EACL 2012

13th Conference of the European Chapter of the
Association for Computational Linguistics

Proceedings of the Conference

April 23 - 27 2012
Avignon France



(© 2012 The Association for Computational Linguistics

ISBN 978-1-937284-19-0

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

il



Preface: General Chair

Welcome to EACL 2012, the 13th Conference of the European Chapter of the Association for
Computational Linguistics. We are happy that despite strong competition from other Computational
Linguistics events and economic turmoil in many European countries, this EACL is comparable to the
successful previous ones, both in terms of the number of papers submitted and in terms of attendance. We
have a strong scientific program, including ten workshops, four tutorials, a demos session and a student
research workshop. I am convinced that you will appreciate our program.

What does a General Chair at EACL have to do? Not much, it turns out. My job was to act as a liaison
between the local organizing team, the scientific committees, and the EACL board, and to give advice
when needed. Looking back at the thousands of e-mails I was copied on reminded me of the Jerome K.
Jerome quote: I like work. I can sit and look at it for hours”. It has been an enjoyable experience to
cooperate with the many people who made this conference happen, and to see them work. I have learned
a lot from them.

The Program Committee at an ACL conference is a trained army of Area Chairs, Program Committee
members, and additional reviewers. Mirella Lapata and Lluis Marquez commanded this particular one.
It is thanks to the voluntary peer reviewing work, year after year, of this large group of people, formed by
the top researchers in our field, that you will find a high-quality program. It is thanks to Mirella and Lluis
that you will not only find the quality we expect from EACL, but also innovation, coherence, breadth,
and depth. I can’t thank them enough for their work on all aspects of the scientific program and for their
advice on virtually any other aspect of the organization. Many thanks also to Regina Barzilay, Raymond
Mooney, and Martin Cooke for accepting to present an invited lecture and thereby increase the appeal of
this event even more.

As in previous years, the selection of the workshops of all ACL conferences in the same year is
coordinated in a single committee. For EACL, Kristiina Jokinen and Alessandro Moschitti collaborated
with the NAACL and ACL chairs in reviewing and selecting the workshops. As EACL is the first
conference of the three, they had to initiate the call for proposals and activate their colleagues long
before they were planning to. Thanks to their professionalism and efficiency, the process went very
smoothly, and the resulting workshops program reflects the diversity and maturity of the field. For
even more variation during the first two days of the conference, we also have a strong tutorial program.
Tutorial Chairs Lieve Macken and Eneko Agirre managed to attract an impressive list of high-quality
submissions and performed a thorough and thoughtful review and selection. It is truly a pity only four
could be accommodated in the program, but their quality and timeliness is inspiring. Many thanks to
Kristiina, Alessandro, Lieve, and Eneko for making this important part of the scientific program such a
success.

As is previous editions of EACL, the Student Research Workshop was organized by the student members
of the EACL board: Pierre Lison, Mattias Nilsson, and Marta Recasens, with help from faculty advisor
Laurence Danlos. Their task was a huge one: to organize a mini-conference within the conference.
This included finding reviewers, selecting papers, setting up a program for the student session, finding
mentors for the accepted papers, selecting a best paper award, ... The amount of work they did cannot
be overestimated, and the result is brilliant. Thank you! To round of the scientific program, we
have stimulating demonstration sessions, selected and coordinated by Demonstrations Chair Frédérique
Segond. Thank you for showing so clearly the rapid progress application-oriented computational
linguistics is making.

Thanks also to Gertjan van Noord and Caroline Sporleder for accepting the role of coordinators of the
mentoring service. In the end, they didn’t have to assign mentors, but it is important that such a service
is available when needed.
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For EACL 2012 we decided to switch to digital proceedings only. They were available before the
conference from the website, during the conference on the memory stick you received with your
registration material, and afterwards from the website and the ACL Anthology. An exception was made
for the tutorial notes, which are available to participants on paper as well. 1 warned the Publications
Chairs, Adria de Gispert and Fabrice Lefevre, beforehand that theirs was probably the most demanding
and stressful task of the conference: making sure that huge volumes of material from so many sources are
available in time and in the right format, incorporating last minute corrections, and handling unavoidable
glitches in the publications software. It is a formidable task, but they completed it without flinching. We
all owe them our gratitude.

EACL seems to follow economical crises, let us hope it does not become a habit. Both the previous
conference in 2009 and the current one happened in grim economical times. Being a Sponsorship Chair
is not a happy occasion in such times. Nevertheless, both the international ACL Sponsorship Committee
(with Massimiliano Ciaramita as EACL member) and the local Sponsorship Chairs (Eric SanJuan and
Stéphane Huet) left no stone unturned looking for sponsors. We would have ended up in a much worse
financial situation if it hadn’t been for their efforts. Thank you! And of course also many thanks to our
sponsors who, despite the economic situation, decided to help us financially with the conference. I am
convinced their investment will be rewarded.

Organizing large conferences like this is a complex undertaking, even with the help of extensive material
(the ACL conference handbook). Whenever in doubt, I have had the opportunity to interact with the
EACL Board, and occasionally with the ACL Board and with Priscilla Rasmussen. This has always been
a pleasure. I have learned that the people running our associations are dedicated, know everything, and
never sleep.

Last but not least, the local organizing team has had to carry the largest burden in the organization. The
sheer number of tasks and actions the local organizers of a conference like EACL have to assume is
astonishing. Marc El-Beze has been a wonderful chair and his team (Frederic Bechet, Yann Fernandez,
Stéphane Huet, Tania Jimenez, Fabrice Lefevre, Georges Linares, Alexis Nasr, Eric SanJuan, and Iria
Da Cunha) has done outstanding work. There is no beginning in mentioning the many tasks they had to
fulfill for making this a top conference. I am very grateful for all the work they put in the event and for
the stress-free and friendly cooperation. I am also grateful for the support of the University of Avignon.

I hope you will have many fond memories of EACL 2012, organized in these stunning surroundings
in Avignon, both about the exciting scientific program and about the superb social program and local
arrangements.

Walter Daelemans

General Chair
March 2012
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Preface: Program Chairs

We are delighted to present you with this volume containing the papers accepted for presentation at
the 13th Conference of the European Chapter of the Association for Computational Linguistics, held in
Avignon, France, from April 23 till April 27 2012.

EACL 2012 received 326 submissions. We were able to accept 85 papers in total (an acceptance rate
of 26%). 48 of the papers (14.7%) were accepted for oral presentation, and 34 (10.4%) for poster
presentation. One oral paper was subsequently withdrawn after acceptance. The papers were selected
by a program committee of 28 area chairs, from Asia, Europe, and North America, assisted by a panel
of 471 reviewers. Each submission was reviewed by three reviewers, who were furthermore encouraged
to discuss any divergences they might have, and the papers in each area were ranked by the area chairs.
The final selection was made by the program co-chairs after an independent check of all reviews and
discussions with the area chairs.

This year EACL introduced an author response period. Authors were able to read and respond to the
reviews of their paper before the program committee made a final decision. They were asked to correct
factual errors in the reviews and answer questions raised in the reviewers comments. The intention was
to help produce more accurate reviews. In some cases, reviewers changed their scores in view of the
authors response and the area chairs read all responses carefully prior to making recommendations for
acceptance. Another new feature was to allow authors to include optional supplementary material in
addition to the paper itself (e.g., code, data sets, and resources). Finally, in an attempt to eliminate any
bias from the reviewing process we put in place a double-blind reviewing system where the identity of
the authors was not revealed to the area chairs.

After the program was selected, each of the area chairs was asked to nominate the best paper from his
or her area, or to explicitly decline to nominate any. This resulted in several nominations out of which
three stood out and were further considered in more detail by an dedicated committee chaired by Stephen
Clark. This independent committee selected the best paper of the conference, which will be also awarded
with a prize sponsored by Google. The best paper and the other two finalists will be presented in plenary
sessions at the conference.

In addition to the main conference program, EACL 2012 will feature the now traditional Student
Research Workshop, 10 workshops, 4 tutorials and a demo session with 21 presentations. We are also
fortunate to have three invited speakers, Martin Cooke, Ikerbasque (Basque Foundation for Science),
Regina Barzilay, Massachusetts Institute of Technology, and Raymond Mooney, University of Texas at
Austin. Martin Cooke will speak about “Speech Communication in the Wild”, Regina Barzilay will
discuss the topic of “Learning to Behave by Reading”, and Raymond Mooney will present on “Learning
Language from Perceptual Context”.

First and foremost, we would like to thank the authors who submitted their work to EACL. The sheer
number of submissions reflects how broad and active our field is. We are deeply indebted to the area
chairs and the reviewers for their hard work. They enabled us to select an exciting program and to
provide valuable feedback to the authors. We are grateful to our invited speakers who graciously agreed
to give talks at EACL. Additional thanks to the Publications Chairs, Adria de Gispert and Fabrice
Lefévre who put this volume together. We are grateful to Rich Gerber and the START team who
always responded to our questions quickly, and helped us manage the large number of submissions
smoothly. Thanks are due to the local organizing committee chair, Marc El-Beze for his cooperation
with us over many organisational issues. We are also grateful to the Student Research Workshop chairs,
Pierre Lison, Mattias Nilsson, and Marta Recasens, and the NAACL-HLT (Srinivas Bangalore, Eric
Fosler-Lussier and Ellen Riloff) and ACL (Chin-Yew Lin and Miles Osborne) program chairs for their
smooth collaboration in the handling of double submissions. Last but not least, we are indebted to the



General Chair, Walter Daelemans, for his guidance and support throughout the whole process.

We hope you enjoy the conference!

Mirella Lapata and Lluis Marquez

EACL 2012 Program Chairs
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Active learning for interactive machine translation
Jests Gonzalez-Rubio, Daniel Ortiz-Martinez and Francisco Casacuberta

Adapting Translation Models to Translationese Improves SMT
Gennadi Lembersky, Noam Ordan and Shuly Wintner

Aspectual Type and Temporal Relation Classification
Francisco Costa and Anténio Branco

Automatic generation of short informative sentiment summaries
Andrea Glaser and Hinrich Schiitze

Bootstrapped Training of Event Extraction Classifiers
Ruihong Huang and Ellen Riloff

Bootstrapping Events and Relations from Text
Ting Liu and Tomek Strzalkowski
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CLex: A Lexicon for Exploring Color, Concept and Emotion Associations in Language
Svitlana Volkova, William B. Dolan and Theresa Wilson

Extending the Entity-based Coherence Model with Multiple Ranks
Vanessa Wei Feng and Graeme Hirst

Generalization Methods for In-Domain and Cross-Domain Opinion Holder Extraction
Michael Wiegand and Dietrich Klakow

Skip N-grams and Ranking Functions for Predicting Script Events
Bram Jans, Steven Bethard, Ivan Vuli¢ and Marie-Francine Moens

The Problem with Kappa
David Martin Ward Powers

User Edits Classification Using Document Revision Histories
Amit Bronner and Christof Monz

User Participation Prediction in Online Forums
Zhonghua Qu and Yang Liu

Inferring Selectional Preferences from Part-Of-Speech N-grams
Hyeju Jang and Jack Mostow

WebCAGe — A Web-Harvested Corpus Annotated with GermaNet Senses
Verena Henrich, Erhard Hinrichs and Tatiana Vodolazova
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(9:00) Session 5: Plenary Session

Learning to Behave by Reading
Regina Barzilay

(10:30) Session 6a: Student Workshop
(10:30) Session 6b: Student Workshop
(10:30) Session 6¢: Student Workshop
(14:00) Session 7: EACL business meeting
(14:50) Session 8: Plenary Session

Lexical surprisal as a general predictor of reading time
Irene Fernandez Monsalve, Stefan L. Frank and Gabriella Vigliocco

Spectral Learning for Non-Deterministic Dependency Parsing
Franco M. Luque, Ariadna Quattoni, Borja Balle and Xavier Carreras

(16:10) Session 9: Posters (2) and Demos (2)

Combining Tree Structures, Flat Features and Patterns for Biomedical Relation Extraction
Md. Faisal Mahbub Chowdhury and Alberto Lavelli

Coordination Structure Analysis using Dual Decomposition
Atsushi Hanamoto, Takuya Matsuzaki and Jun’ichi Tsujii

Cutting the Long Tail: Hybrid Language Models for Translation Style Adaptation
Arianna Bisazza and Marcello Federico

Detecting Highly Confident Word Translations from Comparable Corpora without Any

Prior Knowledge
Ivan Vuli¢ and Marie-Francine Moens
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Efficient parsing with Linear Context-Free Rewriting Systems
Andreas van Cranenburgh

Evaluating language understanding accuracy with respect to objective outcomes in a dia-
logue system
Myroslava O. Dzikovska, Peter Bell, Amy Isard and Johanna D. Moore

Experimenting with Distant Supervision for Emotion Classification
Matthew Purver and Stuart Battersby

Feature-Rich Part-of-speech Tagging for Morphologically Complex Languages: Applica-
tion to Bulgarian
Georgi Georgiev, Valentin Zhikov, Kiril Simov, Petya Osenova and Preslav Nakov

Instance-Driven Attachment of Semantic Annotations over Conceptual Hierarchies
Janara Christensen and Marius Pasca

Joint Satisfaction of Syntactic and Pragmatic Constraints Improves Incremental Spoken
Language Understanding
Andreas Peldszus, Okko Buf}, Timo Baumann and David Schlangen

Learning How to Conjugate the Romanian Verb. Rules for Regular and Partially Irregular
Verbs
Liviu P. Dinu, Vlad Niculae and Octavia-Maria Sulea

Measuring Contextual Fitness Using Error Contexts Extracted from the Wikipedia Revi-
sion History
Torsten Zesch

Perplexity Minimization for Translation Model Domain Adaptation in Statistical Machine
Translation
Rico Sennrich

Subcat-LMF: Fleshing out a standardized format for subcategorization frame interoper-
ability
Judith Eckle-Kohler and Iryna Gurevych

The effect of domain and text type on text prediction quality
Suzan Verberne, Antal van den Bosch, Helmer Strik and Lou Boves

The Impact of Spelling Errors on Patent Search
Benno Stein, Dennis Hoppe and Tim Gollub
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16:10 UBY - A Large-Scale Unified Lexical-Semantic Resource Based on LMF
Iryna Gurevych, Judith Eckle-Kohler, Silvana Hartmann, Michael Matuschek, Christian
M. Meyer and Christian Wirth

16:10 Word Sense Induction for Novel Sense Detection
Jey Han Lau, Paul Cook, Diana McCarthy, David Newman and Timothy Baldwin

Friday April 27, 2012
(9:00) Session 10: Plenary Session

9:00 Learning Language from Perceptual Context
Raymond Mooney

(10:30) Session 11a: Data Mining and Discourse

10:30 Learning for Microblogs with Distant Supervision: Political Forecasting with Twitter
Micol Marchetti-Bowick and Nathanael Chambers

10:55 Learning from evolving data streams: online triage of bug reports
Grzegorz Chrupala
11:20 Towards a model of formal and informal address in English

Manaal Faruqui and Sebastian Pado

11:45 Character-based kernels for novelistic plot structure
Micha Elsner
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10:55

11:20

11:45

10:30

10:55

11:20

11:45

(10:30) Session 11b: Morphology

Smart Paradigms and the Predictability and Complexity of Inflectional Morphology
Grégoire Détrez and Aarne Ranta

Probabilistic Hierarchical Clustering of Morphological Paradigms
Burcu Can and Suresh Manandhar

Modeling Inflection and Word-Formation in SMT
Alexander Fraser, Marion Weller, Aoife Cahill and Fabienne Cap

Identifying Broken Plurals, Irregular Gender, and Rationality in Arabic Text
Sarah Alkuhlani and Nizar Habash

(10:30) Session 11c: Semantics

Framework of Semantic Role Assignment based on Extended Lexical Conceptual Struc-
ture: Comparison with VerbNet and FrameNet
Yuichiroh Matsubayashi, Yusuke Miyao and Akiko Aizawa

Unsupervised Detection of Downward-Entailing Operators By Maximizing Classification
Certainty
Jackie Chi Kit Cheung and Gerald Penn

