
of only one child. Figure 6 shows that D8 is sam-
pled to be the sibling node of D0. Subsequently,
the two nodes are merged within a new cluster that
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D5

D1

D6

D2 D3 D4D0

D7

D8

Figure 5: D0 will be removed from the tree.

D9

D1

D6

D2 D3 D4 D0

D7

D8

Figure 6: D8 is sampled to be the sibling of D0.

introduces a new node D9.

4.3 Morphological Segmentation
Once the optimal tree structure is inferred, along
with the morphological segmentation of words,
any novel word can be analysed. For the segmen-
tation of novel words, the root node is used as it
contains all stems and suffixes which are already
extracted from the training data. Morphological
segmentation is performed in two ways: segmen-
tation at a single point and segmentation at multi-
ple points.

4.3.1 Single Split Point
In order to find single split point for the mor-

phological segmentation of a word, the split point
yielding the maximum probability given inferred
stems and suffixes is chosen to be the final analy-
sis of the word:

arg max
j

p(wi = sj + mj |Droot, βm, Pm, βs, Ps)

(12)
where Droot refers to the root of the entire tree.

Here, the probability of a segmentation of a
given word given Droot is calculated as given be-
low:

p(wi = sj + mj |Droot, βm, Pm, βs, Ps) =

p(sj |Sroot, βs, Ps) p(mj |Mroot, βm, Pm)

(13)

where Sroot denotes all the stems in Droot and
Mroot denotes all the suffixes in Droot. Here
p(sj |Sroot, βs, Ps) is calculated as given below:

p(si|Sroot, βs, Ps) = n
Sroot
si

L+βs
if si ∈ Sroot

βs∗Ps(si)
L+βs

otherwise

(14)

Similarly, p(mj |Mroot, βm, Pm) is calculated
as:

p(mi|Mroot, βm, Pm) = n
Mroot
mi

N+βm
if mi ∈Mroot

βm∗Pm(mi)
N+βm

otherwise

(15)

4.3.2 Multiple Split Points
In order to discover words with multiple split

points, we propose a hierarchical segmentation
where each segment is split further. The rules for
generating multiple split points is given by the fol-
lowing context free grammar:

w ← s1 m1|s2 m2 (16)

s1 ← s m|s s (17)

s2 ← s (18)

m1 ← m m (19)

m2 ← s m|m m (20)

Here, s is a pre-terminal node that generates all
the stems from the root node. And similarly, m is
a pre-terminal node that generates all the suffixes
from the root node. First, using Equation 16, the
word (e.g. housekeeper) is split into s1 m1 (e.g.
housekeep+er) or s2 m2 (house+keeper). The first
segment is regarded as a stem, and the second
segment is either a stem or a suffix, consider-
ing the probability of having a compound word.
Equation 12 is used to decide whether the sec-
ond segment is a stem or a suffix. At the sec-
ond segmentation level, each segment is split once
more. If the first production rule is followed in
the first segmentation level, the first segment s1

can be analysed as s m (e.g. housekeep+∅) or s s
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Figure 7: An example that depicts how the word
housekeeper can be analysed further to find more split
points.

(e.g. house+keep) (Equation 17). The decision
to choose which production rule to apply is made
using:

s1 ←
{

s s if p(s|S, βs, Ps) > p(m|M, βm, Pm)
s m otherwise

(21)

where S and M denote all the stems and suffixes
in the root node.

Following the same production rule, the second
segment m1 can only be analysed as m m (er+∅).
We postulate that words cannot have more than
two stems and suffixes always follow stems. We
do not allow any prefixes, circumfixes, or infixes.
Therefore, the first production rule can output two
different analyses: s m m m and s s m m (e.g.
housekeep+er and house+keep+er).

On the other hand, if the word is analysed as
s2 m2 (e.g. house+keeper), then s2 cannot be
analysed further. (e.g. house). The second seg-
ment m2 can be analysed further, such that s m
(stem+suffix) (e.g. keep+er, keeper+∅) or m m
(suffix+suffix). The decision to choose which pro-
duction rule to apply is made as follows:

m2 ←
{

s m if p(s|S, βs, Ps) > p(m|M, βm, Pm)
m m otherwise

(22)

Thus, the second production rule yields two
different analyses: s s m and s m m (e.g.
house+keep+er or house+keeper).

5 Experiments & Results

Two sets of experiments were performed for the
evaluation of the model. In the first set of exper-
iments, each word is split at single point giving a
single stem and a single suffix. In the second set
of experiments, potentially multiple split points
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Figure 8: Marginal likelihood convergence for datasets
of size 16K and 22K words.

are generated, by splitting each stem and suffix
once more, if it is possible to do so.

Morpho Challenge (Kurimo et al., 2011b) pro-
vides a well established evaluation framework
that additionally allows comparing our model in
a range of languages. In both sets of experiments,
the Morpho Challenge 2010 dataset is used (Ku-
rimo et al., 2011b). Experiments are performed
for English, where the dataset consists of 878,034
words. Although the dataset provides word fre-
quencies, we have not used any frequency infor-
mation. However, for training our model, we only
chose words with frequency greater than 200.

In our experiments, we used dataset sizes of
10K, 16K, 22K words. However, for final eval-
uation, we trained our models on 22K words. We
were unable to complete the experiments with
larger training datasets due to memory limita-
tions. We plan to report this in future work. Once
the tree is learned by the inference algorithm, the
final tree is used for the segmentation of the entire
dataset. Several experiments are performed for
each setting where the setting varies with the tree
size and the model parameters. Model parameters
are the concentration parameters β = {βs, βm}
of the Dirichlet processes. The concentration pa-
rameters, which are set for the experiments, are
0.1, 0.2, 0.02, 0.001, 0.002.

In all experiments, the initial temperature of the
system is assigned as γ = 2 and it is reduced to
the temperature γ = 0.01 with decrements η =
0.0001. Figure 8 shows how the log likelihoods of
trees of size 16K and 22K converge in time (where
the time axis refers to sampling iterations).

Since different training sets will lead to differ-
ent tree structures, each experiment is repeated
three times keeping the experiment setting the
same.
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Data Size P(%) R(%) F(%) βs, βm

10K 81.48 33.03 47.01 0.1, 0.1
16K 86.48 35.13 50.02 0.002, 0.002
22K 89.04 36.01 51.28 0.002, 0.002

Table 1: Highest evaluation scores of single split point
experiments obtained from the trees with 10K, 16K,
and 22K words.

Data Size P(%) R(%) F(%) βs, βm

10K 62.45 57.62 59.98 0.1, 0.1
16K 67.80 57.72 62.36 0.002, 0.002
22K 68.71 62.56 62.56 0.001 0.001

Table 2: Evaluation scores of multiple split point ex-
periments obtained from the trees with 10K, 16K, and
22K words.

5.1 Experiments with Single Split Points

In the first set of experiments, words are split into
a single stem and suffix. During the segmentation,
Equation 12 is used to determine the split position
of each word. Evaluation scores are given in Ta-
ble 1. The highest F-measure obtained is 51.28%
with the dataset of 22K words. The scores are no-
ticeably higher with the largest training set.

5.2 Experiments with Multiple Split Points

The evaluation scores of experiments with mul-
tiple split points are given in Table 2. The high-
est F-measure obtained is 62.56% with the dataset
with 22K words. As for single split points, the
scores are noticeably higher with the largest train-
ing set.

For both, single and multiple segmentation, the
same inferred tree has been used.

5.3 Comparison with Other Systems

For all our evaluation experiments using Mor-
pho Challenge 2010 (English and Turkish) and
Morpho Challenge 2009 (English), we used 22k
words for training. For each evaluation, we ran-
domly chose 22k words for training and ran our
MCMC inference procedure to learn our model.
We generated 3 different models by choosing 3
different randomly generated training sets each
consisting of 22k words. The results are the best
results over these 3 models. We are reporting the
best results out of the 3 models due to the small
(22k word) datasets used. Use of larger datasets
would have resulted in less variation and better
results.

System P(%) R(%) F(%)
Allomorf1 68.98 56.82 62.31
Morf. Base.2 74.93 49.81 59.84
PM-Union3 55.68 62.33 58.82
Lignos4 83.49 45.00 58.48
Prob. Clustering (multiple) 57.08 57.58 57.33
PM-mimic3 53.13 59.01 55.91
MorphoNet5 65.08 47.82 55.13
Rali-cof6 68.32 46.45 55.30
CanMan7 58.52 44.82 50.76
1 Virpioja et al. (2009)
2 Creutz and Lagus (2002)
3 Monson et al. (2009)
4 Lignos et al. (2009)
5 Bernhard (2009)
6 Lavallée and Langlais (2009)
7 Can and Manandhar (2009)

Table 3: Comparison with other unsupervised systems
that participated in Morpho Challenge 2009 for En-
glish.

We compare our system with the other partici-
pant systems in Morpho Challenge 2010. Results
are given in Table 6 (Virpioja et al., 2011). Since
the model is evaluated using the official (hidden)
Morpho Challenge 2010 evaluation dataset where
we submit our system for evaluation to the organ-
isers, the scores are different from the ones that
we presented Table 1 and Table 2.

We also demonstrate experiments with Morpho
Challenge 2009 English dataset. The dataset con-
sists of 384, 904 words. Our results and the re-
sults of other participant systems in Morpho Chal-
lenge 2009 are given in Table 3 (Kurimo et al.,
2009). It should be noted that we only present
the top systems that participated in Morpho Chal-
lenge 2009. If all the systems are considered, our
system comes 5th out of 16 systems.

The problem of morphologically rich lan-
guages is not our priority within this research.
Nevertheless, we provide evaluation scores on
Turkish. The Turkish dataset consists of 617,298
words. We chose words with frequency greater
than 50 for Turkish since the Turkish dataset is not
large enough. The results for Turkish are given in
Table 4. Our system comes 3rd out of 7 systems.

6 Discussion

The model can easily capture common suffixes
such as -less, -s, -ed, -ment, etc. Some sample tree
nodes obtained from trees are given in Table 6.
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System P(%) R(%) F(%)
Morf. CatMAP 79.38 31.88 45.49
Aggressive Comp. 55.51 34.36 42.45
Prob. Clustering (multiple) 72.36 25.81 38.04
Iterative Comp. 68.69 21.44 32.68
Nicolas 79.02 19.78 31.64
Morf. Base. 89.68 17.78 29.67
Base Inference 72.81 16.11 26.38

Table 4: Comparison with other unsupervised systems
that participated in Morpho Challenge 2010 for Turk-
ish.

regard+less, base+less, shame+less, bound+less,
harm+less, regard+ed, relent+less
solve+d, high+-priced, lower+s, lower+-level,
high+-level, lower+-income, histor+ians
pre+mise, pre+face, pre+sumed, pre+, pre+gnant
base+ment, ail+ment, over+looked, predica+ment,
deploy+ment, compart+ment, embodi+ment
anti+-fraud, anti+-war, anti+-tank, anti+-nuclear,
anti+-terrorism, switzer+, anti+gua, switzer+land
sharp+ened, strength+s, tight+ened, strength+ened,
black+ened
inspir+e, inspir+ing, inspir+ed, inspir+es, earn+ing,
ponder+ing
downgrade+s, crash+ed, crash+ing, lack+ing,
blind+ing, blind+, crash+, compris+ing, com-
pris+es, stifl+ing, compris+ed, lack+s, assist+ing,
blind+ed, blind+er,

Table 5: Sample tree nodes obtained from various
trees.

As seen from the table, morphologically similar
words are grouped together. Morphological sim-
ilarity refers to at least one common morpheme
between words. For example, the words high-
priced and lower-level are grouped in the same
node through the word high-level which shares
the same stem with high-priced and the same end-
ing with lower-level.

As seen from the sample nodes, prefixes
can also be identified, for example anti+fraud,
anti+war, anti+tank, anti+nuclear. This illus-
trates the flexibility in the model by capturing the
similarities through either stems, suffixes or pre-
fixes. However, as mentioned above, the model
does not consider any discrimination between dif-
ferent types of morphological forms during train-
ing. As the prefix pre- appears at the beginning of
words, it is identified as a stem. However, identi-
fying pre- as a stem does not yield a change in the
morphological analysis of the word.

System P(%) R(%) F(%)
Base Inference1 80.77 53.76 64.55
Iterative Comp.1 80.27 52.76 63.67
Aggressive Comp.1 71.45 52.31 60.40
Nicolas2 67.83 53.43 59.78
Prob. Clustering (multiple) 57.08 57.58 57.33
Morf. Baseline3 81.39 41.70 55.14
Prob. Clustering (single) 70.76 36.51 48.17
Morf. CatMAP4 86.84 30.03 44.63
1 Lignos (2010)
2 Nicolas et al. (2010)
3 Creutz and Lagus (2002)
4 Creutz and Lagus (2005a)

Table 6: Comparison of our model with other unsuper-
vised systems that participated in Morpho Challenge
2010 for English.

Sometimes similarities may not yield a valid
analysis of words. For example, the prefix pre-
leads the words pre+mise, pre+sumed, pre+gnant
to be analysed wrongly, whereas pre- is a valid
prefix for the word pre+face. Another nice fea-
ture about the model is that compounds are easily
captured through common stems: e.g. doubt+fire,
bon+fire, gun+fire, clear+cut.

7 Conclusion & Future Work

In this paper, we present a novel probabilis-
tic model for unsupervised morphology learn-
ing. The model adopts a hierarchical structure
in which words are organised in a tree so that
morphologically similar words are located close
to each other.

In hierarchical clustering, tree-cutting would be
a very useful thing to do but it is not addressed
in the current paper. We used just the root node
as a morpheme lexicon to apply segmentation.
Clearly, adding tree cutting would improve the ac-
curacy of the segmentation and will help us iden-
tify paradigms with higher accuracy. However,
the segmentation accuracy obtained without us-
ing tree cutting provides a very useful indicator
to show whether this approach is promising. And
experimental results show that this is indeed the
case.

In the current model, we did not use any syn-
tactic information, only words. POS tags can be
utilised to group words which are both morpho-
logically and syntactically similar.
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Abstract

The current state-of-the-art in statistical
machine translation (SMT) suffers from is-
sues of sparsity and inadequate modeling
power when translating into morphologi-
cally rich languages. We model both in-
flection and word-formation for the task
of translating into German. We translate
from English words to an underspecified
German representation and then use linear-
chain CRFs to predict the fully specified
German representation. We show that im-
proved modeling of inflection and word-
formation leads to improved SMT.

1 Introduction

Phrase-based statistical machine translation
(SMT) suffers from problems of data sparsity
with respect to inflection and word-formation
which are particularly strong when translating to
a morphologically rich target language, such as
German. We address the problem of inflection
by first translating to a stem-based representation,
and then using a second process to inflect these
stems. We study several models for doing
this, including: strongly lexicalized models,
unlexicalized models using linguistic features,
and models combining the strengths of both of
these approaches. We address the problem of
word-formation for compounds in German, by
translating from English into German word parts,
and then determining whether to merge these
parts to form compounds.

We make the following new contributions: (i)
we introduce the first SMT system combining
inflection prediction with synthesis of portman-
teaus and compounds. (ii) For inflection, we com-

pare the mostly unlexicalized prediction of lin-
guistic features (with a subsequent surface form
generation step) versus the direct prediction of
surface forms, and show that both approaches
have complementary strengths. (iii) We com-
bine the advantages of the prediction of linguis-
tic features with the prediction of surface forms.
We implement this in a CRF framework which
improves on a standard phrase-based SMT base-
line. (iv) We develop separate (but related) pro-
cedures for inflection prediction and dealing with
word-formation (compounds and portmanteaus),
in contrast with most previous work which usu-
ally either approaches both problems as inflec-
tional problems, or approaches both problems as
word-formation problems.

We evaluate on the end-to-end SMT task of
translating from English to German of the 2009
ACL workshop on SMT. We achieve BLEU score
increases on both the test set and the blind test set.

2 Overview of the translation process for
inflection prediction

The work we describe is focused on generaliz-
ing phrase-based statistical machine translation to
better model German NPs and PPs. We particu-
larly want to ensure that we can generate novel
German NPs, where what we mean by novel is
that the (inflected) realization is not present in the
parallel German training data used to build the
SMT system, and hence cannot be produced by
our baseline (a standard phrase-based SMT sys-
tem). We first present our system for dealing with
the difficult problem of inflection in German, in-
cluding the inflection-dependent phenomenon of
portmanteaus. Later, after performing an exten-
sive analysis of this system, we will extend it
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to model compounds, a highly productive phe-
nomenon in German (see Section 8).

The key linguistic knowledge sources that we
use are morphological analysis and generation of
German based on SMOR, a morphological ana-
lyzer/generator of German (Schmid et al., 2004)
and the BitPar parser, which is a state-of-the-art
parser of German (Schmid, 2004).

2.1 Issues of inflection prediction

In order to ensure coherent German NPs, we
model linguistic features of each word in an NP.
We model case, gender, and number agreement
and whether or not the word is in the scope of
a determiner (such as a definite article), which
we label in-weak-context (this linguistic feature
is necessary to determine the type of inflection of
adjectives and other words: strong, weak, mixed).
This is a diverse group of features. The number
of a German noun can often be determined given
only the English source word. The gender of a
German noun is innate and often difficult to deter-
mine given only the English source word. Case
is a function of the slot in the subcategorization
frame of the verb (or preposition). There is agree-
ment in all of these features in an NP. For instance
the number of an article or adjective is determined
by the head noun, while the type of inflection of an
adjective is determined by the choice of article.

We can have a large number of surface forms.
For instance, English blue can be translated as
German blau, blaue, blauer, blaues, blauen. We
predict which form is correct given the context.
Our system can generate forms not seen in the
training data. We follow a two-step process: in
step-1 we translate to blau (the stem), in step-2 we
predict features and generate the inflected form.1

2.2 Procedure

We begin building an SMT system by parsing the
German training data with BitPar. We then extract
morphological features from the parse. Next, we
lookup the surface forms in the SMOR morpholog-
ical analyzer. We use the morphological features
in the parse to disambiguate the set of possible
SMOR analyses. Finally, we output the “stems”
of the German text, with the addition of markup
taken from the parse (discussed in Section 2.3).

1E.g., case=nominative, gender=masculine, num-
ber=singular, in-weak-context=true; inflected: blaue.

We then build a standard Moses system trans-
lating from English to German stems. We obtain
a sequence of stems and POS2 from this system,
and then predict the correct inflection using a se-
quence model. Finally we generate surface forms.

2.3 German Stem Markup

The translation process consists of two major
steps. The first step is translation of English
words to German stems, which are enriched with
some inflectional markup. The second step is
the full inflection of these stems (plus markup)
to obtain the final sequence of inflected words.
The purpose of the additional German inflectional
markup is to strongly improve prediction of in-
flection in the second step through the addition of
markup to the stems in the first step.

In general, all features to be predicted are
stripped from the stemmed representation because
they are subject to agreement restrictions of a
noun or prepositional phrase (such as case of
nouns or all features of adjectives). However, we
need to keep all morphological features that are
not dependent on, and thus not predictable from,
the (German) context. They will serve as known
input for the inflection prediction model. We now
describe this markup in detail.
Nouns are marked with gender and number: we
consider the gender of a noun as part of its stem,
whereas number is a feature which we can obtain
from English nouns.
Personal pronouns have number and gender an-
notation, and are additionally marked with nom-
inative and not-nominative, because English pro-
nouns are marked for this (except for you).
Prepositions are marked with the case their ob-
ject takes: this moves some of the difficulty in pre-
dicting case from the inflection prediction step to
the stem translation step. Since the choice of case
in a PP is often determined by the PP’s meaning
(and there are often different meanings possible
given different case choices), it seems reasonable
to make this decision during stem translation.
Verbs are represented using their inflected surface
form. Having access to inflected verb forms has a
positive influence on case prediction in the second

2We use an additional target factor to obtain the coarse
POS for each stem, applying a 7-gram POS model. Koehn
and Hoang (2007) showed that the use of a POS factor only
results in negligible BLEU improvements, but we need ac-
cess to the POS in our inflection prediction models.
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input decoder output inflected merged

in in<APPR><Dat> in imdie<+ART><Def> dem
contrast Gegensatz<+NN><Masc><Sg>Gegensatz Gegensatz
to zu<APPR><Dat> zu zurthe die<+ART><Def> der
animated lebhaft<+ADJ><Pos> lebhaften lebhaften
debate Debatte<+NN><Fem><Sg> Debatte Debatte

Table 1: Re-merging of prepositions and articles after
inflection to form portmanteaus, in dem means in the.

step through subject-verb agreement.
Articles are reduced to their stems (the stem itself
makes clear the definite or indefinite distinction,
but lemmatizing involves removing markings of
case, gender and number features).
Other words are also represented by their stems
(except for words not covered by SMOR, where
surface forms are used instead).

3 Portmanteaus

Portmanteaus are a word-formation phenomenon
dependent on inflection. As we have discussed,
standard phrase-based systems have problems
with picking a definite article with the correct
case, gender and number (typically due to spar-
sity in the language model, e.g., a noun which
was never before seen in dative case will often
not receive the correct article). In German, port-
manteaus increase this sparsity further, as they
are compounds of prepositions and articles which
must agree with a noun.

We adopt the linguistically strict definition of
the term portmanteau: the merging of two func-
tion words.3 We treat this phenomena by split-
ting the component parts during training and re-
merging during generation. Specifically for
German, this requires splitting the words which
have German POS tag APPRART into an APPR

(preposition) and an ART (article). Merging is re-
stricted, the article must be definite, singular4 and
the preposition can only take accusative or dative
case. Some prepositions allow for merging with
an article only for certain noun genders, for exam-
ple the preposition inDative is only merged with
the following article if the following noun is of
masculine or neuter gender. The definite article

3Some examples are: zum (to the) = zu (to) + dem (the)
[German], du (from the) = de (from) + le (the) [French] or al
(to the) = a (to) + el (the) [Spanish].

4This is the reason for which the preposition + article in
Table 2 remain unmerged.

must be inflected before making a decision about
whether to merge a preposition and the article into
a portmanteau. See Table 1 for examples.

4 Models for Inflection Prediction

We present 5 procedures for inflectional predic-
tion using supervised sequence models. The first
two procedures use simple N-gram models over
fully inflected surface forms.
1. Surface with no features is presented with an
underspecified input (a sequence of stems), and
returns the most likely inflected sequence.
2. Surface with case, number, gender is a hybrid
system giving the surface model access to linguis-
tic features. In this system prepositions have addi-
tionally been labeled with the case they mark (in
both the underspecified input and the fully spec-
ified output the sequence model is built on) and
gender and number markup is also available.

The rest of the procedures predict morpholog-
ical features (which are input to a morphological
generator) rather than surface words. We have de-
veloped a two-stage process for predicting fully
inflected surface forms. The first stage takes a
stem and predicts morphological features for that
stem, based on the surrounding context. The aim
of the first stage is to take a stem and predict
four morphological features: case, gender, num-
ber and type of inflection. We experiment with
a number of models for doing this. The sec-
ond stage takes the stems marked with morpho-
logical features (predicted in the first stage) and
uses a morphological generator to generate the
full surface form. For the second stage, a modified
version of SMOR (Schmid et al., 2004) is used,
which, given a stem annotated with morphologi-
cal features, generates exactly one surface form.

We now introduce our first linguistic feature
prediction systems, which we call joint sequence
models (JSMs). These are standard language
models, where the “word” tokens are not repre-
sented as surface forms, but instead using POS
and features. In testing, we supply the input as a
sequence in underspecified form, where some of
the features are specified in the stem markup (for
instance, POS=Noun, gender=masculine, num-
ber=plural), and then use Viterbi search to find the
most probable fully specified form (for instance,
POS=Noun, gender=masculine, number=plural,
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output decoder input prediction output prediction inflected forms gloss
haben<VAFIN> haben-V haben-V haben have
Zugang<+NN><Masc><Sg> NN-Sg-Masc NN-Masc.Acc.Sg.in-weak-context=false Zugang access
zu<APPR><Dat> APPR-zu-Dat APPR-zu-Dat zu to
die<+ART><Def> ART-in-weak-context=true ART-Neut.Dat.Pl.in-weak-context=true den the
betreffend<+ADJ><Pos> ADJA ADJA-Neut.Dat.Pl.in-weak-context=true betreffenden respective
Land<+NN><Neut><Pl> NN-Pl-Neut NN-Neut.Dat.Pl.in-weak-context=true Ländern countries

Table 2: Overview: inflection prediction steps using a single joint sequence model. All words except verbs and
prepositions are replaced by their POS tags in the input. Verbs are inflected in the input (“haben”, meaning
“have” as in “they have”, in the example). Prepositions are lexicalized (“zu” in the example) and indicate which
case value they mark (“Dat”, i.e., Dative in the example).

case=nominative, in-weak-context=true).5

3. Single joint sequence model on features. We
illustrate the different stages of the inflection pre-
diction when using a joint sequence model. The
stemmed input sequence (cf. Section 2.3) contains
several features that will be part of the input to
the inflection prediction. With the exception of
verbs and prepositions, the representation for fea-
ture prediction is based on POS-tags.

As gender and number are given by the heads
of noun phrases and prepositional phrases, and
the expected type of inflection is set by articles,
the model has sufficient information to compute
values for these features and there is no need to
know the actual words. In contrast, the prediction
of case is more difficult as it largely depends on
the content of the sentence (e.g. which phrase is
object, which phrase is subject). Assuming that
verbs and prepositions indicate subcategorization
frames, the model is provided crucial information
for the prediction of case by keeping verbs (recall
that verbs are produced by the stem translation
system in their inflected form) and prepositions
(the prepositions also have case markup) instead
of replacing them with their tags.

After having predicted a single label with val-
ues for all features, an inflected word form for the
stem and the features is generated. The prediction
steps are illustrated in Table 2.
4. Using four joint sequence models (one for
each linguistic feature). Here the four linguistic
feature values are predicted separately. The as-
sumption that the different linguistic features can
be predicted independently of one another is a rea-

5Joint sequence models are a particularly simple HMM.
Unlike the HMMs used for POS-tagging, an HMM as used
here only has a single emission possibility for each state,
with probability 1. The states in the HMM are the fully
specified representation. The emissions of the HMM are the
stems+markup (the underspecified representation).

sonable linguistic assumption to make given the
additional German markup that we use. By split-
ting the inflection prediction problem into 4 com-
ponent parts, we end up with 4 simpler models
which are less sensitive to data sparseness.

Each linguistic feature is modeled indepen-
dently (by a JSM) and has a different input rep-
resentation based on the previously described
markup. The input consists of a sequence of
coarse POS tags, and for those stems that are
marked up with the relevant feature, this feature
value. Finally, we combine the predicted fea-
tures together to produce the same final output as
the single joint sequence model, and then generate
each surface form using SMOR.
5. Using four CRFs (one for each linguistic fea-
ture). The sequence models already presented are
limited to the n-gram feature space, and those that
predict linguistic features are not strongly lexi-
calized. Toutanova et al. (2008) uses an MEMM
which allows the integration of a wide variety of
feature functions. We also wanted to experiment
with additional feature functions, and so we train
4 separate linear chain CRF6 models on our data
(one for each linguistic feature we want to pre-
dict). We chose CRFs over MEMMs to avoid the
label bias problem (Lafferty et al., 2001).

The CRF feature functions, for each German
word wi, are in Table 3. The common feature
functions are used in all models, while each of the
4 separate models (one for each linguistic feature)
includes the context of only that linguistic feature.
We use L1 regularization to eliminate irrelevant
feature functions, the regularization parameter is
optimized on held out data.

6We use the Wapiti Toolkit (Lavergne et al., 2010) on 4
x 12-Core Opteron 6176 2.3 GHz with 256GB RAM to train
our CRF models. Training a single CRF model on our data
was not tractable, so we use one for each linguistic feature.
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Common lemmawi−5...wi+5 , tagwi−7...wi+7

Case casewi−5...wi+5

Gender genderwi−5...wi+5

Number numberwi−5...wi+5

in-weak-context in-weak-contextwi−5...wi+5

Table 3: Feature functions used in CRF models (fea-
ture functions are binary indicators of the pattern).

5 Experimental Setup

To evaluate our end-to-end system, we perform
the well-studied task of news translation, us-
ing the Moses SMT package. We use the En-
glish/German data released for the 2009 ACL
Workshop on Machine Translation shared task on
translation.7 There are 82,740 parallel sentences
from news-commentary09.de-en and 1,418,115
parallel sentences from europarl-v4.de-en. The
monolingual data contains 9.8 M sentences.8

To build the baseline, the data was tokenized
using the Moses tokenizer and lowercased. We
use GIZA++ to generate alignments, by running
5 iterations of Model 1, 5 iterations of the HMM
Model, and 4 iterations of Model 4. We sym-
metrize using the “grow-diag-final-and” heuris-
tic. Our Moses systems use default settings. The
LM uses the monolingual data and is trained as
a five-gram9 using the SRILM-Toolkit (Stolcke,
2002). We run MERT separately for each sys-
tem. The recaser used is the same for all systems.
It is the standard recaser supplied with Moses,
trained on all German training data. The dev set
is wmt-2009-a and the test set is wmt-2009-b, and
we report end-to-end case sensitive BLEU scores
against the unmodified reference SGML file. The
blind test set used is wmt-2009-blind (all lines).

In developing our inflection prediction sys-
tems (and making such decisions as n-gram order
used), we worked on the so-called “clean data”
task, predicting the inflection on stemmed refer-
ence sentences (rather than MT output). We used
the 2000 sentence dev-2006 corpus for this task.

Our contrastive systems consist of two steps,
the first is a translation step using a similar
Moses system (except that the German side is
stemmed, with the markup indicated in Sec-

7http://www.statmt.org/wmt09/translation-task.html
8However, we reduced the monolingual data (only) by

retaining only one copy of each unique line, which resulted
in 7.55 M sentences.

9Add-1 smoothing for unigrams and Kneser-Ney
smoothing for higher order n-grams, pruning defaults.

tion 2.3), and the second is inflection prediction
as described previously in the paper. To derive
the stem+markup representation we first parse
the German training data and then produce the
stemmed representation. We then build a sys-
tem for translating from English words to Ger-
man stems (the stem+markup representation), on
the same data (so the German side of the parallel
data, and the German language modeling uses the
stem+markup representation). Likewise, MERT
is performed using references which are in the
stem+markup representation.

To train the inflection prediction systems, we
use the monolingual data. The basic surface form
model is trained on lowercased surface forms,
the hybrid surface form model with features is
trained on lowercased surface forms annotated
with markup. The linguistic feature prediction
systems are trained on the monolingual data pro-
cessed as described previously (see Table 2).

Our JSMs are trained using the SRILM Toolkit.
We use the SRILM disambig tool for predicting
inflection, which takes a “map” that specifies the
set of fully specified representations that each un-
derspecified stem can map to. For surface form
models, it specifies the mapping from stems to
lowercased surface forms (or surface forms with
markup for the hybrid surface model).

6 Results for Inflection Prediction

We build two different kinds of translation sys-
tem, the baseline and the stem translation system
(where MERT is used to train the system to pro-
duce a stem+markup sequence which agrees with
the stemmed reference of the dev set). In this sec-
tion we present the end-to-end translation results
for the different inflection prediction models de-
fined in Section 4, see Table 4.

If we translate from English into a stemmed
German representation and then apply a unigram
stem-to-surface-form model to predict the surface
form, we achieve a BLEU score of 9.97 (line 2).
This is only presented for comparison.

The baseline10 is 14.16, line 1. We compare
this with a 5-gram sequence model11 that predicts

10This is a better case-sensitive score than the baselines
on wmt-2009-b in experiments by top-performers Edinburgh
and Karlsruhe at the shared task. We use Moses with default
settings.

11Note that we use a different set, the “clean data” set, to
determine the choice of n-gram order, see Section 7. We use
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surface forms without access to morphological
features, resulting in a BLEU score of 14.26. In-
troducing morphological features (case on prepo-
sitions, number and gender on nouns) increases
the BLEU score to 14.58, which is in the same
range as the single JSM system predicting all lin-
guistic features at once.

This result shows that the mostly unlexicalized
single JSM can produce competitive results with
direct surface form prediction, despite not having
access to a model of inflected forms, which is the
desired final output. This strongly suggests that
the prediction of morphological features can be
used to achieve additional generalization over di-
rect surface form prediction. When comparing the
simple direct surface form prediction (line 3) with
the hybrid system enriched with number, gender
and case (line 4), it becomes evident that feature
markup can also aid surface form prediction.

Since the single JSM has no access to lexical
information, we used a language model to score
different feature predictions: for each sentence of
the development set, the 100 best feature predic-
tions were inflected and scored with a language
model. We then optimized weights for the two
scores LM (language model on surface forms)
and FP (feature prediction, the score assigned by
the JSM). This method disprefers feature predic-
tions with a top FP-score if the inflected sen-
tence obtains a bad LM score and likewise dis-
favors low-ranked feature prediction with a high
LM score. The prediction of case is the most
difficult given no lexical information, thus scor-
ing different prediction possibilities on inflected
words is helpful. An example is when the case of
a noun phrase leads to an inflected phrase which
never occurs in the (inflected) language model
(e.g., case=genitive vs. case=other). Applying
this method to the single JSM leads to a negligible
improvement (14.53 vs. 14.56). Using the n-best
output of the stem translation system did not lead
to any improvement.

The comparison between different feature pre-
diction models is also illustrative. Performance
decreases somewhat when using individual joint
sequence models (one for each linguistic feature)
compared to one single model (14.29, line 6).

The framework using the individual CRFs for

a 5-gram for surface forms and a 4-gram for JSMs, and the
same smoothing (Kneser-Ney, add-1 for unigrams, default
pruning).

1 baseline 14.16
2 unigram surface (no features) 9.97
3 surface (no features) 14.26
4 surface (with case, number, gender features) 14.58
5 1 JSM morphological features 14.53
6 4 JSMs morphological features 14.29
7 4 CRFs morphological features, lexical information 14.72

Table 4: BLEU scores (detokenized, case sensitive) on
the development test set wmt-2009-b

each linguistic feature performs best (14.72, line
7). The CRF framework combines the advantages
of surface form prediction and linguistic feature
prediction by using feature functions that effec-
tively cover the feature function spaces used by
both forms of prediction. The performance of the
CRF models results in a statistically significant
improvement12 (p < 0.05) over the baseline. We
also tried CRFs with bilingual features (projected
from English parses via the alignment output by
Moses), but obtained only a small improvement of
0.03, probably because the required information
is transferred in our stem markup (also a poor im-
provement beyond monolingual features is con-
sistent with previous work, see Section 8.3). De-
tails are omitted due to space.

We further validated our results by translating
the blind test set from wmt-2009, which we have
never looked at in any way. Here we also had
a statistically significant difference between the
baseline and the CRF-based prediction, the scores
were 13.68 and 14.18.

7 Analysis of Inflection-based System

Stem Markup. The first step of translating
from English to German stems (with the markup
we previously discussed) is substantially easier
than translating directly to inflected German (we
see BLEU scores on stems+markup that are over
2.0 BLEU higher than the BLEU scores on in-
flected forms when running MERT). The addition
of case to prepositions only lowered the BLEU
score reached by MERT by about 0.2, but is very
helpful for prediction of the case feature.
Inflection Prediction Task. Clean data task re-
sults13 are given in Table 5. The 4 CRFs outper-
form the 4 JSMs by more than 2%.

12We used Kevin Gimpel’s implementation of pairwise
bootstrap resampling with 1000 samples.

1326,061 of 55,057 tokens in our test set are ambiguous.
We report % surface form matches for ambiguous tokens.
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Model Accuracy
unigram surface (no features) 55.98
surface (no features) 86.65
surface (with case, number, gender features) 91.24
1 JSM morphological features 92.45
4 JSMs morphological features 92.01
4 CRFs morphological features, lexical information 94.29

Table 5: Comparing predicting surface forms directly
with predicting morphological features.

training data 1 model 4 models
7.3 M sentences 92.41 91.88
1.5 M sentences 92.45 92.01
100000 sentences 90.20 90.64
1000 sentences 83.72 86.94

Table 6: Accuracy for different training data sizes of
the single and the four separate joint sequence models.

As we mentioned in Section 4, there is a spar-
sity issue at small training data sizes for the sin-
gle joint sequence model. This is shown in Ta-
ble 6. At the largest training data sizes, model-
ing all 4 features together results in the best pre-
dictions of inflection. However using 4 separate
models is worth this minimal decrease in perfor-
mance, since it facilitates experimentation with
the CRF framework for which the training of a
single model is not currently tractable.

Overall, the inflection prediction works well for
gender, number and type of inflection, which are
local features to the NP that normally agree with
the explicit markup output by the stem transla-
tion system (for example, the gender of a com-
mon noun, which is marked in the stem markup,
is usually successfully propagated to the rest of
the NP). Prediction of case does not always work
well, and could maybe be improved through hier-
archical labeled-syntax stem translation.
Portmanteaus. An example of where the sys-
tem is improved because of the new handling of
portmanteaus can be seen in the dative phrase
im internationalen Rampenlicht (in the interna-
tional spotlight), which does not occur in the par-
allel data. The accusative phrase in das interna-
tionale Rampenlicht does occur, however in this
case there is no portmanteau, but a one-to-one
mapping between in the and in das. For a given
context, only one of accusative or dative case is
valid, and a strongly disfluent sentence results
from the incorrect choice. In our system, these
two cases are handled in the same way (def-article
international Rampenlicht). This allows us to

generalize from the accusative example with no
portmanteau and take advantage of longer phrase
pairs, even when translating to something that will
be inflected as dative and should be realized as a
portmanteau. The baseline does not have this ca-
pability. It should be noted that the portmanteau
merging method described in Section 3 remerges
all occurrences of APPR and ART that can techni-
cally form a portmanteau. There are a few cases
where merging, despite being grammatical, does
not lead to a good result. Such exceptions require
semantic interpretation and are difficult to capture
with a fixed set of rules.

8 Adding Compounds to the System

Compounds are highly productive in German and
lead to data sparsity. We split the German com-
pounds in the training data, so that our stem trans-
lation system can now work with the individual
words in the compounds. After we have trans-
lated to a split/stemmed representation, we deter-
mine whether to merge words together to form a
compound. Then we merge them to create stems
in the same representation as before and we per-
form inflection and portmanteau merging exactly
as previously discussed.

8.1 Details of Splitting Process

We prepare the training data by splitting com-
pounds in two steps, following the technique of
Fritzinger and Fraser (2010). First, possible split
points are extracted using SMOR, and second, the
best split points are selected using the geometric
mean of word part frequencies.

compound word parts gloss
Inflationsrate Inflation Rate inflation rate
auszubrechen aus zu brechen out to break (to break out)

Training data is then stemmed as described in
Section 2.3. The formerly modifying words of the
compound (in our example the words to the left
of the rightmost word) do not have a stem markup
assigned, except for two cases: i) they are nouns
themselves or ii) they are particles separated from
a verb. In these cases, former modifiers are rep-
resented identically to their individual occurring
counterparts, which helps generalization.

8.2 Model for Compound Merging

After translation, compound parts have to be
resynthesized into compounds before inflection.
Two decisions have to be taken: i) where to
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merge and ii) how to merge. Following the work
of Stymne and Cancedda (2011), we implement
a linear-chain CRF merging system using the
following features: stemmed (separated) surface
form, part-of-speech14 and frequencies from the
training corpus for bigrams/merging of word and
word+1, word as true prefix, word+1 as true suf-
fix, plus frequency comparisons of these. The
CRF is trained on the split monolingual data. It
only proposes merging decisions, merging itself
uses a list extracted from the monolingual data
(Popovic et al., 2006).

8.3 Experiments

We evaluated the end-to-end inflection system
with the addition of compounds.15 As in the in-
flection experiments described in Section 5, we
use a 5-gram surface LM and a 7-gram POS
LM, but for this experiment, they are trained on
stemmed, split data. The POS LM helps com-
pound parts and heads appear in correct order.
The results are in Table 7. The BLEU score of the
CRF on test is 14.04, which is low. However the
system produces 19 compound types which are
in the reference but not in the parallel data, and
therefore not accessible to other systems. We also
observe many more compounds in general. The
100-best inflection rescoring technique previously
discussed reached 14.07 on the test set. Blind
test results with CRF prediction are much better,
14.08, which is a statistically significant improve-
ment over the baseline (13.68) and approaches the
result we obtained without compounds (14.18).
Correctly generated compounds are single words
which usually carry the same information as mul-
tiple words in English, and are hence likely un-
derweighted by BLEU. We again see many in-
teresting generalizations. For instance, take the
case of translating English miniature cameras to
the German compound Miniaturkameras. minia-
ture camera or miniature cameras does not occur
in the training data, and so there is no appropri-
ate phrase pair in any system (baseline, inflec-
tion, or inflection&compound-splitting). How-
ever, our system with compound splitting has
learned from split composita that English minia-

14Compound modifiers get assigned a special tag based on
the POS of their former heads, e.g., Inflation in the example
is marked as a non-head of a noun.

15We found it most effective to merge word parts during
MERT (so MERT uses the same stem references as before).

1 1 JSM morphological features 13.94
2 4 CRFs morphological features, lexical information 14.04

Table 7: Results with Compounds on the test set

ture can be translated as German Miniatur- and
gets the correct output.

9 Related Work

There has been a large amount of work on trans-
lating from a morphologically rich language to
English, we omit a literature review here due to
space considerations. Our work is in the opposite
direction, which primarily involves problems of
generation, rather than problems of analysis.

The idea of translating to stems and then in-
flecting is not novel. We adapted the work of
Toutanova et al. (2008), which is effective but lim-
ited by the conflation of two separate issues: word
formation and inflection.

Given a stem such as brother, Toutanova et. al’s
system might generate the “stem and inflection”
corresponding to and his brother. Viewing and
and his as inflection is problematic since a map-
ping from the English phrase and his brother to
the Arabic stem for brother is required. The situ-
ation is worse if there are English words (e.g., ad-
jectives) separating his and brother. This required
mapping is a significant problem for generaliza-
tion. We view this issue as a different sort of prob-
lem entirely, one of word-formation (rather than
inflection). We apply a “split in preprocessing and
resynthesize in postprocessing” approach to these
phenomena, combined with inflection prediction
that is similar to that of Toutanova et. al. The
only work that we are aware of which deals with
both issues is the work of de Gispert and Mariño
(2008), which deals with verbal morphology and
attached pronouns. There has been other work
on solving inflection. Koehn and Hoang (2007)
introduced factored SMT. We use more complex
context features. Fraser (2009) tried to solve the
inflection prediction problem by simply building
an SMT system for translating from stems to in-
flected forms. Bojar and Kos (2010) improved on
this by marking prepositions with the case they
mark (one of the most important markups in our
system). Both efforts were ineffective on large
data sets. Williams and Koehn (2011) used uni-
fication in an SMT system to model some of the
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agreement phenomena that we model. Our CRF
framework allows us to use more complex con-
text features.

We have directly addressed the question as to
whether inflection should be predicted using sur-
face forms as the target of the prediction, or
whether linguistic features should be predicted,
along with the use of a subsequent generation
step. The direct prediction of surface forms is
limited to those forms observed in the training
data, which is a significant limitation. How-
ever, it is reasonable to expect that the use of
features (and morphological generation) could
also be problematic as this requires the use of
morphologically-aware syntactic parsers to anno-
tate the training data with such features, and addi-
tionally depends on the coverage of morpholog-
ical analysis and generation. Despite this, our
research clearly shows that the feature-based ap-
proach is superior for English-to-German SMT.
This is a striking result considering state-of-the-
art performance of German parsing is poor com-
pared with the best performance on English pars-
ing. As parsing performance improves, the per-
formance of linguistic-feature-based approaches
will increase.

Virpioja et al. (2007), Badr et al. (2008), Luong
et al. (2010), Clifton and Sarkar (2011), and oth-
ers are primarily concerned with using morpheme
segmentation in SMT, which is a useful approach
for dealing with issues of word-formation. How-
ever, this does not deal directly with linguistic fea-
tures marked by inflection. In German these lin-
guistic features are marked very irregularly and
there is widespread syncretism, making it difficult
to split off morphemes specifying these features.
So it is questionable as to whether morpheme seg-
mentation techniques are sufficient to solve the in-
flectional problem we are addressing.

Much previous work looks at the impact of us-
ing source side information (i.e., feature func-
tions on the aligned English), such as those
of Avramidis and Koehn (2008), Yeniterzi and
Oflazer (2010) and others. Toutanova et. al.’s
work showed that it is most important to model
target side coherence and our stem markup also
allows us to access source side information. Us-
ing additional source side information beyond the
markup did not produce a gain in performance.

For compound splitting, we follow Fritzinger
and Fraser (2010), using linguistic knowledge en-

coded in a rule-based morphological analyser and
then selecting the best analysis based on the ge-
ometric mean of word part frequencies. Other
approaches use less deep linguistic resources
(e.g., POS-tags Stymne (2008)) or are (almost)
knowledge-free (e.g., Koehn and Knight (2003)).
Compound merging is less well studied. Popovic
et al. (2006) used a simple, list-based merging ap-
proach, merging all consecutive words included
in a merging list. This approach resulted in too
many compounds. We follow Stymne and Can-
cedda (2011), for compound merging. We trained
a CRF using (nearly all) of the features they used
and found their approach to be effective (when
combined with inflection and portmanteau merg-
ing) on one of our two test sets.

10 Conclusion

We have shown that both the prediction of sur-
face forms and the prediction of linguistic features
are of interest for improving SMT. We have ob-
tained the advantages of both in our CRF frame-
work, and also integrated handling of compounds,
and an inflection-dependent word formation phe-
nomenon, portmanteaus. We validated our work
on a well-studied large corpora translation task.
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Abstract

Arabic morphology is complex, partly be-
cause of its richness, and partly because
of common irregular word forms, such as
broken plurals (which resemble singular
nouns), and nouns with irregular gender
(feminine nouns that look masculine and
vice versa). In addition, Arabic morpho-
syntactic agreement interacts with the lex-
ical semantic feature of rationality, which
has no morphological realization. In this
paper, we present a series of experiments
on the automatic prediction of the latent
linguistic features of functional gender and
number, and rationality in Arabic. We com-
pare two techniques, using simple maxi-
mum likelihood (MLE) with back-off and
a support vector machine based sequence
tagger (Yamcha). We study a number of
orthographic, morphological and syntactic
learning features. Our results show that
the MLE technique is preferred for words
seen in the training data, while the Yam-
cha technique is optimal for unseen words,
which are our real target. Furthermore, we
show that for unseen words, morphological
features help beyond orthographic features
and that syntactic features help even more.
A combination of the two techniques im-
proves overall performance even further.

1 Introduction

Arabic morphology is complex, partly because
of its richness, and partly because of its com-
plex morpho-syntactic agreement rules which de-
pend on functional features not necessarily ex-
pressed in word forms. Particularly challeng-
ing are broken plurals (which resemble singu-
lar nouns), nouns with irregular gender (mascu-
line nouns that look feminine and feminine nouns

that look masculine), and the semantic feature
of rationality, which has no morphological re-
alization (Smrž, 2007b; Alkuhlani and Habash,
2011). These features heavily participate in Ara-
bic morpho-syntactic agreement. Alkuhlani and
Habash (2011) show that without proper model-
ing, Arabic agreement cannot be accounted for
in about a third of all noun-adjective pairs and
a quarter of verb-subject pairs. They also report
that over half of all plurals in Arabic are irregular,
8% of nominals have irregular gender and almost
half of all proper nouns and 5% of all nouns are
rational.

In this paper, we present results on the task
of automatic identification of functional gender,
number and rationality of Arabic words in con-
text. We consider two supervised learning tech-
niques: a simple maximum-likelihood model with
back-off (MLE) and a support-vector-machine-
based sequence tagger, Yamcha (Kudo and Mat-
sumoto, 2003). We consider a large number of
orthographic, morphological and syntactic learn-
ing features. Our results show that the MLE tech-
nique is preferred for words seen in the training
data, while the Yamcha technique is optimal for
unseen words, which are our real target. Further-
more, we show that for unseen words, morpho-
logical features help beyond orthographic features
and that syntactic features help even more. A
combination of the two techniques improves over-
all performance even further.

This paper is structured as follows: Sec-
tions 2 and 3 present relevant linguistic facts and
related work, respectively. Section 4 presents the
data collection we use and the metrics we target.
Section 5 discusses our approach. And Section 6
presents our results.
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Word ystlhm AlktAb AlHdyθwn qSSA jdyd̄h mn Almjtmς Al ςrby Alqdym
Form MS MS MP MS FS NaNa MS MS MS
Func MSN MPR MPN FPI FSN NaNaNa MSI MSN MSN
Gloss be-inspired the-writers the-modern stories new from culture Arab ancient

English ‘Modern writers are inspired by ancient Arab culture to write new stories .’

Figure 1: An example Arabic sentence showing its dependencyrepresentation together with the form-based and
functional gender and number features and rationality. Thedependency tree is in the CATiB treebank represen-
tation (Habash and Roth, 2009). The shown POS tags are VRB “verb”, NOM “nominal (noun/adjective)”, and
PRT “particle”. The relations are SBJ “subject”, OBJ “object” and MOD “modifier”. The form-based features
are only for gender and number.

2 Linguistic Facts

Arabic has a rich and complex morphology. In
addition to being both templatic (root/pattern) and
concatenative (stems/affixes/clitics), Arabic’s op-
tional diacritics add to the degree of word ambi-
guity. We focus on two problems of Arabic mor-
phology: the discrepancy between morphological
form and function; and the complexity of morpho-
syntactic agreement rules.

2.1 Form and Function

Arabic nominals (i.e. nouns, proper nouns and
adjectives) and verbs inflect for gender: mascu-
line (M ) and feminine (F ), and for number: sin-
gular (S), dual (D) and plural (P ). These features
are regularly expressed using a set of suffixes that
uniquely convey gender and number combina-
tions: +φ (MS),

�è+ +h̄1 (FS), 	àð+ +wn (MP ),

and �H@+ +At (FP ). For example, the adjective

QëAÓ mAhr‘clever’ has the following forms among

others: QëAÓ mAhr (MS),
�èQëAÓ mAhr̄h (FS),

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter (HSB) scheme (Habash et al., 2007): (in alpha-
betical order)AbtθjHxdðrzsšSDŤDςγfqklmnhwyand the ad-

ditional symbols: ’Z, Â


@, Ǎ @
, Ā

�
@, ŵ 
ð', ŷ Zø', h̄

�è, ý ø.

	àðQëAÓ mAhrwn (MP ), and �H@QëAÓ mAhrAt
(FP ). For a sizable minority of words, these
features are expressed templatically, i.e., through
pattern change, coupled with some singular suf-
fix. A typical example of this phenomenon is the
class ofbroken plurals, which accounts for over
half of all plurals (Alkuhlani and Habash, 2011).
In such cases, the form of the morphology (sin-
gular suffix) is inconsistent with the word’s func-
tional number (plural). For example, the word
I. �KA¿ kAtb (MS) ‘writer’ has the broken plural:

H. A
��J» ktAb( MS

MP
).2 See the second word in the ex-

ample in Figure 1, which is the wordH. A
��J» ktAb

‘writers’ prefixed with the definite articleAl+ . In
addition to broken plurals, Arabic has words with
irregular gender, e.g., the feminine singular ad-
jective ‘red’ Z @QÔg HmrA’ (MS

FS
), and the nouns

�é 	®J
Ê 	g xlyf̄h ( FS

MS
) ‘caliph’ and ÉÓAg HAml (MS

FS
)

‘pregnant’. Verbs and nominal duals do not dis-
play this discrepancy.

2.2 Morpho-syntactic Agreement

Arabic gender and number features participate in
morpho-syntactic agreement within specific con-

2This nomenclature denotes (F orm

F unction
).
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structions such as nouns with their adjectives
and verbs with their subjects. Arabic agreement
rules are more complex than the simple match-
ing rules found in languages such as Spanish
(Holes, 2004; Habash, 2010). For instance, Ara-
bic adjectives agree with the nouns they mod-
ify in gender and number except for plural ir-
rational (non-human) nouns, which always take
feminine singular adjectives. Rationality (‘hu-
manness’ ‘É�̄A« Q�


	«/É�̄A«’) is a morpho-lexical
feature that is narrower than animacy. English
expresses it mainly in pronouns (he/shevs. it)
and relativizers (men who... vs. cars/cows
which...). We follow the convention by Alkuh-
lani and Habash (2011) who specify rationality
as part of the functional features of the word.
The values of this feature are: rational (R), irra-
tional (I), and not-specified (N ). N is assigned to
verbs, adjectives, numbers and quantifiers.3 For
example, in Figure 1, the plural rational noun
H. A

��JºË @ AlktAb ( MS

MPR
) ‘writers’ takes the plural

adjective 	àñ�JK
YmÌ'@ AlHdyθwn ( MP

MPN
) ‘modern’;

while the plural irrational wordA���̄
qSSA‘sto-

ries’ ( MS

FPI
) takes the feminine singular adjective�èYK
Yg. jdyd̄h ( FS

FSN
).

3 Related Work

Much work has been done on Arabic morpholog-
ical analysis, morphological disambiguation and
part-of-speech (POS) tagging (Al-Sughaiyer and
Al-Kharashi, 2004; Soudi et al., 2007; Habash,
2010). The bulk of this work does not address
form-function discrepancy or morpho-syntactic
agreement issues. This includes the most com-
monly used resources and tools for Arabic NLP:
the Buckwalter Arabic Morphological Analyzer
(BAMA) (Buckwalter, 2004) which is used in the
Penn Arabic Tree Bank (PATB) (Maamouri et al.,
2004), and the various POS tagging and morpho-
logical disambiguation tools trained using them
(Diab et al., 2004; Habash and Rambow, 2005).
There are some important exceptions (Goweder et
al., 2004; Habash, 2004; Smrž, 2007b; Elghamry
et al., 2008; Abbès et al., 2004; Attia, 2008;

3We previously defined the rationality valueN as not-
applicable when we only considered nominals (Alkuhlani
and Habash, 2011). In this work, we rename the rationality
valueN asnot-specifiedwithout changing its meaning. We
use the valueNa (not-applicable) for parts-of-speech that
do not have a meaningful value for any feature, e.g., prepo-
sitions have gender, number and rationality values ofNa.

Altantawy et al., 2010; Alkuhlani and Habash,
2011).

In terms of resources, Smrž (2007b)’s work
contrasting illusory (form) features and functional
features inspired our distinction of morphologi-
cal form and function. However, unlike him, we
do not distinguish between sub-functional (logi-
cal and formal) features. His ElixirFM analyzer
(Smrž, 2007a) extends BAMA by including func-
tional number andsomefunctional gender infor-
mation, but not rationality. This analyzer was
used as part of the annotation of the Prague Ara-
bic Dependency Treebank (PADT) (Smrž and Ha-
ji č, 2006). More recently, Alkuhlani and Habash
(2011) built on the work of Smrž (2007b) and ex-
tended beyond it to fully annotate functional gen-
der, number and rationality in the PATB part 3.
We use their resource to train and evaluate our
system.

In terms of techniques, Goweder et al. (2004)
investigated several approaches using root and
pattern morphology for identifying broken plu-
rals in undiacritized Arabic text. Their effort re-
sulted in an improved stemming system for Ara-
bic information retrieval that collapses singulars
and plurals. They report results on identifying
broken plurals out of context. Similar to them,
we undertake the task of identifying broken plu-
rals; however, we also target the templatic gen-
der and rationality features, and we do this in-
context. Elghamry et al. (2008) presented an auto-
matic cue-based algorithm that uses bilingual and
monolingual cues to build a web-extracted lexi-
con enriched with gender, number and rationality
features. Their automatic technique achieves an
F-score of 89.7% against a gold standard set. Un-
like them, we use a manually annotated corpus to
train and test the prediction of gender, number and
rationality features.

Our approach to identifying these features ex-
plores a large set of orthographic, morphological
and syntactic learning features. This is very much
following several previous efforts in Arabic NLP
in which different tagsets and morphological fea-
tures have been studied for a variety of purposes,
e.g., base phrase chunking (Diab, 2007) and de-
pendency parsing (Marton et al., 2010). In this
paper we use the parser of Marton et al. (2010)
as our source of syntactic learning features. We
follow their splits for training, development and
testing.
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4 Problem Definition

Our goal is to predict the functional gender, num-
ber and rationality features for all words.

4.1 Corpus and Experimental Settings

We use the corpus of Alkuhlani and Habash
(2011), which is based on the PATB. The corpus
contains around 16.6K sentences and over 400K
tokens. We use the train/development/test splits
of Marton et al. (2010). We train on a quarter of
the training set and classify words in sequence.
We only use a portion of the training data to in-
crease the percentage of words unseen in training.
We also compare to using all of the training data
in Section 6.7.

Our data is gold tokenized; however, all of
the features we use are predicted using MADA
(Habash and Rambow, 2005) following the work
of Marton et al. (2010). Words whose tags are un-
known in the training set are excluded from the
evaluation, but not training. In terms of ambigu-
ity, the percentage of word types with ambiguous
gender, number and rationality in the train set is
1.35%, 0.79%, and 4.8% respectively. These per-
centages are consistent with how we perform on
these features, with number being the easiest and
rationality the hardest.

4.2 Metrics

We report all results in terms of token accuracy.
Evaluation is done for the following sets: all
words, seen words, and unseen words. A word is
considered seen if it is in the training data regard-
less of whether it appears with the same lemma
and POS tag or not. Defining seen words this way
makes the decision on whether a word is seen or
unseen unaffected by lemma and/or POS predic-
tion errors in the development and test sets. Us-
ing our definition of seen words, 34.3% of words
types (and 10.2% of word tokens) in the devel-
opment set have not been seen in quarter of the
training set.

We train single classifiers for G (gender), N
(number), R (rationality), GN and GNR, and eval-
uate them. We also combine the tags of the sin-
gle classifiers into larger tags (G+N, GN+R and
G+N+R).

5 Approach

Our approach involves using two techniques:
MLE with back-off and Yamcha. For each tech-
nique, we explore the effects of different learning
features and try to come up with the best tech-
nique and feature set for each target feature.

5.1 Learning Features

We investigate the contribution of different learn-
ing features in predicting functional gender, num-
ber and rationality features. The learning features
are explored in the following order:

Orthographic Features These features are or-
ganized in two sets: W1 is the unnormalized form
of the word, and W2 includes W1 plus letter n-
grams. The n-grams used are the first letter, first
two letters, last letter, and last two letters of the
word form. We tried using the Alif/Ya normalized
forms of the words (Habash, 2010), but these be-
haved consistently worse than the unnormalized
forms.

Morphological Features We explore the fol-
lowing morphological features inspired by the
work of Marton et al. (2010):

• POS tags. We experiment with different POS
tag sets: CATiB-6 (6 tags) (Habash et al., 2009),
CATiB-EX (44 tags), Kulick (34 tags) (Kulick et
al., 2006), Buckwalter (BW) (Buckwalter, 2004),
which is the tag used in the PATB (430 tags),
and a reduced form of BW tag that ignores case
and mood (BW-) (217 tags). These tags differ in
their granularity and range from very specific tags
(Buckwalter) to more general tags (CATiB).

• Lemma. We use the diacritized lemma
(Lemma), and the normalized and undiacritized
form of the lemma, the LMM (LMM).

• Form-based features. Form-based features
(F) are extracted from the word form and do not
necessarily reflect functional features. These fea-
tures are form-based gender, form-based number,
person and the definite article.

Syntactic Features We use the following syn-
tactic features (SYN) derived from the CATiB de-
pendency version of the PATB (Habash and Roth,
2009): parent, dependency relation, order of ap-
pearance (the word comes before or after its par-
ent), the distance between the word and its parent,
and the parent’s orthographic and morphological
features.
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For all of these features, we train on gold val-
ues, but only experiment with predicted values in
the development and test sets. For predicting mor-
phological features, we use the MADA system
(Habash and Rambow, 2005). The MADA sys-
tem corrects for suboptimal orthographic choices
and effectively produces a consistent and unnor-
malized orthography. For the syntactic features,
we use Marton et al. (2010)’s system.

5.2 Techniques

We describe below the two techniques we ex-
plored.

MLE with Back-off We implemented an MLE
system with multiple back-off modes using our
set of linguistic features. The order of the back-off
is from specific to general. We start with an MLE
system that uses only the word form, and backs
off to the most common feature value across all
words (excluding unknown andNa values). This
simple MLE system is used as a baseline.

As we add more features to the MLE system,
it tries to match all these features to predict the
value for a given word. If such a combination of
features is not seen in the training set, the sys-
tem backs off to a more general combination of
features. For example, if an MLE system is us-
ing the features W2+LMM+BW, the system tries
to match this combination. If it is not seen in
training, the system backs off to the following set:
LMM+BW, and tries to return the most common
value for this POS tag and lemma combination. If
again it fails to find a match, it backs off to BW,
and returns the most common value for that par-
ticular POS tag. If no word is seen with this POS
tag, the system returns the most common value
across all words.

Yamcha Sequence Tagger We use Yamcha
(Kudo and Matsumoto, 2003), a support-vector-
machine-based sequence tagger. We perform dif-
ferent experiments with the different sets of fea-
tures presented above. After that, we apply a
consistency filter that ensures that every word-
lemma-pos combination always gets the same
value for gender, number and rationality features.
Yamcha in its default settings tags words using a
window of two words before and two words af-
ter the word being tagged. This gives Yamcha an
advantage over the MLE system which tags each
word independently.

Single vs Joint Classification In this paper, we
only discuss systems trained for a single classifier
(for gender, for number and for rationality). In
experiments we have done, we found that training
single classifiers and combining their outcomes
almost always outperforms a single joint classi-
fier for the three target features. In other words,
combining the results of G and N (G+N) outper-
forms the results of the single classifier GN. The
same is also true for G+N+R, which outperforms
GNR and GN+R. Therefore, we only present the
results for the single classifiers G, N, R and their
combination G+N+R.

6 Results

We perform a series of experiments increasing in
feature complexity. We greedily select which fea-
tures to pass on to the next level of experiments.
In cases of ties, we pass the top two performers
to the next step. We discuss each of these exper-
iments next for both the MLE and Yamcha tech-
niques. Statistical significance is measured using
the McNemar test of statistical significance (Mc-
Nemar, 1947).

6.1 Experiment Set I: Orthographic
Features

The first set of experiments uses the orthographic
features. See Table 1. The MLE system with the
word only feature (W1) is effectively our base-
line. It does surprisingly well for seen cases. In
fact it is the highest performer across all exper-
iments in this paper for seen cases. For unseen
cases, it produces a miserable and expected low
score of 21.0% accuracy. The addition of the n-
gram features (W2) improves statistically signif-
icantly over W1 for unseen cases, but it is indis-
tinguishable for seen cases. The Yamcha system
shows the same difference in results between W1
and W2.

Across the two sets of features, the MLE sys-
tem consistently outperforms Yamcha in the case
of seen words, while Yamcha does better for un-
seen words. This can be explained by the fact that
the MLE system matches only on the word form
and if the word is unseen, it backs off to the most
common value across all words. Moreover, Yam-
cha uses some limited context information that al-
lows it to generalize for unseen words.

Among the target features, number is the easi-
est to predict, while rationality is the hardest.
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MLE Yamcha
G N R G+N+R G N R G+N+R

Featuresseenunseenseenunseenseenunseenseenunseenseenunseenseenunseenseenunseenseenunseen

W1 99.2 61.6 99.3 69.2 97.4 44.7 97.0 21.0 95.9 67.8 96.7 72.0 94.5 67.4 90.2 35.2
W2 99.2 81.7 99.3 81.6 97.4 63.4 97.0 49.1 97.1 86.6 97.7 87.1 95.6 82.0 92.8 65.5

Table 1: Experiment Set I: Baselines and simple orthographic features. W1 is the word only. W2 is the word
with additional 1-gram and 2-gram prefix and suffix features.All numbers are accuracy percentages.

MLE Yamcha
G N R G+N+R G N R G+N+R

Features seenunseenseenunseenseenunseenseenunseenseenunseenseenunseenseenunseenseenunseen

W2+F 99.2 86.9 99.3 88.9 97.4 63.4 96.9 51.9 97.7 89.8 98.1 91.7 96.0 83.5 93.8 72.0

W2+Lemma 97.4 68.3 97.6 71.5 95.6 70.3 95.2 33.8 97.4 86.8 97.7 86.4 96.1 82.2 93.3 65.4
W2+LMM 99.1 68.8 99.3 71.7 97.2 67.6 96.8 33.2 97.5 86.7 97.9 86.6 96.1 82.6 93.5 65.7

W2+CATIB 99.1 85.0 99.3 83.8 97.4 70.0 97.1 56.2 97.5 87.9 98.0 88.6 96.0 83.5 93.6 69.7
W2+CATIB-EX 99.1 85.7 99.3 84.3 97.4 70.4 97.1 56.7 97.5 88.0 97.9 88.1 96.0 83.6 93.6 69.9
W2+Kulick 99.0 86.7 99.1 85.6 97.1 78.7 96.7 65.5 97.3 88.8 97.9 89.4 95.8 83.5 93.3 70.9
W2+BW- 99.0 88.8 99.0 88.8 97.0 80.7 96.6 68.5 97.5 89.7 98.0 91.2 96.0 85.2 93.7 73.2
W2+BW 98.6 87.9 98.5 88.8 96.8 80.3 95.9 67.8 97.5 89.5 97.9 89.5 96.1 85.7 93.7 72.8

Table 2: Experiment Set II.a: Morphological features: (i) form-based gender and number, (ii) lemma and LMM
(undiacritized lemma) and (iii) a variety of POS tag sets. For each subset, the best performers are bolded.

6.2 Experiment Set II: Morphological
Features

Individual Morphological Features In this set
of experiments, we use our best system from the
previous set, W2, and add individual morpholog-
ical features to it. We organize these features in
three sub-groups: (i) form-based features (F), (ii)
lemma and LMM, and (iii) the five POS tag sets.
See Table 2.

The F, Lemma and LMM improve over the
baseline in terms of unseen words for both MLE
and Yamcha techniques. However, for seen
words, these systems do worse than or equal to the
baseline when the MLE technique is used. The
MLE system in these cases tries to match the word
and its morphological features as a single unit and
if such a combination is not seen, it backs off to
the morphological feature which is more general.
Since we are using predicted data, prediction er-
rors could be the reason behind this decrease in
accuracy for seen words. Among these systems,
W2+F is the best for both Yamcha and MLE ex-
cept for rationality which is expected since there
are no form-based features for rationality. In this
set of experiments, Yamcha consistently outper-
forms MLE when it comes to unseen words, but
for seen words, MLE does better almost always.
LMM overall does better than Lemma. This is

reasonable given that LMM is easier to predict;
although LMM is more ambiguous.

As for the POS tag sets, looking at the MLE
results, CATIB-EX is the best performer for seen
words, and BW- is the best for unseen. CATIB-6
is a general POS tag set and since the MLE tech-
nique is very strict in its matching process (an ex-
act match or no match), using a general key to
match on adds a lot of ambiguity. With Yamcha,
BW and BW- are the best among all POS. Yamcha
is still doing consistently better in terms of unseen
words. The best two systems from both Yamcha
and MLE are used as the basic systems for the
next subset of experiments where we combine the
morphological features.

Combined Morphological Features Until this
point, all experiments using the two techniques
are similar. In this subset, MLE explores the ef-
fect of using the CATIB-EX and BW- with other
morphological features. And Yamcha explores
the effect of using BW- and BW with other mor-
phological features. See Table 3. Again, Yamcha
is still doing consistently better in terms of unseen
words, but when it comes to seen words, MLE
performs better. For seen words, our best results
come from MLE using CATIB-EX and LMM. For
unseen words, our best results come from Yam-
cha with the BW- tag and the form-based features
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MLE Yamcha
Features: G N R G+N+R Features: G N R G+N+R
W2 seenunseenseenunseenseenunseenseenunseenW2 seenunseenseenunseenseenunseenseenunseen
+CATIB-EX 99.1 85.7 99.3 84.3 97.4 70.4 97.0 56.7 +BW 97.5 89.5 97.9 89.5 96.1 85.7 93.7 72.8
+F 98.7 88.6 99.1 89.4 94.9 70.4 94.3 59.7 +F 97.8 90.6 98.2 92.4 96.3 85.3 94.2 75.4
+LMM 99.1 78.9 99.3 80.4 97.3 69.6 96.9 44.7 +LMM 97.6 88.9 98.1 88.9 96.5 85.7 94.1 72.3
+LMM+F 98.7 89.9 99.0 89.7 94.8 69.6 94.2 58.1 +LMM+F 98.1 90.4 98.4 92.5 96.7 85.8 94.8 75.9
+BW- 99.0 88.8 99.0 88.8 97.0 80.7 96.6 68.5 +BW- 97.5 89.7 98.0 91.2 96.0 85.2 93.7 73.2
+F 99.0 88.8 99.1 89.9 97.0 80.7 96.6 69.6 +F 97.7 90.7 98.2 92.5 96.1 85.6 94.0 75.3
+LMM 98.9 90.0 99.0 88.0 97.0 83.6 96.6 69.8 +LMM 97.7 89.6 98.1 90.4 96.2 85.1 94.0 72.5
+LMM+F 98.9 90.0 99.0 89.1 97.0 83.6 96.6 70.8 +LMM+F 98.0 90.3 98.2 92.4 96.5 85.7 94.5 75.1

Table 3: Experiment Set II.b: Combining different morphological features.

Yamcha
G N R G+N+R

Features: seenunseenseenunseenseenunseenseenunseen
W2 +BW +F+SYN 97.3 90.6 97.8 92.5 96.1 86.1 93.5 76.0
W2 +BW +LMM+SYN 97.4 89.1 97.5 88.3 96.2 86.0 93.4 71.7
W2 +BW +LMM+F+SYN 97.5 90.8 98.0 92.5 96.4 86.2 93.8 76.2
W2 +BW- +F+SYN 97.4 90.7 97.9 92.7 96.1 85.2 93.5 75.0
W2 +BW- +LMM+SYN 97.4 89.5 97.7 89.8 96.1 85.7 93.4 72.1
W2 +BW- +LMM+F+SYN 97.4 90.8 97.9 92.7 96.2 85.3 93.6 75.2

Table 4: Experiment Set III: Syntactic features.

for both gender and number. For rationality, the
best features to use with Yamcha are BW, LMM
and form-based features. The lemma seems to ac-
tually hurt when predicting gender and number.
This can be explained by the fact that gender and
number features are often properties of the word
form and not of the lemma. This is different for
rationality, which is a property of the lemma and
therefore, we expect the lemma to help.

The fact that the predicted BW set helps is not
consistent with previous work by Marton et al.
(2010). In that effort, BW helps parsing only in
the gold condition. BW prediction accuracy is
low because it includes case endings. We pos-
tulate that perhaps in our task, which is far more
limited than general parsing, errors in case pre-
diction may not matter too much. The more com-
plex tag set may actually help establish good lo-
cal agreement sequences (even if incorrect case-
wise), which is relevant to the target features.

6.3 Experiment Set III: Syntactic Features

This set of experiments adds syntactic features
to the experiments in set II. We add syntax to
the systems that uses Yamcha only since it is
not obvious how to add syntactic information to
the MLE system. Syntax improves the predic-
tion accuracy for unseen words but not for seen

words. In Yamcha, we can argue that the +/-2
word window allows some form of shallow syn-
tax modeling, which is why Yamcha is doing bet-
ter from the start. But the longer distance features
are helping even more, perhaps because they cap-
ture agreement relations. The overall best system
for unseen words is W2+BW+LMM+F+SYN,
except for number, where W2+BW-+F+SYN
is slightly better. In terms of G+N+R
scores, W2+BW+LMM+F+SYN is statistically
significantly better than all other systems in
this set for seen and unseen words, ex-
cept for unseen words with W2+BW+F+SYN.
W2+BW+LMM+F+SYN is also statistically sig-
nificantly better than its non-syntactic variant for
both seen and unseen words. The prediction ac-
curacy for seen words is still not as good as the
MLE systems.

6.4 System Combination

The simple MLE W1 system, which happens to be
the baseline, is the best predictor for seen words,
and the more advanced Yamcha system using syn-
tactic features is the best predictor for unseen
words. Next, we create a new system that takes
advantage of the two systems. We use the sim-
ple MLE W1 system for seen words, and Yam-
cha with syntax for unseen words. For unseen
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words, since each target feature has its own set of
best learning features, we also build a combina-
tion system that uses the best systems for gender,
number and rationality and combine their output
into a single system for unseen words. For gender
and rationality, we use W2+BW+LMM+F+SYN,
and for number, we use W2+BW-+F+SYN. As
expected the combination system outperforms the
basic systems. For comparison: The MLE W1
system gets an (all, seen, unseen) scores of (89.3,
97.0, 21.0) for G+N+R, while the best single
Yamcha syntactic system gets (92.0, 93.8, 76.2);
the combination on the other hand gets (94.9,
97.0, 76.2). The overall (all) improvement over
the MLE baseline or the best Yamcha translates
into 52% error reduction or 36% error reduction,
respectively.

6.5 Error Analysis

We conducted an analysis of the errors in the out-
put of the combination system as well as the two
systems that contributed to it.

In the combination system, out of the total er-
ror in G+N+R (5.1%), 53% of the cases are for
seen words (3.0% of all seen) and 47% for unseen
words (23.8% of all unseen). Overall, rational-
ity errors are the biggest contributor to G+N+R
error at 73% relative, followed by gender (33%
relative) and number (26% relative). Among er-
ror cases of seen words, rationality errors soar to
87% relative, almost four times the corresponding
gender and number errors (27% and 22%, respec-
tively). However, among error cases of unseen
words, rationality errors are 57% relative, while
gender and number corresponding errors are (39%
and 31%, respectively). As expected, rational-
ity is much harder to tag than gender and number
due to its higher word-form ambiguity and depen-
dence on context.

We classified the type of errors in the MLE sys-
tem for seen words, which we use in the combi-
nation system. We found that 86% of the G+N+R
errors involve an ambiguity in the training data
where the correct answer was present but not cho-
sen. This is an expected limitation of the MLE ap-
proach. In the rest of the cases, the correct answer
was not actually present in the training data. The
proportion of ambiguity errors is almost identical
for gender, number and rationality. However ra-
tionality overall is the biggest cause of error, sim-
ply due to its higher degree of ambiguity.

All seenunseen
MLE W1 88.5 96.8 21.2
Yamcha BW+LMM+F 91.4 94.1 70.4
Yamcha BW+LMM+F+SYN91.0 93.3 72.2
Combination 94.1 96.8 72.4

Table 5: Results on blind test. Scores for
All/Seen/Unseen are shown for the G+N+R condition.
We compare the MLE word baseline, with the best
Yamcha system with and without syntactic features
and the combined system.

Since the Yamcha system uses MADA features,
we investigated the effect of the correctness of
MADA features on the system prediction accu-
racy. The overall MADA accuracy in identifying
the lemma and the Buckwalter tagtogether– a
very harsh measure – is 77.0% (79.3% for seen
and 56.8% for unseen). Our error analysis shows
that when MADA is correct, the prediction ac-
curacy for G+N+R is 95.6%, 96.5% and 84.4%
for all, seen and unseen, respectively. However,
this accuracy goes down to 79.2%, 82.5% and
65.5% for all, seen and unseen, respectively, when
MADA is wrong. This suggests that the Yam-
cha system suffers when MADA makes wrong
choices and improving MADA would lead to im-
provement in the system’s performance.

6.6 Blind Test

Finally, we apply our baseline, best combination
model and best single Yamcha syntactic model
(with and without syntax) to the blind test set.
The results are in Table 5. The results in the blind
test are consistent with the development set. The
MLE baseline is best on seen words, Yamcha is
best on unseen words, syntactic features help in
handling unseen words, and overall combination
improves over all specific systems.