Elliphant: Improved Automatic Detection of Zero Subjects and Impersonal Constructions
in Spanish
Luz Rello, Ricardo Baeza-Yates and Ruslan Mitkov

Validation of sub-sentential paraphrases acquired from parallel monolingual corpora
Houda Bouamor, Aurélien Max and Anne Vilnat

XXil
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14:25

14:50

15:15

14:00

14:25

14:50

15:15

(14:00) Session 12a: Generation and Word Ordering

Determining the placement of German verbs in English—to—German SMT
Anita Gojun and Alexander Fraser

Syntax-Based Word Ordering Incorporating a Large-Scale Language Model
Yue Zhang, Graeme Blackwood and Stephen Clark

Midge: Generating Image Descriptions From Computer Vision Detections
Margaret Mitchell, Jesse Dodge, Amit Goyal, Kota Yamaguchi, Karl Stratos, Xufeng Han,
Alyssa Mensch, Alex Berg, Tamara Berg and Hal Daume 111

Generation of landmark-based navigation instructions from open-source data
Markus Driger and Alexander Koller

(14:00) Session 12b: Discourse and Dialogue

To what extent does sentence-internal realisation reflect discourse context? A study on
word order
Sina Zarrief, Aoife Cahill and Jonas Kuhn

Behind the Article: Recognizing Dialog Acts in Wikipedia Talk Pages
Oliver Ferschke, Iryna Gurevych and Yevgen Chebotar

An Unsupervised Dynamic Bayesian Network Approach to Measuring Speech Style Ac-
commodation

Mahaveer Jain, John McDonough, Gahgene Gweon, Bhiksha Raj and Carolyn Penstein
Rosé

Learning the Fine-Grained Information Status of Discourse Entities
Altaf Rahman and Vincent Ng
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14:25

14:50

15:45

(14:00) Session 12¢: Parsing and MT

Composing extended top-down tree transducers
Aurelie Lagoutte, Fabienne Braune, Daniel Quernheim and Andreas Maletti

Structural and Topical Dimensions in Multi-Task Patent Translation
Katharina Waeschle and Stefan Riezler

Not as Awful as it Seems: Explaining German Case through Computational Experiments
in Fluid Construction Grammar
Remi van Trijp

(15:45) Session 13: Plenary Session

Managing Uncertainty in Semantic Tagging
Silvie Cinkova, Martin Holub and Vincent Kriz

Parallel and Nested Decomposition for Factoid Questions

Aditya Kalyanpur, Siddharth Patwardhan, Branimir Boguraev, Jennifer Chu-Carroll and
Adam Lally
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Speech Communication in the Wild

Martin Cooke
Language and Speech Laboratory
University of the Basque Country
Ikerbasque (Basque Science Foundation)
m.cookel@ikerbasque.org

Abstract

Much of what we know about speech perception comes from laboratory studies with clean, canonical
speech, ideal listeners and artificial tasks. But how do interlocutors manage to communicate effec-
tively in the seemingly less-than-ideal conditions of everyday listening, which frequently involve try-
ing to make sense of speech while listening in a non-native language, or in the presence of competing
sound sources, or while multitasking? In this talk I’'ll examine the effect of real-world conditions on
speech perception and quantify the contributions made by factors such as binaural hearing, visual in-
formation and prior knowledge to speech communication in noise. I’ll present a computational model
which trades stimulus-related cues with information from learnt speech models, and examine how
well it handles both energetic and informational masking in a two-sentence separation task. Speech
communication also involves listening-while-talking. In the final part of the talk I’ll describe some
ways in which speakers might be making communication easier for their interlocutors, and demon-
strate the application of these principles to improving the intelligibility of natural and synthetic speech
in adverse conditions.

1

Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, page 1,
Avignon, France, April 23 - 27 2012. (©2012 Association for Computational Linguistics



Power-Law Distributions for Paraphrases Extracted from Bilingual
Corpora

Spyros Martzoukos Christof Monz
Informatics Institute, University of Amsterdam
Science Park 904, 1098 XH Amsterdam, The Netherlands

{s.martzoukos,

Abstract

We describe a novel method that extracts
paraphrases from a bitext, for both the
source and target languages. In order
to reduce the search space, we decom-
pose the phrase-table into sub-phrase-tables
and construct separate clusters for source
and target phrases. We convert the clus-
ters into graphs, add smoothing/syntactic-
information-carrier vertices, and compute
the similarity between phrases with a ran-
dom walk-based measure, the commute
time.  The resulting phrase-paraphrase
probabilities are built upon the conversion
of the commute times into artificial co-
occurrence counts with a novel technique.
The co-occurrence count distribution be-
longs to the power-law family.

1 Introduction

Paraphrase extraction has emerged as an impor-
tant problem in NLP. Currently, there exists an
abundance of methods for extracting paraphrases
from monolingual, comparable and bilingual cor-
pora (Madnani and Dorr, 2010; Androutsopou-
los and Malakasiotis, 2010); we focus on the lat-
ter and specifically on the phrase-table that is ex-
tracted from a bitext during the training stage of
Statistical Machine Translation (SMT). Bannard
and Callison-Burch (2005) introduced the pivot-
ing approach, which relies on a 2-step transition
from a phrase, via its translations, to a paraphrase
candidate. By incorporating the syntactic struc-
ture of phrases (Callison-Burch, 2005), the qual-
ity of the paraphrases extracted with pivoting can
be improved. Kok and Brockett (2010) (hence-
forth KB) used a random walk framework to de-
termine the similarity between phrases, which

c.monz}@uva.nl

was shown to outperform pivoting with syntac-
tic information, when multiple phrase-tables are
used. In SMT, extracted paraphrases with asso-
ciated pivot-based (Callison-Burch et al., 2006;
Onishi et al., 2010) and cluster-based (Kuhn et
al., 2010) probabilities have been found to im-
prove the quality of translation. Pivoting has also
been employed in the extraction of syntactic para-
phrases, which are a mixture of phrases and non-
terminals (Zhao et al., 2008; Ganitkevitch et al.,
2011).

We develop a method for extracting para-
phrases from a bitext for both the source and tar-
get languages. Emphasis is placed on the qual-
ity of the phrase-paraphrase probabilities as well
as on providing a stepping stone for extracting
syntactic paraphrases with equally reliable prob-
abilities. In line with previous work, our method
depends on the connectivity of the phrase-table,
but the resulting construction treats each side sep-
arately, which can potentially be benefited from
additional monolingual data.

The initial problem in harvesting paraphrases
from a phrase-table is the identification of the
search space. Previous work has relied on breadth
first search from the query phrase with a depth
of 2 (pivoting) and 6 (KB). The former can be
too restrictive and the latter can lead to excessive
noise contamination when taking shallow syntac-
tic information features into account. Instead, we
choose to cluster the phrase-table into separate
source and target clusters and in order to make this
task computationally feasible, we decompose the
phrase-table into sub-phrase-tables. We propose
a novel heuristic algorithm for the decomposition
of the phrase-table (Section 2.1), and use a well-
established co-clustering algorithm for clustering
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each sub-phrase-table (Section 2.2).

The underlying connectivity of the source
and target clusters gives rise to a natural graph
representation for each cluster (Section 3.1).
The vertices of the graphs consist of phrases
and features with a dual smoothing/syntactic-
information-carrier role. The latter allow (a) re-
distribution of the mass for phrases with no appro-
priate paraphrases and (b) the extraction of syn-
tactic paraphrases. The proximity among vertices
of a graph is measured by means of a random walk
distance measure, the commute time (Aldous and
Fill, 2001). This measure is known to perform
well in identifying similar words on the graph of
WordNet (Rao et al., 2008) and a related measure,
the hitting time is known to perform well in har-
vesting paraphrases on a graph constructed from
multiple phrase-tables (KB).

Generally in NLP, power-law distributions are
typically encountered in the collection of counts
during the training stage. The distances of Sec-
tion 3.1 are converted into artificial co-occurrence
counts with a novel technique (Section 3.2). Al-
though they need not be integers, the main chal-
lenge is the type of the underlying distributions;
it should ideally emulate the resulting count dis-
tributions from the phrase extraction stage of a
monolingual parallel corpus (Dolan et al., 2004).
These counts give rise to the desired probability
distributions by means of relative frequencies.

2 Sub-phrase-tables & Clustering

2.1 Extracting Connected Components

For the decomposition of the phrase-table into
sub-phrase-tables it is convenient to view the
phrase-table as an undirected, unweighted graph
P with the vertex set being the source and target
phrases and the edge set being the phrase-table en-
tries. For the rest of this section, we do not distin-
guish between source and target phrases, i.e. both
types are treated equally as vertices of P. When
referring to the size of a graph, we mean the num-
ber of vertices it contains.

A trivial initial decomposition of P is achieved
by identifying all its connected components (com-
ponents for brevity), i.e. the mutually disjoint
connected subgraphs, {Fy, P, ..., P,}. It turns
out (see Section 4.1) that the largest component,
say Py, is of significant size. We call Py giant
and it needs to be further decomposed. This is

done by identifying all vertices such that, upon
removal, the component becomes disconnected.
Such vertices are called articulation points or cut-
vertices. Cut-vertices of high connectivity degree
are removed from the giant component (see Sec-
tion 4.1). For the remaining vertices of the giant
component, new components are identified and
we proceed iteratively, while keeping track of the
cut-vertices that are removed at each iteration, un-
til the size of the largest component is less than a
certain threshold 6 (see Section 4.1).

Note that at each iteration, when removing cut-
vertices from a giant component, the resulting col-
lection of components may include graphs con-
sisting of a single vertex. We refer to such ver-
tices as residues. They are excluded from the re-
sulting collection and are considered for separate
treatment, as explained later in this section.

The cut-vertices need to be inserted appropri-
ately back to the components: Starting from the
last iteration step, the respective cut-vertices are
added to all the components of Py which they
used to ‘glue’ together; this process is performed
iteratively, until there are no more cut-vertices to
add. By ‘addition’ of a cut-vertex to a component,
we mean the re-establishment of edges between
the former and other vertices of the latter. The
result is a collection of components whose total
number of unique vertices is less than the number
of vertices of the initial giant component F.

These remaining vertices are the residues. We
then construct the graph R which consists of
the residues together with all their translations
(even those that are included in components of
the above collection) and then identify its compo-
nents {Ry, ..., Ry, }. It turns out, that the largest
component, say Ry, is giant and we repeat the de-
composition process that was performed on F.
This results in a new collection of components
as well as new residues: The components need
to be pruned (see Section 4.1) and the residues
give rise to a new graph R’ which is constructed
in the same way as R. We proceed iteratively until
the number of residues stops changing. For each
remaining residue u, we identify its translations,
and for each translation v we identify the largest
component of which v is a member and add « to
that component.

The final result is a collection C = D U F,
where D is the collection of components emerg-
ing from the entire iterative decomposition of Fy



and R, and ¥ = {P,..., P,}. Figure 1 shows
the decomposition of a connected graph Gy; for
simplicity we assume that only one cut-vertex is
removed at each iteration and ties are resolved ar-
bitrarily. In Figure 2 the residue graph is con-
structed and its two components are identified.
The iterative insertion of the cut vertices is also
depicted. The resulting two components together
with those from R form the collection D for Gy.

The addition of cut-vertices into multiple com-
ponents, as well as the construction method of the
residue-based graph R, can yield the occurrences
of a vertex in multiple components in D. We ex-
ploit this property in two ways:

(a) In order to mitigate the risk of excessive de-
composition (which implies greater risk of good
paraphrases being in different components), as
well as to reduce the size of D, a conserva-
tive merging algorithm of components is em-
ployed. Suppose that the elements of D are
ranked according to size in ascending order as
D= {Dl, ceey Dk, Dk—i—ly ceey D|D|}’ where |Dl| <
6, fori =1, ..., k, and some threshold 9 (see Sec-
tion 4.1). Each component D; with i € {1,..., k}
is examined as follows: For each vertex of D; the
number of its occurrences in D is inspected; this is
done in order to identify an appropriate vertex b to
act as a bridge between D); and other components
of which b is a member. Note that translations of
a vertex b with smaller number of occurrences in
D are less likely to capture their full spectrum of
paraphrases. We thus choose a vertex b from D;
with the smallest number of occurrences in D ,
resolving ties arbitrarily, and proceed with merg-
ing D; with the largest component, say D; with
j €{1,...,|D| — 1}, of which b is also a member.
The resulting merged component D, contains all
vertices and edges of D; and D; and new edges,
which are formed according to the rule: if u is a
vertex of D; and v is a vertex of D; and (u,v) is
a phrase-table entry, then (u, v) is an edge in D .
As long as no connected component has identi-
fied D; as the component with which it should be
merged, then D; is deleted from the collection D.

(b) We define an idf-inspired measure for each
phrase pair (z, ') of the same type (source or tar-

get) as
1 1Og<2c(:ﬁ,x’)D\)7 0

) = fog o]\ efa) + ot

where ¢(x,2’) is the number of components in

which the phrases = and x’ co-occur, and equiv-
alently for ¢(-). The purpose of this measure is
for pruning paraphrase candidates and its use is
explained in Section 3.1. Note that idf (z,2’) €
[0, 1].

The merging process and the idf measure are
irrelevant for phrases belonging to the compo-
nents of F, since the vertex set of each compo-
nent of F is mutually disjoint with the vertex set
of any other component in C.
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Figure 1: The decomposition of Gy with vertices
s; and t;: The cut-vertex of the ¢th iteration is de-
noted by ¢;, and r collects the residues after each
iteration. The task is completed in Figure 2.

R ——)

tz
2

+c,
—)

t
| — 7] 1o
ol WA
S

2 S5 iy

Figure 2: Top: Residue graph with its components
(no further decomposition is required). Bottom:
Adding cut-vertices back to their components.

2.2 Clustering Connected Components

The aim of this subsection is to generate sep-
arate clusters for the source and target phrases
of each sub-phrase-table (component) C' € C.
For this purpose the Information-Theoretic Co-
Clustering (ITC) algorithm (Dhillon et al., 2003)
is employed, which is a general principled cluster-
ing algorithm that generates hard clusters (i.e. ev-



ery element belongs to exactly one cluster) of two
interdependent quantities and is known to per-
form well on high-dimensional and sparse data.
In our case, the interdependent quantities are the
source and target phrases and the sparse data is
the phrase-table.

ITC is a search algorithm similar to K-means,
in the sense that a cost function, is minimized at
each iteration step and the number of clusters for
both quantities are meta-parameters. The number
of clusters is set to the most conservative initial-
ization for both source and target phrases, namely
to as many clusters as there are phrases. At each
iteration, new clusters are constructed based on
the identification of the argmin of the cost func-
tion for each phrase, which gradually reduces the
number of clusters.

We observe that conservative choices for the
meta-parameters often result in good paraphrases
being in different clusters. To overcome this prob-
lem, the hard clusters are converted into soft (i.e.
an element may belong to several clusters): One
step before the stopping criterion is met, we mod-
ify the algorithm so that instead of assigning a
phrase to the cluster with the smallest cost we se-
lect the bottom-X clusters ranked by cost. Addi-
tionally, only a certain number of phrases is cho-
sen for soft clustering. Both selections are done
conservatively with criteria based on the proper-
ties of the cost functions.

The formation of clusters leads to a natural re-
finement of the ¢df measure defined in eqn. (1):
The quantity c¢(x, z’) is redefined as the number
of components in which the phrases = and 2’ co-
occur in at least one cluster.

3 Monolingual Graphs & Counts

We proceed with converting the clusters into di-
rected, weighted graphs and then extract para-
phrases for both the source and target side. For
brevity we explain the process restricted to the
source clusters of a sub-phrase-table, but the same
method applies for the target side and for all sub-
phrase-tables in the collection C.

3.1 Monolingual graphs

Each source cluster is converted into a graph G as
follows: The vertex set consists of the phrases of
the cluster and an edge between s and s’ exists, if
(a) s and s’ have at least one translation from the
same target cluster, and (b) idf (s, s’) is greater

than some threshold o (see Section 4.1). If two
phrases that satisfy condition (b) and have trans-
lations in more than one common target cluster,
a distinct such edge is established. All edges are
bi-directional with distinct weights for both direc-
tions.

Figure 3 depicts an example of such a construc-
tion; a link between a phrase s; and a target cluster
implies the existence of at least one translation for
s; in that cluster. We are not interested in the tar-
get phrases and they are thus not shown. For sim-
plicity we assume that condition (b) is always sat-
isfied and the extracted graph contains the maxi-
mum possible edges. Observe that phrases s3 and
s4 have two edges connecting them, (due to tar-
get clusters 7, and T};) and that the target cluster
T, is irrelevant to the construction of the graph,
since s; is the only phrase with translations in it.
This conversion of a source cluster into a graph G

Figure 3: Top: A source cluster containing
phrases si,..., Sg and the associated target clusters
T4,..., Ty. Bottom: The extracted graph from the
source cluster. All edges are bi-directional.

results in the formation of subgraphs in GG, where
each subgraph is generated by a target cluster. In
general, if condition (b) is not always satisfied,
then G need not be connected and each connected
component is treated as a distinct graph.
Analogous to KB, we introduce feature vertices
to G: For each phrase vertex s, its part-of-speech
(POS) tag sequence and stem sequence are iden-
tified and inserted into G as new vertices with
bi-directional weighted edges connected to s. If
phrase vertices s and s’ have the same POS tag se-
quence, then they are connected to the same POS
tag feature vertex. Similarly for stem feature ver-
tices. See Figure 4 for an example. Note that we
do not allow edges between POS tag and stem fea-



Figure 4: Adding feature vertices to the extracted
graph (has) = (owns) = (i have) = (i had).
Phrase, POS tag feature and stem feature ver-
tices are drawn in circles, dotted rectangles and
solid rectangles respectively. All edges are bi-

directional.

ture vertices. The purpose of the feature vertices,
unlike KB, is primarily for smoothing and secon-
darily for identifying paraphrases with the same
syntactic information and this will become clear
in the description of the computation of weights.

The set of all phrase vertices that are adja-
cent to s is written as I'(s), and referred to
as the neighborhood of s. Let n(s,t) denote
the co-occurrence count of a phrase-table entry
(s,t) (Koehn, 2009). We define the strength of
s in the subgraph generated by cluster 71" as

n(s;T) = > n(s,t), )

teT

which is simply a partial occurrence count for s.
We proceed with computing weights for all edges
of G:

Phrase=phrase weights: Inspired by the
notion of preferential attachment (Yule, 1925),
which is known to produce power-law weight dis-
tributions for evolving weighted networks (Barrat
et al., 2004), we set the weight of a directed
edge from s to s’ to be proportional to the
strengths of s’ in all subgraphs in which both
s and s’ are members. Thus, in the random
walk framework, s is more likely to visit
a stronger (more reliable) neighbor. If T ¢ =
{T |s and s’ coexist in subgraph generated by 7'},
then the weight w(s — ') of the directed edge
from s to s’ is given by

w(s—¢)= Y  nT), @)

TETS’S/

if s € I'(s) and 0 otherwise.

Phrase—feature = weights: As mentioned
above, feature vertices have the dual role of car-
rying syntactic information and smoothing. From
eqn. (3) it can be deduced that, if for a phrase
s, the amount of its outgoing weights is close to
the amount of its incoming weights, then this is
an indication that at least a significant part of its
neighborhood is reliable; the larger the strengths,
the more certain the indication. Otherwise, either
s or a significant part of its neighborhood is
unreliable. The amount of weight from s to its
feature vertices should depend on this observation
and we thus let

net(s) = Z (w(s —8') —w(s’" — s))| +¢,
s'el(s)
“4)

where € prevents net(s) from becoming 0 (see
Section 4.1). The net weight of a phrase vertex
s is distributed over its feature vertices as

w(s — fx) =< w(s — §') > +net(s), (5)

where the first summand is the average weight
from s to its neighboring phrase vertices and
X = POS,STEM. If s has multiple POS tag
sequences, we distribute the weight of eqn. (5)
relatively to the co-occurrences of s with the re-
spective POS tag feature vertices. The quantity
< w(s — s') > accounts for the basic smoothing
and is augmented by a value net(s) that measures
the reliability of s’s neighborhood; the more unre-
liable the neighborhood, the larger the net weight
and thus larger the overall weights to the feature
vertices.

The choice for the opposite direction is trivial:

1
wlix = 8 = o e )

is an edge }|’ ©
where X = POS,STEM. Note the effect of
eqns. (4)—(6) in the case where the neighborhood
of s has unreliable strengths: In a random walk
the feature vertices of s will be preferred and the
resulting similarities between s and other phrase
vertices will be small, as desired. Nonetheless,
if the syntactic information is the same with any
other phrase vertex in G, then the paraphrases will
be captured.

The transition probability from any vertex u to
any other vertex v in G, i.e., the probability of



hopping from « to v in one step, is given by

w(u — v)

(7)

plu —v) = Zv’ wu — ')’

where we sum over all vertices adjacent to u in G.
We can thus compute the similarity between any
two vertices v and v in GG by their commute time,
i.e., the expected number of steps in a round trip,
in a random walk from « to v and then back to wu,
which is denoted by x(u,v) (see Section 4.1 for
the method of computation of x). Since k(u,v) is
a distance measure, the smaller its value, the more
similar v and v are.

3.2 Counts

We convert the distance x(u,v) of a vertex pair
u, v in a graph G into a co-occurrence count
na(u, v) with a novel technique: In order to as-
sess the quality of the pair u, v with respect to G
we compare k(u,v) with k(u, ) and (v, x) for
all other vertices x in G. We thus consider the av-
erage distance of u with the other vertices of G
other than v, and similarly for v. This quantity is
denoted by x(u;v) and k(v;u) respectively, and
by definition it is given by

k(i3 §) = Y k(i, x)pa (i) ®)

el

z#j
where pg(z|i) = p(z|G,i) is a yet unknown
probability distribution with respect to G. The
quantity (k(u;v)+#(v;u))/2 can then be viewed
as the average distance of the pair u, v to the rest
of the graph GG. The co-occurrence count of v and

v in G is thus defined by

r(u;v) 4+ K(vsu)
2k(u,v)

nG(“? U) = )
In order to calculate the probabilities pg(+|-) we
employ the following heuristic: Starting with a
uniform distribution p(C?)(-|~) at timestep ¢ = 0,
we iterate

KO (i5) = > k(i 2)pl (x]i) (10)
zeG
T£]

&) (s,- #) ().
(t) K (u;v) + kW (v;u)
ne (u,v) = (v (11)
)
ne (u, v
P (o) = e V) (12

S vec 1 (u, )

for all pairs of vertices u, v in GG until conver-
gence. Experimentally, we find that convergence
is always achieved. After the execution of this it-
erative process we divide each count by the small-
est count in order to achieve a lower bound of 1.

A pair u, v may appear in multiple graphs in the
same sub-phrase-table C. The total co-occurrence
count of v and v in C' and the associated condi-
tional probabilities are thus given by

Z na(u,v)

GeC
nC(uv U)
erC’ nc (uv $)

no(u,v) = (13)

po(vlu) = (14)

A pair u, v may appear in multiple sub-phrase-
tables and for the calculation of the final count
n(u,v) we need to average over the associated
counts from all sub-phrase-tables. Moreover, we
have to take into account the type of the vertices:
For the simplest case where both v and v repre-
sent phrase vertices, their expected count is, by
definition, given by

n(s,s') =Y no(s,s)p(Cls, ). (15)
C

On the other hand, if at least one of u or v is
a feature vertex, then we have to consider the
phrase vertex that generates this feature: Suppose
that u is the phrase vertex s=‘acquire’ and v the
POS tag vertex f=‘NN’ and they co-occur in two
sub-phrase-tables C' and C’ with positive counts
no(s, f) and nee (s, f) respectively; the feature
vertex f is generated by the phrase vertices ‘own-
ership” in C and by ‘possession’ in C’. In that
case, an interpolation of the counts n¢ (s, f) and
ner (s, f) as in eqn. (15) would be incorrect and
a direct sum n¢ (s, f) + ner (s, f) would provide
the true count. As a result we have

n(s, £) = 305 nols, F())p(Cls, £()),
s C

(16)
where the first summation is over all phrase ver-
tices s’ such that f(s’) = f. With a similar argu-
ment we can write

n(f, ) =Y na(f(s), f(s)x

s,s’ C

< p(Clf(s), f(s). (D)



For the interpolants, from standard probability we
find

p(Clu, v) = po(v]w)p(Clu) (18)

Yo per (vlu)p(Clu)’

where the probabilities p(C|u) can be computed
by considering the likelihood function

N

N
(u) = Hp(:cl|u) = H ch(:cﬂu)p(C]u)

i=1 C

and by maximizing the average log-likelihood
+ log £(u), where N is the total number of ver-
tices with which u co-occurs with positive counts
in all sub-phrase-tables.

Finally, the desired probability distributions are
given by the relative frequencies

n(u,v)

p(vlu) = S n(uz) (19)

for all pairs of vertices u, v.

4 Experiments

4.1 Setup

The data for building the phrase-table P
is drawn from DE-EN bitexts crawled from
www.project-syndicate.org, which is
a standard resource provider for the WMT
campaigns (News Commentary bitexts, see,
e.g. (Callison-Burch et al., 2007) ). The filtered
bitext consists of 125K sentences; word align-
ment was performed running GIZA++ in both di-
rections and generating the symmetric alignments
using the ‘grow-diag-final-and’ heuristics. The
resulting P has 7.7M entries, 30% of which are
‘1-1’, i.e. entries (s,t) that satisfy p(s|t) =
p(t|s) = 1. These entries are irrelevant for para-
phrase harvesting for both the baseline and our
method, and are thus excluded from the process.
The initial giant component Py contains 1.7M
vertices (Figure 5), of which 30% become
residues and are used to construct R. At each it-
eration of the decomposition of a giant compo-
nent, we remove the top 0.5% - size cut-vertices
ranked by degree of connectivity, where size is
the number of vertices of the giant component and
set @ = 2500 as the stopping criterion. The latter
choice is appropriate for the subsequent step of
co-clustering the components, for both time com-
plexity and performance of the ITC algorithm.

10° 107 Cank 10° 10°
Figure 5: Log-log plot of ranked components ac-
cording to their size (number of source and target
phrases) for: (a) Components extracted from P.
‘1-1° components are not shown. (b) Components
extracted from the decomposition of F.

In the components emerging from the decompo-
sition of Ry, we observe an excessive number
of cut-vertices. Note that vertices that consist
these components can be of two types: i) for-
mer residues, i.e., residues that emerged from the
decomposition of Fy, and ii) other vertices of
FPy. Cut-vertices can be of either type. For each
component, we remove cut-vertices that are not
translations of the former residues of that com-
ponent. Following this pruning strategy, the de-
generacy of excessive cut-vertices does not reap-
pear in the subsequent iterations of decompos-
ing components generated by new residues, but
the emergence of two giant components was ob-
served: One consisting mostly of source type ver-
tices and one of target type vertices. Without go-
ing into further details, the algorithm can extend
to multiple giant components straightforwardly.
For the merging process of the collection D we
set & = 5000, to avoid the emergence of a giant
component. The sizes of the resulting sub-phrase-
tables are shown in Figure 6. For the ITC algo-
rithm we use the smoothing technique discussed
in (Dhillon and Guan, 2003) with @ = 10°.

For the monolingual graphs, we set 0 = 0.65
and discard graphs with more than 20 phrase ver-
tices, as they contain mostly noise. Thus, the sizes
of the graphs allow us to use analytical methods
to compute the commute times: For a graph G,
we form the fransition matrix P, whose entries
P(u,v) are given by eqn. (7), and the fundamen-
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10° 10 ¢ ank 10* 10°
Figure 6: Log-log plot of ranked sub-phrase-
tables according to their size (number of source
and target phrases).

tal matrix (Grinstead and Snell, 2006; Boley et al.,
2011) Z = (I— P+1x7)~!, where [ is the iden-
tity matrix, 1 denotes the vector of all ones and 7
is the vector of stationary probabilities (Aldous
and Fill, 2001) which is such that 77 P = 77
and 771 = 1 and can be computed as in (Hunter,
2000). The commute time between any vertices u
and v in G is then given by (Grinstead and Snell,
2006)

k(u,v) = (Z(v,v) — Z(u,v))/7(v) +
+ (Z(u,u) — Z(v,u))/m(u).  (20)
For the parameter of eqn. (4), an appropriate
choice is € = |I'(s)| + 1; for reliable neighbor-
hoods, this quantity is insignificant. POS tags and
lemmata are generated with TreeTagger!.

Figure 7 depicts the most basic type of graph
that can be extracted from a cluster; it includes
two source phrase vertices a, b, of different syn-
tactic information. Suppose that both a and
b are highly reliable with strengths n(a;7) =
n(b; T') = 40, for some target cluster 7. The re-
sulting conditional probabilities adequately repre-
sent the proximity of the involved vertices. On
the other hand, the range of the co-occurrence
counts is not compatible with that of the strengths.
This is because i) there are no phrase vertices with
small strength in the graph, and ii) eqn. (9) is es-
sentially a comparison between a pair of vertices
and the rest of the graph. To overcome this prob-
lem inflation vertices i, and 7; of strength 1 with
accompanying feature vertices are introduced to

the graph. Figure 8 depicts the new graph, where
the lengths of the edges represent the magnitude
of commute times. Observe that the quality of
the probabilities is preserved but the counts are
inflated, as required.

In general, if a source phrase vertex s has at
least one translation ¢ such that n(s,¢) > 3, thena
triplet (is, f(is), g(is)) is added to the graph as in
Figure 8. The inflation vertex 75 establishes edges
with all other phrase and inflation vertices in the
graph and weights are computed as in Section 3.1.
The pipeline remains the same up to eqn. (13),
where all counts that include inflation vertices are
ignored.

n(a,b) =2.0 p(bla) =20
n(a, f(a) =26 p(fla)a) =27
n(a,gla)) =26 plgla)la) =27
n(a, f(b)) =13 p(f(b)la) =.13
n(a,g(b)) =13 p(g(b)la) =.13

Figure 7: Top: A graph with source phrase ver-
tices a and b, both of strength 40, with accom-
panying distinct POS sequence vertices f(-) and
stem sequence vertices g(-). Bottom: The result-
ing co-occurrence counts and conditional proba-
bilities for a.

Figure 8: The inflated version of Figure 7.

Uhttp://www.ims.uni-stuttgart.de/projekte/corplex/Tree Tagger/



4.2 Results

Our method generates conditional probabilities
for any pair chosen from {phrase, POS sequence,
stem sequence }, but for this evaluation we restrict
ourselves to phrase pairs. For a phrase s, the qual-
ity of a paraphrase s’ is assessed by

P(s'|s) o< p(s']s) + p(f1()]s) + p(fa(s)]5),
2D
where f1(s’) and fs(s’) denote the POS tag se-
quence and stem sequence of s’ respectively. All
three summands of eqn. (21) are computed from
eqn. (19). The baseline is given by pivoting (Ban-
nard and Callison-Burch, 2005),

P(s'|s) = > plt|s)p(s']1), (22)

where p(t|s) and p(s’|t) are the phrase-based rel-
ative frequencies of the translation model.

We select 150 phrases (an equal number for
unigrams, bigrams and trigrams), for which we
expect to see paraphrases, and keep the top-10
paraphrases for each phrase, ranked by the above
measures. We follow (Kok and Brockett, 2010;
Metzler et al., 2011) in the evaluation of the ex-
tracted paraphrases: Each phrase-paraphrase pair
is manually annotated with the following options:
0) Different meaning; 1) (i) Same meaning, but
potential replacement of the phrase with the para-
phrase in a sentence ruins the grammatical struc-
ture of the sentence. (ii) Tokens of the paraphrase
are morphological inflections of the phrase’s to-
kens. 2) Same meaning. Although useful for SMT
purposes, ‘super/substrings of” are annotated with
0 to achieve an objective evaluation.