6.7 Additional Training Data

After experimenting on quarter of the train set to
optimize for various settings, we train our com-
bination system on the full train set and achieve
(96.0, 96.8, 74.9) for G+N+R (all, seen, unseen)
on the development set and (96.5, 96.8, 65.6)
on the blind test set. As expected, the overall
(all) scores are higher simply due to the addi-
tional training data. The results on seen and un-
seen words, which are redefined against the larger
training set, are not higher than results for the
quarter training data. Of course, these numbers
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should not be compared directly. The number of
unseen word tokens in the full train set is 3.7%
compared to 10.2% in quarter of the train set.

6.8 Comparison with MADA

We compare our results with the form-based
features from the state-of-the-art morphological
analyzer MADA (Habash and Rambow, 2005).
We use the form-based gender and number fea-
tures produced by MADA after we filter MADA
choices by tokenization. Since MADA does not
give a rationality value, we assign the valueI (ir-
rational) to nouns and proper nouns and the value
N (not-specified) to verbs and adjectives. Every-
thing else receivesNa (not-applicable). The POS
tags are determined by MADA.

On the development set, MADA achieves
(72.6, 73.1, 58.6) for G+N+R (all, seen, unseen),
where the seen/unseen distinction is based on the
full training set in the previous section and is pro-
vided for comparison reasons only. The results for
the test set are (71.4, 72.2, 53.7). These results are
consistent with our expectation that MADA will
do badly on this task since it is not designed for
it (Alkuhlani and Habash, 2011). We should re-
mind the reader that MADA-derived features are
used as machine learning features in this paper,
where they actually help. In the future, we plan to
integrate this task inside of MADA.

6.9 Extrinsic Evaluation

We use the predicted gender, number and rational-
ity features that we get from training on the full
train set in a dependency syntactic parsing exper-
iment. The parsing feature set we use is the best
performing feature set described in (Marton et al.,
2011), which used an earlier unpublished version
of our MLE model. The parser we use is the Easy-
First Parser (Goldberg and Elhadad, 2010). More
details on this parsing experiment is in Marton et
al. (2012).

The functional gender and number features in-
crease the labeled attachment score by 0.4% abso-
lute over a comparable model that uses the form-
based gender and number features. Rationality on
the other hand does not help much. One possible
reason for this is the lower quality of the predicted
rationality feature compared to the other features.
Another possible reason is that the rationality fea-
ture is not utilized optimally in the parser.

7 Conclusions and Future Work

We presented a series of experiments for auto-
matic prediction of the latent features of func-
tional gender and number, and rationality in Ara-
bic. We compared two techniques, a simple MLE
with back-off and an SVM-based sequence tag-
ger, Yamcha, using a number of orthographic,
morphological and syntactic features. Our con-
clusions are that for words seen in training, the
MLE model does best; for unseen word, Yamcha
does best; and most interestingly, we found that
syntactic features help the prediction for unseen
words.

In the future, we plan to explore training on pre-
dicted features instead of gold features to mini-
mize the effect of tagger errors. Furthermore, we
plan to use our tools to collect vocabulary not cov-
ered by commonly used morphological analyzers
and try to assign them correct functional features.
Finally, we would like to use our predictions for
gender, number and rationality as learning fea-
tures for relevant NLP applications such as senti-
ment analysis, phrase-based chunking and named
entity recognition.
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bic Treebank: Prague Dependencies and Functions.
In Ali Farghaly, editor,Arabic Computational Lin-
guistics: Current Implementations. CSLI Publica-
tions.

684



Otakar Smrž. 2007a. ElixirFM – implementation of
functional arabic morphology. InACL 2007 Pro-
ceedings of the Workshop on Computational Ap-
proaches to Semitic Languages: Common Issues
and Resources, pages 1–8, Prague, Czech Repub-
lic. ACL.

Otakar Smrž. 2007b.Functional Arabic Morphology.
Formal System and Implementation. Ph.D. thesis,
Charles University in Prague, Prague, Czech Re-
public.

Abdelhadi Soudi, Antal van den Bosch, and Gün-
ter Neumann, editors. 2007.Arabic Computa-
tional Morphology. Knowledge-based and Empiri-
cal Methods, volume 38 ofText, Speech and Lan-
guage Technology. Springer, August.

685



Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 686–695,
Avignon, France, April 23 - 27 2012. c©2012 Association for Computational Linguistics

Framework of Semantic Role Assignment based on Extended Lexical
Conceptual Structure: Comparison with VerbNet and FrameNet

Yuichiroh Matsubayashi† Yusuke Miyao† Akiko Aizawa†

†, National Institute of Informatics, Japan
{y-matsu,yusuke,aizawa}@nii.ac.jp

Abstract

Widely accepted resources for semantic
parsing, such as PropBank and FrameNet,
are not perfect as a semantic role label-
ing framework. Their semantic roles are
not strictly defined; therefore, their mean-
ings and semantic characteristics are un-
clear. In addition, it is presupposed that
a single semantic role is assigned to each
syntactic argument. This is not necessarily
true when we consider internal structures of
verb semantics. We propose a new frame-
work for semantic role annotation which
solves these problems by extending the the-
ory of lexical conceptual structure (LCS).
By comparing our framework with that of
existing resources, including VerbNet and
FrameNet, we demonstrate that our ex-
tended LCS framework can give a formal
definition of semantic role labels, and that
multiple roles of arguments can be repre-
sented strictly and naturally.

1 Introduction

Recent developments of large semantic resources
have accelerated empirical research on seman-
tic processing (Màrquez et al., 2008). Specif-
ically, corpora with semantic role annotations,
such as PropBank (Kingsbury and Palmer, 2002)
and FrameNet (Ruppenhofer et al., 2006), are in-
dispensable resources for semantic role labeling.
However, there are two topics we have to carefully
take into consideration regarding role assignment
frameworks: (1) clarity of semantic role meanings
and (2) the constraint that a single semantic role
is assigned to each syntactic argument.

While these resources are undoubtedly invalu-
able for empirical research on semantic process-

Sentence [John] threw [a ball] [from the window] .
Affection Agent Patient
Movement Source Theme Source/Path
PropBank Arg0 Arg1 Arg2
VerbNet Agent Theme Source
FrameNet Agent Theme Source

Table 1: Examples of single role assignments with ex-
isting resources.

ing, current usage of semantic labels for SRL sys-
tems is questionable from a theoretical viewpoint.
For example, most of the works on SRL have
used PropBank’s numerical role labels (Arg0 to
Arg5). However, the meanings of these numbers
depend on each verb in principle and PropBank
does not expect semantic consistency, namely on
Arg2 to Arg5. Moreover, Yi et al. (2007) explic-
itly showed that Arg2 to Arg5 are semantically
inconsistent. The reason why such labels have
been used in SRL systems is that verb-specific
roles generally have a small number of instances
and are not suitable for learning. However, it is
necessary to avoid using inconsistent labels since
those labels confuse machine learners and can be
a cause of low accuracy in automatic process-
ing. In addition, clarity of the definition of roles
are particularly important for users to rationally
know how to use each role in their applications.
For this reasons, well-organized and generalized
labels grounded in linguistic characteristics are
needed in practice. Semantic roles of FrameNet
and VerbNet (Kipper et al., 2000) are used more
consistently to some extent, but the definition of
the roles is not given in a formal manner and their
semantic characteristics are unclear.

Another somewhat related problem of existing
annotation frameworks is that it is presupposed
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that a single semantic role is assigned to each syn-
tactic argument.1In fact, one syntactic argument
can play multiple roles in the event (or events) ex-
pressed by a verb. For example, Table 1 shows a
sentence containing the verb “throw” and seman-
tic roles assigned to its arguments in each frame-
work. The table shows that each framework as-
signs a single role, such as Arg0 and Agent, to
each syntactic argument. However, we can ac-
quire information from this sentence that John
is an agent of the throwing event (the “Affec-
tion” row), as well as a source of the movement
event of the ball (the “Movement” row). Existing
frameworks of assigning single roles simply ig-
nore such information that verbs inherently have
in their semantics. We believe that giving a clear
definition of multiple argument roles would be
beneficial not only as a theoretical framework but
also for practical applications that require detailed
meanings derived from secondary roles.

This issue is also related to fragmentation and
the unclear definition of semantic roles in these
frameworks. As we exemplify in this paper, mul-
tiple semantic characteristics are conflated in a
single role label in these resources due to the man-
ner of single-role assignment. This means that se-
mantic roles of existing resources are not mono-
lithic and inherently not mutually independent,
but they share some semantic characteristics.

The aim of this paper is more on theoreti-
cal discussion for role-labeling frameworks rather
than introducing a new resource. We developed
a framework of verb lexical semantics, which is
an extension of the lexical conceptual structure
(LCS) theory, and compare it with other exist-
ing frameworks which are used in VerbNet and
FrameNet, as an annotation scheme of SRL. LCS
is a decomposition-based approach to verb se-
mantics and describes a meaning by composing
a set of primitive predicates. The advantage of
this approach is that primitive predicates and their
compositions are formally defined. As a result,
we can give a strict definition of semantic roles
by grounding them to lexical semantic structures
of verbs. In fact, we define semantic roles as ar-
gument slots in primitive predicates. With this ap-

1To be precise, FrameNet permits multiple-role assign-
ment, while it does not perform this systematically as we
show in Table 1. It mostly defines a single role label for a
corresponding syntactic argument, that plays multiple roles
in several sub-events in a verb.

proach, we demonstrate that some sort of seman-
tic characteristics that VerbNet and FrameNet in-
formally/implicitly describe in their roles can be
given formal definitions and that multiple argu-
ment roles can be represented strictly and natu-
rally by extending the LCS theory.

In the first half of this paper, we define our ex-
tended LCS framework and describe how it gives
a formal definition of roles and solves the problem
of multiple roles. In the latter half, we discuss
the analysis of the empirical data we collected
for 60 Japanese verbs and also discuss theoreti-
cal relationships with the frameworks of existing
resources. We discuss in detail the relationships
between our role labels and VerbNet’s thematic
roles. We also describe the relationship between
our framework and FrameNet, with regards to the
definitions of the relationships between semantic
frames.

2 Related works

There have been several attempts in linguistics
to assign multiple semantic properties to one ar-
gument. Gruber (1965) demonstrated the dis-
pensability of the constraint that an argument
takes only one semantic role, with some concrete
examples. Rozwadowska (1988) suggested an
approach of feature decomposition for semantic
roles using her three features of change, cause,
and sentient, and defined typical thematic roles
by combining these features. This approach made
it possible for us to classify semantic properties
across thematic roles. However, Levin and Rap-
paport Hovav (2005) argued that the number of
combinations using defined features is usually
larger than the actual number of possible com-
binations; therefore, feature decomposition ap-
proaches should predict possible feature combi-
nations.

Culicover and Wilkins (1984) divided their
roles into two groups, action and perceptional
roles, and explained that dual assignment of roles
always involves one role from each set. Jackend-
off (1990) proposed an LCS framework for rep-
resenting the meaning of a verb by using several
primitive predicates. Jackendoff also stated that
an LCS represents two tiers in its structure, action
tier and thematic tier, which are similar to Culi-
cover and Wilkins’s two sets. Essentially, these
two approaches distinguished roles related to ac-
tion and change, and successfully restricted com-
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Figure 1: LCS of the verb throw.

binations of roles by taking a role from each set.
Dorr (1997) created an LCS-based lexical re-

source as an interlingual representation for ma-
chine translation. This framework was also used
for text generation (Habash et al., 2003). How-
ever, the problem of multiple-role assignment was
not completely solved on the resource. As a
comparison of different semantic structures, Dorr
(2001) and Hajičová and Kučerová (2002) ana-
lyzed the connection between LCS and PropBank
roles, and showed that the mapping between LCS
and PropBank roles was many to many correspon-
dence and roles can map only by comparing a
whole argument structure of a verb. Habash and
Dorr (2001) tried to map LCS structures into the-
matic roles by using their thematic hierarchy.

3 Multiple role expression using lexical
conceptual structure

Lexical conceptual structure is an approach to de-
scribe a generalized structure of an event or state
represented by a verb. A meaning of a verb is rep-
resented as a structure composed of several prim-
itive predicates. For example, the LCS structure
for the verb “throw” is shown in Figure 1 and
includes the predicates cause, affect, go, from,
fromward, toward, locate, in, and at. The argu-
ments of primitive predicates are filled by core ar-
guments of the verb. This type of decomposition
approach enables us to represent a case that one
syntactic argument fills multiple slots in the struc-
ture. In Figure 1, the argument i appears twice in
the structure: as the first argument of affect and
the argument in from.

The primitives are designed to represent a full
or partial action-change-state chain, which con-
sists of a state, a change in or maintaining of a
state, or an action that changes/maintains a state.
Table 2 shows primitives that play important roles
to represent that chain. Some primitives embed
other primitives as their arguments and the seman-
tics of the entire structure of an LCS structure
is calculated according to the definition of each
primitive. For instance, the LCS structure in Fig-

Predicates Semantic Functions
state(x, y) First argument is in state specified by

second argument.
cause(x, y) Action in first argument causes change

specified in second argument.
act(x) First argument affects itself.
affect(x, y) First argument affects second argument.
react(x, y) First argument affects itself, due to the

effect from second argument.
go(x, y) First argument changes according to the

path described in the second argument.
from(x) Starting point of certain change event.
fromward(x) Direction of starting point.
via(x) Pass point of certain change event.
toward(x) Direction of end point.
to(x) End point of certain change event.
along(x) Linear-shaped path of change event.

Table 2: Major primitive predicates and their semantic
functions.

ure 1 represents the action changing the state of j.
The inner structure of the second argument of go
represents the path of the change.

The overall definition of our extended LCS
framework is shown in Figure 2.2 Basically, our
definition is based on Jackendoff’s LCS frame-
work (1990), but performed some simplifications
and added extensions. The modification is per-
formed in order to increase strictness and gen-
erality of representation and also a coverage for
various verbs appearing in a corpus. The main
differences between the two LCS frameworks are
as follows. In our extended LCS framework, (i)
the possible combinations of cause, act, affect,
react, and go are clearly restricted, (ii) multiple
actions or changes in an event can be described
by introducing a combination function (comb for
short), (iii) GO, STAY and INCH in Jackendoff’s
theory are incorporated into one function go, and
(iv) most of the change-of-state events are repre-
sented as a metaphor using a spatial transition.

The idea of a comb function comes from a nat-
ural extension of Jackendoff’s EXCH function.
In our case, comb is not limited to describing
a counter-transfer of the main event but can de-
scribe subordinate events occurring in relation to
the main event.3 We can also describe multiple

2Here we omitted the attributes taken by each predicate,
in order to simplify the explanation. We also omitted an
explanation for lower level primitives, such as STATE and
PLACE groups, which are not necessarily important for the
topic of this paper.

3In our extended LCS theory, we can describe multiple
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Figure 2: Description system of our LCS. Operators
+, ∗, ? follow the basic regular expression syntax. {}
represents a choice of the elements.

main events if the agent does more than two ac-
tions simultaneously and all the actions are the
focus (e.g., John exchanges A with B). This ex-
tension is simple, but essential for creating LCS
structures of predicates appearing in actual data.
In our development of 60 Japanese predicates
(verb and verbal noun) frequently appearing in
Kyoto University Text Corpus (KTC) (Kurohashi
and Nagao, 1997) , 37.6% of the frames included
multiple events. By using the comb function, we
can express complicated events with predicate de-
composition and prevent missing (multiple) roles.

A key point for associating LCS framework
with the existing frameworks of semantic roles is
that each primitive predicate of LCS represents
a fundamental function in semantics. The func-

events in the semantic structure of a verb. However, gener-
ally, a verb focuses on one of those events and this makes
a semantic variation among verbs such as buy, sell, and pay
as well as difference of syntactic behavior of the arguments.
Therefore, focused event should be distinguished from the
others as lexical information. We expressed focused events
as main formulae (formulae that are not surrounded by a
comb function).

Role Description
Protagonist Entity which is viewpoint of verb.
Theme Entity in which its state or change of state

is mentioned.
State Current state of certain entity.
Actor Entity which performs action that

changes/maintains its state.
Effector Entity which performs action that

changes/maintains a state of another entity.
Patient Entity which is changed/maintained its

state by another entity.
Stimulus Entity which is cause of the action.
Source Starting point of certain change event.
Source dir Direction of starting point.
Middle Pass point of certain change event.
Goal End point of certain change event.
Goal dir Direction of end point.
Route Linear-shaped path of certain change event.

Table 3: Semantic role list for proposing extended LCS
framework.

tions of the arguments of the primitive predicates
can be explained using generalized semantic roles
such as typical thematic roles. In order to sim-
ply represent the semantic functions of the ar-
guments in the LCS primitives or make it eas-
ier to compare our extended LCS framework with
other SRL frameworks, we define a semantic role
set that corresponds to the semantic functions of
the primitive predicates in the LCS structure (Ta-
ble 3). We employed role names similarly to typ-
ical thematic roles in order to easily compare the
role sets, but the definition is different. Also, due
to the increase of the generality of LCS represen-
tation, we obtained clearer definition to explain a
correspondence between LCS primitives and typ-
ical thematic roles than the Jackendoff’s predi-
cates. Note that the core semantic information of
a verb represented by a LCS framework is em-
bodied directly in its LCS structure and the in-
formation decreases if the structure is mapped to
the semantic roles. The mapping is just for con-
trasting thematic roles. Each role is given an ob-
vious meaning and designed to fit to the upper-
level primitives of the LCS structure, which are
the arguments of EVENT and PATH functions. In
Table 4, we can see that these roles correspond al-
most one-to-one to the primitive arguments. One
special role is Protagonist, which does not match
an argument of a specific primitive. The Pro-
tagonist is assigned to the first argument in the
main formula to distinguish that formula from the
sub formulae. There are 13 defined roles, and
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Predicate 1st arg 2nd arg
state Theme State
act Actor –
affect Effector Patient
react Actor Stimulus
go Theme PATH
from Source –
fromward Source dir –
via Middle –
toward Goal dir –
to Goal –
along Route –

Table 4: Correspondence between semantic roles and
arguments of LCS primitives

this number is comparatively smaller than that in
VerbNet. The discussion with regard to this num-
ber is described in the next section.

Essentially, the semantic functions of the ar-
guments in LCS primitives are similar to those
of traditional, or basic, thematic roles. However,
there are two important differences. Our extended
LCS framework principally guarantees that the
primitive predicates do not contain any informa-
tion concerning (i) selectional preference and (ii)
complex structural relation of arguments. Primi-
tives are designed to purely represent a function
in an action-change-state chain, thus the informa-
tion of selectional preference is annotated to a dif-
ferent layer; specifically, it is directly annotated to
core arguments (e.g., we can annotate i with sel-
Pref(animate ∨ organization) in Figure 1). Also,
the semantic function is already decomposed and
the structural relation among the arguments is rep-
resented as a structure of primitives in LCS rep-
resentation. Therefore, each argument slot of
the primitive predicates does not include compli-
cated meanings and represents a primitive seman-
tic property which is highly functional. These
characteristics are necessary to ensure clarity of
the semantic role meanings. We believe that even
though there surely exists a certain type of com-
plex semantic role, it is reasonable to represent
that role based on decomposed properties.

In order to show an instance of our extended
LCS theory, we constructed a dictionary of LCS
structures for 60 Japanese verbs (including event
nouns) using our extended LCS framework. The
60 verbs were the most frequent verbs in KTC af-
ter excluding 100 most frequent ones.4 We cre-

4We omitted top 100 verbs since these most frequent ones

Role Single Multiple Grow (%)
Theme 21 108 414
State 1 1 0
Actor 12 13 8.3
Effector 73 92 26
Patient 77 79 2.5
Stimulus 0 0 0
Source 11 44 300
Source dir 4 4 0
Middle 1 8 700
Goal 42 81 93
Goal dir 2 3 50
Route 2 2 0
w/o Theme 225 327 45
Total 246 435 77

Table 5: Number of appearances of each role

ated the dictionary looking at the instances of
the target verbs in KTC. To increase the cover-
age of senses and case frames, we also consulted
the online Japanese dictionary Digital Daijisen5

and Kyoto university case frames (Kawahara and
Kurohashi, 2006) which is a compilation of case
frames automatically acquired from a huge web
corpus. There were 97 constructed frames in the
dictionary.

Then we analyzed how many roles are addi-
tionally assigned by permitting multiple role as-
signment (see Table 5). The numbers of assigned
roles for single role are calculated by counting
roles that appear first for each target argument in
the structure. Table 5 shows that the total number
of assigned roles is 1.77 times larger than single-
role assignment. The main reason is an increase in
Theme. For single-role assignment, Theme, in our
sense, in action verbs is always duplicated with
Actor/Patient. On the other hand, LCS strictly
divides a function for action and change; there-
fore the duplicated Theme is correctly annotated.
Moreover, we obtained a 45% increase even when
we did not count duplicated Theme. Most of in-
crease are a result from the increase in Source
and Goal. For example, Effectors of transmission
verbs are also annotated with a Source, and Effec-
tors of movement verbs are sometimes annotated
with Source or Goal.

contain a phonogram form (Hiragana form) of a certain verb
written with Kanji characters, and that phonogram form gen-
erally has a huge ambiguity because many different verbs
have same pronunciation in Japanese.

5Available at http://dictionary.goo.ne.jp/jn/.
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Resource Frame-independent # of roles
LCS yes 13
VerbNet (v3.1) yes 30
FrameNet (r1.4) no 8884

Table 6: Number of roles in each resource.

4 Comparison with other resources

4.1 Number of semantic roles

The number of roles is related to the number of se-
mantic properties represented in a framework and
to the generality of that property. Table 6 lists the
number of semantic roles defined in our extended
LCS framework, VerbNet and FrameNet.

There are two ways to define semantic roles.
One is frame specific, where the definition of each
role depends on a specific lexical entry and such
a role is never used in the other frames. The other
is frame independent, which is to construct roles
whose semantic function is generalized across
all verbs. The number of roles in FrameNet is
comparatively large because it defines roles in a
frame-specific way. FrameNet respects individual
meanings of arguments rather than generality of
roles.

Compared with VerbNet, the number of roles
defined in our extended LCS framework is less
than half. However, this fact does not mean
that the representation ability of our framework is
lower than VerbNet. We manually checked and
listed a corresponding representation in our ex-
tended LCS framework for each thematic role in
VerbNet in Table 6. This table does not provide a
perfect or complete mapping between the roles in
these two frameworks because the mappings are
not based on annotated data. However, we can
roughly say that the VerbNet roles combine three
types of information, a function of the argument
in the action-change-state chain, selectional pref-
erence, and structural information of arguments,
which are in different layers in LCS representa-
tion. VerbNet has many roles whose functions in
the action-change-state chain are duplicated. For
example, Destination, Recipient, and Beneficiary
have the same property end-state (Goal in LCS)
of a changing event. The difference between such
roles comes from a specific sub-type of a chang-
ing event (possession), selectional preference, and
structural information among the arguments. By
distinguishing such roles, VerbNet roles may take

into account specific syntactic behaviors of cer-
tain semantic roles. Packing such complex infor-
mation to semantic roles is useful for analyzing
argument realization. However, from the view-
point of semantic representation, the clarity for
semantic properties provided using a predicate de-
composition approach is beneficial. The 13 roles
for the LCS approach is sufficient for obtaining
a function in the action-change-state chain. In
our LCS framework, selectional preference can
be assigned to arguments in an individual verb or
verb class level instead of role labels themselves
to maintain generality of semantic functions. In
addition, our extended LCS framework can easily
separate complex structural information from role
labels because LCS directly represents a structure
among the arguments. We can calculate the infor-
mation from the LCS structure instead of coding
it into role labels. As a result, our extended LCS
framework maintains generality of roles and the
number of roles is smaller than other frameworks.

4.2 Clarity of role meanings

We showed that an approach of predicate decom-
position used in LCS theory clarified role mean-
ings assigned to syntactic arguments. Moreover,
LCS achieves high generality of roles by separat-
ing selectional preference or structural informa-
tion from role labels. The complex meaning of
one syntactic argument is represented by multi-
ple appearances of the argument in an LCS struc-
ture. For example, we show an LCS structure
and a frame in VerbNet with regard to the verb
“buy” in Figure 3. The LCS structure consists
of four formulae. The first one is the main for-
mula and the others are sub-formulae that rep-
resent co-occurring actions. The semantic-role-
like representation of the structure is given in Ta-
ble 4: i = {Protagonist, Effector, Source, Goal},
j = {Patient, Theme}, k = {Effector, Source,
Goal}, and l = {Patient,Theme}. Selectional
preference is annotated to each argument as i:
selPref(animate ∨ organization), j: selPref(any),
k: selPref(animate ∨ organization), and l: sel-
Pref(valuable entity). If we want to represent the
information, such as “Source of what?”, then we
can extend the notation as Source(j) to refer to a
changing object.

On the other hand, VerbNet combines mul-
tiple types of information into a single role as
mentioned above. Also, the meaning of some
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VerbNet role (# of uses) Representation in LCS
Actor (9), Actor1 (9), Actor2 (9) Actor or Effector in symmetric formulas in the structure
Agent (212) (Actor ∨ Effector) ∧ Protagonist
Asset (6) Theme ∧ Source of the change is (locate(in()) ∧ Protagonist) ∧

selPref(valuable entity)
Beneficiary (9) (peripheral role ∨ (Goal ∧ locate(in()))) ∧ selPref(animate ∨ organization)

∧ ¬(Actor ∨ Effector) ∧ a transferred entity is something beneficial
Cause (21) ((Effector ∧ selPref(¬animate ∧ ¬organization)) ∨ Stimulus ∨ peripheral role)
Destination (32) Goal
Experiencer (24) Actor of react()
Instrument (25) ((Effector ∧ selPref(¬animate ∧ ¬organization)) ∨ peripheral role)
Location (45) (Theme ∨ PATH roles ∨ peripheral role) ∧ selPref(location)
Material (6) Theme ∨ Source of a change ∧ The Goal of the change is locate(fit()) ∧

the Goal fullfills selPref(physical object)
Patient (59), Patient 1(11) Patient ∨ Theme
Patient2 (11) (Source ∨ Goal) ∧ connect()
Predicate (23) Theme ∨ (Goal ∧ locate(fit())) ∨ peripheral role
Product (7) Theme ∨ (Goal ∧ locate(fit()) ∧ selPref(physical object))
Proposition (11) Theme
Recipient (33) Goal ∧ locate(in()) ∧ selPref(animate ∨ organization)
Source (34) Source
Theme (162) Theme
Theme1 (13), Theme2 (13) Both of the two is Theme ∨ Theme1 is Theme and Theme2 is State
Topic (18) Theme ∧ selPref(knowledge ∨ infromation)

Table 7: Relationship of roles between VerbNet and our LCS framework. VerbNet roles that appears more than
five times in frame definition are analyzed. Each relationship shown here is only a partial and consistent part of
the complete correspondence table. Note that complete table of mapping highly depends on each lexical entry
(or verb class). Here, locate(in()) generally means possession or recognizing.

roles depends more on selectional preference or
the structure of the arguments than a primitive
function in the action-change-state chain. Such
VerbNet roles are used for several different func-
tions depending on verbs and their alternations,
and it is therefore difficult to capture decomposed
properties from the role label without having spe-
cific lexical knowledge. Moreover, some seman-
tic functions, such as Mary is a Goal of the money
in Figure 3, are completely discarded from the
representation at the level of role labels.

There is another representation related to the
argument meanings in VerbNet. This representa-
tion is a type of predicate decomposition using its
original set of predicates, which are referred to as
semantic predicates. For example, the verb “buy”
in Figure 3 has the predicates has possession,
transfer and cost for composing the meaning of
its event structure. The thematic roles are fillers
of the predicates’ arguments, thus the semantic
predicates may implicitly provide additional func-
tions to the roles and possibly represent multiple
roles. Unfortunately, we cannot discover what
each argument of the semantic predicates exactly
means since the definition of each predicate is not

Example: “John bought a book from Mary for $10.”

VerbNet: Agent V Theme {from} Source {for} Asset.
has possession(start(E), Source, Theme),
has possession(end(E), Agent, Theme),
transfer(during(E), Theme), cost(E, Asset)

LCS:
2
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6

6

6

6

6

6

6

6

6
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Figure 3: Comparison between the semantic predicate
representation and the LCS structure of the verb buy.

publicly available. A requirement for obtaining
implicit semantic functions from these semantic
predicates is clearly defining how the roles (or
functions) are calculated from these complex re-
lations of semantic predicates.

FrameNet does not use semantic roles general-
ized among all verbs or does not represent seman-
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i: selPref(animate ∨ organization), j: selPref(any), k: selPref(animate ∨ organization), l:
selPref(valuable entity)

Figure 4: LCS of the verbs get, buy, sell, pay, and collect and their relationships calculated from the structures.

tic properties of roles using a predicate decom-
position approach, but defines specific roles for
each conceptual event/state to represent a specific
background of the roles in the event/state. How-
ever, at the same time, FrameNet defines several
types of parent-child relations between most of
the frames and between their roles; therefore, we
may say FrameNet implicitly describes a sort of
decomposed property using roles in highly gen-
eral or abstract frames and represents the inher-
itance of these semantic properties. One advan-
tage of this approach is that the inheritance of a
meaning between roles is controlled through the
relations, which are carefully maintained by hu-
man efforts, and is not restricted by the represen-
tation ability of the decomposition system. On the
other hand, the only way to represent generalized
properties of a certain semantic role is enumerat-
ing all inherited roles by tracing ancestors. Also,
a semantic relation between arguments in a cer-
tain frame, which is given by LCS structure and
semantic predicates of VerbNet, is only defined
by a natural language description for each frame
in FrameNet. From a CL point of view, we con-
sider that, at least, a certain level of formalization
of semantic relation of arguments is important for
utilize this information for application. LCS ap-
proach, or an approach using a well-defined pred-
icate decomposition, can explicitly describe se-
mantic properties and relationships between argu-

Figure 5: The frame relations among the verbs get,
buy, sell, pay, and collect in FrameNet.

ments in a lexical structure. The primitive proper-
ties can be clearly defined, even though the repre-
sentation ability is restricted under the generality
of roles.

In addition, the frame-to-frame relations in
FrameNet may be a useful resource for some ap-
plication tasks such as paraphrasing and entail-
ment. We argue that some types of relationships
between frames are automatically calculated us-
ing the LCS approach. For example, one of the
relations is based on an inclusion relation of two
LCS structures. Figure 4 shows automatically
calculated relations surrounding the verb “buy”.
Note that we chose a sense related to a com-
mercial transaction, which means a exchange of
a goods and money, for each word in order to
compare the resulted relation graph with that of
FrameNet. We call relations among “buy”, “sell”,
“pay” and “collect” as different viewpoints since
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they contain exactly the same formulae, and the
only difference is the main formula. The rela-
tion between “buy” and “get” is defined as in-
heritance; a part of the child structure exactly
equals the parent structure. Interestingly, the re-
lations surrounding the “buy” are similar to those
in FrameNet (see Figure 5). We cannot describe
all types of the relations we considered due to
space limitations. However, the point is that these
relationships are represented as rewriting rules
between the two LCS representations and thus
they are automatically calculated. Moreover, the
grounds for relations maintain clarity based on
concrete structural relations. A semantic relation
construction of frames based on structural rela-
tionships is another possible application of LCS
approaches that connects traditional LCS theo-
ries with resources representing a lexical network
such as FrameNet.

4.3 Consistency on semantic structures

Constructing a LCS dictionary is generally a dif-
ficult work since LCS has a high flexibility for
describing structures and different people tend to
write different structures for a single verb. We
maintained consistency of the dictionary by tak-
ing into account a similarity of the structures be-
tween the verbs that are in paraphrasing or entail-
ment relations. This idea was inspired by auto-
matic calculation of semantic relations of lexicon
as we mentioned above. We created a LCS struc-
ture for each lexical entry as we can calculate se-
mantic relations between related verbs and main-
tained high-level consistency among the verbs.

Using our extended LCS theory, we success-
fully created 97 frames for 60 predicates without
any extra modification. From this result, we be-
lieve that our extended theory is stable to some
extent. On the other hand, we found that an extra
extension of the LCS theory is needed for some
verbs to explain the different syntactic behaviors
of one verb. For example, a condition for a cer-
tain syntactic behavior of a verb related to re-
ciprocal alteration (see class 2.5 of Levin (Levin,
1993)) such asつながる (connect) and統一 (in-
tegrate) cannot be explained without considering
the number of entities in some arguments. Also,
some verbs need to define an order of the internal
events. For example, the Japanese verb 往復す
る (shuttle) means that going is a first action and
coming back is a second action. These are not

the problems that are directly related to a seman-
tic role annotation on that we focus in this paper,
but we plan to solve these problems with further
extensions.

5 Conclusion

We discussed the two problems in current labeling
approaches for argument-structure analysis: the
problems in clarity of role meanings and multiple-
role assignment. By focusing on the fact that an
approach of predicate decomposition is suitable
for solving these problems, we proposed a new
framework for semantic role assignment by ex-
tending Jackendoff’s LCS framework. The statis-
tics of our LCS dictionary for 60 Japanese verbs
showed that 37.6% of the created frames included
multiple events and the number of assigned roles
for one syntactic argument increased 77% from
that in single-role assignment.

Compared to the other resources such as Verb-
Net and FrameNet, the role definitions in our ex-
tended LCS framework are clearer since the prim-
itive predicates limit the meaning of each role to
a function in the action-change-state chain. We
also showed that LCS can separate three types of
information, the functions represented by primi-
tives, the selectional preference and structural re-
lation of arguments, which are conflated in role la-
bels in existing resources. As a potential of LCS,
we demonstrated that several types of frame re-
lations, which are similar to those in FrameNet,
are automatically calculated using the structural
relations between LCSs. We still must perform a
thorough investigation for enumerating relations
which can be represented in terms of rewriting
rules for LCS structures. However, automatic
construction of a consistent relation graph of se-
mantic frames may be possible based on lexical
structures.

We believe that this kind of decomposed analy-
sis will accelerate both fundamental and applica-
tion research on argument-structure analysis. As a
future work, we plan to expand the dictionary and
construct a corpus based on our LCS dictionary.
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Abstract

We propose an unsupervised, iterative
method for detecting downward-entailing
operators (DEOs), which are important for
deducing entailment relations between sen-
tences. Like the distillation algorithm of
Danescu-Niculescu-Mizil et al. (2009), the
initialization of our method depends on the
correlation between DEOs and negative po-
larity items (NPIs). However, our method
trusts the initialization more and aggres-
sively separates likely DEOs from spuri-
ous distractors and other words, unlike dis-
tillation, which we show to be equivalent
to one iteration of EM prior re-estimation.
Our method is also amenable to a bootstrap-
ping method that co-learns DEOs and NPIs,
and achieves the best results in identifying
DEOs in two corpora.

1 Introduction

Reasoning about text has been a long-standing
challenge in NLP, and there has been consider-
able debate both on what constitutes inference and
what techniques should be used to support infer-
ence. One task involving inference that has re-
cently received much attention is that of recog-
nizing textual entailment (RTE), in which the goal
is to determine whether a hypothesis sentence can
be entailed from a piece of source text (Bentivogli
et al., 2010, for example).

An important consideration in RTE is whether
a sentence or context produces an entailment re-
lation for events that are a superset or subset of
the original sentence (MacCartney and Manning,
2008). By default, contexts are upward-entailing,
allowing reasoning from a set of events to a su-
perset of events as seen in (1). In the scope of

a downward-entailing operator(DEO), however,
this entailment relation is reversed, such as in
the scope of the classical DEOnot (2). There
are also operators which are neither upward- nor
downward entailing, such as the expressionex-
actly three(3).

(1) She sang in French.⇒ She sang.
(upward-entailing)

(2) She did not sing in French.⇐ She did not
sing. (downward-entailing)

(3) Exactly three students sang.6⇔ Exactly
three students sang in French.(neither
upward- nor downward-entailing)

Danescu-Niculescu-Mizil et al. (2009) (hence-
forth DLD09) proposed the first computational
methods for detecting DEOs from a corpus. They
proposed two unsupervised algorithms which rely
on the correlation between DEOs andnegative
polarity items(NPIs), which by the definition of
Ladusaw (1980) must appear in the context of
DEOs. An example of an NPI isyet, as in the
sentenceThis project is not complete yet. The
first baseline method proposed by DLD09 sim-
ply calculates a ratio of the relative frequencies
of a word in NPI contexts versus in a general
corpus, and the second is adistillation method
which appears to refine the baseline ratios using a
task-specific heuristic. Danescu-Niculescu-Mizil
and Lee (2010) (henceforth DL10) extend this ap-
proach to Romanian, where a comprehensive list
of NPIs is not available, by proposing a bootstrap-
ping approach to co-learn DEOs and NPIs.

DLD09 are to be commended for having iden-
tified a crucial component of inference that nev-
ertheless lends itself to a classification-based ap-
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proach, as we will show. However, as noted
by DL10, the performance of the distillation
method is mixed across languages and in the
semi-supervised bootstrapping setting, and there
is no mathematical grounding of the heuristic to
explain why it works and whether the approach
can be refined or extended. This paper supplies
the missing mathematical basis for distillation and
shows that, while its intentions are fundamentally
sound, the formulation of distillation neglects an
important requirement that the method not be
easily distracted by other word co-occurrences
in NPI contexts. We call our alternativecer-
tainty, which uses an unusual posterior classifica-
tion confidence score (based on the max function)
to favour single, definite assignments of DEO-
hood within every NPI context. DLD09 actually
speculated on the use of max as an alternative,
but within the context of an EM-like optimization
procedure that throws away its initial parameter
settings too willingly. Certainty iteratively and
directly boosts the scores of the currently best-
ranked DEO candidates relative to the alternatives
in a Naı̈ve Bayes model, which thus pays more re-
spect to the initial weights, constructively build-
ing on top of what the model already knows. This
method proves to perform better on two corpora
than distillation, and is more amenable to the co-
learning of NPIs and DEOs. In fact, the best
results are obtained by co-learning the NPIs and
DEOs in conjunction with our method.

2 Related work

There is a large body of literature in linguis-
tic theory on downward entailment and polar-
ity items1, of which we will only mention the
most relevant work here. The connection between
downward-entailing contexts and negative polar-
ity items was noticed by Ladusaw (1980), who
stated the hypothesis that NPIs must be gram-
matically licensed by a DEO. However, DEOs
are not the sole licensors of NPIs, as NPIs can
also be found in the scope of questions, certain
numeric expressions (i.e., non-monotone quanti-
fiers), comparatives, and conditionals, among oth-
ers. Giannakidou (2002) proposes that the prop-
erty shared by these constructions and downward
entailment isnon-veridicality. If F is a propo-

1See van der Wouden (1997) for a comprehensive refer-
ence.

sitional operator for propositionp, then an oper-
ator is non-veridical ifFp 6⇒ p. Positive opera-
tors such as past tense adverbials are veridical (4),
whereas questions, negation and other DEOs are
non-veridical (5, 6).

(4) She sang yesterday.⇒ She sang.

(5) She denied singing.6⇒ She sang.

(6) Did she sing?6⇒ She sang.

While Ladusaw’s hypothesis is thus accepted
to be insufficient from a linguistic perspective, it
is nevertheless a useful starting point for compu-
tational methods for detecting NPIs and DEOs,
and has inspired successful techniques to detect
DEOs, like the work by DLD09, DL10, and also
this work. In addition to this hypothesis, we fur-
ther assume that there should only be one plausi-
ble DEO candidate per NPI context. While there
are counterexamples, this assumption is in prac-
tice very robust, and is a useful constraint for our
learning algorithm. An analogy can be drawn to
the one sense per discourse assumption in word
sense disambiguation (Gale et al., 1992).

The related—and as we will argue, more
difficult—problem of detecting NPIs has also
been studied, and in fact predates the work on
DEO detection. Hoeksema (1997) performed the
first corpus-based study of NPIs, predominantly
for Dutch, and there has also been work on de-
tecting NPIs in German which assumes linguistic
knowledge of licensing contexts for NPIs (Lichte
and Soehn, 2007). Richter et al. (2010) make
this assumption as well as use syntactic structure
to extract NPIs that are multi-word expressions.
Parse information is an especially important con-
sideration in freer-word-order languages like Ger-
man where a MWE may not appear as a contigu-
ous string. In this paper, we explicitly do not as-
sume detailed linguistic knowledge about licens-
ing contexts for NPIs and do not assume that a
parser is available, since neither of these are guar-
anteed when extending this technique to resource-
poor languages.

3 Distillation as EM Prior Re-estimation

Let us first review the baseline and distillation
methods proposed by DLD09, then show that dis-
tillation is equivalent to one iteration of EM prior
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re-estimation in a Naı̈ve Bayes generative proba-
bilistic model up to constant rescaling. The base-
line method assigns a score to each word-type
based on the ratio of its relative frequency within
NPI contexts to its relative frequency within a
general corpus. Suppose we are given a corpusC
with extracted NPI contextsN and they contain
tokens(C) and tokens(N ) tokens respectively.
Let y be a candidate DEO,countC(y) be the uni-
gram frequency ofy in a corpus, andcountN (y)
be the unigram frequency ofy in N . Then, we
defineS(y) to be the ratio between the relative
frequencies ofy within NPI contexts and in the
entire corpus2:

S(y) =
countN (y)/tokens(N )

countC(y)/tokens(C)
. (7)

The scores are then used as a ranking to de-
termine word-types that are likely to be DEOs.
This method approximately captures Ladusaw’s
hypothesis by highly ranking words that appear
in NPI contexts more often than would be ex-
pected by chance. However, the problem with
this approach is that DEOs are not the only words
that co-occur with NPIs. In particular, there exist
manypiggybackers, which, as defined by DLD09,
collocate with DEOs due to semantic relatedness
or chance, and would thus incorrectly receive a
highS(y) score.

Examples of piggybackers found by DLD09 in-
clude the proper nounMilken, and the adverbvig-
orously, which collocate with DEOs likedenyin
the corpus they used. DLD09’s solution to the
piggybacker problem is a method that they term
distillation. LetNy be the NPI contexts that con-
tain wordy; i.e.,Ny = {c ∈ N|c ∋ y}. In dis-
tillation, each word-type is given a distilled score
according to the following equation:

Sd(y) =
1

|Ny|

∑

p∈Ny

S(y)
∑

y′∈p S(y′)
. (8)

wherep indexes the set of NPI contexts which
containy3, and the denominator is the number of

2DLD09 actually use the number of NPI contexts con-
tainingy rather thancountN (y), but we find that using the
raw count works better in our experiments.

3In DLD09, the corresponding equation does not indicate
that p should be the contexts that includey, but it is clear
from the surrounding text that our version is the intended
meaning. If all the NPI contexts were included in the sum-
mation,Sd(y) would reduce to inverse relative frequency.

Y

L

DEO

Context wordsX

Figure 1: Naı̈ve Bayes formulation of DEO detection.

NPI contexts which containy.
DLD09 find that distillation seems to improve

the performance of DEO detection in BLLIP.
Later work by DL10, however, shows that distil-
lation does not seem to improve performance over
the baseline method in Romanian, and the authors
also note that distillation does not improve perfor-
mance in their experiments on co-learning NPIs
and DEOs via bootstrapping.

A better mathematical grounding of the distilla-
tion method’s apparent heuristic in terms of exist-
ing probabilistic models sheds light on the mixed
performance of distillation across languages and
experimental settings. In particular, it turns out
that the distillation method of DLD09 is equiva-
lent to one iteration of EM prior re-estimation in
a Naı̈ve Bayes model. Given a lexiconL of L
words, let each NPI context be one sample gen-
erated by the model. One sample consists of a
latent categorical (i.e., a multinomial with one
trial) variableY whose values range overL, cor-
responding to the DEO that licenses the context,
and observed Bernoulli variables~X = Xi=1...L

which indicate whether a word appears in the NPI
context (Figure 1). This method does not attempt
to model the order of the observed words, nor the
number of times each word appears. Formally, a
Naı̈ve Bayes model is given by the following ex-
pression:

P ( ~X, Y ) =
L
∏

i=1

P (Xi|Y )P (Y ). (9)

The probability of a DEO given a particular
NPI context is

P (Y | ~X) ∝
L
∏

i=1

P (Xi|Y )P (Y ). (10)
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The probability of a set of observed NPI con-
textsN is the product of the probabilities for each
sample:

P (N ) =
∏

~X∈N

P ( ~X) (11)

P ( ~X) =
∑

y∈L

P ( ~X, y). (12)

We first instantiate the baseline method of
DLD09 by initializing the parameters to the
model,P (Xi = 1|y) andP (Y = y), such that
P (Y = y) is proportional toS(y). Recall that this
initialization utilizes domain knowledge about the
correlation between NPIs and DEOs, inspired by
Ladusaw’s hypothesis:

P (Y = y) = S(y)/
∑

y′

S(y′) (13)

P (Xi = 1|y) =

{

1 if Xi corresponds toy
0.5 otherwise.

(14)

This initialization ofP (Xi = 1|y) ensures that
the the value ofy corresponds to one of the words
in the NPI context, and the initialization ofP (Y )
is simply a normalization ofS(y).

Since we are working in an unsupervised set-
ting, there are no labels forY available. A com-
mon and reasonable assumption about learning
the parameter settings in this case is to find the pa-
rameters that maximize the likelihood of the ob-
served training data; i.e., the NPI contexts:

θ̂ = argmax
θ

P (N ; θ). (15)

The EM algorithm is a well-known iterative al-
gorithm for performing this optimization. Assum-
ing that the priorP (Y = y) is a categorical distri-
bution, the M-step estimate of these parameters
after one iteration through the corpus is as fol-
lows:

P t+1(Y = y) =
∑

~X∈N

P t(y| ~X)
∑

y′ P
t(y′| ~X)

(16)

We do not re-estimateP (Xi = 1|y) because
their role is simply to ensure that the DEO re-
sponsible for an NPI context exists in the context.
Estimating these parameters would exacerbate the
problems with EM for this task which we will dis-
cuss shortly.

P (Y ) gives a prior probability that a certain
word-typey is a DEO in an NPI context, without
normalizing for the frequency ofy in NPI con-
texts. Since we are interested in estimating the
context-independent probability thaty is a DEO,
we must calculate the probability that a word is
a DEO given that it appears in an NPI context.
Let Xy be the observed variable corresponding to
y. Then, the expression we are interested in is
P (y|Xy = 1). We now show thatP (y|Xy =
1) = P (y)/P (Xy = 1), and that this expression
is equivalent to (8).

P (y|Xy = 1) =
P (y,Xy = 1)

P (Xy = 1)
(17)

Recall thatP (y,Xy = 0) = 0 because of the
assumption that a DEO appears in the NPI context
that it generates. Thus,

P (y,Xy = 1) = P (y,Xy = 1) + P (y,Xy = 0)

= P (y) (18)

One iteration of EM to calculate this proba-
bility is equivalent to the distillation method of
DLD09. In particular, the numerator of (17),
which we just showed to be equal to the estimate
of P (Y ) given by (16), is exactly the sum of the
responsibilities for a particulary, and is propor-
tional to the summation in (8) modulo normaliza-
tion, becauseP ( ~X |y) is constant for ally in the
context. The denominatorP (Xy = 1) is simply
the proportion of contexts containingy, which is
proportional to|Ny|. Since both the numerator
and denominator are equivalent up to a constant
factor, an identical ranking is produced by distil-
lation and EM prior re-estimation.

Unfortunately, the EM algorithm does not pro-
vide good results on this task. In fact, as more
iterations of EM are run, the performance drops
drastically, even though the corpus likelihood
is increasing. The reason is that unsupervised
EM learning is not constrained or biased towards
learning a good set of DEOs. Rather, a higher data
likelihood can be achieved simply by assigning
high prior probabilities to frequent word-types.

This can be seen qualitatively by consider-
ing the top-ranking DEOs after several itera-
tions of EM/distillation (Figure 2). The top-
ranking words are simply function words or other
words common in the corpus, which have noth-
ing to do with downward entailment. In effect,
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1 iteration 2 iterations 3 iterations
denies the the
denied to to

unaware denied that
longest than than
hardly that and
lacking if has
deny has if

nobody denies of
opposes and denied
highest but denies

Figure 2: Top 10 DEOs after iterations of EM on
BLLIP.

EM/distillation overrides the initialization based
on Ladusaw’s hypothesis and finds another solu-
tion with a higher data likelihood. We will also
provide a quantitative analysis of the effects of
EM/distillation in Section 5.

4 Alternative to EM: Maximizing the
Posterior Classification Certainty

We have seen that in trying to solve the piggy-
backer problem, EM/distillation too readily aban-
dons the initialization based on Ladusaw’s hy-
pothesis, leading to an incorrect solution. Instead
of optimizing the data likelihood, what we need is
a measure of the number of plausible DEO candi-
dates there are in an NPI context, and a method
that refines the scores towards having only one
such plausible candidate per context. To this end,
we define theclassification certaintyto be the
product of the maximum posterior classification
probabilities over the DEO candidates. For a set
of hidden variablesyN for NPI contextsN , this
is the expression:

Certainty(yN |N ) =
∏

~X∈N

max
y

P (y| ~X). (19)

To increase this certainty score, we propose
a novel iterative heuristic method for refining
the baseline initializations ofP (Y ). Unlike
EM/distillation, our method biases learning to-
wards trusting the initialization, but refines the
scores towards having only one plausible DEO
per context in the training corpus. This is accom-
plished by treating the problem as a DEO classi-

fication problem, and then maximizing an objec-
tive ratio that favours one DEO per context. Our
method is not guaranteed to increase classification
certainty between iterations, but we will show that
it does increase certainty very quickly in practice.

The key observation that allows us to resolve
the tension between trusting the initialization and
enforcing one DEO per NPI context is that the
distributions of words that co-occur with DEOs
and piggybackers are different, and that this dif-
ference follows from Ladusaw’s hypothesis. In
particular, while DEOs may appear with or with-
out piggybackers in NPI contexts, piggybackers
do not appear without DEOs in NPI contexts, be-
cause Ladusaw’s hypothesis stipulates that a DEO
is required to license the NPI in the first place.
Thus, the presence of a high-scoring DEO candi-
date among otherwise low-scoring words is strong
evidence that the high-scoring word is not a pig-
gybacker and its high score from the initialization
is deserved. Conversely, a DEO candidate which
always appears in the presence of other strong
DEO candidates is likely a piggybacker whose
initial high score should be discounted.

We now describe our heuristic method that is
based on this intuition. For clarity, we use scores
rather than probabilities in the following explana-
tion, though it is equally applicable to either. As
in EM/distillation, the method is initialized with
the baselineS(y) scores. One iteration of the
method proceeds as follows. Let the score of the
strongest DEO candidate in an NPI contextp be:

M(p) = max
y∈p

St
h(y), (20)

whereSt
h(y) is the score of candidatey at thetth

iteration according to this heuristic method.
Then, for each word-typey in each contextp,

we compare the current score ofy to the scores of
the other words inp. If y is currently the strongest
DEO candidate inp, then we givey credit equal
to the proportional change toM(p) if y were re-
moved (Contextp without y is denotedp \ y). A
large change means thaty is the only plausible
DEO candidate inp, while a small change means
that there are other plausible DEO candidates. If
y is not currently the strongest DEO candidate, it
receives no credit:

cred(p, y) =

{

M(p)−M(p\y)
M(p) if St

h(y) = M(p)

0 otherwise.

(21)
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NPI contexts
A B C,B C,B C,D C

Original scores
S(A) = 5, S(B) = 4, S(C) = 1, S(D) = 2

Updated scores
Sh(A) = 5× (5− 4)/5 = 1

Sh(B) = 4× (0 + 2× (4− 1)/4)/3 = 2

Sh(C) = 1× (0 + 0 + 0) = 0

Sh(D) = 2× (2− 1)/2 = 1

Figure 3: Example of one iteration of the certainty-
based heuristic on four NPI contexts with four words
in the lexicon.

Then, the average credit received by eachy is
a measure of how much we should trust the cur-
rent score fory. The updated score for each DEO
candidate is the original score multiplied by this
average:

St+1
h (y) =

St
h(y)

|Ny|
×

∑

p∈Ny

cred(p, y). (22)

The probabilityP t+1(Y = y) is then simply
St+1

h (y) normalized:

P t+1(Y = y) =
St+1

h (y)
∑

y′∈L

St+1
h (y′)

. (23)

We iteratively reduce the scores in this fashion
to get better estimates of the relative suitability of
word-types as DEOs.

An example of this method and how it solves
the piggybacker problem is given in Figure 3. In
this example, we would like to learn thatB and
D are DEOs,A is a piggybacker, andC is a fre-
quent word-type, such as a stop word. Using the
original scores, piggybackerA would appear to
be the most likely word to be a DEO. However,
by noticing that it never occurs on its own with
words that are unlikely to be DEOs (in the exam-
ple, wordC), our heuristic penalizesA more than
B, and ranksB higher after one iteration. EM
prior re-estimation would not correctly solve this
example, as it would converge on a solution where
C receives all of the probability mass because it
appears in all of the contexts, even though it is

unlikely to be a DEO according to the initializa-
tion.

5 Experiments

We evaluate the performance of these methods on
the BLLIP corpus (∼30M words) and the AFP
portion of the Gigaword corpus (∼338M words).
Following DLD09, we define an NPI context to
be all the words to the left of an NPI, up to the
closest comma or semi-colon, and removed NPI
contexts which contain the most common DEOs
like not. We further removed all empty NPI con-
texts or those which only contain other punctua-
tion. After this filtering, there were 26696 NPI
contexts in BLLIP and 211041 NPI contexts in
AFP, using the same list of 26 NPIs defined by
DLD09.

We first define an automatic measure of per-
formance that is common in information retrieval.
We use average precision to quantify how well a
system separates DEOs from non-DEOs. Given a
list of known DEOs,G, and non-DEOs, the aver-
age precision of a ranked list of items,X, is de-
fined by the following equation:

AP (X) =

∑n
k=1 P (X1...k)× 1(xk ∈ G)

|G|
,

(24)

where P (X1...k) is the precision of the firstk
items and1(xk ∈ G) is an indicator function
which is1 if x is in the gold standard list of DEOs
and0 otherwise.

DLD09 simply evaluated the top 150 output
DEO candidates by their systems, and qualita-
tively judged the precision of the top-k candidates
at various values ofk up to 150. Average preci-
sion can be seen as a generalization of this evalu-
ation procedure that is sensitive to the ranking of
DEOs and non-DEOs. For development purposes,
we use the list of 150 annotations by DLD09. Of
these, 90 were DEOs, 30 were not, and 30 were
classified as “other” (they were either difficult to
classify, or were other types of non-veridical oper-
ators like comparatives or conditionals). We dis-
carded the 30 “other” items and ignored all items
not in the remaining 120 items when evaluating a
ranked list of DEO candidates. We call this mea-
sureAP120.

In addition, we annotated DEO candidates from
the top-150 rankings produced by our certainty-
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absolve, abstain, banish, bereft, boycott, cau-
tion, clear, coy, delay, denial, desist, devoid,
disavow, discount, dispel, disqualify, down-
play, exempt, exonerate, foil, forbid, forego,
impossible, inconceivable, irrespective, limit,
mitigate, nip, noone, omit, outweigh, pre-
condition, pre-empt, prerequisite, refute, re-
move5, repel, repulse, scarcely, scotch, scuttle,
seldom, sensitive, shy, sidestep, snuff, thwart,
waive, zero-tolerance

Figure 4: Lemmata of DEOs identified in this work not
found by DLD09.

based heuristic on BLLIP and also by the dis-
tillation and heuristic methods on AFP, in order
to better evaluate the final output of the meth-
ods. This produced an additional 68 DEOs (nar-
rowly defined) (Figure 4), 58 non-DEOs, and 31
“other” items4. Adding the DEOs and non-DEOs
we found to the 120 items from above, we have
an expanded list of 246 items to rank, and a corre-
sponding average precision which we callAP246.

We employ the frequency cut-offs used by
DLD09 for sparsity reasons. A word-type must
appear at least 10 times in an NPI context and
150 times in the corpus overall to be considered.
We treat BLLIP as a development corpus and use
AP120 on AFP to determine the number of itera-
tions to run our heuristic (5 iterations for BLLIP
and 13 iterations for AFP). We run EM/distillation
for one iteration in development and testing, be-
cause more iterations hurt performance, as ex-
plained in Section 3.

We first report theAP120 results of our ex-
periments on the BLLIP corpus (Table 1 sec-
ond column). Our method outperforms both
EM/distillation and the baseline method. These
results are replicated on the final test set from
AFP using the full set of annotationsAP246 (Ta-
ble 1 third column). Note that the scores are lower
when using all the annotations because there are
more non-DEOs relative to DEOs in this list, mak-
ing the ranking task more challenging.

A better understanding of the algorithms can

4The complete list will be made publicly available.
5We disagree with DLD09 thatremoveis not downward-

entailing; e.g.,The detergent removed stains from his cloth-
ing. ⇒ The detergent removed stains from his shirts.

Method BLLIP AP120 AFPAP246

Baseline .879 .734
Distillation .946 .785
This work .955 .809

Table 1: Average precision results on the BLLIP and
AFP corpora.

be obtained by examining the data likelihood and
the classification certainty at each iteration of the
algorithms (Figure 5). Whereas EM/distillation
maximizes the former expression, the certainty-
based heuristic method actually decreases data
likelihood for the first couple of iterations before
increasing it again. In terms of classification cer-
tainty, EM/distillation converges to a lower classi-
fication certainty score compared to our heuristic
method. Thus, our method better captures the as-
sumption of one DEO per NPI context.

6 Bootstrapping to Co-Learn NPIs and
DEOs

The above experiments show that the heuristic
method outperforms the EM/distillation method
given a list of NPIs. We would like to extend
this result to novel domains, corpora, and lan-
guages. DLD09 and DL10 proposed the follow-
ing bootstrapping algorithm for co-learning NPIs
and DEOs given a much smaller list of NPIs as a
seed set.

1. Begin with a small set of seed NPIs

2. Iterate:

(a) Use the current list of NPIs to learn a
list of DEOs

(b) Use the current list of DEOs to learn a
list of NPIs

Interestingly, DL10 report that while this
method works in Romanian data, it does not work
in the English BLLIP corpus. They speculate that
the reason might be due to the nature of the En-
glish DEOany, which can occur in all classes of
DE contexts according to an analysis by Haspel-
math (1997). Further, they find that in Romanian,
distillation does not perform better than the base-
line method during Step (2a). While this linguis-
tic explanation may certainly be a factor, we raise
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(a) Data log likelihood.
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(b) Log classification certainty probabilities.

Figure 5: Log likelihood and classification certainty probabilities of NPI contexts in two corpora. Thinner lines
near the top are for BLLIP; thicker lines for AFP. Blue dotted: baseline; red dashed: distillation; green solid:
our certainty-based heuristic method.P ( ~X|y) probabilities are not included since they would only resultin a
constant offset in the log domain.

a second possibility that the distillation algorithm
itself may be responsible for these results. As ev-
idence, we show that the heuristic algorithm is
able to work in English with just the single seed
NPI any, and in fact the bootstrapping approach in
conjunction with our heuristic even outperforms
the above approaches when using a static list of
NPIs.

In particular, we use the methods described in
the previous sections for Step (2a), and the follow-
ing ratio to rank NPI candidates in Step (2b), cor-
responding to the baseline method to detect DEOs
in reverse:

T (x) =
countD(x)/tokens(D)

countC(x)/tokens(C)
. (25)

Here, countD(x) refers to the number of oc-
currences of NPI candidatex in DEO contexts
D, defined to be the words to the right of a DEO
operator up to a comma or semi-colon. We do
not use the EM/distillation or heuristic methods in
Step (2b). Learning NPIs from DEOs is a much
harder problem than learning DEOs from NPIs.
Because DEOs (and other non-veridical opera-
tors) license NPIs, the majority of occurrences of
NPIs will be in the context of a DEO, modulo am-
biguity of DEOs such as the free-choiceany and

other spurious correlations such as piggybackers
as discussed earlier. In the other direction, it is
not the case that DEOs always or nearly always
appear in the context of an NPI. Rather, the most
common collocations of DEOs are the selectional
preferences of the DEO, such as common argu-
ments to verbal DEOs, prepositions that are part
of the subcategorization of the DEO, and words
that together with the surface form of the DEO
comprise an idiomatic expression or multi-word
expression. Further, NPIs are more likely to be
composed of multiple words, while many DEOs
are single words, possibly with PP subcategoriza-
tion requirements which can be filled in post hoc.
Because of these issues, we cannot trust the ini-
tialization to learn NPIs nearly as much as with
DEOs, and cannot use the distillation or certainty
methods for this step. Rather, the hope is that
learning a noisy list of “pseudo-NPIs”, which of-
ten occur in negative contexts but may not actu-
ally be NPIs, can still improve the performance of
DEO detection.

There are a number of parameters to the method
which we tuned to the BLLIP corpus using
AP120. At the end of Step (2a), we use the cur-
rent top 25 DEOs plus 5 per iteration as the DEO
list for the next step. To the initial seed NPI of
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Method BLLIP AP120 AFPAP246

Baseline .889 (+.010) .739 (−.005)
Distillation .930 (−.016) .804 (+.019)
This work .962(+.007) .821(+.012)

Table 2: Average precision results with bootstrapping
on the BLLIP and AFP corpora. Absolute gain in av-
erage precision compared to using a fixed list of NPIs
given in brackets.

anymore, anything, anytime, avail, bother,
bothered, budge, budged, countenance, faze,
fazed, inkling, iota, jibe, mince, nor, whatso-
ever, whit

Figure 6: Probable NPIs found by bootstrapping using
the certainty-based heuristic method.

any, we add the top 5 ranking NPI candidates at
the end of Step (2b) in each subsequent iteration.
We ran the bootstrapping algorithm for 11 itera-
tions for all three algorithms. The final evaluation
was done on AFP usingAP246.

The results show that bootstrapping can indeed
improve performance, even in English (Table 2).
Using bootstrapping to co-learn NPIs and DEOs
actually results in better performance than spec-
ifying a static list of NPIs. The certainty-based
heuristic in particular achieves gains with boot-
strapping in both corpora, in contrast to the base-
line and distillation methods. Another factor that
we found to be important is to add a sufficient
number of NPIs to the NPI list each iteration, as
adding too few NPIs results in only a small change
in the NPI contexts available for DEO detection.
DL10 only added one NPI per iteration, which
may explain why they did not find any improve-
ment with bootstrapping in English. It also ap-
pears that learning the pseudo-NPIs does not hurt
performance in detecting DEO, and further, that
a number of true NPIs are learned by our method
(Figure 6).

7 Conclusion

We have proposed a novel unsupervised method
for discovering downward-entailing operators
from raw text based on their co-occurrence with
negative polarity items. Unlike the distilla-
tion method of DLD09, which we show to

be an instance of EM prior re-estimation, our
method directly addresses the issue of piggyback-
ers which spuriously correlate with NPIs but are
not downward-entailing. This is achieved by
maximizing the posterior classification certainty
of the corpus in a way that respects the initializa-
tion, rather than maximizing the data likelihood
as in EM/distillation. Our method outperforms
distillation and a baseline method on two corpora
as well as in a bootstrapping setting where NPIs
and DEOs are jointly learned. It achieves the best
performance in the bootstrapping setting, rather
than when using a fixed list of NPIs. The perfor-
mance of our algorithm suggests that it is suitable
for other corpora and languages.

Interesting future research directions include
detecting DEOs of more than one word as well as
distinguishing the particular word sense and sub-
categorization that is downward-entailing. An-
other problem that should be addressed is the
scope of the downward entailment, generalizing
work being done in detecting the scope of nega-
tion (Councill et al., 2010, for example).
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Abstract

In pro-drop languages, the detection of
explicit subjects, zero subjects and non-
referential impersonal constructions is cru-
cial for anaphora and co-reference resolu-
tion. While the identification of explicit
and zero subjects has attracted the atten-
tion of researchers in the past, the auto-
matic identification of impersonal construc-
tions in Spanish has not been addressed yet
and this work is the first such study. In
this paper we present a corpus to under-
pin research on the automatic detection of
these linguistic phenomena in Spanish and
a novel machine learning-based methodol-
ogy for their computational treatment. This
study also provides an analysis of the fea-
tures, discusses performance across two
different genres and offers error analysis.
The evaluation results show that our system
performs better in detecting explicit sub-
jects than alternative systems.

1 Introduction

Subject ellipsis is the omission of the subject in
a sentence. We consider not only missing refer-
ential subject (zero subject) as manifestation of
ellipsis, but also non-referential impersonal con-
structions.

Various natural language processing (NLP)
tasks benefit from the identification of ellip-
tical subjects, primarily anaphora resolution
(Mitkov, 2002) and co-reference resolution (Ng
and Cardie, 2002). The difficulty in detect-
ing missing subjects and non-referential pronouns
has been acknowledged since the first studies on

∗This work was partially funded by a ‘La Caixa’ grant
for master students.

the computational treatment of anaphora (Hobbs,
1977; Hirst, 1981). However, this task is of cru-
cial importance when processing pro-drop lan-
guages since subject ellipsis is a pervasive phe-
nomenon in these languages (Chomsky, 1981).
For instance, in our Spanish corpus, 29% of the
subjects are elided.

Our method is based on classification of all ex-
pressions in subject position, including the recog-
nition of Spanish non-referential impersonal con-
structions which, to the best of our knowledge,
has not yet been addressed. The necessity of iden-
tifying such kind of elliptical constructions has
been specifically highlighted in work about Span-
ish zero pronouns (Ferrández and Peral, 2000)
and co-reference resolution (Recasens and Hovy,
2009).

The main contributions of this study are:

• A public annotated corpus in Spanish to
compare different strategies for detecting ex-
plicit subjects, zero subjects and impersonal
constructions.

• The first ML based approach to this problem
in Spanish and a thorough analysis regarding
features, learnability, genre and errors.

• The best performing algorithms to automati-
cally detect explicit subjects and impersonal
constructions in Spanish.

The remainder of the paper is organized as fol-
lows. Section 2 describes the classes of Spanish
subjects, while Section 3 provides a literature re-
view. Section 4 describes the creation and the an-
notation of the corpus and in Section 5 the ma-
chine learning (ML) method is presented. The
analysis of the features, the learning curves, the

706



genre impact and the error analysis are all detailed
in Section 6. Finally, in Section 7, conclusions
are drawn and plans for future work are discussed.
This work is an extension of the first author mas-
ter’s thesis (Rello, 2010) and a preliminary ver-
sion of the algorithm was presented in Rello et al.
(2010).

2 Classes of Spanish Subjects

Literature related to ellipsis in NLP (Ferrández
and Peral, 2000; Rello and Illisei, 2009a; Mitkov,
2010) and linguistic theory (Bosque, 1989; Bru-
cart, 1999; Real Academia Española, 2009) has
served as a basis for establishing the classes of
this work.

Explicit subjects are phonetically realized and
their syntactic position can be pre-verbal or post-
verbal. In the case of post-verbal subjects (a), the
syntactic position is restricted by some conditions
(Real Academia Española, 2009).

(a) Carecerán de validez las disposiciones que con-
tradigan otra de rango superior.1

The dispositions which contradict higher range
ones will not be valid.

Zero subjects (b) appear as the result of a nomi-
nal ellipsis. That is, a lexical element –the elliptic
subject–, which is needed for the interpretation of
the meaning and the structure of the sentence, is
elided; therefore, it can be retrieved from its con-
text. The elision of the subject can affect the en-
tire noun phrase and not just the noun head when
a definite article occurs (Brucart, 1999).

(b) Ø Fue refrendada por el pueblo español.
(It) was countersigned by the people of Spain.

The class of impersonal constructions is
formed by impersonal clauses (c) and reflex-
ive impersonal clauses with particle se (d) (Real
Academia Española, 2009).

(c) No hay matrimonio sin consentimiento.
(There is) no marriage without consent.

(d) Se estará a lo que establece el apartado siguiente.
(It) will be what is established in the next section.

1All the examples provided are taken from our corpus.
In the examples, explicit subjects are presented in italics.
Zero subjects are presented by the symbol Ø and in the En-
glish translations the subjects which are elided in Spanish are
marked with parentheses. Impersonal constructions are not
explicitly indicated.

3 Related Work

Identification of non-referential pronouns, al-
though a crucial step in co-reference and anaphora
resolution systems (Mitkov, 2010),2 has been ap-
plied only to the pleonastic it in English (Evans,
2001; Boyd et al., 2005; Bergsma et al., 2008)
and expletive pronouns in French (Danlos, 2005).
Machine learning methods are known to perform
better than rule-based techniques for identifying
non-referential expressions (Boyd et al., 2005).
However, there is some debate as to which ap-
proach may be optimal in anaphora resolution
systems (Mitkov and Hallett, 2007).

Both English and French texts use an ex-
plicit word, with some grammatical information
(a third person pronoun), which is non-referential
(Mitkov, 2010). By contrast, in Spanish, non-
referential expressions are not realized by exple-
tive or pleonastic pronouns but rather by a certain
kind of ellipsis. For this reason, it is easy to mis-
take them for zero pronouns, which are, in fact,
referential.

Previous work on detecting Spanish subject el-
lipsis focused on distinguishing verbs with ex-
plicit subjects and verbs with zero subjects (zero
pronouns), using rule-based methods (Ferrández
and Peral, 2000; Rello and Illisei, 2009b). The
Ferrández and Peral algorithm (2000) outper-
forms the (Rello and Illisei, 2009b) approach
with 57% accuracy in identifying zero subjects.
In (Ferrández and Peral, 2000), the implementa-
tion of a zero subject identification and resolution
module forms part of an anaphora resolution sys-
tem.

ML based studies on the identification of
explicit non-referential constructions in English
present accuracies of 71% (Evans, 2001), 87.5%
(Bergsma et al., 2008) and 88% (Boyd et al.,
2005), while 97.5% is achieved for French (Dan-
los, 2005). However, in these languages, non-
referential constructions are explicit and not omit-
ted which makes this task more challenging for
Spanish.

4 Corpus

We created and annotated a corpus composed
of legal texts (law) and health texts (psychiatric

2In zero anaphora resolution, the identification of zero
anaphors first requires that they be distinguished from non-
referential impersonal constructions (Mitkov, 2010).
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papers) originally written in peninsular Spanish.
The corpus is named after its annotated content
“Explicit Subjects, Zero Subjects and Impersonal
Constructions” (ESZIC es Corpus).

To the best of our knowledge, the existing cor-
pora annotated with elliptical subjects belong to
other genres. The Blue Book (handbook) and
Lexesp (journalistic texts) used in (Ferrández and
Peral, 2000) contain zero subjects but not imper-
sonal constructions. On the other hand, the Span-
ish AnCora corpus based on journalistic texts in-
cludes zero pronouns and impersonal construc-
tions (Recasens and Martı́, 2010) while the Z-
corpus (Rello and Illisei, 2009b) comprises legal,
instructional and encyclopedic texts but has no an-
notated impersonal constructions.

The ESZIC corpus contains a total of 6,827
verbs including 1,793 zero subjects. Except for
AnCora-ES, with 10,791 elliptic pronouns, our
corpus is larger than the ones used in previous ap-
proaches: about 1,830 verbs including zero and
explicit subjects in (Ferrández and Peral, 2000)
(the exact number is not mentioned in the pa-
per) and 1,202 zero subjects in (Rello and Illisei,
2009b).

The corpus was parsed by Connexor’s Ma-
chinese Syntax (Connexor Oy, 2006), which re-
turns lexical and morphological information as
well as the dependency relations between words
by employing a functional dependency grammar
(Tapanainen and Järvinen, 1997).

To annotate our corpus we created an annota-
tion tool that extracts the finite clauses and the
annotators assign to each example one of the de-
fined annotation tags. Two volunteer graduate stu-
dents of linguistics annotated the verbs after one
training session. The annotations of a third volun-
teer with the same profile were used to compute
the inter-annotator agreement. During the anno-
tation phase, we evaluated the adequacy and clar-
ity of the annotation guidelines and established a
typology of the rising borderline cases, which is
included in the annotation guidelines.

Table 1 shows the linguistic and formal criteria
used to identify the chosen categories that served
as the basis for the corpus annotation. For each
tag, in addition to the two criteria that are crucial
for identifying subject ellipsis ([± elliptic] and
[± referential]) a combination of syntactic, se-
mantic and discourse knowledge is also encoded
during the annotation. The linguistic motivation

for each of the three categories is shown against
the thirteen annotation tags to which they belong
(Table 1).

Afterwards, each of the tags are grouped in one
of the three main classes.

• Explicit subjects: [- elliptic, + referential].

• Zero subjects: [+ elliptic, + referential].

• Impersonal constructions: [+ elliptic, - refer-
ential].

Of these annotated verbs, 71% have an explicit
subject, 26% have a zero subject and 3% belong
to an impersonal construction (see Table 2).

Number of instances Legal Health All
Explicit subjects 2,739 2,116 4,855
Zero subjects 619 1,174 1,793
Impersonals 71 108 179
Total 3,429 3,398 6,827

Table 2: Instances per class in ESZIC Corpus.

To measure inter-annotator reliability we use
Fleiss’ Kappa statistical measure (Fleiss, 1971).
We extracted 10% of the instances of each of the
texts of the corpus covering the two genres.

Fleiss’ Kappa Legal Health All
Two Annotators 0.934 0.870 0.902
Three Annotators 0.925 0.857 0.891

Table 3: Inter-annotator Agreement.

In Table 3 we present the Fleiss kappa inter-
annotator agreement for two and three annota-
tors. These results suggest that the annotation
is reliable since it is common practice among re-
searchers in computational linguistics to consider
0.8 as a minimum value of acceptance (Artstein
and Poesio, 2008).

5 Machine Learning Approach

We opted for an ML approach given that our
previous rule-based methodology improved only
0.02 over the 0.55 F-measure of a simple base-
line (Rello and Illisei, 2009b). Besides, ML based
methods for the identification of explicit non-
referential constructions in English appear to per-
form better than than rule-based ones (Boyd et al.,
2005).
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LINGUISTIC INFORMATION PHONETIC

REALIZATION

SYNTACTIC

CATEGORY

VERBAL

DIATHESIS

SEMANTIC

INTERPR.
DISCOURSE

Annotation
Categories

Annotation
Tags

Elliptic
noun
phrase

Ell. noun
phrase
head

Nominal
subject

Active Active
participant

Referential
subject

Explicit subject – – + + + +
Explicit
subject

Reflex passive

subject

– – + + – +

Passive subject – – + – – +
Omitted subject + – + + + +
Omitted subject

head

– + + + + +

Non-nominal

subject

– – – + + +

Zero
subject

Reflex passive

omitted subject

+ – + + – +

Reflex pass. omit-

ted subject head

– + + + – +

Reflex pass. non-

nominal subject

– – – + – +

Passive omitted

subject

+ – + – – +

Pass. non-nominal

subject

– – – – – +

Impersonal
construction

Reflex imp. clause

(with se)

– – n/a – n/a –

Imp. construction

(without se)

– – n/a + n/a –

Table 1: ESZIC Corpus Annotation Tags.

5.1 Features
We built the training data from the annotated cor-
pus and defined fourteen features. The linguisti-
cally motivated features are inspired by previous
ML approaches in Chinese (Zhao and Ng, 2007)
and English (Evans, 2001). The values for the fea-
tures (see Table 4) were derived from information
provided both by Connexor’s Machinese Syntax
parser and a set of lists.

We can describe each of the features as broadly
belonging to one of ten classes, as follows:

1 PARSER: the presence or absence of a sub-
ject in the clause, as identified by the parser.
We are not aware of a formal evaluation of
Connexor’s accuracy. It presents an accu-
racy of 74.9% evaluated against our corpus
and we used it as a simple baseline.

2 CLAUSE: the clause types considered are:
main clauses, relative clauses starting with a

complex conjunction, clauses starting with a
simple conjunction, and clauses introduced
using punctuation marks (commas, semi-
colons, etc). We implemented a method
to identify these different types of clauses,
as the parser does not explicitly mark the
boundaries of clauses within sentences. The
method took into account the existence of a
finite verb, its dependencies, the existence of
conjunctions and punctuation marks.

3 LEMMA: lexical information extracted from
the parser, the lemma of the finite verb.

4-5 NUMBER, PERSON: morphological infor-
mation of the verb, its grammatical number
and its person.