Both methods are evaluated in terms of the
Mean Expected Precision (MEP) at k; the Ex-
pected Precision for each selected phrase s at
rank k is computed by E,[pQk] %Zle Dis
where p; is the proportion of positive annotations
for item ¢. The desired metric is thus given by
MEPQk = 115 >, E[pQk]. The contribution
to p; can be restricted to perfect paraphrases only,
which leads to a strict strategy for harvesting para-
phrases. Table 1 summarizes the results of our
evaluation and

we deduce that our method can lead to improve-
ments over the baseline.

An important accomplishment of our method
is that the distribution of counts n(u, v), (as given

Method Lenient MEP Strict MEP
@] | @5 | @10| @1 | @5 | @10

Baseline| .58 | 47 | 41 | 43 | .33 | .28

Graphs | .72 | .61 | .52 | .53 | 40 | .33

Table 1: Mean Expected Precision (MEP) at & un-
der lenient and strict evaluation criteria.

by eqns. (15)—(17)) for all vertices u and v, be-
longs to the power-law family (Figure 9). This is
evidence that the monolingual graphs can simu-
late the phrase extraction process of a monolin-
gual parallel corpus. Intuitively, we may think of
the German side of the DE-EN parallel corpus as
the ‘English’ approximation to a ‘EN’-EN par-
allel corpus, and the monolingual graphs as the
word alignment process.

10°
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Figure 9: Log-log plot of ranked pairs of English
vertices according to their counts

5 Conclusions & Future Work

We have described a new method that harvests
paraphrases from a bitext, generates artificial
co-occurrence counts for any pair chosen from
{phrase, POS sequence, stem sequence}, and po-
tentially identifies patterns for the syntactic infor-
mation of the phrases. The quality of the para-
phrases’ ranked lists outperforms that of a stan-
dard baseline. The quality of the resulting condi-
tional probabilities is promising and will be eval-
uated implicitly via an application to SMT.

This research was funded by the European
Commission through the CoSyne project FP7-
ICT- 4-248531.
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Abstract

We introduce two Bayesian models for un-
supervised semantic role labeling (SRL)
task. The models treat SRL as clustering
of syntactic signatures of arguments with
clusters corresponding to semantic roles.
The first model induces these clusterings
independently for each predicate, exploit-
ing the Chinese Restaurant Process (CRP)
as a prior. In a more refined hierarchical
model, we inject the intuition that the clus-
terings are similar across different predi-
cates, even though they are not necessar-
ily identical. This intuition is encoded as
a distance-dependent CRP with a distance
between two syntactic signatures indicating
how likely they are to correspond to a single
semantic role. These distances are automat-
ically induced within the model and shared
across predicates. Both models achieve
state-of-the-art results when evaluated on
PropBank, with the coupled model consis-
tently outperforming the factored counter-
part in all experimental set-ups.

1 Introduction

Semantic role labeling (SRL) (Gildea and Juraf-
sky, 2002), a shallow semantic parsing task, has
recently attracted a lot of attention in the com-
putational linguistic community (Carreras and
Marquez, 2005; Surdeanu et al., 2008; Haji¢ et
al., 2009). The task involves prediction of predi-
cate argument structure, i.e. both identification of
arguments as well as assignment of labels accord-
ing to their underlying semantic role. For exam-
ple, in the following sentences:

(a) [a0 Mary] opened [4; the door].
(b) [40 Mary] is expected to open [ 41 the door].

(¢) [41 The door| opened.
(d) [41 The door| was opened [ 49 by Mary].

Mary always takes an agent role (A0) for the pred-
icate open, and door is always a patient (Al).
SRL representations have many potential appli-
cations in natural language processing and have
recently been shown to be beneficial in question
answering (Shen and Lapata, 2007; Kaisser and
Webber, 2007), textual entailment (Sammons et
al., 2009), machine translation (Wu and Fung,
2009; Liu and Gildea, 2010; Wu et al., 2011; Gao
and Vogel, 2011), and dialogue systems (Basili et
al., 2009; van der Plas et al., 2011), among others.
Though syntactic representations are often predic-
tive of semantic roles (Levin, 1993), the interface
between syntactic and semantic representations is
far from trivial. The lack of simple determinis-
tic rules for mapping syntax to shallow semantics
motivates the use of statistical methods.

Although current statistical approaches have
been successful in predicting shallow seman-
tic representations, they typically require large
amounts of annotated data to estimate model pa-
rameters. These resources are scarce and ex-
pensive to create, and even the largest of them
have low coverage (Palmer and Sporleder, 2010).
Moreover, these models are domain-specific, and
their performance drops substantially when they
are used in a new domain (Pradhan et al., 2008).
Such domain specificity is arguably unavoidable
for a semantic analyzer, as even the definitions
of semantic roles are typically predicate specific,
and different domains can have radically different
distributions of predicates (and their senses). The
necessity for a large amounts of human-annotated
data for every language and domain is one of the
major obstacles to the wide-spread adoption of se-
mantic role representations.

These challenges motivate the need for unsu-
pervised methods which, instead of relying on la-
beled data, can exploit large amounts of unlabeled
texts. In this paper, we propose simple and effi-
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cient hierarchical Bayesian models for this task.

It is natural to split the SRL task into two
stages: the identification of arguments (the iden-
tification stage) and the assignment of semantic
roles (the labeling stage). In this and in much
of the previous work on unsupervised techniques,
the focus is on the labeling stage. Identification,
though an important problem, can be tackled with
heuristics (Lang and Lapata, 2011a; Grenager and
Manning, 2006) or, potentially, by using a super-
vised classifier trained on a small amount of data.
We follow (Lang and Lapata, 2011a), and regard
the labeling stage as clustering of syntactic sig-
natures of argument realizations for every predi-
cate. In our first model, as in most of the previous
work on unsupervised SRL, we define an indepen-
dent model for each predicate. We use the Chi-
nese Restaurant Process (CRP) (Ferguson, 1973)
as a prior for the clustering of syntactic signatures.
The resulting model achieves state-of-the-art re-
sults, substantially outperforming previous meth-
ods evaluated in the same setting.

In the first model, for each predicate we inde-
pendently induce a linking between syntax and se-
mantics, encoded as a clustering of syntactic sig-
natures. The clustering implicitly defines the set
of permissible alternations, or changes in the syn-
tactic realization of the argument structure of the
verb. Though different verbs admit different alter-
nations, some alternations are shared across mul-
tiple verbs and are very frequent (e.g., passiviza-
tion, example sentences (a) vs. (d), or dativiza-
tion: John gave a book to Mary vs. John gave
Mary a book) (Levin, 1993). Therefore, it is nat-
ural to assume that the clusterings should be sim-
ilar, though not identical, across verbs.

Our second model encodes this intuition by re-
placing the CRP prior for each predicate with
a distance-dependent CRP (dd-CRP) prior (Blei
and Frazier, 2011) shared across predicates. The
distance between two syntactic signatures en-
codes how likely they are to correspond to a sin-
gle semantic role. Unlike most of the previous
work exploiting distance-dependent CRPs (Blei
and Frazier, 2011; Socher et al., 2011; Duan et al.,
2007), we do not encode prior or external knowl-
edge in the distance function but rather induce it
automatically within our Bayesian model. The
coupled dd-CRP model consistently outperforms
the factored CRP counterpart across all the experi-
mental settings (with gold and predicted syntactic

parses, and with gold and automatically identified
arguments).

Both models admit efficient inference: the es-
timation time on the Penn Treebank WSJ corpus
does not exceed 30 minutes on a single proces-
sor and the inference algorithm is highly paral-
lelizable, reducing inference time down to sev-
eral minutes on multiple processors. This sug-
gests that the models scale to much larger corpora,
which is an important property for a successful
unsupervised learning method, as unlabeled data
is abundant.

The rest of the paper is structured as follows.
Section 2 begins with a definition of the seman-
tic role labeling task and discuss some specifics
of the unsupervised setting. In Section 3, we de-
scribe CRPs and dd-CRPs, the key components
of our models. In Sections 4 — 6, we describe
our factored and coupled models and the infer-
ence method. Section 7 provides both evaluation
and analysis. Finally, additional related work is
presented in Section 8.

2 Task Definition

In this work, instead of assuming the availabil-
ity of role annotated data, we rely only on auto-
matically generated syntactic dependency graphs.
While we cannot expect that syntactic structure
can trivially map to a semantic representation
(Palmer et al., 2005)', we can use syntactic cues
to help us in both stages of unsupervised SRL.
Before defining our task, let us consider the two
stages separately.

In the argument identification stage, we imple-
ment a heuristic proposed in (Lang and Lapata,
2011a) comprised of a list of 8 rules, which use
nonlexicalized properties of syntactic paths be-
tween a predicate and a candidate argument to it-
eratively discard non-arguments from the list of
all words in a sentence. Note that inducing these
rules for a new language would require some lin-
guistic expertise. One alternative may be to an-
notate a small number of arguments and train a
classifier with nonlexicalized features instead.

In the argument labeling stage, semantic roles
are represented by clusters of arguments, and la-
beling a particular argument corresponds to decid-
ing on its role cluster. However, instead of deal-

! Although it provides a strong baseline which is diffi-
cult to beat (Grenager and Manning, 2006; Lang and Lapata,
2010; Lang and Lapata, 2011a).
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ing with argument occurrences directly, we rep-
resent them as predicate specific syntactic signa-
tures, and refer to them as argument keys. This
representation aids our models in inducing high
purity clusters (of argument keys) while reducing
their granularity. We follow (Lang and Lapata,
2011a) and use the following syntactic features to
form the argument key representation:

e Active or passive verb voice (ACT/PASS).

e Argument position relative to predicate
(LEFT/RIGHT).

e Syntactic relation to its governor.
e Preposition used for argument realization.

In the example sentences in Section 1, the argu-
ment keys for candidate arguments Mary for sen-
tences (a) and (d) would be ACT: LEFT: SBJ and
PASS:RIGHT:LGS—>by,? respectively. While
aiming to increase the purity of argument key
clusters, this particular representation will not al-
ways produce a good match: e.g. the door in
sentence (c) will have the same key as Mary in
sentence (a). Increasing the expressiveness of the
argument key representation by flagging intransi-
tive constructions would distinguish that pair of
arguments. However, we keep this particular rep-
resentation, in part to compare with the previous
work.

In this work, we treat the unsupervised seman-
tic role labeling task as clustering of argument
keys. Thus, argument occurrences in the corpus
whose keys are clustered together are assigned the
same semantic role. Note that some adjunct-like
modifier arguments are already explicitly repre-
sented in syntax and thus do not need to be clus-
tered (modifiers AM—-TMP, AM-MNR, AM-10C, and
AM-DIR are encoded as ‘syntactic’ relations TMP,
MNR, LOC, and DIR, respectively (Surdeanu et al.,
2008)); instead we directly use the syntactic labels
as semantic roles.

3 Traditional and Distance-dependent
CRPs

The central components of our non-parametric
Bayesian models are the Chinese Restaurant Pro-
cesses (CRPs) and the closely related Dirichlet
Processes (DPs) (Ferguson, 1973).

CRPs define probability distributions over par-
titions of a set of objects. An intuitive metaphor

2LGS denotes a logical subject in a passive construction
(Surdeanu et al., 2008).

for describing CRPs is assignment of tables to
restaurant customers. Assume a restaurant with a
sequence of tables, and customers who walk into
the restaurant one at a time and choose a table to
join. The first customer to enter is assigned the
first table. Suppose that when a client number %
enters the restaurant, ¢+ — 1 customers are sitting
at each of the k € (1,..., K) tables occupied so
far. The new customer is then either seated at one
of the K tables with probability Z._]Y t» where N},
is the number customers already sitting at table
k, or assigned to a new table with the probability
i_f‘+a. The concentration parameter o encodes
the granularity of the drawn partitions: the larger
a, the larger the expected number of occupied ta-
bles. Though it is convenient to describe CRP in a
sequential manner, the probability of a seating ar-
rangement is invariant of the order of customers’
arrival, i.e. the process is exchangeable. In our
factored model, we use CRPs as a prior for clus-
tering argument keys, as we explain in Section 4.

Often CRP is used as a part of the Dirich-
let Process mixture model where each subset in
the partition (each table) selects a parameter (a
meal) from some base distribution over parame-
ters. This parameter is then used to generate all
data points corresponding to customers assigned
to the table. The Dirichlet processes (DP) are
closely connected to CRPs: instead of choosing
meals for customers through the described gener-
ative story, one can equivalently draw a distribu-
tion G over meals from DP and then draw a meal
for every customer from (G. We refer the reader
to Teh (2010) for details on CRPs and DPs. In
our method, we use DPs to model distributions of
arguments for every role.

In order to clarify how similarities between
customers can be integrated in the generative pro-
cess, we start by reformulating the traditional
CRP in an equivalent form so that distance-
dependent CRP (dd-CRP) can be seen as its gen-
eralization. Instead of selecting a table for each
customer as described above, one can equiva-
lently assume that a customer ¢ chooses one of
the previous customers c; as a partner with prob-
ability ﬁ and sits at the same table, or occu-
pies a new table with the probability ;—— . The
transitive closure of this seating-with relation de-
termines the partition.

A generalization of this view leads to the defini-
tion of the distance-dependent CRP. In dd-CRPs,

14



a customer ¢ chooses a partner ¢; = j with
the probability proportional to some non-negative
score d; j (d; ; = dj;) which encodes a similarity
between the two customers.? More formally,

p<c,-=j\D7a>o<{ P77

di,jv
«,

NG
where D is the entire similarity graph. This pro-
cess lacks the exchangeability property of the tra-
ditional CRP but efficient approximate inference
with dd-CRP is possible with Gibbs sampling.
For more details on inference with dd-CRPs, we
refer the reader to Blei and Frazier (2011).
Though in previous work dd-CRP was used ei-
ther to encode prior knowledge (Blei and Fra-
zier, 2011) or other external information (Socher
et al.,, 2011), we treat D as a latent variable
drawn from some prior distribution over weighted
graphs. This view provides a powerful approach
for coupling a family of distinct but similar clus-
terings: the family of clusterings can be drawn by
first choosing a similarity graph D for the entire
family and then re-using D to generate each of the
clusterings independently of each other as defined
by equation (1). In Section 5, we explain how we
use this formalism to encode relatedness between
argument key clusterings for different predicates.

4 Factored Model

In this section we describe the factored method
which models each predicate independently. In
Section 2 we defined our task as clustering of ar-
gument keys, where each cluster corresponds to a
semantic role. If an argument key k is assigned
to arole r (k € r), all of its occurrences are la-
beled .

Our Bayesian model encodes two common as-
sumptions about semantic roles. First, we enforce
the selectional restriction assumption: we assume
that the distribution over potential argument fillers
is sparse for every role, implying that ‘peaky’ dis-
tributions of arguments for each role r are pre-
ferred to flat distributions. Second, each role nor-
mally appears at most once per predicate occur-
rence. Our inference will search for a clustering
which meets the above requirements to the maxi-
mal extent.

31t may be more standard to use a decay function f :
R — R and choose a partner with the probability propor-
tional to f(—d;,;). However, the two forms are equivalent

and using scores d; ; directly is more convenient for our in-
duction purposes.

Our model associates two distributions with
each predicate: one governs the selection of argu-
ment fillers for each semantic role, and the other
models (and penalizes) duplicate occurrence of
roles. Each predicate occurrence is generated in-
dependently given these distributions. Let us de-
scribe the model by first defining how the set of
model parameters and an argument key clustering
are drawn, and then explaining the generation of
individual predicate and argument instances. The
generative story is formally presented in Figure 1.

We start by generating a partition of argument
keys B, with each subset r € B, representing
a single semantic role. The partitions are drawn
from CRP(«) (see the Factored model section of
Figure 1) independently for each predicate. The
crucial part of the model is the set of selectional
preference parameters 0,, -, the distributions of ar-
guments x for each role r of predicate p. We
represent arguments by their syntactic heads,* or
more specifically, by either their lemmas or word
clusters assigned to the head by an external clus-
tering algorithm, as we will discuss in more detail
in Section 7.° For the agent role A0 of the pred-
icate open, for example, this distribution would
assign most of the probability mass to arguments
denoting sentient beings, whereas the distribution
for the patient role A1 would concentrate on ar-
guments representing “openable” things (doors,
boxes, books, etc).

In order to encode the assumption about sparse-
ness of the distributions 6, ., we draw them from
the DP prior DP (3, H4)) with a small concen-
tration parameter 0, the base probability distribu-
tion HY) is just the normalized frequencies of ar-
guments in the corpus. The geometric distribution
Py 18 used to model the number of times a role
r appears with a given predicate occurrence. The
decision whether to generate at least one role 7 is
drawn from the uniform Bernoulli distribution. If
0 is drawn then the semantic role is not realized
for the given occurrence, otherwise the number
of additional roles 7 is drawn from the geometric
distribution Geom(1p ;). The Beta priors over 9

*For prepositional phrases, we take as head the head noun
of the object noun phrase as it encodes crucial lexical infor-
mation. However, the preposition is not ignored but rather
encoded in the corresponding argument key, as explained
in Section 2.

3 Alternatively, the clustering of arguments could be in-
duced within the model, as done in (Titov and Klementiev,
2011).
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Clustering of argument keys:

Factored model:

for each predicate p = 1,2,...:
B, ~ CRP(«) [partition of arg keys]

Coupled model:

D ~ NonInform

for each predicate p = 1,2, ...:
B, ~ dd-CRP(«, D)

[similarity graph]

[partition of arg keys]

Parameters:

for each predicate p = 1,2, ...:
for each role r € B):
Op,r ~ DP(3, H)
Vp,r ~ Beta(no,m)

[distrib of arg fillers]
[geom distr for dup roles]

Data Generation:

for each predicate p = 1,2, . ..:
for each occurrence [ of p:
for every role r € By:
if [n ~ Unif(0,1)] = 1: [role appears at least once]
GenArgument(p, 7) [draw one arg]
while [n ~ ¥p ] = 1: [continue generation]
GenArgument(p, r) [draw more args]

GenArgument(p, ):
kpr ~Unif(1,...,|r|)

Tp,r ~ Op,r

[draw arg key]
[draw arg filler]

Figure 1: Generative stories for the factored and cou-
pled models.

can indicate the preference towards generating at
most one argument for each role. For example,
it would express the preference that a predicate
open typically appears with a single agent and a
single patient arguments.

Now, when parameters and argument key clus-
terings are chosen, we can summarize the re-
mainder of the generative story as follows. We
begin by independently drawing occurrences for
each predicate. For each predicate role we in-
dependently decide on the number of role occur-
rences. Then we generate each of the arguments
(see GenArgument) by generating an argument
key &, uniformly from the set of argument keys
assigned to the cluster r, and finally choosing its
filler x ., where the filler is either a lemma or a
word cluster corresponding to the syntactic head
of the argument.

S Coupled Model

As we argued in Section 1, clusterings of argu-
ment keys implicitly encode the pattern of alter-

nations for a predicate. E.g., passivization can be
roughly represented with the clustering of the key
ACT:LEFT:SBJ with PASS:RIGHT:LGS->by
and ACT:RIGHT:0BJ with PASS:LEFT:SBJ.
The set of permissible alternations is predicate-
specific,’ but nevertheless they arguably repre-
sent a small subset of all clusterings of argu-
ment keys. Also, some alternations are more
likely to be applicable to a verb than others: for
example, passivization and dativization alterna-
tions are both fairly frequent, whereas, locative-
preposition-drop alternation (Mary climbed up the
mountain vs. Mary climbed the mountain) is less
common and applicable only to several classes
of predicates representing motion (Levin, 1993).
We represent this observation by quantifying how
likely a pair of keys is to be clustered. These
scores (d; ; for every pair of argument keys 7 and
j) are induced automatically within the model,
and treated as latent variables shared across pred-
icates. Intuitively, if data for several predicates
strongly suggests that two argument keys should
be clustered (e.g., there is a large overlap be-
tween argument fillers for the two keys) then the
posterior will indicate that d; ; is expected to be
greater for the pair {7, j} than for some other pair
{#', 7'} for which the evidence is less clear. Con-
sequently, argument keys ¢ and j will be clustered
even for predicates without strong evidence for
such a clustering, whereas 7' and ;" will not.

One argument against coupling predicates may
stem from the fact that we are using unlabeled
data and may be able to obtain sufficient amount
of learning material even for less frequent pred-
icates. This may be a valid observation, but an-
other rationale for sharing this similarity structure
is the hypothesis that alternations may be easier
to detect for some predicates than for others. For
example, argument key clustering of predicates
with very restrictive selectional restrictions on ar-
gument fillers is presumably easier than clustering
for predicates with less restrictive and overlap-
ping selectional restriction, as compactness of se-
lectional preferences is a central assumption driv-
ing unsupervised learning of semantic roles. E.g.,
predicates change and defrost belong to the same
Levin class (change-of-state verbs) and therefore
admit similar alternations. However, the set of po-
tential patients of defrost is sufficiently restricted,

®0r, at least specific to a class of predicates (Levin,
1993).
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whereas the selectional restrictions for the patient
of change are far less specific and they overlap
with selectional restrictions for the agent role, fur-
ther complicating the clustering induction task.
This observation suggests that sharing clustering
preferences across verbs is likely to help even if
the unlabeled data is plentiful for every predicate.

More formally, we generate scores d;;, or
equivalently, the full labeled graph D with ver-
tices corresponding to argument keys and edges
weighted with the similarity scores, from a prior.
In our experiments we use a non-informative prior
which factorizes over pairs (i.e. edges of the
graph D), though more powerful alternatives can
be considered. Then we use it, in a dd-CRP(«,
D), to generate clusterings of argument keys for
every predicate. The rest of the generative story is
the same as for the factored model. The part rele-
vant to this model is shown in the Coupled model
section of Figure 1.

Note that this approach does not assume that
the frequencies of syntactic patterns correspond-
ing to alternations are similar, and a large value
for d; ; does not necessarily mean that the corre-
sponding syntactic frames ¢ and j are very fre-
quent in a corpus. What it indicates is that a large
number of different predicates undergo the corre-
sponding alternation; the frequency of the alterna-
tion is a different matter. We believe that this is an
important point, as we do not make a restricting
assumption that an alternation has the same dis-
tributional properties for all verbs which undergo
this alternation.

6 Inference

An inference algorithm for an unsupervised
model should be efficient enough to handle vast
amounts of unlabeled data, as it can easily be ob-
tained and is likely to improve results. We use
a simple approximate inference algorithm based
on greedy MAP search. We start by discussing
MAP search for argument key clustering with the
factored model and then discuss its extension ap-
plicable to the coupled model.

6.1 Role Induction

For the factored model, semantic roles for every
predicate are induced independently. Neverthe-
less, search for a MAP clustering can be expen-
sive, as even a move involving a single argument

key implies some computations for all its occur-
rences in the corpus. Instead of more complex
MAP search algorithms (see, e.g., (Daume III,
2007)), we use a greedy procedure where we start
with each argument key assigned to an individual
cluster, and then iteratively try to merge clusters.
Each move involves (1) choosing an argument key
and (2) deciding on a cluster to reassign it to. This
is done by considering all clusters (including cre-
ating a new one) and choosing the most probable
one.

Instead of choosing argument keys randomly at
the first stage, we order them by corpus frequency.
This ordering is beneficial as getting clustering
right for frequent argument keys is more impor-
tant and the corresponding decisions should be
made earlier.” We used a single iteration in our
experiments, as we have not noticed any benefit
from using multiple iterations.

6.2 Similarity Graph Induction

In the coupled model, clusterings for different
predicates are statistically dependent, as the simi-
larity structure D is latent and shared across pred-
icates. Consequently, a more complex inference
procedure is needed. For simplicity here and in
our experiments, we use the non-informative prior
distribution over D which assigns the same prior
probability to every possible weight d; ; for every
pair {i,7}.

Recall that the dd-CRP prior is defined in terms
of customers choosing other customers to sit with.
For the moment, let us assume that this relation
among argument keys is known, that is, every ar-
gument key k for predicate p has chosen an argu-
ment key ¢, to ‘sit’” with. We can compute the
MAP estimate for all d; ; by maximizing the ob-
jective:

arg maxz Z log =———

2]7Z7é.7 P kEK

kcpk

Ek’er di, k’

where K, is the set of all argument keys for the
predicate p. We slightly abuse the notation by us-
ing d; ; to denote the concentration parameter o
in the previous expression. Note that we also as-
sume that similarities are symmetric, d; ; = d; ;.
If the set of argument keys K, would be the same
for every predicate, then the optimal d; ; would

"This idea has been explored before for shallow semantic

representations (Lang and Lapata, 2011a; Titov and Klemen-
tiev, 2011).
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be proportional to the number of times either ¢ se-
lects j as a partner, or j chooses i as a partner.’
This no longer holds if the sets are different, but
the solution can be found efficiently using a nu-
meric optimization strategy; we use the gradient
descent algorithm.

We do not learn the concentration parameter
«, as it is used in our model to indicate the de-
sired granularity of semantic roles, but instead
only learn d; ; (i # j). However, just learning
the concentration parameter would not be suffi-
cient as the effective concentration can be reduced
or increased arbitrarily by scaling all the similar-
ities d; ; (7 # j) at once, as follows from expres-
sion (1). Instead, we enforce the normalization
constraint on the similarities d; ;. We ensure that
the prior probability of choosing itself as a part-
ner, averaged over predicates, is the same as it
would be with uniform d; ; (d; ; = 1 for every
key pair {i,5}, ¢ # j). This roughly says that
we want to preserve the same granularity of clus-
tering as it was with the uniform similarities. We
accomplish this normalization in a post-hoc fash-
ion by dividing the weights after optimization by

Dop 2ok ek,, ki g/ D0 K p| (1K p| — 1).

If D is fixed, partners for every predicate p and
every k can be found using virtually the same al-
gorithm as in Section 6.1: the only difference is
that, instead of a cluster, each argument key itera-
tively chooses a partner.

Though, in practice, both the choice of partners
and the similarity graphs are latent, we can use an
iterative approach to obtain a joint MAP estimate
of ¢ (for every k) and the similarity graph D by
alternating the two steps.’

Notice that the resulting algorithm is again
highly parallelizable: the graph induction stage
is fast, and induction of the seat-with relation
(i.e. clustering argument keys) is factorizable over
predicates.

One shortcoming of this approach is typical
for generative models with multiple ‘features’:
when such a model predicts a latent variable, it
tends to ignore the prior class distribution and re-
lies solely on features. This behavior is due to
the over-simplifying independence assumptions.
It is well known, for instance, that the poste-

8Note that weights d;; are invariant under rescaling
when the rescaling is also applied to the concentration pa-
rameter o.

°In practice, two iterations were sufficient.

rior with Naive Bayes tends to be overconfident
due to violated conditional independence assump-
tions (Rennie, 2001). The same behavior is ob-
served here: the shared prior does not have suf-
ficient effect on frequent predicates.'® Though
different techniques have been developed to dis-
count the over-confidence (Kolcz and Chowdhury,
2005), we use the most basic one: we raise the
likelihood term in power %, where the parameter
T is chosen empirically.

7 Empirical Evaluation

7.1 Data and Evaluation

We keep the general setup of (Lang and Lapata,
2011a), to evaluate our models and compare them
to the current state of the art. We run all of our
experiments on the standard CoNLL 2008 shared
task (Surdeanu et al., 2008) version of Penn Tree-
bank WSJ and PropBank. In addition to gold
dependency analyses and gold PropBank annota-
tions, it has dependency structures generated au-
tomatically by the MaltParser (Nivre et al., 2007).
We vary our experimental setup as follows:

e We evaluate our models on gold and auto-
matically generated parses, and use either
gold PropBank annotations or the heuristic
from Section 2 to identify arguments, result-
ing in four experimental regimes.

e In order to reduce the sparsity of predicate
argument fillers we consider replacing lem-
mas of their syntactic heads with word clus-
ters induced by a clustering algorithm as a
preprocessing step. In particular, we use
Brown (Br) clustering (Brown et al., 1992)
induced over RCV1 corpus (Turian et al.,
2010). Although the clustering is hierarchi-
cal, we only use a cluster at the lowest level
of the hierarchy for each word.

We use the purity (PU) and collocation (CO) met-
rics as well as their harmonic mean (F1) to mea-
sure the quality of the resulting clusters. Purity
measures the degree to which each cluster con-
tains arguments sharing the same gold role:

1
PU = szja}dG]ﬂCH

where if Cj is the set of arguments in the ¢-th in-
duced cluster, G is the set of arguments in the jth

""The coupled model without discounting still outper-
forms the factored counterpart in our experiments.
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gold cluster, and N is the total number of argu-
ments. Collocation evaluates the degree to which
arguments with the same gold roles are assigned
to a single cluster. It is computed as follows:

1
CO = sz?xmj ake]
J

We compute the aggregate PU, CO, and F1
scores over all predicates in the same way as
(Lang and Lapata, 2011a) by weighting the scores
of each predicate by the number of its argument
occurrences. Note that since our goal is to evalu-
ate the clustering algorithms, we do not include
incorrectly identified arguments (i.e. mistakes
made by the heuristic defined in Section 2) when
computing these metrics.

We evaluate both factored and coupled models
proposed in this work with and without Brown
word clustering of argument fillers (Factored,
Coupled, Factored+Br, Coupled+Br). Our mod-
els are robust to parameter settings, they were
tuned (to an order of magnitude) on the develop-
ment set and were the same for all model variants:
a=1.e3,0=1e3,n = 1l.e3,n = l.e-10,
T = 5. Although they can be induced within the
model, we set them by hand to indicate granular-
ity preferences. We compare our results with the
following alternative approaches. The syntactic
function baseline (SyntF) simply clusters predi-
cate arguments according to the dependency re-
lation to their head. Following (Lang and Lapata,
2010), we allocate a cluster for each of 20 most
frequent relations in the CoNLL dataset and one
cluster for all other relations. We also compare
our performance with the Latent Logistic classifi-
cation (Lang and Lapata, 2010), Split-Merge clus-
tering (Lang and Lapata, 2011a), and Graph Parti-
tioning (Lang and Lapata, 2011b) approaches (la-
beled LLogistic, SplitMerge, and GraphPart, re-
spectively) which achieve the current best unsu-
pervised SRL results in this setting.

7.2 Results
7.2.1 Gold Arguments

Experimental results are summarized in Ta-
ble 1. We begin by comparing our models to the
three existing clustering approaches on gold syn-
tactic parses, and using gold PropBank annota-
tions to identify predicate arguments. In this set of
experiments we measure the relative performance
of argument clustering, removing the identifica-

gold parses auto parses

PU CO Fl PU CO Fl
LLogistic 79.5 76.5 78.0 | 779 74.4 76.2
SplitMerge 88.7 73.0 80.1 | 86.5 69.8 77.3
GraphPart 88.6 70.7 78.6 | 87.4 659 75.2
Factored 88.1 77.1 82.2 | 85.1 71.8 77.9
Coupled 89.3 76.6 82.5 | 86.7 71.2 78.2
Factored+Br | 86.8 78.8 82.6 | 83.8 74.1 78.6
Coupled+Br | 88.7 78.1 83.0 | 86.2 72.7 78.8
SyntF 81.6 77.5 79.5 | 77.1 70.9 73.9

Table 1: Argument clustering performance with gold
argument identification. Bold-face is used to highlight
the best F1 scores.

tion stage, and minimize the noise due to auto-
matic syntactic annotations. All four variants of
the models we propose substantially outperform
other models: the coupled model with Brown
clustering of argument fillers (Coupled+Br) beats
the previous best model SplitMerge by 2.9% F1
score. As mentioned in Section 2, our approach
specifically does not cluster some of the modifier
arguments. In order to verify that this and argu-
ment filler clustering were not the only aspects
of our approach contributing to performance im-
provements, we also evaluated our coupled model
without Brown clustering and treating modifiers
as regular arguments. The model achieves 89.2%
purity, 74.0% collocation, and 80.9% F1 scores,
still substantially outperforming all of the alter-
native approaches. Replacing gold parses with
MaltParser analyses we see a similar trend, where
Coupled+Br outperforms the best alternative ap-
proach SplitMerge by 1.5%.