6 AGREE: feature which encodes the tense,
mood, person, and number of the verb in the
clause, and its agreement in person, number,
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Feature Definition Value
1 PARSER Parsed subject True, False
2 CLAUSE Clause type Main, Rel, Imp, Prop, Punct
3 LEMMA Verb lemma Parser’s lemma tag
4 NUMBER Verb morphological number SG, PL
5 PERSON Verb morphological person P1, P2, P3
6 AGREE Agreement in person, number, tense FTFF, TTTT, FFFF, TFTF, TTFF, FTFT, FTTF, TFTT,

and mood FFFT, TTTF, FFTF, TFFT, FFTT, FTTT, TFFF, TTFT
7 NHPREV Previous noun phrases Number of noun phrases previous to the verb
8 NHTOT Total noun phrases Number of noun phrases in the clause
9 INF Infinitive Number of infinitives in the clause
10 SE Spanish particle se True, False
11 A Spanish preposition a True, False
12 POSpre Four parts of the speech previous to 292 different values combining the parser’s

the verb POS tags
14 POSpos Four parts of the speech following 280 different values combining the parser’s

the verb POS tags
14 VERBtype Type of verb: copulative, impersonal CIPX, XIXX, XXXT, XXPX, XXXI, CIXX, XXPT, XIPX,

pronominal, transitive and intransitive XIPT, XXXX, XIXI, CXPI, XXPI, XIPI, CXPX

Table 4: Features, definitions and values.

tense, and mood with the preceding verb in
the sentence and also with the main verb of
the sentence.3

7-9 NHPREV, NHTOT, INF: the candidates for
the subject of the clause are represented by
the number of noun phrases in the clause that
precede the verb, the total number of noun
phrases in the clause, and the number of in-
finitive verbs in the clause.

10 SE: a binary feature encoding the presence
or absence of the Spanish particle se when it
occurs immediately before or after the verb
or with a maximum of one token lying be-
tween the verb and itself. Particle se occurs
in passive reflex clauses with zero subjects
and in some impersonal constructions.

11 A: a binary feature encoding the presence or
absence of the Spanish preposition a in the
clause. Since the distinction between passive
reflex clauses with zero subjects and imper-
sonal constructions sometimes relies on the
appearance of preposition a (to, for, etc.).
For instance, example (e) is a passive reflex
clause containing a zero subject while exam-
ple (s) is an impersonal construction.

3In Spanish, when a finite verb appears in a subordinate
clause, its tense and mood can assist in recognition of these
features in the verb of the main clause and help to enforce
some restrictions required by this verb, especially when both
verbs share the same referent as subject.

(e) Se admiten los alumnos que reúnan los req-
uisitos.
Ø (They) accept the students who fulfill the
requirements.

(f) Se admite a los alumnos que reúnan los req-
uisitos.
(It) is accepted for the students who fulfill
the requirements.

12-3 POSpre, POSpos: the part of the speech
(POS) of eight tokens, that is, the 4-grams
preceding and the 4-grams following the in-
stance.

14 VERBtype: the verb is classified as copula-
tive, pronominal, transitive, or with an im-
personal use.4 Verbs belonging to more than
one class are also accommodated with dif-
ferent feature values for each of the possible
combinations of verb type.

5.2 Evaluation
To determine the most accurate algorithm for our
classification task, two comparisons of learning
algorithms implemented in WEKA (Witten and
Frank, 2005) were carried out. Firstly, the classi-
fication was performed using 20% of the training
instances. Secondly, the seven highest perform-
ing classifiers were compared using 100% of the

4We used four lists provided by Molino de Ideas s.a. con-
taining 11,060 different verb lemmas belonging to the Royal
Spanish Academy Dictionary (Real Academia Española,
2001).
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Class P R F Acc.
Explicit subj. 90.1% 92.3% 91.2% 87.3%
Zero subj. 77.2% 74.0% 75.5% 87.4%
Impersonals 85.6% 63.1% 72.7% 98.8%

Table 5: K* performance (87.6% accuracy for ten-fold
cross validation).

training data and ten-fold cross-validation. The
corpus was partitioned into training and tested
using ten-fold cross-validation for randomly or-
dered instances in both cases. The lazy learn-
ing classifier K* (Cleary and Trigg, 1995), us-
ing a blending parameter of 40%, was the best
performing one, with an accuracy of 87.6% for
ten-fold cross-validation. K* differs from other
instance-based learners in that it computes the dis-
tance between two instances using a method mo-
tivated by information theory, where a maximum
entropy-based distance function is used (Cleary
and Trigg, 1995). Table 5 shows the results
for each class using ten-fold cross-validation.
In contrast to previous work, the K* algorithm
(Cleary and Trigg, 1995) was found to provide the
most accurate classification in the current study.
Other approaches have employed various clas-
sification algorithms, including JRip in WEKA
(Müller, 2006), with precision of 74% and recall
of 60%, and K-nearest neighbors in TiMBL: both
in (Evans, 2001) with precision of 73% and recall
of 69%, and in (Boyd et al., 2005) with precision
of 82% and recall of 71%.

Since there is no previous ML approach for this
task in Spanish, our baselines for the explicit sub-
jects and the zero subjects are the parser output
and the previous rule-based work with the high-
est performance (Ferrández and Peral, 2000). For
the impersonal constructions the baseline is a sim-
ple greedy algorithm that classifies as an imper-
sonal construction every verb whose lemma is cat-
egorized as a verb with impersonal use according
to the RAE dictionary (Real Academia Española,
2001).

Our method outperforms the Connexor parser
which identifies the explicit subjects but makes no
distinction between zero subjects and impersonal
constructions. Connexor yields 74.9% overall ac-
curacy and 80.2% and 65.6% F-measure for ex-
plicit and elliptic subjects, respectively.

To compare with Ferrández and Peral
(Ferrández and Peral, 2000) we do consider

Algorithm Explicit
subjects

Zero
subjects

Impersonals

RAE – – 70.4%
Connexor 71.7% 83.0%
Ferr./Peral 79.7% 98.4% –
Elliphant 87.3% 87.4% 98.8%

Table 6: Summary of accuracy comparison with previ-
ous work.

it without impersonal constructions. We achieve
a precision of 87% for explicit subjects compared
to 80%, and a precision of 87% for zero subjects
compared to their 98%. The overall accuracy
is the same for both techniques, 87.5%, but our
results are more balanced. Nevertheless, the
approaches and corpora used in both studies are
different, and hence it is not possible to do a fair
comparison. For example, their corpus has 46%
of zero subjects while ours has only 26%.

For impersonal constructions our method out-
performs the RAE baseline (precision 6.5%,
recall 77.7%, F-measure 12.0% and accuracy
70.4%). Table 6 summarizes the comparison. The
low performance of the RAE baseline is due to the
fact that verbs with impersonal use are often am-
biguous. For these cases, we first tagged them as
ambiguous and then, we defined additional crite-
ria after analyzing then manually. The resulting
annotated criteria are stated in Table 1.

6 Analysis

Through these analyses we aim to extract the most
effective features and the information that would
complement the output of an standard parser to
achieve this task. We also examine the learning
process of the algorithm to find out how many in-
stances are needed to train it efficiently and de-
termine how much Elliphant is genre dependent.
The analyses indicate that our approach is robust:
it performs nearly as well with just six features,
has a steep learning curve, and seems to general-
ize well to other text collections.

6.1 Best Features

We carried out three different experiments to eval-
uate the most effective group of features, and
the features themselves considering the individ-
ual predictive ability of each one along with their
degree of redundancy.

Based on the following three feature selection
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methods we can state that there is a complex and
balanced interaction between the features.

6.1.1 Grouping Features
In the first experiment we considered the 11

groups of relevant ordered features from the train-
ing data, which were selected using each WEKA

attribute selection algorithm and performed the
classifications over the complete training data, us-
ing only the different groups features selected.

The most effective group of six features (NH-
PREV, PARSER, NHTOT, POSpos, PERSON,
LEMMA) was the one selected by WEKA’s Sym-
metricalUncertAttribute technique, which gives
an accuracy of 83.5%. The most frequently
selected features by all methods are PARSER,
POSpos, and NHTOT, and they alone get an accu-
racy of 83.6% together. As expected, the two pairs
of features that perform best (both 74.8% accu-
racy) are PARSER with either POSpos or NHTOT.
Based on how frequent each feature is selected
by WEKA’s attribute selection algorithms, we can
rank the features as following: (1) PARSER,
(2) NHTOT, (3) POSpos, (4) NHPREV and (5)
LEMMA.

6.1.2 “Complex” vs. “Simple” Features
Second, a set of experiments was conducted

in which features were selected on the basis
of the degree of computational effort needed to
generate them. We propose two sets of fea-
tures. One group corresponds to “simple” fea-
tures, whose values can be obtained by trivial
exploitation of the tags produced in the parser’s
output (PARSER, LEMMA, PERSON, POSpos,
POSpre). The second group of features, “com-
plex” features (CLAUSE, AGREE, NHPREV,
NHTOT, VERBtype) have values that required the
implementation of more sophisticated modules to
identify the boundaries of syntactic constituents
such as clauses and noun phrases. The accuracy
obtained when the classifier exclusively exploits
“complex” features is 82.6% while for “simple”
features is 79.9%. No impersonal constructions
are identified when only “complex” features are
used.

6.1.3 One-left-out Feature
In the third experiment, to estimate the weight

of each feature, classifications were made in
which each feature was omitted from the train-
ing instances that were presented to the classifier.

Omission of all but one of the “simple” features
led to a reduction in accuracy, justifying their in-
clusion in the training instances. Nevertheless, the
majority of features present low informativeness
except for feature A which does not make any
meaningful contribution to the classification. The
feature PARSER presents the greatest difference
in performance (86.3% total accuracy); however,
this is no big loss, considering it is the main fea-
ture. Hence, as most features do not bring a sig-
nificant loss in accuracy, the features need to be
combined to improve the performance.

6.2 Learning Analysis

The learning curve of Figure 1 (left) presents the
increase of the performance obtained by Elliphant
using the training data randomly ordered. The
performance reaches its plateau using 90% of the
training instances. Using different ordering of the
training set we obtain the same result.

Figure 1 (right) presents the precision for each
class and overall in relation to the number of train-
ing instances for each one of them. Recall grows
similarly to precision. Under all conditions, sub-
jects are classified with a high precision since the
information given by the parser (collected in the
features) achieves an accuracy of 74.9% for the
identification of explicit subjects.

The impersonal construction class has the
fastest learning curve. When utilizing a training
set of only 163 instances (90% of the training
data), it reaches a precision of 63.2%. The un-
stable behaviour for impersonal constructions can
be attributed to not having enough training data
for that class, since impersonals are not frequent
in Spanish. On the other hand, the zero subject
class is learned more gradually.

The learning curve for the explicit subject class
is almost flat due to the great variety of subjects
occurring in the training data. In addition, reach-
ing a precision of 92.0% for explicit subjects us-
ing just 20% of the training data is far more ex-
pensive in terms of the number of training in-
stances (978) as seen in Figure 1 (right). Actually,
with just 20% of the training data we can already
achieve a precision of 85.9%.

This demonstrates that Elliphant does not need
very large sets of expensive training data and
is able to reach adequate levels of performance
when exploiting far fewer training instances. In
fact, we see that we only need a modest set of

712



83.00

83.60

84.20

84.80

85.40

86.00

86.60

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Precision Recall F-measure

85.6% 85.3%
85.8%
85.7%

85.2%

85.8%
86.3% 86.4%

85.9%

85.5%
86.0%

86.5% 86.6%%

49.00
55.29
61.57
67.86
74.14
80.43
86.71
93.00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

498 978 1461 1929 2433 2898 3400 3899 4386 4854

354 537 735 898 1094 1249 1416 1593 1793

167

17 32
49

66 82
129

146
179

Explicit subjects

Zero subjects

Impersonal
constructions

Overall

163
103 P

re
ci

sio
n 

(%
)

Figure 1: Learning curve for precision, recall and F-measure (left) and with respect to the number of instances
of each class (right) for a given percentage of training data.

annotated instances (fewer than 1,500) to achieve
good results.

6.3 Impact of Genre
To examine the influence of the different text gen-
res on this method, we divided our training data
into two subgroups belonging to different genres
(legal and health) and analyze the differences.

A comparative evaluation using ten-fold cross-
validation over the two subgroups shows that El-
liphant is more successful when classifying in-
stances of explicit subjects in legal texts (89.8%
accuracy) than health texts (85.4% accuracy).
This may be explained by the greater uniformity
of the sentences in the legal genre compared to
ones from the health genre, as well as the fact that
there are a larger number of explicit subjects in the
legal training data (2,739 compared with 2,116 in
the health texts). Further, texts from the health
genre present the additional complication of spe-
cialized named entities and acronyms, which are
used quite frequently. Similarly, better perfor-
mance in the detection of zero subjects and imper-
sonal sentences in the health texts may be due to
their more frequent occurrence and hence greater
learnability.

Training/Testing Legal Health All
Legal 90.0% 86.8% 89.3%
Health 86.8% 85.9% 88.7%
All 92.5% 93.7% 87.6%

Table 7: Accuracy of cross-genre training and testing
evaluation (ten-fold evaluation).

We have also studied the effect of training the
classifier on data derived from one genre and test-
ing on instances derived from a different genre.
Table 7 shows that instances from legal texts

are more homogeneous, as the classifier obtains
higher accuracy when testing and training only on
legal instances (90.0%). In addition, legal texts
are also more informative, because when both le-
gal and health genres are combined as training
data, only instances from the health genre show
a significant increased accuracy (93.7%). These
results reveal that the health texts are the most het-
erogeneous ones. In fact, we also found subsets of
the legal documents where our method achieves
an accuracy of 94.6%, implying more homoge-
neous texts.

6.4 Error Analysis

Since the features of the system are linguisti-
cally motivated, we performed a linguistic anal-
ysis of the erroneously classified instances to find
out which patterns are more difficult to classify
and which type of information would improve the
method (Rello et al., 2011).

We extract the erroneously classified instances
of our training data and classify the errors. Ac-
cording to the distribution of the errors per class
(Table 8) we take into account the following four
classes of errors for the analysis: (a) impersonal
constructions classified as zero subjects, (b) im-
personal constructions classified as explicit sub-
jects, (c) zero subjects classified as explicit sub-
jects, and (d) explicit subjects classified as zero
subjects. The diagonal numbers are the true pre-
dicted cases. The classification of impersonal
constructions is less balanced than the ones for
explicit subjects and zero subjects. Most of the
wrongly identified instances are classified as ex-
plicit subject, given that this class is the largest
one. On the other hand, 25% of the zero subjects
are classified as explicit subject, while only 8% of
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the explicit subjects are identified as zero subjects.

Class Zero Explicit Impers.
subjects subjects

Zero subj. 1327 453 (c) 13
Explicit subj. 368 (d) 4481 6
Impersonals 25 (a) 41 (b) 113

Table 8: Confusion Matrix (ten-fold validation).

For the analysis we first performed an explo-
ration of the feature values which allows us to
generate smaller samples of the groups of errors
for the further linguistic analyses. Then, we ex-
plore the linguistic characteristics of the instances
by examining the clause in which the instance ap-
pears in our corpus. A great variety of different
patterns are found. We mention only the linguistic
characteristics in the errors which at least double
the corpus general trends.

In all groups (a-d) there is a tendency of using
the following elements: post-verbal prepositions,
auxiliary verbs, future verbal tenses, subjunctive
verbal mode, negation, punctuation marks ap-
pearing before the verb and the preceding noun
phrases, concessive and adverbial subordinate
clauses. In groups (a) and (b) the lemma of the
verb may play a relevant role, for instance verb
haber (‘there is/are’) appears in the errors seven
times more than in the training while verb tratar
(‘to be about’, ‘to deal with’) appears 12 times
more. Finally, in groups (c) and (d) we notice
the frequent occurrence of idioms which include
verbs with impersonal uses, such as es decir (‘that
is to say’) and words which can be subject on their
own i.e. ambos (‘both’) or todo (‘all’).

7 Conclusions and Future Work

In this study we learn which is the most accurate
approach for identifying explicit subjects and im-
personal constructions in Spanish and which are
the linguistic characteristics and features that help
to perform this task. The corpus created is freely
available online.5 Our method complements pre-
vious work on Spanish anaphora resolution by ad-
dressing the identification of non-referential con-
structions. It outperforms current approaches in
explicit subject detection and impersonal con-
structions, doing better than the parser for every

5ESZIC es Corpus is available at: http:
//luzrello.com/Projects.html.

class.
A possible future avenue to explore could be

to combine our approach with Ferrández and
Peral (Ferrández and Peral, 2000) by employing
both algorithms in sequence: first Ferrández and
Peral’s algorithm to detect all zero subjects and
then ours to identify explicit subjects and imper-
sonals. Assuming that the same accuracy could be
maintained, on our data set the combined perfor-
mance could potentially be in the range of 95%.

Future research goals are the extrinsic evalua-
tion of our system by integrating our system in
NLP tasks and its adaptation to other Romance
pro-drop languages. Finally, we believe that our
ML approach could be improved as it is the first
attempt of this kind.
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Real Academia Española. 2001. Diccionario de la
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Abstract

The task of paraphrase acquisition from re-
lated sentences can be tackled by a variety
of techniques making use of various types
of knowledge. In this work, we make the
hypothesis that their performance can be
increased if candidate paraphrases can be
validated using information that character-
izes paraphrases independently of the set of
techniques that proposed them. We imple-
ment this as a bi-class classification prob-
lem (i.e. paraphrase vs. not paraphrase),
allowing any paraphrase acquisition tech-
nique to be easily integrated into the com-
bination system. We report experiments on
two languages, English and French, with
5 individual techniques on parallel mono-
lingual parallel corpora obtained via multi-
ple translation, and a large set of classifi-
cation features including surface to contex-
tual similarity measures. Relative improve-
ments in F-measure close to 18% are ob-
tained on both languages over the best per-
forming techniques.

1 Introduction

The fact that natural language allows messages
to be conveyed in a great variety of ways consti-
tutes an important difficulty for NLP, with appli-
cations in both text analysis and generation. The
term paraphrase is now commonly used in the
NLP litterature to refer to textual units of equiva-
lent meaning at the phrasal level (including single
words). For instance, the phrases six months and
half a year form a paraphrase pair applicable in
many different contexts, as they would appropri-
ately denote the same concept. Although one can
envisage to manually build high-coverage lists of

synonyms, enumerating meaning equivalences at
the level of phrases is too daunting a task for hu-
mans. Because this type of knowledge can how-
ever greatly benefit many NLP applications, au-
tomatic acquisition of such paraphrases has at-
tracted a lot of attention (Androutsopoulos and
Malakasiotis, 2010; Madnani and Dorr, 2010),
and significant research efforts have been devoted
to this objective (Callison-Burch, 2007; Bhagat,
2009; Madnani, 2010).

Central to acquiring paraphrases is the need of
assessing the quality of the candidate paraphrases
produced by a given technique. Most works to
date have resorted to human evaluation of para-
phrases on the levels of grammaticality and mean-
ing equivalence. Human evaluation is however
often criticized as being both costly and non re-
producible, and the situation is even more compli-
cated by the inherent complexity of the task that
can produce low inter-judge agreement. Task-
based evaluation involving the use of paraphras-
ing into some application thus seem an acceptable
solution, provided the evaluation methodologies
for the given task are deemed acceptable. This,
in turn, puts the emphasis on observing the im-
pact of paraphrasing on the targeted application
and is rarely accompanied by a study of the intrin-
sic limitations of the paraphrase acquisition tech-
nique used.

The present work is concerned with the task of
sub-sentential paraphrase acquisition from pairs
of related sentences. A large variety of tech-
niques have been proposed that can be applied
to this task. They typically make use of differ-
ent kinds of automatically or manually acquired
knowledge. We make the hypothesis that their
performance can be increased if candidate para-
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phrases can be validated using information that
characterize paraphrases in complement to the set
of techniques that proposed them. We propose to
implement this as a bi-class classification problem
(i.e. paraphrase vs. not paraphrase), allowing
any paraphrase acquisition technique to be easily
integrated into the combination system. In this
article, we report experiments on two languages,
English and French, with 5 individual techniques
based on a) statistical word alignment models,
b) translational equivalence, c) handcoded rules of
term variation, d) syntactic similarity, and e) edit
distance on word sequences. We used parallel
monolingual parallel corpora obtained via mul-
tiple translation from a single language as our
sources of related sentences, and a large set of
features including surface to contextual similarity
measures. Relative improvements in F-measure
close to 18% are obtained on both languages over
the best performing techniques.

The remainder of this article is organized as
follows. We first briefly review previous work
on sub-sentential paraphrase acquisition in sec-
tion 2. We then describe our experimental setting
in section 3 and the individual techniques that we
have studied in section 4. Section 5 is devoted to
our approach for validating paraphrases proposed
by individual techniques. Finally, section 6 con-
cludes the article and presents some of our future
work in the area of paraphrase acquisition.

2 Related work

The hypothesis that if two words or, by exten-
sion, two phrases, occur in similar contexts then
they may be interchangeable has been extensively
tested. The distributional hypothesis, attributed to
Zellig Harris, was for example applied to syntac-
tic dependency paths in the work of Lin and Pan-
tel (2001). Their results take the form of equiva-
lence patterns with two arguments such as {X asks
for Y, X requests Y, X’s request for Y, X wants Y,
Y is requested by X, . . .}.

Using comparable corpora, where the same in-
formation probably exists under various linguis-
tic forms, increases the likelihood of finding very
close contexts for sub-sentential units. Barzilay
and Lee (2003) proposed a multi-sequence align-
ment algorithm that takes structurally similar sen-
tences and builds a compact lattice representation
that encodes local variations. The work by Bhagat
and Ravichandran (2008) describes an application

of a similar technique on a very large scale.
The hypothesis that two words or phrases are

interchangeable if they share a common trans-
lation into one or more other languages has
also been extensively studied in works on sub-
sentential paraphrase acquisition. Bannard and
Callison-Burch (2005) described a pivoting ap-
proach that can exploit bilingual parallel corpora
in several languages. The same technique has
been applied to the acquisition of local paraphras-
ing patterns in Zhao et al. (2008). The work of
Callison-Burch (2008) has shown how the mono-
lingual context of a sentence to paraphrase can be
used to improve the quality of the acquired para-
phrases.

Another approach consists in modelling local
paraphrasing identification rules. The work of
Jacquemin (1999) on the identification of term
variants, which exploits rewriting morphosyntac-
tic rules and descriptions of morphological and
semantic lexical families, can be extended to ex-
tract the various forms corresponding to input pat-
terns from large monolingual corpora.

When parallel monolingual corpora aligned at
the sentence level are available (e.g. multiple
translations into the same language), the task of
sub-sentential paraphrase acquisition can be cast
as one of word alignment between two aligned
sentences (Cohn et al., 2008). Barzilay and
McKeown (2001) applied the distributionality hy-
pothesis on such parallel sentences, and Pang et
al. (2003) proposed an algorithm to align sen-
tences by recursive fusion of their common syn-
tactic constituants.

Finally, they has been a recent interest in auto-
matic evaluation of paraphrases (Callison-Burch
et al., 2008; Liu et al., 2010; Chen and Dolan,
2011; Metzler et al., 2011).

3 Experimental setting

We used the main aspects of the methodology
described by Cohn et al. (2008) for constructing
evaluation corpora and assessing the performance
of techniques on the task of sub-sentential para-
phrase acquisition. Pairs of related sentences are
hand-aligned to define a set of reference atomic
paraphrase pairs at the level of words or phrases,
denoted asRatom

1.

1Note that in this study we do not distinguish between
“Sure” and “Possible” alignments, and when reusing anno-
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single language multiple language video descriptions multiply-translated news headlines
translation translation subtitles

# tokens 4,476 4,630 1,452 2,721 1,908
# unique tokens 656 795 357 830 716

% aligned tokens (excluding identities) 60.58 48.80 23.82 29.76 14.46
lexical overlap (tokens) 77.21 61.03 59.50 32.51 39.63

lexical overlap (lemmas content words) 83.77 71.04 64.83 39.54 45.31
translation edit rate (TER) 0.32 0.55 0.76 0.68 0.62

penalized n-gram prec. (BLEU) 0.33 0.15 0.13 0.14 0.39

Table 1: Various indicators of sentence pair comparability for different corpus types. Statistics are reported for
French on sets of 100 sentence pairs.

We conducted a small-scale study to assess dif-
ferent types of corpora of related sentences:

1. single language translation Corpora ob-
tained by several independent human trans-
lation of the same sentences (e.g. (Barzilay
and McKeown, 2001)).

2. multiple language translation Same as
above, but where a sentence is translated
from 4 different languages into the same lan-
guage (Bouamor et al., 2010).

3. video descriptions Descriptions of short
YouTube videos obtained via Mechanical
Turk (Chen and Dolan, 2011).

4. multiply-translated subtitles Aligned mul-
tiple translations of contributed movie subti-
tles (Tiedemann, 2007).

5. comparable news headlines News head-
lines collected from Google News clusters
(e.g. (Dolan et al., 2004)).

We collected 100 sentence pairs of each type
in French, for which various comparability mea-
sures are reported on Table 1. In particular, the
“% aligned tokens” row indicates the propor-
tion of tokens from the sentence pairs that could
be manually aligned by a native-speaker annota-
tor.2 Obviously, the more common tokens two
sentences from a pair contain, the fewer sub-
sentential paraphrases may be extracted from that
pair. However, high lexical overlap increases the
probability that two sentences be indeed para-
phrases, and in turn the probability that some of
their phrases be paraphrases. Furthermore, the

tated corpora using them we considered all alignments as be-
ing correct.

2The same annotator hand-aligned the 5*100=500 para-
phrase pairs using the YAWAT (Germann, 2008) manual
alignment tool.

presence of common token may serve as useful
clues to guide paraphrase extraction.

For our experiments, we chose to use parallel
monolingual corpora obtained by single language
translation, the most direct resource type for ac-
quiring sub-sentential paraphrase pairs. This al-
lows us to define acceptable references for the
task and resort to the most consensual evaluation
technique for paraphrase acquisition to date. Us-
ing such corpora, we expect to be able to extract
precise paraphrases (see Table 1), which will be
natural candidates for further validation, which
will be addressed in section 5.3.

Figure 1 illustrates a reference alignment ob-
tained on a pair of English sentential paraphrases
and the list of atomic paraphrase pairs that can be
extracted from it, against which acquisition tech-
niques will be evaluated. Note that we do not con-
sider pairs of identical units during evaluation, so
we filter them out from the list of reference para-
phrase pairs.

The example in Figure 1 shows different cases
that point to the inherent complexity of this task,
even for human annotators: it could be argued,
for instance, that a correct atomic paraphrase
pair should be reached ↔ amounted to rather
than reached ↔ amounted. Also, aligning in-
dependently 260 ↔ 0.26 and million ↔ billion
is assuredly an error, while the pair 260 mil-
lion↔ 0.26 billion would have been appropriate.
A case of alignment that seems non trivial can be
observed in the provided example (during the en-
tire year ↔ annual). The abovementioned rea-
sons will explain in part the difficulties in reach-
ing high performance values using such gold stan-
dards.

Reference composite paraphrase pairs (denoted
as R), obtained by joining adjacent atomic para-
phrase pairs from Ratom up to 6 tokens3, will

3We used standard biphrase extraction heuristics (Koehn
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Figure 1: Reference alignments for a pair of English
sentential paraphrases from the annotation corpus of
Cohn et al. (2008) (note that possible and sure align-
ments are not distinguished here) and the list of atomic
paraphrase pairs extracted from these alignments.

also be considered when measuring performance.
Evaluated techniques have to output atomic can-
didate paraphrase pairs (denoted as Hatom) from
which composite paraphrase pairs (denoted as
H) are computed. The usual measures of pre-
cision (P ), recall (R) and F-measure (F1) can
then be defined in the following way (Cohn et al.,
2008):

P =
|Hatom ∩R|
|Hatom|

R =
|H ∩ Ratom|
|Ratom|

F1 =
2pr

p + r

We conducted experiments using two different
corpora in English and French. In each case,
a held-out development corpus of 150 sentential
paraphrase pairs was used for development and
tuning, and all techniques were evaluated on the
same test set consisting of 375 sentential para-
phrase pairs. For English, we used the MTC

et al., 2007) : all words from a phrase must be aligned to at
least one word from the other and not to words outside, but
unaligned words at phrase boundaries are not used.

corpus described in (Cohn et al., 2008), consist-
ing of multiply-translated Chinese sentences into
English, and used as our gold standard both the
alignments marked as “Sure” and “Possible”. For
French, we used the CESTA corpus of news ar-
ticles4 obtained by translating into French from
English.

We used the YAWAT (Germann, 2008) manual
alignment tool. Inter-annotator agreement val-
ues (averaging with each annotation set as the
gold standard) are 66.1 for English and 64.6 for
French, which we interpret as acceptable val-
ues. Manual inspection of the two corpora reveals
that the French corpus tends to contain more lit-
eral translations, possibly due to the original lan-
guages of the sentences, which are closer to the
target language than Chinese is to English.

4 Individual techniques for paraphrase
acquisition

As discussed in section 2, the acquisition of sub-
sentential paraphrases is a challenging task that
has previously attracted a lot of work. In this
work, we consider the scenario where sentential
paraphrases are available and words and phrases
from one sentence can be aligned to words and
phrases from the other sentence to form atomic
paraphrase pairs. We now describe several tech-
niques that perform the task of sub-sentential unit
alignment. We have selected and implemented
five techniques which we believe are representa-
tive of the type of knowledge that these techniques
use, and have reused existing tools, initially devel-
oped for other tasks, when possible.

4.1 Statistical learning of word alignments
(Giza)

The GIZA++ tool (Och and Ney, 2004) computes
statistical word alignment models of increasing
complexity from parallel corpora. While origi-
nally developed in the bilingual context of Statis-
tical Machine Translation, nothing prevents build-
ing such models on monolingual corpora. How-
ever, in order to build reliable models, it is nec-
essary to use enough training material includ-
ing minimal redundancy of words. To this end,
we provided GIZA++ with all possible sentence
pairs from our mutiply-translated corpus to im-
prove the quality of its word alignments (note that

4http://www.elda.org/article125.html
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we used symmetrized alignments from the align-
ments in both directions). This constitutes a sig-
nificant advantage for this technique that tech-
niques working on each sentence pair indepen-
dently do not have.

4.2 Translational equivalence (Pivot)

Translational equivalence can be exploited to de-
termine that two phrases may be paraphrases.
Bannard and Callison-Burch (2005) defined a
paraphrasing probability between two phrases
based on their translation probability through all
possible pivot phrases as:

Ppara(p1, p2) =
∑
piv

Pt(piv|p1)Pt(p2|piv)

where Pt denotes translation probabilies. We used
the Europarl corpus5 of parliamentary debates in
English and French, consisting of approximately
1.7 million parallel sentences : this allowed us
to use the same resource to build paraphrases for
English, using French as the pivot language, and
for French, using English as the pivot language.
The GIZA++ tool was used for word alignment
and the MOSES Statistical Machine Translation
toolkit (Koehn et al., 2007) was used to com-
pute phrase translation probabilities from these
word alignments. For each sentential paraphrase
pair, we applied the following algorithm: for each
phrase, we build the entire set of paraphrases us-
ing the previous definition. We then extract its
best paraphrase as the one exactly appearing in the
other sentence with maximum paraphrase proba-
bility, using a minimal threshold value of 10−4.

4.3 Linguistic knowledge on term variation
(Fastr)

The FASTR tool (Jacquemin, 1999) was designed
to spot term/phrase variants in large corpora.
Variants are described through metarules express-
ing how the morphosyntactic structure of a term
variant can be derived from a given term by means
of regular expressions on word morphosyntactic
categories. Paradigmatic variation can also be ex-
pressed by expressing constraints between words,
imposing that they be of the same morphologi-
cal or semantic family. Both constraints rely on
preexisting repertoires available for English and
French. To compute candidate paraphrase pairs
using FASTR, we first consider all phrases from

5http://statmt.org/europarl

the first sentence and search for variants in the
other sentence, then do the reverse process and
finally take the intersection of the two sets.

4.4 Syntactic similarity (Synt)
The algorithm introduced by Pang et al. (2003)
takes two sentences as input and merges them by
top-down syntactic fusion guided by compatible
syntactic substructure. A lexical blocking mecha-
nism prevents constituents from fusionning when
there is evidence of the presence of a word in an-
other constituent of one of the sentence. We use
the Berkeley Probabilistic parser (Klein and Man-
ning, 2003) to obtain syntactic trees for English
and its adapted version for French (Candito et al.,
2010). Because this process is highly sensitive to
syntactic parse errors, we use in our implemen-
tation k-best parses and retain the most compact
fusion from any pair of candidate parses.

4.5 Edit rate on word sequences (TERp)
TERp (Translation Edit Rate Plus) (Snover et al.,
2010) is a score designed for the evaluation of
Machine Translation output. Its typical use takes
a system hypothesis to compute an optimal set of
word edits that can transform it into some exist-
ing reference translation. Edit types include ex-
act word matching, word insertion and deletion,
block movement of contiguous words (computed
as an approximation), as well as optionally vari-
ants substitution through stemming, synonym or
paraphrase matching.6 Each edit type is parame-
terized by at least one weight which can be opti-
mized using e.g. hill climbing. TERp being a tun-
able metric, our experiments will include tuning
TERp systems towards either precision (→ P ),
recall (→ R), or F-measure (→ F1).7

4.6 Evaluation of individual techniques
Results for the 5 individual techniques are given
on the left part of Table 2. It is first apparent
that all techniques but TERp fared better on the
French corpus than on the English corpus. This
can certainly be explained by the fact that the for-
mer results from more literal translations (from

6Note that for these experiments we did not use the stem-
ming module, the interface to WordNet for synonym match-
ing and the provided paraphrase table for English, due to the
fact that these resources were available for English only.

7Hill climbing was used for all tunings as done by Snover
et al. (2010), and we used one iteration starting with uniform
weights and 100 random restarts.
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Individual techniques Combinations

GIZA PIVOT FASTR SYNT
TERp union validation→ P → R → F1

English
P 31.01 31.78 37.38 52.17 50.00 29.15 33.37 21.44 50.51
R 38.30 18.50 6.71 2.53 5.83 45.19 45.37 60.87 41.19
F1 34.27 23.39 11.38 4.83 10.44 35.44 38.46 31.71 45.37

French
P 28.99 29.53 52.48 62.50 31.35 30.26 31.43 17.58 40.77
R 45.98 26.66 8.59 8.65 44.22 44.60 44.10 63.36 45.85
F1 35.56 28.02 14.77 15.20 36.69 36.05 36.70 27.53 43.16

Table 2: Results on the test set on English and French for the 5 individual paraphrase acquisition techniques (left
part) and for the 2 combination techniques (right part).

English to French, compared with from Chinese
to English), which should be consequently eas-
ier to word-align. This is for example clearly
shown by the results of the statistical aligner
GIZA, which obtains a 7.68 advantage on recall
for French over English.

The two linguistically-aware techniques,
FASTR and SYNT, have a very strong precision
on the more parallel French corpus, but fail to
achieve an acceptable recall on their own. This
is not surprising : FASTR metarules are focussed
on term variant extraction, and SYNT requires
two syntactic trees to be highly comparable
to extract sub-sentential paraphrases. When
these constrained conditions are met, these two
techniques appear to perform quite well in terms
of precision.

GIZA and TERp perform roughly in the same
range on French, with acceptable precision and
recall, TERp performing overall better, with e.g.
a 1.14 advantage on F-measure on French and
4.19 on English. The fact that TERp performs
comparatively better on English than on French8,
with a 1.76 advantage on F-measure, is not con-
tradictory: the implemented edit distance makes
it possible to align reasonably distant words and
phrases independently from syntax, and to find
alignments for close remaining words, so the dif-
ferences of performance between the two lan-
guages are not necessarily expected to be com-
parable with the results of a statistical alignment
technique. English being a poorly-inflected lan-
guage, alignment clues between two sentential
paraphrases are expected to be more numerous

8Recall that all specific linguistic modules for English
only from TERp had been disabled, so the better perfor-
mance on English cannot be explained by a difference in
terms of resources used.

than for highly-inflected French.
PIVOT is on par with GIZA as regards preci-

sion, but obtains a comparatively much lower re-
call (differences of 19.32 and 19.80 on recall on
French and English respectively). This may first
be due in part to the paraphrasing score threshold
used for PIVOT, but most certainly to the use of
a bilingual corpus from the domain of parliamen-
tary debates to extract paraphrases when our test
sets are from the news domain: we may be ob-
serving differences inherent to the domain, and
possibly facing the issue of numerous “out-of-
vocabulary” phrases, in particular for named en-
tities which frequently occur in the news domain.

Importantly, we can note that we obtain at best
a recall of 45.98 on French (GIZA) and of 45.37
on English (TERp). This may come as a disap-
pointment but, given the broad set of techniques
evaluated, this should rather underline the inher-
ent complexity of the task. Also, recall that the
metrics used do not consider identity paraphrases
(e.g. at the same time ↔ at the same time), as
well as the fact that gold standard alignment is
a very difficult process as shown by interjudge
agreement values and our example from section 3.
This, again, confirms that the task that is ad-
dressed is indeed a difficult one, and provides fur-
ther justification for initially focussing on parallel
monolingual corpora, albeit scarce, for conduct-
ing fine-grained studies on sub-sentential para-
phrasing.

Lastly, we can also note that precision is not
very high, with (at best, using TERp→P ) average
values for all techniques of 40.97 and 40.46 on
French and English, respectively. Several facts
may provide explanations for this observation.
First, it should be noted that none of those tech-
niques, except SYNT, was originally developed
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for the task of sub-sentential paraphrase acqui-
sition from monolingual parallel corpora. This
results in definitions that are at best closely re-
lated to this task.9 Designing new techniques
was not one of the objectives of our study, so we
have reused existing techniques, originally devel-
oped with different aims (bilingual parallel cor-
pora word alignment (GIZA), term variant recog-
nition (FASTR), Machine Translation evaluation
(TERp)). Also, techniques such as GIZA and
TERp attempt to align as many words as possi-
ble in a sentence pair, when gold standard align-
ments sometimes contain gaps.10 Finally, the met-
rics used will count as false small variations of
gold standard paraphrases (e.g. missing function
word): the acceptability or not of such candi-
dates could be either evaluated in a scenario where
such “acceptable” variants would be taken into
account, and could be considered in the context
of some actual use of the acquired paraphrases
in some application. Nonetheless, on average the
techniques in our study produce more candidates
that are not in the gold standard: this will be an
important fact to keep in mind when tackling the
task of combining their outputs. In particular, we
will investigate the use of features indicating the
combination of techniques that predicted a given
paraphrase pair, aiming to capture consensus in-
formation.

5 Paraphrase validation

5.1 Technique complementarity
Before considering combining and validating the
outputs of individual techniques, it is informative
to look at some notion of “complementarity” be-
tween techniques, in terms of how many correct
paraphrases a technique would add to a combined
set. The following formula was used to account
for the complementarity between the set of can-
didates from some technique i, ti, and the set for
some technique j, tj :

C(ti, tj) = recall(ti∪tj)−max(recall(ti), recall(tj))

9Recall, however, that our best performing technique on
F-measure, TERp, was optimized to our task using a held
out development set.

10It is arguable whether such cases should happen in sen-
tence pairs obtained by translating the same original sentence
into the same language, but this clearly depends on the inter-
pretation of the expected level of annotation by the annota-
tors.

Results on the test set for the two languages
are given in Table 3. A number of pairs of tech-
niques have strong complementarity values, the
strongest one being for GIZA and TERp for both
languages. According to these figures, PIVOT

identify paraphrases which are slightly more sim-
ilar to those of TERp than those of GIZA. Inter-
estingly, FASTR and SYNT exhibit a strong com-
plementarity, where in French, for instance, they
only have a very small proportion of paraphrases
in common. Considering the set of all other tech-
niques, GIZA provides the more new paraphrases
on French and TERp on English.

GIZA PIVOT FASTR SYNT TERp→R all others
English

GIZA - 4.65 2.83 0.59 10.31 8.31
PIVOT 4.65 - 2.30 1.88 3.12 3.72
FASTR 2.83 2.30 - 2.42 1.71 0.53
SYNT 0.59 1.88 2.42 - 0.59 0.00

TERp→R 10.31 3.12 1.71 0.59 - 12.20
French

GIZA - 9.79 3.64 2.20 10.73 8.91
PIVOT 9.79 - 2.26 5.22 7.84 3.39
FASTR 3.64 2.26 - 7.28 3.01 0.19
SYNT 2.20 5.22 7.28 - 1.76 0.44

TERp→R 10.73 7.84 3.01 1.76 - 5.65

Table 3: Values of complementarity on the test set for
both languages, where the following formula was used
for the set of technique outputs T = {t1, t2, ..., tn} :
C(ti, tj) = recall(ti∪tj)−max(recall(ti), recall(tj)).
Complementarity values are computed between all
pairs of individual techniques, and each individual
technique and the set of all other techniques. Values in
bold indicate highest values for the technique of each
row.

5.2 Naive combination by union
We first implemented a naive combination ob-
tained by taking the union of all techniques. Re-
sults are given in the first column of the right part
of Table 2. The first result is quite encouraging:
in both languages, more than 6 paraphrases from
the gold standard out of 10 are found by at least
one of the techniques, which, given our previous
discussion, constitutes a good result and provide
a clear justification for combining different tech-
niques for improving performance on this task.
Precision is mechanically lowered to account for
roughly 1 correct paraphrase over 5 candidates
for both languages. F-measure values are much
lower than those of TERp and GIZA, showing
that the union of all techniques is only interest-
ing for recall-oriented paraphrase acquisition. In
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the next section, we will show how the results of
the union can be validated using machine learning
to improve these figures.

5.3 Paraphrase validation via automatic
classification

A natural improvement to the naive combination
of paraphrase candidates from all techniques can
consist in validating candidate paraphrases by us-
ing several models that may be good indicators of
their paraphrasing status. We can therefore cast
our problem as one of biclass classification (i.e.
“paraphrase” vs. “not paraphrase”).

We have used a maximum entropy classifier11

with the following features, aiming at capturing
information on the paraphrase status of a candi-
date pair:

Morphosyntactic equivalence (POS) It may
be the case that some sequences of part-of-speech
can be rewritten as different sequences, e.g. as
a result of verb nominalization. We therefore
use features to indicate the sequences of part-of-
speech for a pair of candidate paraphrases. We
used the preterminal symbols of the syntactic
trees of the parser used for SYNT.

Character-based distance (CAR) Morpholog-
ical variants often have close word forms, and
more generally close word forms in sentential
paraphase pairs may indicate related words. We
used features for discretized values of the edit
distance between the two phrases of a candidate
paraphrase pair as measured by the Levenshtein
distance.

Stem similarity (STEM) Inflectional morphol-
ogy, which is quite productive in languages such
as French, can increase vocabulary size signifi-
cantly, while in sentential paraphrases common
stems may indicate related words. We used a
binary feature indicating whether the stemmed
phrases of a candidate paraphrase pair match.12

Token set identity (BOW) Syntactic rearrange-
ments may involve the same sets of words in var-
ious orders. We used discretized features indicat-
ing the proportion of common tokens in the set

11We used the implementation available at:
http://homepages.inf.ed.ac.uk/lzhang10/
maxent_toolkit.html

12We use the implementations of the Snowball stem-
mer from English and French available from: http://
snowball.tartarus.org

of tokens for the two phrases of a candidate para-
phrase pair.

Context similarity (CTXT) It can be derived
from the distributionality hypothesis that the more
two phrases will be seen in similar contexts, the
more they are likely to be paraphrases. We used
discretized features indicating how similar the
contexts of occurrences of two paraphrases are.
For this, we used the full set of bilingual English-
French data available for the translation task of
the Workshop on Statistical Machine Transla-
tion13, totalling roughly 30 million parallel sen-
tences: this again ensures that the same resources
are used for experiments in the two languages. We
collect all occurrences for the phrases in a pair,
and build a vector of content words cooccurring
within a distance of 10 words from each phrase.
We finally compute the cosine between the vec-
tors of the two phrases of a candidate paraphrase
pair.

Relative position in a sentence (REL) De-
pending on the language in which parallel sen-
tences are analyzed, it may be the case that sub-
sentential paraphrases occur at close locations in
their respective sentence. We used a discretized
feature indicating the relative position of the two
phrases in their original sentence.

Identity check (COOC) We used a binary fea-
ture indicating whether one of the two phrases
from a candidate pair, or the two, occurred at
some other location in the other sentence.

Phrase length ratio (LEN) We used a dis-
cretized feature indicating phrase length ratio.

Source techniques (SRC) Finally, as our set-
ting validates paraphrase candidates produced by
a set of techniques, we used features indicat-
ing which combination of techniques predicted a
paraphrase candidate. This can allow learning that
paraphrases in the intersection of the predicted
sets for some techniques may produce good re-
sults.

We used a held out training set consisting of
150 sentential paraphrase pairs from the same cor-
pora as our previous developement and test sets
for both languages. Positive examples were taken
from the candidate paraphrase pairs from any of

13http://www.statmt.org/wmt11/
translation-task.html
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the 5 techniques in our study which belong to
the gold standard, and we used a corresponding
number of negative examples (randomly selected)
from candidate pairs not in the gold standard. The
right part of Table 2 provides the results for our
validation experiments of the union set for all pre-
vious techniques.

We obtain our best results for this study using
the output of our validation classifier over the set
of all candidate paraphrase pairs. On French, it
yields an improvement in F-measure (43.16) of
+6.46 over the best individual technique (TERp)
and of +15.63 over the naive union from all indi-
vidual techniques. On English, the improvement
in F-measure (45.37) is for the same conditions of
respectively +6.91 (over TERp) and +13.66. We
unfortunately observe an important decrease in re-
call over the naive union, of respectively -17.54
and -19.68 for French and English. Increasing our
amount of training data to better represent the full
range of paraphrase types may certainly overcome
this in part. This would indeed be sensible, as bet-
ter covering the variety of paraphrase types as a
one-time effort would help all subsequent valida-
tions. Figure 2 shows how performance varies on
French with number of training examples for var-
ious feature configurations. However, some para-
phrase types will require integration of more com-
plex knowledge, as is the case, for instance, for
paraphrase pairs involving some anaphora and its
antecedent (e.g. China↔ it).

While these results, which are very comparable
for the two languages studied, are already satisfy-
ing given the complexity of our task, further in-
spection of false positives and negatives may help
us to develop additional models that will help us
obtain a better classification performance.

6 Conclusions and future work

In this article, we have addressed the task of com-
bining the results of sub-sentential paraphrase ac-
quition from parallel monolingual corpora using a
large variety of techniques. We have provided jus-
tifications for using highly parallel corpora con-
sisting of multiply translated sentences from a
single language. All our experiments were con-
ducted on both English and French using com-
parable resources, so although the results cannot
be directly compared they give some acceptable
comparison points. The best recall of any indi-
vidual technique is around 45 for both language,
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Figure 2: Learning curves obtained on French by re-
moving features individually.

and F-measure in the range 36-38, indicating that
the task under study is a very challenging one.
Our validation strategy based on bi-class classi-
fication using a broad set of features applicable to
all candidate paraphrase pairs allowed us to obtain
a 18% relative improvement in F-measure over
the best individual technique for both languages.

Our future work include performing a deeper
error analysis of our current results, to better com-
prehend what characteristics of paraphrase still
defy current validation. Also, we want to inves-
tigate adding new individual techniques to pro-
vide so far unseen candidates. Another possible
approach would be to submit all pairs of sub-
sentential paraphrase pairs from a sentence pair
to our validation process, which would obviously
require some optimization and devising sensible
heuristics to limit time complexity. We also in-
tend to collect larger corpora for all other corpus
types appearing in Table 1 and conducting anew
our acquisition and validation tasks.
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Abstract

When translating English to German, exist-
ing reordering models often cannot model
the long-range reorderings needed to gen-
erate German translations with verbs in the
correct position. We reorder English as a
preprocessing step for English-to-German
SMT. We use a sequence of hand-crafted
reordering rules applied to English parse
trees. The reordering rules place English
verbal elements in the positions within the
clause they will have in the German transla-
tion. This is a difficult problem, as German
verbal elements can appear in different po-
sitions within a clause (in contrast with En-
glish verbal elements, whose positions do
not vary as much). We obtain a significant
improvement in translation performance.

1 Introduction

Phrase-based SMT (PSMT) systems translate
word sequences (phrases) from a source language
into a target language, performing reordering of
target phrases in order to generate a fluent target
language output. The reordering models, such as,
for example, the models implemented in Moses
(Koehn et al., 2007), are often limited to a cer-
tain reordering range since reordering beyond this
distance cannot be performed accurately. This re-
sults in problems of fluency for language pairs
with large differences in constituent order, such
as English and German. When translating from
English to German, verbs in the German output
are often incorrectly left near their position in En-
glish, creating problems of fluency. Verbs are also
often omitted since the distortion model cannot
move verbs to positions which are licensed by the

German language model, making the translations
difficult to understand.

A common approach for handling the long-
range reordering problem within PSMT is per-
forming syntax-based or part-of-speech-based
(POS-based) reordering of the input as a prepro-
cessing step before translation (e.g., Collins et al.
(2005), Gupta et al. (2007), Habash (2007), Xu
et al. (2009), Niehues and Kolss (2009), Katz-
Brown et al. (2011), Genzel (2010)).

We reorder English to improve the translation
to German. The verb reordering process is im-
plemented using deterministic reordering rules on
English parse trees. The sequence of reorderings
is derived from the clause type and the composi-
tion of a given verbal complex (a (possibly dis-
contiguous) sequence of verbal elements in a sin-
gle clause). Only one rule can be applied in a
given context and for each word to be reordered,
there is a unique reordered position. We train a
standard PSMT system on the reordered English
training and tuning data and use it to translate the
reordered English test set into German.

This paper is structured as follows: in section
2, we outline related work. In section 3, English
and German verb positioning is described. The
reordering rules are given in section 4. In sec-
tion 5, we show the relevance of the reordering,
present the experiments and present an extensive
error analysis. We discuss some problems ob-
served in section 7 and conclude in section 8.

2 Related work

There have been a number of attempts to handle
the long-range reordering problem within PSMT.
Many of them are based on the reordering of a
source language sentence as a preprocessing step
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before translation. Our approach is related to the
work of Collins et al. (2005). They reordered
German sentences as a preprocessing step for
German-to-English SMT. Hand-crafted reorder-
ing rules are applied on German parse trees in
order to move the German verbs into the posi-
tions corresponding to the positions of the English
verbs. Subsequently, the reordered German sen-
tences are translated into English leading to better
translation performance when compared with the
translation of the original German sentences.

We apply this method on the opposite trans-
lation direction, thus having English as a source
language and German as a target language. How-
ever, we cannot simply invert the reordering rules
which are applied on German as a source lan-
guage in order to reorder the English input. While
the reordering of German implies movement of
the German verbs into a single position, when re-
ordering English, we need to split the English ver-
bal complexes and, where required, move their
parts into different positions. Therefore, we need
to identify exactly which parts of a verbal com-
plex must be moved and their possible positions
in a German sentence.

Reordering rules can also be extracted automat-
ically. For example, Niehues and Kolss (2009)
automatically extracted discontiguous reordering
rules (allowing gaps between POS tags which
can include an arbitrary number of words) from
a word-aligned parallel corpus with POS tagged
source side. Since many different rules can be ap-
plied on a given sentence, a number of reordered
sentence alternatives are created which are en-
coded as a word lattice (Dyer et al., 2008). They
dealt with the translation directions German-to-
English and English-to-German, but translation
improvement was obtained only for the German-
to-English direction. This may be due to miss-
ing information about clause boundaries since En-
glish verbs often have to be moved to the clause
end. Our reordering has access to this kind of
knowledge since we are working with a full syn-
tactic parser of English.

Genzel (2010) proposed a language-
independent method for learning reordering
rules where the rules are extracted from parsed
source language sentences. For each node, all
possible reorderings (permutations) of a limited
number of the child nodes are considered. The
candidate reordering rules are applied on the

dev set which is then translated and evaluated.
Only those rule sequences are extracted which
maximize the translation performance of the
reordered dev set.

For the extraction of reordering rules, Gen-
zel (2010) uses shallow constituent parse trees
which are obtained from dependency parse trees.
The trees are annotated using both Penn Tree-
bank POS tags and using Stanford dependency
types. However, the constraints on possible re-
orderings are too restrictive in order to model all
word movements required for English-to-German
translation. In particular, the reordering rules in-
volve only the permutation of direct child nodes
and do not allow changing of child-parent rela-
tionships (deleting of a child or attaching a node
to a new father node). In our implementation, a
verb can be moved to any position in a parse tree
(according to the reordering rules): the reordering
can be a simple permutation of child nodes, or at-
tachment of these nodes to a new father node (cf.
movement of bought and read in figure 11).

Thus, in contrast to Genzel (2010), our ap-
proach does not have any constraints with respect
to the position of nodes marking a verb within the
tree. Only the syntactic structure of the sentence
restricts the distance of the linguistically moti-
vated verb movements.

3 Verb positions in English and German

3.1 Syntax of German sentences

Since in this work, we concentrate on verbs, we
use the notion verbal complex for a sequence con-
sisting of verbs, verbal particles and negation.

The verb positions in the German sentences de-
pend on clause type and the tense as shown in ta-
ble 1. Verbs can be placed in 1st, 2nd or clause-
final position. Additionally, if a composed tense
is given, the parts of a verbal complex can be
interrupted by the middle field (MF) which con-
tains arbitrary sentence constituents, e.g., sub-
jects and objects (noun phrases), adjuncts (prepo-
sitional phrases), adverbs, etc. We assume that the
German sentences are SVO (analogously to En-
glish); topicalization is beyond the scope of our
work.

In this work, we consider two possible posi-
tions of the negation in German: (1) directly in

1The verb movements shown in figure 1 will be explained
in detail in section 4.
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1st 2nd MF clause-
final

decl
subject finV any ∅
subject finV any mainV

int/perif
finV subject any ∅
finV subject any mainV

sub/inf
relCon subject any finV
relCon subject any VC

Table 1: Position of the German subjects and verbs
in declarative clauses (decl), interrogative clauses and
clauses with a peripheral clause (int/perif ), subordi-
nate/infinitival (sub/inf ) clauses. mainV = main verb,
finV = finite verb, VC = verbal complex, any = arbi-
trary words, relCon = relative pronoun or conjunction.
We consider extraponed consituents in perif, as well as
optional interrogatives in int to be in position 0.

front of the main verb, and (2) directly after the
finite verb. The two negation positions are illus-
trated in the following examples:

(1) Ich
I

behaupte,
claim

dass
that

ich
I

es
it

nicht
not

gesagt
say

habe.
did.

(2) Ich
I

denke
think

nicht,
not

dass
that

er
he

das
that

gesagt
said

hat.
has.

It should, however, be noted that in German, the
negative particle nicht can have several positions
in a sentence depending on the context (verb argu-
ments, emphasis). Thus, more analysis is ideally
needed (e.g., discourse, etc.).

3.2 Comparison of verb positions

English and German verbal complexes differ both
in their construction and their position. The Ger-
man verbal complex can be discontiguous, i.e., its
parts can be placed in different positions which
implies that a (large) number of other words can
be placed between the verbs (situated in the MF).
In English, the verbal complex can only be inter-
rupted by adverbials and subjects (in interrogative
clauses). Furthermore, in German, the finite verb
can sometimes be the last element of the verbal
complex, while in English, the finite verb is al-
ways the first verb in the verbal complex.

In terms of positions, the verbs in English and
German can differ significantly. As previously
noted, the German verbal complex can be discon-
tiguous, simultaneously occupying 1st/2nd and
clause-final position (cf. rows decl and int/perif in
table 1), which is not the case in English. While in
English, the verbal complex is placed in the 2nd

position in declarative, or in the 1st position in in-
terrogative clauses, in German, the entire verbal
complex can additionally be placed at the clause
end in subordinate or infinitival clauses (cf. row
sub/inf in table 1).

Because of these differences, for nearly all
types of English clauses, reordering is needed in
order to place the English verbs in the positions
which correspond to the correct verb positions in
German. Only English declarative clauses with
simple present and simple past tense have the
same verb position as their German counterparts.
We give statistics on clause types and their rele-
vance for the verb reordering in section 5.1.

4 Reordering of the English input

The reordering is carried out on English parse
trees. We first enrich the parse trees with clause
type labels, as described below. Then, for each
node marking a clause (S nodes), the correspond-
ing sequence of reordering rules is carried out.
The appropriate reordering is derived from the
clause type label and the composition of the given
verbal complex. The reordering rules are deter-
ministic. Only one rule can be applied in a given
context and for each verb to be reordered, there is
a unique reordered position.

The reordering procedure is the same for the
training and the testing data. It is carried out
on English parse trees resulting in modified parse
trees which are read out in order to generate the
reordered English sentences. These are input for
training a PSMT system or input to the decoder.
The processing steps are shown in figure 1.

For the development of the reordering rules, we
used a small sample of the training data. In par-
ticular, by observing the English parse trees ex-
tracted randomly from the training data, we de-
veloped a set of rules which transform the origi-
nal trees in such a way that the English verbs are
moved to the positions which correspond to the
placement of verbs in German.

4.1 Labeling clauses with their type

As shown in section 3.1, the verb positions in Ger-
man depend on the clause type. Since we use En-
glish parse trees produced by the generative parser
of Charniak and Johnson (2005) which do not
have any function labels, we implemented a sim-
ple rule-based clause type labeling script which
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Figure 1: Processing steps: Clause type labeling an-
notates the given original tree with clause type labels
(in figure, S-EXTR and S-SUB). Subsequently, the re-
ordering is performed (cf. movement of the verbs read
and bought). The reordered sentence is finally read out
and given to the decoder.

enriches every clause starting node with the corre-
sponding clause type label. The label depends on
the context (father, child nodes) of a given clause
node. If, for example, the first child node of a
given S node is WH* (wh-word) or IN (subordi-
nating conjunction), then the clause type label is
SUB (subordinate clause, cf. figure 1).

We defined five clause type labels which indi-
cate main clauses (MAIN), main clauses with a
peripheral clause in the prefield (EXTR), subor-
dinate (SUB), infinitival (XCOMP) and interroga-
tive clauses (INT).

4.2 Clause boundary identification

The German verbs are often placed at the clause
end (cf. rows decl, int/perif and sub/inf in ta-
ble 1), making it necessary to move their En-
glish counterparts into the corresponding posi-
tions within an English tree. For this reason, we
identify the clause ends (the right boundaries).
The search for the clause end is implemented as
a breadth-first search for the next S node or sen-

tence end. The starting node is the node which
marks the verbal phrase in which the verbs are
enclosed. When the next node marking a clause
is identified, the search stops and returns the posi-
tion in front of the identified clause marking node.

When, for example, searching for the clause
boundary of S-EXTR in figure 1, we search re-
cursively for the first clause marking node within
VP1 , which is S-SUB. The position in front of S-
SUB is marked as clause-final position of S-EXTR.

4.3 Basic verb reordering rules

The reordering procedure takes into account the
following word categories: verbs, verb particles,
the infinitival particle to and the negative parti-
cle not, as well as its abbreviated form ’t. The
reordering rules are based on POS labels in the
parse tree.

The reordering procedure is a sequence of ap-
plications of the reordering rules. For each el-
ement of an English verbal complex, its proper-
ties are derived (tense, main verb/auxiliary, finite-
ness). The reordering is then carried out corre-
sponding to the clause type and verbal properties
of a verb to be processed.

In the following, the reordering rules are pre-
sented. Examples of reordered sentences are
given in table 2, and are discussed further here.

Main clause (S-MAIN)

(i) simple tense: no reordering required
(cf. appearsfinV in input 1);

(ii) composed tense: the main verb is moved to
the clause end. If a negative particle exists, it
is moved in front of the reordered main verb,
while the optional verb particle is moved af-
ter the reordered main verb (cf. [has]finV

[been developing]mainV in input 2).

Main clause with peripheral clause (S-EXTR)

(i) simple tense: the finite verb is moved to-
gether with an optional particle to the 1st po-
sition (i.e. in front of the subject);

(ii) composed tense: the main verb, as well
as optional negative and verb particles are
moved to the clause end. The finite verb is
moved in the 1st position, i.e. in front of the
subject (cf. havefinV [gone up]mainV in in-
put 3).
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Subordinate clause (S-SUB)

(i) simple tense: the finite verb is moved to the
clause end (cf. boastsfinV in input 3);

(ii) composed tense: the main verb, as well
as optional negative and verb particles are
moved to the clause end, the finite verb is
placed after the reordered main verb (cf.
havefinV [been executed]mainV in input 5).

Infinitival clause (S-XCOMP)
The entire English verbal complex is moved from
the 2nd position to the clause-final position (cf.
[to discuss]VC in input 4).

Interrogative clause (S-INT)

(i) simple tense: no reordering required;
(ii) composed tense: the main verb, as well

as optional negative and verb particles are
moved to the clause end (cf. [did]finV

knowmainV in input 5).

4.4 Reordering rules for other phenomena

4.4.1 Multiple auxiliaries in English
Some English tenses require a sequence of aux-
iliaries, not all of which have a German coun-
terpart. In the reordering process, non-finite
auxiliaries are considered to be a part of the
main verb complex and are moved together with
the main verb (cf. movement of hasfinV [been
developing]mainV in input 2).

4.4.2 Simple vs. composed tenses
In English, there are some tenses composed of
an auxiliary and a main verb which correspond
to a German tense composed of only one verb,
e.g., am reading⇔ lese and does John read? ⇔
liest John? Splitting such English verbal com-
plexes and only moving the main verbs would
lead to constructions which do not exist in Ger-
man. Therefore, in the reordering process, the
English verbal complex in present continuous, as
well as interrogative phrases composed of do and
a main verb, are not split. They are handled as
one main verb complex and reordered as a sin-
gle unit using the rules for main verbs (e.g. [be-
cause I am reading a book]SUB ⇒ because I a
book am reading⇔ weil ich ein Buch lese.2

2We only consider present continuous and verbs in com-
bination with do for this kind of reordering. There are also

4.4.3 Flexible position of German verbs
We stated that the English verbs are never moved
outside the subclause they were originally in. In
German there are, however, some constructions
(infinitival and relative clauses), in which the
main verb can be placed after a subsequent clause.
Consider two German translations of the English
sentence He has promised to come:

(3a) Er
he

hat
has

[zu
to

kommen]S
come

versprochen.
promised.

(3b) Er
he

hat
has

versprochen,
promised,

[zu
to

kommen]S .
come.

In (3a), the German main verb versprochen is
placed after the infinitival clause zu kommen (to
come), while in (3b), the same verb is placed in
front of it. Both alternatives are grammatically
correct.

If a German verb should come after an em-
bedded clause as in example (3a) or precede it
(cf. example (3b)), depends not only on syntac-
tic but also on stylistic factors. Regarding the
verb reordering problem, we would therefore have
to examine the given sentence in order to derive
the correct (or more probable) new verb position
which is beyond the scope of this work. There-
fore, we allow only for reorderings which do not
cross clause boundaries as shown in example (3b).

5 Experiments

In order to evaluate the translation of the re-
ordered English sentences, we built two SMT sys-
tems with Moses (Koehn et al., 2007). As train-
ing data, we used the Europarl corpus which con-
sists of 1,204,062 English/German sentence pairs.
The baseline system was trained on the original
English training data while the contrastive system
was trained on the reordered English training data.
In both systems, the same original German sen-
tences were used. We used WMT 2009 dev and
test sets to tune and test the systems. The baseline
system was tuned and tested on the original data
while for the contrastive system, we used the re-
ordered English side of the dev and test sets. The
German 5-gram language model used in both sys-
tems was trained on the WMT 2009 German lan-
guage modeling data, a large German newspaper
corpus consisting of 10,193,376 sentences.

other tenses which could (or should) be treated in the same
way (cf. has been developing on input 2, table 2). We do not
do this to keep the reordering rules simple and general.

730



Input 1 The programme appears to be successful for published data shows that MRSA is on the decline in the UK.
Reordered The programme appears successful to be for published data shows that MRSA on the decline in the UK is.
Input 2 The real estate market in Bulgaria has been developing at an unbelievable rate - all of Europe has its eyes

on this heretofore rarely heard-of Balkan nation.
Reordered The real estate market in Bulgaria has at an unbelievable rate been developing - all of Europe has its eyes

on this heretofore rarely heard-of Balkan nation.
Input 3 While Bulgaria boasts the European Union’s lowest real estate prices, they have still gone up by 21 percent

in the past five years.
Reordered While Bulgaria the European Union’s lowest real estate prices boasts, have they still by 21 percent in the

past five years gone up.
Input 4 Professionals and politicians from 192 countries are slated to discuss the Bali Roadmap that focuses on

efforts to cut greenhouse gas emissions after 2012, when the Kyoto Protocol expires.
Reordered Professionals and politicians from 192 countries are slated the Bali Roadmap to discuss that on efforts

focuses greenhouse gas emissions after 2012 to cut, when the Kyoto Protocol expires.
Input 5 Did you know that in that same country, since 1976, 34 mentally-retarded offenders have been executed?
Reordered Did you know that in that same country, since 1976, 34 mentally-retarded offenders been executed have?

Table 2: Examples of reordered English sentences

5.1 Applied rules

In order to see how many English clauses are rel-
evant for reordering, we derived statistics about
clause types and the number of reordering rules
applied on the training data.

In table 3, the number of the English clauses
with all considered clause type/tense combination
are shown. The bold numbers indicate combina-
tions which are relevant to the reordering. Over-
all, 62% of all EN clauses from our training data
(2,706,117 clauses) are relevant for the verb re-
ordering. Note that there is an additional category
rest which indicates incorrect clause type/tense
combinations and might thus not be correctly re-
ordered. These are mostly due to parsing and/or
tagging errors.

The performance of the systems was measured
by BLEU (Papineni et al., 2002). The evaluation
results are shown in table 4. The contrastive sys-
tem outperforms the baseline. Its BLEU score is
13.63 which is a gain of 0.61 BLEU points over
the baseline. This is a statistically significant im-
provement at p<0.05 (computed with Gimpel’s
implementation of the pairwise bootstrap resam-
pling method (Koehn, 2004)).

Manual examination of the translations pro-
duced by both systems confirms the result of
the automatic evaluation. Many translations pro-
duced by the contrastive system now have verbs in
the correct positions. If we compare the generated
translations for input sentence 1 in table 5, we
see that the contrastive system generates a trans-

tense MAIN EXTR SUB INT XCOMP
simple 675,095 170,806 449,631 8,739 -
composed 343,178 116,729 277,733 8,817 314,573
rest 98,464 5,158 90,139 306 146,746

Table 3: Counts of English clause types and used
tenses. Bold numbers indicate clause type/tense com-
binations where reordering is required.

Baseline Reordered
BLEU 13.02 13.63

Table 4: Scores of baseline and contrastive systems

lation in which all verbs are placed correctly. In
the baseline translation, only the translation of the
finite verb was, namely war, is placed correctly,
while the translation of the main verb (diagnosed
→ festgestellt) should be placed at the clause end
as in the translation produced by our system.

5.2 Evaluation
Often, the English verbal complex is translated
only partially by the baseline system. For exam-
ple, the English verbal complexes in sentence 2 in
table 5 will climb and will drop are only partially
translated (will climb→ wird (will), will drop→
fallen (fall)). Moreover, the generated verbs are
placed incorrectly. In our translation, all verbs are
translated and placed correctly.

Another problem which was often observed in
the baseline is the omission of the verbs in the
German translations. The baseline translation of
the example sentence 3 in table 5 illustrates such
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a case. There is no translation of the English in-
finitival verbal complex to have. In the transla-
tion generated by the contrastive system, the ver-
bal complex does get translated (zu haben) and
is also placed correctly. We think this is because
the reordering model is not able to identify the
position for the verb which is licensed by the lan-
guage model, causing a hypothesis with no verb
to be scored higher than the hypotheses with in-
correctly placed verbs.

6 Error analysis

6.1 Erroneous reordering in our system

In some cases, the reordering of the English parse
trees fails. Most erroneous reorderings are due to
a number of different parsing and tagging errors.

Coordinated verbs are also problematic due to
their complexity. Their composition can vary, and
thus it would require a large number of different
reordering rules to fully capture this. In our re-
ordering script, the movement of complex struc-
tures such as verbal phrases consisting of a se-
quence of child nodes is not implemented (only
nodes with one child, namely the verb, verbal par-
ticle or negative particle are moved).

6.2 Splitting of the English verbal complex

Since in many cases, the German verbal complex
is discontiguous, we need to split the English ver-
bal complex and move its parts into different posi-
tions. This ensures the correct placement of Ger-
man verbs. However, this does not ensure that the
German verb forms are correct because of highly
ambiguous English verbs. In some cases, we can
lose contextual information which would be use-
ful for disambiguating ambiguous verbs and gen-
erating the appropriate German verb forms.

6.2.1 Subject–verb agreement
Let us consider the English clause in (4a) and its
reordered version in (4b):
(4a) ... because they have said it to me yesterday.
(4b) ... because they it to me yesterday said have.
In (4b), the English verbs said have are separated
from the subject they. The English said have can
be translated in several ways into German. With-
out any information about the subject (the dis-
tance between the verbs and the subject can be
very large), it is relatively likely that an erroneous
German translation is generated.

On the other hand, in the baseline SMT system,
the subject they is likely to be a part of a trans-
lation phrase with the correct German equivalent
(they have said→ sie haben gesagt). They is then
used as a disambiguating context which is missing
in the reordered sentence (but the order is wrong).

6.2.2 Verb dependency
A similar problem occurs in a verbal complex:
(5a) They have said it to me yesterday.
(5b) They have it to me yesterday said.

In sentence (5a), the English consecutive verbs
have said are a sequence consisting of a finite
auxiliary have and the past participle said. They
should be translated into the corresponding Ger-
man verbal complex haben gesagt. But, if the
verbs are split, we will probably get translations
which are completely independent. Even if the
German auxiliary is correctly inflected, it is hard
to predict how said is going to be translated. If
the distance between the auxiliary habe and the
hypothesized translation of said is large, the lan-
guage model will not be able to help select the
correct translation. Here, the baseline SMT sys-
tem again has an advantage as the verbs are con-
secutive. It is likely they will be found in the train-
ing data and extracted with the correct German
phrase (but the German order is again incorrect).

6.3 Collocations

Collocations (verb–object pairs) are another case
which can lead to a problem:
(6a) I think that the discussion would take place
later this evening.
(6b) I think that the discussion place later this
evening take would.
The English collocation in (6a) consisting of the
verb take and the object place corresponds to the
German verb stattfinden. Without this specific ob-
ject, the verb take is likely to be translated liter-
ally. In the reordered sentence, the verbal com-
plex take would is indeed separated from the ob-
ject place which would probably lead to the literal
translation of both parts of the mentioned collo-
cation. So, as already described in the preceding
paragraphs, an important source of contextual in-
formation is lost which could ensure the correct
translation of the given phrase.

This problem is not specific to English–to–
German. For instance, the same problem occurs
when translating German into English. If, for ex-
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Input 1 An MRSA - an antibiotic resistant staphylococcus - infection was recently diagnosed in the trauma-
tology ward of János hospital.

Reordered
input

An MRSA - an antibiotic resistant staphylococcus - infection was recently in the traumatology ward
of János hospital diagnosed.

Baseline
translation

Ein
A

MRSA
MRSA

-
-

ein
an

Antibiotikum
antibiotic

resistenter
resistant

Staphylococcus
Staphylococcus

-
-

war
was

vor
before

kurzem
recent

in
in

der
the

festgestellt
diagnosed

traumatology
traumatology

Ward
ward

von
of

János
János

Krankenhaus.
hospital.

Reordered
translation

Ein
A

MRSA
MRSA

-
-

ein
an

Antibiotikum
antibiotic

resistenter
resistant

Staphylococcus
Staphylococcus

-
-

Infektion
infection

wurde
was

vor
before

kurzem
recent

in
in

den
the

traumatology
traumatology

Station
ward

der
of

János
János

Krankenhaus
hospital

diagnostiziert.
diagnosed.

Input 2 The ECB predicts that 2008 inflation will climb to 2.5 percent from the earlier 2.1, but will drop
back to 1.9 percent in 2009.

Reordered
input

The ECB predicts that 2008 inflation to 2.5 percent from the earlier 2.1 will climb, but back to 1.9
percent in 2009 will drop.

Baseline
translation

Die
The

EZB
ECB

sagt,
says,

dass
that

2008
2008

die
the

Inflationsrate
inflation rate

wird
will

auf
to

2,5
2.5

Prozent
percent

aus
from

der
the

früheren
earlier

2,1,
2.1,

sondern
but

fallen
fall

zurück
back

auf
to

1,9
1.9

Prozent
percent

im
in the

Jahr
year

2009.
2009.

Reordered
translation

Die
The

EZB
ECB

prophezeit,
predicts,

dass
that

2008
2008

die
the

Inflation
inflation rate

zu
to

2,5
2.5

Prozent
percent

aus
from

der
the

früheren
earlier

2,1
2.1

ansteigen
climb

wird,
will,

aber
but

auf
to

1,9
1.9

Prozent
percent

in
in

2009
2009

sinken
fall

wird.
will.

Input 3 Labour Minister Mónika Lamperth appears not to have a sensitive side.
R. input Labour Minister Mónika Lamperth appears a sensitive side not to have .
Baseline
translation

Arbeitsminister
Labour Minister

Mónika
Mónika

Lamperth
Lamperth

scheint
appears

nicht
not

eine
a

sensible
sensitive

Seite.
side.

Reordered
translation

Arbeitsminister
Labour Minister

Mónika
Mónika

Lamperth
Lamperth

scheint
appears

eine
a

sensible
sensitive

Seite
side

nicht
not

zu
to

haben.
have.

Table 5: Example translations, the baseline has problems with verbal elements, reordered is correct

ample, the object Kauf (buying) of the colloca-
tion nehmen + in Kauf (accept) is separated from
the verb nehmen (take), they are very likely to be
translated literally (rather than as the idiom mean-
ing “to accept”), thus leading to an erroneous En-
glish translation.

6.4 Error statistics

We manually checked 100 randomly chosen En-
glish sentences to see how often the problems de-
scribed in the previous sections occur. From a
total of 276 clauses, 29 were not reordered cor-
rectly. 20 errors were caused by incorrect parsing
and/or POS tags, while the remaining 9 are mostly
due to different kinds of coordination. Table 6
shows correctly reordered clauses which might

pose a problem for translation (see sections 6.2–
6.3). Although the positions of the verbs in the
translations are now correct, the distance between
subjects and verbs, or between verbs in a single
VP might lead to the generation of erroneously
inflected verbs. The separate generation of Ger-
man verbal morphology is an interesting area of
future work, see (de Gispert and Mariño, 2008).
We also found 2 problematic collocations but note
that this only gives a rough idea of the problem,
further study is needed.

6.5 POS-based disambiguation of the
English verbs

With respect to the problems described in 6.2.1
and 6.2.2, we carried out an experiment in which
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total d ≥ 5 tokens
subject–verb 40 19
verb dependency 32 14
collocations 8 2

Table 6: total is the number of clauses found for the
respective phenomenon. d≥ 5 tokens is the number of
clauses where the distance between relevant tokens is
at least 5, which is problematic.

Baseline + POS Reordered + POS
BLEU 13.11 13.68

Table 7: BLEU scores of the baseline and the con-
trastive SMT system using verbal POS tags

we used POS tags in order to disambiguate the
English verbs. For example, the English verb said
corresponds to the German participle gesagt, as
well as to the finite verb in simple past, e.g. sagte.
We attached the POS tags to the English verbs in
order to simulate a disambiguating suffix of a verb
(e.g. said⇒ said VBN, said VBD). The idea be-
hind this was to extract the correct verbal trans-
lation phrases and score them with appropriate
translation probabilities (e.g. p(said VBN, gesagt)
> p(said VBN, sagte).