7.2.2 Automatic Arguments

Results are summarized in Table 2.'' The
precision and recall of our re-implementation of
the argument identification heuristic described in
Section 2 on gold parses were 87.7% and 88.0%,
respectively, and do not quite match 88.1% and
87.9% reported in (Lang and Lapata, 2011a).
Since we could not reproduce their argument
identification stage exactly, we are omitting their
results for the two regimes, instead including the
results for our two best models Factored+Br and
Coupled+Br. We see a similar trend, where the
coupled system consistently outperforms its fac-
tored counterpart, achieving 85.8% and 83.9% F1

"Note, that the scores are computed on correctly iden-
tified arguments only, and tend to be higher in these ex-
periments probably because the complex arguments get dis-
carded by the heuristic.
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gold parses auto parses

PU CO Fl PU CO Fl
Factored+Br | 87.8 829 85.3 | 85.8 81.1 83.4
Coupled+Br | 89.2 82.6 85.8 | 87.4 80.7 83.9
SyntF 83.5 81.4 824 | 81.4 79.1 80.2

Table 2: Argument clustering performance with auto-
matic argument identification.

for gold and MaltParser analyses, respectively.

We observe that consistently through the four
regimes, sharing of alternations between predi-
cates captured by the coupled model outperforms
the factored version, and that reducing the argu-
ment filler sparsity with clustering also has a sub-
stantial positive effect. Due to the space con-
straints we are not able to present detailed anal-
ysis of the induced similarity graph D, however,
argument-key pairs with the highest induced sim-
ilarity encode, among other things, passivization,
benefactive alternations, near-interchangeability
of some subordinating conjunctions and preposi-
tions (e.g., if and whether), as well as, restoring
some of the unnecessary splits introduced by the
argument key definition (e.g., semantic roles for
adverbials do not normally depend on whether the
construction is passive or active).

8 Related Work

Most of SRL research has focused on the super-
vised setting (Carreras and Marquez, 2005; Sur-
deanu et al., 2008), however, lack of annotated re-
sources for most languages and insufficient cover-
age provided by the existing resources motivates
the need for using unlabeled data or other forms
of weak supervision. This work includes methods
based on graph alignment between labeled and
unlabeled data (Fiirstenau and Lapata, 2009), us-
ing unlabeled data to improve lexical generaliza-
tion (Deschacht and Moens, 2009), and projection
of annotation across languages (Pado and Lapata,
2009; van der Plas et al., 2011). Semi-supervised
and weakly-supervised techniques have also been
explored for other types of semantic representa-
tions but these studies have mostly focused on re-
stricted domains (Kate and Mooney, 2007; Liang
et al., 2009; Titov and Kozhevnikov, 2010; Gold-
wasser et al., 2011; Liang et al., 2011).
Unsupervised learning has been one of the cen-
tral paradigms for the closely-related area of re-
lation extraction, where several techniques have
been proposed to cluster semantically similar ver-

balizations of relations (Lin and Pantel, 2001;
Banko et al., 2007). Early unsupervised ap-
proaches to the SRL problem include the work
by Swier and Stevenson (2004), where the Verb-
Net verb lexicon was used to guide unsupervised
learning, and a generative model of Grenager and
Manning (2006) which exploits linguistic priors
on syntactic-semantic interface.

More recently, the role induction problem has
been studied in Lang and Lapata (2010) where
it has been reformulated as a problem of detect-
ing alterations and mapping non-standard link-
ings to the canonical ones. Later, Lang and La-
pata (2011a) proposed an algorithmic approach
to clustering argument signatures which achieves
higher accuracy and outperforms the syntactic
baseline. In Lang and Lapata (2011b), the role
induction problem is formulated as a graph parti-
tioning problem: each vertex in the graph corre-
sponds to a predicate occurrence and edges repre-
sent lexical and syntactic similarities between the
occurrences. Unsupervised induction of seman-
tics has also been studied in Poon and Domin-
gos (2009) and Titov and Klementiev (2010) but
the induced representations are not entirely com-
patible with the PropBank-style annotations and
they have been evaluated only on a question an-
swering task for the biomedical domain. Also, the
related task of unsupervised argument identifica-
tion was considered in Abend et al. (2009).

9 Conclusions

In this work we introduced two Bayesian models
for unsupervised role induction. They treat the
task as a family of related clustering problem:s,
one for each predicate. The first factored model
induces each clustering independently, whereas
the second model couples them by exploiting a
novel technique for sharing clustering preferences
across a family of clusterings. Both methods
achieve state-of-the-art results with the coupled
model outperforming the factored counterpart in
all regimes.
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Entailment above the word level in distributional semantics
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Abstract

We introduce two ways to detect entail-
ment using distributional semantic repre-
sentations of phrases. Our first experiment
shows that the entailment relation between
adjective-noun constructions and their head
nouns (big cat |= cat), once represented as
semantic vector pairs, generalizes to lexical
entailment among nouns (dog |= animal).
Our second experiment shows that a classi-
fier fed semantic vector pairs can similarly
generalize the entailment relation among
quantifier phrases (many dogs|=some dogs)
to entailment involving unseen quantifiers
(all cats|=several cats). Moreover, nominal
and quantifier phrase entailment appears to
be cued by different distributional corre-
lates, as predicted by the type-based view
of entailment in formal semantics.

1 Introduction

Distributional semantics (DS) approximates lin-
guistic meaning with vectors summarizing the
contexts where expressions occur. The success
of DS in lexical semantics has validated the hy-
pothesis that semantically similar expressions oc-
cur in similar contexts (Landauer and Dumais,
1997; Lund and Burgess, 1996; Sahlgren, 2006;
Schiitze, 1997; Turney and Pantel, 2010). For-
mal semantics (FS) represents linguistic mean-
ings as symbolic formulas and assemble them via
composition rules. FS has successfully modeled
quantification and captured inferential relations
between phrases and between sentences (Mon-
tague, 1970; Thomason, 1974; Heim and Kratzer,
1998). The strengths of DS and FS have been
complementary to date: On one hand, DS has in-
duced large-scale semantic representations from
corpora, but it has been largely limited to the
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lexical domain. On the other hand, FS has pro-
vided sophisticated models of sentence meaning,
but it has been largely limited to hand-coded mod-
els that do not scale up to real-life challenges by
learning from data.

Given these complementary strengths, we nat-
urally ask if DS and FS can address each other’s
limitations. Two recent strands of research are
bringing DS closer to meeting core FS chal-
lenges. One strand attempts to model compo-
sitionality with DS methods, representing both
primitive and composed linguistic expressions
as distributional vectors (Baroni and Zamparelli,
2010; Grefenstette and Sadrzadeh, 2011; Gue-
vara, 2010; Mitchell and Lapata, 2010). The
other strand attempts to reformulate FS’s notion
of logical inference in terms that DS can cap-
ture (Erk, 2009; Geffet and Dagan, 2005; Kotler-
man et al., 2010; Zhitomirsky-Geffet and Dagan,
2010). In keeping with the lexical emphasis of
DS, this strand has focused on inference at the
word level, or lexical entailment, that is, discover-
ing from distributional vectors of hyponyms (dog)
that they entail their hypernyms (animal).

This paper brings these two strands of research
together by demonstrating two ways in which the
distributional vectors of composite expressions
bear on inference. Here we focus on phrasal vec-
tors harvested directly from the corpus rather than
obtained compositionally. In a first experiment,
we exploit the entailment properties of a class
of composite expressions, namely adjective-noun
constructions (ANs), to harvest training data for
an entailment recognizer. The recognizer is then
successfully applied to detect lexical entailment.
In short, since almost all ANs entail the noun they
contain (red car entails car), the distributional
vectors of AN-N pairs can train a classifier to de-
tect noun pairs that stand in the same relation (dog

23

Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 23-32,
Avignon, France, April 23 - 27 2012. (©2012 Association for Computational Linguistics



entails animal). With almost no manual effort,
we achieve performance nearly identical with the
state-of-the-art balAPinc measure that Kotlerman
et al. (2010) crafted, which detects feature inclu-
sion between the two nouns’ occurrence contexts.

Our second experiment goes beyond lexical in-
ference. We look at phrases built from a quanti-
fying determiner! and a noun (QNs) and use their
distributional vectors to recognize entailment re-
lations of the form many dogs |= some dogs, be-
tween two QNs sharing the same noun. It turns
out that a classifier trained on a set of Q1N = Q2N
pairs can recognize entailment in pairs with a new
quantifier configuration. For example, we can
train on many dogs |= some dogs then correctly
predict all catsi=several cats. Interestingly, on the
QN entailment task, neither our classifier trained
on AN-N pairs nor the balAPinc method beat
baseline methods. This suggests that our success-
ful QN classifiers tap into vector properties be-
yond such relations as feature inclusion that those
methods for nominal entailment rely upon.

Together, our experiments show that corpus-
harvested DS representations of composite ex-
pressions such as ANs and QNs contain suffi-
cient information to capture and generalize their
inference patterns. This result brings DS closer
to the central concerns of FS. In particular, the
QN study is the first to our knowledge to show
that DS vectors capture semantic properties not
only of content words, but of an important class of
function words (quantifying determiners) deeply
studied in FS but of little interest until now in DS.

Besides these theoretical implications, our re-
sults are of practical import. First, our AN study
presents a novel, practical method for detect-
ing lexical entailment that reaches state-of-the-
art performance with little or no manual interven-
tion. Lexical entailment is in turn fundamental
for constructing ontologies and other lexical re-
sources (Buitelaar and Cimiano, 2008). Second,
our QN study demonstrates that phrasal entail-
ment can be automatically detected and thus paves
the way to apply DS to advanced NLP tasks such
as recognizing textual entailment (Dagan et al.,
2009).

'In the sequel we will simply refer to a “quantifying de-
terminer” as a “quantifier”.

2 Background

2.1 Distributional semantics above the word
level

DS models such as LSA (Landauer and Dumais,
1997) and HAL (Lund and Burgess, 1996) ap-
proximate the meaning of a word by a vector that
summarizes its distribution in a corpus, for exam-
ple by counting co-occurrences of the word with
other words. Since semantically similar words
tend to share similar contexts, DS has been very
successful in tasks that require quantifying se-
mantic similarity among words, such as synonym
detection and concept clustering (Turney and Pan-
tel, 2010).

Recently, there has been a flurry of interest
in DS to model meaning composition: How can
we derive the DS representation of a composite
phrase from that of its constituents? Although the
general focus in the area is to perform algebraic
operations on word semantic vectors (Mitchell
and Lapata, 2010), some researchers have also di-
rectly examined the corpus contexts of phrases.
For example, Baldwin et al. (2003) studied vec-
tor extraction for phrases because they were inter-
ested in the decomposability of multiword expres-
sions. Baroni and Zamparelli (2010) and Gue-
vara (2010) look at corpus-harvested phrase vec-
tors to learn composition functions that should de-
rive such composite vectors automatically. Ba-
roni and Zamparelli, in particular, showed qual-
itatively that directly corpus-harvested vectors for
AN constructions are meaningful; for example,
the vector of young husband has nearest neigh-
bors small son, small daughter and mistress. Fol-
lowing up on this approach, we show here quanti-
tatively that corpus-harvested AN vectors are also
useful for detecting entailment. We find moreover
distributional vectors informative and useful not
only for phrases made of content words (such as
ANs) but also for phrases containing functional
elements, namely quantifying determiners.

2.2 Entailment from formal to distributional
semantics

Entailment in FS To characterize the condi-
tions under which a sentence is true, FS begins
with the lexical meanings of the words in the sen-
tence and builds up the meanings of larger and
larger phrases until it arrives at the meaning of the
whole sentence. The meanings throughout this
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compositional process inhabit a variety of seman-
tic domains, depending on the syntactic category
of the expressions: typically, a sentence denotes a
truth value (t rue or false) or truth conditions,
a noun such as car denotes a set of entities, and a
quantifier phrase (QP) such as all cats denotes a
set of sets of entities.

The entailment relation (=) is a core notion of
logic: it holds between one or more sentences and
a sentence such that it cannot be that the former
(antecedent) are true and the latter (consequent)
is false. FS extends this notion from formal-logic
sentences to natural-language expressions. By as-
signing meanings to parts of a sentence, FS allows
defining entailment not only among sentences but
also among words and phrases. Each semantic
domain A has its own entailment relation |=4.
The entailment relation =g among sentences is
the logical notion just described, whereas the en-
tailment relations =y and =qp among nouns
and quantifier phrases are the inclusion relations
among sets of entities and sets of sets of entities
respectively. Our results in Section 5 show that
DS needs to treat =y and |=qp differently as well.

Empirical, corpus-based perspectives on en-
tailment Until recently, the corpus-based re-
search tradition has studied entailment mostly at
the word level, with applied goals such as clas-
sifying lexical relations and building taxonomic
WordNet-like resources automatically. The most
popular approach, first adopted by Hearst (1992),
extracts lexical relations from patterns in large
corpora. For instance, from the pattern Nj such
as Ny one learns that Ny |= Ny (from insects such
as beetles, derive beetles |= insects). Several stud-
ies have refined and extended this approach (Pan-
tel and Ravichandran, 2004; Snow et al., 2005;
Snow et al., 2006; Turney, 2008).

While empirically very successful, the pattern-
based method is mostly limited to single content
words (or frequent content-word phrases). We are
interested in entailment between phrases, where it
is not obvious how to use lexico-syntactic patterns
and cope with data sparsity. For instance, it seems
hard to find a pattern that frequently connects one
QP to another it entails, as in all beetles PATTERN
many beetles. Hence, we aim to find a more gen-
eral method and investigate whether DS vectors
(whether corpus-harvested or compositionally de-
rived) encode the information needed to account

for phrasal entailment in a way that can be cap-
tured and generalized to unseen phrase pairs.
Rather recently, the study of sentential entail-
ment has taken an empirical turn, thanks to the de-
velopment of benchmarks for entailment systems.
The FS definition of entailment has been modified
by taking common sense into account. Instead of
a relation from the truth of the consequent to the
truth of the antecedent in any circumstance, the
applied view looks at entailment in terms of plau-
sibility: ¢ = v if a human who reads (and trusts)
¢ would most likely infer that ¢ is also true. En-
tailment systems have been compared under this
new perspective in various evaluation campaigns,
the best known being the Recognizing Textual En-
tailment (RTE) initiative (Dagan et al., 2009).
Most RTE systems are based on advanced NLP
components, machine learning techniques, and/or
syntactic transformations (Zanzotto et al., 2007;
Kouleykov and Magnini, 2005). A few systems
exploit deep FS analysis (Bos and Markert, 2006;
Chambers et al., 2007). In particular, the FS re-
sults about QP properties that affect entailment
have been exploited by Chambers et al, who com-
plement a core broad-coverage system with a Nat-
ural Logic module to trade lower recall for higher
precision. For instance, they exploit the mono-
tonicity properties of no that cause the follow-
ing reversal in entailment direction: some bee-
tles |= some insects but no insects |= no beetles.
To investigate entailment step by step, we ad-
dress here a much simpler and clearer type of
entailment than the more complex notion taken
up by the RTE community. While RTE is out-
side our present scope, we do focus on QP entail-
ment as Natural Logic does. However, our eval-
uation differs from Chambers et al.’s, since we
rely on general-purpose DS vectors as our only
resource, and we look at phrase pairs with differ-
ent quantifiers but the same noun. For instance,
we aim to predict that all beetles |= many beetles
but few beetles [~ all beetles. QPs, of course, have
many well-known semantic properties besides en-
tailment; we leave their analysis to future study.

Entailment in DS Erk (2009) suggests that it
may not be possible to induce lexical entailment
directly from a vector space representation, but it
is possible to encode the relation in this space af-
ter it has been derived through other means. On
the other hand, recent studies (Geffet and Dagan,
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2005; Kotlerman et al., 2010; Weeds et al., 2004)
have pursued the intuition that entailment is the
asymmetric ability of one term to “substitute” for
another. For example, baseball contexts are also
sport contexts but not vice versa, hence baseball
is “narrower” than sport and baseball = sport. On
this view, entailment between vectors corresponds
to inclusion of contexts or features, and can be
captured by asymmetric measures of distribution
similarity. In particular, Kotlerman et al. (2010)
carefully crafted the balAPinc measure (see Sec-
tion 3.5 below). We adopt this measure because
it has been shown to outperform others in several
tasks that require lexical entailment information.

Like Kotlerman et al., we want to capture the
entailment relation between vectors of features.
However, we are interested in entailment not only
between words but also between phrases, and we
ask whether the DS view of entailment as fea-
ture inclusion, which captures entailment between
nouns, also captures entailment between QPs. To
this end, we complement balAPinc with a more
flexible supervised classifier.

3 Data and methods

3.1 Semantic space

We construct distributional semantic vectors from
the 2.83-billion-token concatenation of the British
National Corpus (http://www.natcorp.
ox.ac.uk/), WackyPedia and ukWaC (http:
//wacky.sslmit.unibo.it/). We tok-
enize and POS-tag this corpus, then lemmatize
it with TreeTagger (Schmid, 1995) to merge sin-
gular and plural instances of words and phrases
(some dogs 1s mapped to some dog).

We process the corpus in two steps to compute
semantic vectors representing our phrases of in-
terest. We use phrases of interest as a general
term to refer to both multiword phrases and sin-
gle words, and more precisely to: those AN and
QN sequences that are in the data sets (see next
subsections), the adjectives, quantifiers and nouns
contained in those sequences, and the most fre-
quent (9.8K) nouns and (8.1K) adjectives in the
corpus. The first step is to count the content
words (more precisely, the most frequent 9.8K
nouns, 8.1K adjectives, and 9.6K verbs in the cor-
pus) that occur in the same sentence as phrases
of interest. In the second step, following standard
practice, the co-occurrence counts are converted

into pointwise mutual information (PMI) scores
(Church and Hanks, 1990). The result of this step
is a sparse matrix (with both positive and negative
entries) with 48K rows (one per phrase of interest)
and 27K columns (one per content word).

3.2 The AN = N data set

To characterize entailment between nouns using
their semantic vectors, we need data exemplifying
which noun entails which. This section introduces
one cheap way to collect such a training data set
exploiting semantic vectors for composed expres-
sions, namely AN sequences. We rely on the lin-
guistic fact that ANs share a syntactic category
and semantic type with plain common nouns (big
cat shares syntactic category and semantic type
with car). Furthermore, most adjectives are re-
strictive in the sense that, for every noun N, the
AN sequence entails the N alone (every big cat
is a cat). From a distributional point of view, the
vector for an N should by construction include the
information in the vector for an AN, given that the
contexts where the AN occurs are a subset of the
contexts where the N occurs (cat occurs in all the
contexts where big cat occurs). This ideal inclu-
sion suggests that the DS notion of lexical entail-
ment as feature inclusion (see Section 2.2 above)
should be reflected in the AN |= N pattern.

Because most ANs entail their head Ns, we can
create positive examples of AN = N without any
manual inspection of the corpus: simply pair up
the semantic vectors of ANs and Ns. Furthermore,
because an AN usually does not entail another N,
we can create negative examples (AN [~ Ny) just
by randomly permuting the Ns. Of course, such
unsupervised data would be slightly noisy, espe-
cially because some of the most frequent adjec-
tives are not restrictive.

To collect cleaner data and to be sure that we
are really examining the phenomenon of entail-
ment, we took a mere few moments of man-
ual effort to select the 256 restrictive adjectives
from the most frequent 300 adjectives in the cor-
pus. We then took the Cartesian product of these
256 adjectives with the 200 concrete nouns in the
BLESS data set (Baroni and Lenci, 2011). Those
nouns were chosen to avoid highly polysemous
words. From the Cartesian product, we obtain a
total of 1246 AN sequences, such as big cat, that
occur more than 100 times in the corpus. These
AN sequences encompass 190 of the 256 adjec-
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tives and 128 of the 200 nouns.

The process results in 1246 positive instances
of AN = N entailment, which we use as training
data. To create a comparable amount of negative
data, we randomly permuted the nouns in the pos-
itive instances to obtain pairs of AN; |~ N (e.g.,
big cat [~ dog). We manually double-checked that
all positive and negative examples are correctly
classified (2 of 1246 negative instances were re-
moved, leaving 1244 negative training examples).

3.3 The lexical entailment N; = N, data set

For testing data, we first listed all WordNet nouns
in our corpus, then extracted hyponym-hypernym
chains linking the first synsets of these nouns. For
example, pope is found to entail leader because
WordNet contains the chain pope — spiritual
leader — leader. Eliminating the 20 hypernyms
with more than 180 hyponyms (mostly very ab-
stract nouns such as entity, object, and quality)
yields 9734 hyponym-hypernym pairs, encom-
passing 6402 nouns. Manually double-checking
these pairs leaves us with 1385 positive instances
of Nj = N3 entailment.

We created the negative instances of again 1385
pairs by inverting 33% of the positive instances
(from popel=leader to leader|~pope), and by ran-
domly shuffling the words across the positive in-
stances. We also manually double-checked these
pairs to make sure that they are not hyponym-
hypernym pairs.

3.4 The Q;N = Q2N data set

We study 12 quantifiers: all, both, each, either,
every, few, many, most, much, no, several, some.
We took the Cartesian product of these quantifiers
with the 6402 WordNet nouns described in Sec-
tion 3.3. From this Cartesian product, we obtain
a total of 28926 QN sequences, such as every cat,
that occur at least 100 times in the corpus. These
are our QN phrases of interest to which the proce-
dure in Section 3.1 assigns a semantic vector.
Also, from the set of quantifier pairs (Q;, Q)
where Q; # Q,, we identified 13 clear cases
where Q1 =Q2 and 17 clear cases where Q; £ Q.
These 30 cases are listed in the first column of
Table 1. For each of these 30 quantifier pairs
(Q1,Q,), we enumerate those WordNet nouns N
such that semantic vectors are available for both
Q1N and Q2N (that is, both sequences occur in
at least 100 times). Each such noun then gives

Quantifier pair Instances  Correct
all |= some 1054 1044 (99%)
all |= several 557 550 (99%)
each |= some 656 647 (99%)
all = many 873 772 (88%)
much = some 248 217 (88%)
every = many 460 400 (87%)
many = some 951 822 (86%)
all = most 465 393 (85%)
several = some 580 439 (76%)
both |= some 573 322 (56%)
many = several 594 113 (19%)
most = many 463 84 (18%)
both = either 63 1 Q%)
Subtotal 7537 5804 (77%)
some £ every 484 481 (99%)
several b~ all 557 553 (99%)
several [~ every 378 375 (99%)
some £ all 1054 1043 (99%)
many b~ every 460 452 (98%)
some £ each 656 640 (98%)
few [~ all 157 153 (97%)
many = all 873 843 (97%)
both [~ most 369 347 (94%)
several [~ few 143 134 (94%)
both = many 541 397 (73%)
many [~ most 463 300 (65%)
either [~ both 63 39 (62%)
many = no 714 369 (52%)
some [~ many 951 468 (49%)
few £~ many 161 33 (20%)
both (£ several 431 63 (15%)
Subtotal 8455 6690 (79%)
Total 15992 12494 (78%)

Table 1: Entailing and non-entailing quantifier pairs
with number of instances per pair (Section 3.4) and
SVMpair-ou performance breakdown (Section 5).

rise to an instance of entailment (Q;N = Q2N if
Q1 = Qq; example: many dogs |= several dogs) or
non-entailment (Q N}~Q2N if Q; ~Qq; example:
many dogsl=most dogs). The number of QN pairs
that each quantifier pair gives rise to in this way is
listed in the second column of Table 1. As shown
there, we have a total of 7537 positive instances
and 8455 negative instances of QN entailment.

3.5 Classification methods

We consider two methods to classify candidate
pairs as entailing or non-entailing, the balAPinc
measure of Kotlerman et al. (2010) and a standard
Support Vector Machine (SVM) classifier.
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balAPinc As discussed in Section 2.2, balAP-
inc is optimized to capture a relation of feature
inclusion between the narrower (entailing) and
broader (entailed) terms, while capturing other in-
tuitions about the relative relevance of features.
balAPinc averages two terms, APinc and LIN.
APinc is given by:
S (P@) - rel' ()
| Ful

APinc is a version of the Average Precision
measure from Information Retrieval tailored to
lexical inclusion. Given vectors F;, and F;, rep-
resenting the dimensions with positive PMI val-
ues in the semantic vectors of the candidate pair
u = v, the idea is that we want the features (that
is, vector dimensions) that have larger values in
F,, to also have large values in F), (the opposite
does not matter because it is u that should be in-
cluded in v, not vice versa). The F, features are
ranked according to their PMI value so that f,
is the feature in F), with rank r, i.e., r-th high-
est PMI. Then the sum of the product of the two
terms P(r) and rel’( f,) across the features in F,
is computed. The first term is the precision at r,
which is higher when highly ranked « features are
present in F, as well. The relevance term rel’( f;)
is higher when the feature f, in F;, also appears
in F}, with a high rank. (See Kotlerman et al. for
how P(r) and rel’( f,) are computed.) The result-
ing score is normalized by dividing by the entail-
ing vector size |Fy| (in accordance with the idea
that having more v features should not hurt be-
cause the u features should be included in the v
features, not vice versa).

To balance the potentially excessive asymmetry
of APinc towards the features of the antecedent,
Kotlerman et al. average it with LIN, the widely
used symmetric measure of distributional similar-
ity proposed by Lin (1998):

_ ZfeFumFu [wy (f) +wy(f)]
ZfeFu wy(f) + ZfeF,U wy(f)

LIN essentially measures feature vector overlap.
The positive PMI values w, (f) and w,(f) of a
feature f in F), and F), are summed across those
features that are positive in both vectors, normal-
izing by the cumulative positive PMI mass in both
vectors. Finally, balAPinc is the geometric aver-
age of APinc and LIN:

balAPinc(u=v) = \/APinc(u = v) - LIN(u, v)

APinc(u =v) =

LIN(u,v)

To adapt balAPinc to recognize entailment, we
must select a threshold ¢ above which we classify
a pair as entailing. In the experiments below, we
explore two approaches. In balAPincypper, We op-
timize the threshold directly on the test data, by
setting ¢ to maximize the F-measure on the test
set. This gives us an upper bound on how well bal-
APinc could perform on the test set (but note that
optimizing F does not necessarily translate into a
good accuracy performance, as clearly illustrated
by Table 3 below). In balAPincay - N, We use the
AN [= N data set as training data and pick the ¢
that maximizes F on this training set.

We use the balAPinc measure as a refer-
ence point because, on the evidence provided by
Kotlerman et al., it is the state of the art in various
tasks related to lexical entailment. We recognize
however that it is somewhat complex and specifi-
cally tuned to capturing the relation of feature in-
clusion. Consequently, we also experiment with
a more flexible classifier, which can detect other
systematic properties of vectors in an entailment
relation. We present this classifier next.

SVM Support vector machines are widely used
high-performance discriminative classifiers that
find the hyperplane providing the best separation
between negative and positive instances (Cristian-
ini and Shawe-Taylor, 2000). Our SVM classifiers
are trained and tested using Weka 3 and LIBSVM
2.8 (Chang and Lin, 2011). We use the default
polynomial kernel ((u-v/600)3) with e (tolerance
of termination criterion) set to 1.6. This value was
tuned on the AN =N data set, which we never use
for testing. In the same initial tuning experiments
on the AN =N data set, SVM outperformed deci-
sion trees, naive Bayes, and k-nearest neighbors.
We feed each potential entailment pair to SVM
by concatenating the two vectors representing the
antecedent and consequent expressions.” How-
ever, for efficiency and to mitigate data sparse-
ness, we reduce the dimensionality of the seman-
tic vectors to 300 columns using Singular Value
Decomposition (SVD) before feeding them to the
classifier.’ Because the SVD-reduced semantic

2We have tried also to represent a pair by subtracting and
by dividing the two vectors. The concatenation operation
gave more successful results.

3To keep a manageable parameter space, we picked 300
columns without tuning. This is the best value reported in
many earlier studies, including classic LSA. Since SVD
sometimes improves the semantic space (Landauer and Du-
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vectors occupy a 300-dimensional space, the en-
tailment pairs occupy a 600-dimensional space.

An SVM with a polynomial kernel takes into
account not only individual input features but also
their interactions (Manning et al., 2008, chapter
15). Thus, our classifier can capture not just prop-
erties of individual dimensions of the antecedent
and consequent pairs, but also properties of their
combinations (e.g., the product of the first dimen-
sions of the antecedent and the consequent). We
conjecture that this property of SVMs is funda-
mental to their success at detecting entailment,
where relations between the antecedent and the
consequent should matter more than their inde-
pendent characteristics.

4 Predicting lexical entailment from
AN = N evidence

Since the contexts of AN must be a subset of the
contexts of N, semantic vectors harvested from
AN phrases and their head Ns are by construc-
tion in an inclusion relation. The first experiment
shows that these vectors constitute excellent train-
ing data to discover entailment between nouns.
This suggests that the vector pairs representing
entailment between nouns are also in an inclusion
relation, supporting the conjectures of Kotlerman
et al. (2010) and others.

Table 2 reports the results we obtained with
balAPincypper, balAPincay =N (Section 3.5) and
SVMaN e~ (the SVM classifier trained on the
AN = N data). As an upper bound for meth-
ods that generalize from AN = N, we also re-
port the performance of SVM trained with 10-fold
cross-validation on the N; |= Ny data themselves
(SVMypper). Finally, we tried two baseline classi-
fiers. The first baseline (fq(N1) < fq(N2)) guesses
entailment if the first word is less frequent than
the second. The second (cos(Np,N2)) applies a
threshold (determined on the test set) to the co-
sine similarity of the pair. The results of these
baselines shown in Table 2 use SVD; those with-
out SVD are similar. Both baselines outperformed
more trivial methods such as random guessing or
fixed response, but they performed significantly
worse than SVM and balAPinc.

Both methods that generalize entailment from
AN E N to N; = Ny perform well, with 70%

mais, 1997; Rapp, 2003; Schiitze, 1997), we tried balAPinc
on the SVD-reduced vectors as well, but results were consis-
tently worse than with PMI vectors.

P R F Accuracy
(95% C.I.)
SVMpper 88.6 88.6 88.5 88.6(87.3-89.7)
balAPincan = n 65.2 87.5 74.7 70.4 (68.7-72.1)
balAPincypper 644 90.0 75.1 70.1(68.4-71.8)
SVMaN = N 69.3 69.3 69.3 69.3 (67.6-71.0)
cos(N1, No) 577 57.6 57.5 57.6(55.8-59.5)

fq(N1) < fgNo) 52.1 52.1 51.8 53.3(51.4-55.2)

Table 2: Detecting lexical entailment. Results ranked
by accuracy and expressed as percentages. 95% con-
fidence intervals around accuracy calculated by bino-
mial exact tests.

accuracy on the test set, which is balanced be-
tween positive and negative instances. Interest-
ingly, the balAPinc decision thresholds tuned on
the AN = N set and on the test data are very
close (0.26 vs. 0.24), resulting in very similar per-
formance for balAPinc,y =N and balAPincypper.
This suggests that the relation captured by bal-
APinc on the phrasal entailment training data is
indeed the same that the measure captures when
applied to lexical entailment data.

The success of this first experiment shows that
the entailment relation present in the distribu-
tional representation of AN phrases and their
head Ns transfers to lexical entailment (entailment
among Ns). Most importantly, this result demon-
strates that the semantic vectors of composite ex-
pressions (such as ANs) are useful for lexical en-
tailment. Moreover, the result is in accordance
with the view of FS, that ANs and Ns have the
same semantic type, and thus they enter entail-
ment relations of the same kind. Finally, the hy-
pothesis that entailment among nouns is reflected
by distributional inclusion among their semantic
vectors (Kotlerman et al., 2010) is supported both
by the successful generalization of the SVM clas-
sifier trained on AN |= N pairs and by the good
performance of the balAPinc measure.