We built and tested two PSMT systems using
the data enriched with verbal POS tags. The
first system is trained and tested on the original
English sentences, while the contrastive one was
trained and tested on the reordered English sen-
tences. Evaluation results are shown in table 7.

The baseline obtains a gain of 0.09 and the con-
trastive system of 0.05 BLEU points over the cor-
responding PSMT system without POS tags. Al-
though there are verbs which are now generated
correctly, the overall translation improvement lies
under our expectation. We will directly model the
inflection of German verbs in future work.

7 Discussion and future work

We implemented reordering rules for English ver-
bal complexes because their placement differs
significantly from German placement. The imple-
mentation required dealing with three important
problems: (i) definition of the clause boundaries,
(ii) identification of the new verb positions and
(iii) correct splitting of the verbal complexes.

We showed some phenomena for which a
stochastic reordering would be more appropriate.
For example, since in German, the auxiliary and

the main verb of a verbal complex can occupy
different positions in a clause, we had to define
the English counterparts of the two components
of the German verbal complex. We defined non-
finite English verbal elements as a part of the main
verb complex which are then moved together with
the main verb. This rigid definition could be re-
laxed by considering multiple different splittings
and movements of the English verbs.

Furthermore, the reordering rules are applied
on a clause not allowing for movements across the
clause boundaries. However, we also showed that
in some cases, the main verbs may be moved after
the succeeding subclause. Stochastic rules could
allow for both placements or carry out the more
probable reordering given a specific context. We
will address these issues in future work.

Unfortunately, some important contextual in-
formation is lost when splitting and moving En-
glish verbs. When English verbs are highly am-
biguous, erroneous German verbs can be gener-
ated. The experiment described in section 6.5
shows that more effort should be made in order to
overcome this problem. The incorporation of sep-
arate morphological generation of inflected Ger-
man verbs would improve translation.

8 Conclusion

We presented a method for reordering English as a
preprocessing step for English–to–German SMT.
To our knowledge, this is one of the first papers
which reports on experiments regarding the re-
ordering problem for English–to–German SMT.
We showed that the reordering rules specified in
this work lead to improved translation quality. We
observed that verbs are placed correctly more of-
ten than in the baseline, and that verbs which were
omitted in the baseline are now often generated.
We carried out a thorough analysis of the rules
applied and discussed problems which are related
to highly ambiguous English verbs. Finally we
presented ideas for future work.
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Abstract

A fundamental problem in text generation
is word ordering. Word ordering is a com-
putationally difficult problem, which can
be constrained to some extent for particu-
lar applications, for example by using syn-
chronous grammars for statistical machine
translation. There have been some recent
attempts at the unconstrained problem of
generating a sentence from a multi-set of
input words (Wan et al., 2009; Zhang and
Clark, 2011). By using CCG and learn-
ing guided search, Zhang and Clark re-
ported the highest scores on this task. One
limitation of their system is the absence
of an N-gram language model, which has
been used by text generation systems to
improve fluency. We take the Zhang and
Clark system as the baseline, and incor-
porate an N-gram model by applying on-
line large-margin training. Our system sig-
nificantly improved on the baseline by 3.7
BLEU points.

1 Introduction

One fundamental problem in text generation is
word ordering, which can be abstractly formu-
lated as finding a grammatical order for a multi-
set of words. The word ordering problem can also
include word choice, where only a subset of the
input words are used to produce the output.

Word ordering is a difficult problem. Finding
the best permutation for a set of words accord-
ing to a bigram language model, for example, is
NP-hard, which can be proved by linear reduction
from the traveling salesman problem. In prac-
tice, exploring the whole search space of permu-
tations is often prevented by adding constraints.

In phrase-based machine translation (Koehn et al.,
2003; Koehn et al., 2007), a distortion limit is
used to constrain the position of output phrases.
In syntax-based machine translation systems such
as Wu (1997) and Chiang (2007), synchronous
grammars limit the search space so that poly-
nomial time inference is feasible. In fluency
improvement (Blackwood et al., 2010), parts of
translation hypotheses identified as having high
local confidence are held fixed, so that word or-
dering elsewhere is strictly local.

Some recent work attempts to address the fun-
damental word ordering task directly, using syn-
tactic models and heuristic search. Wan et al.
(2009) uses a dependency grammar to solve word
ordering, and Zhang and Clark (2011) usesCCG

(Steedman, 2000) for word ordering and word
choice. The use of syntax models makes their
search problems harder than word permutation us-
ing anN -gram language model only. Both meth-
ods apply heuristic search. Zhang and Clark de-
veloped a bottom-up best-first algorithm to build
output syntax trees from input words, where
search is guided by learning for both efficiency
and accuracy. The framework is flexible in allow-
ing a large range of constraints to be added for
particular tasks.

We extend the work of Zhang and Clark (2011)
(Z&C) in two ways. First, we apply online large-
margin training to guide search. Compared to the
perceptron algorithm on “constituent level fea-
tures” by Z&C, our training algorithm is theo-
retically more elegant (see Section 3) and con-
verges more smoothly empirically (see Section 5).
Using online large-margin training not only im-
proves the output quality, but also allows the in-
corporation of anN -gram language-model into
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the system.N -gram models have been used as a
standard component in statistical machine trans-
lation, but have not been applied to the syntac-
tic model of Z&C. Intuitively, anN -gram model
can improve local fluency when added to a syntax
model. Our experiments show that a four-gram
model trained using the English GigaWord cor-
pus gave improvements when added to the syntax-
based baseline system.

The contributions of this paper are as follows.
First, we improve on the performance of the Z&C
system for the challenging task of the general
word ordering problem. Second, we develop a
novel method for incorporating a large-scale lan-
guage model into a syntax-based generation sys-
tem. Finally, we analyse large-margin training in
the context of learning-guided best-first search,
offering a novel solution to this computationally
hard problem.

2 The statistical model and decoding
algorithm

We take Z&C as our baseline system. Given
a multi-set of input words, the baseline system
builds aCCG derivation by choosing and ordering
words from the input set. The scoring model is
trained using CCGBank (Hockenmaier and Steed-
man, 2007), and best-first decoding is applied. We
apply the same decoding framework in this paper,
but apply an improved training process, and incor-
porate anN -gram language model into the syntax
model. In this section, we describe and discuss
the baseline statistical model and decoding frame-
work, motivating our extensions.

2.1 Combinatory Categorial Grammar

CCG, and parsing withCCG, has been described
elsewhere (Clark and Curran, 2007; Hockenmaier
and Steedman, 2002); here we provide only a
short description.

CCG (Steedman, 2000) is a lexicalized gram-
mar formalism, which associates each word in a
sentence with a lexical category. There is a small
number of basic lexical categories, such as noun
(N), noun phrase (NP), and prepositional phrase
(PP). Complex lexical categories are formed re-
cursively from basic categories and slashes, which
indicate the directions of arguments. TheCCG

grammar used by our system is read off the deriva-
tions in CCGbank, following Hockenmaier and

Steedman (2002), meaning that theCCGcombina-
tory rules are encoded as rule instances, together
with a number of additional rules which deal with
punctuation and type-changing. Given a sentence,
its CCGderivation can be produced by first assign-
ing a lexical category to each word, and then re-
cursively applyingCCG rules bottom-up.

2.2 The decoding algorithm

In the decoding algorithm, a hypothesis is an
edge, which corresponds to a sub-tree in aCCG

derivation. Edges are built bottom-up, starting
from leaf edges, which are generated by assigning
all possible lexical categories to each input word.
Each leaf edge corresponds to an input word with
a particular lexical category. Two existing edges
can be combined if there exists aCCG rule which
combines their category labels, and if they do not
contain the same input word more times than its
total count in the input. The resulting edge is as-
signed a category label according to the combi-
natory rule, and covers the concatenated surface
strings of the two sub-edges in their order or com-
bination. New edges can also be generated by ap-
plying unary rules to a single existing edge. Start-
ing from the leaf edges, the bottom-up process is
repeated until a goal edge is found, and its surface
string is taken as the output.

This derivation-building process is reminiscent
of a bottom-upCCG parser in the edge combina-
tion mechanism. However, it is fundamentally
different from a bottom-up parser. Since, for
the generation problem, the order of two edges
in their combination is flexible, the search prob-
lem is much harder than that of a parser. With
no input order specified, no efficient dynamic-
programming algorithm is available, and less con-
textual information is available for disambigua-
tion due to the lack of an input string.

In order to combat the large search space, best-
first search is applied, where candidate hypothe-
ses are ordered by their scores, and kept in an
agenda, and a limited number of accepted hy-
potheses are recorded in a chart. Here the chart
is essentially a set of beams, each of which con-
tains the highest scored edges covering a particu-
lar number of words. Initially, all leaf edges are
generated and scored, before they are put onto the
agenda. During each step in the decoding process,
the top edge from the agenda is expanded. If it is
a goal edge, it is returned as the output, and the
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Algorithm 1 The decoding algorithm.
a← INITAGENDA( )
c← INITCHART( )
while not TIMEOUT( ) do

new← []
e← POPBEST(a)
if GOALTEST(e) then

return e

end if
for e′ ∈ UNARY(e, grammar) do

APPEND(new, e)
end for
for ẽ ∈ c do

if CANCOMBINE(e, ẽ) then
e′← BINARY (e, ẽ, grammar)
APPEND(new, e′)

end if
if CANCOMBINE(ẽ, e) then

e′← BINARY (ẽ, e, grammar)
APPEND(new, e′)

end if
end for
for e′ ∈ new do

ADD(a, e′)
end for
ADD(c, e)

end while

decoding finishes. Otherwise it is extended with
unary rules, and combined with existing edges in
the chart using binary rules to produce new edges.
The resulting edges are scored and put onto the
agenda, while the original edge is put onto the
chart. The process repeats until a goal edge is
found, or a timeout limit is reached. In the latter
case, a default output is produced using existing
edges in the chart.

Pseudocode for the decoder is shown as Algo-
rithm 1. Again it is reminiscent of a best-first
parser (Caraballo and Charniak, 1998) in the use
of an agenda and a chart, but is fundamentally dif-
ferent due to the fact that there is no input order.

2.3 Statistical model and feature templates

The baseline system uses a linear model to score
hypotheses. For an edgee, its score is defined as:

f(e) = Φ(e) · θ,

whereΦ(e) represents the feature vector ofe and
θ is the parameter vector of the model.

During decoding, feature vectors are computed
incrementally. When an edge is constructed, its
score is computed from the scores of its sub-edges
and the incrementally added structure:

f(e) = Φ(e) · θ

=
(

(

∑

es∈e

Φ(es)
)

+ φ(e)
)

· θ

=
(

∑

es∈e

Φ(es) · θ
)

+ φ(e) · θ

=
(

∑

es∈e

f(es)
)

+ φ(e) · θ

In the equation,es ∈ e represents a sub-edge of
e. Leaf edges do not have any sub-edges. Unary-
branching edges have one sub-edge, and binary-
branching edges have two sub-edges. The fea-
ture vectorφ(e) represents the incremental struc-
ture whene is constructed over its sub-edges.
It is called the “constituent-level feature vector”
by Z&C. For leaf edges,φ(e) includes informa-
tion about the lexical category label; for unary-
branching edges,φ(e) includes information from
the unary rule; for binary-branching edges,φ(e)
includes information from the binary rule, and ad-
ditionally the token,POSand lexical category bi-
grams and trigrams that result from the surface
string concatenation of its sub-edges. The score
f(e) is therefore the sum off(es) (for all es ∈ e)
plusφ(e) ·θ. The feature templates we use are the
same as those in the baseline system.

An important aspect of the scoring model is that
edges with different sizes are compared with each
other during decoding. Edges with different sizes
can have different numbers of features, which can
make the training of a discriminative model more
difficult. For example, a leaf edge with one word
can be compared with an edge over the entire in-
put. One way of reducing the effect of the size dif-
ference is to include the size of the edge as part of
feature definitions, which can improve the compa-
rability of edges of different sizes by reducing the
number of features they have in common. Such
features are applied by Z&C, and we make use of
them here. Even with such features, the question
of whether edges with different sizes are linearly
separable is an empirical one.

3 Training

The efficiency of the decoding algorithm is de-
pendent on the statistical model, since the best-
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first search isguidedto a solution by the model,
and a good model will lead to a solution being
found more quickly. In the ideal situation for the
best-first decoding algorithm, the model is perfect
and the score of any gold-standard edge is higher
than the score of any non-gold-standard edge. As
a result, the top edge on the agenda is always a
gold-standard edge, and therefore all edges on the
chart are gold-standard before the gold-standard
goal edge is found. In this oracle procedure, the
minimum number of edges is expanded, and the
output is correct. The best-first decoder is perfect
in not only accuracy, but also speed. In practice
this ideal situation is rarely met, but it determines
the goal of the training algorithm: to produce the
perfect model and hence decoder.

If we take gold-standard edges as positive ex-
amples, and non-gold-standard edges as negative
examples, the goal of the training problem can be
viewed as finding a large separating margin be-
tween the scores of positive and negative exam-
ples. However, it is infeasible to generate the full
space of negative examples, which is factorial in
the size of input. Like Z&C, we apply online
learning, and generate negative examples based
on the decoding algorithm.

Our training algorithm is shown as Algo-
rithm 2. The algorithm is based on the decoder,
where an agenda is used as a priority queue of
edges to be expanded, and a set of accepted edges
is kept in a chart. Similar to the decoding algo-
rithm, the agenda is intialized using all possible
leaf edges. During each step, the top of the agenda
e is popped. If it is a gold-standard edge, it is ex-
panded in exactly the same way as the decoder,
with the newly generated edges being put onto
the agenda, ande being inserted into the chart.
If e is not a gold-standard edge, we take it as a
negative examplee−, and take the lowest scored
gold-standard edge on the agendae+ as a positive
example, in order to make an udpate to the model
parameter vectorθ. Our parameter update algo-
rithm is different from the baseline perceptron al-
gorithm, as will be discussed later. After updating
the parameters, the scores of agenda edges above
and includinge−, together with all chart edges,
are updated, ande− is discarded before the start
of the next processing step. By not putting any
non-gold-standard edges onto the chart, the train-
ing speed is much faster; on the other hand a wide
range of negative examples is pruned. We leave

Algorithm 2 The training algorithm.
a← INITAGENDA( )
c← INITCHART( )
while not TIMEOUT( ) do

new← []
e← POPBEST(a)
if GOLDSTANDARD(e) and GOALTEST(e)

then return e

end if
if not GOLDSTANDARD(e) then

e−← e

e+← M INGOLD(a)
UPDATEPARAMETERS(e+ , e−)
RECOMPUTESCORES(a, c)
continue

end if
for e′ ∈ UNARY(e, grammar) do

APPEND(new, e)
end for
for ẽ ∈ c do

if CANCOMBINE(e, ẽ) then
e′← BINARY (e, ẽ, grammar)
APPEND(new, e′)

end if
if CANCOMBINE(ẽ, e) then

e′← BINARY (ẽ, e, grammar)
APPEND(new, e′)

end if
end for
for e′ ∈ new do

ADD(a, e′)
end for
ADD(c, e)

end while

for further work possible alternative methods to
generate more negative examples during training.

Another way of viewing the training process is
that it pushes gold-standard edges towards the top
of the agenda, and crucially pushes them above
non-gold-standard edges. This is the view de-
scribed by Z&C. Given a positive examplee+ and
a negative examplee−, they use the perceptron
algorithm to penalize the score forφ(e−) and re-
ward the score ofφ(e+), but do not update pa-
rameters for the sub-edges ofe+ ande−. An argu-
ment for not penalizing the sub-edge scores fore−
is that the sub-edges must be gold-standard edges
(since the training process is constructed so that
only gold-standard edges are expanded). From
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the perspective of correctness, it is unnecessary
to find a margin between the sub-edges ofe+ and
those ofe−, since both are gold-standard edges.

However, since the score of an edge not only
represents its correctness, but also affects its pri-
ority on the agenda, promoting the sub-edge of
e+ can lead to “easier” edges being constructed
before “harder” ones (i.e. those that are less
likely to be correct), and therefore improve the
output accuracy. This perspective has been ob-
served by other works of learning-guided-search
(Shen et al., 2007; Shen and Joshi, 2008; Gold-
berg and Elhadad, 2010). Intuitively, the score
difference between easy gold-standard and harder
gold-standard edges should not be as great as the
difference between gold-standard and non-gold-
standard edges. The perceptron update cannot
provide such control of separation, because the
amount of update is fixed to 1.

As described earlier, we treat parameter update
as finding a separation between correct and incor-
rect edges, in which the global feature vectorsΦ,
rather thanφ, are considered. Given a positive ex-
amplee+ and a negative examplee−, we make a
minimum update so that the score ofe+ is higher
than that ofe− with some margin:

θ ← arg min
θ′

‖ θ′−θ0 ‖, s.t.Φ(e+)θ′−Φ(e−)θ′ ≥ 1

whereθ0 andθ denote the parameter vectors be-
fore and after the udpate, respectively. The up-
date is similar to the update of online large-margin
learning algorithms such as 1-bestMIRA (Cram-
mer et al., 2006), and has a closed-form solution:

θ ← θ0 +
f(e−)− f(e+) + 1

‖ Φ(e+)− Φ(e−) ‖2
(

Φ(e+)−Φ(e−)
)

In this update, the global feature vectorsΦ(e+)
and Φ(e−) are used. Unlike Z&C, the scores
of sub-edges ofe+ and e− are also udpated, so
that the sub-edges ofe− are less prioritized than
those ofe+. We show empirically that this train-
ing algorithm significantly outperforms the per-
ceptron training of the baseline system in Sec-
tion 5. An advantage of our new training algo-
rithm is that it enables the accommodation of a
separately trainedN -gram model into the system.

4 Incorporating an N-gram language
model

Since the seminal work of the IBM models
(Brown et al., 1993),N -gram language models

have been used as a standard component in statis-
tical machine translation systems to control out-
put fluency. For the syntax-based generation sys-
tem, the incorporation of anN -gram language
model can potentially improve the local fluency
of output sequences. In addition, theN -gram
language model can be trained separately using
a large amount of data, while the syntax-based
model requires manual annotation for training.

The standard method for the combination of
a syntax model and anN -gram model is linear
interpolation. We incorporate fourgram, trigram
and bigram scores into our syntax model, so that
the score of an edgee becomes:

F (e) = f(e) + g(e)

= f(e) + α · gfour(e) + β · gtri (e) + γ · gbi(e),

wheref is the syntax model score, andg is the
N -gram model score.g consists of three com-
ponents,gfour, gtri and gbi, representing the log-
probabilities of fourgrams, trigrams and bigrams
from the language model, respectively.α, β and
γ are the corresponding weights.

During decoding,F (e) is computed incremen-
tally. Again, denoting the sub-edges ofe ases,

F (e) = f(e) + g(e)

=
(

∑

es∈e

F (es)
)

+ φ(e)θ + gδ(e)

Heregδ(e) = α ·gδfour(e)+β ·gδtri (e)+γ ·gδbi(e)
is the sum of log-probabilities of the newN -
grams resulting from the construction ofe. For
leaf edges and unary-branching edges, no newN -
grams result from their construction (i.e.gδ = 0).
For a binary-branching edge, newN -grams result
from the surface-string concatenation of its sub-
edges. The sum of log-probabilities of the new
fourgrams, trigrams and bigrams contribute togδ

with weightsα, β andγ, respectively.
For training, there are at least three methods to

tuneα, β, γ andθ. One simple method is to train
the syntax modelθ independently, and selectα,
β, andγ empirically from a range of candidate
values according to development tests. We call
this method test-time interpolation. An alterna-
tive is to selectα, β and γ first, initializing the
vector θ as all zeroes, and then run the training
algorithm for θ taking into account theN -gram
language model. In this process,g is considered
when finding a separation between positive and

740



negative examples; the training algorithm finds a
value of θ that best suits the precomputedα, β

andγ values, together with theN -gram language
model. We call this methodg-precomputed in-
terpolation. Yet another method is to initializeα,
β, γ andθ as all zeroes, and run the training al-
gorithm taking into account theN -gram language
model. We call this methodg-free interpolation.

The incorporation of anN -gram language
model into the syntax-based generation system is
weakly analogous toN -gram model insertion for
syntax-based statistical machine translation sys-
tems, both of which apply a score from theN -
gram model component in a derivation-building
process. As discussed earlier, polynomial-time
decoding is typically feasible for syntax-based
machine translation systems without anN -gram
language model, due to constraints from the
grammar. In these cases, incorporation ofN -
gram language models can significantly increase
the complexity of a dynamic-programming de-
coder (Bar-Hillel et al., 1961). Efficient search
has been achieved using chart pruning (Chiang,
2007) and iterative numerical approaches to con-
strained optimization (Rush and Collins, 2011).
In contrast, the incorporation of anN -gram lan-
guage model into our decoder is more straightfor-
ward, and does not add to its asymptotic complex-
ity, due to the heuristic nature of the decoder.

5 Experiments

We use sections 2–21 of CCGBank to train our
syntax model, section 00 for development and
section 23 for the final test. Derivations from
CCGBank are transformed into inputs by turn-
ing their surface strings into multi-sets of words.
Following Z&C, we treat base noun phrases (i.e.
NPs that do not recursively contain otherNPs) as
atomic units for the input. Output sequences are
compared with the original sentences to evaluate
their quality. We follow previous work and use
the BLEU metric (Papineni et al., 2002) to com-
pare outputs with references.

Z&C use two methods to construct leaf edges.
The first is to assign lexical categories according
to a dictionary. There are 26.8 lexical categories
for each word on average using this method, cor-
responding to 26.8 leaf edges. The other method
is to use a pre-processing step — aCCG supertag-
ger (Clark and Curran, 2007) — to prune can-
didate lexical categories according to the gold-

CCGBank Sentences Tokens
training 39,604 929,552
development 1,913 45,422

GigaWord v4 Sentences Tokens
AFP 30,363,052 684,910,697
XIN 15,982,098 340,666,976

Table 1: Number of sentences and tokens by language
model source.

standard sequence, assuming that for some prob-
lems the ambiguities can be reduced (e.g. when
the input is already partly correctly ordered).
Z&C use different probability cutoff levels (the
β parameter in the supertagger) to control the
pruning. Here we focus mainly on the dictionary
method, which leaves lexical category disam-
biguation entirely to the generation system. For
comparison, we also perform experiments with
lexical category pruning. We choseβ = 0.0001,
which leaves 5.4 leaf edges per word on average.

We used the SRILM Toolkit (Stolcke, 2002)
to build a true-case 4-gram language model es-
timated over the CCGBank training and develop-
ment data and a large additional collection of flu-
ent sentences in the Agence France-Presse (AFP)
and Xinhua News Agency (XIN) subsets of the
English GigaWord Fourth Edition (Parker et al.,
2009), a total of over 1 billion tokens. The Gi-
gaWord data was first pre-processed to replicate
the CCGBank tokenization. The total number
of sentences and tokens in each LM component
is shown in Table 1. The language model vo-
cabulary consists of the 46,574 words that oc-
cur in the concatenation of the CCGBank train-
ing, development, and test sets. The LM proba-
bilities are estimated using modified Kneser-Ney
smoothing (Kneser and Ney, 1995) with interpo-
lation of lower n-gram orders.

5.1 Development experiments

A set of development test results without lexical
category pruning (i.e. using the full dictionary) is
shown in Table 2. We train the baseline system
and our systems under various settings for 10 iter-
ations, and measure the output BLEU scores after
each iteration. The timeout value for each sen-
tence is set to 5 seconds. The highest score (max
BLEU) and averaged score (avg. BLEU) of each
system over the 10 training iterations are shown
in the table.
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Method max BLEU avg. BLEU

baseline 38.47 37.36
margin 41.20 39.70
margin +LM (g-precomputed) 41.50 40.84

margin +LM (α = 0, β = 0, γ = 0) 40.83 —
margin +LM (α = 0.08, β = 0.016, γ = 0.004) 38.99 —
margin +LM (α = 0.4, β = 0.08, γ = 0.02) 36.17 —
margin +LM (α = 0.8, β = 0.16, γ = 0.04) 34.74 —

Table 2: Development experiments without lexical categorypruning.

The first three rows represent the baseline sys-
tem, our largin-margin training system (margin),
and our system with theN -gram model incorpo-
rated usingg-precomputed interpolation. For in-
terpolation we manually choseα = 0.8, β = 0.16
andγ = 0.04, respectively. These values could
be optimized by development experiments with
alternative configurations, which may lead to fur-
ther improvements. Our system with large-margin
training gives higher BLEU scores than the base-
line system consistently over all iterations. The
N -gram model led to further improvements.

The last four rows in the table show results
of our system with theN -gram model added us-
ing test-time interpolation. The syntax model is
trained with the optimal number of iterations, and
different α, β, andγ values are used to integrate
the language model. Compared with the system
using noN -gram model (margin), test-time inter-
polation did not improve the accuracies.

The row withα, β, γ = 0 represents our system
with the N -gram model loaded, and the scores
gfour, gtri and gbi computed for eachN -gram
during decoding, but the scores of edges are com-
puted without usingN -gram probabilities. The
scoring model is the same as the syntax model
(margin), but the results are lower than the row
“margin”, because computingN -gram probabil-
ities made the system slower, exploring less hy-
potheses under the same timeout setting.1

The comparison betweeng-precomputed inter-
polation and test-time interpolation shows that the
system gives better scores when the syntax model
takes into consideration theN -gram model during

1More decoding time could be given to the slowerN -
gram system, but we use 5 seconds as the timeout setting
for all the experiments, giving the methods with theN -gram
language model a slight disadvantage, as shown by the two
rows “margin” and “margin +LM (α, β, γ = 0).
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Figure 1: Development experiments with lexical cate-
gory pruning (β = 0.0001).

training. One question that arises is whetherg-
free interpolation will outperformg-precomputed
interpolation.g-free interpolation offers the free-
dom ofα, β andγ during training, and can poten-
tially reach a better combination of the parameter
values. However, the training algorithm failed to
converge withg-free interpolation. One possible
explanation is that real-valued features from the
language model made our large-margin training
harder. Another possible reason is that our train-
ing process with heavy pruning does not accom-
modate this complex model.

Figure 1 shows a set of development experi-
ments with lexical category pruning (with the su-
pertagger parameterβ = 0.0001). The scores
of the three different systems are calculated by
varying the number of training iterations. The
large-margin training system (margin) gave con-
sistently better scores than the baseline system,
and adding a language model (margin +LM) im-
proves the scores further.

Table 3 shows some manually chosen examples
for which our system gave significant improve-
ments over the baseline. For most other sentences
the improvements are not as obvious. For each
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baseline margin margin +LM

as a nonexecutive director Pierre Vinken
, 61 years old , will join the board . 29
Nov.

61 years old , the board will join as a
nonexecutive director Nov. 29 , Pierre
Vinken .

as a nonexecutive director Pierre Vinken
, 61 years old , will join the board Nov.
29 .

Lorillard nor smokers were aware of the
Kent cigarettes of any research on the
workers who studied the researchers

of any research who studied Neither the
workers were aware of smokers on the
Kent cigarettes nor the researchers

Neither Lorillard nor any research on the
workers who studied the Kent cigarettes
were aware of smokers of the researchers
.

you But 35 years ago have to recognize
that these events took place .

recognize But you took place that these
events have to 35 years ago .

But you have to recognize that these
events took place 35 years ago .

investors to pour cash into money funds
continue in Despite yields recent declines

Despite investors , yields continue to
pour into money funds recent declines in
cash .

Despite investors , recent declines in
yields continue to pour cash into money
funds .

yielding The top money funds are cur-
rently well over 9 % .

The top money funds currently are yield-
ing well over 9 % .

The top money funds are yielding well
over 9 % currently .

where A buffet breakfast , held in the mu-
seum was food and drinks to . everyday
visitors banned

everyday visitors are banned to where
A buffet breakfast was held , food and
drinks in the museum .

A buffet breakfast , everyday visitors are
banned to where food and drinks was
held in the museum .

A Commonwealth Edison spokesman
said an administrative nightmare would
be tracking down the past 3 12 years that
the two million customers have . whose
changed

tracking A Commonwealth Edison
spokesman said that the two million cus-
tomers whose addresses have changed
down during the past 3 12 years would
be an administrative nightmare .

an administrative nightmare whose ad-
dresses would be tracking down A Com-
monwealth Edison spokesman said that
the two million customers have changed
during the past 3 12 years .

The $ 2.5 billion Byron 1 plant , Ill. , was
completed . near Rockford in 1985

The $ 2.5 billion Byron 1 plant was near
completed in Rockford , Ill. , 1985 .

The $ 2.5 billion Byron 1 plant near
Rockford , Ill. , was completed in 1985 .

will ( During its centennial year , The
Wall Street Journal report events of the
past century that stand as milestones of
American business history . )

as The Wall Street Journal ( During its
centennial year , milestones stand of
American business history that will re-
port events of the past century . )

During its centennial year events will re-
port , The Wall Street Journal that stand
as milestones of American business his-
tory ( of the past century ) .

Table 3: Some chosen examples with significant improvements(supertagger parameterβ = 0.0001).

method, the examples are chosen from the devel-
opment output with lexical category pruning, af-
ter the optimal number of training iterations, with
the timeout set to 5s. We also tried manually se-
lecting examples without lexical category prun-
ing, but the improvements were not as obvious,
partly because the overall fluency was lower for
all the three systems.

Table 4 shows a set of examples chosen ran-
domly from the development test outputs of our
system with theN -gram model. The optimal
number of training iterations is used, and a time-
out of 1 minute is used in addition to the 5s time-
out for comparison. With more time to decode
each input, the system gave a BLEU score of
44.61, higher than 41.50 with the 5s timout.

While some of the outputs we examined are
reasonably fluent, most are to some extent frag-
mentary.2 In general, the system outputs are
still far below human fluency. Some samples are

2Part of the reason for some fragmentary outputs is the
default output mechanism: partial derivations from the chart
are greedily put together when timeout occurs before a goal
hypothesis is found.

syntactically grammatical, but are semantically
anomalous. For example, person names are often
confused with company names, verbs often take
unrelated subjects and objects. The problem is
much more severe for long sentences, which have
more ambiguities. For specific tasks, extra infor-
mation (such as the source text for machine trans-
lation) can be available to reduce ambiguities.

6 Final results

The final results of our system without lexical cat-
egory pruning are shown in Table 5. Row “W09
CLE” and “W09 AB” show the results of the
maximum spanning tree and assignment-based al-
gorithms of Wan et al. (2009); rows “margin”
and “margin +LM” show the results of our large-
margin training system and our system with the
N -gram model. All these results are directly com-
parable since we do not use any lexical category
pruning for this set of results. For each of our
systems, we fix the number of training iterations
according to development test scores. Consis-
tent with the development experiments, our sys-
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timeout = 5s timeout = 1m

drooled the cars and drivers , like Fortune 500 executives . over
the race

After schoolboys drooled over the cars and drivers , the race
like Fortune 500 executives .

One big reason : thin margins . One big reason : thin margins .
You or accountants look around ... and at an eye blinks . pro-
fessional ballplayers

blinks nobody You or accountants look around ... and at an eye
. professional ballplayers

most disturbing And of it , are educators , not students , for the
wrongdoing is who .

And blamed for the wrongdoing , educators , not students who
are disturbing , much of it is most .

defeat coaching aids the purpose of which is , He and other
critics say can to . standardized tests learning progress

gauge coaching aids learning progress can and other criticssay
the purpose of which is to defeat , standardized tests .

The federal government of government debt because Congress
has lifted the ceiling on U.S. savings bonds suspended sales

The federal government suspended sales of government debt
because Congress has n’t lifted the ceiling on U.S. savings
bonds .

Table 4: Some examples chosen at random from development test outputs without lexical category pruning.

System BLEU

W09 CLE 26.8
W09 AB 33.7
Z&C11 40.1

margin 42.5
margin +LM 43.8

Table 5: Test results without lexical category pruning.

System BLEU

Z&C11 43.2

margin 44.7
margin +LM 46.1

Table 6: Test results with lexical category pruning (su-
pertagger parameterβ = 0.0001).

tem outperforms the baseline methods. The acu-
racies are significantly higher when theN -gram
model is incorporated.

Table 6 compares our system with Z&C using
lexical category pruning (β = 0.0001) and a 5s
timeout for fair comparison. The results are sim-
ilar to Table 5: our large-margin training systems
outperforms the baseline by 1.5 BLEU points, and
adding theN -gram model gave a further 1.4 point
improvement. The scores could be significantly
increased by using a larger timeout, as shown in
our earlier development experiments.

7 Related Work

There is a recent line of research on text-to-
text generation, which studies the linearization of
dependency structures (Barzilay and McKeown,
2005; Filippova and Strube, 2007; Filippova and
Strube, 2009; Bohnet et al., 2010; Guo et al.,

2011). Unlike our system, and Wan et al. (2009),
input dependencies provide additional informa-
tion to these systems. Although the search space
can be constrained by the assumption of projec-
tivity, permutation of modifiers of the same head
word makes exact inference for tree lineariza-
tion intractable. The above systems typically ap-
ply approximate inference, such as beam-search.
While syntax-based features are commonly used
by these systems for linearization, Filippova and
Strube (2009) apply a trigram model to control
local fluency within constituents. A dependency-
based N-gram model has also been shown effec-
tive for the linearization task (Guo et al., 2011).

The best-first inference and timeout mechanism
of our system is similar to that of White (2004), a
surface realizer from logical forms usingCCG.

8 Conclusion

We studied the problem of word-ordering using
a syntactic model and allowing permutation. We
took the model of Zhang and Clark (2011) as the
baseline, and extended it with online large-margin
training and anN -gram language model. These
extentions led to improvements in the BLEU eval-
uation. Analyzing the generated sentences sug-
gests that, while highly fluent outputs can be pro-
duced for short sentences (≤ 10 words), the sys-
tem fluency in general is still way below human
standard. Future work remains to apply the sys-
tem as a component for specific text generation
tasks, for example machine translation.
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Abstract
This paper introduces a novel generation
system that composes humanlike descrip-
tions of images from computer vision de-
tections. By leveraging syntactically in-
formed word co-occurrence statistics, the
generator filters and constrains the noisy
detections output from a vision system to
generate syntactic trees that detail what
the computer vision system sees. Results
show that the generation system outper-
forms state-of-the-art systems, automati-
cally generating some of the most natural
image descriptions to date.

1 Introduction

It is becoming a real possibility for intelligent sys-
tems to talk about the visual world. New ways of
mapping computer vision to generated language
have emerged in the past few years, with a fo-
cus on pairing detections in an image to words
(Farhadi et al., 2010; Li et al., 2011; Kulkarni et
al., 2011; Yang et al., 2011). The goal in connect-
ing vision to language has varied: systems have
started producing language that is descriptive and
poetic (Li et al., 2011), summaries that add con-
tent where the computer vision system does not
(Yang et al., 2011), and captions copied directly
from other images that are globally (Farhadi et al.,
2010) and locally similar (Ordonez et al., 2011).

A commonality between all of these ap-
proaches is that they aim to produce natural-
sounding descriptions from computer vision de-
tections. This commonality is our starting point:
We aim to design a system capable of producing
natural-sounding descriptions from computer vi-
sion detections that are flexible enough to become
more descriptive and poetic, or include likely in-

The bus by the road with a clear blue sky
Figure 1: Example image with generated description.

formation from a language model, or to be short
and simple, but as true to the image as possible.

Rather than using a fixed template capable of
generating one kind of utterance, our approach
therefore lies in generating syntactic trees. We
use a tree-generating process (Section 4.3) simi-
lar to a Tree Substitution Grammar, but preserv-
ing some of the idiosyncrasies of the Penn Tree-
bank syntax (Marcus et al., 1995) on which most
statistical parsers are developed. This allows us
to automatically parse and train on an unlimited
amount of text, creating data-driven models that
flesh out descriptions around detected objects in a
principled way, based on what is both likely and
syntactically well-formed.

An example generated description is given in
Figure 1, and example vision output/natural lan-
guage generation (NLG) input is given in Fig-
ure 2. The system (“Midge”) generates descrip-
tions in present-tense, declarative phrases, as a
naı̈ve viewer without prior knowledge of the pho-
tograph’s content.1

Midge is built using the following approach:
An image processed by computer vision algo-
rithms can be characterized as a triple <Ai, Bi,
Ci>, where:

1Midge is available to try online at:
http://recognition.cs.stonybrook.edu:8080/˜mitchema/midge/.
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stuff: sky .999
id: 1
atts: clear:0.432, blue:0.945

grey:0.853, white:0.501 ...
b. box: (1,1 440,141)

stuff: road .908
id: 2
atts: wooden:0.722 clear:0.020 ...
b. box: (1,236 188,94)

object: bus .307
id: 3
atts: black:0.872, red:0.244 ...
b. box: (38,38 366,293)

preps: id 1, id 2: by id 1, id 3: by id 2, id 3: below
Figure 2: Example computer vision output and natu-
ral language generation input. Values correspond to
scores from the vision detections.

• Ai is the set of object/stuff detections with
bounding boxes and associated “attribute”
detections within those bounding boxes.
• Bi is the set of action or pose detections as-

sociated to each ai ∈ Ai.
• Ci is the set of spatial relationships that hold

between the bounding boxes of each pair
ai, aj ∈ Ai.

Similarly, a description of an image can be char-
acterized as a triple <Ad, Bd, Cd> where:

• Ad is the set of nouns in the description with
associated modifiers.
• Bd is the set of verbs associated to each ad ∈
Ad.
• Cd is the set of prepositions that hold be-

tween each pair of ad, ae ∈ Ad.

With this representation, mapping <Ai, Bi, Ci>
to <Ad, Bd, Cd> is trivial. The problem then
becomes: (1) How to filter out detections that
are wrong; (2) how to order the objects so that
they are mentioned in a natural way; (3) how to
connect these ordered objects within a syntacti-
cally/semantically well-formed tree; and (4) how
to add further descriptive information from lan-
guage modeling alone, if required.

Our solution lies in usingAi andAd as descrip-
tion anchors. In computer vision, object detec-
tions form the basis of action/pose, attribute, and
spatial relationship detections; therefore, in our
approach to language generation, nouns for the
object detections are used as the basis for the de-
scription. Likelihood estimates of syntactic struc-
ture and word co-occurrence are conditioned on
object nouns, and this enables each noun head in

a description to select for the kinds of structures it
tends to appear in (syntactic constraints) and the
other words it tends to occur with (semantic con-
straints). This is a data-driven way to generate
likely adjectives, prepositions, determiners, etc.,
taking the intersection of what the vision system
predicts and how the object noun tends to be de-
scribed.

2 Background
Our approach to describing images starts with
a system from Kulkarni et al. (2011) that com-
poses novel captions for images in the PASCAL
sentence data set,2 introduced in Rashtchian et
al. (2010). This provides multiple object detec-
tions based on Felzenszwalb’s mixtures of multi-
scale deformable parts models (Felzenszwalb et
al., 2008), and stuff detections (roughly, mass
nouns, things like sky and grass) based on linear
SVMs for low level region features.

Appearance characteristics are predicted using
trained detectors for colors, shapes, textures, and
materials, an idea originally introduced in Farhadi
et al. (2009). Local texture, Histograms of Ori-
ented Gradients (HOG) (Dalal and Triggs, 2005),
edge, and color descriptors inside the bounding
box of a recognized object are binned into his-
tograms for a vision system to learn to recognize
when an object is rectangular, wooden, metal,
etc. Finally, simple preposition functions are used
to compute the spatial relations between objects
based on their bounding boxes.

The original Kulkarni et al. (2011) system gen-
erates descriptions with a template, filling in slots
by combining computer vision outputs with text
based statistics in a conditional random field to
predict the most likely image labeling. Template-
based generation is also used in the recent Yang et
al. (2011) system, which fills in likely verbs and
prepositions by dependency parsing the human-
written UIUC Pascal-VOC dataset (Farhadi et al.,
2010) and selecting the dependent/head relation
with the highest log likelihood ratio.

Template-based generation is useful for auto-
matically generating consistent sentences, how-
ever, if the goal is to vary or add to the text pro-
duced, it may be suboptimal (cf. Reiter and Dale
(1997)). Work that does not use template-based
generation includes Yao et al. (2010), who gener-
ate syntactic trees, similar to the approach in this

2http://vision.cs.uiuc.edu/pascal-sentences/
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Kulkarni et al.: This is a pic-
ture of three persons, one bot-
tle and one diningtable. The
first rusty person is beside the
second person. The rusty bot-
tle is near the first rusty per-
son, and within the colorful
diningtable. The second per-
son is by the third rusty per-
son. The colorful diningtable
is near the first rusty person,
and near the second person,
and near the third rusty person.

Kulkarni et al.: This is
a picture of two potted-
plants, one dog and one
person. The black dog is
by the black person, and
near the second feathered
pottedplant.

Yang et al.: Three people
are showing the bottle on the
street

Yang et al.: The person is
sitting in the chair in the
room

Midge: people with a bottle at
the table

Midge: a person in black
with a black dog by potted
plants

Figure 3: Descriptions generated by Midge, Kulkarni
et al. (2011) and Yang et al. (2011) on the same images.
Midge uses the Kulkarni et al. (2011) front-end, and so
outputs are directly comparable.

paper. However, their system is not automatic, re-
quiring extensive hand-coded semantic and syn-
tactic details. Another approach is provided in
Li et al. (2011), who use image detections to se-
lect and combine web-scale n-grams (Brants and
Franz, 2006). This automatically generates de-
scriptions that are either poetic or strange (e.g.,
“tree snowing black train”).

A different line of work transfers captions of
similar images directly to a query image. Farhadi
et al. (2010) use <object,action,scene> triples
predicted from the visual characteristics of the
image to find potential captions. Ordonez et al.
(2011) use global image matching with local re-
ordering from a much larger set of captioned pho-
tographs. These transfer-based approaches result
in natural captions (they are written by humans)
that may not actually be true of the image.

This work learns and builds from these ap-
proaches. Following Kulkarni et al. and Li et al.,
the system uses large-scale text corpora to esti-
mate likely words around object detections. Fol-
lowing Yang et al., the system can hallucinate
likely words using word co-occurrence statistics
alone. And following Yao et al., the system aims

black, blue, brown, colorful, golden, gray,
green, orange, pink, red, silver, white, yel-
low, bare, clear, cute, dirty, feathered, flying,
furry, pine, plastic, rectangular, rusty, shiny,
spotted, striped, wooden

Table 1: Modifiers used to extract training corpus.

for naturally varied but well-formed text, generat-
ing syntactic trees rather than filling in a template.

In addition to these tasks, Midge automatically
decides what the subject and objects of the de-
scription will be, leverages the collected word co-
occurrence statistics to filter possible incorrect de-
tections, and offers the flexibility to be as de-
scriptive or as terse as possible, specified by the
user at run-time. The end result is a fully au-
tomatic vision-to-language system that is begin-
ning to generate syntactically and semantically
well-formed descriptions with naturalistic varia-
tion. Example descriptions are given in Figures 4
and 5, and descriptions from other recent systems
are given in Figure 3.

The results are promising, but it is important to
note that Midge is a first-pass system through the
steps necessary to connect vision to language at
a deep syntactic/semantic level. As such, it uses
basic solutions at each stage of the process, which
may be improved: Midge serves as an illustration
of the types of issues that should be handled to
automatically generate syntactic trees from vision
detections, and offers some possible solutions. It
is evaluated against the Kulkarni et al. system, the
Yang et al. system, and human-written descrip-
tions on the same set of images in Section 5, and
is found to significantly outperform the automatic
systems.

3 Learning from Descriptive Text
To train our system on how people describe im-
ages, we use 700,000 (Flickr, 2011) images with
associated descriptions from the dataset in Or-
donez et al. (2011). This is separate from our
evaluation image set, consisting of 840 PASCAL
images. The Flickr data is messier than datasets
created specifically for vision training, but pro-
vides the largest corpus of natural descriptions of
images to date.

We normalize the text by removing emoticons
and mark-up language, and parse each caption
using the Berkeley parser (Petrov, 2010). Once
parsed, we can extract syntactic information for
individual (word, tag) pairs.
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a cow with sheep with a gray sky people with boats a brown cow people at
green grass by the road a wooden table

Figure 4: Example generated outputs.

Awkward Prepositions Incorrect Detections

a person boats under a black bicycle at the sky a yellow bus cows by black sheep
on the dog the sky a green potted plant with people by the road

Figure 5: Example generated outputs: Not quite right

We compute the probabilities for different
prenominal modifiers (shiny, clear, glowing, ...)
and determiners (a/an, the, None, ...) given a
head noun in a noun phrase (NP), as well as the
probabilities for each head noun in larger con-
structions, listed in Section 4.3. Probabilities are
conditioned only on open-class words, specifi-
cally, nouns and verbs. This means that a closed-
class word (such as a preposition) is never used to
generate an open-class word.

In addition to co-occurrence statistics, the
parsed Flickr data adds to our understanding of
the basic characteristics of visually descriptive
text. Using WordNet (Miller, 1995) to automati-
cally determine whether a head noun is a physical
object or not, we find that 92% of the sentences
have no more than 3 physical objects. This in-
forms generation by placing a cap on how many
objects are mentioned in each descriptive sen-
tence: When more than 3 objects are detected,
the system splits the description over several sen-
tences. We also find that many of the descriptions
are not sentences as well (tagged as S, 58% of the
data), but quite commonly noun phrases (tagged
as NP, 28% of the data), and expect that the num-
ber of noun phrases that form descriptions will be
much higher with domain adaptation. This also
informs generation, and the system is capable of
generating both sentences (contains a main verb)
and noun phrases (no main verb) in the final im-
age description. We use the term ‘sentence’ in the
rest of this paper to refer to both kinds of complex
phrases.

4 Generation

Following Penn Treebank parsing guidelines
(Marcus et al., 1995), the relationship between
two head nouns in a sentence can usually be char-
acterized among the following:

1. prepositional (a boy on the table)

2. verbal (a boy cleans the table)

3. verb with preposition (a boy sits on the table)

4. verb with particle (a boy cleans up the table)

5. verb with S or SBAR complement (a boy
sees that the table is clean)

The generation system focuses on the first three
kinds of relationships, which capture a wide range
of utterances. The process of generation is ap-
proached as a problem of generating a semanti-
cally and syntactically well-formed tree based on
object nouns. These serve as head noun anchors
in a lexicalized syntactic derivation process that
we call tree growth.

Vision detections are associated to a {tag
word} pair, and the model fleshes out the tree de-
tails around head noun anchors by utilizing syn-
tactic dependencies between words learned from
the Flickr data discussed in Section 3. The anal-
ogy of growing a tree is quite appropriate here,
where nouns are bundles of constraints akin to
seeds, giving rise to the rest of the tree based on
the lexicalized subtrees in which the nouns are
likely to occur. An example generated tree struc-
ture is shown in Figure 6, with noun anchors in
bold.
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Figure 6: Tree generated from tree growth process.

Midge was developed using detections run on
Flickr images, incorporating action/pose detec-
tions for verbs as well as object detections for
nouns. In testing, we generate descriptions for
the PASCAL images, which have been used in
earlier work on the vision-to-language connection
(Kulkarni et al., 2011; Yang et al., 2011), and al-
lows us to compare systems directly. Action and
pose detection for this data set still does not work
well, and so the system does not receive these de-
tections from the vision front-end. However, the
system can still generate verbs when action and
pose detectors have been run, and this framework
allows the system to “hallucinate” likely verbal
constructions between objects if specified at run-
time. A similar approach was taken in Yang et al.
(2011). Some examples are given in Figure 7.

We follow a three-tiered generation process
(Reiter and Dale, 2000), utilizing content determi-
nation to first cluster and order the object nouns,
create their local subtrees, and filter incorrect de-
tections; microplanning to construct full syntactic
trees around the noun clusters, and surface real-
ization to order selected modifiers, realize them as
postnominal or prenominal, and select final out-
puts. The system follows an overgenerate-and-
select approach (Langkilde and Knight, 1998),
which allows different final trees to be selected
with different settings.

4.1 Knowledge Base
Midge uses a knowledge base that stores models
for different tasks during generation. These mod-
els are primarily data-driven, but we also include
a hand-built component to handle a small set of
rules. The data-driven component provides the
syntactically informed word co-occurrence statis-
tics learned from the Flickr data, a model for or-
dering the selected nouns in a sentence, and a
model to change computer vision attributes to at-
tribute:value pairs. Below, we discuss the three
main data-driven models within the generation

Unordered Ordered
bottle, table, person → person, bottle, table
road, sky, cow → cow, road, sky

Figure 8: Example nominal orderings.

pipeline. The hand-built component contains plu-
ral forms of singular nouns, the list of possible
spatial relations shown in Table 3, and a map-
ping between attribute values and modifier sur-
face forms (e.g., a green detection for person is to
be realized as the postnominal modifier in green).

4.2 Content Determination
4.2.1 Step 1: Group the Nouns

An initial set of object detections must first be
split into clusters that give rise to different sen-
tences. If more than 3 objects are detected in the
image, the system begins splitting these into dif-
ferent noun groups. In future work, we aim to
compare principled approaches to this task, e.g.,
using mutual information to cluster similar nouns
together. The current system randomizes which
nouns appear in the same group.

4.2.2 Step 2: Order the Nouns
Each group of nouns are then ordered to deter-

mine when they are mentioned in a sentence. Be-
cause the system generates declarative sentences,
this automatically determines the subject and ob-
jects. This is a novel contribution for a general
problem in NLG, and initial evaluation (Section
5) suggests it works reasonably well.

To build the nominal ordering model, we use
WordNet to associate all head nouns in the Flickr
data to all of their hypernyms. A description is
represented as an ordered set [a1...an] where each
ap is a noun with position p in the set of head
nouns in the sentence. For the position pi of each
hypernym ha in each sentence with n head nouns,
we estimate p(pi|n, ha).

During generation, the system greedily maxi-
mizes p(pi|n, ha) until all nouns have been or-
dered. Example orderings are shown in Figure 8.
This model automatically places animate objects
near the beginning of a sentence, which follows
psycholinguistic work in object naming (Branigan
et al., 2007).

4.2.3 Step 3: Filter Incorrect Attributes
For the system to be able to extend coverage as

new computer vision attribute detections become
available, we develop a method to automatically
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A person sitting on a sofa Cows grazing Airplanes flying A person walking a dog
Figure 7: Hallucinating: Creating likely actions. Straightforward to do, but can often be wrong.

COLOR purple blue green red white ...
MATERIAL plastic wooden silver ...
SURFACE furry fluffy hard soft ...
QUALITY shiny rust dirty broken ...

Table 2: Example attribute classes and values.

group adjectives into broader attribute classes,3

and the generation system uses these classes when
deciding how to describe objects. To group adjec-
tives, we use a bootstrapping technique (Kozareva
et al., 2008) that learns which adjectives tend to
co-occur, and groups these together to form an at-
tribute class. Co-occurrence is computed using
cosine (distributional) similarity between adjec-
tives, considering adjacent nouns as context (i.e.,
JJ NN constructions). Contexts (nouns) for adjec-
tives are weighted using Pointwise Mutual Infor-
mation and only the top 1000 nouns are selected
for every adjective. Some of the learned attribute
classes are given in Table 2.

In the Flickr corpus, we find that each attribute
(COLOR, SIZE, etc.), rarely has more than a single
value in the final description, with the most com-
mon (COLOR) co-occurring less than 2% of the
time. Midge enforces this idea to select the most
likely word v for each attribute from the detec-
tions. In a noun phrase headed by an object noun,
NP{NN noun}, the prenominal adjective (JJ v) for
each attribute is selected using maximum likeli-
hood.

4.2.4 Step 4: Group Plurals
How to generate natural-sounding spatial rela-

tions and modifiers for a set of objects, as opposed
to a single object, is still an open problem (Fu-
nakoshi et al., 2004; Gatt, 2006). In this work, we
use a simple method to group all same-type ob-
jects together, associate them to the plural form
listed in the KB, discard the modifiers, and re-
turn spatial relations based on the first recognized

3What in computer vision are called attributes are called
values in NLG. A value like red belongs to a COLOR at-
tribute, and we use this distinction in the system.

member of the group.

4.2.5 Step 5: Gather Local Subtrees Around
Object Nouns

1 2
NP

NN

n

JJ* ↓DT{0,1} ↓ S

VP{VBZ} ↓NP{NN n}
3 4

NP

VP{VB(G|N)} ↓NP{NN n}

NP

PP{IN} ↓NP{NN n}
5 6

PP

NP{NN n}IN ↓

VP

PP{IN} ↓VB(G|N|Z) ↓
7

VP

NP{NN n}VB(G|N|Z) ↓

Figure 9: Initial subtree frames for generation, present-
tense declarative phrases. ↓ marks a substitution site,
* marks ≥ 0 sister nodes of this type permitted, {0,1}
marks that this node can be included of excluded.
Input: set of ordered nouns, Output: trees preserving
nominal ordering.

Possible actions/poses and spatial relationships
between objects nouns, represented by verbs and
prepositions, are selected using the subtree frames
listed in Figure 9. Each head noun selects for its
likely local subtrees, some of which are not fully
formed until the Microplanning stage. As an ex-
ample of how this process works, see Figure 10,
which illustrates the combination of Trees 4 and
5. For simplicity, we do not include the selection
of further subtrees. The subject noun duck se-
lects for prepositional phrases headed by different
prepositions, and the object noun grass selects
for prepositions that head the prepositional phrase
in which it is embedded. Full PP subtrees are cre-
ated during Microplanning by taking the intersec-
tion of both.

The leftmost noun in the sequence is given a
rightward directionality constraint, placing it as
the subject of the sentence, and so it will only se-
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a over b a above b b below a b beneath a a by b b by a a on b b under a
b underneath a a upon b a over b

a by b a against b b against a b around a a around b a at b b at a a beside b
b beside a a by b b by a a near b b near a b with a a with b

a in b a in b b outside a a within b a by b b by a
Table 3: Possible prepositions from bounding boxes.

Subtree frames:
NP

PP{IN} ↓NP{NN n1}

PP

NP{NN n2}IN ↓

Generated subtrees:
NP

PP

IN

above, on, by

NP

NN

duck

PP

NP

NN

grass

IN

on, by, over

Combined trees:
NP

PP

NP

NN

grass

IN

on

NP

NN

duck

NP

PP

NP

NN

grass

IN

by

NP

NN

duck

Figure 10: Example derivation.

lect for trees that expand to the right. The right-
most noun is given a leftward directionality con-
straint, placing it as an object, and so it will only
select for trees that expand to its left. The noun in
the middle, if there is one, selects for all its local
subtrees, combining first with a noun to its right
or to its left. We now walk through the deriva-
tion process for each of the listed subtree frames.
Because we are following an overgenerate-and-
select approach, all combinations above a proba-
bility threshold α and an observation cutoff γ are
created.

Tree 1:
Collect all NP→ (DT det) (JJ adj)* (NN noun)
and NP→ (JJ adj)* (NN noun) subtrees, where:

• p((JJ adj)|(NN noun)) > α for each adj
• p((DT det)|JJ, (NN noun)) > α, and the proba-

bility of a determiner for the head noun is higher
than the probability of no determiner.

Any number of adjectives (including none) may
be generated, and we include the presence or ab-
sence of an adjective when calculating which de-
terminer to include.

The reasoning behind the generation of these
subtrees is to automatically learn whether to treat

a given noun as a mass or count noun (not taking a
determiner or taking a determiner, respectively) or
as a given or new noun (phrases like a sky sound
unnatural because sky is given knowledge, requir-
ing the definite article the). The selection of de-
terminer is not independent of the selection of ad-
jective; a sky may sound unnatural, but a blue sky
is fine. These trees take the dependency between
determiner and adjective into account.

Trees 2 and 3:
Collect beginnings of VP subtrees headed by
(VBZ verb), (VBG verb), and (VBN verb), no-
tated here as VP{VBX verb}, where:

• p(VP{VBX verb}|NP{NN noun}=SUBJ) > α

Tree 4:
Collect beginnings of PP subtrees headed by (IN
prep), where:

• p(PP{IN prep}|NP{NN noun}=SUBJ) > α

Tree 5:
Collect PP subtrees headed by (IN prep) with
NP complements (OBJ) headed by (NN noun),
where:

• p(PP{IN prep}|NP{NN noun}=OBJ) > α

Tree 6:
Collect VP subtrees headed by (VBX verb) with
embedded PP complements, where:

• p(PP{IN prep}|VP{VBX verb}=SUBJ) > α

Tree 7:
Collect VP subtrees headed by (VBX verb) with
embedded NP objects, where:

• p(VP{VBX verb}|NP{NN noun}=OBJ) > α

4.3 Microplanning
4.3.1 Step 6: Create Full Trees

In Microplanning, full trees are created by tak-
ing the intersection of the subtrees created in Con-
tent Determination. Because the nouns are or-
dered, it is straightforward to combine the sub-
trees surrounding a noun in position 1 with sub-
trees surrounding a noun in position 2. Two
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VP

VP* ↓

NP

NP ↓CC

and

NP ↓

Figure 11: Auxiliary trees for generation.

further trees are necessary to allow the subtrees
gathered to combine within the Penn Treebank
syntax. These are given in Figure 11. If two
nouns in a proposed sentence cannot be combined
with prepositions or verbs, we backoff to combine
them using (CC and).

Stepping through this process, all nouns will
have a set of subtrees selected by Tree 1. Prepo-
sitional relationships between nouns are created
by substituting Tree 1 subtrees into the NP nodes
of Trees 4 and 5, as shown in Figure 10. Verbal
relationships between nouns are created by substi-
tuting Tree 1 subtrees into Trees 2, 3, and 7. Verb
with preposition relationships are created between
nouns by substituting the VBX node in Tree 6
with the corresponding node in Trees 2 and 3 to
grow the tree to the right, and the PP node in Tree
6 with the corresponding node in Tree 5 to grow
the tree to the left. Generation of a full tree stops
when all nouns in a group are dominated by the
same node, either an S or NP.

4.4 Surface Realization

In the surface realization stage, the system se-
lects a single tree from the generated set of pos-
sible trees and removes mark-up to produce a fi-
nal string. This is also the stage where punctua-
tion may be added. Different strings may be gen-
erated depending on different specifications from
the user, as discussed at the beginning of Section
4 and shown in the online demo. To evaluate the
system against other systems, we specify that the
system should (1) not hallucinate likely verbs; and
(2) return the longest string possible.

4.4.1 Step 7: Get Final Tree, Clear Mark-Up
We explored two methods for selecting a final

string. In one method, a trigram language model
built using the Europarl (Koehn, 2005) data with
start/end symbols returns the highest-scoring de-
scription (normalizing for length). In the second
method, we limit the generation system to select
the most likely closed-class words (determiners,
prepositions) while building the subtrees, over-
generating all possible adjective combinations.
The final string is then the one with the most

words. We find that the second method produces
descriptions that seem more natural and varied
than the n-gram ranking method for our develop-
ment set, and so use the longest string method in
evaluation.

4.4.2 Step 8: Prenominal Modifier Ordering
To order sets of selected adjectives, we use the

top-scoring prenominal modifier ordering model
discussed in Mitchell et al. (2011). This is an n-
gram model constructed over noun phrases that
were extracted from an automatically parsed ver-
sion of the New York Times portion of the Giga-
word corpus (Graff and Cieri, 2003). With this
in place, blue clear sky becomes clear blue sky,
wooden brown table becomes brown wooden ta-
ble, etc.

5 Evaluation

Each set of sentences is generated with α (likeli-
hood cutoff) set to .01 and γ (observation count
cutoff) set to 3. We compare the system against
human-written descriptions and two state-of-the-
art vision-to-language systems, the Kulkarni et al.
(2011) and Yang et al. (2011) systems.

Human judgments were collected using Ama-
zon’s Mechanical Turk (Amazon, 2011). We
follow recommended practices for evaluating an
NLG system (Reiter and Belz, 2009) and for run-
ning a study on Mechanical Turk (Callison-Burch
and Dredze, 2010), using a balanced design with
each subject rating 3 descriptions from each sys-
tem. Subjects rated their level of agreement on
a 5-point Likert scale including a neutral mid-
dle position, and since quality ratings are ordinal
(points are not necessarily equidistant), we evalu-
ate responses using a non-parametric test. Partici-
pants that took less than 3 minutes to answer all 60
questions and did not include a humanlike rating
for at least 1 of the 3 human-written descriptions
were removed and replaced. It is important to note
that this evaluation compares full generation sys-
tems; many factors are at play in each system that
may also influence participants’ perception, e.g.,
sentence length (Napoles et al., 2011) and punc-
tuation decisions.

The systems are evaluated on a set of 840
images evaluated in the original Kulkarni et al.
(2011) system. Participants were asked to judge
the statements given in Figure 12, from Strongly
Disagree to Strongly Agree.
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Grammaticality Main Aspects Correctness Order Humanlikeness
Human 4 (3.77, 1.19) 4 (4.09, 0.97) 4 (3.81, 1.11) 4 (3.88, 1.05) 4 (3.88, 0.96)
Midge 3 (2.95, 1.42) 3 (2.86, 1.35) 3 (2.95, 1.34) 3 (2.92, 1.25) 3 (3.16, 1.17)
Kulkarni et al. 2011 3 (2.83, 1.37) 3 (2.84, 1.33) 3 (2.76, 1.34) 3 (2.78, 1.23) 3 (3.13, 1.23)
Yang et al. 2011 3 (2.95, 1.49) 2 (2.31, 1.30) 2 (2.46, 1.36) 2 (2.53, 1.26) 3 (2.97, 1.23)
Table 4: Median scores for systems, mean and standard deviation in parentheses. Distance between points on the
rating scale cannot be assumed to be equidistant, and so we analyze results using a non-parametric test.

GRAMMATICALITY:
This description is grammatically correct.
MAIN ASPECTS:
This description describes the main aspects of this
image.
CORRECTNESS:
This description does not include extraneous or in-
correct information.
ORDER:
The objects described are mentioned in a reasonable
order.
HUMANLIKENESS:
It sounds like a person wrote this description.

Figure 12: Mechanical Turk prompts.

We report the scores for the systems in Table
4. Results are analyzed using the non-parametric
Wilcoxon Signed-Rank test, which uses median
values to compare the different systems. Midge
outperforms all recent automatic approaches on
CORRECTNESS and ORDER, and Yang et al. ad-
ditionally on HUMANLIKENESS and MAIN AS-
PECTS. Differences between Midge and Kulkarni
et al. are significant at p< .01; Midge and Yang et
al. at p< .001. For all metrics, human-written de-
scriptions still outperform automatic approaches
(p < .001).

These findings are striking, particularly be-
cause Midge uses the same input as the Kulka-
rni et al. system. Using syntactically informed
word co-occurrence statistics from a large corpus
of descriptive text improves over state-of-the-art,
allowing syntactic trees to be generated that cap-
ture the variation of natural language.

6 Discussion
Midge automatically generates language that is as
good as or better than template-based systems,
tying vision to language at a syntactic/semantic
level to produce natural language descriptions.
Results are promising, but, there is more work to
be done: Evaluators can still tell a difference be-
tween human-written descriptions and automati-
cally generated descriptions.

Improvements to the generated language are
possible at both the vision side and the language

side. On the computer vision side, incorrect ob-
jects are often detected and salient objects are of-
ten missed. Midge does not yet screen out un-
likely objects or add likely objects, and so pro-
vides no filter for this. On the language side, like-
lihood is estimated directly, and the system pri-
marily uses simple maximum likelihood estima-
tions to combine subtrees. The descriptive cor-
pus that informs the system is not parsed with
a domain-adapted parser; with this in place, the
syntactic constructions that Midge learns will bet-
ter reflect the constructions that people use.

In future work, we hope to address these issues
as well as advance the syntactic derivation pro-
cess, providing an adjunction operation (for ex-
ample, to add likely adjectives or adverbs based
on language alone). We would also like to incor-
porate meta-data – even when no vision detection
fires for an image, the system may be able to gen-
erate descriptions of the time and place where an
image was taken based on the image file alone.

7 Conclusion
We have introduced a generation system that uses
a new approach to generating language, tying a
syntactic model to computer vision detections.
Midge generates a well-formed description of an
image by filtering attribute detections that are un-
likely and placing objects into an ordered syntac-
tic structure. Humans judge Midge’s output to be
the most natural descriptions of images generated
thus far. The methods described here are promis-
ing for generating natural language descriptions
of the visual world, and we hope to expand and
refine the system to capture further linguistic phe-
nomena.
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Abstract

We present a system for the real-time gen-
eration of car navigation instructions with
landmarks. Our system relies exclusively
on freely available map data from Open-
StreetMap, organizes its output to fit into
the available time until the next driving ma-
neuver, and reacts in real time to driving er-
rors. We show that female users spend sig-
nificantly less time looking away from the
road when using our system compared to a
baseline system.

1 Introduction

Systems that generate route instructions are be-
coming an increasingly interesting application
area for natural language generation (NLG) sys-
tems. Car navigation systems are ubiquitous
already, and with the increased availability of
powerful mobile devices, the wide-spread use of
pedestrian navigation systems is on the horizon.
One area in which NLG systems could improve
existing navigation systems is in the use of land-
marks, which would enable them to generate in-
structions such as “turn right after the church” in-
stead of “after 300 meters”. It has been shown in
human-human studies that landmark-based route
instructions are easier to understand (Lovelace
et al., 1999) than distance-based ones and re-
duce driver distraction in in-car settings (Bur-
nett, 2000), which is crucial for improved traffic
safety (Stutts et al., 2001). From an NLG per-
spective, navigation systems are an obvious ap-
plication area for situated generation, for which
there has recently been increasing interest (see
e.g. (Lessmann et al., 2006; Koller et al., 2010;
Striegnitz and Majda, 2009)).

Current commercial navigation systems use
only trivial NLG technology, and in particular are

limited to distance-based route instructions. Even
in academic research, there has been remarkably
little work on NLG for landmark-based naviga-
tion systems. Some of these systems rely on map
resources that have been hand-crafted for a par-
ticular city (Malaka et al., 2004), or on a com-
bination of multiple complex resources (Raubal
and Winter, 2002), which effectively limits their
coverage. Others, such as Dale et al. (2003), fo-
cus on non-interactive one-shot instruction dis-
courses. However, commercially successful car
navigation systems continuously monitor whether
the driver is following the instructions and pro-
vide modified instructions in real time when nec-
essary. That is, two key problems in designing
NLG systems for car navigation instructions are
the availability of suitable map resources and the
ability of the NLG system to generate instructions
and react to driving errors in real time.

In this paper, we explore solutions to both of
these points. We present the Virtual Co-Pilot,
a system which generates route instructions for
car navigation using landmarks that are extracted
from the open-source OpenStreetMap resource.1

The system computes a route plan and splits it
into episodes that end in driving maneuvers. It
then selects landmarks that describe the locations
of these driving maneuvers, and aggregates in-
structions such that they can be presented (via
a TTS system) in the time available within the
episode. The system monitors the user’s position
and computes new, corrective instructions when
the user leaves the intended path. We evaluate
our system using a driving simulator, and com-
pare it to a baseline that is designed to replicate
a typical commercial navigation system. The Vir-
tual Co-Pilot performs comparably to the baseline

1http://www.openstreetmap.org/
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on the number of driving errors and on user sat-
isfaction, and outperforms it significantly on the
time female users spend looking away from the
road. To our knowledge, this is the first time that
the generation of landmarks has been shown to
significantly improve the instructions of a wide-
coverage navigation system.

Plan of the paper. We start by reviewing ear-
lier literature on landmarks, route instructions,
and the use of NLG for route instructions in Sec-
tion 2. We then present the way in which we
extract information on potential landmarks from
OpenStreetMap in Section 3. Section 4 shows
how we generate route instructions, and Section 5
presents the evaluation. Section 6 concludes.

2 Related Work

What makes an object in the environment a good
landmark has been the topic of research in vari-
ous disciplines, including cognitive science, com-
puter science, and urban planning. Lynch (1960)
defines landmarks as physical entities that serve
as external points of reference that stand out from
their surroundings. Kaplan (1976) specified a
landmark as “a known place for which the in-
dividual has a well-formed representation”. Al-
though there are different definitions of land-
marks, a common theme is that objects are con-
sidered landmarks if they have some kind of cog-
nitive salience (both in terms of visual distinctive-
ness and frequeny of interaction).

The usefulness of landmarks in route instruc-
tions has been shown in a number of different
human-human studies. Experimental results from
Lovelace et al. (1999) show that people not only
use landmarks intuitively when giving directions,
but they also perceive instructions that are given to
them to be of higher quality when those instruc-
tions contain landmark information. Similar find-
ings have also been reported by Michon and Denis
(2001) and Tom and Denis (2003).

Regarding car navigation systems specifically,
Burnett (2000) reports on a road-based user study
which compared a landmark-based navigation
system to a conventional car navigation system.
Here the provision of landmark information in
route directions led to a decrease of navigational
errors. Furthermore, glances at the navigation
display were shorter and fewer, which indicates
less driver distraction in this particular experi-
mental condition. Minimizing driver distraction

is a crucial goal of improved navigation systems,
as driver inattention of various kinds is a lead-
ing cause of traffic accidents (25% of all police-
reported car crashes in the US in 2000, according
to Stutts et al. (2001)). Another road-based study
conducted by May and Ross (2006) yielded simi-
lar results.

One recurring finding in studies on landmarks
in navigation is that some user groups are able
to benefit more from their inclusion than oth-
ers. This is particularly the case for female users.
While men tend to outperform women in wayfind-
ing tasks, completing them faster and with fewer
navigation errors (c.f. Allen (2000)), women are
likely to show improved wayfinding performance
when landmark information is given (e.g. Saucier
et al. (2002)).

Despite all of this evidence from human-human
studies, there has been remarkably little research
on implemented navigation systems that use land-
marks. Commercial systems make virtually no
use of landmark information when giving direc-
tions, relying on metric representations instead
(e.g. “Turn right in one hundred meters”). In aca-
demic research, there have only been a handful of
relevant systems. A notable example is the DEEP
MAP system, which was created in the SmartKom
project as a mobile tourist information system for
the city of Heidelberg (Malaka and Zipf, 2000;
Malaka et al., 2004). DEEP MAP uses landmarks
as waypoints for the planning of touristic routes
for car drivers and pedestrians, while also making
use of landmark information in the generation of
route directions. Raubal and Winter (2002) com-
bine data from digital city maps, facade images,
cultural heritage information, and other sources
to compute landmark descriptions that could be
used in a pedestrian navigation system for the city
of Vienna.

The key to the richness of these systems is a
set of extensive, manually curated geographic and
landmark databases. However, creation and main-
tenance of such databases is expensive, which
makes it impractical to use these systems outside
of the limited environments for which they were
created. There have been a number of suggestions
for automatically acquiring landmark data from
existing electronic databases, for instance cadas-
tral data (Elias, 2003) and airborne laser scans
(Brenner and Elias, 2003). But the raw data for
these approaches is still hard to obtain; informa-
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tion about landmarks is mostly limited to geomet-
ric data and does not specify the semantic type
of a landmark (such as “church”); and updating
the landmark database frequently when the real
world changes (e.g., a shop closes down) remains
an open issue.

The closest system in the literature to the re-
search we present here is the CORAL system
(Dale et al., 2003). CORAL generates a text of
driving instructions with landmarks out of the out-
put of a commercial web-based route planner. Un-
like CORAL, our system relies purely on open-
source map data. Also, our system generates driv-
ing instructions in real time (as opposed to a sin-
gle discourse before the user starts driving) and
reacts in real time to driving errors. Finally, we
evaluate our system thoroughly for driving errors,
user satisfaction, and driver distraction on an ac-
tual driving task, and find a significant improve-
ment over the baseline.

3 OpenStreetMap

A system that generates landmark-based route di-
rections requires two kinds of data. First, it must
plan routes between points in space, and therefore
needs data on the road network, i.e. the road seg-
ments that make up streets along with their con-
nections. Second, the system needs information
about the landmarks that are present in the envi-
ronment. This includes geographic information
such as position, but also semantic information
such as the landmark type.

We have argued above that the availability of
such data has been a major bottleneck in the
development of landmark-based navigation sys-
tems. In the Virtual Co-Pilot system, which
we present below, we solve this problem by us-
ing data from OpenStreetMap, an on-line map
resource that provides both types of informa-
tion mentioned above, in a unified data struc-
ture. The OpenStreetMap project is to maps what
Wikipedia is to encyclopedias: It is a map of
the entire world which can be edited by anyone
wishing to participate. New map data is usually
added by volunteers who measure streets using
GPS devices and annotate them via a Web inter-
face. The decentralized nature of the data entry
process means that when the world changes, the
map will be updated quickly. Existing map data
can be viewed as a zoomable map on the Open-
StreetMap website, or it can be downloaded in an

Figure 1: A graphical representation of some nodes
and ways in OpenStreetMap.

Landmark Type
Street Furniture stop sign

traffic lights
pedestrian crossing

Visual Landmarks church
certain video stores
certain supermarkets
gas station
pubs and bars

Figure 2: Landmarks used by the Virtual Co-Pilot.

XML format for offline use.
Geographical data in OpenStreetMap is repre-

sented in terms of nodes and ways. Nodes rep-
resent points in space, defined by their latitude
and longitude. Ways consist of sequences of
edges between adjacent nodes; we call the in-
dividual edges segments below. They are used
to represent streets (with curved streets consist-
ing of multiple straight segments approximating
their shape), but also a variety of other real-world
entities: buildings, rivers, trees, etc. Nodes and
ways can both be enriched with further infor-
mation by attaching tags. Tags encode a wide
range of additional information using a predefined
type ontology. Among other things, they specify
the types of buildings (church, cafe, supermarket,
etc.); where a shop or restaurant has a name, it too
is specified in a tag. Fig. 1 is a graphical represen-
tation of some OpenStreetMap data, consisting of
nodes and ways for two streets (with two and five
segments) and a building which has been tagged
as a gas station.

For the Virtual Co-Pilot system, we have cho-
sen a set of concrete landmark types that we con-
sider useful (Fig. 2). We operationalize the crite-
ria for good landmarks sketched in Section 2 by
requiring that a landmark should be easily visible,
and that it should be generic in that it is appli-
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cable not just for one particular city, but for any
place for which OpenStreetMap data is available.

We end up with two classes of landmark types:
street furniture and visual landmarks. Street fur-
niture is a generic term for objects that are in-
stalled on streets. In this subset, we include stop
signs, traffic lights, and pedestrian crossings. Our
assumption is that these objects inherently pos-
sess a high salience, since they already require
particular attention from the driver. “Visual land-
marks” encompass roadside buildings that are not
directly connected to the road infrastructure, but
draw the driver’s attention due to visual salience.
Churches are an obvious member of this group; in
addition, we include gas stations, pubs, and bars,
as well as certain supermarket and video store
chains (selected for wide distribution over differ-
ent cities and recognizable, colorful signs).

Given a certain location at which the Virtual
Co-Pilot is to be used, we automatically extract
suitable landmarks along with their types and lo-
cations from OpenStreetMap. We also gather
the road network information that is required
for route planning, and collect informations on
streets, such as their names, from the tags. We
then transform this information into a directed
street graph. The nodes of this graph are the
OpenStreetMap nodes that are part of streets; two
adjacent nodes are connected by a single directed
edge for segments of one-way streets and a di-
rected edge in each direction for ordinary street
segments. Each edge is weighted with the Eu-
clidean distance between the two nodes.

4 Generation of route directions

We will now describe how the Virtual Co-Pilot
generates route directions from OpenStreetMap
data. The system generates three types of mes-
sages (see Fig. 3). First, at every decision point,
i.e. at the intersection where a driving maneu-
ver such as turning left or right is required, the
user is told to turn immediately in the given di-
rection (“now turn right”). Second, if the driver
has followed an instruction correctly, we gener-
ate a confirmation message after the driver has
made the turn, letting them know they are still
on the right track. Finally, we generate preview
messages on the street leading up to the decision
point. These preview messages describe the loca-
tion of the next driving maneuver.

Of the three types, preview messages are the

Figure 3: Schematic representation of an episode
(dashed red line), with sample trigger positions of pre-
view, turn instruction, and confirmation messages.

most interesting. Our system avoids the genera-
tion of metric distance indicators, as in “turn left
in 100 meters”. Instead, it tries to find landmarks
that describe the position of the decision point:
“Prepare to turn left after the church.” When no
landmark is available, the system tries to use street
intersections as secondary landmarks, as in “Turn
right at the next/second/third intersection.” Metric
distances are only used when both of these strate-
gies fail.

In-car NLG takes place in a heavily real-time
setting, in which an utterance becomes uninter-
pretable or even misleading if it is given too late.
This problem is exacerbated for NLG of speech
because simply speaking the utterance takes time
as well. One consequence that our system ad-
dresses is the problem of planning preview mes-
sages in such a way that they can be spoken be-
fore the decision point without overlapping each
other. We handle this problem in the sentence
planner, which may aggregate utterances to fit
into the available time. A second problem is that
the user’s reactions to the generated utterances are
unpredictable; if the driver takes a wrong turn, the
system must generate updated instructions in real
time.

Below, we describe the individual components
of the system. We mostly follow a standard NLG
pipeline (Reiter and Dale, 2000), with a focus on
the sentence planner and an extension to interac-
tive real-time NLG.
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Segment123
From: Node1
To: Node2
On: “Main Street”

Segment124
From: Node2
To: Node3
On: “Main Street”

Segment125
From: Node3
To: Node4
On: “Park Street”

Segment126
From: Node4
To: Node5
On: “Park Street”

Figure 4: A simple example of a route plan consisting
of four street segments.

4.1 Content determination and text planning

The first step in our system is to obtain a plan for
reaching the destination. To this end, we com-
pute a shortest path on the directed street graph
described in Section 3. The result is an ordered
list of street segments that need to be traversed in
the given order to successfully reach the destina-
tion; see Fig. 4 for an example.

To be suitable as the input for an NLG system,
this flat list of OpenStreetMap nodes needs to be
subdivided into smaller message chunks. In turn-
by-turn navigation, the general delimiter between
such chunks are the driving maneuvers that the
driver must execute at each decision point. We
call each span between two decision points an
episode. Episodes are not explicitly represented
in the original route plan: although every segment
has a street name associated with it, the name of
a street sometimes changes as we go along, and
because chains of segments are used to model
curved streets in OpenStreetMap, even segments
that are joined at an angle may be parts of the
same street. Thus, in Fig. 4 it is not apparent
which segment traversals require any navigational
maneuvers.

We identify episode boundaries with the fol-
lowing heuristic. We first assume that episode
boundaries occur when the street name changes
from one segment to the next. However, stay-
ing on the road may involve a driving maneu-
ver (and therefore a decision point) as well, e.g.

when the road makes a sharp turn where a minor
street forks off. To handle this case, we introduce
decision points at nodes with multiple adjacent
segments if the angle between the incoming and
outgoing segment of the street exceeds a certain
threshold. Conversely, our heuristic will some-
times end an episode where no driving maneuver
is necessary, e.g. when an ongoing street changes
its name. This is unproblematic in practice; the
system will simply generate an instruction to keep
driving straight ahead. Fig. 3 shows a graphical
representation of an episode, with the street seg-
ments belonging to it drawn as red dashed lines.

4.2 Aggregation

Because we generate spoken instructions that are
given to the user while they are driving, the timing
of the instructions becomes a crucial issue, espe-
cially because a driver moves faster than the user
of a pedestrian navigation system. It is undesir-
able for a second instruction to interrupt an ear-
lier one. On the other hand, the second instruc-
tion cannot be delayed because this might make
the user miss a turn or interpret the instruction in-
correctly.

We must therefore control at which points in-
structions are given and make sure that they do
not overlap. We do this by always presenting pre-
view messages at trigger positions at certain fixed
distances from the decision point. The sentence
planner calculates where these trigger positions
are located for each episode. In this way, we cre-
ate time frames during which there is enough time
for instructions to be presented.

However, some episodes are too short to ac-
commodate the three trigger positions for the con-
firmation message and the two preview messages.
In such episodes, we aggregate different mes-
sages. We remove the trigger positions for the two
preview messages from the episode, and instead
add the first preview message to the turn instruc-
tion message of the previous episode. This allows
our system to generate instructions like “Now turn
right, and then turn left after the church.”

4.3 Generation of landmark descriptions

The Virtual Co-Pilot computes referring expres-
sions to decision points by selecting appropriate
landmarks. To this end, it first looks up landmark
candidates within a given range of the decision
point from the database created in Section 3. This
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yields an initial list of landmark candidates.
Some of these landmark candidates may be un-

suitable for the given situation because of lack of
uniqueness. If there are several visual landmarks
of the same type along the course of an episode,
all of these landmark candidates are removed. For
episodes which contain multiple street furniture
landmarks of the same type, the first three in each
episode are retained; a referring expression for the
decision point might then be “at the second traf-
fic light”. If the decision point is no more than
three intersections away, we also add a landmark
description of the form “at the third intersection”.
Furthermore, a landmark must be visible from the
last segment of the current episode; we only retain
a candidate if it is either adjacent to a segment of
the current episode or if it is close to the end point
of the very last segment of the episode. Among
the landmarks that are left over, the system prefers
visual landmarks over street furniture, and street
furniture over intersections. If no landmark candi-
dates are left over, the system falls back to metric
distances.

Second, the Virtual Co-Pilot determines the
spatial relationship between the landmark and the
decision point so that an appropriate preposition
can be used in the referring expression. If the de-
cision point occurs before the landmark along the
course of the episode, we use the preposition “in
front of”, otherwise, we use “after”. Intersections
are always used with “at” and metric distances
with “in”.

Finally, the system decides how to refer to the
landmark objects themselves. Although it has ac-
cess to the names of all objects from the Open-
StreetMap data, the user may not know these
names. We therefore refer to churches, gas sta-
tions, and any street furniture simply as “the
church”, “the gas station”, etc. For supermar-
kets and bars, we assume that these buildings are
more saliently referred to by their names, which
are used in everyday language, and therefore use
the names to refer to them.

The result of the sentence planning stage is
a list of semantic representations, specifying the
individual instructions that are to be uttered in
each episode; an example is shown in Fig. 5.
For each type of instruction, we then use a sen-
tence template to generate linguistic surface forms
by inserting the information contained in those
plans into the slots provided by the templates (e.g.

Preview message p1:
Trigger position: Node3 − 50m
Turn direction: right
Landmark: church
Preposition: after

Preview message p2 = p1, except:
Trigger position: Node3 − 100m

Turn instruction t1:
Trigger position: Node3
Turn direction: right

Confirmation message c1:
Trigger position: Node3 + 50m

Figure 5: Semantic representations of the different
types of instructions in one episode.

“Turn direction preposition landmark”).

4.4 Interactive generation

As a final point, the NLG process of a car naviga-
tion system takes place in an interactive setting:
as the system generates and utters instructions, the
user may either follow them correctly, or they may
miss a turn or turn incorrectly because they mis-
understood the instruction or were forced to disre-
gard it by the traffic situation. The system must be
able to detect such problems, recover from them,
and generate new instructions in real time.

Our system receives a continuous stream of in-
formation about the position and direction of the
user. It performs execution monitoring to check
whether the user is still following the intended
route. If a trigger position is reached, we present
the instruction that we have generated for this po-
sition. If the user has left the route, the system
reacts by planning a new route starting from the
user’s current position and generating a new set of
instructions. We check whether the user is follow-
ing the intended route in the following way. The
system keeps track of the current episode of the
route plan, and monitors the distance of the car
to the final node of the episode. While the user
is following the route correctly, the distance be-
tween the car and the final node should decrease
or at least stay the same between two measure-
ments. To accommodate for occasional deviations
from the middle of the road, we allow five subse-
quent measurements to increase the distance; the
sixth increase of the distance triggers a recompu-
tation of the route plan and a freshly generated
instruction. On the other hand, when the distance
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of the car to the final node falls below a certain
threshold, we assume that the end of the episode
has been reached, and activate the next episode.
By monitoring whether the user is now approach-
ing the final node of this new episode, we can in
particular detect wrong turns at intersections.

Because each instruction carries the risk that it
may not be followed correctly, there is a question
as to whether it is worth planning out all remain-
ing instructions for the complete route plan. After
all, if the user does not follow the first instruc-
tion, the computation of all remaining instructions
was a waste of time. We decided to compute all
future instructions anyway because the aggrega-
tion procedure described above requires them. In
practice, the NLG process is so efficient that all
instructions can be done in real time, but this de-
cision would have to be revisited for a slower sys-
tem.

5 Evaluation

We will now report on an experiment in which we
evaluated the performance of the Virtual Co-Pilot.

5.1 Experimental Method
5.1.1 Subjects

In total, 12 participants were recruited through
printed ads and mailing lists. All of them were
university students aged between 21 and 27 years.
Our experiment was balanced for gender, hence
we recruited 6 male and 6 female participants. All
participants were compensated for their effort.

5.1.2 Design
The driving simulator used in the experiment

replicates a real-world city center using a 3D
model that contains buildings and streets as they
can be perceived in reality. The street layout 3D
model used by the driving simulator is based on
OpenStreetMap data, and buildings were added to
the virtual environment based on cadastral data.
To increase the perceived realism of the model,
some buildings were manually enhanced with
photographic images of their real-world counter-
parts (see Fig. 7).

Figure 6 shows the set-up of the evaluation ex-
periment. The virtual driving simulator environ-
ment (main picture in Fig. 7) was presented to the
participants on a 20” computer screen (A). In ad-
dition, graphical navigation instructions (shown
in the lower right of Fig. 7) were displayed on

Figure 6: Experiment setup. A) Main screen B) Navi-
gation screen C) steering wheel D) eye tracker

a separate 7” monitor (B). The driving simula-
tor was controlled by means of a steering wheel
(C), along with a pair of brake and acceleration
pedals. We recorded user eye movements using
a Tobii IS-Z1 table-mounted eye tracker (D). The
generated instructions were converted to speech
using MARY, an open-source text-to-speech sys-
tem (Schröder and Trouvain, 2003), and played
back on loudspeakers.

The task of the user was to drive the car in
the virtual environment towards a given destina-
tion; spoken instructions were presented to them
as they were driving, in real time. Using the
steering wheel and the pedals, users had full con-
trol over steering angles, acceleration and brak-
ing. The driving speed was limited to 30 km/h, but
there were no restrictions otherwise. The driving
simulator sent the NLG system a message with the
current position of the car (as GPS coordinates)
once per second.

Each user was asked to drive three short routes
in the driving simulator. Each route took about
four minutes to complete, and the travelled dis-
tance was about 1 km. The number of episodes
per route ranged from three to five. Landmark
candidates were sufficiently dense that the Virtual
Co-Pilot used landmarks to refer to all decision
points and never had to fall back to the metric dis-
tance strategy.

There were three experimental conditions,
which differed with respect to the spoken route
instructions and the use of the navigation screen.
In the baseline condition, designed to replicate the
behavior of an off-the-shelf commercial car nav-
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All Users Males Females
B VCP B VCP B VCP

Total Fixation Duration (seconds) 4.9 3.5 2.7 4.1 7.0 2.9*
Total Fixation Count (N) 21.8 15.4 13.5 16.5 30.0 14.3*
”The system provided the right amount
of information at any time”

3.9 2.9 4.2* 3.3 3.5 2.5

”I was insecure at times about still be-
ing on the right track.”

2.3 3.2 1.9* 2.8 2.6 3.5

”It was important to have a visual rep-
resentation of route directions”

4.3 4.0 4.2 4.2 4.3 3.7

”I could trust the navigation system” 3.6 3.7 4.1 3.7 3.0 3.7

Figure 8: Mean values for gaze behavior and subjective evaluation, separated by user group and condition (B =
baseline, VCP = our system). Significant differences are indicated by *; better values are printed in boldface.

Figure 7: Screenshot of a scene in the driving simula-
tor. Lower right corner: matching screenshot of navi-
gation display.

igation system, participants were provided with
spoken metric distance-to-turn navigation instruc-
tions. The navigation screen showed arrows de-
picting the direction of the next turn, along with
the distance to the decision point (cf. Fig. 7). The
second condition replaced the spoken route in-
structions by those generated by the Virtual Co-
Pilot. In a third condition, the output of the nav-
igation screen was further changed to display an
icon for the next landmark along with the arrow
and distance indicator. The three routes were pre-
sented to the users in different orders, and com-
bined with the conditions in a Latin Squares de-
sign. In this paper, we focus on the first and sec-
ond condition, in order to contrast the two styles
of spoken instruction.

Participants were asked to answer two ques-
tionnaires after each trial run. The first was the
DALI questionnaire (Pauzié, 2008), which asks
subjects to report how they perceived different

aspects of their cognitive workload (general, vi-
sual, auditive and temporal workload, as well as
perceived stress level). In the second question-
naire, participants were state to rate their agree-
ment with a number of statements about their sub-
jective impression of the system on a 5-point un-
labelled Likert scale, e.g. whether they had re-
ceived instructions at the right time or whether
they trusted the navigation system to give them
the right instructions during trials.

5.2 Results

There were no significant differences between the
Virtual Co-Pilot and the baseline system on task
completion time, rate of driving errors, or any of
the questions of the DALI questionnaire. Driv-
ing errors in particular were very rare: there were
only four driving errors in total, two of which
were due to problems with left/right coordination.

We then analyzed the gaze data collected by the
table-mounted eye tracker, which we set up such
that it recognized glances at the navigation screen.
In particular, we looked at the total fixation dura-
tion (TFD), i.e. the total amount of time that a user
spent looking at the navigation screen during a
given trial run. We also looked at the total fixation
count (TFC), i.e. the total number of times that a
user looked at the navigation screen in each run.
Mean values for both metrics are given in Fig. 8,
averaged over all subjects and only male and fe-
male subjects, respectively; the “VCP” column is
for the Virtual Co-Pilot, whereas “B” stands for
the baseline. We found that male users tended
to look more at the navigation screen in the VCP
condition than in B, although the difference is not
statistically significant. However, female users
looked at the navigation screen significantly fewer
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times (t(5) = 3.2, p < 0.05, t-test for dependent
samples) and for significantly shorter amounts of
time (t(5) = 3.2, p < 0.05) in the VCP condition
than in B.

On the subjective questionnaire, most questions
yielded no significant differences (and are not re-
ported here). However, we found that female
users tended to rate the Virtual Co-Pilot more pos-
itively than the baseline on questions concerning
trust in the system and the need for the navigation
screen (but not significantly). Male users found
that the baseline significantly outperformed the
Virtual Co-Pilot on presenting instructions at the
right time (t(5) = 2.7, p < 0.05) and on giving
them a sense of security in still being on the right
track (t(5) = −2.7, p < 0.05).

5.3 Discussion

The most striking result of the evaluation is that
there was a significant reduction of looks to the
navigation display, even if only for one group
of users. Female users looked at the navigation
screen less and more rarely with the Virtual Co-
Pilot compared to the baseline system. In a real
car navigation system, this translates into a driver
who spends less time looking away from the road,
i.e. a reduction in driver distraction and an in-
crease in traffic safety. This suggests that female
users learned to trust the landmark-based instruc-
tions, an interpretation that is further supported
by the trends we found in the subjective question-
naire.

We did not find these differences in the male
user group. Part of the reason may be the known
gender differences in landmark use we mentioned
in Section 2. But interestingly, the two signifi-
cantly worse ratings by male users concerned the
correct timing of instructions and the feedback for
driving errors, i.e. issues regarding the system’s
real-time capabilities. Although our system does
not yet perform ideally on these measures, this
confirms our initial hypothesis that the NLG sys-
tem must track the user’s behavior and schedule
its utterances appropriately. This means that ear-
lier systems such as CORAL, which only com-
pute a one-shot discourse of route instructions
without regard to the timing of the presentation,
miss a crucial part of the problem.

Apart from the exceptions we just discussed,
the landmark-based system tended to score com-
parably or a bit worse than the baseline on the

other subjective questions. This may partly be due
to the fact that the subjects were familiar with ex-
isting commercial car navigation systems and not
used to landmark-based instructions. On the other
hand, this finding is also consistent with results
of other evaluations of NLG systems, in which
an improvement in the objective task usefulness
of the system does not necessarily correlate with
improved scores from subjective questionnaires
(Gatt et al., 2009).

6 Conclusion

In this paper, we have described a system for gen-
erating real-time car navigation instructions with
landmarks. Our system is distinguished from ear-
lier work in its reliance on open-source map data
from OpenStreetMap, from which we extract both
the street graph and the potential landmarks. This
demonstrates that open resources are now infor-
mative enough for use in wide-coverage naviga-
tion NLG systems. The system then chooses ap-
propriate landmarks at decision points, and con-
tinuously monitors the driver’s behavior to pro-
vide modified instructions in real time when driv-
ing errors occur.

We evaluated our system using a driving simu-
lator with respect to driving errors, user satisfac-
tion, and driver distraction. To our knowledge,
we have shown for the first time that a landmark-
based car navigation system outperforms a base-
line significantly; namely, in the amount of time
female users spend looking away from the road.

In many ways, the Virtual Co-Pilot is a very
simple system, which we see primarily as a start-
ing point for future research. The evaluation
confirmed the importance of interactive real-time
NLG for navigation, and we therefore see this as
a key direction of future work. On the other hand,
it would be desirable to generate more complex
referring expressions (“the tall church”). This
would require more informative map data, as well
as a formal model of visual salience (Kelleher and
van Genabith, 2004; Raubal and Winter, 2002).
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Abstract

We compare the impact of sentence-
internal vs. sentence-external features on
word order prediction in two generation
settings: starting out from a discrimina-
tive surface realisation ranking model for
an LFG grammar of German, we enrich
the feature set with lexical chain features
from the discourse context which can be
robustly detected and reflect rough gram-
matical correlates of notions from theoreti-
cal approaches to discourse coherence. In a
more controlled setting, we develop a con-
stituent ordering classifier that is trained
on a German treebank with gold corefer-
ence annotation. Surprisingly, in both set-
tings, the sentence-external features per-
form poorly compared to the sentence-
internal ones, and do not improve over
a baseline model capturing the syntactic
functions of the constituents.

1 Introduction

The task of surface realization, especially in a rel-
atively free word order language like German, is
only partially determined by hard syntactic con-
straints. The space of alternative realizations that
are strictly speaking grammatical is typically con-
siderable. Nevertheless, for any given choice of
lexical items and prior discourse context, only a
few realizations will come across as natural and
will contribute to a coherent text. Hence, any NLP
application involving a non-trivial generation step
is confronted with the issue of soft constraints on
grammatical alternatives in one way or another.

There are countless approaches to modelling
these soft constraints, taking into account their
interaction with various aspects of the discourse

context (givenness or salience of particular refer-
ents, prior mentioning of particular concepts).

Since so many factors are involved and there is
further interaction with subtle semantic and prag-
matic differentiations, lexical choice, stylistics
and presumably processing factors, theoretical ac-
counts making reliable predictions for real cor-
pus examples have for a long time proven elusive.
As for German, only quite recently, a number of
corpus-based studies (Filippova and Strube, 2007;
Speyer, 2005; Dipper and Zinsmeister, 2009) have
made some good progress towards a coherence-
oriented account of at least the left edge of the
German clause structure, the Vorfeld constituent.

What makes the technological application of
theoretical insights even harder is that for most
relevant factors, automatic recognition cannot be
performed with high accuracy (e.g., a coreference
accuracy in the 70’s means there is a good deal
of noise) and for the higher-level notions such
as the information-structural focus, interannotator
agreement on real corpus data tends to be much
lower than for core-grammatical notions (Poesio
and Artstein, 2005; Ritz et al., 2008).

On the other hand, many of the relevant dis-
course factors are reflected indirectly in proper-
ties of the sentence-internal material. Most no-
tably, knowing the shape of referring expressions
narrows down many aspects of givenness and
salience of its referent; pronominal realizations
indicate givenness, and in German there are even
two variants of the personal pronoun (er and der)
for distinguishing salience. So, if the genera-
tion task is set in such a way that the actual lex-
ical choice, including functional categories such
as determiners, is fully fixed (which is of course
not always the case), one can take advantage of
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these reflexes. This explains in part the fairly high
baseline performance of n-gram language mod-
els in the surface realization task. And the effect
can indeed be taken much further: the discrimi-
native training experiments of Cahill and Riester
(2009) show how effective it is to systematically
take advantage of asymmetry patterns in the mor-
phosyntactic reflexes of the discourse notion of
information status (i.e., using a feature set with
well-chosen purely sentence-bound features).

These observations give rise to the question: in
the light of the difficulty in obtaining reliable dis-
course information on the one hand and the effec-
tiveness of exploiting the reflexes of discourse in
the sentence-internal material on the other – can
we nevertheless expect to gain something from
adding sentence-external feature information?

We propose two scenarios for adressing this
question: first, we choose an approximative ac-
cess to context information and relations between
discourse referents – lexical reiteration of head
words, combined with information about their
grammatical relation and topological positioning
in prior sentences. We apply these features in a
rich sentence-internal surface realisation ranking
model for German. Secondly, we choose a more
controlled scenario: we train a constituent order-
ing classifier based on a feature model that cap-
tures properties of discourse referents in terms of
manually annotated coreference relations. As we
get the same effect in both setups – the sentence-
external features do not improve over a baseline
that captures basic morphosyntactic properties of
the constituents – we conclude that sentence-
internal realisation is actually a relatively accurate
predictor of discourse context, even more accurate
than information that can be obtained from coref-
erence and lexical chain relations.

2 Related Work

In the generation literature, most works on ex-
ploiting sentence-external discourse information
are set in a summarisation or content ordering
framework. Barzilay and Lee (2004) propose an
account for constraints on topic selection based on
probabilistic content models. Barzilay and Lapata
(2008) propose an entity grid model which repre-
sents the distribution of referents in a discourse
for sentence ordering. Karamanis et al. (2009)
use Centering-based metrics to assess coherence
in an information ordering system. Clarke and La-

pata (2010) have improved a sentence compres-
sion system by capturing prominence of phrases
or referents in terms of lexical chain information
inspired by Morris and Hirst (1991) and Center-
ing (Grosz et al., 1995). In their system, discourse
context is represented in terms of hard constraints
modelling whether a certain constituent can be
deleted or not.

In the linearisation or surface realisation do-
main, there is a considerable body of work ap-
proximating information structure in terms of
sentence-internal realisation (Ringger et al., 2004;
Filippova and Strube, 2009; Velldal and Oepen,
2005; Cahill et al., 2007). Cahill and Riester
(2009) improve realisation ranking for German –
which mainly deals with word order variation – by
representing precedence patterns of constituents
in terms of asymmetries in their morphosyntac-
tic properties. As a simple example, a pattern ex-
ploited by Cahill and Riester (2009) is the ten-
dency of definite elements tend to precede indef-
inites, which, on a discourse level, reflects that
given entities in a sentence tend to precede new
entities.

Other work on German surface realisation has
highlighted the role of the initial position in the
German sentence, the so-called Vorfeld (or “pre-
field”). Filippova and Strube (2007) show that
once the Vorfeld (i.e. the constituent that precedes
the finite verb) is correctly determined, the pre-
diction of the order in the Mittelfeld (i.e. the con-
stituents that follow the finite verb) is very easy.
Cheung and Penn (2010) extend the approach
of Filippova and Strube (2007) and augment a
sentence-internal constituent ordering model with
sentence-external features inspired from the en-
tity grid model proposed by Barzilay and Lapata
(2008).

3 Motivation

While there would be many ways to construe
or represent discourse context (e.g. in terms of
the global discourse or information structure), we
concentrate on capturing local coherence through
the distribution of discourse referents in a text.
These discourse referents basically correspond to
the constituents that our surface realisation model
has to put in the right order. As the order of refer-
ents or constituents is arguably influenced by the
information structure of a sentence given the pre-
vious text, our main assumption was that infor-
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(1) a. Kurze Zeit später erklärte ein Anrufer bei Nachrichtenagenturen in Pakistan , die Gruppe Gamaa bekenne sich.
Shortly after, a caller declared at the news agencies in Pakistan, that the group Gamaa avowes itself.

b. Diese Gruppe wird für einen Großteil der Gewalttaten verantwortlich gemacht , die seit dreieinhalb Jahren in
Ägypten verübt worden sind .
This group is made responsible for most of the violent acts that have been committed in Egypt in the last three and
a half years.

(2) a. Belgien wünscht, dass sich WEU und NATO darüber einigen.
Belgium wants that WEU and NATO agree on that.

b. Belgien sieht in der NATO die beste militärische Struktur in Europa .
Belgium sees the best military structure of Europe in the NATO.

(3) a. Frauen vom Land kämpften aktiv darum , ein Staudammprojekt zu verhindern.
Women from the countryside fighted actively to block the dam project.

b. Auch in den Städten fänden sich immer mehr Frauen in Selbsthilfeorganisationen zusammen.
Also in the cities, more and more women team up in self-help organisations.

mation about the prior mentioning of a referent
would be helpful for predicting the position of this
referent in a sentence.

The idea that the occurence of discourse refer-
ents in a text is a central aspect of discourse struc-
ture has been systematically pursued by Centering
Theory (Grosz et al., 1995). Its most important
notions are related to the realisation of discourse
referents (i.e. described as “centers”) and the way
the centers are arranged in a sequence of utter-
ances to make this sequence a coherent discourse.
Another important concept is the “ranking” of dis-
course referents which basically determines the
prominence of a referent in a certain sentence and
is driven by several factors (e.g. their grammati-
cal function). For free word order languages like
German, word order has been proposed as one of
the factors that account for the ranking (Poesio et
al., 2004). In a similar spirit, Morris and Hirst
(1991) have proposed that chains of (related) lex-
ical items in a text are an important indicator of
text structure.

Our main hypothesis was that it is possible to
exploit these intuitions from Centering Theory
and the idea of lexical chains for word order pre-
diction. Thus, we expected that it would be easier
to predict the position of a referent in a sentence
if we have not only given its realisation in the cur-
rent utterance but also its prominence in the previ-
ous discourse. Especially, we expected this intu-
ition to hold for cases where the morpho-syntactic
realisation of a constituent does not provide many
clues. This is illustrated in Examples (1) and (2)
which both exemplify the reiteration of a lexical
item in two subsequent sentences, (reiteration is
one type of lexical chain discussed in Morris and
Hirst (1991)). In Example (1), the second instance

of the noun ‘group’ is modified by a demonstra-
tive pronoun such that its “known” and prominent
discourse status is overt in the morpho-syntactic
realisation. In Example (2), both instances of
“Belgium” are realised as bare proper nouns with-
out an overt morphosyntactic clue indicating their
discourse status.

Beyond the simple presence of reitered items in
sequences of sentences, we expected that it would
be useful to look at the position and syntactic
function of the previous mentions of a discourse
referent. In Example (1), the reiterated item is first
introduced in an embedded sentence and realised
in the Vorfeld in the second utterance. In terms
of centering, this transition would correspond to
a topic shift. In Example (2), both instances are
realised in the Vorfeld, such that the topic of the
first sentence is carried over to the next.

In Example (3), we illustrate a further type of
lexical reiteration. In this case, two identical head
nouns are realised in subsequent sentences, even
though they refer to two different discourse refer-
ents. While this type of lexical chain is described
as “reiteration without identity of referents” by
Morris and Hirst (1991), it would not be captured
in Centering since this is not a case of strict coref-
erence. On the other hand, lexical chains do not
capture types of reiterated discourse referents that
have distinct morpho-syntactic realisations, e.g.
nouns and pronouns.

Originally, we had the hypothesis that strict
corefence information is more useful and accurate
for word order prediction than rather loose lexi-
cal chains which conflate several types of referen-
tial and lexical relations. However, the advantage
of chains, especially chains of reiteration, is that
they can be easily detected in any corpus text and
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that they might capture “topics” of sentences be-
yond the identity of referents. Thus, we started
out from the idea of lexical chains and added cor-
responding features in a statistical ranking model
for surface realisation of German (Section 4). As
this strategy did not work out, we wanted to assess
whether an ideal coreference annotation would be
helpful at all for predicting word order. In a sec-
ond experiment, we use a corpus which is manu-
ally annotated for coreference (Section 5).

4 Experiment 1: Realisation Ranking
with Lexical Chains

In this Section, we present an experiment that in-
vestigates sentence-external context in a surface
realisation task. The sentence-external context is
represented in terms of lexical chain features and
compared to sentence-internal models which are
based on morphosyntactic features. The experi-
ment thus targets a generation scenario where no
coreference information is available and aims at
assessing whether relatively naive context infor-
mation is also useful.

4.1 System Description

We carry out our first experiment in a regener-
ation set-up with two components: a) a large-
scale hand-crafted Lexical Functional Grammar
(LFG) for German (Rohrer and Forst, 2006), used
to parse and regenerate a corpus sentence, b)
a stochastic ranker that selects the most appro-
priate regenerated sentence in context according
to an underlying, linguistically motivated feature
model. In contrast to fully statistical linearisation
methods, our system first generates the full set
of sentences that correspond to the grammatically
well-formed realisations of the intermediate syn-
tactic representation.1 This representation is an
f-structure, which underspecifies the order of con-
stituents and, to some extent, their morphological
realisation, such that the output sentences contain
all possible combinations of word order permu-
tations and morphological variants. Depending
on the length and structure of the original corpus
sentence, the set of regenerated sentences can be
huge (see Cahill et al. (2007) for details on regen-
erating the German treebank TIGER).

1There are occasional mistakes in the grammar which
sometimes lead to ungrammatical strings being generated,
but this is rare.

The realisation ranking component is an SVM
ranking model implemented with SVMrank,
a Support Vector Machine-based learning tool
(Joachims, 2006). During training, each sentence
is annotated with a rank and a set of features ex-
tracted from the F-structure, its surface string and
external resources (e.g. a language model). If
the sentence matches the original corpus string,
its rank will be highest, the assumption being that
the original sentence corresponds to the optimal
realisation in context. The output of generation,
the top-ranked sentence, is evaluated against the
original corpus sentence.

4.2 The Feature Models
As the aim of this experiment is to better un-
derstand the nature of sentence-internal features
reflecting discourse context and compare them
to sentence-external ones, we build several fea-
ture models which capture different aspects of the
constituents in a given sentence. The sentence-
internal features describe the morphosyntacic re-
alisation of constituents, for instance their func-
tion (“subject”, “object”), and can be straightfor-
wardly extracted from the f-structure. These fea-
tures are then combined into discriminative prece-
dence features, for instance “subject-precedes-
object”. We implement the following types of
morphosyntactic features:

• syntactic function (arguments and adjuncts)
• modification (e.g. nouns modified by relative

clauses, genitive etc.)
• syntactic category (e.g. adverbs, proper

nouns, phrasal arguments)
• definiteness for nouns
• number and person for nominal elements
• types of pronouns (e.g. demonstrative, re-

flexive)
• constituent span and number of embedded

nodes in the tree

In addition, we also include language model
scores in our ranking model. In Section 4.4,
we report on results for several subsets of these
features where “BaseSyn” refers to a model that
only includes the syntactic function features and
“FullMorphSyn” includes all features mentioned
above.

For extracting the lexical chains, we check for
any overlapping nouns in the n sentences previ-
ous to the current one being generated. We check
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Rank Sentence and Features
% Diese Gruppe wird für einen Großteil der Gewalttaten verantwortlich gemacht.
% This group is for a major part of the violent acts responsible made.

1 subject-<-pp-object, demonstrative-<-indefinite, overlap-<-no-overlap, overlap-in-vorfeld, lm:-7.89
% Für einen Großteil der Gewalttaten wird diese Gruppe verantwortlich gemacht.
% For a major part of the violent acts is this group responsible made.

3 pp-object-<-subject, indefinite-<-demonstrative, no-overlap-<-overlap, no-overlap-in-vorfeld, lm:-10.33
% Verantwortlich gemacht wird diese Gruppe für einen Großteil der Gewalttaten.
% Responsible made is this group for a major part of the violent acts.

3 subject-<-pp-object, demonstrative-<-indefinite, overlap-<-no-overlap, lm:-9.41

Figure 1: Made-up training example for realisation ranking with precedence features

proper and common nouns, considering full and
partial overlaps as shown in Examples (1) and
(2), where the (a) example is the previous sen-
tence in the corpus. For each overlap, we record
the following properties: (i) function in the previ-
ous sentence, (ii) position in the previous sentence
(e.g. Vorfeld), (iii) distance between sentences,
(iv) total number of overlaps.

These overlap features are then also
combined in terms of precedence, e.g.
“has subject overlap:3-precedes-no overlap”,
meaning that in the current sentence a noun
that was previously mentioned in a subject 3
sentences ago precedes a noun that was not
mentioned before.

In Figure 1, we give an example of a set of gen-
eration alternatives and their (partial) feature rep-
resentation for the sentence (1-b). Precedence is
indicated by ”<”.

Basically, our sentence-external feature model
is built on the intuition that lexical chains or over-
laps approximate discourse status in a way which
is similar to sentence-internal morphosyntactic
properties. Thus, we would expect that overlaps
indicate givenness, salience or prominence and
that asymmetries between overlapping and non-
overlapping entities are helpful in the ranking.

4.3 Data
All our models are trained on 7,039 sentences
(subdivided into 1259 texts) from the TIGER
Treebank of German newspaper text (Brants et al.,
2002). We tune the parameters of our SVM model
on a development set of 55 sentences and report
the final results for our unseen test set of 240 sen-
tences. Table 1 shows how many sentences in our
training, development and test sets have at least
one textually overlapping phrase in the previous
1–10 sentences.

We choose the TIGER treebank, which has no

# Sentences % Sentences with overlap
in context Training Dev Test
1 20.96 23.64 20.42
2 35.42 40.74 35.00
3 45.58 50.00 53.33
4 52.66 53.70 58.75
5 57.45 58.18 64.58
6 61.42 57.41 68.75
7 64.58 61.11 70.83
8 67.05 62.96 72.08
9 69.20 64.81 74.17
10 71.16 70.37 75.83

Table 1: The percentage of sentences that have at least
one overlapping entity in the previous n sentences

coreference annotation, since we already have a
number of resources available to match the syn-
tactic analyses produced by our grammar against
the analyses in the treebank. Thus, in our regen-
eration system, we parse the sentences with the
grammar, and choose the parsed f-structures that
are compatible with the manual annotation in the
TIGER treebank as is done in Cahill et al. (2007).
This compatibility check eliminates noise which
would be introduced by generating from incorrect
parses (e.g. incorrect PP-attachments typically re-
sult in unnatural and non-equivalent surface reali-
sations).

For comparing the string chosen by the mod-
els against the original corpus sentence, we use
BLEU, NIST and exact match. Exact match is
a strict measure that only credits the system if it
chooses the exact same string as the original cor-
pus string. BLEU and NIST are more relaxed
measures that compare the strings on the n-gram
level. Finally, we report accuracy scores for the
Vorfeld position (VF) corresponding to the per-
centage of sentences generated with a correct Vor-
feld.
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Sc BLEU NIST Exact VF
0 0.766 11.885 50.19 64.0
1 0.765 11.756 49.78 64.0
2 0.765 11.886 50.01 64.1
3 0.765 11.885 50.08 63.8
4 0.761 11.723 49.43 63.2
5 0.765 11.884 49.71 64.2
6 0.768 11.892 50.42 64.6
7 0.765 11.885 50.01 64.5
8 0.764 11.884 49.78 64.3
9 0.765 11.888 49.82 63.6

10 0.764 11.889 49.7 63.5

Table 2: Tenfold-crossvalidation for feature model
FullMorphSyn and different context windows (Sc)

Model BLEU VF
Language Model 0.702 51.2
Language Model + Context Sc = 5 0.715 54.3
BaseSyn 0.757 62.0
BaseSyn + Context Sc = 5 0.760 63.0
FullMorphSyn 0.766 64.0
FullMorphSyn + Context Sc = 5 0.763 64.2

Table 3: Evaluation for different feature models; ‘Lan-
guage Model’: ranking based on language model
scores, ‘BaseSyn’: precedence between constituent
functions, ‘FullMorphSyn’: entire set of sentence-
internal features.

4.4 Results

In Table 2, we report the performance of the full
sentence-internal feature model combined with
context windows from zero to ten. The scores
have been obtained from tenfold-crossvalidation.
For none of the context windows, the model out-
performs the baseline with a zero context which
has no sentence-external features. In Table 3,
we compare the performance of several feature
models corresponding to subsets of the features
used so far which are combined with sentence-
external features respectively. We note that the
function precedence features (i.e. the ‘BaseSyn’
model) are very powerful, leading to a major im-
provement compared to a language model. The
sentence-external features lead to an improvement
when combined with the language-model based
ranking. However, this improvement is leveled
out in the BaseSyn model.

On the one hand, the fact that the lexical chain
features improve a language-model based ranking
suggests these features are, to some extent, pre-
dictive for certain patterns of German word order.
On the other hand, the fact that they don’t improve
over an informed sentence-internal baseline sug-
gests that these patterns are equally well captured

by morphosyntactic features. However, we cannot
exclude the possibility that the chain features are
too noisy as they conflate several types of lexical
and coreferential relations. This will be adressed
in the following experiment.

5 Experiment 2: Constituent Ordering
with Centering-inspired Features

We now look at a simpler generation setup where
we concentrate on the ordering of constituents in
the German Vorfeld and Mittelfeld. This strat-
egy has also been adopted in previous investiga-
tions of German word order: Filippova and Strube
(2007) show that once the German Vorfeld is cor-
rectly chosen, the prediction accuracy for the Mit-
telfeld (the constituents following the finite verb)
is in the 90s.

In order to eliminate noise introduced from po-
tentially heterogeneous chain features, we look at
coreference features and, again, compare them to
sentence-internal morphosyntactic features. We
target a generation scenario where coreference in-
formation is available. The aim is to establish an
upper bound concerning the quality improvement
for word order prediction by recurring to manual
corefence annotation.

5.1 Data and Setup

We carry out the constituent ordering experiment
on the Tüba-D/Z treebank (v5) of German news-
paper articles (Telljohann et al., 2006). It com-
prises about 800k tokens in 45k sentences. We
choose this corpus because it is not only annotated
with syntactic analyses but also with coreference
relations (Naumann, 2006). The syntactic annota-
tion format differs from the TIGER treebank used
in the previous experiment, for instance, it ex-
plicitely represents the Vorfeld and Mittelfeld as
phrasal nodes in the tree. This format is very con-
venient for the extraction of constituents in the re-
spective positions.

The Tüba-D/Z coreference annotation distin-
guishes several relations between discourse ref-
erents, most importantly “coreferential relation”
and “anaphoric relation” where the first denotes
a relation between noun phrases that refer to the
same entity, and the latter refers to a link between
a pronoun and a contextual antecedent, see Nau-
mann (2006) for further detail. We expected the
coreferential relation to be particularly useful, as
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it cannot always be read off the morphosyntac-
tic realisation of a noun phrase, whereas pronouns
are almost always used in an anaphoric relation.

The constituent ordering model is implemented
as a classifier that is given a set of constituents
and predicts the constituent that is most likely to
be realised in the Vorfeld.

The set of candidate constituents is determined
from the tree of the original corpus sentence. We
will assume that all constituents under a Vorfeld
and Mittelfeld node can be freely reordered. Thus,
we do not check whether the word order variants
we look at are actually grammatical assuming that
most of them are. In this sense, this experiment
is close to fully statistical generation approaches.
As a further simplification, we do not look at mor-
phological generation variants of the constituents
or their head verb.

The classifier is implemented with SVMrank
again. In contrast to the previous experiment
where we learned to rank sentences, the classi-
fier now learns to rank constituents. The con-
stituents have been extracted using the tool de-
scribed in Bouma (2010). The final data set com-
prises 48.513 candidate sets of freely orderable
constituents.

5.2 Centering-inspired Feature Model

To compare the discourse context model against a
sentence-based model, we implemented a number
of sentence-internal features that are very similar
to the features used in the previous experiment.
Since we extract them from the syntactic annota-
tion instead of f-structures, some labels and fea-
ture names will be different, however, the design
of the sentence-internal model is identical to the
previous one in Section 4.

The sentence-external features differ in some
aspects from Section 4, since we extract coref-
erence relations of several types (see (Naumann,
2006) for the anaphoric relations annotated in the
Tueba-D/Z). For each type of coreference link,
we extract the following properties: (i) function
of the antecedent, (ii) position of the antecedent,
(iii) distance between sentences, (iv) type of rela-
tion. We also distinguish coreference links anno-
tated for the whole phrase (“head link”) and links
that are annotated for an element embedded by the
constituent (“contained link”). The two types are
illustrated in Examples (4) and (5). Note that both
cases would not have been captured in the lexical

# VF # MF
Backward Center 3.5% 5.1%
Forward Center 6.8% 6.8%
Coref Link 30.5% 23.4%

Table 4: Backward and forward centers and their posi-
tions

chain model since there is no lexical overlap be-
tween the realisations of the discourse referents.

These types of coreference features implicitly
carry the information that would also be consid-
ered in a Centering formalisation of discourse
context. In addition to these, we designed features
that explicitly describe centers as these might
have a higher weight. In line with Clarke and
Lapata (2010), we compute backward (CB) and
forward centers (CF ) in the following way:

1. Extract all entities from the current sentence
and the previous sentence.

2. Rank the entities of the previous sentence ac-
cording to their function (subject < direct
object < indirect object ...).

3. Find the highest ranked entity in the previous
sentence that has a link to an entity in the
current sentence, this entity is the CB of the
sentence.

In the same way, we mark entities as forward
centers that are ranked highest in the current sen-
tence and have a link to an entity in the following
sentence.2 In Table 4, we report the percentage of
sentences that have backward and forward centers
in the Vorfeld or Mittelfeld. While the percentage
of sentences that realise a backward center is quite
low, the overall proportion of sentences contain-
ing some type of coreference link is in a dimen-
sion such that the learner could definitely pick up
some predictive patterns. Going by the relative
frequencies, coreferential constituents have a bias
towards appearing in the Vorfeld rather than in the
Mittelfeld.

5.3 Results

First, we build three coreference-based con-
stituent classifiers on their entire training set and
compare them to their sentence-internal baseline.
The most simple baseline records the category of

2In Centering, all entities in a given utterance can be seen
as forward centers, however we thought that this implemen-
tation would be more useful.
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(4) a. Die Rechnung geht an die AWO.
The bill goes to the AWO.

b. [Hintergrund der gegenseitigen Vorwürfe in der Arbeiterwohlfahrt] sind offenbar scharfe Konkurrenzen zwischen
Bremern und Bremerhavenern.
Apparently, [the background of the mutual accusations at the labour welfare] are rivalries between people from
Bremen and Bremerhaven.

(5) a. Dies ist die Behauptung, mit der Bremens Häfensenator die Skeptiker davon überzeugt hat, [...].
This is the claim, which Bremen’s harbour senator used to convince doubters, [...].

b. Für diese Behauptung hat Beckmeyer bisher keinen Nachweis geliefert. So far, Beckmeyer has not given a prove of
this claim.

Model VF
ConstituentLength + HeadPos 47.48%
ConstituentLength + HeadPos + Coref 51.30%
BaseSyn 54.82%
BaseSyn + Coref 56.21%
FullMorphSyn 57.24%
FullMorphSyn + Coref 57.40%

Table 5: Results from Vorfeld classification, training
and evaluation on entire treebank

the constituent head and the number of words that
the constituent spans. Additionally, in parallel to
the experiment in Section 4, we build a “BaseSyn”
model which has the syntactic function features,
and a “FullMorphSyn” model which comprises
the entire set of sentence-internal features. To
each of these baseline, we add the coreference
features. The results are reported in Table 5.

In this experiment, we find an effect of
the sentence-external features over the simple
sentence-internal baselines. However, in the fully
spelled-out, sentence-internal model, the effect
is, again, minimal. Moreover, for each base-
line, we obtain higher improvements by adding
further sentence-internal features than by adding
sentence-external ones the accuracy of the sim-
ple baseline (47.48%) improves by 7.34 points
through adding function features (the accuracy
of BaseSyn is 54.82%) and by only 3.48 points
through adding coreference features.

We run a second experiment in order to so see
whether the better performance of the sentence-
internal features is related to their coverage. We
build and evaluate the same set of classifiers on
the subset of sentences that contain at least one
coreference link for one of its constituents (see
Table 4 for the distribution of coreference links
in our data). The results are given in Table 6. In
this experiment, the coreference features improve
over all sentence-internal baselines including the
‘FullMorphSyn’ model.

Model VF
ConstituentLength + HeadPos 46.61%
ConstituentLength + HeadPos + Coref 52.23%
BaseSyn 54.63%
BaseSyn + Coref 56.67%
FullMorphSyn 55.36%
FullMorphSyn + Coref 57.93%

Table 6: Results from Vorfeld classification, training
and evaluation on sentences that contain a coreference
link

5.4 Discussion

The results presented in this Section consis-
tently complete the picture that emerged from
the experiments in Section 4. Even if we have
high quality information about discourse con-
text in terms of relations between referents, a
non-trivial sentence-internal model for word or-
der prediction can be hardly improved. This
suggests that sentence-internal approximations of
discourse context provide a fairly good way of
dealing with local coherence in a linearisation
task. It is also interesting that the sentence-
external features improve over simple baselines,
but get leveled out in rich sentence-internal fea-
ture models. From this, we conclude that the
sentence-external features we implemented are to
some extent predictive for word order, but that
they can be covered by sentence-internal features
as well.

Our second evaluation concentrating on the
sentences that have coreference information
shows that the better performance of the sentence-
internal features is also related to their cover-
age. These results confirm our initial intuition
that coreference information can add to the pre-
dictive power of the morpho-syntactic features in
certain contexts. This positive effect disappears
when sentences with and without coreferential
constituents are taken together. For future work,
it would be promising to investigate whether the
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positive impact of coreference features can be
strengthened if the coreference annotation scheme
is more exhaustive, including, e.g., bridging and
event anaphora.

6 Conclusion

We have carried out a number of experiments that
show that sentence-internal models for word order
are hardly improved by features which explicitely
represent the preceding context of a sentence in
terms of lexical and referential relations between
discourse entities. This suggests that sentence-
internal realisation implicitly carries a lot of im-
formation about discourse context. On average,
the morphosyntactic properties of constituents in
a text are better approximates of their discourse
status than actual coreference relations.

This result feeds into a number of research
questions concerning the representation of dis-
course and its application in generation systems.
Although we should certainly not expect a com-
putational model to achieve a perfect accuracy in
the constituent ordering task – even humans only
agree to a certain extent in rating word order vari-
ants (Belz and Reiter, 2006; Cahill, 2009) – the
average accuracy in the 60’s for prediction of Vor-
feld occupance is still moderate. An obvious di-
rection would be to further investigate more com-
plex representations of discourse that take into ac-
count the relations between utterances, such as
topic shifts. Moreover, it is not clear whether the
effects we find for linearisation in this paper carry
over to other levels of generation such as tacti-
cal generation where syntactic functions are not
fully specified. In a broader perspective, our re-
sults underline the need for better formalisations
of discourse that can be translated into features for
large-scale applications such as generation.
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Katja Filippova and Michael Strube. 2007. The ger-
man vorfeld and local coherence. Journal of Logic,
Language and Information, 16:465–485.

Katja Filippova and Michael Strube. 2009. Tree Lin-
earization in English: Improving Language Model
Based Approaches. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 225–228, Boulder, Colorado,
June. Association for Computational Linguistics.

775



Barbara J. Grosz, Aravind Joshi, and Scott Weinstein.
1995. Centering: A framework for modeling the
local coherence of discourse. Computational Lin-
guistics, 21(2):203–225.

Thorsten Joachims. 2006. Training linear SVMs in
linear time. In Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining (KDD),
pages 217–226.

Nikiforos Karamanis, Massimo Poesioand Chris Mel-
lish, and Jon Oberlander. 2009. Evaluating center-
ing for information ordering using corpora. Com-
putational Linguistics, 35(1).

Jane Morris and Graeme Hirst. 1991. Lexical cohe-
sion, the thesaurus, and the structure of text. Com-
putational Linguistics, 17(1):21–225.

Karin Naumann. 2006. Manual for the annotation of
in-document referential relations. Technical report,
Seminar für Sprachwissenschaft, Abt. Computerlin-
guistik, Universität Tübingen.
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and Heike Zinsmeister. 2006. Stylebook for the
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Abstract

In this paper, we propose an annota-
tion schema for the discourse analysis of
Wikipedia Talk pages aimed at the coor-
dination efforts for article improvement.
We apply the annotation schema to a cor-
pus of 100 Talk pages from the Simple
English Wikipedia and make the resulting
dataset freely available for download1. Fur-
thermore, we perform automatic dialog act
classification on Wikipedia discussions and
achieve an average F1-score of 0.82 with
our classification pipeline.

1 Introduction

Over the past decade, the paradigm of information
sharing in the web has shifted towards participa-
tory and collaborative content production. Texts
are no longer exclusively prepared by individuals
and then shared with the community. They are in-
creasingly created collaboratively by multiple au-
thors and iteratively revised by the community.

When researchers first conducted surveys on
professional writers in the 1980s, they found that
the collaborative writing process differs consider-
ably from the way individual writing is done (Pos-
ner and Baecker, 1992). In joint writing, the writ-
ers have to externalize processes that are other-
wise not made explicit, like the planning and the
organization of the text. The authors have to com-
municate how the text should be written and what
exactly it should contain.

Today, many tools are available that support
collaborative writing. A tool that has particu-
larly taken hold is the Wiki, a web-based, asyn-

1http://www.ukp.tu-darmstadt.de/data/
wikidiscourse

chronous co-authoring tool. A unique character-
istic of Wikis is the documentation of the edit
history which keeps track of every change that
is made to a Wiki page. With this information,
it is possible to reconstruct the writing process
from the beginning to the end. Additionally, many
Wikis offer their users a communication platform,
the Talk pages, where they can discuss the ongo-
ing writing process with other users.

The most prominent example for a successful,
large-scale Wiki is Wikipedia, a collaboratively
created online encyclopedia, which has grown
considerably since its launch in 2001, and con-
tains a total of almost 20 million articles in 282
languages and dialects, as of Sept. 2011. As there
is no editorial body that manages Wikipedia top-
down, it is an open question how the huge on-
line community around Wikipedia regulates and
enforces standards of behavior and article qual-
ity. The user discussions on the article Talk pages
might shed light on this issue and give an insight
into the otherwise hidden processes of collabora-
tion that, until now, could only be analyzed via
interviews or group observations in experimental
settings.

The main goal of the present paper is to analyze
the content of the discussion pages of the Simple
English Wikipedia with respect to the dialog acts
aimed at the coordination efforts for article im-
provement. Dialog acts, according to the classic
speech act theory (Austin, 1962; Searle, 1969),
represent the meaning of an utterance at the level
of illocutionary force, i.e. a dialog act label con-
cisely characterizes the intention and the role of a
contribution in a dialog. We chose the Simple En-
glish Wikipedia for our initial analysis, because
we are able to obtain more representative results
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by covering almost 15% of all relevant Talk pages,
as opposed to the much smaller fraction we could
achieve for the English Wikipedia. The long-term
goal of this work is to identify relations between
contributions on the Talk pages and particular arti-
cle edits. We plan to analyze the relation between
article discussions and article content and identify
the edits in the article revision history that react to
the problems discussed on the Talk page. In com-
bination with article quality assessment (Yaari et
al., 2011), this opens up the possibility to iden-
tify successful patterns of collaboration which in-
crease the article quality. Furthermore, our work
will enable practical applications. By augment-
ing Wikipedia articles with the information de-
rived from automatically labeled discussions, arti-
cle readers can be made aware of particular prob-
lems that are being discussed on the Talk page
“behind the article”.

Our primary contributions in this paper are: (1)
an annotation schema for dialog acts reflecting
the efforts for coordinating the article improve-
ment; (2) the Simple English Wikipedia Dis-
cussion (SEWD) corpus, consisting of 100 seg-
mented and annotated Talk pages which we make
freely available for download; and (3) a dialog
act classification pipeline that incorporates sev-
eral state of the art machine learning algorithms
and feature selection techniques and achieves an
average F1-score of .82 on our corpus.

2 Related Work

The analysis of speech and dialog acts has its
roots in the linguistic field of pragmatics. In
1962, John Austin shifted the focus from the mere
declarative use of language as a means for making
factual statements towards its non-declarative use
as a tool for performing actions. The speech act
theory was further systematized by Searle (1969),
whose classification of illocutionary acts (Searle,
1976) is still used as a starting point for creating
dialog act classification schemata for natural lan-
guage processing.

A well known, domain- and task-independent
annotation schema is DAMSL (Core and Allen,
1997). It was created as the standard annotation
schema for dialog tagging on the utterance level
by the Discourse Resource Initiative. It uses a
four-dimensional tagset that allows arbitrary label
combinations for each utterance. Jurafsky et al.
(1997) augmented the DAMSL schema to fit the

peculiarities of the Switchboard corpus. The re-
sulting SWDB-DAMSL schema contained more
than 220 distinct labels which have been clustered
to 42 coarse grained labels. Both schemata have
often been adapted for special purpose annotation
tasks.

With the rise of the social web, the amount of
research analyzing user generated discourse sub-
stantially increased. In addition to analyzing web
forums (Kim et al., 2010a), chats (Carpenter and
Fujioka, 2011) and emails (Cohen et al., 2004),
Wikipedia Talk pages have recently moved into
the center of attention of the research community.

Viégas et al. (2007) manually annotate 25
Wikipedia article discussion pages with a set of
11 labels in order to analyze how Talk pages are
used for planning the work on articles and resolv-
ing disputes among the editors. Schneider et al.
(2011) extend this schema and manually annotate
100 Talk pages with 15 labels. They confirm the
findings of Viégas et al. that coordination requests
occur most frequently in the discussions.

Bender et al. (2011) describe a corpus of 47
Talk pages which have been annotated for author-
ity claims and alignment moves. With this cor-
pus, the authors analyze how the participants in
Wikipedia discussions establish their credibility
and how they express agreement and disagree-
ment towards other participants or topics.

From a different perspective, Stvilia et al.
(2008) analyze 60 discussion pages in regard to
how information quality (IQ) in Wikipedia arti-
cles is assessed on the Talk pages and which types
of IQ problems are identified by the community.
They describe a Wikipedia IQ assessment model
and map it to established frameworks. Further-
more, they provide a list of IQ problems along
with related causal factors and necessary actions
which has also inspired the design of our annota-
tion schema.

Finally, Laniado et al. (2011) examine
Wikipedia discussion networks in order to
capture structural patterns of interaction. They
extract the thread structure from all Talk pages in
the English Wikipedia and create tree structures
of the discussion. The analysis of the graphs
reveals patterns that are unique to Wikipedia
discussions and might be used as a means to
characterize different types of Talk pages.

To the best of our knowledge, there is no
work yet that uses machine learning to automati-
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Figure 1: Structure of a Talk page: a) Talk page title,
b) untitled discussion topic, c) titled discussion topic,
d) unsigned turns, e) signed turns, f) topic title

cally classify user contributions in Wikipedia Talk
pages. Furthermore, there is no corpus available
that reflects the efforts of article improvement in
Wikipedia discussions. This is the subject of our
work.

3 Annotation Schema

The main purpose of Wikipedia Talk pages is the
coordination of the editing process with the goal
of improving and sustaining the quality of the re-
spective article. The criteria for article quality in
Wikipedia are loosely defined in the guidelines for
“good articles”2 and “very good articles”3. Ac-
cording to these guidelines, distinguished articles
must be well-written in simple English, compre-
hensive, neutral, stable, accurate, verifiable and
follow the Wikipedia style guidelines4. These cri-
teria are the main points of reference in the dis-
cussions on the Talk pages.

Discourse analysis, as it is performed in this pa-
per, can be carried out on various levels, depend-
ing on what is regarded as the smallest unit of the
discourse. In this work, we focus on turns, not
on individual utterances, as we are interested in a
coarse-grained analysis of the discourse-structure
as a first step towards a finer-grained discourse
analysis. We define a turn (or contribution) as the
body of text that is added by an individual contrib-
utor in one or more revisions to a single discus-
sion topic until another contributor edits the page.
Furthermore, a topic (or discussion) is the body
of turns that revolve around a single matter. They

2http://simple.wikipedia.org/wiki/WP:RGA
3http://simple.wikipedia.org/wiki/WP:RVGA
4http://simple.wikipedia.org/wiki/WP:STYLE

are usually headed by a topic title. Finally, the
thread structure designates the sequence of turns
and their indentation levels on the Talk page. A
structural overview of a Talk page and its con-
stituents can be seen in Figure 1.

We composed an annotation schema that re-
flects the coordination efforts for article improve-
ment. Therefore, we manually analyzed a set
of thirty Talk pages from the Simple English
Wikipedia to identify the types of article defi-
ciencies that are discussed and the way article
improvement is coordinated. We furthermore
incorporated the findings from an information-
scientific analysis of information quality in
Wikipedia (Stvilia et al., 2008), which identifies
twelve types of quality problems, like e.g. Accu-
racy, Completeness or Relevance. Our resulting
tagset consists of 17 labels (cf. Table 1) which can
be subdivided into four higher level categories:

Article Criticism Denote comments that iden-
tify deficiencies in the article. The criticism
can refer to the article as a whole or to indi-
vidual parts of the article.

Explicit Performative Announce, report or sug-
gest editing activities.

Information Content Describe the direction of
the communication. A contribution can be
used to communicate new information to
others (IP), to request information (IS), or
to suggest changes to established facts (IC).
The IP label applies to most of the contri-
butions as most comments provide a certain
amount of new information.

Interpersonal Describe the attitude that is ex-
pressed towards other participants in the dis-
cussion and/or their comments.

Since a single turn may consist of several utter-
ances, it can consequently comprise multiple di-
alog acts. Therefore, we designed the annotation
study as a multi-label classification task, i.e. the
annotators can assign one or more labels to each
annotation unit. Each label is chosen indepen-
dently. Table 1 shows the labels, their respective
definitions and an example from our corpus.

4 Corpus Creation and Analysis

The SEWD corpus consists of 100 annotated Talk
pages extracted from a snapshot of the Simple En-

779



Label Description Example

Article Criticism

CM Content incomplete or lacking detail
It should be added (1) that voters may skip prefer-
ences, but (2) that skipping preferences has no impact
on the result of the elections.

CW Lack of accuracy or correctness
Kris Kringle is NOT a Germanic god, but an English
mispronunciation of Christkind, a German word that
means “the baby Jesus”.

CU Unsuitable or unnecessary content
The references should be removed. The reason: The
references are too complicated for the typical reader
of simple Wikipedia.

CS Structural problems Also use sectioning, and interlinking

CL Deficiencies in language or style
This section needs to be simplified further; there are a
lot of words that are too complex for this wiki.

COBJ Objectivity issues
This article seems to take a clear pro-Christian, anti-
commercial view.

CO Other kind of criticism
I have started an article on Google. It needs improve-
ment though.

Explicit Performative
PSR Explicit suggestion, recommendation or request This section needs to be simplified further

PREF Explicit reference or pointer
Got it. The URL is http://www.dmbeatles.com/
history.php?year=1968

PFC Commitment to an action in the future Okay, I forgot to add that, I’ll do so later tonight.

PPC Report of a performed action
I took and hopefully simplified the ”[[en:Prehistoric
music—Prehistoric music]]” article from EnWP

Information Content
IP Information providing “Depression” is the most basic term there is.

IS Information seeking
So what kind of theory would you use for your music
composing?

IC Information correcting

In linguistics and generally speaking, when Talking
about the lexicon in a language, words are usually cat-
egorized as ’nouns’, ’verbs’, ’adjectives’ and so on.
The term ’doing word’ does not exist.

Interpersonal

ATT+
Positive attitude towards other contributor or
acceptance

Thank you.

ATTP Partial acceptance or partial rejection
Okay, I can understand that, but some citations are
going to have to be included for [[WP:V]].

ATT-
Negative attitude towards other contributor or
rejection

Now what? You think you know so much about every-
thing, and you are not even helping?!

Table 1: Annotation schema for the dialog act classification in Wikipedia discussion pages with examples from
the SEWD Corpus. Some examples have been shortened to fit the table.

glish Wikipedia from Apr 4th 2011.5 Technically
speaking, a Talk page is a normal Wiki page lo-
cated in one of the Talk namespaces. In this work,
we focus on article Talk pages and do not re-
gard User Talk pages. We selected the discussion
pages according to the number of turns they con-
tain. First, we discarded all discussion pages with
less than four contributions. We then analyzed
the distribution of turn counts per discussion page
in the remaining set of pages and defined three
classes: (i) discussion pages with 4-10 turns, (ii)

5The snapshot contains 69900 articles and 5783 Talk
pages of which 683 contained more than 3 contributions.

pages with 11-20 turns, and (iii) pages with more
than 20 turns. We then randomly extracted 50 dis-
cussion pages from class (i), 40 pages from class
(ii) and 10 pages from class (iii). This decision is
grounded in the restricted resources for the human
annotation task.

Data Preprocessing Due to a lack of discussion
structure, extracting the discussion threads from
the Talk pages requires a substantial amount of
preprocessing. Laniado et al. (2011) tackle the
thread extraction by using text indentation and in-
serted user signatures as clues. We found these
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attributes to be insufficient for a reliable recon-
struction of the thread structure.6

Our preprocessing approach consists of three
steps: data retrieval, topic segmentation and turn
segmentation. For retrieving the discussion pages,
we use the Java Wikipedia Library (JWPL) (Zesch
et al., 2008), which offers efficient, database-
driven access to the contents of Wikipedia. We
segment the individual Talk pages into discus-
sions topics using the MediaWiki parser that
comes with JWPL. In our corpus, the parser man-
aged to identify all topic boundaries without any
errors. The most complex preprocessing step is
the turn segmentation.

First, we use the revision history of the Talk
page to identify the author and the creation time
of each paragraph. We use the Wikipedia Revi-
sion Toolkit (Ferschke et al., 2011) to examine the
changes between adjacent revisions of the Talk
page in order to identify the exact time a piece of
text was added as well as the author of the con-
tribution. We have to filter out malicious edits
from the history, as they would negatively affect
the segmentation process. We therefore disregard
all edits that are reverted in later later revisions.
In contrast to vandalism on article pages, this ap-
proach has proven to be sufficient to detect van-
dalism in the Talk page history.

Within each discussion topic, we aggregate all
adjacent paragraphs with the same author and the
same time stamp to one turn. In order to account
for turns that were written in multiple revisions,
we regard all time stamps within a window of 10
minutes7 as belonging to the same turn, unless the
page was edited by another user in the meantime.
Finally, the turn is marked with the indentation
level of its least indented paragraph. This infor-
mation is used to identify the relationship between
the turns, since indentation is used to indicate a
reply to an existing comment in the discussion.

A co-author of this paper evaluated the ac-
ceptability of the boundaries of each turn in the
SEWD corpus and found that 94% of the 1450
turns were correctly segmented. Turns with seg-
mentation errors were not included in the gold
standard.

6Viégas et al. (2007) reported that only 67% of the con-
tributions on Wikipedia Talk pages are signed, which makes
signatures an unreliable predictor for turn boundaries.

7We experimentally tested values between 1 and 60 min-
utes.

Annotation Process For our annotation study,
we used the freely available MMAX2 annotation
tool8. Two annotators were introduced to the an-
notation schema by an instructor and trained on
an extra set of ten discussion pages. During the
annotation of the corpus, the annotators were al-
lowed to discuss difficult cases and could consult
the instructor if in doubt. They had access to the
segmented discussion pages within the MMAX2
tool as well as to the original Wikipedia articles
and discussion pages on the web.

The reconciliation of the annotations was car-
ried out by an expert annotator. In order to obtain
a consolidated gold standard, the expert decided
all cases in which the annotations of the two an-
notators did not match. Descriptive statistics for
the label assignments of each annotator and for
the gold standard can be seen in Table 2 and will
be further discussed in Section 4.2.

Corpus Format We publish our SEWD cor-
pus in two formats9, the original MMAX format,
and as XMI files for further processing with the
Apache Unstructured Information Management
Architecture10. For the latter format, we also pro-
vide the type system which defines all necessary
corpus specific types needed for using the data in
an NLP pipeline.

4.1 Inter-Annotator Agreement

To evaluate the reliability of our dataset, we per-
form a detailed inter-rater agreement study. For
measuring the agreement of the individual labels,
we report the observed agreement, Kappa statis-
tics (Carletta, 1996), and F1-scores. The latter are
computed by treating one annotator as the gold
standard and the other one as predictions (Hripc-
sak and Rothschild, 2005). The scores can be seen
in Table 2.

The average observed agreement across all la-
bels is P̄O = .94. The individual Kappa scores
largely fall into the range that Landis and Koch
(1977) regard as substantial agreement, while
three labels are above the more strict .8 thresh-
old for reliable annotations (Artstein and Poesio,
2008). Furthermore, we obtain an overall pooled
Kappa (De Vries et al., 2008) of κpool = .67,

8http://www.mmax2.net
9http://www.ukp.tu-darmstadt.de/data/

wikidiscourse
10http://uima.apache.org
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Annotator 1 Annotator 2 Inter-Annotator Agreement Gold Standard
Label N Percent N Percent NA1∪A2 PO κ F1 N Percent
Article Criticism
CM 183 13.4% 105 7.7% 193 .93 .63 .66 116 8.5%
CW 106 7.8% 57 4.2% 120 .95 .52 .55 70 5.1%
CU 69 5.0% 35 2.6% 83 .95 .38 .40 42 3.1%
CS 164 12.0% 101 7.4% 174 .94 .66 .69 136 9.9%
CL 195 14.3% 199 14.6% 244 .93 .73 .77 219 16.0%
COBJ 27 2.0% 23 1.7% 29 .99 .84 .84 27 2.0%
CO 20 1.5% 59 4.3% 71 .95 .18 .20 48 3.5%

Explicit Performative
PSR 458 33.5% 351 25.7% 503 .86 .66 .76 406 29.7%
PREF 43 3.1% 31 2.3% 51 .98 .61 .62 45 3.3%
PFC 73 5.3% 65 4.8% 86 .98 .76 .77 77 5.6%
PPC 357 26.1% 340 24.9% 371 .97 .92 .94 358 26.2%

Information Content
IP 1084 79.3% 1027 75.1% 1135 .89 .69 .93 1070 78.3%
IS 228 16.7% 208 15.2% 256 .95 .80 .83 220 16.1%
IC 187 13.7% 109 8.0% 221 .89 .46 .51 130 9.5%

Interpersonal
ATT+ 71 5.2% 140 10.2% 151 .94 .55 .58 144 10.5%
ATTP 71 5.2% 30 2.2% 79 .96 .42 .44 33 2.4%
ATT- 67 4.9% 74 5.4% 100 .96 .56 .58 87 6.4%

Table 2: Label frequencies and inter-annotator agreement. NA1∪A2
denotes the number of turns that have been

labeled with the given label by at least one annotator. PO denotes the observed agreement.

which is defined as

κpool =
P̄O − P̄E

1− P̄E
(1)

with

P̄O =
1

L

L∑
l=1

POl
, P̄E =

1

L

L∑
l=1

PEl
(2)

where L denotes the number of labels, PEl
the

expected agreement and POl
the observed agree-

ment of the lth label. κpool is regarded to be more
accurate than an averaged Kappa.

For assessing the overall inter-rater reliabil-
ity of the label set assignments per turn, we
chose Krippendorff’s Alpha (Krippendorff, 1980)
using MASI, a measure of agreement on set-
valued items, as the distance function (Passon-
neau, 2006). MASI accounts for partial agree-
ment if the label sets of both annotators overlap
in at least one label. We achieved an Alpha score
of α = .75. According to Krippendorff, datasets
with this score are considered reliable and allow
tentative conclusions to be drawn.

The CO label showed the lowest agreement of
only κ = .18. The label was supposed to cover
any criticism that is not covered by a dedicated
label. However, the annotators reported that they

chose this label when they were unsure whether a
particular criticism label would fit a certain turn
or not.

Labels in the interpersonal category all show
agreement scores below 0.6. It turned out that the
annotators had a different understanding of these
labels. While one annotator assigned the labels
for any kind of positive or negative sentiment, the
other used the labels to express agreement and
disagreement between the participants of a dis-
cussion.

A common problem for all labels were contri-
butions with a high degree of indirectness and im-
plicitness. Indirect contributions have to be in-
terpreted in the light of conversational implica-
ture theory (Grice, 1975), which requires contex-
tual knowledge for decoding the intentions of a
speaker. For example, the message

Is population density allowed to be n/a?

has the surface form of a question. However, the
context of the discussion revealed that the author
tried to draw attention to the missing figure in the
article and requested it to be filled or removed.
The annotators rarely made use of the context,
which was a major source for disagreement in the
study.
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Another difficulty for the annotators were long
discussion turns. While the average turn consists
of 42 tokens, the largest contribution in the cor-
pus is 658 tokens long. Turns of this size can
cover multiple aspects and potentially comprise
many different dialog acts, which increases the
probability of disagreement. This issue can be ad-
dressed by going from the turn level to the utter-
ance level in future work.

A comparison of our results with the agreement
reported for other datasets shows that the reliabil-
ity of our annotations lies well within the field of
the related work. Bender et al. (2011) carried out
an annotation study of social acts in 365 discus-
sions from 47 Wikipedia Talk pages. They report
Kappa scores for thirteen labels in two categories
ranging from .13 to .66 per label. The overall
agreement for each category was .50 and .59, re-
spectively, which is considerably lower than our
κpool = .67. Kim et al. (2010b) annotate pairs of
posts taken from an online forum. They use a di-
alog act tagset with twelve labels customized for
modeling troubleshooting-oriented forum discus-
sions. For their corpus of 1334 posts, they report
an overall Kappa of .59. Kim et al. (2010a) iden-
tify unresolved discussions in student online fo-
rums by annotating 1135 posts with five different
speech acts. They report Kappa scores per speech
act between .72 and .94. Their better results might
be due to a more coarse grained label set.

4.2 Corpus Analysis

The SEWD corpus contains 313 discussions con-
sisting of 1367 turns by 337 users. The average
length of a turn is 42 words. 208 of the 337
contributors are registered Wikipedia users, 129
wrote anonymously. On average, each contributor
wrote 168 words in 4 turns. However, there was a
cluster of 16 people with ≥ 20 contributions.

Table 2 shows the frequencies of all labels in
the SEWD corpus. The most frequent labels are
information providing (IP), requests (PSR) and
reports of performed edits (PPC). The IP-label
was assigned to more than 78% of all 1367 turns,
because almost every contribution provides a cer-
tain amount of information. The label was only
omitted if a turn merely consisted of a discussion
template but did not contain any text or if it exclu-
sively contained questions.

More than a quarter of the turns are labeled
with PSR and PPC, respectively. This indicates

that edit requests and reports of performed edits
are the main subject of discussion. Generally, it is
more common that edits are reported after they
have been made than to announce them before
they are carried out, as can be seen in the ratio
of PPC to PFC labels. The number of turns la-
beled with PSR is almost the same as the number
of contributions labeled with either PPC or PFC.
This allows the tentative conclusion that nearly all
requests potentially lead to an edit action. As a
matter of fact, the most common label adjacency
pair11 in the corpus is PSR→PPC, which substan-
tiates this assumption.

Article criticism labels have been assigned to
39.4% of all turns. Almost half (241) of the labels
from this class are assigned to the first turn of a
discussion. This shows that it is common to open
a discussion in reference to a particular deficiency
of the article. The large number of CL labels com-
pared to other labels from the same category is
due to the fact that the Simple English Wikipedia
requires authors to write articles in a way that they
are understandable for non-native speakers of En-
glish. Therefore, the use of adequate language is
one of the major concerns of the Simple English
Wikipedia community.

5 Automatic Dialog Act Classification

For the automatic classification of dialog acts in
Wikipedia Talk pages, we transform the multi-
label classification problem into a binary classi-
fication task (Tsoumakas et al., 2010). We train a
binary classifier for each label using the WEKA
data-mining software (Hall et al., 2009). We use
three learners for the classification task, a Naive
Bayes classifier, J48, an implementation of the
C4.5 decision tree algorithm (Quinlan, 1992) and
SMO, an optimization algorithm for training sup-
port vector machines (Platt, 1998). Finally, we
combine the best performing learners for each la-
bel in a UIMA-based classification pipeline (Fer-
rucci and Lally, 2004).

Features for Dialog Act Classification As fea-
tures, we use all uni-, bi- and trigrams that oc-
curred in at least three different turns. Further-
more, we include the time distance to the previ-
ous and the next turn (in seconds), the length of
the current, previous and next turn (in tokens), the

11A label transition A → B is recorded if two adjacent
turns are labeled with A and B, respectively.
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position of the turn within the discussion, the in-
dentation level of the turn and two binary features
indicating whether a turn references or is refer-
enced by another turn.12 In order to capture the
sequential nature of the discussions, we use the
n-grams of the previous and the next turn as addi-
tional features.

Balancing Positive and Negative Instances
Since the number of positive instances for each
label is small compared to the number of nega-
tive instances, we create a balanced dataset which
contains an equal amount of positive and nega-
tive instances. Therefore, we randomly select the
appropriate number of negative instances and dis-
card the rest. This improves the classification per-
formance on every label for all three learners.

Feature Selection Using the full set of features,
we achieve the following macro/micro averaged
F1-scores: 0.29 / 0.57 for Naive Bayes, 0.42 /
0.66 for J48 and 0.43 / 0.72 for SMO. To fur-
ther improve the classification performance, we
reduce the feature space using two feature selec-
tion techniques, the χ2 metric (Yang and Ped-
ersen, 1997) and the Information Gain approach
(Mitchell, 1997). For each label, we train separate
classifiers using the top 100, 200 and 300 features
obtained by each feature selection technique and
choose the best performing set for our final clas-
sification pipeline.

Indentation and temporal distance to the pre-
ceding turn proved to be the best ranked non-
lexical features overall. Additionally, the turn po-
sition within the topic was a crucial feature for
most labels in the criticism class and for PSR and
IS labels. This is not surprising, because article
criticism, suggestions and questions tend to oc-
cur in the beginning of a discussion. The two
reference features have not proven to be useful.
The relational information was better covered by
the indentation feature. The subjective quality of
the lexical features seems to be correlated with
the inter-annotator agreement of the respective la-
bels. Features for labels with low agreement con-
tain many n-grams without any recognizable se-
mantic connection to the label. For labels with
good agreement, the feature lists almost exclu-
sively contain meaningful lexical cues.

12A turn Y references a preceding turn X if the indenta-
tion level of Y is one level deeper than of X .

Label Human Base Naive
Bayes J48 SMO Best

CM .66 .07 .68 .48 .66 .68
CW .55 .01 .70 .20 .56 .70
CU .40 .07 .66 .35 .59 .66
CS .69 .09 .67 .67 .75 .75
CL .77 .11 .70 .66 .73 .73
COBJ .84 .04 .78 .51 .63 .78
CO .20 .02 .61 .06 .39 .61

PSR .76 .30 .72 .70 .76 .76
PREF .62 .00 .76 .41 .64 .76
PFC .77 .04 .70 .62 .73 .73
PPC .94 .25 .74 .82 .85 .85

IP .93 .74 .83 .93 .93 .93
IS .83 .16 .79 .86 .85 .86
IC .51 .06 .67 .32 .59 .67

ATT+ .58 .10 .61 .65 .72 .72
ATTP .44 .03 .72 .25 .62 .72
ATT- .58 .07 .52 .30 .52 .52

Macro .65 .13 .70 .52 .68 .73
Micro .79 .35 .74 .75 .80 .82

Table 3: F1-Scores for the balanced set with feature
selection on 10-fold cross-validation. Base refers to
the baseline performance, Best to our classification
pipeline.

Classification Results Table 3 shows the per-
formance of all classifiers and our final classi-
fication pipeline evaluated on 10-fold cross val-
idation. Naive Bayes performed surprisingly
well and showed the best macro averaged scores
among the three learners while SMO showed the
best micro averaged performance. We compare
our results to a random baseline and to the per-
formance of the human annotators (cf. Table 3
and Figure 2). The baseline assigns the dialog act
labels at random according to their frequency dis-
tribution in the gold standard. Our classifier out-
performed the baseline significantly on all labels.

The comparison with the human performance
shows that our system is able to reach the human
performance. In most cases, the annotation agree-
ment is reliable, and so are the results of the auto-
matic classification. For the labels CU and CO,
the inter-annotator agreement is not high. The
comparably good performance of the classifiers
on these labels shows that the instances do have
shared characteristics. Human raters, however,
have difficulties recognizing these labels consis-
tently. Thus, their definitions need to be refined in
future work.

To our knowledge, none of the related work on
discourse analysis of Wikipedia Talk pages per-
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Figure 2: F1-Scores for our classification pipeline (Best), the human performance and baseline performance.

formed automatic dialog act classification. How-
ever, there has been previous work on classify-
ing speech acts in other discourse types. Kim et
al. (2010a) use Support Vector Machines (SVM)
and Transformation Based Learning (TBL) for
the automatic assignment of five speech acts to
posts taken from student online forums. They re-
port individual F1-scores per label which result
in a macro average of 0.59 for SVM and 0.66
for TBL. Cohen et al. (2004) classify speech acts
in emails. They train five binary classifiers us-
ing several learners on 1375 emails and report F1

scores per speech act between .44 and .85. De-
spite the larger tagset, our classification approach
achieves an average F1-score of .82 and therefore
lies in the top ranks of the related work.

6 Conclusions

In this paper, we proposed an annotation schema
for the discourse analysis of Wikipedia discus-
sions aimed at the coordination efforts for article
improvement. We applied the annotation schema
to a corpus of 100 Wikipedia Talk pages, which
we make freely available for download. A thor-
ough analysis of the inter-annotator agreement
showed that the dataset is reliable. Finally, we
performed automatic dialog act classification on
Wikipedia Talk pages. Therefore, we combined
three machine learning algorithms and two feature
selection techniques to a classification pipeline,
which we trained on our SEWD corpus. We
achieve an average F1-score of .82, which is com-
parable to the human performance of .79. The
ability to automatically classify discussion pages
will help to investigate the relations between arti-
cle discussions and article edits, which is an im-
portant step towards understanding the processes
of collaboration in large-scale Wikis. Further-

more, it will be the basis for practical applications
that bring the hidden content of Talk pages to the
attention of article readers.
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Abstract

Speech style accommodation refers to
shifts in style that are used to achieve strate-
gic goals within interactions. Models of
stylistic shift that focus on specific fea-
tures are limited in terms of the contexts
to which they can be applied if the goal of
the analysis is to model socially motivated
speech style accommodation. In this pa-
per, we present an unsupervised Dynamic
Bayesian Model that allows us to model
stylistic style accommodation in a way that
is agnostic to which specific speech style
features will shift in a way that resem-
bles socially motivated stylistic variation.
This greatly expands the applicability of the
model across contexts. Our hypothesis is
that stylistic shifts that occur as a result of
social processes are likely to display some
consistency over time, and if we leverage
this insight in our model,we will achieve
a model that better captures inherent struc-
ture within speech.

1 Introduction

Sociolinguistic research on speech style and its
resulting social interpretation has frequently fo-
cused on the ways in which shifts in style are
used to achieve strategic goals within interac-
tions, for example the ways in which speakers
may adapt their speaking style to suppress differ-
ences and accentuate similarities between them-
selves and their interlocutors in order to build
solidarity (Coupland, 2007; Eckert & Rickford,
2001; Sanders, 1987). We refer to this stylis-
tic convergence as speech style accommodation.
In the language technologies community, one tar-
geted practical benefit of such modeling has been

the achievement of more natural interactions with
speech dialogue systems (Levitan et al., 2011).

Monitoring social processes from speech or
language data has other practical benefits as well,
such as enabling monitoring how beneficial an in-
teraction is for group learning (Ward & Litman,
2007; Gweon, 2011), how equal participation is
within a group (DiMicco et al., 2004), or how
conducive an environment is for fostering a sense
of belonging and identification with a community
(Wang et al., 2011).

Typical work on computational models of
speech style accommodation have focused on spe-
cific aspects of style that may be accommodated,
such as the frequency or timing of pauses or
backchannels (i.e., words that show attention like
’Un huh’ or ’ok’), pitch, or speaking rate (Ed-
lund et al., 2009; Levitan & Hirschberg, 2011). In
this paper, we present an unsupervised Dynamic
Bayesian Model that allows us to model speech
style accommodation in a way that does not re-
quire us to specify which linguistic features we
are targeting. We explore a space of models de-
fined by two independent factors, namely the di-
rect influence of one speaker’s style on another
speaker’s style and the influence of the relational
gestalt between the two speakers that motivates
the stylistic accommodation, and thus may keep
the accommodation moving consistently, with the
same momentum. Prior work has explored the in-
fluence of the first factor. However, because ac-
commodation reflects social processes that extend
over time within an interaction, one may expect a
certain consistency of motion within the stylistic
shift. Furthermore, we can leverage this consis-
tency of style shift to identify socially meaningful
variation without specifying ahead of time which
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particular stylistic elements we are focusing on.
Our evaluation provides support for this hypothe-
sis.

When stylistic shifts are focused on specific
linguistic features, then measuring the extent of
the stylistic accommodation is simple since a
speaker’s style may be represented on a one or two
dimensional space, and movement can then be
measured precisely within this space using sim-
ple linear functions. However, the rich sociolin-
guistic literature on speech style accommodation
highlights a much greater variety of speech style
characteristics that may be associated with social
status within an interaction and may thus be bene-
ficial to monitor for stylistic shifts. Unfortunately,
within any given context, the linguistic features
that have these status associations, which we re-
fer to as indexicality, are only a small subset of
the linguistic features that are being used in some
way. Furthermore, which features carry this in-
dexicality are specific to a context. Thus, separat-
ing the socially meaningful variation from varia-
tion in linguistic features occurring for other rea-
sons is akin to searching for the proverbial needle
in a haystack. It is this technical challenge that we
address in this paper.

In the remainder of the paper we review the lit-
erature on speech style accommodation both from
a sociolinguistic perspective and from a techno-
logical perspective in order to motivate our hy-
pothesis and proposed model. We then describe
the technical details of our model. Next, we
present an experiment in which we test our hy-
pothesis about the nature of speech style accom-
modation and find statistically significant con-
firming evidence. We conclude with a discussion
of the limitations of our model and directions for
ongoing research.

2 Theoretical Framework

Our research goal is to model the structure of
speech in a way that allows us to monitor so-
cial processes through speech. One common goal
of prior work on modeling speech dynamics has
been for the purpose of informing the design of
more natural spoken dialogue systems (Levitan et
al., 2011). The practical goal of our work is to
measure the social processes themselves, for ex-
ample in order to estimate the extent to which
group discussions show signs of productive con-
sensus building processes (Gweon, 2011). Much

prior work on modeling emotional speech has
sought to identify features that themselves have
a social interpretation, such as features that pre-
dict emotional states like uncertainty (Liscombe
et al., 2005), or surprise (Ang et al., 2002), or
social strategies like flirting (Ranganath et al.,
2009). However, our goal is to monitor social pro-
cesses that evolve over time and are reflected in
the change in speech dynamics. Examples include
fostering trust, forming attachments, or building
solidarity.

2.1 Defining Speech Style Accommmodation

The concept of what we refer to as Speech
Style Accommodation has its roots in the field
of the Social Psychology of Language, where
the many ways in which social processes are re-
flected through language, and conversely, how
language influences social processes, are the ob-
jects of investigation (Giles & Coupland, 1991).
As a first step towards leveraging this broad range
of language processes, we refer to one very spe-
cific topic, which has been referred to as entrain-
ment, priming, accommodation, or adaptation in
other computational work (Levitan & Hirschberg,
2011). Specifically we refer to the finding that
conversational partners may shift their speaking
style within the interaction, either becoming more
similar or less similar to one another.

Our usage of the term accommodation specifi-
cally refers to the process of speech style conver-
gence within an interaction. Stylistic shifts may
occur at a variety of levels of speech or language
representation. For example, much of the early
work on speech style accommodation focused on
regional dialect variation, and specifically on as-
pects of pronunciation, such as the occurrence of
post-vocalic “r” in New York City, that reflected
differences in age, regional identification, and so-
cioeconomic status (Labov, 2010a,b). Distribu-
tion of backchannels and pauses have also been
the target of prior work on accommodation (Lev-
itan & Hirschberg, 2011). These effects may be
moderated by other social factors. For example,
Bilous & Krauss (1988) found that females ac-
commodated to their male partners in conversa-
tion in terms of average number of words uttered
per turn. For example, Hecht et al. (1989) re-
ported that extroverts are more listener adaptive
than introverts and hence extroverts converged
more in their data.
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Accommodation could be measured either
from textual or speech content of a conversation.
The former relates to ”what” people say whereas
the latter to ’how’ they say it. We are only inter-
ested in measuring accommodation from speech
in this work. There has been work on convergence
in text such as syntactic adaptation (Reitter et al.,
2006) and language similarity in online commu-
nities (Huffaker et al., 2006).

2.2 Social Interpretation of Speech Style
Accommodation

It has long been established that while some
speech style shifts are subconscious, speakers
may also choose to adapt their way of speaking
in order to achieve social effects within an in-
teraction (Sanders, 1987). One of the main mo-
tives for accommodation is to decrease social dis-
tance. On a variety of levels, speech style accom-
modation has been found to affect the impression
that speakers give within an interaction. For ex-
ample, Welkowitz & Feldstein (1970) found that
when speakers become more similar to their part-
ners, they are liked more by partners. Another
study by Putman & Street Jr (1984) demonstrated
that interviewees who converge to the speaking
rate and response latency of their interviewers are
rated more favorably by the interviewers. Giles et
al. (1987) found that more accommodating speak-
ers were rated as more intelligent and supportive
by their partners. Conversely, social factors in
an interaction affect the extent to which speak-
ers engage in, and some times chose not to en-
gage in, accommodation. For example, Purcell
(1984) found that Hawaiian children exhibit more
convergence in interactions with peer groups that
they like more. Bourhis & Giles (1977) found that
Welsh speakers while answering to an English
surveyor broadened their Welsh accent when their
ethnic identity was challenged. Scotton (1985)
found that few people hesitated to repeat lexi-
cal patterns of their partners to maintain integrity.
Nenkova et al. (2008) found that accommodation
on high frequency words correlates with natural-
ness, task success, and coordinated turn-taking
behavior.

2.3 Computational models of speech style
accommodation

Prior research has attempted to quantify accom-
modation computationally by measuring similar-

ity of speech and lexical features either over full
conversations or by comparing the similarity in
the first half and the second half of the conver-
sation. For example, Edlund et al. (2009) mea-
sure accommodation in pause and gap length us-
ing measures such as synchrony and convergence.
Levitan & Hirschberg (2011) found that accom-
modation is also found in special social behaviors
within conversation such as backchannels. They
show that speakers in conversation tend to use
similar kinds of speech cues such as high pitch at
the end of utterance to invite a backchannel from
their partner. In order to measure accommodation
on these cues, they compute the correlation be-
tween the numerical values of these cues used by
partners.

In our work we measure accommodation using
Dynamic Bayesian Networks (DBNs). Our mod-
els are learnt in an unsupervised fashion. What
we are specifically interested in is the manner in
which the influence of one partner on the other is
modeled. What is novel in our approach is the
introduction of the concept of an accommodation
state, or relational gestalt variable, which essen-
tially models the momentum of the influence that
one partner is having on the other partner’s speak-
ing style. It allows us to represent structurally the
insight that accommodation occurs over time as a
reflection of a social process, and thus has some
consistency in the nature of the accommodation
within some span of time. The prior work de-
scribed in this section can be thought of as tak-
ing the influence of the partner’s style directly on
the speaker’s style within an instant as the floor
shifts from one speaker to the next. Thus, no con-
sistency in the manner in which the accommoda-
tion is occurring is explicitly encouraged by the
model. The major advantage of consistency of
motion within the style shift over time is that it
provides a sign post for identifying which style
variation within the speech is salient with respect
to social interpretation within a specific interac-
tion so that the model may remain agnostic and
may thus be applied to a variety of interactions
that differ with respect to which stylistic features
are salient in this respect.

3 A Dynamic Bayesian Network Model
for Conversation

Speech stylistic information is reflected in
prosodic features such as pitch, energy, speak-
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ing rate etc. In this work, we leverage on sev-
eral of these speech features to quantify accom-
modation. We propose a series of models that
can be trained unsupervised from speech features
and can be used for predicting accommodation.
The models attempt to capture the dependence of
speech features on speaking style, as well as the
effect of persistence and accommodation on style.
We use a dynamic Bayesian network (DBN) for-
malism to capture these relationships. Below we
briefly review DBNs, and subsequently describe
the speech features used, and the proposed mod-
els.

3.1 Dynamic Bayesian Networks
The theory of Bayesian networks is well doc-
umented and understood (Jensen, 1996; Pearl,
1988). A Bayesian network is a probabilistic
model that represents statistical relationships be-
tween random variables via a directed acyclic
graph (DAG). Formally, it is a directed acyclic
graph whose nodes represent random variables
(which may be observable quantities, latent unob-
servable variables, or hypotheses to be estimated).
Edges represent conditional dependencies; nodes
which are connected by an edge represent ran-
dom variables that have a direct influence on one
another. The entire network represents the joint
probability of all the variables represented by the
nodes, with appropriate factoring of the condi-
tional dependencies between variables.

Consider, for instance, a joint distribution
over a set of random variables x1, x2, · · · , xn,
modeled by a Bayesian network. Let V =
v1, v2, · · · , vn represent the set of n nodes in
the network, representing the random variables
x1, x2, · · · , xn respectively. Let ℘(vi) represent
the set of parent nodes of vi, i.e. nodes in V
that have a directed edge into a node vi. Then,
by the dependencies specified by the network,
P (xi|x1, x2, · · · , xn) = P (xi|xj : vj ∈ ℘(vi)).
In other words, any variable xi is directly depen-
dent only on its parent variables, i.e. the random
variables represented by the nodes in ℘(vi), and
is independent of all other variables given these
variables. The joint probability of x1, x2, · · · , xn

is hence given by

p(x1, x2, ..., xn) =
∏

i

p(xi|xπi) (1)

Where xπi represents {xj : vj ∈ ℘(vi), i.e. the

Figure 1: An example Dynamic Bayesian Network
(DBN) showing the temporal relationship between
three random variables (A,B and C). A is observered
and dependent on two hidden variables B and C. Di-
rected edges across time (t− 1 → t) indicate temporal
relationships between variables. In this example, the
variables At and Bt are both dependent on Bt−1 with
the relationship defined through conditional distribu-
tions P (At|Bt−1) and P (Bt|Bt−1).

parents of xi in the network. We note that not
all of these variables need to be observable; of-
ten in such models several of the variables are
unobservable, i.e. they are latent. In order
to obtain the joint distribution of the observable
variables the latent variables must be marginal-
ized out. I.e. if x1, · · · , xm are observable
and xm+1, · · · , xn are latent, P (x1, · · · , xm) =∑

xm+1,··· ,xn
P (x1, x2, · · · , xn).

Dynamic Bayesian networks (DBNs) further
represent time-series data through a recurrent for-
mulation of a basic Bayesian network that repre-
sents the relationship between variables. Within
a DBN a set of random variables at each time in-
stance t is represented as a static Bayesian Net-
work with temporal dependencies to variables at
other instants. Namely, the distribution of a vari-
able xi,t at time t is dependent on other variables
at times t − τ , xj,t−τ through conditional prob-
abilities of the form Pr(xi,t|xj,t−τ ). An exam-
ple DBN, consisting of three variables (A, B and
C), two of which have temporal dependencies is
shown in Figure 1.

One benefit of the DBN formalism is that in
addition to providing a compact graphical way
of representing statistical relationships between
variables in a process, the constrained, directed
network structure also allows for simplified in-
ference. Moreover, the conditional distributions
associated with the network are often assumed
not to vary over time, i.e. Pr(xi,t|xj,t−τ ) =
Pr(xi,t′ |xj,t′−τ ). This allows for a very com-
pact representation of DBNs and allows for ef-
ficient Expectation-Maximization (EM) learning
algorithms to be applied.
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In the discussion that follows we do not explic-
itly specify the random variables and the form of
the associated probability distributions, but only
present them graphically. The joint distribution of
the variables should nevertheless be obvious from
the figures. We employ EM to learn the param-
eters of the models from training data, and the
junction tree algorithm (Lauritzen & Spiegelhal-
ter, 1988) to perform inference.

3.2 Speech Features

We characterize conversations as a series of spo-
ken turns by the partners. We characterize the
speech in each turn through a vector that cap-
tures several aspects of the signal that are salient
to style. We used the OPENSmile toolkit (opens-
mile, 2011) to compute the features. Specifi-
cally, within each turn the speech was segmented
into analysis windows of 50ms, where adjacent
windows overlapped by 40ms. From each anal-
ysis window a total of 7 features were com-
puted: voice probability, harmonic to noise ratio,
voice quality , three measures of pitch (F0, F raw

0 ,
F env

0 ), and loudness. A 10-bin histogram of fea-
ture values was computed for each of these fea-
tures, which was then normalized to sum to 1.0.
The normalized histogram effectively represents
both the values and the fluctuation in the features.
For instance, a histogram of loudness values cap-
tures the variation in the loudness of the speaker
within a turn. The logarithms of the normalized
10-bin histograms for the 7 features were concate-
nated to result in a single 70-dimensional obser-
vation vector for the turn. These 70 dimensional
observation vectors for each turn of any speaker
are represented in our model as oi

t where t is turn
index and i is speaker index.

3.3 Elements of the Models

In this section we formally describe the elements
of our model.
Speaking Style State: These states represent the
speaking styles of the partners in a conversation.
We represent these states as si

t, where t represent
turn index and i represents speaker index. These
states are assumed to belong to a finite, discrete
set S = {s1, s2, · · · , sk}, i.e. si

t ∈ S ∀(i, t).
Accommodation State: An accommodation state
represents the indirect influence of partners on
each other in a conversation. In our present de-
sign, it can take a value of either 1 or 0. These
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Figure 2: The basic generative model.

Yt-1 Yt+1

O
1
t-1 O

1
t+1

O
1
t

S
1
t-1 S

1
t S

1
t+1

S
2
t-1

O
2
t-1

S
2
t

O
2
t

O
2
t+1

S
2
t+1

Figure 3: ISM: The dynamics of each speaker are in-
dependent of the other speaker.

states are represented as At, where t is turn index.
Observation Vector: The observation vectors are
the feature vectors oi

t computed for each turn.

3.4 Models for Accommodation

Our models embody two premises. First, a per-
son’s speech in any turn is a function of his/her
speaking style in that turn. Second, a person’s
speaking style at any turn depends not only by
their own personal biases, but also by their ac-
commodation to their partner. We represent these
dependencies as a DBN.

Our basic model to represent the generation of
speech (i.e. speech features) by a speaker in the
absence of other influences is shown in Figure 2.
The speech features oi

t in any turn depend only on
the speaking style si

t in that turn. The style si
t in

any turn depends on the style si
t−1 in the previ-

ous turn, to capture the speaker-specific patterns
of variation in speaking style. We note that this
is a rather simple model and patterns of variation
in style are captured only through the statistical
dependence between styles in consequent turns.

We now build our models for accommodation
on this basic model.

3.4.1 Style-based models
Our two first models assume that accommo-

dation is demonstrated as a direct dependence
of a person’s speaking sytle on their partner’s
style. Therefore the models only consider speak-
ing styles.
The Independent Speaker Model

Our simplest model for a conversation assumes
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Figure 4: CSDM: A speaker’s style depends on their
partner’s style at the previous turn.
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Figure 5: SASM: Both partners’ styles depend on mu-
tual accommodation to one another.

that each person’s speaking style evolves indepen-
dently, uninfluenced by their partner. The DBN
for this is shown in Figure 3. We refer to this
model as the Independent Speaker Model (ISM).
Note that the set of values that the style states can
take is common for both speakers. The speaking
styles for the two speakers may be said to be con-
fluent in any turn if both of them are in the same
style state at that turn.
The Cross-speaker Dependence Model

Intuitively, in a conversation speakers are influ-
enced by their partners’ speaking style in previ-
ous turns. The Cross-Speaker Dependence Model
(CSDM) represents this dependence as shown in
the DBN in Figure 4. In this model a person’s
speaking style depends on both their own and
their partner’s speaking styles in the previous turn.

3.4.2 Accommodation state models

Accommodation state models assume that con-
versations actually have an underlying state of ac-
commodation, and that speakers in fact vary their
speaking styles in response to it. We models this
through a binary-valued accommodation state that
is embedded into the DBN. We posit two types of
accommodation state models.
The Symmetric Accommodation State Model

In the symmetric accommodation state model
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Figure 6: AASM: Accommodation state associated
with every speaker turn

(SASM) we assume that accommodation is a
jointly experienced characteristic of the conversa-
tion at any time, which enjoys some persistence,
but is also affected by the speaking styles exhib-
ited by the speakers at each turn. The accom-
modation at any time in turn affects the speaking
styles of both speakers in the next turn. The DBN
for this model is shown in Figure 5.
The Asymmetric Accommodation State Model

The asymmetric accommodation state model
(AASM) represents accommodation as a speaker-
turn-specific characteristic. In any turn, the ac-
commodation for a speaker depends chiefly on
their partner’s most recent speaking style. The ac-
commodation state can change after each speaker
turn. Figure 6 shows the DBN for this model.
Note that this model captures the asymmetric na-
ture of accommodation, e.g. it may be the case
that only one of the speakers is accommodating.
For instance, if if a1

t = 0 and a2
t = 1, only

speaker2 is accommodating but not speaker1.

3.4.3 Accommodated style dependence
models

While accommodation state models explicitly
models accommodation, they do not explicitly
represent how it is expressed. In reality, accom-
modation is a process of convergence – an ac-
commodating speaker’s speaking style may be ex-
pected to converge toward that of their partner. In
other words, the person’s speaking style depends
not only on whether they are accommodating or
not, but also on their partner’s style at the previ-
ous turn. Accommodated style dependence mod-
els explicitly represent this dependence.
The Symmetric Accommodated Style Depen-
dence Model

The Symmetric Accommodated Style Depen-
dence Model (SASDM) extends the SASM, to in-
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Figure 7: SASDM: A speaker’s style depends both on
mutual accommodation and the partner’s style in the
previous turn.
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Figure 8: AASDM: The accommodation state associ-
ated with every speaker and a speaker’s style depends
on the partner’s style.

dicate that a speaker’s style in any turn depends
both on accommodation and on their partner’s
style in the previous turn. Figure 7 shows the
DBN for this model.
Asymmetric Accommodated Style Dependence
Model

The Asymmetric Accommodated Style Depen-
dence Model (AASDM) extends the AASM by
adding a direct dependence between a speaker’s
style and their partner’s style in their most recent
turn. The DBN for this is shown in Figure 8.

3.5 Interpreting the states

We note that we have referred to the states in the
models above as “style” states. In reality, in all
cases, we learn the parameters of the model in
an unsupervised manner, since the data we use to
train it do not have either speaking style or ac-
commodation indicated (although, if they were la-
beled, the labels could be employed within our
models). Consequently, we have no assurance
that the states learned will actually correspond to
speaking styles. They can only be considered a
proxy for speaking style. Nevertheless, if both
speakers are in the same state, they can both be
expected to be producing similar prosodic fea-

tures, as represented in the observation vectors.
It is hence reasonable to assume that they are both
speaking in similar style. Similarly, the accom-
modation state cannot be expected to actually de-
pict accommodation; nevertheless, it can capture
the dependencies that govern when the two speak-
ers are likely to be in the same state.

4 Evaluation

The model we have just described allows us to in-
vestigate two separate aspects of our concept of
speech style accommodation. The first aspect is
that style accommodation occurs as a local influ-
ence of one speaker’s style on the other speaker’s
style, as depicted by direct links between style
states. The second aspect is that although this is a
local phenomenon, because it is a reflection of a
social process that extends over a period of time,
there will be some persistence of accommodation
over longer periods of time, as characterized by
the accommodation state. We presented two dif-
ferent operationalizations of the accommodation
state above, namely Asymmetric and Symmetric.

Accommodation is a phenomenon that occurs
within interactions between speakers; we can ex-
pect not to observe accommodation occurring be-
tween individuals that have never met and are not
interacting. On average, then, we expect to see
more evidence of speech style accommodation in
pairs of individuals who are interacting (i.e., Real
Pairs) than in pairs of individuals who are not in-
teracting and have never met (i.e., Constructed
Pairs). Thus, we may evaluate the extent to which
our model is sensitive to social dynamics within
pairs by the extent to which it is able to distinguish
between true conversation between Real Pairs of
speaker and synthetic conversation between Con-
structed Pairs. A similar experimental paradigm
has been adopted in prior work on speech style
accommodation (Levitan et al., 2011).
Hypothesis: Our hypothesis is that models that
explicitly represent the notion that accommoda-
tion occurs over a span of time with consistency
of momentum will achieve better success at dis-
tinguishing between Real Pairs and Constructed
Pairs than models that do not.
Experimental Manipulation: Thus, using the
model we have just described, we are able to
test our hypothesis using a 2 × 3 factorial design
in which one factor is the inclusion of direct
links from the style of one speaker to the style
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of the other speaker, which we refer to as the
DirectInfluence (DI) factor, with values True
(T) and False (F), and the second factor is the
inclusion of links from style states to and from
Accommodation states, which we refer to as the
IndirectInfluence (II) factor, with values False
(F), Asymmetric (A), and Symmetric (S). The
result of this 2 × 3 factorial design are the 6
different models described in Section 3, namely
ISM (DI=False, II=False), CSDM (DI=True,
II=False), SASM (DI=False, II=Symmetric),
AASM (DI=False, II=Asymmetric), SASDM
(DI=True, II=Symmetric), and AASDM
(DI=True, II= Asymmetric).
Corpus: The success criterion in our experiment
is the extent to which models of speech style
accommodation are able to distinguish between
Real Pairs and Constructed pairs. In order to set
up this comparison, we began with a corpus of de-
bates between students about the reasons for the
fall of the Ottoman Empire. We obtained this cor-
pus from researchers who originally collected it
to investigate issues related to learning from con-
versational interactions (Nokes et al., 2010). The
full corpus contains interactions between 76 pairs
of students who interacted for 8 minutes. Within
each pair, one student was assigned the role of ar-
guing that the fall of the Ottoman empire was due
to internal causes, whereas the other student was
assigned the role of arguing that the fall of the Ot-
toman empire was due to external causes. Each
student was given a 4 page packet of supporting
information for their side of the debate to draw
from in the interaction.

The speech from each participant was recorded
on a separate channel. As a first step, we aligned
the speech recordings automatically to their tran-
scriptions at the word and turn level. After align-
ing the corpus at the word level, we identify the
turn interval of each partner in the conversation.
We use 66 of the debates out of the complete set
of 76 for the experiments discussed in this paper.
We had to eliminate 10 dialogues where the seg-
mentation and alignment failed. For each of our
models, we used the same 3 fold cross-validation.
Participants: Participants were all male under-
graduate students between the ages of 18 and 25.
In prior studies, it has been shown that accommo-
dation varies based on gender, age and familiar-
ity between partners. This corpus is particularly
appropriate because it controls for most of these

factors. Furthermore, because the participants did
not know each other before the debate, we can
assume that if accommodation happened, it was
only during the conversation.
Real versus Constructed Pairs: In our analy-
sis below, we compare measured accommodation
between pairs of humans who had a real conver-
sation and a constructed pair in which one per-
son from that conversation is paired with a con-
structed partner, where the partner’s side of the
conversation was constructed from turns that oc-
curred in other conversations. We set up this com-
parison in order to isolate speech style conver-
gence from lexical convergence when we evalu-
ate the performance of our model. The difference
between the measured accommodation between
real and constructed pairs is treated as a weak op-
erationalization of model accuracy at measuring
speech style accommodation.

For each of the 20 Real pairs in the test corpus
we composed one Constructed Pair. Each Con-
structed Pair comprised one student from the cor-
responding Real Pair (i.e., the Real Student) and a
Constructed Partner that resembled the real part-
ner in content but not necessarily style. We did
this by iterating through the real partner’s turns,
replacing each with a turn that matched as well as
possible in terms of lexical content but came from
a different conversation. Lexical content match
was measured in terms of cosine similarity. Turns
were selected from the other Real pairs. Thus, the
Constructed Partner had similar content to the cor-
responding real partner on a turn by turn basis, but
the style of expression could not be influenced by
the Real Student. Thus, ideally we should not see
evidence of speech style accommodation within
the Constructed Pairs.
Experimental Procedure: For each of the four
models we computed an Accommodation Score
for each of the Real Pairs and Constructed Pairs.
In order to obtain a measure that can be used to
compute accommodation for all the models con-
sidered, we compute the accommodation value as
the fraction of turns in a session where partners
exhibited the same speaking style.
Results: In order to test our hypothesis we con-
structed an ANOVA model with Accommodation
Score as the dependent variable and DirectInflu-
ence, IndirectInfluence, RealVsConstructed as in-
dependent variables. Additionally we included
the interaction terms between all pairs of inde-
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DI II Real Constructed
µ(σ) µ(σ)

SASDM T S .54 (.23) .44 (.29)
SASM F S .54 (.23) .44 (.29)
CSDM T F .6 (.26) .52 (.3)
ISM F F .56 (.25) .51 (.32)
AASM F A .6 (.24) .51 (.3)
AASDM T A .61 (.24) .48 (.3)

Table 1: Accommodation measured using different
models. Legend: µ=mean, σ = standard deviation, DI
= “Direct Influence”, II = “Indirect Influence”.

pendent variables. Using this ANOVA model, we
find a highly significant main effect of the Re-
alVsConstructed factor that demonstrates the gen-
eral ability of the models to achieve separation be-
tween Real Pairs and Constructed Pairs; on aver-
age F(1,780) = 18.22, p < .0001.

However, when we look more closely, we find
that although the trend is consistently to find more
evidence of speech style accommodation in Real
Pairs than in Constructed Pairs, we see differen-
tiation among the models in terms of their abil-
ity to achieve this separation. When we exam-
ine the two way interactions between DirectIn-
fluence and RealVsConstructed as well as be-
tween IndirectInfluence and RealVsConstructed,
although we do not find significant interactions,
we do find some suggestive patterns when we
do the student T posthoc analysis. In particular,
when we explore just the interaction between In-
directInfluence links, we find a significant separa-
tion between Real vs Constructed pairs for models
with Accommodation states, but not for the cases
where no Accommodation states are included.
However, when we do the same for the interaction
between DirectInfluence links and RealVsCon-
structed, we find significant separation with or
without those links. This suggests that IndirectIn-
fluence links are more important than DirectInflu-
ence links. At a finer-grained level, when we ex-
amine the models individually, we only find a sig-
nificant separation between Real and Constructed
pairs with the model that includes both Direct-
Influence and Symmetric IndirectInfluence links.
These results suggest that Symmetric IndirectIn-
fluence links may be slightly better than Asym-
metric ones, and that combining DirectInfluence
links and Symmetric IndirectInfluence links may
be the best combination.

Based on this analysis, we find support for our
hypothesis. We find that the model that includes
Symmetric IndirectInfluence links and DirectIn-
fluence links is the best balance between represen-
tational power and simplicity. The support for the
inclusion of DirectInfluence links in the model is
weaker than that of IndirectInfluence links, how-
ever. On a larger dataset, we may have observed
stronger effects of both factors. Even on this small
dataset, we find evidence that adding that struc-
ture improves the performance of the model with-
out leading to overfitting.

5 Conclusions and Current Directions

In this paper we presented an unsupervised dy-
namic Bayesian modeling approach to modeling
speech style accommodation in face-to-face inter-
actions. Our model was motivated by the idea that
because accommodation reflects social processes
that extend over time within an interaction, one
may expect a certain consistency of motion within
the stylistic shift. Our evaluation demonstrated a
statistically significant advantage for the models
that embodied this idea.

An important motivation for our modeling ap-
proach was that it allows us to avoid targeting
specific linguistic style features in our measure
of accommodation. However, in our evaluation,
we only tested our approach on conversations be-
tween male undergraduate students discussing the
fall of the Ottoman Empire. Thus, while our eval-
uation provides evidence that we have taken a first
important step towards our ultimate goal, we can-
not yet claim that we have a model that performs
equally effectively across contexts. In our future
work, we plan to formally test the extent to which
this allows us to accurately measure accommoda-
tion within contexts in which very different stylis-
tic elements carry strategic social value.

Another important direction of our current re-
search is to explore how measures of speech style
accommodation may predict other important mea-
sures such as how positively partners view one an-
other, how successful partners perform tasks to-
gether, or how well students learn together.
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Abstract

While information status (IS) plays a cru-
cial role in discourse processing, there have
only been a handful of attempts to automat-
ically determine the IS of discourse entities.
We examine a related but more challenging
task,fine-grainedIS determination, which
involves classifying a discourse entity as
one of 16 ISsubtypes. We investigate the
use of rich knowledge sources for this task
in combination with a rule-based approach
and a learning-based approach. In experi-
ments with a set of Switchboard dialogues,
the learning-based approach achieves an ac-
curacy of 78.7%, outperforming the rule-
based approach by 21.3%.

1 Introduction

A linguistic notion central to discourse processing
is information status(IS). It describes the extent
to which a discourse entity, which is typically re-
ferred to by noun phrases (NPs) in a dialogue, is
availableto the hearer. Different definitions of IS
have been proposed over the years. In this paper,
we adopt Nissim et al.’s (2004) proposal, since it
is primarily built upon Prince’s (1992) and Eck-
ert and Strube’s (2001) well-known definitions,
and is empirically shown by Nissim et al. to yield
an annotation scheme for IS in dialogue that has
good reproducibility.1

Specifically, Nissim et al. (2004) adopt a three-
way classification scheme for IS, defining a dis-
course entity as (1)old to the hearer if it is known
to the hearer and has previously been referred to in
the dialogue; (2)new if it is unknown to her and

1It is worth noting that several IS annotation schemes
have been proposed more recently. See Götze et al. (2007)
and Riester et al. (2010) for details.

has not been previously referred to; and (3)me-
diated (henceforthmed) if it is newly mentioned
in the dialogue but she can infer its identity from
a previously-mentioned entity. To capture finer-
grained distinctions for IS, Nissim et al. allow an
old or med entity to have asubtype, whichsubcat-
egorizesanold or med entity. For instance, amed
entity has the subtypeset if the NP that refers to
it is in a set-subset relation with its antecedent.

IS plays a crucial role in discourse processing:
it provides an indication of how a discourse model
should be updated as a dialogue is processed in-
crementally. Its importance can be reflected in
part in the amount of attention it has received in
theoretical linguistics over the years (e.g., Halli-
day (1976), Prince (1981), Hajičová (1984), Vall-
duvı́ (1992), Steedman (2000)), and in part in the
benefits it can potentially bring to NLP applica-
tions. One task that could benefit from knowledge
of IS is identity coreference: sincenew entities by
definition have not been previously referred to, an
NP marked asnew does not need to be resolved,
thereby improving the precision of a coreference
resolver. Knowledge offine-grainedor subcat-
egorizedIS is valuable for other NLP tasks. For
instance, an NP marked asset signifies that it is in
a set-subset relation with its antecedent, thereby
providing important clues for bridging anaphora
resolution (e.g., Gasperin and Briscoe (2008)).

Despite the potential usefulness of IS in NLP
tasks, there has been little work onlearning
the IS of discourse entities. To investigate the
plausibility of learning IS, Nissim et al. (2004)
annotate a set of Switchboard dialogues with
such information2, and subsequently present a

2These and other linguistic annotations on the Switch-
board dialogues were later released by the LDC as part of the
NXT corpus, which is described in Calhoun et al. (2010).
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rule-based approach and a learning-based ap-
proach to acquiring such knowledge (Nissim,
2006). More recently, we have improved Nissim’s
learning-based approach by augmenting her fea-
ture set, which comprises seven string-matching
and grammatical features, with lexical and syn-
tactic features (Rahman and Ng, 2011; hence-
forth R&N). Despite the improvements, the per-
formance onnew entities remains poor: an F-
score of 46.5% was achieved.

Our goal in this paper is to investigatefine-
grained IS determination, the task of classifying
a discourse entity as one of the 16 IS subtypes
defined by Nissim et al. (2004).3 Owing in part
to the increase in the number of categories, fine-
grained IS determination is arguably a more chal-
lenging task than the 3-class IS determination task
that Nissim and R&N investigated. To our knowl-
edge, this is the first empirical investigation of au-
tomated fine-grained IS determination.

We propose aknowledge-richapproach to fine-
grained IS determination. Our proposal is moti-
vated in part by Nissim’s and R&N’s poor per-
formance onnew entities, which we hypothesize
can be attributed to their sole reliance on shallow
knowledge sources. In light of this hypothesis,
our approach employssemanticandworld knowl-
edge extracted from manually and automatically
constructed knowledge bases, as well ascorefer-
enceinformation. The relevance of coreference to
IS determination can be seen from the definition
of IS: a new entity is not coreferential with any
previously-mentioned entity, whereas anold en-
tity may. While our use of coreference informa-
tion for IS determination and our earlier claim that
IS annotation would be useful for coreference res-
olution may seem to have created a chicken-and-
egg problem, they do not: since coreference reso-
lution and IS determination can benefit from each
other, it may be possible to formulate an approach
where the two tasks can mutually bootstrap.

We investigate rule-based and learning-based
approaches to fine-grained IS determination. In
the rule-based approach, we manually compose
rules to combine the aforementioned knowledge
sources. While we could employ the same knowl-
edge sources in the learning-based approach, we
chose to encode, among other knowledge sources,

3One of these 16 classes is thenew type, for which no
subtype is defined. For ease of exposition, we will refer to
thenew type as one of the 16 subtypes to be predicted.

the hand-written rules and their predictions di-
rectly as features for the learner. In an evalua-
tion on 147 Switchboard dialogues, our learning-
based approach to fine-grained IS determina-
tion achieves an accuracy of 78.7%, substan-
tially outperforming the rule-based approach by
21.3%. Equally importantly, when employing
these linguistically rich features to learn Nissim’s
3-class IS determination task, the resulting classi-
fier achieves an accuracy of 91.7%, surpassing the
classifier trained on R&N’s state-of-the-art fea-
ture set by 8.8% in absolute accuracy. Improve-
ments on thenew class are particularly substan-
tial: its F-score rises from 46.7% to 87.2%.

2 IS Types and Subtypes: An Overview

In Nissim et al.’s (2004) IS classification scheme,
an NP can be assigned one of three main types
(old, med, new) and one of 16 subtypes. Below
we will illustrate their definitions with examples,
most of which are taken from Nissim (2003) or
Nissim et al.’s (2004) dataset (see Section 3).

Old. An NP is marked isold if (i) it is corefer-
ential with an entity introduced earlier, (ii) it is a
generic pronoun, or (iii) it is a personal pronoun
referring to the dialogue participants. Six sub-
types are defined forold entities: identity, event,
general, generic, ident generic, and relative. In
Example 1,my is marked asold with subtype
identity, since it is coreferent withI.

(1) I was angry that he destroyedmy tent.

However, if the markable has a verb phrase (VP)
rather than an NP as its antecedent, it will be
marked asold/event, as can be seen in Example
2, where the antecedent ofThat is the VPput my
phone number on the form.

(2) They ask me to put my phone number
on the form.That I think is not needed.

Other NPs marked asold include (i) relative
pronouns, which have the subtyperelative; (ii)
personal pronouns referring to the dialogue par-
ticipants, which have the subtypegeneral, and
(iii) generic pronouns, which have the subtype
generic. The pronounyou in Example 3 is an in-
stance of a generic pronoun.

(3) I think to correct the judicial system,
you have to get the lawyer out of it.

Note, however, that in a coreference chain of
generic pronouns, every element of the chain is
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assigned the subtypeident generic instead.

Mediated. An NP is marked asmed if the en-
tity it refers to has not been previously introduced
in the dialogue, but can be inferred from already-
mentioned entities or is generally known to the
hearer. Nine subtypes are available formed en-
tities: general, bound, part, situation, event, set,
poss, func value, andaggregation.

General is assigned tomed entities that are
generally known, such asthe Earth, China, and
most proper names.Bound is reserved for bound
pronouns, an instance of which is shown in Ex-
ample 4, whereits is bound to the variable of the
universally quantified NP,Every cat.

(4) Every cat ateits dinner.

Poss is assigned to NPs involved in intra-phrasal
possessive relations, including prenominal geni-
tives (i.e., X’s Y) and postnominal genitives (i.e.,
Y of X). Specifically, Y will be marked asposs if
X is old or med; otherwise, Y will benew. For ex-
ample, in cases likea friend’s boatwherea friend
is new, boat is marked asnew.

Four subtypes, namelypart, situation, event,
and set, are used to identify instances of bridg-
ing (i.e., entities that are inferrable from a related
entity mentioned earlier in the dialogue). As an
example, consider the following sentences:

(5a) He passed by the door of Jan’s house
and saw thatthe door was painted red.

(5b) He passed by Jan’s house and saw that
the door was painted red.

In Example 5a, by the time the hearer processes
the second occurrence ofthe door, she has already
had a mental entity corresponding tothe door(af-
ter processing the first occurrence). As a result,
the second occurrence ofthe door refers to an
old entity. In Example 5b, on the other hand, the
hearer is not assumed to have any mental repre-
sentation of the door in question, but she can in-
fer that the door she saw was part of Jan’s house.
Hence, this occurrence ofthe door should be
marked asmed with subtypepart, as it is involved
in a part-whole relation with its antecedent.

If an NP is involved in a set-subset relation with
its antecedent, it inherits themed subtypeset.
This applies to the NPthe house paymentin Ex-
ample 6, whose antecedent isour monthly budget.

(6) What we try to do to stick to our
monthly budget is we pretty much have
the house payment.

If an NP is part of a situation set up by a
previously-mentioned entity, it is assigned the
subtypesituation, as exemplified by the NPa few
horsesin the sentence below, which is involved in
the situation set up byJohn’s ranch.

(7) Mary went to John’s ranch and saw that
there were onlya few horses.

Similar toold entities, an NP marked asmedmay
be related to a previously mentioned VP. In this
case, the NP will receive the subtypeevent, as ex-
emplified by the NPthe busin the sentence below,
which is triggered by the VPtraveling in Miami.

(8) We were traveling in Miami, andthe
buswas very full.

If an NP refers to a value of a previously men-
tioned function, such as the NP30 degreesin Ex-
ample 9, which is related tothe temperature, then
it is assigned the subtypefunc value.

(9) The temperature rose to30 degrees.

Finally, the subtypeaggregation is assigned to co-
ordinated NPs if at least one of the NPs involved
is notnew. However, if all NPs in the coordinated
phrase arenew, the phrase should be marked as
new. For instance, the NPMy son and Iin Exam-
ple 10 should be marked asmed/aggregation.

(10) I have a son ...My son and I like to
play chess after dinner.

New. An entity is new if it has not been intro-
duced in the dialogue and the hearer cannot infer
it from previously mentioned entities. No subtype
is defined fornew entities.

There are cases where more than one IS value
is appropriate for a given NP. For instance, given
two occurrences ofChina in a dialogue, the sec-
ond occurrence can be labeled asold/identity (be-
cause it is coreferential with an earlier NP) or
med/general (because it is a generally known
entity). To break ties, Nissim (2003) define a
precedence relation on the IS subtypes, which
yields a total ordering on the subtypes. Since
all the old subtypes are ordered before theirmed
counterparts in this relation, the second occur-
rence ofChina in our example will be labeled as
old/identity. Owing to space limitations, we refer
the reader to Nissim (2003) for details.

3 Dataset

We employ Nissim et al.’s (2004) dataset, which
comprises 147 Switchboard dialogues. We parti-
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tion them into a training set (117 dialogues) and a
test set (30 dialogues). A total of 58,835 NPs are
annotated with IS types and subtypes.4 The distri-
butions of NPs over the IS subtypes in the training
set and the test set are shown in Table 1.

Train (%) Test (%)
old/identity 10236 (20.1) 1258 (15.8)
old/event 1943 (3.8) 290 (3.6)
old/general 8216 (16.2) 1129 (14.2)
old/generic 2432 (4.8) 427 (5.4)
old/ident generic 1730 (3.4) 404 (5.1)
old/relative 1241 (2.4) 193 (2.4)
med/general 2640 (5.2) 325 (4.1)
med/bound 529 (1.0) 74 (0.9)
med/part 885 (1.7) 120 (1.5)
med/situation 1109 (2.2) 244 (3.1)
med/event 351 (0.7) 67 (0.8)
med/set 10282 (20.2) 1771 (22.3)
med/poss 1318 (2.6) 220 (2.8)
med/func value 224 (0.4) 31 (0.4)
med/aggregation 580 (1.1) 117 (1.5)
new 7158 (14.1) 1293 (16.2)
total 50874 (100) 7961 (100)

Table 1: Distributions of NPs over IS subtypes. The
corresponding percentages are parenthesized.

4 Rule-Based Approach

In this section, we describe our rule-based ap-
proach to fine-grained IS determination, where we
manually design rules for assigning IS subtypes to
NPs based on the subtype definitions in Section 2,
Nissim’s (2003) IS annotation guidelines, and our
inspection of the IS annotations in the training
set. The motivations behind having a rule-based
approach are two-fold. First, it can serve as a
baseline for fine-grained IS determination. Sec-
ond, it can provide insight into how the available
knowledge sources can be combined into predic-
tion rules, which can potentially serve as “sophis-
ticated” features for a learning-based approach.

As shown in Table 2, our ruleset is composed of
18 rules, which should be applied to an NP in the
order in which they are listed. Rules 1–7 handle
the assignment ofold subtypes to NPs. For in-
stance, Rule 1 identifies instances ofold/general,
which comprises the personal pronouns referring

4Not all NPs have an IS type/subtype. For instance, a
pleonastic “it” does not refer to any real-world entity and
therefore does not have any IS, and so are nouns such as
“course” in “of course”, “accident” in “by accident”, etc.

to the dialogue participants. Note that this and
several other rules rely on coreference informa-
tion, which we obtain from two sources: (1)
chains generated automatically using the Stan-
ford Deterministic Coreference Resolution Sys-
tem (Lee et al., 2011)5, and (2) manually iden-
tified coreference chains taken directly from the
annotated Switchboard dialogues. Reporting re-
sults using these two ways of obtaining chains fa-
cilitates the comparison of the IS determination
results that we can realistically obtain using ex-
isting coreference technologies against those that
we could obtain if we further improved exist-
ing coreference resolvers. Note that both sources
provide identity coreference chains. Specifically,
the gold chains were annotated for NPs belong-
ing to old/identity and old/ident generic. Hence,
these chains can be used to distinguish between
old/general NPs andold/ident generic NPs, be-
cause the former arenot part of a chain whereas
the latter are. However, they cannot be used
to distinguish betweenold/general entities and
old/generic entities, since neither of them belongs
to any chains. As a result, when gold chains are
used, Rule 1 will classify all occurrences of “you”
that are not part of a chain asold/general, regard-
less of whether the pronoun is generic. While the
gold chains alone can distinguishold/general and
old/ident generic NPs, the Stanford chains can-
not distinguish any of theold subtypes in the ab-
sence of other knowledge sources, since it gener-
ates chains forall old NPs regardless of their sub-
types. This implies that Rule 1 and several other
rules are only a very crude approximation of the
definition of the corresponding IS subtypes.

The rules for the remainingold subtypes can be
interpreted similarly. A few points deserve men-
tion. First, many rules depend on the string of
the NP under consideration (e.g., “they” in Rule 2
and “whatever” in Rule 4). The decision of which
strings are chosen is based primarily on our in-
spection of the training data. Hence, these rules
are partly data-driven. Second, these rules should
be applied in the order in which they are shown.
For instance, though not explicitly stated, Rule 3
is only applicable to the non-anaphoric “you” and
“they” pronouns, since Rule 2 has already covered
their anaphoric counterparts. Finally, Rule 7 uses
non-anaphoricity as a test ofold/event NPs. The

5The Stanford resolver is available fromhttp://nlp.
stanford.edu/software/corenlp.shtml.
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1. if the NP is “I” or “you” and it is not part of a coreference chain,then
subtype :=old/general

2. if the NP is “you” or “they” and it is anaphoric,then
subtype :=old/ident generic

3. if the NP is “you” or “they”,then
subtype :=old/generic

4. if the NP is “whatever” or an indefinite pronoun prefixed by “some” or “any” (e.g., “somebody”),then
subtype :=old/generic

5. if the NP is an anaphoric pronoun other than “that”, or its string is identical to that of a preceding NP,then
subtype :=old/ident

6. if the NP is “that” and it is coreferential with the immediatelypreceding word,then
subtype :=old/relative

7. if the NP is “it”, “this” or “that”, and it is not anaphoric,then
subtype :=old/event

8. if the NP is pronominal and is not anaphoric,then
subtype :=med/bound

9. if the NP contains “and” or “or”,then
subtype :=med/aggregation

10. if the NP is a multi-word phrase that (1) begins with “so much”, “something”, “somebody”, “someone”,
“anything”, “one”, or “different”, or (2) has “another”, “anyone”, “other”, “such”, “that”, “of” or “type”
as neither its first nor last word, or (3) its head noun is also the head noun of a preceding NP,then

subtype :=med/set
11. if the NP contains a word that is a hyponym of the word “value” in WordNet,then

subtype :=med/func value
12. if the NP is involved in a part-whole relation with a preceding NP based on information extracted from

ReVerb’s output,then
subtype :=med/part

13. if the NP is of the form “X’s Y” or “poss-pro Y”, where X and Y are NPs and poss-pro is a possessive
pronoun,then

subtype :=med/poss
14. if the NP fills an argument of a FrameNet frame set up by a preceding NP or verb,then

subtype :=med/situation
15. if the head of the NP and one of the preceding verbs in the same sentence share the same WordNet

hypernym which is not in synsets that appear one of the top fivelevels of the noun/verb hierarchy,then
subtype :=med/event

16. if the NP is a named entity (NE) or starts with “the”,then
subtype :=med/general

17. if the NP appears in the training set,then
subtype := its most frequent IS subtype in the training set

18. subtype :=new

Table 2: Hand-crafted rules for assigning IS subtypes to NPs.

reason is that these NPs have VP antecedents, but
both the gold chains and the Stanford chains are
computed over NPs only.

Rules 8–16 concernmed subtypes. Apart from
Rule 8 (med/bound), Rule 9 (med/aggregation),
and Rule 11 (med/func value), which are arguably
crude approximations of the definitions of the
corresponding subtypes, themed rules are more
complicated than theirold counterparts, in part
because of their reliance on the extraction of so-
phisticated knowledge. Below we describe the ex-
traction process and the motivation behind them.

Rule 10 concernsmed/set. The words and
phrases listed in the rule, which are derived manu-
ally from the training data, provide suggestive ev-
idence that the NP under consideration is a subset
or a specific portion of an entity or concept men-
tioned earlier in the dialogue. Examples include
“another bedroom”, “different color”, “somebody
else”, “any place”, “one of them”, and “most other
cities”. Condition 3 of the rule, which checks
whether the head noun of the NP has been men-
tioned previously, is a good test for identity coref-
erence, but since all theold entities have suppos-
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edly been identified by the preceding rules, it be-
comes a reasonable test for set-subset relations.

For convenience, we identify part-whole rela-
tions in Rule 12 based on the output produced by
ReVerb (Fader et al., 2011), an open information
extraction system.6 The output contains, among
other things, relation instances, each of which is
represented as a triple,<A,rel,B>, whererel is
a relation, and A and B are its arguments. To pre-
process the output, we first identify all the triples
that are instances of the part-whole relation us-
ing regular expressions. Next, we create clusters
of relation arguments, such that each pair of ar-
guments in a cluster has a part-whole relation.
This is easy: since part-whole is a transitive rela-
tion (i.e.,<A,part,B> and<B,part,C> implies
<A,part,C>), we cluster the arguments by taking
the transitive closure of these relation instances.
Then, given an NPNPi in the test set, we assign
med/part to it if there is a preceding NPNPj such
that the two NPs are in the same argument cluster.

In Rule 14, we use FrameNet (Baker et al.,
1998) to determine whethermed/situation should
be assigned to an NP,NPi. Specifically, we check
whether it fills an argument of a frame set up by
a preceding NP,NPj , or verb. To exemplify, let
us assume thatNPj is “capital punishment”. We
search for “punishment” in FrameNet to access
the appropriate frame, which in this case is “re-
wards and punishments”. This frame contains a
list of arguments together with examples. IfNPi is
one of these arguments, we assignmed/situation
to NPi, since it is involved in a situation (described
by a frame) that is set up by a preceding NP/verb.

In Rule 15, we use WordNet (Fellbaum, 1998)
to determine whethermed/event should be as-
signed to an NP,NPi, by checking whetherNPi is
related to an event, which is typically described
by a verb. Specifically, we use WordNet to check
whether there exists a verb,v, precedingNPi such
thatv andNPi have the same hypernym. If so, we
assignNPi the subtypemed/event. Note that we
ensure that the hypernym they share does not ap-
pear in the top five levels of the WordNet noun
and verb hierarchies, since we want them to be
related via a concept that is not overly general.

Rule 16 identifies instances ofmed/general.
The majority of its members aregenerally-known

6We use ReVerb ClueWeb09 Extractions 1.1, which
is available fromhttp://reverb.cs.washington.
edu/reverb_clueweb_tuples-1.1.txt.gz.

entities, whose identification is difficult as it re-
quires world knowledge. Consequently, we apply
this rule only after all othermed rules are applied.
As we can see, the rule assignsmed/general to
NPs that are named entities (NEs) and definite de-
scriptions (specifically those NPs that start with
“the”). The reason is simple. Most NEs are gener-
ally known. Definite descriptions are typically not
new, so it seems reasonable to assignmed/general
to them given that the remaining (i.e., unlabeled)
NPs are presumably eithernew andmed/general.

Before Rule 18, which assigns an NP to thenew
class by default, we have a “memorization” rule
that checks whether the NP under consideration
appears in the training set (Rule 17). If so, we
assign to it its most frequent subtype based on its
occurrences in the training set. In essence, this
heuristic rule can help classify some of the NPs
that are somehow “missed” by the first 16 rules.

The ordering of these rules has a direct impact
on performance of the ruleset, so a natural ques-
tion is: what criteria did we use to order the rules?
We order them in such a way that they respect the
total ordering on the subtypes imposed by Nis-
sim’s (2003) preference relation (see Section 3),
except that we givemed/general a lower priority
than Nissim due to the difficulty involved in iden-
tifying generally known entities, as noted above.

5 Learning-Based Approach

In this section, we describe our learning-based ap-
proach to fine-grained IS determination. Since
we aim to automatically label an NP with its IS
subtype, we create one training/test instance from
each hand-annotated NP in the training/test set.
Each instance is represented using five types of
features, as described below.

Unigrams (119704). We create one binary fea-
ture for each unigram appearing in the training
set. Its value indicates the presence or absence
of the unigram in the NP under consideration.

Markables (209751). We create one binary fea-
ture for each markable (i.e., an NP having an IS
subtype) appearing in the training set. Its value is
1 if and only if the markable has the same string
as the NP under consideration.

Markable predictions (17). We create 17 bi-
nary features, 16 of which correspond to the 16
IS subtypes and the remaining one corresponds to
a “dummy subtype”. Specifically, if the NP un-
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der consideration appears in the training set, we
use Rule 17 in our hand-crafted ruleset to deter-
mine the IS subtype it is most frequently associ-
ated with in the training set, and then set the value
of the feature corresponding to this IS subtype to
1. If the NP does not appear in the training set, we
set the value of the dummy subtype feature to 1.

Rule conditions (17). As mentioned before, we
can create features based on the hand-crafted rules
in Section 4. To describe these features, let us in-
troduce some notation. Let Rulei be denoted by
Ai −→ Bi, whereAi is the condition that must
be satisfied before the rule can be applied andBi

is the IS subtype predicted by the rule. We could
create one binary feature from eachAi, and set its
value to 1 ifAi is satisfied by the NP under con-
sideration. These features, however, fail to cap-
ture a crucial aspect of the ruleset: the ordering of
the rules. For instance, Rulei should be applied
only if the conditions of the firsti−1 rules are not
satisfied by the NP, but such ordering is not en-
coded in these features. To address this problem,
we capture rule ordering information by defining
binary featurefi as¬A1∧¬A2∧ . . .¬Ai−1∧Ai,
where 1≤ i ≤ 16. In addition, we define a fea-
ture,f18, for the default rule (Rule 18) in a simi-
lar fashion, but since it does not have any condi-
tion, we simply definef18 as¬A1 ∧ . . . ∧ ¬A16.
The value of a feature in this feature group is 1
if and only if the NP under consideration satis-
fies the condition defined by the feature. Note that
we did not create any features from Rule 17 here,
since we have already generated “markables” and
“markable prediction” features for it.

Rule predictions (17). None of the featuresfi’s
defined above makes use of the predictions of our
hand-crafted rules (i.e., theBi’s). To make use
of these predictions, we define 17 binary features,
one for eachBi, wherei = 1, . . . , 16, 18. Specif-
ically, the value of the feature corresponding to
Bi is 1 if and only if fi is 1, wherefi is a “rule
condition” feature as defined above.

Since IS subtype determination is a 16-class
classification problem, we train a multi-class
SVM classifier on the training instances using
SVMmulticlass (Tsochantaridis et al., 2004), and
use it to make predictions on the test instances.7

7For all the experiments involving SVMmulticlass, we
set C, the regularization parameter, to 500,000, since pre-
liminary experiments indicate that preferring generalization

6 Evaluation

Next, we evaluate the rule-based approach and
the learning-based approach to determining the IS
subtype of each hand-annotated NP in the test set.

Classification results. Table 3 shows the results
of the two approaches. Specifically, row 1 shows
their accuracy, which is defined as the percent-
age of correctly classified instances. For each
approach, we present results that are generated
based on gold coreference chains as well as auto-
matic chains computed by the Stanford resolver.

As we can see, the rule-based approach
achieves accuracies of 66.0% (gold coreference)
and 57.4% (Stanford coreference), whereas the
learning-based approach achieves accuracies of
86.4% (gold) and 78.7% (Stanford). In other
words, the gold coreference results are better than
the Stanford coreference results, and the learning-
based results are better than the rule-based results.
While perhaps neither of these results are surpris-
ing, we are pleasantly surprised by theextentto
which the learned classifier outperforms the hand-
crafted rules: accuracies increase by 20.4% and
21.3% when gold coreference and Stanford coref-
erence are used, respectively. In other words, ma-
chine learning has “transformed” a ruleset that
achieves mediocre performance into a system that
achieves relatively high performance.

These results also suggest that coreference
plays a crucial role in IS subtype determination:
accuracies could increase by up to 7.7–8.6% if
we solely improved coreference resolution perfor-
mance. This is perhaps not surprising: IS and
coreference can mutually benefit from each other.

To gain additional insight into the task, we also
show in rows 2–17 of Table 3 the performance
on each of the 16 subtypes, expressed in terms of
recall (R), precision (P), and F-score (F). A few
points deserve mention. First, in comparison to
the rule-based approach, the learning-based ap-
proach achieves considerably better performance
on almost all classes. One that is of particular in-
terest is thenew class. As we can see in row 17,
its F-score rises by about 30 points. These gains
are accompanied by a simultaneous rise in recall
and precision. In particular, recall increases by
about 40 points. Now, recall from the introduc-

to overfitting (by setting C to a small value) tends to yield
poorer classification performance. The remaining learning
parameters are set to their default values.
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Rule-Based Approach Learning-Based Approach
Gold Coreference Stanford Coreference Gold Coreference Stanford Coreference

1 Accuracy 66.0 57.4 86.4 78.7
IS Subtype R P F R P F R P F R P F

2 old/ident 77.5 78.2 77.8 66.1 52.7 58.7 82.8 85.2 84.0 75.8 64.2 69.5
3 old/event 98.6 50.4 66.7 71.3 43.2 53.8 98.3 87.9 92.8 2.4 31.8 4.5
4 old/general 81.9 82.7 82.3 72.3 83.6 77.6 97.7 93.7 95.6 87.8 92.7 90.2
5 old/generic 55.9 55.2 55.5 39.2 39.8 39.5 76.1 87.3 81.3 39.9 85.9 54.5
6 old/ident generic 48.7 77.7 59.9 27.2 51.8 35.7 57.1 87.5 69.1 47.2 44.8 46.0
7 old/relative 55.0 69.2 61.3 55.1 63.4 59.0 98.0 63.0 76.7 99.0 37.5 54.4
8 med/general 29.9 19.8 23.8 29.5 19.6 23.6 91.2 87.7 89.4 84.0 72.2 77.7
9 med/bound 56.4 20.5 30.1 56.4 20.5 30.1 25.7 65.5 36.9 2.7 40.0 5.1

10 med/part 19.5 100.0 32.7 19.5 100.0 32.7 73.2 96.8 83.3 73.2 96.8 83.3
11 med/situation 28.7 100.0 44.6 28.7 100.0 44.6 68.4 95.4 79.7 68.0 97.7 80.2
12 med/event 10.5 100.0 18.9 10.5 100.0 18.9 46.3 100.0 63.3 46.3 100.0 63.3
13 med/set 82.9 61.8 70.8 78.0 59.4 67.4 90.4 87.8 89.1 88.4 86.0 87.2
14 med/poss 52.9 86.0 65.6 52.9 86.0 65.6 93.2 92.4 92.8 90.5 97.6 93.9
15 med/func value 81.3 74.3 77.6 81.3 74.3 77.6 88.1 85.9 87.0 88.1 85.9 87.0
16 med/aggregation 57.4 44.0 49.9 57.4 43.6 49.6 85.2 72.9 78.6 83.8 93.9 88.6
17 new 50.4 65.7 57.0 50.3 65.1 56.7 90.3 84.6 87.4 90.4 83.6 86.9

Table 3: IS subtype accuracies and F-scores. In each row, thestrongest result, as well as those that are statistically
indistinguishable from it according to the pairedt-test (p < 0.05), are boldfaced.

tion that previous attempts on 3-class IS determi-
nation by Nissim and R&N have achieved poor
performance on thenew class. We hypothesize
that the use of shallow features in their approaches
were responsible for the poor performance they
observed, and that using our knowledge-rich fea-
ture set could improve its performance. We will
test this hypothesis at the end of this section.

Other subtypes that are worth discussing
are med/aggregation, med/func value, and
med/poss. Recall that the rules we designed for
these classes were only crude approximations, or,
perhaps more precisely, simplified versions of the
definitions of the corresponding subtypes. For
instance, to determine whether an NP belongs to
med/aggregation, we simply look for occurrences
of “and” and “or” (Rule 9), whereas its definition
requires that not all of the NPs in the coordinated
phrase arenew. Despite the over-simplicity
of these rules, machine learning has enabled
the available features to be combined in such a
way that high performance is achieved for these
classes (see rows 14–16).

Also worth examining are those classes for
which the hand-crafted rules rely on sophisti-
cated knowledge sources. They includemed/part,
which relies on ReVerb;med/situation, which re-
lies on FrameNet; andmed/event, which relies on
WordNet. As we can see from the rule-based re-
sults (rows 10–12), these knowledge sources have
yielded rules that achieved perfect precision but
low recall: 19.5% forpart, 28.7% forsituation,

and 10.5 forevent. Nevertheless, the learning
algorithm has again discovered a profitable way
to combine the available features, enabling the F-
scores of these classes to increase by 35.1–50.6%.

While most classes are improved by machine
learning, the same is not true forold/event and
med/bound, whose F-scores are 4.5% (row 3) and
5.1% (row 9), respectively, when Stanford coref-
erence is employed. This is perhaps not surpris-
ing. Recall that the multi-class SVM classifier
was trained to maximize classification accuracy.
Hence, if it encounters a class that is both difficult
to learnand is under-represented, it may as well
aim to achieve good performance on the easier-
to-learn, well-represented classes at the expense
of these hard-to-learn, under-represented classes.

Feature analysis. In an attempt to gain addi-
tional insight into the performance contribution
of each of the five types of features used in the
learning-based approach, we conduct feature ab-
lation experiments. Results are shown in Table 4,
where each row shows the accuracy of the classi-
fier trained on all types of features except for the
one shown in that row. For easy reference, the
accuracy of the classifier trained on all types of
features is shown in row 1 of the table. According
to the pairedt-test (p < 0.05), performance drops
significantly whichever feature type is removed.
This suggests that all five feature types are con-
tributing positively to overall accuracy. Also, the
markablesfeatures are the least important in the
presence of other feature groups, whereasmark-
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Feature Type Gold Coref Stanford Coref
All features 86.4 78.7
−rule predictions 77.5 70.0
−markable predictions 72.4 64.7
−rule conditions 81.1 71.0
−unigrams 74.4 58.6
−markables 83.2 75.5

Table 4: Accuracies of feature ablation experiments.

Feature Type Gold Coref Stanford Coref
rule predictions 49.1 45.2
markable predictions 39.7 39.7
rule conditions 58.1 28.9
unigrams 56.8 56.8
markables 10.4 10.4

Table 5: Accuracies of classifiers for each feature type.

able predictionsand unigramsare the two most
important feature groups.

To get a better idea of the utility of each feature
type, we conduct another experiment in which we
train five classifiers, each of which employs ex-
actly one type of features. The accuracies of these
classifiers are shown in Table 5. As we can see,
themarkablesfeatures have the smallest contribu-
tion, whereasunigramshave the largest contribu-
tion. Somewhat interesting are the results of the
classifiers trained on the rule conditions: the rules
are far more effective when gold coreference is
used. This can be attributed to the fact that the
design of the rules was based in part on the defini-
tions of the subtypes, which assume the availabil-
ity of perfect coreference information.

Knowledge source analysis. To gain some in-
sight into the extent to which a knowledge source
or a rule contributes to the overall performance of
the rule-based approach, we conduct ablation ex-
periments: in each experiment, we measure the
performance of the ruleset after removing a par-
ticular rule or knowledge source from it. Specifi-
cally, rows 2–4 of Table 6 show the accuracies of
the ruleset after removing the memorization rule
(Rule 17), the rule that uses ReVerb’s output (Rule
12), and the cue words used in Rules 4 and 10,
respectively. For easy reference, the accuracy of
the original ruleset is shown in row 1 of the ta-
ble. According to the pairedt-test (p < 0.05),
performance drops significantly in all three abla-
tion experiments. This suggests that the memo-
rization rule, ReVerb, and the cue words all con-
tribute positively to the accuracy of the ruleset.

Feature Type Gold Coref Stanford Coref
All rules 66.0 57.4
−memorization 62.6 52.0
−ReVerb 64.2 56.6
−cue words 63.8 54.0

Table 6: Accuracies of the simplified ruleset.

R&N’s Features Our Features
IS Type R P F R P F
old 93.5 95.8 94.6 93.8 96.4 95.1
med 89.3 71.2 79.2 93.3 86.0 89.5
new 34.6 71.7 46.7 82.4 72.7 87.2
Accuracy 82.9 91.7

Table 7: Accuracies on IS types.

IS type results. We hypothesized earlier that
the poor performance reported by Nissim and
R&N on identifying new entities in their 3-class
IS classification experiments (i.e., classifying an
NP asold, med, or new) could be attributed to
their sole reliance on lexico-syntactic features. To
test this hypothesis, we (1) train a 3-class classi-
fier using the five types of features we employed
in our learning-based approach, computing the
features based on the Stanford coreference chains;
and (2) compare its results against those obtained
via the lexico-syntactic approach in R&N on our
test set. Results of these experiments, which are
shown in Table 7, substantiate our hypothesis:
when we replace R&N’s features with ours, accu-
racy rises from 82.9% to 91.7%. These gains can
be attributed to large improvements in identifying
new andmed entities, for which F-scores increase
by about 40 points and 10 points, respectively.

7 Conclusions

We have examined the fine-grained IS determi-
nation task. Experiments on a set of Switch-
board dialogues show that our learning-based ap-
proach, which uses features that include hand-
crafted rules and their predictions, outperforms its
rule-based counterpart by more than 20%, achiev-
ing an overall accuracy of 78.7% when relying on
automatically computed coreference information.
In addition, we have achieved state-of-the-art re-
sults on the 3-class IS determination task, in part
due to our reliance on richer knowledge sources
in comparison to prior work. To our knowledge,
there has been little work on automatic IS subtype
determination. We hope that our work can stimu-
late further research on this task.
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Abstract

A composition procedure for linear and
nondeleting extended top-down tree trans-
ducers is presented. It is demonstrated that
the new procedure is more widely applica-
ble than the existing methods. In general,
the result of the composition is an extended
top-down tree transducer that is no longer
linear or nondeleting, but in a number of
cases these properties can easily be recov-
ered by a post-processing step.

1 Introduction

Tree-based translation models such as syn-
chronous tree substitution grammars (Eisner,
2003; Shieber, 2004) or multi bottom-up tree
transducers (Lilin, 1978; Engelfriet et al., 2009;
Maletti, 2010; Maletti, 2011) are used for sev-
eral aspects of syntax-based machine transla-
tion (Knight and Graehl, 2005). Here we consider
the extended top-down tree transducer (XTOP),
which was studied in (Arnold and Dauchet,
1982; Knight, 2007; Graehl et al., 2008; Graehl
et al., 2009) and implemented in the toolkit
TIBURON (May and Knight, 2006; May, 2010).
Specifically, we investigate compositions of linear
and nondeleting XTOPs (ln-XTOP). Arnold and
Dauchet (1982) showed that ln-XTOPs compute
a class of transformations that is not closed under
composition, so we cannot compose two arbitrary
ln-XTOPs into a single ln-XTOP. However, we
will show that ln-XTOPs can be composed into a
(not necessarily linear or nondeleting) XTOP. To
illustrate the use of ln-XTOPs in machine transla-
tion, we consider the following English sentence
together with a German reference translation:

∗ All authors were financially supported by the EMMY

NOETHER project MA / 4959 / 1-1 of the German Research
Foundation (DFG).
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Figure 1: Word drop [top] and reordering [bottom].

The newswire reported yesterday that the Serbs have
completed the negotiations.

Gestern [Yesterday] berichtete [reported] die [the]
Nachrichtenagentur [newswire] die [the] Serben
[Serbs] hätten [would have] die [the] Verhandlungen
[negotiations] beendet [completed].

The relation between them can be described
(Yamada and Knight, 2001) by three operations:
drop of the relative pronoun, movement of the
participle to end of the clause, and word-to-word
translation. Figure 1 shows the first two oper-
ations, and Figure 2 shows ln-XTOP rules per-
forming them. Let us now informally describe
the execution of an ln-XTOP on the top rule ρ
of Figure 2. In general, ln-XTOPs process an in-
put tree from the root towards the leaves using
a set of rules and states. The state p in the left-
hand side of ρ controls the particular operation of
Figure 1 [top]. Once the operation has been per-
formed, control is passed to states pNP and pVP,
which use their own rules to process the remain-
ing input subtree governed by the variable below
them (see Figure 2). In the same fashion, an ln-
XTOP containing the bottom rule of Figure 2 re-
orders the English verbal complex.

In this way we model the word drop by an ln-
XTOP M and reordering by an ln-XTOP N . The
syntactic properties of linearity and nondeletion
yield nice algorithmic properties, and the mod-
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Figure 2: XTOP rules for the operations of Figure 1.

ular approach is desirable for better design and
parametrization of the translation model (May et
al., 2010). Composition allows us to recombine
those parts into one device modeling the whole
translation. In particular, it gives all parts the
chance to vote at the same time. This is especially
important if pruning is used because it might oth-
erwise exclude candidates that score low in one
part but well in others (May et al., 2010).

Because ln-XTOP is not closed under compo-
sition, the composition ofM andN might be out-
side ln-XTOP. These cases have been identified
by Arnold and Dauchet (1982) as infinitely “over-
lapping cuts”, which occur when the right-hand
sides of M and the left-hand sides of N are un-
boundedly overlapping. This can be purely syn-
tactic (for a given ln-XTOP) or semantic (inher-
ent in all ln-XTOPs for a given transformation).
Despite the general impossibility, several strate-
gies have been developed: (i) Extension of the
model (Maletti, 2010; Maletti, 2011), (ii) online
composition (May et al., 2010), and (iii) restric-
tion of the model, which we follow. Composi-
tions of subclasses in which the XTOP N has at
most one input symbol in its left-hand sides have
already been studied in (Engelfriet, 1975; Baker,
1979; Maletti and Vogler, 2010). Such compo-
sitions are implemented in the toolkit TIBURON.
However, there are translation tasks in which the
used XTOPs do not fulfill this requirement. Sup-
pose that we simply want to compose the rules of
Figure 2, The bottom rule does not satisfy the re-
quirement that there is at most one input symbol
in the left-hand side.

We will demonstrate how to compose two lin-
ear and nondeleting XTOPs into a single XTOP,
which might however no longer be linear or non-
deleting. However, when the syntactic form of

δ(ε)

q(1)

x
(11)
1

σ(2)

α(21) q(22)

x
(221)
2

γ(3)

γ(31)

p(311)

x
(3111)
3

δ

q

x1

α γ

γ

p

x3

Figure 3: Linear normalized tree t ∈ TΣ(Q(X)) [left]
and t[α]2 [right] with var(t) = {x1, x2, x3}. The posi-
tions are indicated in t as superscripts. The subtree t|2
is σ(α, q(x2)).

the composed XTOP has only bounded overlap-
ping cuts, post-processing will get rid of them
and restore an ln-XTOP. In the remaining cases,
in which unbounded overlapping is necessary or
occurs in the syntactic form but would not be nec-
essary, we will compute an XTOP. This is still
an improvement on the existing methods that just
fail. Since general XTOPs are implemented in
TIBURON and the new composition covers (essen-
tially) all cases currently possible, our new com-
position procedure could replace the existing one
in TIBURON. Our approach to composition is the
same as in (Engelfriet, 1975; Baker, 1979; Maletti
and Vogler, 2010): We simply parse the right-
hand sides of the XTOP M with the left-hand
sides of the XTOP N . However, to facilitate this
approach we have to adjust the XTOPs M and N
in two pre-processing steps. In a first step we cut
left-hand sides of rules of N into smaller pieces,
which might introduce non-linearity and deletion
into N . In certain cases, this can also intro-
duce finite look-ahead (Engelfriet, 1977; Graehl
et al., 2009). To compensate, we expand the rules
of M slightly. Section 4 explains those prepa-
rations. Next, we compose the prepared XTOPs
as usual and obtain a single XTOP computing the
composition of the transformations computed by
M and N (see Section 5). Finally, we apply a
post-processing step to expand rules to reobtain
linearity and nondeletion. Clearly, this cannot be
successful in all cases, but often removes the non-
linearity introduced in the pre-processing step.

2 Preliminaries

Our trees have labels taken from an alphabet Σ
of symbols, and in addition, leaves might be
labeled by elements of the countably infinite
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θ7→

σ
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δ

β β x2

θ←[
σ

α x3

Figure 4: Substitution where θ(x1) = α, θ(x2) = x2,
and θ(x3) = γ(δ(β, β, x2)).

set X = {x1, x2, . . . } of formal variables. For-
mally, for every V ⊆ X the set TΣ(V ) of
Σ-trees with V -leaves is the smallest set such that
V ⊆ TΣ(V ) and σ(t1, . . . , tk) ∈ TΣ(V ) for all
k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(V ). To avoid
excessive universal quantifications, we drop them
if they are obvious from the context.

For each tree t ∈ TΣ(X) we identify nodes by
positions. The root of t has position ε and the po-
sition iw with i ∈ N and w ∈ N∗ addresses the
position w in the i-th direct subtree at the root.
The set of all positions in t is pos(t). We write
t(w) for the label (taken from Σ ∪X) of t at po-
sition w ∈ pos(t). Similarly, we use
• t|w to address the subtree of t that is rooted

in position w, and
• t[u]w to represent the tree that is ob-

tained from replacing the subtree t|w at w
by u ∈ TΣ(X).

For a given set L ⊆ Σ ∪X of labels, we let

posL(t) = {w ∈ pos(t) | t(w) ∈ L}

be the set of all positions whose label belongs
to L. We also write posl(t) instead of pos{l}(t).
The tree t ∈ TΣ(V ) is linear if |posx(t)| ≤ 1 for
every x ∈ X . Moreover,

var(t) = {x ∈ X | posx(t) 6= ∅}

collects all variables that occur in t. If the vari-
ables occur in the order x1, x2, . . . in a pre-order
traversal of the tree t, then t is normalized. Given
a finite set Q, we write Q(T ) with T ⊆ TΣ(X)
for the set {q(t) | q ∈ Q, t ∈ T}. We will treat
elements of Q(T ) as special trees of TΣ∪Q(X).
The previous notions are illustrated in Figure 3.

A substitution θ is a mapping θ : X → TΣ(X).
When applied to a tree t ∈ TΣ(X), it will return
the tree tθ, which is obtained from t by replacing
all occurrences of x ∈ X (in parallel) by θ(x).
This can be defined recursively by xθ = θ(x) for
all x ∈ X and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ)

qS

S

x1 VP

x2 x3

→

S’

qV

x2

qNP

x1

qNP

x1

t

qS

S

t1

VP

t2 t3

⇒

t

S’

qV

t2

qNP

t1

qNP

t1

Figure 5: Rule and its use in a derivation step.

for all σ ∈ Σ and t1, . . . , tk ∈ TΣ(X). The effect
of a substitution is displayed in Figure 4. Two
substitutions θ, θ′ : X → TΣ(X) can be com-
posed to form a substitution θθ′ : X → TΣ(X)
such that θθ′(x) = θ(x)θ′ for every x ∈ X .

Next, we define two notions of compatibility
for trees. Let t, t′ ∈ TΣ(X) be two trees. If there
exists a substitution θ such that t′ = tθ, then t′ is
an instance of t. Note that this relation is not sym-
metric. A unifier θ for t and t′ is a substitution θ
such that tθ = t′θ. The unifier θ is a most gen-
eral unifier (short: mgu) for t and t′ if for every
unifier θ′′ for t and t′ there exists a substitution θ′

such that θθ′ = θ′′. The set mgu(t, t′) is the set of
all mgus for t and t′. Most general unifiers can be
computed efficiently (Robinson, 1965; Martelli
and Montanari, 1982) and all mgus for t and t′

are equal up to a variable renaming.

Example 1. Let t = σ(x1, γ(δ(β, β, x2))) and
t′ = σ(α, x3). Then mgu(t, t′) contains θ such
that θ(x1) = α and θ(x3) = γ(δ(β, β, x2)). Fig-
ure 4 illustrates the unification.

3 The model

The discussed model in this contribution is an
extension of the classical top-down tree trans-
ducer, which was introduced by Rounds (1970)
and Thatcher (1970). The extended top-down
tree transducer with finite look-ahead or just
XTOPF and its variations were studied in (Arnold
and Dauchet, 1982; Knight and Graehl, 2005;
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Figure 6: Rule [left] and reversed rule [right].

Knight, 2007; Graehl et al., 2008; Graehl et
al., 2009). Formally, an extended top-down tree
transducer with finite look-ahead (XTOPF) is a
system M = (Q,Σ,∆, I, R, c) where
• Q is a finite set of states,
• Σ and ∆ are alphabets of input and output

symbols, respectively,
• I ⊆ Q is a set of initial states,
• R is a finite set of (rewrite) rules of the form
` → r where ` ∈ Q(TΣ(X)) is linear and
r ∈ T∆(Q(var(`))), and
• c : R × X → TΣ(X) assigns a look-ahead

restriction to each rule and variable such that
c(ρ, x) is linear for each ρ ∈ R and x ∈ X .

The XTOPF M is linear (respectively, nondelet-
ing) if r is linear (respectively, var(r) = var(`))
for every rule ` → r ∈ R. It has no look-ahead
(or it is an XTOP) if c(ρ, x) ∈ X for all rules
ρ ∈ R and x ∈ X . In this case, we drop the look-
ahead component c from the description. A rule
` → r ∈ R is consuming (respectively, produc-
ing) if posΣ(`) 6= ∅ (respectively, pos∆(r) 6= ∅).
We let Lhs(M) = {l | ∃q, r : q(l)→ r ∈ R}.

Let M = (Q,Σ,∆, I, R, c) be an XTOPF. In
order to facilitate composition, we define senten-
tial forms more generally than immediately nec-
essary. Let Σ′ and ∆′ be such that Σ ⊆ Σ′

and ∆ ⊆ ∆′. To keep the presentation sim-
ple, we assume that Q ∩ (Σ′ ∪ ∆′) = ∅. A
sentential form of M (using Σ′ and ∆′) is a
tree of SF(M) = T∆′(Q(TΣ′)). For every
ξ, ζ ∈ SF(M), we write ξ ⇒M ζ if there exist a
positionw ∈ posQ(ξ), a rule ρ = `→ r ∈ R, and
a substitution θ : X → TΣ′ such that θ(x) is an in-
stance of c(ρ, x) for every x ∈ X and ξ = ξ[`θ]w
and ζ = ξ[rθ]w. If the applicable rules are re-
stricted to a certain subset R′ ⊆ R, then we also
write ξ ⇒R′ ζ. Figure 5 illustrates a derivation
step. The tree transformation computed by M is

τM = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

where ⇒∗M is the reflexive, transitive closure
of⇒M . It can easily be verified that the definition

p

C

y1 y2

→

RC

PREL

that

C

pNP

y1

pVP

y2

Figure 7: Top rule of Figure 2 reversed.

of τM is independent of the choice of Σ′ and ∆′.
Moreover, it is known (Graehl et al., 2009) that
each XTOPF can be transformed into an equiva-
lent XTOP preserving both linearity and nondele-
tion. However, the notion of XTOPF will be con-
venient in our composition construction. A de-
tailed exposition to XTOPs is presented by Arnold
and Dauchet (1982) and Graehl et al. (2009).

A linear and nondeleting XTOP M with
rules R can easily be reversed to obtain
a linear and nondeleting XTOP M−1 with
rules R−1, which computes the inverse transfor-
mation τM−1 = τ−1

M , by reversing all its rules.
A (suitable) rule is reversed by exchanging the
locations of the states. More precisely, given
a rule q(l) → r ∈ R, we obtain the rule
q(r′) → l′ of R−1, where l′ = lθ and r′ is the
unique tree such that there exists a substitution
θ : X → Q(X) with θ(x) ∈ Q({x}) for every
x ∈ X and r = r′θ. Figure 6 displays a rule
and its corresponding reversed rule. The reversed
form of the XTOP rule modeling the insertion op-
eration in Figure 2 is displayed in Figure 7.

Finally, let us formally define composition.
The XTOP M computes the tree transformation
τM ⊆ TΣ × T∆. Given another XTOP N that
computes a tree transformation τN ⊆ T∆ × TΓ,
we might be interested in the tree transforma-
tion computed by the composition of M and N
(i.e., running M first and then N ). Formally, the
composition τM ; τN of the tree transformations
τM and τN is defined by

τM ; τN = {(s, u) | ∃t : (s, t) ∈ τM , (t, u) ∈ τN}

and we often also use the notion ‘composition’ for
XTOP with the expectation that the composition
of M and N computes exactly τM ; τN .

4 Pre-processing

We want to compose two linear and nondelet-
ing XTOPs M = (P,Σ,∆, IM , RM ) and
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LHS(M−1) LHS(N)
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z1 VP

z2 z3 z4

Figure 8: Incompatible left-hand sides of Example 3.

N = (Q,∆,Γ, IN , RN ). Before we actually per-
form the composition, we will prepare M and N
in two pre-processing steps. After these two steps,
the composition is very simple. To avoid com-
plications, we assume that (i) all rules of M are
producing and (ii) all rules of N are consuming.
For convenience, we also assume that the XTOPs
M and N only use variables of the disjoint sets
Y ⊆ X and Z ⊆ X , respectively.

4.1 Compatibility

In the existing composition results for subclasses
of XTOPs (Engelfriet, 1975; Baker, 1979; Maletti
and Vogler, 2010) the XTOP N has at most one
input symbol in its left-hand sides. This restric-
tion allows us to match rule applications of N to
positions in the right-hand sides of M . Namely,
for each output symbol in a right-hand side of M ,
we can select a rule of N that can consume that
output symbol. To achieve a similar decompo-
sition strategy in our more general setup, we in-
troduce a compatibility requirement on right-hand
sides of M and left-hand sides of N . Roughly
speaking, we require that the left-hand sides of N
are small enough to completely process right-
hand sides of M . However, a comparison of
left- and right-hand sides is complicated by the
fact that their shape is different (left-hand sides
have a state at the root, whereas right-hand sides
have states in front of the variables). We avoid
these complications by considering reversed rules
of M . Thus, an original right-hand side of M is
now a left-hand side in the reversed rules and thus
has the right format for a comparison. Recall that
Lhs(N) contains all left-hand sides of the rules
of N , in which the state at the root was removed.

Definition 2. The XTOP N is compatible to M
if θ(Y ) ⊆ X for all unifiers θ ∈ mgu(l1|w, l2)
between a subtree at a ∆-labeled position
w ∈ pos∆(l1) in a left-hand side l1 ∈ Lhs(M−1)
and a left-hand side l2 ∈ Lhs(N).

Rule of M−1 Rule of N

δ

p1

y1

p2

y2

α ←

p

σ

y1 y2

q

σ

β σ

z1 z2

→

σ

q1

z1

q2

z2

Figure 9: Rules used in Example 5.

Intuitively, for every ∆-labeled position w in a
right-hand side r1 of M and any left-hand side l2
of N , we require (ignoring the states) that either
(i) r1|w and l2 are not unifiable or (ii) r1|w is an
instance of l2.

Example 3. The XTOPs for the English-to-
German translation task in the Introduction are
not compatible. This can be observed on the
left-hand side l1 ∈ Lhs(M−1) of Figure 7
and the left-hand side l2 ∈ Lhs(N) of Fig-
ure 2[bottom]. These two left-hand sides are il-
lustrated in Figure 8. Between them there is an
mgu such that θ(Y ) 6⊆ X (e.g., θ(y1) = z1 and
θ(y2) = VP(z2, z3, z4) is such an mgu).

Theorem 4. There exists an XTOPF N ′ that is
equivalent to N and compatible with M .

Proof. We achieve compatibility by cutting of-
fending rules of the XTOP N into smaller pieces.
Unfortunately, both linearity and nondeletion
of N might be lost in the process. We first let
N ′ = (Q,∆,Γ, IN , RN , cN ) be the XTOPF such
that cN (ρ, x) = x for every ρ ∈ RN and x ∈ X .

If N ′ is compatible with M , then we are done.
Otherwise, let l1 ∈ Lhs(M−1) be a left-hand side,
q(l2) → r2 ∈ RN be a rule, and w ∈ pos∆(l1)
be a position such that θ(y) /∈ X for some
θ ∈ mgu(l1|w, l2) and y ∈ Y . Let v ∈ posy(l1|w)
be the unique position of y in l1|w.

Now we have to distinguish two cases: (i) Ei-
ther var(l2|v) = ∅ and there is no leaf in r2 la-
beled by a symbol from Γ. In this case, we have
to introduce deletion and look-ahead into N ′. We
replace the old rule ρ = q(l2) → r2 by the new
rule ρ′ = q(l2[z]v) → r2, where z ∈ X \ var(l2)
is a variable that does not appear in l2. In addition,
we let cN (ρ′, z) = l2|v and cN (ρ′, x) = cN (ρ, x)
for all x ∈ X \ {z}.

(ii) Otherwise, let V ⊆ var(l2|v) be a maximal
set such that there exists a minimal (with respect
to the prefix order) position w′ ∈ pos(r2) with
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z2
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Figure 10: Additional rule used in Example 5.

var(r2|w′) ⊆ var(l2|v) and var(r2[β]w′)∩V = ∅,
where β ∈ Γ is arbitrary. Let z ∈ X \ var(l2) be
a fresh variable, q′ be a new state of N , and
V ′ = var(l2|v) \ V . We replace the rule
ρ = q(l2)→ r2 of RN by

ρ1 = q(l2[z]v)→ trans(r2)[q′(z)]w′

ρ2 = q′(l2|v)→ r2|w′ .

The look-ahead for z is trivial and other-
wise we simply copy the old look-ahead, so
cN (ρ1, z) = z and cN (ρ1, x) = cN (ρ, x) for all
x ∈ X \ {z}. Moreover, cN (ρ2, x) = cN (ρ, x)
for all x ∈ X . The mapping ‘trans’ is given for
t = γ(t1, . . . , tk) and q′′(z′′) ∈ Q(Z) by

trans(t) = γ(trans(t1), . . . , trans(tk))

trans(q′′(z′′)) =

{
〈l2|v, q′′, v′〉(z) if z′′ ∈ V ′

q′′(z′′) otherwise,

where v′ = posz′′(l2|v).
Finally, we collect all newly generated states

of the form 〈l, q, v〉 in Ql and for every such
state with l = δ(l1, . . . , lk) and v = iw, let
l′ = δ(z1, . . . , zk) and

〈l, q, v〉(l′)→

{
q(zi) if w = ε

〈li, q, w〉(zi) otherwise

be a new rule of N without look-ahead.
Overall, we run the procedure until N ′ is com-

patible with M . The procedure eventually ter-
minates since the left-hand sides of the newly
added rules are always smaller than the replaced
rules. Moreover, each step preserves the seman-
tics of N ′, which completes the proof.

We note that the look-ahead ofN ′ after the con-
struction used in the proof of Theorem 4 is either
trivial (i.e., a variable) or a ground tree (i.e., a tree
without variables). Let us illustrate the construc-
tion used in the proof of Theorem 4.

µ1 :

q

C

z1 z

→

C

qNP

z1

q′

z

µ2 :

q′

VP

z2 z3 z4

→

VP

qVA

z2

qVP

z4

qNP

z3

Figure 11: Rules replacing the rule in Figure 7.

Example 5. Let us consider the rules illustrated
in Figure 9. We might first note that y1 has to
be unified with β. Since β does not contain any
variables and the right-hand side of the rule of N
does not contain any non-variable leaves, we are
in case (i) in the proof of Theorem 4. Conse-
quently, the displayed rule of N is replaced by a
variant, in which β is replaced by a new variable z
with look-ahead β.

Secondly, with this new rule there is an mgu,
in which y2 is mapped to σ(z1, z2). Clearly, we
are now in case (ii). Furthermore, we can select
the set V = {z1, z2} and position w′ = ε. Cor-
respondingly, the following two new rules for N
replace the old rule:

q(σ(z, z′))→ q′(z′)
q′(σ(z1, z2))→ σ(q1(z1), q2(z2)) ,

where the look-ahead for z remains β.
Figure 10 displays another rule of N . There is

an mgu, in which y2 is mapped to σ(z2, z3). Thus,
we end up in case (ii) again and we can select the
set V = {z2} and position w′ = 2. Thus, we
replace the rule of Figure 10 by the new rules

q(σ(z1, z))→ δ(q1(z1), q′(z), q3(z)) (?)

q′(σ(z2, z3))→ q2(z2)
q3(σ(z1, z2))→ q3(z2) ,

where q3 = 〈σ(z2, z3), q3, 2〉.

Let us use the construction in the proof of The-
orem 4 to resolve the incompatibility (see Exam-
ple 3) between the XTOPs presented in the Intro-
duction. Fortunately, the incompatibility can be
resolved easily by cutting the rule of N (see Fig-
ure 7) into the rules of Figure 11. In this example,
linearity and nondeletion are preserved.
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4.2 Local determinism

After the first pre-processing step, we have the
original linear and nondeleting XTOP M and
an XTOPF N ′ = (Q′,∆,Γ, IN , R′N , cN ) that is
equivalent to N and compatible with M . How-
ever, in the first pre-processing step we might
have introduced some non-linear (copying) rules
in N ′ (see rule (?) in Example 5), and it is known
that “nondeterminism [in M ] followed by copy-
ing [inN ′]” is a feature that prevents composition
to work (Engelfriet, 1975; Baker, 1979). How-
ever, our copying is very local and the copies
are only used to project to different subtrees.
Nevertheless, during those projection steps, we
need to make sure that the processing in M pro-
ceeds deterministically. We immediately note that
all but one copy are processed by states of the
form 〈l, q, v〉 ∈ Ql. These states basically pro-
cess (part of) the tree l and project (with state q)
to the subtree at position v. It is guaranteed that
each such subtree (indicated by v) is reached only
once. Thus, the copying is “resolved” once the
states of the form 〈l, q, v〉 are left. To keep the
presentation simple, we just add expanded rules
to M such that any rule that can produce a part of
a tree l immediately produces the whole tree. A
similar strategy is used to handle the look-ahead
of N ′. Any right-hand side of a rule of M that
produces part of a left-hand side of a rule of N ′

with look-ahead is expanded to produce the re-
quired look-ahead immediately.

Let L ⊆ T∆(Z) be the set of trees l such that
• 〈l, q, v〉 appears as a state of Ql, or
• l = l2θ for some ρ2 = q(l2) → r2 ∈ R′N

of N ′ with non-trivial look-ahead (i.e.,
cN (ρ2, z) /∈ X for some z ∈ X), where
θ(x) = cN (ρ2, x) for every x ∈ X .

To keep the presentation uniform, we assume
that for every l ∈ L, there exists a state of the
form 〈l, q, v〉 ∈ Q′. If this is not already the
case, then we can simply add useless states with-
out rules for them. In other words, we assume that
the first case applies to each l ∈ L.

Next, we add two sets of rules to RM , which
will not change the semantics but prove to be use-
ful in the composition construction. First, for
every tree t ∈ L, let Rt contain all the rules
p(l) → r, where p = p(l) → r is a new state
with p ∈ P , minimal normalized tree l ∈ TΣ(X),
and an instance r ∈ T∆(P (X)) of t such that
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Figure 12: Useful rules for the composition M ′ ;N ′ of
Example 8, where s, s′ ∈ {α, β} and ρ ∈ Pσ(z2,z3).

p(l) ⇒∗M ′ ξ ⇒M ′ r for some ξ that is not an
instance of t. In other words, we construct each
rule of Rt by applying existing rules of RM in
sequence to generate a (minimal) right-hand side
that is an instance of t. We thus potentially make
the right-hand sides of M bigger by joining sev-
eral existing rules into a single rule. Note that
this affects neither compatibility nor the seman-
tics. In the second step, we add pure ε-rules
that allow us to change the state to one that we
constructed in the previous step. For every new
state p̄ = p(l) → r, let base(p̄) = p. Then
R′M = RM ∪ RL ∪ RE and P ′ = P ∪

⋃
t∈L Pt

where

RL =
⋃
t∈L

Rt and Pt = {`(ε) | `→ r ∈ Rt}

RE = {base(p̄)(x1)→ p̄(x1) | p̄ ∈
⋃
t∈L

Pt} .

Clearly, this does not change the semantics be-
cause each rule of R′M can be simulated by a
chain of rules of RM . Let us now do a full ex-
ample for the pre-processing step. We consider a
nondeterministic variant of the classical example
by Arnold and Dauchet (1982).

Example 6. Let M = (P,Σ,Σ, {p}, RM )
be the linear and nondeleting XTOP such that
P = {p, pα, pβ}, Σ = {δ, σ, α, β, ε}, and
RM contains the following rules

p(σ(y1, y2))→ σ(ps(y1), p(y2)) (†)
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p(δ(y1, y2, y3))→ σ(ps(y1), σ(ps′(y2), p(y3)))
p(δ(y1, y2, y3))→ σ(ps(y1), σ(ps′(y2), pα(y3)))

ps(s′(y1))→ s(ps(y1))
ps(ε)→ ε

for every s, s′ ∈ {α, β}. Similarly, we let
N = (Q,Σ,Σ, {q}, RN ) be the linear and non-
deleting XTOP such thatQ = {q, i} andRN con-
tains the following rules

q(σ(z1, z2))→ σ(i(z1), i(z2))
q(σ(z1, σ(z2, z3)))→ δ(i(z1), i(z2), q(z3)) (‡)

i(s(z1))→ s(i(z1))
i(ε)→ ε

for all s ∈ {α, β}. It can easily be verified that
M and N meet our requirements. However, N is
not yet compatible with M because an mgu be-
tween rules (†) of M and (‡) of N might map y2

to σ(z2, z3). Thus, we decompose (‡) into

q(σ(z1, z))→ δ(i(z1), q(z), q′(z))
q′(σ(z2, z3))→ q(z3)
q(σ(z1, z2))→ i(z1)

where q = 〈σ(z2, z3), i, 1〉. This newly obtained
XTOP N ′ is compatible with M . In addition, we
only have one special tree σ(z2, z3) that occurs in
states of the form 〈l, q, v〉. Thus, we need to com-
pute all minimal derivations whose output trees
are instances of σ(z2, z3). This is again simple
since the first three rule schemes ρs, ρs,s′ , and
ρ′s,s′ of M create such instances, so we simply
create copies of them:

ρs(σ(y1, y2))→ σ(ps(y1), p(y2))
ρs,s′(δ(y1, y2, y3))→ σ(ps(y1), σ(ps′(y2), p(y3)))
ρ′
s,s′(δ(y1, y2, y3))→ σ(ps(y1), σ(ps′(y2), pα(y3)))

for all s, s′ ∈ {α, β}. These are all the rules
of Rσ(z2,z3). In addition, we create the following
rules of RE :

p(x1)→ ρs(x1) p(x1)→ ρs,s′(x1)
p(x1)→ ρ′s,s′(x1)

for all s, s′ ∈ {α, β}.
Especially after reading the example it might

seem useless to create the rule copies inRl [in Ex-
ample 6 for l = σ(z2, z3)]. However, each such
rule has a distinct state at the root of the left-hand
side, which can be used to trigger only this rule.
In this way, the state selects the next rule to apply,
which yields the desired local determinism.

〈q, p〉

RC

PREL

that

C

x1 x2

→

C

〈qNP, pNP〉

x1

〈q′, pVP〉

x2

Figure 13: Composed rule created from the rule of Fig-
ure 7 and the rules of N ′ displayed in Figure 11.

5 Composition

Now we are ready for the actual composition. For
space efficiency reasons we reuse the notations
used in Section 4. Moreover, we identify trees of
TΓ(Q′(P ′(X))) with trees of TΓ((Q′ × P ′)(X)).
In other words, when meeting a subtree q(p(x))
with q ∈ Q′, p ∈ P ′, and x ∈ X , then we also
view this equivalently as the tree 〈q, p〉(x), which
could be part of a rule of our composed XTOP.
However, not all combinations of states will be
allowed in our composed XTOP, so some combi-
nations will never yield valid rules.

Generally, we construct a rule ofM ′ ;N ′ by ap-
plying a single rule of M ′ followed by any num-
ber of pure ε-rules of RE , which can turn states
base(p) into p. Then we apply any number of
rules of N ′ and try to obtain a sentential form that
has the required shape of a rule of M ′ ;N ′.

Definition 7. Let M ′ = (P ′,Σ,∆, IM , R′M ) and
N ′ = (Q′,∆,Γ, IN , R′N ) be the XTOPs con-
structed in Section 4, where

⋃
l∈L Pl ⊆ P ′ and⋃

l∈LQl ⊆ Q′. Let Q′′ = Q′ \
⋃
l∈LQl. We con-

struct the XTOPM ′ ;N ′ = (S,Σ,Γ, IN×IM , R)
where

S =
⋃
l∈L

(Ql × Pl) ∪ (Q′′ × P ′)

and R contains all normalized rules `→ r (of the
required shape) such that

`⇒M ′ ξ ⇒∗RE
ζ ⇒∗N ′ r

for some ξ, ζ ∈ TΓ(Q′(T∆(P ′(X)))).

The required rule shape is given by the defi-
nition of an XTOP. Most importantly, we must
have that ` ∈ S(TΣ(X)), which we identify
with a certain subset of Q′(P ′(TΣ(X))), and
r ∈ TΓ(S(X)), which similarly corresponds to
a subset of TΓ(Q′(P ′(X))). The states are sim-
ply combinations of the states of M ′ and N ′, of
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Figure 14: Successfully expanded rule from Exam-
ple 9.

which however the combinations of a state q ∈ Ql
with a state p /∈ Pl are forbidden. This reflects the
intuition of the previous section. If we entered a
special state of the form 〈l, q, v〉, then we should
use a corresponding state p ∈ Pl of M , which
only has rules producing instances of l. We note
that look-ahead of N ′ is checked normally in the
derivation process.
Example 8. Now let us illustrate the composition
on Example 6. Let us start with rule (†) of M .

q(p(σ(x1, x2)))
⇒M ′ q(σ(ps(x1), p(x2)))
⇒RE

q(σ(ps(x1), ρs′,s′′(x2)))
⇒N ′ δ(i(ps(x1)), q(ρs′,s′′(x2)), q′(ρs′,s′′(x2)))

is a rule of M ′ ; N ′ for every s, s′, s′′ ∈ {α, β}.
Note if we had not applied the RE-step, then we
would not have obtained a rule of M ; N (be-
cause we would have obtained the state combina-
tion 〈q, p〉 instead of 〈q, ρs′,s′′〉, and 〈q, p〉 is not a
state of M ′ ; N ′). Let us also construct a rule for
the state combination 〈q, ρs′,s′′〉.

q(ρs′,s′′(δ(x1, x2, x3)))
⇒M ′ q(σ(ps′(x1), σ(ps′′(x2), p(x3))))
⇒N ′ q

′(ps′(x1))

Finally, let us construct a rule for the state combi-
nation 〈q′′, ρs′,s′′〉.

q′′(ρs′,s′′(δ(x1, x2, x3)))
⇒M ′ q(σ(ps′(x1), σ(ps′′(x2), p(x3))))
⇒RE

q(σ(ps′(x1), σ(ps′′(x2), ρs(x3))))
⇒N ′ q(σ(ps′′(x2), ρs(x3)))
⇒N ′ δ(q′(ps′′(x1)), q(ρs(x2)), q′′(ρs(x2)))

for every s ∈ {α, β}.
After having pre-processed the XTOPs in our

introductory example, the devices M and N ′ can
be composed into M ; N ′. One rule of the com-
posed XTOP is illustrated in Figure 13.
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i
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i

ps′
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δ

i

ps′′

y3

q
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y4

q′
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y4

Figure 15: Expanded rule that remains copying (see
Example 9).

6 Post-processing

Finally, we will compose rules again in an ef-
fort to restore linearity (and nondeletion). Since
the composition of two linear and nondeleting
XTOPs cannot always be computed by a single
XTOP (Arnold and Dauchet, 1982), this method
can fail to return such an XTOP. The presented
method is not a characterization, which means it
might even fail to return a linear and nondelet-
ing XTOP although an equivalent linear and non-
deleting XTOP exists. However, in a significant
number of examples, the recombination succeeds
to rebuild a linear (and nondeleting) XTOP.

Let M ′ ;N ′ = (S,Σ,Γ, I, R) be the composed
XTOP constructed in Section 5. We simply in-
spect each non-linear rule (i.e., each rule with a
non-linear right-hand side) and expand it by all
rule options at the copied variables. Since the
method is pretty standard and variants have al-
ready been used in the pre-processing steps, we
only illustrate it on the rules of Figure 12.

Example 9. The first (top row, left-most) rule of
Figure 12 is non-linear in the variable y2. Thus,
we expand the calls 〈q, ρ〉(y2) and 〈q′, ρ〉(y2). If
ρ = ρs for some s ∈ {α, β}, then the next rules
are uniquely determined and we obtain the rule
displayed in Figure 14. Here the expansion was
successful and we could delete the original rule
for ρ = ρs and replace it by the displayed ex-
panded rule. However, if ρ = ρ′s′,s′′ , then we can
also expand the rule to obtain the rule displayed in
Figure 15. It is still copying and we could repeat
the process of expansion here, but we cannot get
rid of all copying rules using this approach (as ex-
pected since there is no linear XTOP computing
the same tree transformation).
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Abstract

Patent translation is a complex problem due
to the highly specialized technical vocab-
ulary and the peculiar textual structure of
patent documents. In this paper we analyze
patents along the orthogonal dimensions of
topic and textual structure. We view differ-
ent patent classes and different patent text
sections such as title, abstract, and claims,
as separate translation tasks, and investi-
gate the influence of such tasks on machine
translation performance. We study multi-
task learning techniques that exploit com-
monalities between tasks by mixtures of
translation models or by multi-task meta-
parameter tuning. We find small but sig-
nificant gains over task-specific training
by techniques that model commonalities
through shared parameters. A by-product
of our work is a parallel patent corpus of 23
million German-English sentence pairs.

1 Introduction

Patents are an important tool for the protection
of intellectual property and also play a significant
role in business strategies in modern economies.
Patent translation is an enabling technique for
patent prior art search which aims to detect a
patent’s novelty and thus needs to be cross-lingual
for a multitude of languages. Patent translation is
complicated by a highly specialized vocabulary,
consisting of technical terms specific to the field
of invention the patent relates to. Patents are writ-
ten in a sophisticated legal jargon (“patentese”)
that is not found in everyday language and ex-
hibits a complex textual structure. Also, patents
are often intentionally ambiguous or vague in or-
der to maximize the coverage of the claims.

In this paper, we analyze patents with respect
to the orthogonal dimensions of topic – the tech-
nical field covered by the patent – and structure
– a patent’s text sections –, with respect to their
influence on machine translation performance.

The topical dimension of patents is charac-
terized by the International Patent Classification
(IPC)1 which categorizes patents hierarchically
into 8 sections, 120 classes, 600 subclasses, down
to 70,000 subgroups at the leaf level. Table 1
shows the 8 top level sections.

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

Table 1: IPC top level sections.

Orthogonal to the patent classification, patent
documents can be sub-categorized along the di-
mension of textual structure. Article 78.1 of the
European Patent Convention (EPC) lists all sec-
tions required in a patent document2:

”A European patent application shall
contain:

(a) a request for the grant of a Euro-
pean patent;

1http://www.wipo.int/classifications/
ipc/en/

2Highlights by the authors.
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(b) a description of the invention;
(c) one or more claims;
(d) any drawings referred to in the de-

scription or the claims;
(e) an abstract,

and satisfy the requirements laid down
in the Implementing Regulations.”

The request for grant contains the patent title; thus
a patent document comprises the textual elements
of title, description, claim, and abstract.

We investigate whether it is worthwhile to treat
different values along the structural and topical
dimensions as different tasks that are not com-
pletely independent of each other but share some
commonalities, yet differ enough to counter a
simple pooling of data. For example, we con-
sider different tasks such as patents from different
IPC classes, or along an orthogonal dimension,
patent documents of all IPC classes but consisting
only of titles or only of claims. We ask whether
such tasks should be addressed as separate trans-
lation tasks, or whether translation performance
can be improved by learning several tasks simul-
taneously through shared models that are more so-
phisticated than simple data pooling. Our goal is
to learn a patent translation system that performs
well across several different tasks, thus benefits
from shared information, but is yet able to address
the specifics of each task.

One contribution of this paper is a thorough
analysis of the differences and similarities of mul-
tilingual patent data along the dimensions of tex-
tual structure and topic. The second contribution
is the experimental investigation of the influence
of various such tasks on patent translation perfor-
mance. Starting from baseline models that are
trained on individual tasks or on data pooled from
all tasks, we apply mixtures of translation mod-
els and multi-task minimum error rate training to
multiple patent translation tasks. A by-product of
our research is a parallel patent corpus of over 23
million sentence pairs.

2 Related work

Multi-task learning has mostly been discussed un-
der the name of multi-domain adaptation in the
area of statistical machine translation (SMT). If
we consider domains as tasks, domain adapta-
tion is a special two-task case of multi-task learn-
ing. Most previous work has concentrated on

adapting unsupervised generative modules such
as translation models or language models to new
tasks. For example, transductive approaches have
used automatic translations of monolingual cor-
pora for self-training modules of the generative
SMT pipeline (Ueffing et al., 2007; Schwenk,
2008; Bertoldi and Federico, 2009). Other ap-
proaches have extracted parallel data from similar
or comparable corpora (Zhao et al., 2004; Snover
et al., 2008). Several approaches have been pre-
sented that train separate translation and language
models on task-specific subsets of the data and
combine them in different mixture models (Fos-
ter and Kuhn, 2007; Koehn and Schroeder, 2007;
Foster et al., 2010). The latter kind of approach is
applied in our work to multiple patent tasks.

Multi-task learning efforts in patent transla-
tion have so far been restricted to experimental
combinations of translation and language mod-
els from different sets of IPC sections. For ex-
ample, Utiyama and Isahara (2007) and Tinsley
et al. (2010) investigate translation and language
models trained on different sets of patent sections,
with larger pools of parallel data improving re-
sults. Ceauşu et al. (2011) find that language mod-
els always and translation model mostly benefit
from larger pools of data from different sections.
Models trained on pooled patent data are used as
baselines in our approach.

The machine learning community has devel-
oped several different formalizations of the cen-
tral idea of trading off optimality of parameter
vectors for each task-specific model and close-
ness of these model parameters to the average pa-
rameter vector across models. For example, start-
ing from a separate SVM for each task, Evgeniou
and Pontil (2004) present a regularization method
that trades off optimization of the task-specific pa-
rameter vectors and the distance of each SVM to
the average SVM. Equivalent formalizations re-
place parameter regularization by Bayesian prior
distributions on the parameters (Finkel and Man-
ning, 2009) or by augmentation of the feature
space with domain independent features (Daumé,
2007). Besides SVMs, several learning algo-
rithms have been extended to the multi-task sce-
nario in a parameter regularization setting, e.g.,
perceptron-type algorithms (Dredze et al., 2010)
or boosting (Chapelle et al., 2011). Further vari-
ants include different formalizations of norms for
parameter regularization, e.g., `1,2 regularization
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(Obozinski et al., 2010) or `1,∞ regularization
(Quattoni et al., 2009), where only the features
that are most important across all tasks are kept in
the model. In our experiments, we apply parame-
ter regularization for multi-task learning to mini-
mum error rate training for patent translation.

3 Extraction of a parallel patent corpus
from comparable data

Our work on patent translation is based on the
MAREC3 patent data corpus. MAREC con-
tains over 19 million patent applications and
granted patents in a standardized format from
four patent organizations (European Patent Of-
fice (EP), World Intellectual Property Organiza-
tion (WO), United States Patent and Trademark
Office (US), Japan Patent Office (JP)), from 1976
to 2008. The data for our experiments are ex-
tracted from the EP and WO collections which
contain patent documents that include translations
of some of the patent text. To extract such parallel
patent sections, we first determine the longest in-
stance, if different kinds4 exist for a patent. We
assume titles to be sentence-aligned by default,
and define sections with a token ratio larger than
0.7 as parallel. For the language pair German-
English we extracted a total of 2,101,107 parallel
titles, 291,716 parallel abstracts, and 735,667 par-
allel claims sections.

The lack of directly translated descriptions
poses a serious limitation for patent translation,
since this section constitutes the largest part of the
document. It is possible to obtain comparable de-
scriptions from related patents that have been filed
in different countries and are connected through
the patent family id. We extracted 172,472 patents
that were both filed with the USPTO and the EPO
and contain an English and a German description,
respectively.

For sentence alignment, we used the Gargan-
tua5 tool (Braune and Fraser, 2010) that fil-
ters a sentence-length based alignment with IBM
Model-1 lexical word translation probabilities, es-
timated on parallel data obtained from the first-

3http://www.ir-facility.org/
prototypes/marec

4A patent kind code indicates the document stage in the
filing process, e.g., A for applications and B for granted
patents, with publication levels from 1-9. See http://
www.wipo.int/standards/en/part\_03.html.

5http://gargantua.sourceforge.net

pass alignment. This yields the parallel corpus
listed in table 2 with high input-output ratios for
claims, and much lower ratios for abstracts and
descriptions, showing that claims exhibit a nat-
ural parallelism due to their structure, while ab-
stracts and descriptions are considerably less par-
allel. Removing duplicates and adding parallel ti-
tles results in a corpus of over 23 million parallel
sentence pairs.

output de ratio en ratio

abstract 720,571 92.36% 76.81%
claims 8,346,863 97.82% 96.17%
descr. 14,082,381 86.23% 82.67%

Table 2: Number of parallel sentences in output with
input/output ratio of sentence aligner.

Differences between the text sections become
visible in an analysis of token to type ratios. Ta-
ble 3 gives the average number of tokens com-
pared to the average type frequencies for a win-
dow of 100,000 tokens from every subsection. It
shows that titles contain considerably fewer to-
kens than other sections, however, the disadvan-
tage is partially made up by a relatively large
amount of types, indicated by a lower average
type frequency.

tokens types

de en de en

title 6.5 8.0 2.9 4.8
abstract 37.4 43.2 4.3 9.0
claims 53.2 61.3 5.5 9.5
description 27.5 35.5 4.0 7.0

Table 3: Average number of tokens and average type
frequencies in text sections.

We reserved patent data published between
1979 and 2007 for training and documents pub-
lished in 2008 for tuning and testing in SMT.
For the dimension of text sections, we sampled
500,000 sentences – distributed across all IPC
sections – for training and 2,000 sentences for
each text section for development and testing. Be-
cause of a relatively high number of identical sen-
tences in test and training set for titles, we re-
moved the overlap for this section.

Table 4 shows the distribution of IPC sections
on claims, with the smallest class accounting for
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around 300,000 parallel sentences. In order to ob-
tain similar amounts of training data for each task
along the topical dimension, we sampled 300,000
sentences from each IPC class for training, and
2,000 sentences for each IPC class for develop-
ment and testing.

A 1,947,542
B 2,522,995
C 2,263,375
D 299,742
E 353,910
F 1,012,808
G 2,066,132
H 1,754,573

Table 4: Distribution of IPC sections on claims.

4 Machine translation experiments

4.1 Individual task baselines
For our experiments we used the phrase-based,
open-source SMT toolkit Moses6 (Koehn et al.,
2007). For language modeling, we computed
5-gram models using IRSTLM7 (Federico et
al., 2008) and queried the model with KenLM
(Heafield, 2011). BLEU (Papineni et al., 2001)
scores were computed up to 4-grams on lower-
cased data.

Europarl-v6 MAREC

BLEU OOV BLEU OOV

abstract 0.1726 14.40% 0.3721 3.00%
claim 0.2301 15.80% 0.4711 4.20%
title 0.0964 26.00% 0.3228 9.20%

Table 5: BLEU scores and OOV rate for Europarl base-
line and MAREC model.

Table 5 shows a first comparison of results of
Moses models trained on 500,000 parallel sen-
tences from patent text sections balanced over IPC
classes, against Moses trained on 1.7 Million sen-
tences of parliament proceedings from Europarl8

(Koehn, 2005). The best result on each section is
indicated in bold face. The Europarl model per-
forms very poorly on all three sections in compar-

6http://statmt.org/moses/
7http://sourceforge.net/projects/

irstlm/
8http://www.statmt.org/europarl/

ison to the task-specific MAREC model, although
the former has been learned on more than three
times the amount of data. An analysis of the out-
put of both system shows that the Europarl model
suffers from two problems: Firstly, there is an ob-
vious out of vocabulary (OOV) problem of the
Europarl model compared to the MAREC model.
Secondly, the Europarl model suffers from incor-
rect word sense disambiguation, as illustrated by
the samples in table 6.

source steuerbar leitet

Europarl taxable is in charge of
MAREC controllable guiding

reference controllable guides

Table 6: Output of Europarl model on MAREC data.

Table 7 shows the results of the evaluation
across text sections; we measured the perfor-
mance of separately trained and tuned individual
models on every section. The results allow some
conclusions about the textual characteristics of the
sections and indicate similarities. Naturally, ev-
ery task is best translated with a model trained
on the respective section, as the BLEU scores
on the diagonal are the highest in every column.
Accordingly, we are interested in the runner-up
on each section, which is indicated in bold font.
The results on abstracts suggest that this section
bears the strongest resemblance to claims, since
the model trained on claims achieves a respectable
score. The abstract model seems to be the most
robust and varied model, yielding the runner-up
score on all other sections. Claims are easiest to
translate, yielding the highest overall BLEU score
of 0.4879. In contrast to that, all models score
considerably lower on titles.

test

train abstract claim title desc.

abstract 0.3737 0.4076 0.2681 0.2812
claim 0.3416 0.4879 0.2420 0.2623
title 0.2839 0.3512 0.3196 0.1743
desc. 0.32189 0.403 0.2342 0.3347

Table 7: BLEU scores for 500k individual text section
models.

The cross-section evaluation on the IPC classes
(table 8) shows similar patterns. Each section
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is best translated with a model trained on data
from the same section. Note that best section
scores vary considerably, ranging from 0.5719 on
C to 0.4714 on H, indicating that higher-scoring
classes, such as C and A, are more homogeneous
and therefore easier to translate. C, the Chem-
istry section, presumably benefits from the fact
that the data contain chemical formulae, which
are language-independent and do not have to be
translated. Again, for determining the relation-
ship between the classes, we examine the best
runner-up on each section, considering the BLEU

score, although asymmetrical, as a kind of mea-
sure of similarity between classes. We can es-
tablish symmetric relationships between sections
A and C, B and F as well as G and H, which
means that the models are mutual runner-up on
the other’s test section.

The similarities of translation tasks estab-
lished in the previous section can be confirmed
by information-theoretic similarity measures that
perform a pairwise comparison of the vocabulary
probability distribution of each task-specific cor-
pus. This distribution is calculated on the basis of
the 500 most frequent words in the union of two
corpora, normalized by vocabulary size. As met-
ric we use the A-distance measure of Kifer et al.
(2004). IfA is the set of events on which the word
distributions of two corpora are defined, then the
A-distance is the supremum of the difference of
probabilities assigned to the same event. Low dis-
tance means higher similarity.

Table 9 shows the A-distance of corpora spe-
cific to IPC classes. The most similar section or
sections – apart from the section itself on the di-
agonal – is indicated in bold face. The pairwise
similarity of A and C, B and F, G and H obtained
by BLEU score is confirmed. Furthermore, a close
similarity between E and F is indicated. G and
H (electricity and physics, respectively) are very
similar to each other but not close to any other
section apart from B.

4.2 Task pooling and mixture

One straightforward technique to exploit com-
monalities between tasks is pooling data from
separate tasks into a single training set. Instead of
a trivial enlargement of training data by pooling,
we train the pooled models on the same amount
of sentences as the individual models. For in-
stance, the pooled model for the pairing of IPC

section B and C is trained on a data set composed
of 150,000 sentences from each IPC section. The
pooled model for pairing data from abstracts and
claims is trained on data composed of 250,000
sentences from each text section.

Another approach to exploit commonalities be-
tween tasks is to train separate language and trans-
lation models9 on the sentences from each task
and combine the models in the global log-linear
model of the SMT framework, following Fos-
ter and Kuhn (2007) and Koehn and Schroeder
(2007). Model combination is accomplished by
adding additional language model and translation
model features to the log-linear model and tuning
the additional meta-parameters by standard mini-
mum error rate training (Bertoldi et al., 2009).

We try out mixture and pooling for all pairwise
combinations of the three structural sections, for
which we have high-quality data, i.e. abstract,
claims and title. Due to the large number of pos-
sible combinations of IPC sections, we limit the
experiments to pairs of similar sections, based on
the A-distance measure.

Table 10 lists the results for two combinations
of data from different sections: a log-linear mix-
ture of separately trained models and simple pool-
ing, i.e. concatenation, of the training data. Over-
all, the mixture models perform slightly better
than the pooled models on the text sections, al-
though the difference is significant only in two
cases. This is indicated by highlighting best re-
sults in bold face (with more than one result high-
lighted if the difference is not significant).10

We investigate the same mixture and pooling
techniques on the IPC sections we considered
pairwise similar (see table 11). Somehow contra-
dicting the former results, the mixture models per-
form significantly worse than the pooled model on
three sections. This might be the result of inade-
quate tuning, since most of the time the MERT
algorithm did not converge after the maximum
number of iterations, due to the larger number of
features when using several models.

9Following Duh et al. (2010), we use the alignment
model trained on the pooled data set in the phrase extraction
phase of the separate models. Similarly, we use a globally
trained lexical reordering model.

10For assessing significance, we apply the approximate
randomization method described in Riezler and Maxwell
(2005). We consider pairwise differing results scoring a p-
value smaller than 0.05 as significant; the assessment is re-
peated three times and the average value is taken.
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test

train A B C D E F G H

A 0.5349 0.4475 0.5472 0.4746 0.4438 0.4523 0.4318 0.4109
B 0.4846 0.4736 0.5161 0.4847 0.4578 0.4734 0.4396 0.4248
C 0.5047 0.4257 0.5719 0.462 0.4134 0.4249 0.409 0.3845
D 0.47 0.4387 0.5106 0.5167 0.4344 0.4435 0.407 0.3917
E 0.4486 0.4458 0.4681 0.4531 0.4771 0.4591 0.4073 0.4028
F 0.4595 0.4588 0.4761 0.4655 0.4517 0.4909 0.422 0.4188
G 0.4935 0.4489 0.5239 0.4629 0.4414 0.4565 0.4748 0.4532
H 0.4628 0.4484 0.4914 0.4621 0.4421 0.4616 0.4588 0.4714

Table 8: BLEU scores for 300k individual IPC section models.

A B C D E F G H

A 0 0.1303 0.1317 0.1311 0.188 0.186 0.164 0.1906
B 0.1302 0 0.2388 0.1242 0.0974 0.0875 0.1417 0.1514
C 0.1317 0.2388 0 0.1992 0.311 0.3068 0.2506 0.2825
D 0.1311 0.1242 0.1992 0 0.1811 0.1808 0.1876 0.201
E 0.188 0.0974 0.311 0.1811 0 0.0921 0.2058 0.2025
F 0.186 0.0875 0.3068 0.1808 0.0921 0 0.1824 0.1743
G 0.164 0.1417 0.2506 0.1876 0.2056 0.1824 0 0.064
H 0.1906 0.1514 0.2825 0.201 0.2025 0.1743 0.064 0

Table 9: Pairwise A-distance for 300k IPC training sets.

train test pooling mixture

abstract-claim abstract 0.3703 0.3704
claim 0.4809 0.4834

claim-title claim 0.4799 0.4789
title 0.3269 0.328

title-abstract title 0.3311 0.3275
abstract 0.3643 0.366

Table 10: Mixture and pooling on text sections.

A comparison of the results for pooling and
mixture with the respective results for individual
models (tables 7 and 8) shows that replacing data
from the same task by data from related tasks
decreases translation performance in almost all
cases. The exception is the title model that bene-
fits from pooling and mixing with both abstracts
and claims due to their richer data structure.

4.3 Multi-task minimum error rate training

In contrast to task pooling and task mixtures, the
specific setting addressed by multi-task minimum
error rate training is one in which the generative

train test pooling mixture

A-C A 0.5271 0.5274
C 0.5664 0.5632

B-F B 0.4696 0.4354
F 0.4859 0.4769

G-H G 0.4735 0.4754
H 0.4634 0.467

Table 11: Mixture and pooling on IPC sections.

SMT pipeline is not adaptable. Such situations
arise if there are not enough data to train transla-
tion models or language models on the new tasks.
However, we assume that there are enough paral-
lel data available to perform meta-parameter tun-
ing by minimum error rate training (MERT) (Och,
2003; Bertoldi et al., 2009) for each task.

A generic algorithm for multi-task learning
can be motivated as follows: Multi-task learning
aims to take advantage of commonalities shared
among tasks by learning several independent but
related tasks together. Information is shared be-
tween tasks through a joint representation and in-
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tuning

test individual pooled average MMERT MMERT-average

abstract 0.3721 0.362 0.3657∗+ 0.3719+ 0.3685∗+

claim 0.4711 0.4681 0.4749∗+ 0.475∗+ 0.4734∗+

title 0.3228 0.3152 0.3326∗+ 0.3268∗+ 0.3325∗+

Table 12: Multi-task tuning on text sections.

tuning

test individual pooled average MMERT MMERT-average

A 0.5187 0.5199 0.5213∗+ 0.5195 0.5196
B 0.4877 0.4885 0.4908∗+ 0.4911∗+ 0.4921∗+

C 0.5214 0.5175 0.5199∗+ 0.5218+ 0.5162∗+

D 0.4724 0.4730 0.4733 0.4736 0.4734
E 0.4666 0.4661 0.4679∗+ 0.4669+ 0.4685∗+

F 0.4794 0.4801 0.4811∗ 0.4821∗+ 0.4830∗+

G 0.4596 0.4576 0.4607+ 0.4606+ 0.4610∗+

H 0.4573 0.4560 0.4578 0.4581+ 0.4581+

Table 13: Multi-task tuning on IPC sections.

troduces an inductive bias. Evgeniou and Pon-
til (2004) propose a regularization method that
balances task-specific parameter vectors and their
distance to the average. The learning objective is
to minimize task-specific loss functions ld across
all tasks d with weight vectors wd, while keep-
ing each parameter vector close to the average
1
D

∑D
d=1wd = wavg. This is enforced by min-

imizing the norm (here the `1-norm) of the dif-
ference of each task-specific weight vector to the
avarage weight vector.

min
w1,...,wD

D∑
d=1

ld(wd) + λ
D∑

d=1

||wd − wavg||1 (1)

The MMERT algorithm is given in figure 1.
The algorithm starts with initial weights w(0). At
each iteration step, the average of the parame-
ter vectors from the previous iteration is com-
puted. For each task d ∈ D, one iteration of stan-
dard MERT is called, continuing from weight vec-
tor w(t−1)

d and minimizing translation loss func-
tion ld on the data from task d. The individu-
ally tuned weight vectors returned by MERT are
then moved towards the previously calculated av-
erage by adding or subtracting a penalty term λ

for each weight component w(t)
d [k]. If a weight

moves beyond the average, it is clipped to the av-
erage value. The process is iterated until a stop-
ping criterion is met, e.g. a threshold on the max-
imum change in the average weight vector. The
parameter λ controls the influence of the regular-
ization. A larger λ pulls the weights closer to the
average, a smaller λ leaves more freedom to the
individual tasks.

MMERT(w(0), D, {ld}Dd=1):
for t = 1, . . . , T do
w

(t)
avg = 1

D

∑D
d=1w

(t−1)
d

for d = 1, . . . , D parallel do
w

(t)
d = MERT(w

(t−1)
d , ld)

for k = 1, . . . ,K do
if w[k]

(t)
d − w

(t)
avg[k] > 0 then

w
(t)
d [k] = max(w

(t)
avg[k], w

(t)
d [k]−λ)

else if w(t)
d [k]− w(t)

avg[k] < 0 then
w

(t)
d [k] = min(w

(t)
avg[k], w

(t)
d [k] + λ)

end if
end for

end for
end for
return w

(T )
1 , . . . , w

(T )
D , w

(T )
avg

Figure 1: Multi-task MERT.
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The weight updates and the clipping strategy
can be motivated in a framework of gradient de-
scent optimization under `1-regularization (Tsu-
ruoka et al., 2009). Assuming MERT as algorith-
mic minimizer11 of the loss function ld in equa-
tion 1, the weight update towards the average
follows from the subgradient of the `1 regular-
izer. Since w(t)

avg is taken as average over weights
w

(t−1)
d from the step before, the term w

(t)
avg is con-

stant with respect to w(t)
d , leading to the follow-

ing subgradient (where sgn(x) = 1 if x > 0,
sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0):

∂

∂w
(t)
r [k]

λ

D∑
d=1

∥∥∥∥∥w(t)
d −

1

D

D∑
s=1

w(t−1)
s

∥∥∥∥∥
1

= λ sgn

(
w(t)

r [k]− 1

D

D∑
s=1

w(t−1)
s [k]

)
.

Gradient descent minimization tells us to move in
the opposite direction of the subgradient, thus mo-
tivating the addition or subtraction of the regular-
ization penalty. Clipping is motivated by the de-
sire to avoid oscillating parameter weights and in
order to to enforce parameter sharing.

Experimental results for multi-task MERT
(MMERT) are reported for both dimensions of
patent tasks. For the IPC sections we trained
a pooled model on 1,000,000 sentences sampled
from abstracts and claims from all sections. We
did not balance the sections but kept their orig-
inal distribution, reflecting a real-life task where
the distribution of sections is unknown. We then
extend this experiment to the structural dimen-
sion. Since we do not have an intuitive notion of a
natural distribution for the text sections, we train
a balanced pooled model on a corpus composed
of 170,000 sentences each from abstracts, claims
and titles, i.e. 510,000 sentences in total. For
both dimensions, for each task, we sampled 2,000
parallel sentences for development, development-
testing, and testing from patents that were pub-
lished in different years than the training data.

We compare the multi-task experiments with
two baselines. The first baseline is individual
task learning, corresponding to standard separate
MERT tuning on each section (individual). This
results in three separately learned weight vectors

11MERT as presented in Och (2003) is not a gradient-
based optimization techniquem, thus MMERT is strictly
speaking only “inspired” by gradient descent optimization.

for each task, where no information has been
shared between the tasks. The second baseline
simulates the setting where the sections are not
differentiated at all. We tune the model on a
pooled development set of 2,000 sentences that
combines the same amount of data from all sec-
tions (pooled). This yields a single joint weight
vector for all tasks optimized to perform well
across all sections. Furthermore, we compare
multi-task MERT tuning with two parameter av-
eraging methods. The first method computes the
arithmetic mean of the weight vectors returned by
the individual baseline for each weight compo-
nent, yielding a joint average vector for all tasks
(average). The second method takes the last av-
erage vector computed during multi-task MERT
tuning (MMERT-average).12

Tables 12 and 13 give the results for multi-task
learning on text and IPC sections. The latter re-
sults have been presented earlier in Simianer et al.
(2011). The former table extends the technique
of multi-task MERT to the structural dimension
of patent SMT tasks. In all experiments, the pa-
rameter λ was adjusted to 0.001 after evaluating
different settings on a development set. The best
result on each section is indicated in bold face; *
indicates significance with respect to the individ-
ual baseline, + the same for the pooled baseline.
We observe statistically significant improvements
of 0.5 to 1% BLEU over the individual baseline for
claims and titles; for abstracts, the multi-task vari-
ant yields the same result as the baseline, while
the averaging methods perform worse. Multi-task
MERT yields the best result for claims; on titles,
the simple average and the last MMERT average
dominate. Pooled tuning always performs signifi-
cantly worse than any other method, confirming
that it is beneficial to differentiate between the
text section sections.

Similarly for IPC sections, small but statisti-
cally significant improvements over the individual
and pooled baselines are achieved by multi-task
tuning and averaging over IPC sections, except-
ing C and D. However, an advantage of multi-task
tuning over averaging is hard to establish.

Note that the averaging techniques implicitly
benefit from a larger tuning set. In order to ascer-
tain that the improvements by averaging are not

12The aspect of averaging found in all of our multi-task
learning techniques effectively controls for optimizer insta-
bility as mentioned in Clark et al. (2011).
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test pooled-6k significance

abstract 0.3628 <
claim 0.4696 <
title 0.3174 <

Table 14: Multi-task tuning on 6,000 sentences pooled
from text sections. “<” denotes a statistically signifi-
cant difference to the best result.

simply due to increasing the size of the tuning set,
we ran a control experiment where we tuned the
model on a pooled development set of 3 × 2, 000
sentences for text sections and on a development
set of 8 × 2, 000 sentences for IPC sections. The
results given in table 14 show that tuning on a
pooled set of 6,000 text sections yields only min-
imal differences to tuning on 2,000 sentence pairs
such that the BLEU scores for the new pooled
models are still significantly lower than the best
results in table 12 (indicated by “<”). However,
increasing the tuning set to 16,000 sentence pairs
for IPC sections makes the pooled baseline per-
form as well as the best results in table 13, except
for two cases (indicated by “<”) (see table 15).
This is due to the smaller differences between best
and worst results for tuning on IPC sections com-
pared to tuning on text sections, indicating that
IPC sections are less well suited for multi-task
tuning than the textual domains.

test pooled-16k significance

A 0.5177 <
B 0.4920
C 0.5133 <
D 0.4737
E 0.4685
F 0.4832
G 0.4608
H 0.4579

Table 15: Multi-task tuning on 16,000 sentences
pooled from IPC sections. “<” denotes a statistically
significant difference to the best result.

5 Conclusion

The most straightforward approach to improve
machine translation performance on patents is to
enlarge the training set to include all available
data. This question has been investigated by Tins-

ley et al. (2010) and Utiyama and Isahara (2007).
A caveat in this situation is that data need to be
from the general patent domain, as shown by the
inferior performance of a large Europarl-trained
model compared to a small patent-trained model.

The goal of this paper is to analyze patent data
along the topical dimension of IPC classes and
along the structural dimension of textual sections.
Instead of trying to beat a pooling baseline that
simply increases the data size, our research goal
is to investigate whether different subtasks along
these dimensions share commonalities that can
fruitfully be exploited by multi-task learning in
machine translation. We thus aim to investigate
the benefits of multi-task learning in realistic sit-
uations where a simple enlargement of training
data is not possible.

Starting from baseline models that are trained
on individual tasks or on data pooled from all
tasks, we apply mixtures of translation models
and multi-task MERT tuning to multiple patent
translation tasks. We find small, but statistically
significant improvements for multi-task MERT
tuning and parameter averaging techniques. Im-
provements are more pronounced for multi-task
learning on textual domains than on IPC domains.
This might indicate that the IPC sections are less
well delimitated than the structural domains. Fur-
thermore, this is owing to the limited expressive-
ness of a standard linear model including 14-20
features in tuning. The available features are very
coarse and more likely to capture structural dif-
ferences, such as sentence length, than the lexi-
cal differences that differentiate the semantic do-
mains. We expect to see larger gains due to multi-
task learning for discriminatively trained SMT
models that involve very large numbers of fea-
tures, especially when multi-task learning is done
in a framework that combines parameter regular-
ization with feature selection (Obozinski et al.,
2010). In future work, we will explore a combina-
tion of large-scale discriminative training (Liang
et al., 2006) with multi-task learning for SMT.
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Abstract

German case syncretism is often assumed
to be the accidental by-product of historical
development. This paper contradicts this
claim and argues that the evolution of Ger-
man case is driven by the need to optimize
the cognitive effort and memory required
for processing and interpretation. This hy-
pothesis is supported by a novel kind of
computational experiments that reconstruct
and compare attested variations of the Ger-
man definite article paradigm. The exper-
iments show how the intricate interaction
between those variations and the rest of the
German ‘linguistic landscape’ may direct
language change.

1 Introduction

In his 1880 essay, Mark Twain famously com-
plained that The awful German Language is the
most “slipshod and systemless, and so slippery
and elusive to grasp” language of all. A brief
look at the literature on the German case system
seems to provide sufficient evidence for instantly
agreeing with the American author. But what if
the German case system were not the accidental
by-product of diachronic changes as is often as-
sumed? Are there linguistic forces that are not yet
fully appreciated in the field, but which may ex-
plain the German case paradigm?

This paper demonstrates that there indeed are
such forces through a case study on German def-
inite articles. The experiments ‘reconstruct’ deep
language processing models for different variants
of this paradigm, and show how the ‘linguistic
landscape’ of German has allowed its speakers to
reduce their definite article system without loss in
efficiency for processing and interpretation.

2 The Problem of German Case

German articles, adjectives and nouns are marked
for gender, number and case through morpholog-
ical inflection, as illustrated for definite articles in
Table 1.

Case SG-M SG-F SG-N PL
NOM der die das die
ACC den die das die
DAT dem der dem den
GEN des der des der

Table 1: German definite articles.

The system is notorious for its syncretism (i.e.
the same form can be mapped onto different func-
tions), a riddle that has fascinated many formal
and historical linguists looking for explanations.

2.1 Historical Linguistics
Studies in historical linguistics and grammatical-
ization often propose the following three forces to
explain syncretism (Heine and Kuteva, 2005, p.
148):

1. The formal distinction between case markers
is lost through phonological changes.

2. One case takes over the functional domain of
another case and replaces it.

3. A case marker disappears and its functions
are usurped by another marker.

Syncretism is thus considered as the accidental
by-product of such forces, and German case syn-
cretism is typically analyzed according to these
lines (Barðdal, 2009; Baerman, 2009, p. 229).
However, these forces are not explanatory: they
only describe what has happened, but not why.
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Another problem for the ‘syncretism by acci-
dent’ hypothesis is the fact that the collapsing of
case forms is not randomly distributed over the
whole paradigm as would be expected. Hawkins
(2004, p. 78) observes that instead there is a sys-
tematic tendency for ‘lower’ cells in the paradigm
(e.g. genitive; Table 1) to collapse before cells in
‘higher’ positions (e.g. nominative) do so.

2.2 Formal Linguistics

Many hidden effects of verbal linguistic theo-
ries can be uncovered through explicit formaliza-
tions. Unfortunately, formal linguists also typi-
cally distinguish between ‘systematic’ and ‘non-
systematic’ syncretism when analyzing German
case. For instance, in his review of a number of
studies on German (a.o. Bierwisch, 1967; Blevins,
1995; Wiese, 1996; Wunderlich, 1997), Müller
(2002) concludes that none of these approaches
is able to rule out accidental syncretism.

There is however one major stone that has been
left unturned by formal linguists: processing.
Most formal theories, such as HPSG (Ginzburg
and Sag, 2000), assume a strict division between
‘competence’ and ‘performance’ and therefore
represent linguistic knowledge in a purely declar-
ative, process-independent way (Sag and Wasow,
2011). While such an approach may be desirable
from a ‘mathematical’ point of view, it puts the
burden of efficient processing on the shoulders
of computational linguists, who have to develop
more intelligent interpreters.

One example of the gap between description
and computational implementation is disjunctive
feature representation, which became popular in
feature-based grammar formalisms in the 1980s
(Karttunen, 1984). Disjunctions allow an elegant
notation for multiple feature values, as illustrated
in example 1 for the German definite article die,
which is either assigned nominative or accusative
case, and which is either feminine-singular or plu-
ral. The feature structure (adopted from Kart-
tunen, 1984, p. 30) represents disjunctions by en-
closing the alternatives in curly brackets ({ }).

(1)


AGREEMENT


[

GENDER f
NUM sg

]
[
NUM pl

]


CASE
{

nom acc
}



However, it is a well-established fact that dis-
junctions are computationally expensive, which
is illustrated in the top of Figure 1. This Fig-
ure shows the search tree of a small grammar
when parsing the utterance Die Kinder gaben der
Lehrerin die Zeichnung (‘the children gave the
drawing to the (female) teacher’), which is un-
ambiguous to German speakers. As can be seen
in the Figure, the search tree has to explore sev-
eral branches before arriving at a valid solution.
Most of the splits are caused by disjunctions. For
example, when a determiner-noun construction
specifies that the case features of the definite ar-
ticle die (nominative or accusative) and the noun
Kinder (‘children’; nominative, accusative or gen-
itive) have to unify, the search tree splits into two
hypotheses (a nominative and an accusative read-
ing) even though for native speakers of German,
the syntactic context unambiguously points to a
nominative reading (because it is the only noun
phrase that agrees with the main verb).

It should be no surprise, then, that a lot of work
has focused on processing disjunctions more ef-
ficiently (e.g. Carter, 1990; Ramsay, 1990). As
observed by Flickinger (2000), however, most of
these studies implicitly assume that the grammar
representation has to remain unchanged. He then
demonstrates through computational experiments
how a different representation can directly impact
efficiency, and argues that revisions of the gram-
mar for efficiency should be discussed more thor-
oughly in the literature.

The impact of representation on processing is
illustrated at the bottom of Figure 1, which shows
the performance of a grammar that uses the same
processing technique for handling the same utter-
ance, but a different representation than the dis-
junctive grammar. As can be seen, the alternative
grammar (whose technical details are disclosed
further below) is able to parse the German defi-
nite articles without tears, and the resulting search
tree arguably better reflects the actual processing
performed by native speakers of German.

2.3 Alternative Hypothesis

The effect of processing-friendly representations
on search suggests that answers for the unsolved
problems concerning case syncretism have to
be sought in performance. This paper there-
fore rejects the processing-independent approach
and explores the alternative hypothesis, following
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(a) Search with disjunctive feature representation:
top

initial
structure top

application
process

queue

reset

sem syn

initial

* der-lex
(lex), die-
lex (lex),
die-lex
(lex),
gaben-lex
(lex),
zeichnung-
lex (lex)

determiner-
nominal-phrase-
cxn
(marked-phrasal)

lehrerin-
lex (lex)

determiner-nominal-
phrase-cxn
(marked-phrasal)

kinder-
lex
(lex)

determiner-nominal-
phrase-cxn
(marked-phrasal)

determiner-nominal-
phrase-cxn
(marked-phrasal)

determiner-
nominal-phrase-
cxn
(marked-phrasal)

kinder-
lex
(lex)

determiner-
nominal-phrase-
cxn
(marked-phrasal)

ditransitive-
cxn (arg)

determiner-nominal-phrase-cxn
(marked-phrasal)

+
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nominal-phrase-
cxn
(marked-phrasal)
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lex (lex)

determiner-nominal-
phrase-cxn
(marked-phrasal)

kinder-
lex
(lex)

determiner-nominal-
phrase-cxn
(marked-phrasal)

determiner-nominal-
phrase-cxn
(marked-phrasal)

determiner-
nominal-phrase-
cxn
(marked-phrasal)

kinder-
lex
(lex)

determiner-nominal-phrase-cxn
(marked-phrasal)

determiner-
nominal-phrase-
cxn
(marked-phrasal)

ditransitive-
cxn (arg)

determiner-nominal-phrase-cxn (marked-phrasal) kinder-lex (lex) lehrerin-lex (lex) zeichnung-lex (lex)(b) Search with feature matrices:
top

top

Parsing "die Kinder gaben der Lehrerin die Zeichnung ."

Applying construction set (8)  in direction 

Found a solution

initial
structure top

application
process

queue

applied
constructions

... and 1 more

resulting
structure

top

Meaning:
((teacher.f ?recipient-1) (unique-referent ?recipient-1) (drawing ?sem-role-3)  
(unique-referent ?sem-role-3) (children ?ref-2) (unique-referent ?ref-2)  
(gave ?ev-1 ?ref-2 ?sem-role-3 ?recipient-1))

reset

sem syn

initial
* zeichnung-lex,  kinder-lex,  lehrerin-lex,  gaben-lex,  die-lex,  detnp-cxn,
die-lex ,  detnp-cxn,  der-lex,  detnp-cxn

ditransitive-
cxn

detnp-cxn der-lex (t) die-lex (t) die-lex (t)
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Figure 1: The representation of linguistic information has a direct impact on processing efficiency. The top
figure shows a search tree when parsing the unambiguous utterance Die Kinder gaben der Lehrerin die Zeich-
nung (‘The children gave the drawing to the (female) teacher’) using disjunctive feature representation. The
bottom figure shows the search tree using distinctive feature matrices. Labels in the boxes show the names
of the applied constructions; boxes with a bold border are successful end nodes. Both grammars have been
implemented in Fluid Construction Grammar (FCG; Steels, 2011, 2012a) and are processed using a standard
depth-first search algorithm (Bleys et al., 2011) and general unification (without optimization for particular
types or data structures; Steels and De Beule, 2006; De Beule, 2012). The utterance is assumed to be seg-
mented into words. Interested readers can explore the Figure through an interactive web demonstration at
http://www.fcg-net.org/demos/design-patterns/07-feature-matrices/.

Steels (2004, 2012b), that grammar evolves in or-
der to optimize communicative success by damp-
ening the search space in linguistic processing and
reducing the cognitive effort needed for interpre-
tation, while at the same time minimizing the re-
sources required for doing so. More specifically,
this paper explores the following claims:

1. The German definite article system can be
processed as efficiently as its Old High Ger-
man predecessor, which had less syncretism.

2. The presence of other grammatical structures
have made it possible to reduce the definite
article paradigm without increasing the cog-
nitive effort needed for disambiguating the
argument structures that underly German ut-
terances.

3. The decrease of cue-reliability of case for
disambiguation encourages the emergence of
competing systems (such as word order).

The hypothesis is substantiated through com-
putational experiments that reconstruct three dif-
ferent variants of the German definite article sys-
tem (the current system, its Old High German pre-
decessor, Wright, 1906; and the Texas German
dialect system, Boas, 2009a,b) and compare their
performance in terms of processing efficiency and
cognitive effort in interpretation.

3 Operationalizing German Case

An adequate operationalization of German case
requires a bidirectional grammar (for parsing and
production) and easy access to linguistic process-
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ing data. All experiments reported in this paper
have therefore been implemented in Fluid Con-
struction Grammar (FCG; Steels, 2011, 2012a), a
unification-based grammar formalism that comes
equipped with an interactive web interface and
monitoring tools (Loetzsch, 2012). A second ad-
vantage of FCG is that it features strong bidirec-
tionality: the FCG-interpreter can achieve both
parsing and production using the same linguistic
inventory. Other feature structure platforms, such
as the lkb-system (Copestake, 2002), require a
separate parser and generator for formalizing bidi-
rectional grammars, which make them less suited
for substantiating the claims of this paper.

3.1 Distinctive Feature Matrix
German case has become the litmus test for
demonstrating how well a feature-based grammar
formalism copes with multifunctionality, espe-
cially since Ingria (1990) provocatively stated that
unification is not the best technique for handling
it. People have gone to great lengths to counter
Ingria’s claim, especially within the HPSG frame-
work (e.g. Müller, 1999; Daniels, 2001; Sag,
2003), and various formalizations have been of-
fered for German case (Heinz and Matiasek,
1994; Müller, 2001; Crysmann, 2005). However,
these proposals either do not succeed in avoiding
inefficient disjunctions or they require a complex
double type hierarchy (Crysmann, 2005).

The experiments in this paper use a more
straightforward solution, called a distinctive fea-
ture matrix, which is based on an idea that was
first explored by Ingria (1990) and of which a
variation has recently also been proposed for
Lexical Functional Grammar (Dalrymple et al.,
2009). Instead of treating case as a single-valued
feature, it can be represented as an array of fea-
tures, as shown for the definite article die (ignor-
ing the genitive case for the time being):

(2) die:
CASE

nom ?nom
acc ?acc
dat –




The case feature includes a paradigm of three
cases (nom, acc and dat), whose values can ei-
ther be ‘+’ or ‘–’, or left unspecified through a
variable (indicated by a question mark). The two
variables ?nom and ?acc indicate that die can
potentially be assigned nominative or accusative

case, the value ‘–’ for dative means that die can-
not be assigned dative case. We can do the same
for Kinder (‘children’), which can be nominative
or accusative, but not dative:

(3) Kinder:
CASE

nom ?nom
acc ?acc
dat –




As demonstrated in Figure 1, disjunctive fea-
ture representation would cause a split in the
search tree when unifying die and Kinder. Us-
ing a feature matrix, however, the choice between
a nominative and accusative reading can simply
be postponed until enough information from the
rest of the utterance is available. Unifying die and
Kinder yields the following feature structure:

(4) die Kinder:
CASE

nom ?nom
acc ?acc
dat –




3.2 A Three-Dimensional Matrix
The German case paradigm is obviously more
complex than the examples shown so far. Let’s
consider Table 1 again, but this time we replace
every cell in the table by a variable. This leads to
the following feature matrix for the German defi-
nite articles:

Case SG-M SG-F SG-N PL
?NOM ?n-s-m ?n-s-f ?n-s-n ?n-pl
?ACC ?a-s-m ?a-s-f ?a-s-n ?a-pl
?DAT ?d-s-m ?d-s-f ?d-s-n ?d-pl
?GEN ?g-s-m ?g-s-f ?g-s-n ?g-pl

Table 2: A distinctive feature matrix for German case.

Each cell in this matrix represents a specific
feature bundle that collects the features case,
number, and person. For example, the variable
?n-s-m stands for nominative singular mascu-
line. Note that also the cases themselves have
their own variable (?nom, ?acc, ?dat and
?gen). This allows us to single out a specific di-
mension of the matrix for constructions that only
care about case distinctions, but abstract away
from gender or number. Each linguistic item fills
in as much information as possible in this case
matrix. For example, Table 3 shows how the def-
inite article die underspecifies its potential values
and rules out all other options through ‘–’.
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Case SG-M SG-F SG-N PL
?NOM – ?n-s-f – ?n-pl
?ACC – ?a-s-f – ?a-pl
– – – – –
– – – – –

Table 3: The feature matrix of die.

The feature matrix of Kinder (‘children’),
which underspecifies for nominative, accusative
and genitive, is shown in Table 4. Notice, how-
ever, that the same variable names are used for
both the column that singles out the case dimen-
sion as for the column of the plural feature bun-
dles.

Case SG-M SG-F SG-N PL
?n-pl – – – ?n-pl
?a-pl – – – ?a-pl
– – – – –
?g-pl – – – ?g-pl

Table 4: The feature matrix of Kinder (‘children’).

Unification of die and Kinder can exploit these
variable ‘equalities’ for ruling out a singular value
of the definite article. Likewise, the matrix of die
rules out the genitive reading of Kinder, as illus-
trated in Table 5.

Case SG-M SG-F SG-N PL
?n-pl – – – ?n-pl
?a-pl – – – ?a-pl
– – – – –
– – – – –

Table 5: The feature matrix of die Kinder.

Argument structure constructions (Goldberg,
2006), such as the ditransitive, can then later as-
sign either nominative or accusative case. The
main advantage of feature matrices is that linguis-
tic search only has to commit to specific feature-
values once sufficient information is available, so
the search tree only splits when there is an actual
ambiguity. Moreover, they can be handled using
standard unification. Interested readers can con-
sult van Trijp (2011) for a thorough description of
the approach, as well as a discussion on how the
FCG implementation differs from Ingria (1990)
and Dalrymple et al. (2009).

4 Experiments

This section describes the experimental set-up and
discusses the experimental results.

4.1 Three Paradigms
The experiments compare three different variants
of the German definite article paradigm.

Standard German. The Standard German
paradigm has been illustrated in Table 1 and its
operationalization has been shown in section 3.2.
The paradigm has been inherited without signifi-
cant changes from Middle High German (1050-
1350; Walshe, 1974) and features six different
forms.

Old High German. The Old High German
paradigm is the direct predecessor of the current
paradigm of definite articles. It contained at least
twelve distinct forms (depending on which varia-
tion is taken) that included gender distinctions in
plural (Wright, 1906, p. 67). It also included one
definite article that marked the now extinct instru-
mental case, which is ignored in this paper. The
variant of the Old High German paradigm that has
been implemented in the experiments is summa-
rized in Table 6.

Case Singular
M F N

NOM dër diu daz̧
ACC dën die daz̧
DAT dëmu dëru dëmu
GEN dës dëra dës

Plural
M F N

NOM die deo diu
ACC die deo diu
DAT dēm dēm dēm
GEN dëro dëro dëro

Table 6: The Old High German definite article system.

Texas German. The third variant is an
American-German dialect called Texas German
(Boas, 2009a,b), which evolved a two-way case
distinction between nominative and oblique. This
type of case system, in which the accusative and
dative case have collapsed, is also a common
evolution in the Low German dialects (Shrier,
1965). The implemented paradigm of Texas
German is shown in Table 7.
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Case SG-M SG-F SG-N PL
NOM der die das die
ACC/DAT den die den die

Table 7: The Texas German definite article system.

4.2 Production and Parsing Tasks

Each grammar is tested as to how efficiently it can
produce and parse utterances in terms of cognitive
effort and search (see section 4.3). There are three
basic types of utterances:

1. Ditransitive: NOM – Verb – DAT – ACC

2. Transitive (a): NOM – Verb – ACC

3. Transitive (b): NOM – Verb – DAT

The argument roles are filled by noun phrases
whose head nouns always have a distinct form
for singular and plural (e.g. Mann vs. Män-
ner; ‘man’ vs. ‘men’), but that are unmarked for
case. The combinations of arguments is always
unique along the dimensions of number and gen-
der, which yields 216 unique utterance types for
the ditransitive as follows:

(5)

NOM.S.M V DAT.S.M ACC.S.M
NOM.S.M V DAT.S.F ACC.S.M
NOM.S.M V DAT.S.N ACC.S.M
NOM.S.M V DAT.PL.M ACC.S.M

etc.

In transitive utterances, there is an additional
distinction based on animacy for noun phrases in
the Object position of the utterance, which yields
72 types in the NOM-ACC configuration and 72
in the NOM-DAT configuration. Together, there
are 360 unique utterance types. As can be gleaned
from the utterance types, the genitive case is not
considered by the experiments, as the genitive is
not part of basic German argument structures and
it has almost disappeared in most dialects of Ger-
man (Shrier, 1965).

In production, the grammar is presented with a
meaning that needs to be verbalized into an utter-
ance. In parsing, the produced utterance has to be
analyzed back into a meaning. Every utterance is
processed using a full search, that is, all branches
and solutions are calculated.

The experiments exploit types because there
are three different language systems, hence it is
impossible to use a single, real corpus and its to-
ken frequencies. It would also be unwarranted to
use different corpora because corpus-specific bi-
ases would distort the comparative results. Sec-
ondly, as the experiments involve models of deep
language processing (as opposed to stochastic
models), the use of types instead of tokens is
justified in this phase of the research: the first
concern of precision-grammars is descriptive ade-
quacy, for which types are a more reliable source.
Obviously, the effect of token frequency needs to
be examined in future research.

4.3 Measuring Cognitive Effort
The experiments measure two kinds of cognitive
effort: syntactic search and semantic ambiguity.

Search. The search measure counts the number
of branches in the search process that reach an end
node, which can either be a possible solution or
a dead end (i.e. no constructions can be applied
anymore). Duplicate nodes (for instance, nodes
that use the same rules but in a different order)
are not counted. The search measure is then used
as a ‘sanity check’ to verify whether the three dif-
ferent paradigms can be processed with the same
efficiency in terms of search tree length, as hy-
pothesized by this paper. More specifically, the
following conditions have to be met:

1. In production, there should only be one
branch.

2. In parsing, search has to be equal to the se-
mantic effort.

The single branch constraint in production
checks whether the definite articles are suffi-
ciently distinct from one another. Since there is no
ambiguity about which argument plays which role
in the utterance, the grammar should only come
up with one solution. In parsing, the number of
branches has to correspond to ‘real’ semantic am-
biguities and not create additional search, as ar-
gued in section 2.2.

Semantic Ambiguity. Semantic ambiguity
equals the number of possible interpretations
of an utterance. For instance, the utterance
Der Hund beißt den Mann ‘the dog bites the
man’ is unambiguous in Modern High German,
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since der Hund can only be nominative singular-
masculine, and den Mann can only be accusative
masculine-singular. There is thus only one pos-
sible interpretation in which the dog is the biter
and the man is being bitten, illustrated as follows
using a logic-based meaning representation (also
see Steels, 2004, for this operationalization of
cognitive effort):

(6) Interpretation 1:
Der Hund den Mann.beißt

bite(?ev)
biter(?ev, ?x)
bitten(?ev, ?y)

dog(?a) man(?b)

?a=?x
?b=?y

However, an utterance such as die Katze beißt
die Frau ‘the cat bites the woman’ is ambiguous
because die has both a nominative and accusative
singular-feminine reading:

(7) a. Interpretation 1:
Die Katze die Frau.beißt

bite(?ev)
biter(?ev, ?x)
bitten(?ev, ?y)

cat(?a) woman(?b)

?a=?x
?b=?y

b. Interpretation 2:
Die Katze die Frau.beißt

bite(?ev)
biter(?ev, ?x)
bitten(?ev, ?y)

cat(?a) woman(?b)

?a=?y
?b=?x

Here, German speakers are likely to use word
order, intonation and world knowledge (i.e. cats
are more likely to bite a person than the other way
round) for disambiguating the utterance.

4.4 Experimental Parameters

The experiments (E1-E4) concern the cue-
reliability of the definite articles for disambiguat-
ing event structure. In all experiments, the differ-
ent grammars can exploit the case-number-gender
information of definite articles, and also the gen-
der and number specifications of nouns, and the
syntactic valence of verbs. For instance, the
noun form Frauen ‘women’ is specified as plural-
feminine, and verbs like helfen ‘to help’ are spec-
ified to take a dative object, whereas verbs like
finden ‘to find’ take an accusative object. In other
experiments, different combinations of grammat-
ical cues become available or not:

Cue E1 E2 E3 E4
SV-agreement + +
Selection restrictions + +

SV-agreement restricts the subject to singular
or plural nouns, and semantic selection restric-
tions can disambiguate utterances in which for ex-
ample the Agent-role has to be animate (e.g. in
perception verbs such as sehen ‘to see’). All other
possible cues, such as word order, are ignored.

5 Results

5.1 Search

In all experiments, the constraints of the search
measure were satisfied: every grammar only re-
quired one branch per utterance in production,
and the number of branches in parsing never ex-
ceeded the number of possible interpretations. In
terms of search length, more syncretism therefore
does not automatically harm efficiency, provided
that the grammar uses an adequate representation.
Arguably, the smaller paradigms are even more
efficient because they require less unifications to
be performed.

5.2 Semantic Ambiguity

Now that it has been ascertained that more
syncretism does not harm processing efficiency,
we can compare cue-reliability of the different
paradigms for semantic interpretation.

Ambiguous Utterances. Figure 2 shows the
number of ambiguous utterances in parsing (in %)
per paradigm and per set-up. As can be seen,
the Old High German paradigm (black) is the
most reliable cue in Experiment 1 (E1; when SV-
agreement and selection restrictions are ignored)
with 35.56% of ambiguous utterances, as opposed
to 55.56% for Modern High German (grey) and
77.78% for Texas German (white).

When SV-agreement is taken into account (E2),
the difference between Old and Modern High
German becomes smaller, with both paradigms
offering a reliability of more than 70%, while
Texas German still faces more than 70% of am-
biguous utterances.

Ambiguity is even more reduced when using
semantic selection restrictions of the verb (set-up
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E3). Here, the difference between Old and Mod-
ern High German becomes trivial with 4.44% and
6.94% of ambiguous utterances respectively. The
difference with Texas German remains apparent,
even though its ambiguity is cut by half.

In set-up E4 (case, SV-agreement and selection
restrictions), the Old and Modern High German
paradigms resolve almost all ambiguities, leaving
little difference between them. Using the Texas
German dialect, one utterance out of five remains
ambiguous and requires additional grammatical
cues or inferencing for semantic interpretation.

Number of possible interpretations. Semantic
ambiguity can also be measured by counting the
number of possible interpretations per utterance.
A non-ambiguous language would thus have 1
possible interpretation per utterance. The aver-
age number of interpretations per utterance (per
paradigm and per set-up) is shown in Table 8.

Paradigm E1 E2 E3 E4
Old High German 1.56 1.22 1.04 1.03
Modern High German 1.56 1.28 1.07 1.04
Texas German 2.84 2.39 1.36 1.22

Table 8: Average number of interpretations per utter-
ance type.

The Old High German paradigm has the least
semantic ambiguity throughout, except in Exper-
iment 1 (E1). Here, Modern High German has
the same average effort despite having more am-
biguous utterances. This means that the Old High
German paradigm provides a better coverage in
terms of construction types, but when ambiguity
occurs, more possible interpretations exist.

6 Discussion

The experiments compare how well three differ-
ent paradigms of definite articles perform if they
are inserted in the grammar of Modern High Ger-
man. The results show that, in isolation, Old High
German offers the best cue-reliability for retriev-
ing who’s doing what to whom in events. How-
ever, when other grammatical cues are taken into
account, it turns out that Modern High German
achieves similar results with respect to syntactic
search and semantic ambiguity, with a reduced
paradigm (using only six instead of twelve forms).

As for the Texas German dialect, which has
collapsed the accusative-dative distinction, the

amount of ambiguity remains more than 20% us-
ing all available cues. One verifiable predic-
tion of the experiments is therefore that this di-
alect should show an increase in alternative syn-
tactic restrictions (such as word order) in order
to make up for the lost case distinctions. Inter-
estingly, such alternatives have been attested in
Low German dialects that have evolved a simi-
lar two-way case system (Shrier, 1965). Modern
High German, on the other hand, has already re-
cruited word order for other purposes (such as in-
formation structure; Lenerz, 1977; Micelli, 2012),
which may explain why the current paradigm has
been able to survive since the Middle Ages.

Instead of an accidental by-product of phono-
logical and morphological changes, then, a new
picture emerges for explaining syncretism in
Modern High German definite articles: German
speakers have been able to reduce their case
paradigm without loss in processing and interpre-
tation efficiency. With cognitive effort as a selec-
tion criterion, subsequent generations of speakers
found no linguistic pressures for maintaining par-
ticular distinctions such as gender in plural arti-
cles. Especially forms whose acoustic distinctions
are harder to perceive are candidates for collapse
if they are no longer functional for processing or
interpretation. Other factors, such as frequency,
may accelerate this evolution, as also argued by
Barðdal (2009). For instance, there may be less
benefits for upholding a case distinction for infre-
quent than for frequent forms.

If case syncretism is not randomly distributed
over a grammatical paradigm, but rather func-
tionally motivated, a new explanatory model is
needed. One candidate is evolutionary linguistics
(Steels, 2012b), a framework of cultural evolu-
tion in which populations of language users con-
stantly shape and reshape their language in re-
sponse to their communicative needs. The ex-
periments reported here suggest that this dynamic
shaping process is guided by the ‘linguistic land-
scape’ of a language. For instance, the pres-
ence of grammatical cues such as gender, num-
ber and SV-agreement may encourage paradigm
reduction. However, reduction may be the start
of a self-enforcing loop in which the decreasing
cue-reliability of a paradigm may pressure lan-
guage users into enforcing the alternatives to take
on even more of the cognitive load of processing.

The intricate interactions between grammati-
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Figure 2: This chart shows the number of ambiguous utterances per paradigm per E(xperimental set-up) in %.

cal systems also requires more sophisticated mea-
sures. A promising extension of this paper could
lie in an information-theoretic approach to lan-
guage (Hale, 2003; Jaeger and Tily, 2011), which
has recently explored a set of tools for assessing
linguistic complexity, processing effort and un-
certainty. Unfortunately, only little work has been
done on morphological paradigms so far (see e.g.
Ackerman et al., 2011), and the approach is typi-
cally applied in stochastic or Probabilistic Context
Free Grammars, hence it remains unclear how the
assumptions of this field fit into models of deep
language processing.

7 Conclusions

More than 130 years after Mark Twain’s com-
plaints, it seems that the German language is not
that awful after all. Through a series of compu-
tational experiments, this paper has proposed a
different explanation for German case syncretism
that answers some of the unsolved riddles of pre-
vious studies. First, the experiments have shown
that an increase in syncretism does not necessar-
ily lead to an increase in the cognitive effort re-
quired for syntactic search, provided that the rep-
resentation of the grammar is processing-friendly.
Secondly, by comparing cue-reliability of differ-
ent paradigms for semantic disambiguation, the

experiments have demonstrated that Modern High
German achieves a similar performance as its Old
High German predecessor using only half of the
forms in its definite article paradigm.

Instead of a series of historical accidents, the
German case system thus underwent a systematic
and “performance-driven [...] morphological re-
structuring” (Hawkins, 2004, p. 79), in which lin-
guistic pressures such as cognitive effort decided
on the maintenance or loss of certain distinctions.
The case study makes clear that formal and com-
putational models of deep language understand-
ing have to reconsider their strict division between
competence and performance if the goal is to ex-
plain individual language development. This pa-
per proposed that new tools and methodologies
should be sought in evolutionary linguistics.
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Abstract

Low interannotator agreement (IAA) is a
well-known issue in manual semantic tag-
ging (sense tagging). IAA correlates with
the granularity of word senses and they
both correlate with the amount of informa-
tion they give as well as with its reliability.
We compare different approaches to seman-
tic tagging in WordNet, FrameNet, Prop-
Bank and OntoNotes with a small tagged
data sample based on the Corpus Pattern
Analysis to present the reliable information
gain (RG), a measure used to optimize the
semantic granularity of a sense inventory
with respect to its reliability indicated by
the IAA in the given data set. RG can also
be used as feedback for lexicographers, and
as a supporting component of automatic se-
mantic classifiers, especially when dealing
with a very fine-grained set of semantic cat-
egories.

1 Introduction

The term semantic tagging is used in two diver-
gent areas:

1) recognizing objects of semantic importance,
such as entities, events and polarity, often tailored
to a restricted domain, or

2) relating occurrences of words in a corpus to a
lexicon and selecting the most appropriate seman-
tic categories (such as synsets, semantic frames,
wordsenses, semantic patterns or framesets).

We are concerned with the second case, which
seeks to make lexical semantics tractable for com-
puters. Lexical semantics, as opposed to proposi-
tional semantics, focuses the meaning of lexical
items. The disciplines that focus lexical seman-
tics are lexicology and lexicography rather than

logic. By semantic tagging we mean a process of
assigning semantic categories to target words in
given contexts. This process can be either manual
or automatic.

Traditionally, semantic tagging relies on the
tacit assumption that various uses of polysemous
words can be sorted into discrete senses; under-
standing or using an unfamiliar word be then like
looking it up in a dictionary. When building a dic-
tionary entry for a given word, the lexicographer
sorts a number of its occurrences into discrete
senses present (or emerging) in his/her mental lex-
icon, which is supposed to be shared by all speak-
ers of the same language. The assumed common
mental representation of a words meaning should
make it easy for other humans to assign random
occurrences of the word to one of the pre-defined
senses (Fellbaum et al., 1997).

This assumption seems to be falsified by the
interannotator agreement (IAA, sometimes ITA)
constantly reported much lower in semantic than
in morphological or syntactic annotation, as well
as by the general divergence of opinion on which
value of which IAA measure indicates a reliable
annotation. In some projects (e.g. OntoNotes
(Hovy et al., 2006)), the percentage of agreements
between two annotators is used, but a number
of more complex measures are available (for a
comprehensive survey see (Artstein and Poesio,
2008)). Consequently, using different measures
for IAA makes the reported IAA values incompa-
rable across different projects.

Even skilled lexicographers have trouble se-
lecting one discrete sense for a concordance (Kr-
ishnamurthy and Nicholls, 2000), and, more to
say, when the tagging performance of lexicog-
raphers and ordinary annotators (students) was
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compared, the experiment showed that the men-
tal representations of a word’s semantics differ for
each group (Fellbaum et al., 1997), and cf. (Jor-
gensen, 1990). Lexicographers are trained in con-
sidering subtle differences among various uses of
a word, which ordinary language users do not re-
flect. Identifying a semantic difference between
uses of a word and deciding whether a difference
is important enough to constitute a separate sense
means presenting a word with a certain degree
of semantic granularity. Intuitively, the finer the
granularity of a word entry is, the more oppor-
tunities for interannotator disagreement there are
and the lower IAA can be expected. Brown et al.
proved this hypothesis experimentally (Brown et
al., 2010). Also, the annotators are less confident
in their decisions, when they have many options
to choose from (Fellbaum et al. (1998) reported a
drop in subjective annotators confidence in words
with 8+ senses).

Despite all the known issues in semantic tag-
ging, the major lexical resources (WordNet (Fell-
baum, 1998), FrameNet (Ruppenhofer et al.,
2010), PropBank (Palmer et al., 2005) and the
word-sense part of OntoNotes (Weischedel et al.,
2011)) are still maintained and their annotation
schemes are adopted for creating new manually
annotated data (e.g. MASC, the Manually An-
notated Subcorpus (Ide et al., 2008)). More to
say, these resources are not only used in WSD and
semantic labeling, but also in research directions
that in their turn do not rely on the idea of an in-
ventory of discrete senses any more, e.g. in dis-
tributional semantics (Erk, 2010) and recognizing
textual entailment (e.g. (Zanzotto et al., 2009) and
(Aharon et al., 2010)).

It is a remarkable fact that, to the best of our
knowledge, there is no measure that would relate
granularity, reliability of the annotation (derived
from IAA) and the resulting information gain.
Therefore it is impossible to say where the opti-
mum for granularity and IAA lies.

2 Approaches to semantic tagging

2.1 Semantic tagging vs. morphological or
syntactic analysis

Manual semantic tagging is in many respects sim-
ilar to morphological tagging and syntactic anal-
ysis: human annotators are trained to sort cer-
tain elements occurring in a running text ac-

cording to a reference source. There is, never-
theless, a substantial difference: whereas mor-
phologically or syntactically annotated data ex-
ist separately from the reference (tagset, anno-
tation guide, annotation scheme), a semantically
tagged resource can be regarded both as a cor-
pus of texts disambiguated according to an at-
tached inventory of semantic categories and as
a lexicon with links to example concordances
for each semantic category. So, in semanti-
cally tagged resources, the data and the reference
are intertwined. Such double-faced semantic re-
sources have also been called semantic concor-
dances (Miller et al., 1993a). For instance, one of
the earlier versions of WordNet, the largest lexi-
cal resource for English, was used in the seman-
tic concordance SemCor (Miller et al., 1993b).
More recent lexical resources have been built as
semantic concordances from the very beginning
(PropBank (Palmer et al., 2005), OntoNotes word
senses (Weischedel et al., 2011)).

In morphological or syntactic annotation, the
tagset or inventory of constituents are given be-
forehand and are supposed to hold for all to-
kens/sentences contained in the corpus. Prob-
lematic and theory-dependent issues are few and
mostly well-known in advance. Therefore they
can be reflected by a few additional conventions in
the annotation manual (e.g. where to draw the line
between particles and prepositions or between ad-
jectives and verbs in past participles (Santorini,
1990) or where to attach a prepositional phrase
following a noun phrase and how to treat specific
“financialspeak” structures (Bies et al., 1995)).
Even in difficult cases, there are hardly more than
two options of interpretation. Data manually an-
notated for morphology or surface syntax are reli-
able enough to train syntactic parsers with an ac-
curacy above 80 % (e.g. (Zhang and Clark, 2011;
McDonald et al., 2006)).

On the other hand, semantic tagging actually
employs a different tagset for each word lemma.
Even within the same part of speech, individual
words require individual descriptions. Possible
similarities among them come into relief ex post
rather than that they could be imposed on the lex-
icographers from the beginning. When assign-
ing senses to concordances, the annotator often
has to select among more than two relevant op-
tions. These two aspects make achieving good
IAA much harder than in morphology and syn-
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tax tasks. In addition, while a linguistically edu-
cated annotator can have roughly the same idea of
parts of speech as the author of the tagset, there
is no chance that two humans (not even two pro-
fessional lexicographers) would create identical
entries for e.g. a polysemous verb. Any human
evaluation of complete entries would be subjec-
tive. The maximum to be achieved is that the en-
try reflects the corpus data in a reasonable gran-
ular way on which annotators still can reach rea-
sonable IAA.

2.2 Major existing semantic resources

The granularity vs. IAA equilibrium is of great
concern in creating lexical resources as well as in
applications dealing with semantic tasks. When
WordNet (Fellbaum, 1998) was created, both IAA
and subjective confidence measurements served
as an informal feedback to lexicographers (Fell-
baum et al., (1998), p. 200). In general, WordNet
has been considered a resource too fine-grained
for most annotations (and applications). Nav-
igli (2006) developed a method of reducing the
granularity of WordNet by mapping the synsets
to senses in a more coarse-grained dictionary. A
manual, more coarse-grained grouping of Word-
Net senses has been performed in OntoNotes
(Weischedel et al., 2011). The OntoNotes 90 %
solution (Hovy et al., 2006) actually means such
a degree of granularity that enables a 90-%-IAA.
OntoNotes is a reaction to the traditionally poor
IAA in WordNet annotated corpora, caused by the
high granularity of senses. The quality of seman-
tic concordances is maintained by numerous itera-
tions between lexicographers and annotators. The
categories ‘right’–‘wrong’ have been, for the pur-
pose of the annotated linguistic resource, defined
by the IAA score, which is—in OntoNotes—
calculated as the percentage of agreements be-
tween two annotators.

Two other, somewhat different, lexical re-
sources have to be mentioned to complete the pic-
ture: FrameNet (Ruppenhofer et al., 2010) and
PropBank (Palmer et al., 2005). While Word-
Net and OntoNotes pair words and word senses in
a way comparable to printed lexicons, FrameNet
is primarily an inventory of semantic frames and
PropBank focuses the argument structure of verbs
and nouns (NomBank (Meyers et al., 2008), a re-
lated project capturing the argument structure of
nouns, was later integrated in OntoNotes).

In FrameNet corpora, content words are associ-
ated to particular semantic frames that they evoke
(e.g. charm would relate to the Aesthetics frame)
and their collocates in relevant syntactic positions
(arguments of verbs, head nouns of adjectives,
etc.) would be assigned the corresponding frame-
element labels (e.g. in their dazzling charm, their
would be The Entity for which a particular grad-
able Attribute is appropriate and under considera-
tion and dazzling would be Degree). Neither IAA
nor granularity seem to be an issue in FrameNet.
We have not succeeded in finding a report on IAA
in the original FrameNet annotation, except one
measurement in progress in the annotation of the
Manually Annotated Subcorpus of English (Ide et
al., 2008).1

PropBank is a valency (argument structure) lex-
icon. The current resource lists and labels ar-
guments and obligatory modifiers typical of each
(very coarse) word sense (called frameset). Two
core criteria for distinguishing among framesets
are the semantic roles of the arguments along
with the syntactic alternations that the verb can
undergo with that particular argument set. To
keep low granularity, this lexicon—among other
things—does usually not make special framesets
for metaphoric uses. The overall IAA measured
on verbs was 94 % (Palmer et al., 2005).

2.3 Semantic Pattern Recognition

From corpus-based lexicography to semantic
patterns

The modern, corpus-based lexicology of 1990s
(Sinclair, 1991; Fillmore and Atkins, 1994) has
had a great impact on lexicography. There is a
general consensus that dictionary definitions need
to be supported by corpus examples. Cf. Fell-
baum (2001):

“For polysemous words, dictionaries [. . . ] do
not say enough about the range of possible con-
texts that differentiate the senses. [. . . ] On the
other hand, texts or corpora [. . . ] are not ex-
plicit about the word’s meaning. When we first
encounter a new word in a text, we can usually
form only a vague idea of its meaning; checking a
dictionary will clarify the meaning. But the more
contexts we encounter for a word, the harder it is
to match them against only one dictionary sense.”

1Checked on the project web www.anc.org/MASC/Home
2011-10-29.
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The lexical description in modern English
monolingual dictionaries (Sinclair et al., 1987;
Rundell, 2002) explicitly emphasizes contextual
clues, such as typical collocates and the syntac-
tic surroundings of the given lexical item, rather
than relying on very detailed definitions. In
other words, the sense definitions are obtained
as syntactico-semantic abstractions of manually
clustered corpus concordances in the modern
corpus-based lexicography: in classical dictionar-
ies as well as in semantic concordances.

Nevertheless, the word senses, even when ob-
tained by a collective mind of lexicographers and
annotators, are naturally hard-wired and tailored
to the annotated corpus. They may be too fine-
grained or too coarse-grained for automatic pro-
cessing of different corpora (e.g. a restricted-
domain corpus). Kilgarriff (1997, p. 115) shows
(the handbag example) that there is no reason to
expect the same set of word senses to be relevant
for different tasks and that the corpus dictates the
word senses and therefore ‘word sense’ was not
found to be sufficiently well-defined to be a work-
able basic unit of meaning (p. 116). On the other
hand, even non-experts seem to agree reasonably
well when judging the similarity of use of a word
in different contexts (Rumshisky et al., 2009). Erk
et al. (2009) showed promising annotation results
with a scheme that allowed the annotators graded
judgments of similarity between two words or be-
tween a word and its definition.

Verbs are the most challenging part of speech.
We see two major causes: vagueness and coer-
cion. We neglect ambiguity, since it has proved to
be rare in our experience.

CPA and PDEV
Our current work focuses on English verbs.

It has been inspired by the manual Corpus Pat-
tern Analysis method (CPA) (Hanks, forthcom-
ing) and its implementation, the Pattern Dictio-
nary of English Verbs (PDEV) (Hanks and Puste-
jovsky, 2005). PDEV is a semantic concordance
built on yet a different principle than FrameNet,
WordNet, PropBank or OntoNotes. The man-
ually extracted patterns of frequent and normal
verb uses are, roughly speaking, intuitively sim-
ilar uses of a verb that express—in a syntacti-
cally similar form—a similar event in which sim-
ilar participants (e.g. humans, artifacts, institu-
tions, other events) are involved. Two patterns

can be semantically so tightly related that they
could appear together under one sense in a tradi-
tional dictionary. The patterns are not senses but
syntactico-semantically characterized prototypes
(see the example verb submit in Table 1). Con-
cordances that match these prototypes well are
called norms in Hanks (forthcoming). Concor-
dances that match with a reservation (metaphor-
ical uses, argument mismatch, etc.) are called ex-
ploitations. The PDEV corpus annotation indi-
cates the norm-exploitation status for each con-
cordance.

Compared to other semantic concordances, the
granularity of PDEV is high and thus discourag-
ing in terms of expected IAA. However, select-
ing among patterns does not really mean disam-
biguating a concordance but rather determining to
which pattern it is most similar—a task easier for
humans than WSD is. This principle seems par-
ticularly promising for verbs as words expressing
events, which resist the traditional word sense dis-
ambiguation the most.

A novel approach to semantic tagging
We present the semantic pattern recognition as

a novel approach to semantic tagging, which is
different from the traditional word-sense assign-
ment tasks. We adopt the central idea of CPA that
words do not have fixed senses but that regular
patterns can be identified in the corpus that ac-
tivate different conversational implicatures from
the meaning potential of the given verb. Our
method draws on a hard-wired, fine-grained in-
ventory of semantic categories manually extracted
from corpus data. This inventory represents the
maximum semantic granularity that humans are
able to recognize in normal and frequent uses of a
verb in a balanced corpus. We thoroughly analyze
the interannotator agreement to find out which of
the highly semantic categories are useful in the
sense of information gain. Our goal is a dynamic
optimization of semantic granularity with respect
to given data and target application.

Like Passonneau et al. (2010), we are con-
vinced that IAA is specific to each respective
word and reflects its inherent semantic properties
as well as the specificity of contexts the given
word occurs in, even within the same balanced
corpus. We accept as a matter of fact that inter-
annotator confusion is inevitable in semantic tag-
ging. However, the amount of uncertainty of the
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No. Pattern / Implicature

1

[[Human 1 | Institution 1] ˆ [Human 1 | Institution 1 = Competitor]] submit [[Plan | Document
| Speech Act | Proposition | {complaint | demand | request | claim | application | proposal
| report | resignation | information | plea | petition | memorandum | budget | amendment |
programme | . . .}] ˆ [Artifact | Artwork | Service | Activity | {design | tender | bid | entry
| dance | . . .}]] (({to} Human 2 | Institution 2 = authority)ˆ({to} Human 2 | Institution 2 =
referee)) ({for} {approval | discussion | arbitration | inspection | designation | assessment |
funding | taxation | . . .})
[[Human 1 | Institution 1]] presents [[Plan | Document]] to [[Human 2 | Institution 2]] for {approval
| discussion | arbitration | inspection | designation | assessment | taxation | . . .}

2 [Human | Institution] submit [THAT-CL|QUOTE]
[[Human | Institution]] respectfully expresses {that [CLAUSE]} and invites listeners or readers to
accept that {that [CLAUSE]} is true}

4 [Human 1 | Institution 1] submit (Self) ({to} Human 2 | Institution 2)
[[Human 1 | Institution 1]] acknowledges the superior force of [[Human 2 | Institution 2]] and puts
[[Self]] in the power of [[Human 2 | Institution 2]]

5 [Human 1] submit (Self) [[{to} Eventuality = Unpleasant] ˆ [{to} Rule]]
[[Human 1]] accepts [[Rule |Eventuality = Unpleasant]] without complaining

6
[passive]
[Human| Institution] submit [Anything] [{to} Eventuality]
[[Human 1|Institution 1]] exposes [[Anything]] to [[Eventuality]]

Table 1: Example of patterns defined for the verb submit.

“right” tag differs a lot, and should be quantified.
For that purpose we developed the reliable infor-
mation gain measure presented in Section 3.2.

CPA Verb Validation Sample

The original PDEV had never been tested with
respect to IAA. Each entry had been based on
concordances annotated solely by the author of
that particular entry. The annotation instructions
had been transmitted only orally. The data had
been evolving along with the method, which im-
plied inconsistencies. We put down an annotation
manual (a momentary snapshot of the theory) and
trained three annotators accordingly. For practical
annotation we use the infrastructure developed at
Masaryk University in Brno (Horák et al., 2008),
which was also used for the original PDEV de-
velopment. After initial IAA experiments with
the original PDEV, we decided to select 30 verb
entries from PDEV along with the annotated con-
cordances. We made a new semantic concordance
sample (Cinková et al., 2012) for the validation of
the annotation scheme. We refer to this new col-
lection2 as VPS-30-En (Verb Pattern Sample, 30
English verbs).

We slightly revised some entries and updated
the reference samples (usually 250 concordances

2This new lexical resource, including the complete docu-
mentation, is publicly available at http://ufal.mff.cuni.cz/spr.

per verb). The annotators were given the en-
tries as well as the reference sample annotated
by the lexicographer and a test sample of 50 con-
cordances for annotation. We measured IAA, us-
ing Fleiss’s kappa,3 and analyzed the interannota-
tor confusion manually. IAA varied from verb to
verb, mostly reaching safely above 0.6. When the
IAA was low and the type of confusion indicated a
problem in the entry, the entry was revised. Then
the lexicographer revised the original reference
sample along with the first 50-concordance sam-
ple. The annotators got back the revised entry, the
newly revised reference sample and an entirely
new 50-concordance annotation batch. The fi-
nal multiple 50-concordance sample went through
one more additional procedure, the adjudication:
first, the lexicographer compared the three anno-
tations and eliminated evident errors. Then the
lexicographer selected one value for each concor-
dance to remain in the resulting one-value-per-
concordance gold standard data and recorded it
into the gold standard set. The adjudication pro-

3Fleiss’s kappa (Fleiss, 1971) is a generalization of
Scott’s π statistic (Scott, 1955). In contrast to Cohen’s kappa
(Cohen, 1960), Fleiss’s kappa evaluates agreement between
multiple raters. However, Fleiss’s kappa is not a generaliza-
tion of Cohen’s kappa, which is a different, yet related, sta-
tistical measure. Sometimes, the terminology about kappas
is confusing in the literature. For a detailed explanation refer
e.g. to (Artstein and Poesio, 2008).
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tocol has been kept for further experiments. All
values except the marked errors are regarded as
equally acceptable for this type of experiments.
In the end, we get for each verb:

• an entry, which is an inventory of semantic
categories (patterns)

• 300+ manually annotated concordances (sin-
gle values)

• out of which 50 are manually annotated and
adjudicated concordances (multiple values
without evident errors).

3 Tagging confusion analysis

3.1 Formal model of tagging confusion

To formally describe the semantic tagging task,
we assume a target word and a (randomly se-
lected) corpus sample of its occurrences. The
tagged sample is S = {s1, . . . , sr}, where each
instance si is an occurrence of the target word
with its context, and r is the sample size.

For multiple annotation we need a set of m an-
notators A = {A1, . . . , Am} who choose from
a given set of semantic categories represented
by a set of n semantic tags T = {t1, . . . , tn}.
Generally, if we admitted assigning more tags to
one word occurrence, annotators could assign any
subset of T to an instance. In our experiments,
however, annotators were allowed to assign just
one tag to each tagged instance. Therefore each
annotator is described as a function that assigns a
single member set to each instance Ai(s) = {t},
where s ∈ S, t ∈ T . When a pair of annotators
tag an instance s, they produce a set of one or two
different tags {t, t′} = Ai(s) ∪Aj(s).

Detailed information about interannotator
(dis)agreement on a given sample S is rep-
resented by a set of

(
m
2

)
symmetric matrices

CAkAl
ij = |{s ∈ S | Ak(s) ∪ Al(s) = {ti, tj}}|,

for 1 ≤ k < l ≤ m, and i, j ∈ {1, . . . , n}.
Note that each of those matrices can be easily
computed as CAkAl = C + CT − InC, where
C is a conventional confusion matrix representing
the agreement between annotators Ak and Al,
and In is a unit matrix.

Definition: Aggregated Confusion Matrix (ACM)

C? =
∑

1≤k<l≤m
CAkAl .

Properties: ACM is symmetric and for any i 6= j
the number C?ij says how many times a pair of
annotators disagreed on two tags ti and tj , while
C?ii is the frequency of agreements on ti; the sum
in the i-th row

∑
j C

?
ij is the total frequency of

assigned sets {t, t′} that contain ti.
An example of ACM is given in Table 2. The

corresponding confusion matrices are shown in
Table 3.

1 1.a 2 4 5
1 85 8 2 0 0

1.a 8 1 2 0 0
2 2 2 34 0 0
4 0 0 0 4 8
5 0 0 0 8 6

Table 2: Aggregated Confusion Matrix.

Our approach to exact tagging confusion analy-
sis is based on probability and information theory.
Assigning semantic tags by annotators is viewed
as a random process. We define (categorical) ran-
dom variable T1 as the outcome of one annota-
tor; its values are single member sets {t}, and we
have mr observations to compute their probabil-
ities. The probability that an annotator will use
ti is denoted by p1(ti) = Pr(T1 = {ti}) and is
practically computed as the relative frequency of
ti among all mr assigned tags. Formally,

p1(ti) =
1

mr

m∑
k=1

r∑
j=1

|Ak(sj) ∩ {ti}|.

The outcome of two annotators (they both tag
the same instance) is described by random vari-
able T2; its values are single or double member
sets {t, t′}, and we have

(
m
2

)
r observations to

compute their probabilities. In contrast to p1, the
probability that ti will be used by a pair of anno-
tators is denoted by p2(ti) = Pr(T2 ⊇ {ti}), and
is computed as the relative frequency of assigned
sets {t, t′} containing ti among all

(
m
2

)
r observa-

tions:

p2(ti) =
1(
m
2

)
r

∑
k

C?ik.

We also need the conditional probability that an
annotator will use ti given that another annotator
has used tj . For convenience, we use the nota-
tion p2(ti | tj) = Pr(T2 ⊇ {ti} | T2 ⊇ {tj}).
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A1 vs. A2 A1 vs. A3 A2 vs. A3

1 1.a 2 4 5 1 1.a 2 4 5 1 1.a 2 4 5
1 29 1 1 0 0 1 29 2 0 0 0 1 27 2 0 0 0

1.a 0 1 0 0 0 1.a 1 0 0 0 0 1.a 2 0 1 0 0
2 0 1 11 0 0 2 0 0 12 0 0 2 1 0 11 0 0
4 0 0 0 2 0 4 0 0 0 1 1 4 0 0 0 1 4
5 0 0 0 3 1 5 0 0 0 0 4 5 0 0 0 0 1

Table 3: Example of all confusion matrices for the target word submit and three annotators.

Obviously, it can be computed as

p2(ti | tj) =
Pr(T2 = {ti, tj})
Pr(T2 ⊇ {tj})

=
C?ij(

m
2

)
r · p2(tj)

=
C?ij∑
k C

?
jk

.

Definition: Confusion Probability Matrix (CPM)

Cpji = p2(ti | tj) =
C?ij∑
k C

?
jk

.

Properties: The sum in any row is 1. The j-th
row of CPM contains probabilities of assigning ti
given that another annotator has chosen tj for the
same instance. Thus, the j-th row of CPM de-
scribes expected tagging confusion related to the
tag tj .

An example is given in Table 3 (all confusion
matrices for three annotators), in Table 2 (the
corresponding ACM), and in Table 4 (the corre-
sponding CPM).

1 1.a 2 4 5
1 0.895 0.084 0.021 0.000 0.000

1.a 0.727 0.091 0.182 0.000 0.000
2 0.053 0.053 0.895 0.000 0.000
4 0.000 0.000 0.000 0.333 0.667
5 0.000 0.000 0.000 0.571 0.429

Table 4: Example of Confusion Probability Matrix.

3.2 Semantic granularity optimization
Now, having a detailed analysis of expected tag-
ging confusion described in CPM, we are able to
compare usefulness of different semantic tags us-
ing a measure of the information content associ-
ated with them (in the information theory sense).
Traditionally, the amount of self-information con-
tained in a tag (as a probabilistic event) depends

only on the probability of that tag, and would be
defined as I(tj) = − log p1(tj). However, intu-
itively one can say that a good measure of use-
fulness of a particular tag should also take into
consideration the expected tagging confusion re-
lated to the tag. Therefore, to exactly measure
usefulness of the tag tj we propose to compare
and measure similarity of the distribution p1(ti)
and the distribution p2(ti | tj), i = 1, . . . , n.
How much information do we gain when an an-
notator assigns the tag tj to an instance? When
the tag tj has once been assigned to an instance
by an annotator, one would naturally expect that
another annotator will probably tend to assign the
same tag tj to the same instance. Formally, things
make good sense if p2(tj | tj) > p1(tj) and if
p2(ti | tj) < p1(ti) for any i different from j.
If p2(tj | tj) = 100 %, then there is full con-
sensus about assigning tj among annotators; then
and only then the measure of usefulness of the tag
tj should be maximal and should have the value
of − log p1(tj). Otherwise, the value of useful-
ness should be smaller. This is our motivation to
define a quantity of reliable information gain ob-
tained from semantic tags as follows:

Definition: Reliable Gain (RG) from the tag tj is

RG(tj) =
∑
k

−(−1)δkjp2(tk|tj) log
p2(tk|tj)
p1(tk)

.

Properties: RG is similar to the well known
Kullback-Leibler divergence (or information
gain). If p2(ti | tj) = p1(ti) for all i = 1, . . . , n,
then RG(tj) = 0. If p2(tj | tj) = 100 %, then
and only then RG(tj) = − log p1(tj), which
is the maximum. If p2(ti | tj) < p1(ti) for
all i different from j, the greater difference in
probabilities, the bigger (and positive) RG(tj).
And vice versa, the inequality p2(ti | tj) > p1(ti)
for all i different from j implies a negative value
of RG(tj).
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Definition: Average Reliable Gain (ARG) from
the tagset {t1, . . . , tn} is computed as an expected
value of RG(tj):

ARG =
∑
j

p1(tj)RG(tj)

Properties: ARG has its maximum value if the
CPM is a unit matrix, which is the case of the
absolute agreement among all annotators. Then
ARG has the value of the entropy of the p1 distri-
bution: ARGmax = H(p1(t1), . . . , p1(tn)).

Merging tags with poor RG
The main motivation for developing the ARG

value was the optimization of the tagset granular-
ity. We use a semi-greedy algorithm that searches
for an “optimal” tagset. The optimization process
starts with the fine-grained list of CPA semantic
categories and then the algorithm merges some
tags in order to maximize the ARG value. An ex-
ample is given in Table 5. Tables 6 and 7 show
the ACM and the CPM after merging. The ex-
amples relate to the verb submit already shown in
Tables 1, 2, 3 and 4.

Original tagset Optimal merge
Tag f RG Tag f RG

1 90 +0.300
1 + 1.a 96 +0.425

1.a 6 −0.001

2 36 +0.447 2 36 +0.473

4 8 −0.071
4 + 5 18 +0.367

5 10 −0.054

Table 5: Frequency and Reliable Gain of tags.

1 2 4
1 94 4 0
2 4 34 0
4 0 0 18

Table 6: Aggregated Confusion Matrix after merging.

1 2 4
1 0.959 0.041 0.000
2 0.105 0.895 0.000
4 0.000 0.000 1.000

Table 7: Confusion Probability Matrix after merging.

3.3 Classifier evaluation with respect to
expected tagging confusion

An automatic classifier is considered to be a func-
tion c that—the same way as annotators— assigns
tags to instances s ∈ S, so that c(s) = {t},
t ∈ T . The traditional way to evaluate the ac-
curacy of an automatic classifier means to com-
pare its output with the correct semantic tags on
a Gold Standard (GS) dataset. Within our formal
framework, we can imagine that we have a “gold”
annotatorAg, so that the GS dataset is represented
byAg(s1), . . . , Ag(sr). Then the classic accuracy
score can be computed as 1

r

∑r
i=1 |Ag(si)∩c(si)|.

However, that approach does not take into con-
sideration the fact that some semantic tags are
quite confusing even for human annotators. In our
opinion, automatic classifier should not be penal-
ized for mistakes that would be made even by hu-
mans. So we propose a more complex evaluation
score using the knowledge of the expected tagging
confusion stored in CPM.

Definition: Classifier evaluation Score with re-
spect to tagging confusion is defined as the pro-
portion Score(c) = S(c)/Smax, where

S(c) =
α

r

r∑
i=1

|Ag(si) ∩ c(si)| +

+
1− α
r

r∑
i=1

p2(c(si) | Ag(si))

Smax = α+
1− α
r

r∑
i=1

p2(Ag(si) | Ag(si)).

α = 1 α = 0.5 α = 0

Verb Score Score Score
halt 1 0.84 2 0.90 4 0.81
submit 2 0.83 1 0.90 1 0.84
ally 3 0.82 3 0.89 5 0.76
cry 4 0.79 4 0.88 2 0.82
arrive 5 0.74 5 0.85 3 0.81
plough 6 0.70 6 0.81 6 0.72
deny 7 0.62 7 0.74 7 0.66
cool 8 0.58 8 0.69 8 0.53
yield 9 0.55 9 0.67 9 0.52

Table 8: Evaluation with different α values.

Table 8 gives an illustration of the fact that us-
ing different α values one can get different re-
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sults when comparing tagging accuracy for dif-
ferent words (a classifier based on bag-of-words
approach was used). The same holds true for com-
parison of different classifiers.

3.4 Related work
In their extensive survey article Artstein and Poe-
sio (2008) state that word sense tagging is one
of the hardest annotation tasks. They assume
that making distinctions between semantic cate-
gories must rely on a dictionary. The problem
is that annotators often cannot consistently make
the fine-grained distinctions proposed by trained
lexicographers, which is particularly serious for
verbs, because verbs generally tend to be polyse-
mous rather than homonymous.

A few approaches have been suggested in
the literature that address the problem of the
fine-grained semantic distinctions by (automatic)
measuring sense distinguishability. Diab (2004)
computes sense perplexity using the entropy func-
tion as a characteristic of training data. She also
compares the sense distributions to obtain sense
distributional correlation, which can serve as a
“very good direct indicator of performance ra-
tio”, especially together with sense context con-
fusability (another indicator observed in the train-
ing data). Resnik and Yarowsky (1999) intro-
duced the communicative/semantic distance be-
tween the predicted sense and the “correct” sense.
Then they use it for evaluation metric that pro-
vides partial credit for incorrectly classified in-
stances. Cohn (2003) introduces the concept of
(non-uniform) misclassification costs. He makes
use of the communicative/semantic distance and
proposes a metric for evaluating word sense dis-
ambiguation performance using the Receiver Op-
erating Characteristics curve that takes the mis-
classification costs into account. Bruce and
Wiebe (1998) analyze the agreement among hu-
man judges for the purpose of formulating a re-
fined and more reliable set of sense tags. Their
method is based on statistical analysis of inter-
annotator confusion matrices. An extended study
is given in (Bruce and Wiebe, 1999).

4 Conclusion

The usefulness of a semantic resource depends on
two aspects:

• reliability of the annotation

• information gain from the annotation.

In practice, each semantic resource emphasizes
one aspect: OntoNotes, e.g., guarantees reliabil-
ity, whereas the WordNet-annotated corpora seek
to convey as much semantic nuance as possible.
To the best of our knowledge, there has been no
exact measure for the optimization, and the use-
fulness of a given resource can only be assessed
when it is finished and used in applications. We
propose the reliable information gain, a measure
based on information theory and on the analysis of
interannotator confusion matrices for each word
entry, that can be continually applied during the
creation of a semantic resource, and that provides
automatic feedback about the granularity of the
used tagset. Moreover, the computed information
about the amount of expected tagging confusion
is also used in evaluation of automatic classifiers.
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Abstract

Typically, automatic Question Answering

(QA) approaches use the question in its en-

tirety in the search for potential answers.

We argue that decomposing complex fac-

toid questions into separate facts about their

answers is beneficial to QA, since an an-

swer candidate with support coming from

multiple independent facts is more likely

to be the correct one. We broadly cate-

gorize decomposable questions as parallel

or nested, and we present a novel ques-

tion decomposition framework for enhanc-

ing the ability of single-shot QA systems

to answer complex factoid questions. Es-

sential to the framework are components

for decomposition recognition, question re-

writing, and candidate answer synthesis

and re-ranking. We discuss the inter-

play among these, with particular empha-

sis on decomposition recognition, a pro-

cess which, we argue, can be sufficiently in-

formed by lexico-syntactic features alone.

We validate our decomposition approach by

implementing the framework on top of a

state-of-the-art QA system, showing a sta-

tistically significant improvement over its

accuracy.

1 Introduction

Question Answering (QA) systems for factoid

questions typically adopt a “single-shot” ap-

proach for the task. Single-shot QA implicitly as-

sumes that the question contains a single nugget

of information (as in Example (1)).

(1) In which city are the headquarters of GE

located?

To answer the question, these approaches attempt

to locate the factual information (the location of

GE’s headquarters) in their underlying resources.

Largely a legacy of the nature of TREC questions

(Voorhees, 2002), this tactic works in most cases

where the assumption holds that a question is fo-

cused upon a single fact, and support for it may

be found in a single resource.

Our work deals with more complex factoid

questions, specifically ones containing multiple

facts related to the correct answer. Because such

facts may be independent of each other, they may

well reside in different resources—and thus out-

side of the scope of a single-shot search query.

(2) Which company has origins dating back to the

1870s and became the first U.S. company to

have 1 million stockholders?

Example (2) shows a question with two facts

about its answer (a company): its origins date

back to the 1870s, and it became the first in U.S.

to have 1 million stockholders. We turn to ques-

tion decomposition to leverage the separate facts

within the question, using them to garner support

for the correct answer from independent sources

of evidence. Our hypothesis is that the more in-

dependent facts support an answer candidate, the

more likely it is to be the correct answer.

We focus here on decomposition applied to im-

proving the quality of QA over a broad set of

factoid questions. In contrast to most work on

decomposition to date, which tends to appeal to

discourse and/or semantic properties of the ques-

tion (Section 2), we exploit the notion of a fact to

view decomposition as circumscribed largely by

the syntactic shape of questions. Facts are entity-

relationship expressions, where the relation may

be an N-ary predicate. Most informative, and thus

useful, facts are those that contain at least one

named entity (including temporal or locative ex-

pressions).
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The particular relationship between indepen-

dent facts in any given question leads us to catego-

rize “decomposable” questions broadly into two

types: parallel and nested. Examples (2) above

and (3) below are parallel decomposable: sub-

questions can be evaluated independently of one

another. In contrast, nested questions require their

decompositions to be processed in sequence, with

the answer to an ‘inner’ sub-question plugged

into the ‘outer’. In Example (4), the inner sub-

question is marked in brackets; its answer, “cir-

rhosis”, then leads to an outer question “In the

treatment of cirrhosis, which drug reduces portal

venous blood inflow”, the answer to which is also

the answer to the original question.

(3) Which 2011 tax form do I fill if I need to do

itemized deductions and I have an IRA rollover

from 2010?

(4) In the treatment of [a condition that causes

bleeding esophageal varices], which drug

reduces portal venous blood inflow?

Questions like these are found in domains such as

medical, legal, etc., as they tend to arise in more

dynamic QA system setting. Independently of do-

main and type, however, they share a common

characteristic: if a search query is constructed

from all the facts collectively describing the an-

swer, it is likely to ‘flood’ the system with noise,

and confuse the identification of potential answer-

bearing passages. The notion of decomposition

thus goes hand in hand with that of recursively

applying a QA system to the individual facts (sub-

questions), followed by suitable re-composition

of the candidate answer lists for the sub-questions.

This paper presents a novel decomposition ap-

proach for such questions. We discuss the partic-

ular strategies for recognizing and typing decom-

posable questions, and the subsequent processing

of sub-questions, and their candidate answer lists,

in ways which can improve the performance of an

existing state-of-the-art QA system.

2 Related work

A variety of approaches to QA cite ‘decomposi-

tion’, in the context of addressing question com-

plexity. In most work to date, however, “com-

plex” refers to questions requiring non-factoid

answers: e.g. multiple sentences or summaries

of answers (Lacatusu et al., 2006), connected

paragraphs (Soricut and Brill, 2004), explana-

tions and/or justification of an answer (Katz et al.,

2005), lists (Hartrumpf, 2008) or lists of sets (Lin

and Liu, 2008), and so forth.

In the literature, we find descriptions of pro-

cesses like local decomposition and meronymy

decomposition (Hartrumpf, 2008), semantic de-

composition using knowledge templates (Katz et

al., 2005), question refocusing (Hartrumpf, 2008;

Katz et al., 2005), and textual entailment (Laca-

tusu et al., 2006) to connect, through semantics

and discourse, the original question with its nu-

merous decompositions. In general, such pro-

cesses are not limited to using only lexical mate-

rial explicitly present in the question: a constraint

we place upon our decomposition algorithms in

order to retain the ability to do open-domain QA.

Closer to our strategy are notions like the syn-

tactic decomposition of Katz et al. (2005), and the

temporal/spatial analysis of Saquete et al. (2004)

and Hartrumpf (2008). Still, our approach differs

in at least two significant ways. We offer a prin-

cipled solution to the problem of the final combi-

nation and ranking of candidate answers returned

from multiple decompositions, by means of train-

ing a model to weigh the effects of decomposition

recognition rules. We also note that spatial and

temporal decomposition are just special cases of

solving nested decomposable questions.

The closest similarity our fact-based decompo-

sition has with an established approach is with the

notion of asking additional questions in order to

derive constraints on candidate answers (Prager

et al., 2004). However, the additional questions

there are generated through knowledge of the do-

main, making that technique hard to apply in an

open domain setting. In contrast, we developed

a domain-independent approach to question de-

composition, in which we use the question con-

text alone in generating queriable constraints.

3 Fact-based Decomposition

Enhancing a single-shot QA system with a ca-

pability for incremental solving of decomposable

questions requires recognizing that a question is

decomposable, and engaging in a staged process-

ing of its sub-question parts. Whether parallel or

nested, the system needs to identify the multiple

facts, and configure itself as appropriate. Figure

1 shows our fact-based decomposition “meta”-

framework (“meta”, as it builds on top of an ex-

isting QA system). It comprises four main com-

ponents as illustrated in the figure.

852



Question

Ranked

Candidates

Ranked

Candidates

Final

Answer List

Ranked

Candidates

Figure 1: Fact-based decomposition framework

Decomposition Recognizers analyze the input

question and identify decomposable parts using a

set of predominantly lexico-syntactic cues (Sec-

tion 4). Question Rewriters re-write the sub-

questions found by the recognizer, retaining key

contextual information (Section 5.1). Underly-

ing QA System generates, for any factoid ques-

tion, a ranked list of answer candidates, each with

a confidence corresponding to the probability of

the answer being correct. Answer Synthesis and

Re-ranking is a placeholder for the particular pro-

cess which tries to combine ranked candidate an-

swers obtained to the original question with so-

lutions for the decomposed facts into a uniform

ranked answer list. In general, different combi-

nation functions may be appropriate for different

types of decomposable questions. Thus, for the

classes of parallel and nested questions, our de-

composition strategies (described in Sections 5.2

and 5.3) defer to an Answer Merger. Other combi-

nation functions may be required for e.g. selecting

from or aggregating over lists; cf. Hartrumpf’s op-

erational decomposition (2008), or Lin and Liu’s

multi-focus questions (2008); see also the special

questions solving techniques of (Prager et al., ).

We use a particular QA system (Ferrucci et

al., 2010) as base. However, any system can be

plugged into our meta-framework, as long as: it

can solve factoid questions by providing answers

with confidences reflecting correctness probabil-

ity; and it maintains context/topic information for

the question separately from its main content.

Parallel and nested processing are distinct: note

the two different pathways in the figure, multi-

ple parallel facts submitted to the base QA system

vs. inner-outer sub-question pairs, processed via a

feedback loop. The base system is invoked on the

full question, and on its decompositions.

4 Decomposition Recognizers

The primary goal in decomposing questions is to

identify facts involving the entity being asked for

(henceforth the focus), simpler than the full ques-

tion and solvable independently (Section 1). Most

question decomposition work (Section 2) tends to

defer to semantic, discourse, and other domain-

specific information; in contrast, we recognize de-

composable questions primarily on the basis of

their syntactic shape. This is important for our

claim that the decomposition framework outlined

in Section 3 is generally applicable to multiple

QA tasks and system configurations.

In our work, we use a dataset of factoid ques-

tion/answer pairs from Jeopardy!,1 a popular TV

quiz show in the US. The data is particularly chal-

lenging, not least for the broad domain it covers

and the complex language used. In addition to

making for an excellent test-bed for open-domain

QA, the data offers a wide choice of questions

which require decomposing.

4.1 Decomposition Patterns

Our analysis of complex decomposable questions

highlights numerous syntactic cues that are reli-

able indicators for decomposition, and it is pre-

dominantly such cues we exploit for driving the

recognition and typing of decomposable ques-

tions. A set of recognition patterns can be formu-

lated in terms of fine-grained lexico-syntactic in-

formation, expressed over the predicate-argument

structure (PAS) for the syntactic parse of the

question. We identify three major categories

of configurationally-based patterns: independent

subtrees, composable units and segments with

qualifiers. These are general, in the sense

that they capture relationships between configura-

tional properties of a question and its status with

respect to decomposability. The specific rules im-

plementing the patterns may, or may not, have to

be modified as, for instance, there may be a style

change, or a shift in the syntactic analysis frame-

work of the base QA system, to a different parser;

1
http://www.jeopardy.com.
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Independent Subtrees

(1.P) Parallel

clause Its original name meant “bitter water” and it was

made palatable to Europeans after the Spaniards

added sugar

Fact #1: Its original name meant “bitter water”

Fact #2: It was made palatable to Europeans after the

Spaniards added Sugar

complementary “American Prometheus” is a biography of this physi-

cist who died in 1967

Fact #1: this physicist who died in 1967

Fact #2: “American Prometheus” is a biography of

this physicist

(1.N) Nested

coincidental When “60 Minutes” premiered, this man was U.S.

President

Inner Fact: When “60 Minutes” premiered

Outer Fact: When this man was president

based-on A controversial 1979 war film was based on a 1902

work by this author

Inner Fact: A controversial 1979 war film

Outer Fact: film was based on a work by this author

named-for Article of clothing named for an old character who

dressed in loose trousers in commedia dell’arte

Inner Fact: an old character who dressed in loose

trousers in commedia dell’arte

Outer Fact: Article of clothing named for character

Composable Units

(2.P) Parallel

verb-args He launched his lecturing career in 1866 with a talk

later titled “Our fellow savages of the Sandwich Is-

lands”

Fact #1: He launched his lecturing career in 1866

focus-mod “The Mute” was the working title of this 1940 novel

by a female author

Fact #1: this 1940 novel by a female author

triple His rise began when he upset Robert M. La Follette,

Jr. in a 1946 Senate primary

Fact #1: he upset Robert M. La Follette, Jr.

(2.N) Nested

explicit-link To honor his work, this man’s daughter took the name

Maria Celeste when she became a nun in 1616

Inner Fact: To honor his work, [this] daughter took

the name Maria Celeste, when . . .

Outer Fact: this man’s daughter

descriptive-np The word for this congressional job comes from a fox-

hunting term for someone who keeps the hunting dogs

from straying

Inner Fact: a fox-hunting term for someone who

keeps the hunting dogs from straying

Outer Fact: The word for this congressional job

comes from term

Segments with Qualifiers

(3.P) Parallel

qualifier Winning in 1965 and 1966, he was the first man to win

the Masters golf tournament in 2 consecutive years

Fact #1: he was the first man to win the Masters golf

tournament in 2 consecutive years

Table 1: Decomposition Rule Sets

such implementations do not affect our analysis

of syntactically-cued decomposition recognition.

Table 1 shows example decompositions within

pattern categories; note that within a category,

typically there are rule sets for parallel and nested

decomposition types.2

Independent Subtrees A good source of in-

dependent sub-questions within a question is in

clauses likely to capture a unique piece of infor-

mation about the answer, distinct from the rest

of the question. Relative or subordinate clauses

(not in a superlative or ordinal context; see Seg-

ments with Qualifiers below) are examples of in-

dependent subtrees and are indicative of parallel

decomposition. PAS configurations that connect

such subtrees to the focus are generally good in-

dicators of a sub-question: cues to “break off” a

2In the data we use, questions are posed in a declarative

format, with stylized marking of question focus. This should

not detract from referring to them as ‘questions’.

subtree from the question as a decomposable fact.

For example, the subtree fragment circled is an in-

dependent fact (in brackets) identified within the

larger question “The name of [this character, first

introduced in 1894], comes from the Hindi for

‘bear’”. This category also includes rules using

conjunctions as decomposition points (at various

levels of the syntactic parse), as in Example (3)

earlier (Section 1).

Parallel decomposition of this type is captured

in two rule sets, clause and complementary, which

differ primarily in that ‘complementary’ rules at-

tempt to derive two separate sub-questions, while

the ‘clause’ rules attempt to locate independent
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sub-questions in the original question. Examples

in Table 1/Row (1.P) illustrate this distinction.

For nested decomposition, we have three rule

sets: coincidental, based-on and named-for.

These use lexical cues to detect specific seman-

tic relations within the question that could indi-

cate nestedness. For instance, the ‘coincidental’

rules identify sub-questions resolving a tempo-

ral link with the focus of the original question.

The ‘based-on’ and ‘named-for’ rules detect sub-

questions where the answer to the original ques-

tion is based on or named for the answer to the in-

ner sub-question (Table 1/row (1.N)). Note that in

different domains, different relations may corre-

late with nestedness, for instance, disease-causes-

symptom in a medical setting; cf. Example (4) in

Section 1. The general pattern would still apply,

even if we need different rule(s) to implement it.

Configurational information is used to deter-

mine whether the question exhibits parallel or

nested decomposition profile. Thus the syntac-

tic contour of Example (3) shows that two clauses

characterize the same entity (the focus): a clear

indicator that the sub-questions are parallel. Con-

versely, “A controversial 1979 war film was based

on a 1902 work by this author” exhibits a very

different set of configurational properties. There

are two underspecified entities (including the fo-

cus), both characterized as head-plus-modifiers

syntactic units; however, there is no ‘sharing’ of

the separate characterizations (facts) via a com-

mon head. This indicates nestedness: the inner

sub-question is the one around the underspecified,

but non-focus, element (“a controversial 1979

war film”); the outer is “[film] was based on a

1902 work by this author”.

Another cue for nested questions is a sub-tree

labeled by a temporal subordinate conjunction,

or a subordinate clause, away from the focus-

enclosing top level of the question and itself un-

derspecified. Such analysis will motivate the

question “When “60 Minutes” premiered, this

man was U.S. president” to be solved first for the

temporal expression, “When did “60 Minutes”

premiere?”, followed by “Who was U.S. Presi-

dent in 1968?”.

Composable Units An alternate strategy for

identifying sub-questions is to “compose” a fact

by combining elements from the question. In con-

trast to the previous category, the ‘Composable

Units’ rules combine separate parts of the PAS

into a fact. For instance, a sub-question can be

created by associating the focus head with its pre-

modifiers and postmodifiers. If the premodifiers

and postmodifiers are sufficiently specific, we ob-

tain reasonably independent sub-questions, with

parallel-decomposable behavior.

Three parallel decomposition rule sets are de-

fined in this category: verb-args, focus-mod and

triple (see Table 1/row (2.P)). The rules in ‘verb-

args’ “compose” a fact from the verb and its ar-

guments (subject, object, PP complements). The

‘focus-mod’ rules combine the head of the focus

NP with its modifiers to generate a sub-question.

Similar to ‘verb-args’ are ‘triple’ rules, which

create less constrained sub-questions (in that the

composition always links only two of the argu-

ments to the underlying predicate, e.g. subject-

verb-object or subject-verb-complement).

Here also, a particular configuration around the

focus may indicate a question requiring nested

processing. For nested, the Composable Units

category has two rule sets: explicit-link and

descriptive-np (Table 1/row (2.N)).

In contrast to questions where modifiers of the

focus can be cues for parallel decomposition (i.e.

the ’focus-mod’ rules above), the ‘explicit-link’

rules detect nested decomposition, signaled by the

focus itself being a modifier. For example, in

“To honor his work, this man’s daughter took the

name Maria Celeste when she became a nun in

1616”, the focus (“this man”) is a determiner to

an underspecified node (“daughter”). Traversing

the tree without descending to the level of the fo-

cus would “carve out” an inner sub-question itself

focused on that underspecified node (“daughter”):

see Table 1/row (2.N).

The ‘descriptive-np’ rule set finds ‘parenthetical’

descriptions of underspecified nouns in the pri-

mary question, as in e.g. “This arboreally named

area was made famous by [a prince in the re-

gion noted for impaling enemies on stakes]”:

the nested-decomposable nature of this question

is captured in the descriptive phrase (in square

brackets) functioning as an inner sub-question.
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Segments with Qualifiers This category of

rules covers cases where the modifier of the fo-

cus is a relative qualifier, such as “the first”,

“only”, “the westernmost”. In such cases, in-

formation from another clause is usually re-

quired to “complete” the relative qualifier: con-

sider e.g. the incomplete “the third man” vs.

the fact “the third man . . . to climb Mt. Ever-

est”) To deal with these cases, rules in this cat-

egory combine the characteristics of Composable

Units with those of Independent Subtrees rules.

We “compose” the relative qualifier, the focus

(along with its modifiers) and the attached sup-

porting clause “subtree” to generate this type of

rules. As illustrated in row (3.P) of Table 1, for

parallel decomposition our rule set covers sub-

questions expressed as superlatives. We do not

have any rules of this type for the nested case.

4.2 Decomposition Filters

All three pattern categories above rely only on a

syntactic analysis of the question; this is delivered

by the English Slot Grammar (ESG) parser (Mc-

Cord, 1989). When rules fire, they also identify

question segments proposed as sub-questions.

Not surprisingly, the rules over-generate; to

mitigate against that, we apply several heuristic

filters to the proposed sub-questions. The filters

discard sub-questions that do not contain either a

named entity, a quoted string, or a time or date ex-

pression (these are detected by the ESG parser).

Additionally, we discard sub-questions that al-

most completely overlap the entire question or a

sub-question from a prior rule. A partial prior-

ity order is imposed on rule application, based on

intuitions of how informative the facts generated

by a rule are; this order is reflected on a per-type

basis in Table 1: e.g. within type (2.P) we prefer

verb-args to triple since the latter tends to produce

less constrained facts than the former.

5 Using Decomposition

In essence, decomposition recognition informs

two processes. According to the question type,

parallel or nested, the appropriate pathway in the

framework (Figure 1) needs to get instantiated;

before sub-questions are submitted to the base QA

system, they may need augmentation to facilitate

the recursive system invocation. The answer sets

obtained from sub-questions processing need then

to be analyzed and rationalized, to determine the

final answer to the original question.

5.1 Question Re-Writing

For parallel decomposition, the goal is to solve the

original question Q by solving sub-questions in-

dependently and combining results appropriately.

For example, consider the Jeopardy! question

(5) HISTORIC PEOPLE: The life story of this man

who died in 1801 was chronicled in an A&E

Biography DVD titled “Triumph and treason”

We get two decompositions:3

Q1: This man who died in 1801

Q2: The life story of this man was chronicled in an

A&E Biography DVD titled “Triumph and

treason”

Submitting sub-questions—unmodified—to the

base QA system raises at least two problems.

Sub-questions are often much shorter than the

original question, and in many cases no longer

have a unique answer. Moreover, some of the

information from the original question that was

dropped in a sub-question may be relevant con-

textual cues that the QA system needs to come up

with the correct answer. Q1 above illustrates these

problems: it does not have a unique answer, and

suffers from a recall problem (the correct answer

is not in the candidate answer list of the base sys-

tem when it considers this sub-question alone).

Our solution is to insert contextual informa-

tion into the sub-questions. In a two-step pro-

cess for a sub-question Qi, we obtain the set of

all named entities and nouns (ignoring stopwords)

in the original question text outside of Qi, and

we insert these keywords into the original ques-

tion category. In Jeopardy! questions, the cate-

gory field is the context/topic information which

the underlying QA system needs in order to use

the decomposition framework, as stated in Sec-

tion 3. In general, a QA system may derive such

information in a variety of ways, e.g. by exploit-

ing the problem description in a technical assis-

tance QA setting, or a patient’s medical history,

3Jeopardy! questions also contain category information,

which further contextualizes the search for the answer.
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in a medical QA setting. What is important here

is that the base system treat such information dif-

ferently from the question itself. Rewriting takes

advantage of this differential weighting to ensure

that the larger context of the original question is

still taken into account when evaluating a sub-

question, albeit with less weight.

The re-written Q1/Q2 for Example (5) are:

(5-1) HISTORIC PEOPLE (A&E BIOGRAPHY DVD

“TRIUMPH AND TREASON”): This man who

died in 1801

(5-2) HISTORIC PEOPLE (1801): The life story of

this man was chronicled in an A&E Biography

DVD titled “Triumph and treason”

The keywords are inserted in parentheses, to en-

sure a clear separation between the original cat-

egory terms and the context terms added. Other

systems may need a different re-writing tactic.

The above re-writing technique is used for both

parallel and nested decomposable questions. For

the nested case, there is an additional re-writing

step that needs to be done – after solving the in-

ner question, we need to substitute its answer into

the outer when solving for it. Thus the first ex-

ample in Table 1/row(1.N) would have its inner

focus “When ‘60 Minutes’ premiered” replaced

with “In 1968” creating the outer question ”In

1968, this man was U.S. President” whose solu-

tion is the answer to the original question.

5.2 Answer Re-Ranking: Parallel

The base QA system will process the re-written

category/sub-question pairs, and will produce a

set of ranked candidate lists with confidences.

These need to be combined into a final answer list

for the original question, accounting for informa-

tion across all sub-question candidate lists.

One way to produce a final score for each can-

didate answer is simply to take the product of

the scores returned by the QA system for each

of the sub-questions. This assumes that the sub-

questions are typically independent and that the

QA system produces a confidence which corre-

sponds to the probability of the answer being cor-

rect. However, even if the sub-questions are inde-

pendent, question re-writing breaks this assump-

tion as it brings information from the remain-

der of the question into the sub-question context.

Also, the sub-questions are generated by decom-

position rules that have varying precision and re-

call, and thus should not be weighted equally.

Feature Name Description

Orig. Top Answer

Binary feature signaling whether

candidate was top answer to non-

decomposed question

Orig. Confidence
Confidence for candidate answer to

non-decomposed question

# Facts Matched
Number of sub-questions which

have candidate answer in top 10

Rule-verb-args

Rule-clause

Rule-qualifier

Rule-focus-mod

Rule-complementary

Rule-triple

Features corresponding to the rules

sets used in parallel decomposition –

each feature takes a numeric value,

which is the confidence of the QA

system on a fact identified by the cor-

responding rule set

Table 2: Features in Parallel Re-ranking Model

Finally, if the sub-questions are not of a good

quality (e.g. due to a bad parse), we need a fall-

back to the original question, which implies that

the confidence for the candidate answer for the

entire question should also be considered when

making a final decision. Consequently, we use a

machine-learning model to combine information

across sub-question answer confidences, with fea-

tures capturing the above information (Table 2).

In case a candidate answer is not in the answer

list of the full question or any of the decomposed

sub-questions, the corresponding feature value is

set to missing. If a rule generates multiple sub-

questions, its corresponding feature value for the

candidate answer is set to the sum of the confi-

dences obtained for that answer across all sub-

questions. The model is trained using Weka’s

(Witten and Frank, 2000) logistic regression al-

gorithm with instance weighting.

5.3 Answer Re-Ranking: Nested

Nested questions decompose into inner/outer

question pairs. The task is to solve the inner ques-

tion first, substitute the answer obtained, based on

its confidence, into the outer, and solve that for the

final answer. This is contingent upon selecting an-

swers to the inner question which might profitably

be plugged into the outer; substituting incorrect

answers will only lead to noisy final answers, with

negative impact to overall accuracy.

We rely on the ability of the underlying QA sys-

tem to produce meaningful confidences for its an-

swers, and only consider the top answer to the in-

ner question for substitution into the outer—if its

confidence exceeds some threshold.

Finally, the answers to the outer question need

to be related to the full question answer list, to
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produce the final ranked answers. For answer

re-ranking, we use the following heuristic selec-

tion strategy: we compute the aggregate confi-

dence of the answer obtained through decompo-

sition as the product of the inner-question answer

confidence and the outer-question answer confi-

dence, and compare this value with that of the top

answer confidence to the entire question select-

ing the higher confidence one as our final answer.

Note that this re-ranking is different from the one

used in parallel decomposition where we combine

results from multiple sub-questions into a single

confidence.

6 Evaluation

6.1 Evaluation Data

As we discuss question decomposition in the con-

text of Jeopardy! data (Section 4), our test set con-

tains only Final Jeopardy! (FJ) questions. They

are often long and complex, with multiple facts

or constraints that need to be satisfied. Also, they

are typically much harder to answer than regular

Jeopardy! questions both for humans and for our

base QA system. The test set comprises close to

3000 FJ questions, broken into 1138 for training,

517 for development and 1269 questions for test-

ing (as blind data).

6.2 Experiments

The decomposition rules (Section 4) and re-

ranking parameters (Sections 5.2, 5.3) were de-

fined and tuned on the development set. The final

re-ranking model was trained over the training set,

using the features described in Section 5.2, and lo-

gistic regression with instance re-weighting. The

results of applying the decomposition rules fol-

lowed by the re-ranking model to the 1269 test

questions are shown in Table 3. The baseline

is the performance of the underlying QA system

used in our meta-framework without any decom-

position components, applied to the same test set.

We evaluated separately the impact of our ques-

tion re-writing strategy (Section 5.1) that main-

tains contextual information from the original

question into the sub-questions. For this purpose,

we altered our algorithm to issue the sub-question

text as-is, using the original category, and re-

trained and evaluated the resulting model again on

the test set. The results are also shown in Table 3.

In the table, PB refers to Parallel Baseline, and

QA End-to-End Decomposable Q

System Accuracy Accuracy

PB 635/1269 (50.05%) 339/598 (56.68%)

PD−QR 634/1269 (49.96%) 338/598 (56.52%)

PD+QR 643/1269 (50.66%) 347/598 (58.02%)

NB 635/1269 (50.05%) 129/255 (50.58%)

ND+QR 640/1269 (50.43%) 134/255 (52.54%)

Table 3: Evaluating Decomposition

NB to Nested Baseline; both are results from run-

ning the underlying QA system without any de-

composition capabilities. PD and ND refer to Par-

allel and Nested Decomposition systems respec-

tively and QR refers to question re-writing. Sepa-

rate experiments determined end-to-end accuracy

for the different system configurations, with re-

spect to the entire test set, and accuracy over the

decomposable questions subsets of the test set.

We do not offer separate analysis of decompo-

sition recognition. Manual creation of decompo-

sition standard is highly non-trivial, largely due

to the numerous alternative ways to decompose

a question, and synthesize unique facts from the

segments. Indeed, this is precisely the motivation

for weighting the decomposition rules in a trained

re-ranking model (Section 5.2). Given this, we

are interested only in measuring the impact of de-

composition on end-to-end QA performance.

6.3 Discussion of Results

The results in Table 3 show that the parallel de-

composition rules were able to decompose a large

fraction of the test set (598 out of 1269 ques-

tions: 47%). Interestingly, the performance of

the baseline QA system on the decomposable set

was 56.6%, which is 6% higher than the overall

performance over the entire test set. One reason

for this result would be that parallel decompos-

able questions typically contain a lot more infor-

mation (more than one fact or constraint that the

answer must satisfy) about the same answer, and

the system in some cases is able to exploit this

redundancy—such as when one fact is strongly

associated with the correct answer and there is ev-

idence supporting this in the sources.

A different, important result is that using the

decomposition algorithm without question re-

writing did not show impact over the baseline.

This highlights the importance of contextual in-

formation for QA. On the other hand, when us-

ing re-writing to maintain context (Section 5.1),
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our parallel decomposition algorithm was able to

achieve a gain of 1.4% on the parallel decompos-

able question set, which translated to an end-to-

end gain of 0.6%.

Separately, the table shows that roughly a

fifth (255 out of 1269 questions) of the entire

test set were recognized as nested decomposable.

Again, interestingly, the performance of the base-

line QA system on the nested decomposable set

was roughly the same as the overall performance

(and much lower than the parallel decomposable

cases). The likely explanation here is that nested

questions require solving for an inner fact first,

and it is the answer to this, which often provides

the necessary missing information required to find

the correct answer: this makes nested questions

much harder to solve than parallel decomposable

ones with their multiple independent facts. Our

nested decomposition algorithm using the heuris-

tic re-ranking approach (Section 5.3) was able to

achieve a gain of 2% on the nested decompos-

able question set, which translated to an end-to-

end gain of 0.4%.

The aggregate impact of parallel and nested de-

composition was a 1.5% gain in accuracy on the

decomposable set, and a 1% gain on end-to-end

system accuracy (in our case the questions that are

classified as parallel or nested form disjoint sets).

To put these results in perspective, we empha-

size that the baseline QA system represents state-

of-the-art in solving Jeopardy! questions. The

FJ questions, which exclusively comprise our test

data, are known to be harder than regular Jeop-

ardy!: qualified Jeopardy! players’ accuracy on

this kind of questions is 48%,4 and the underlying

QA system has an accuracy close to 51% on pre-

viously unseen FJ questions. A gain of 1% end-

to-end on such questions, therefore, represents a

strong improvement. Also, using the statistical

McNemar’s test (McNemar, 1947), we found the

net end-to-end impact to be statistically signifi-

cant at a 99% confidence interval.

Finally, we note that our error analysis of the

test questions shows a wide variety of reasons for

their failures beyond question decomposition. To

further improve the system on this test set would

require advances beyond deciding whether to take

a single-shot or decomposable approach to ques-

tions, which is beyond the scope of this paper.

4Calculated over historical games data, from J-archive

(http://www.j-archive.com).

7 Conclusion

In this paper, we presented a general-purpose de-

composition framework for answering complex

factoid questions, which consists of three compo-

nents: 1) a decomposition recognizer, which iden-

tifies the subparts of a decomposable question, 2)

a question re-writer, which composes new sub-

questions from the identified subparts, taking into

account context from the original question, and

3) an answer synthesis and re-ranking component,

which synthesizes and ranks final answers based

on candidate answers to the sub-questions. Addi-

tionally, this framework leverages an underlying

factoid QA system for producing answers to the

sub-questions. Any QA system that can associate

confidence scores with its answers and can make

distinctions between the question and the context

in which the question should be interpreted can be

adopted in this decomposition framework.

We applied our decomposition framework to

address two broad classes of complex factoid

questions, parallel and nested decomposition

questions. These are distinguished by how the

identified sub-questions related to each other,

which in turn affects how the candidate answers

to the sub-questions are combined to form the fi-

nal answers. In order to maintain generality and

facilitate domain adaptation, the rule-based pat-

terns for decomposition recognition leverage syn-

tactic characteristics of the question that are in-

dicative of sub-question boundaries. To optimally

leverage these patterns, a machine learning model

was trained to properly weigh the possibly over-

lapping, and occasionally conflicting, patterns.

We demonstrated the impact of our question

decomposition approach on a state-of-the-art fac-

toid QA system. On a test set of 1269 Final Jeop-

ardy! questions, 47% of the question were found

to be parallel decomposable and 20% were nested

decomposable. Overall, the system achieved a

statistically significant gain of 1.5% in accuracy

on these questions, further increasing the system’s

lead over human Jeopardy! players’ performance

on these questions.

Given that factoid (and, often, complex) ques-

tions are typically found in several real world do-

mains (e.g. medical, legal, technical support),

we expect our decomposition framework to have

broad impact, both in open- and specialized-

domain QA.
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