5 Generalizing QN entailment

The second study is somewhat more ambitious,
as it aims to capture and generalize the entailment
relation between QPs (of shape QN) using only
the corpus-harvested semantic vectors represent-
ing these phrases as evidence. We are thus first
and foremost interested in testing whether these
vectors encode information that can help a power-
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P R F  Accuracy

(95% C.1.)
SVMpair-out 76.7 77.0 76.8 78.1 (77.5-78.8)
SVMguantifier-out 70.1 65.3 68.0 71.0 (70.3-71.7)
SVM[?ah._out 67.9 69.8 68.9 70.2 (69.5-70.9)
SVMunamiﬁer_Out 53.3 52.9 53.1 56.0 (55.2-56.8)
cos(QN1,QN2)  52.9 52.3 52.3 53.1 (52.3-53.9)
balAPincan = n  46.7 5.6 10.0 52.5(51.7-53.3)
SVMaN =N 2.8 429 5.2 52.4(51.7-53.2)
fq(QN;)<fq(QNy) 51.0 47.4 49.1 50.2 (49.4-51.0)
bal APincypper 47.1 100 64.1 47.2 (46.4-47.9)

Table 3: Detecting quantifier entailment. Results
ranked by accuracy and expressed as percentages.
95% confidence intervals around accuracy calculated
by binomial exact tests.

ful classifier, such as SVM, to detect entailment.

To abstract away from lexical or other effects
linked to a specific quantifier, we consider two
challenging training and testing regimes. In the
first (SVMyair-out), We hold out one quantifier pair
as testing data and use the other 29 pairs in Table 1
as training data. Thus, for example, the classifier
must discover all dogs = some dogs without see-
ing any all N = some N instance in the training
data. In the second (SVMguanifier-out), We hold out
one of the 12 quantifiers as testing data (that is,
hold out every pair involving a certain quantifier)
and use the rest as training data. For example,
the quantifier must guess all dogs |= some dogs
without ever seeing all in the training data. We
expect the second training regime to be more dif-
ficult, not just because there is less training data,
but also because the trained classifier is tested on
a quantifier that it has never encountered within
any training QN sequence.*

Table 3 reports the results for SVMair-our and
SVMguantifier-out> as well as for the methods we
tried in the lexical entailment experiments. (As
in the first study, the frequency- and cosine-based

“In our initial experiments, we added negative entail-
ment instances by blindly permuting the nouns, under the
assumption that Q1 N; typically does not entail Q2 N2 when
Q1 # Q2 and N1 # N,. These additional instances turned
out to be much easier to classify: adding an equal proportion
of them to the training data and testing data, such that the
number of instances where N1 = N3 and where N1 # N
is equal, reduced every error rate roughly by half. The re-
ported results do not involve these additional instances.

baselines are only slightly better overall than more
trivial baselines.) We consider moreover an alter-
native approach that ignores the noun altogether
and uses vectors for the quantifiers only (e.g., the
decision about all dogs |=some dogs considers the
corpus-derived all and some vectors only). The
models resulting from this Q-only strategy are
marked with the superscript Q in the table.

The results confirm clearly that semantic vec-
tors for QNs contain enough information to allow
a classifier to detect entailment: SVMguantifier-out
performs as well as the lexical entailment classi-
fiers of our first study, and SVMir-oue does even
better. This success is especially impressive given
our challenging training and testing regimes.

In contrast to the first study, now SVMun = N,
the classifier trained on the AN = N data set,
and balAPinc perform no better than the base-
lines. (Here balAPincypper and balAPincan = n
pick very different thresholds: the first settling
on a very low t 0.01, whereas for the sec-
ond ¢t = 0.26.) As predicted by FS (see Section
2.2 above), noun-level entailment does not gen-
eralize to quantifier phrase entailment, since the
two structures have different semantic types, cor-
responding to different kinds of entailment rela-
tions. Moreover, the failure of balAPinc suggests
that, whatever evidence the SVMs rely upon, it is
not simple feature inclusion.

Interestingly, even the Q vectors alone encode
enough information to capture entailment above
chance. Still, the huge drop in performance from
SVMSair_out to SVMfilandﬁer_out suggests that the Q-
only method learned ad-hoc properties that do not
generalize (e.g., “all entails every Q2”).

Tables 1 and 4 break down the SVM results by
(pairs of) quantifiers. We highlight the remark-
able dichotomy in Table 4 between the good per-
formance on the universal-like quantifiers (each,
every, all, much) and the poor performance on the
existential-like ones (some, no, both, either).

In sum, the QN experiments show that seman-
tic vectors contain enough information to detect
a logical relation such as entailment not only be-
tween words, but also between phrases contain-
ing quantifiers that determine their entailment re-
lation. While a flexible classifier such as SVM
performs this task well, neither measuring fea-
ture inclusion nor generalizing nominal entail-
ment works. SVMs are evidently tapping into
other properties of the vectors.
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Quantifier Instances Correct

F F
each 656 656 649 637 (98%)
every 460 1322 402 1293 (95%)
much 248 0 216 0 (87%)
all 2949 2641 2011 2494 (81%)
several 1731 1509 1302 1267 (79%)
many 3341 4163 2349 3443 (77%)
few 0 461 0 311 (67%)
most 928 832 549 511 (60%)
some 4062 3145 1780 2190 (55%)
no 0o 714 0 380 (53%)
both 636 1404 589 303 (44%)
either 63 63 2 41 (34%)
Total 15074 16910 9849 12870 (71%)

Table 4: Breakdown of results with leaving-one-
quantifier-out (SVMguantifier-out) fraining regime.

6 Conclusion

Our main results are as follows.

1. Corpus-harvested semantic vectors repre-
senting adjective-noun constructions and
their heads encode a relation of entailment
that can be exploited to train a classifier
to detect lexical entailment. In particular,
a relation of feature inclusion between the
narrower antecedent and broader consequent
terms captures both AN = N and N; = Ny
entailment.

2. The semantic vectors of quantifier-noun con-
structions also encode information sufficient
to learn an entailment relation that general-
izes to QNs containing quantifiers that were
not seen during training.

3. Neither the entailment information encoded
in AN = N vectors nor the balAPinc mea-
sure generalizes well to entailment detection
in QNs. This result suggests that QN vectors
encode a different kind of entailment, as also
suggested by type distinctions in Formal Se-
mantics.

In future work, we want first of all to conduct
an analysis of the features in the QN = Q2N vec-
tors that are crucially exploited by our success-
ful entailment recognizers, in order to understand
which characteristics of entailment are encoded in
these vectors.

Very importantly, instead of extracting vectors
representing phrases directly from the corpus, we
intend to derive them by compositional operations
proposed in the literature (see Section 2.1 above).
We will look for composition methods producing
vector representations of composite expressions
that are as good as (or better than) vectors directly
extracted from the corpus at encoding entailment.

Finally, we would like to evaluate our entail-
ment detection strategies for larger phrases and
sentences, possibly containing multiple quanti-
fiers, and eventually embed them as core compo-
nents of an RTE system.
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Abstract

A major focus of current work in distri-
butional models of semantics is to con-
struct phrase representations composition-
ally from word representations. However,
the syntactic contexts which are modelled
are usually severely limited, a fact which
is reflected in the lexical-level WSD-like
evaluation methods used. In this paper, we
broaden the scope of these models to build
sentence-level representations, and argue
that phrase representations are best eval-
uated in terms of the inference decisions
that they support, invariant to the partic-
ular syntactic constructions used to guide
composition. We propose two evaluation
methods in relation classification and QA
which reflect these goals, and apply several
recent compositional distributional models
to the tasks. We find that the models out-
perform a simple lemma overlap baseline
slightly, demonstrating that distributional
approaches can already be useful for tasks
requiring deeper inference.

the notion of compositionality as the litmus test of
a truly semantic model. Compositionality is a nat-
ural way to construct representations of linguistic
units larger than a word, and it has a long history
in Montagovian semantics for dealing with argu-
ment structure and assembling rich semantical ex-
pressions of the kind found in predicate logic.
While compositionality may thus provide a
convenient recipe for producing representations
of propositionally typed phrases, it is not a nec-
essary condition for a semantic representation.
Rather, that distinction still belongs to the crucial
ability to support inference. It is not the inten-
tion of this paper to argue for or against composi-
tionality in semantic representations. Rather, our
interest is in evaluating semantic models in order
to determine their suitability for inference tasks.
In particular, we contend that it is desirable and
arguably necessary for a compositional semantic
representation to support inferericgariantly, in
the sense that the particular syntactic construction
that guided the composition should not matter rel-
ative to the representations of syntactically differ-
ent phrases with the same meanings. For example,

1 Introduction we can assert thdbhn threw the batndThe ball

A number of unsupervised semantic model¥/as thrown by Johmave the same meaning for
(Mitchell and Lapata, 2008, for example) have relhe purposes of inference, even though they differ
cently been proposed which are inspired at leagyntactically.
in part by the distributional hypothesis (Harris, An analogy can be drawn to research in image
1954)—that a word’s meaning can be characteRrocessing, in which it is widely regarded as im-
ized by the contexts in which it appears. Sucfportant for the representations of images to be in-
models represent word meaning as one or moM&riant to rotation and scaling. What we should
high-dimensional vectors which capture the lexWant is a representation of sentence meaning that
ical and syntactic contexts of the word’s occuriS invariant to diathesis, other regular syntactic al-
rences in a training corpus. ternations in the assignment of argument struc-
Much of the recent work in this area has, fol-ture, and, ideally, even invariant to other meaning-
lowing Mitchell and Lapata (2008), focused onPreéserving or near-preserving paraphrases.
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Existing evaluations of distributional semantic2 Compositionality and Distributional
models fall short of measuring this. One evalua- Semantics
tion approach consists of lexical-level word sub-

stitution tasks which primarily evaluate a Sys_The idea of compositionality has been central to

tem’s ability to disambiguate word senses within émderstandmg contemporary natural language se-

controlled syntactic environment (McCarthy anc(nam'.CS from an h!storlographlc perspectwt_e. The
Idea is often credited to Frege, although in fact

Navigli, 2009, for example). Another approach is . "
g ble) PP rege had very little to say about compositional-

to evaluate parsing accuracy (Socher et al., 2015, :
for example), which is really aformalism-speciﬁc'ty that had not already been repeated since the

approximation to argument structure analysist.Ime of Avistotle (Hodges, 2005). Our modern

These evaluations may certainly be relevant t89ti0n of compositiona_lity took shape primarily
specific components of, for example, machin&’ ith the work of Tarski (1956), who was actu-

translation or natural language generation Sysa_lly arguing that a central difference between for-

tems, but they tell us little about a semanticmal languages and natural languages is that nat-

model’s ability to support inference ural language is not compositional. This in turn

In this paper, we propose a general fram eworly@s the “the contention that an important theo-

for evaluating distributional semantic models tha[emaI difference exists between formal and nat-

build sentence representations, and suggest '[\/\'}5al I?ngu_ag(fsc,j tlt]/lat Flchardlg/l;zntagge S0 f"’.l'
evaluation methods that test the notion of struc'0USly rejected (Montague, ). Composi-

turally invariant inference directly. Both rely on tionality also features prominently in Fodor and

determining whether sentences express the Sarﬁglyshyn’s (1988) rejection of early connection-

semantic relation between entities, a crucial ste'ﬁt representations of natural language semantics,

in solving a wide variety of inference tasks Iikewhlch seems to have influenced Mitchell and La-

recognizing textual entailment, information re_palt_a (QOObS) az \]:vell. ¢ itional i
trieval, question answering, and summarization. ogic-based forms of compositional semantics

The first evaluation is a relation classification.have long strived for syntactic invariance in mean-

task, where a semantic model is tested on its abi'IrJ_g representatlops, which is know_n. as the qlgc-
ity to recognize whether a pair of sentences botH'ne of the canonical form. The traditional justifi-
ation for canonical forms is that they allow easy

contain a particular semantic relation, such as o a knowledae b o retr q
Company X acquires CompanyThe second task ac czgs ¢ oa t'n oW ehgi ase Otrf rle\f/e sorrfmg e
is a question answering task, the goal of which i ired information, which amotints 1o a form o1 In-

; -ference. r work can n n extension of
to locate the sentence in a document that contai ge ce. Our work can be seen as an extension o

the answer. Here. the semantic model must maté is notion to distributional semantic models with

the question, which expresses a proposition withamore general notion of representational similar-

missing argument, to the answer-bearing sentengg and inference.

which contains the full proposition. . Therz alrerr]n am([r_e?jutlar alterna}[tllf) ns tha;]t seman-
We apply these new evaluation protocols t&'?s Models have tried fo account for SUch as pas-

several recent distributional models, extendin 'V? olr dat'vi alternatrl]c_)ns ' ThteLe Zre a;!sollmaa\r;y
several of them to build sentence represent =-Xical paraphrases which can take drastically dii-

tions. We find that the models outperform a Sim_erent syntactic forms. Take the folloyving exam-
ple lemma overlap model only slightly, but thatple from Poon' and D_omlngos (2009), inwhich the
combining these models with the lemma overla ame semantic relation can be expressed by a tran-

model can improve performance. This result | SSltlve verb or an attributive prepositional phrase:

likely due to weaknesses in current models’ abil-(l) Utah bordersldaho.

ity to deal with issues such as named entities, = | jtah is next tddaho.

coreference, and negation, which are not empha- -

sized by existing evaluation methods, but it does In distributional semantics, the original sen-

suggest that distributional models of semanticgence similarity test proposed by Kintsch (2001)

can play a more central role in systems that reserved as the inspiration for the evaluation per-

quire deep, precise inference. formed by Mitchell and Lapata (2008) and most
later work in the area. Intransitive verbs are given
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in the context of their syntactic subject, and canwhich words are given in the context of the sur-
didate synonyms are ranked for their approprirounding sentence, and the task is to rank a given
ateness. This method targets the fact that a sylist of proposed substitutions for that word. The
onym is appropriate for only some of the verb'dist of substitutions as well as the correct rankings
senses, and the intended verb sense dependsava elicited from annotators. This task was origi-
the surrounding context. For examphlajrn and nally conceived as an applied evaluation of WSD
beamare both synonyms aflow, but given a par- systems, not an evaluation of phrase representa-
ticular subject, one of the synonyms (called theions.
High similarity landmark) may be a more appro- Parsing accuracy has been used as a prelimi-
priate substitution than the other (the Low similarnary evaluation of semantic models that produce
ity landmark). So, ithe fireis the subjectglowed syntactic structure (Socher et al., 2010; Wu and
is the High similarity landmark, andeamedhe Schuler, 2011). However, syntax does not always
Low similarity landmark. reflect semantic content, and we are specifically
Fundamentally, this method was designed asterested in supporting syntactic invariance when
a demonstration that compositionality in com-doing semantic inference. Also, this type of eval-
puting phrasal semantic representations does nadtion is tied to a particular grammar formalism.
interfere with the ability of a representation to The existing evaluations that are most similar in
synthesize non-compositional collocation effectspirit to what we propose are paraphrase detection
that contribute to the disambiguation of homotasks that do not assume a restricted syntactic con-
graphs. Here, word-sense disambiguation is intext. Washtell (2011) collected human judgments
plicitly viewed as a very restricted, highly lexi- on the general meaning similarity of candidate
calized case of inference for selecting the apprghrase pairs. Unfortunately, no additional guid-
priate disjunct in the representation of a word’'sance on the definition of “most similar in mean-
meaning. ing” was provided, and it appears likely that sub-
Kintsch (2001) was interested in sentence sinjects conflated lexical, syntactic, and semantic re-
ilarity, but he only conducted his evaluation onlatedness. Dolan and Brockett (2005) define para-
a few hand-selected examples. Mitchell and Laphrase detection as identifying sentences that are
pata (2008) conducted theirs on a much largan a bidirectional entailment relation. While such
scale, but chose to focus only on this single casgentences do support exactly the same inferences,
of syntactic combination, intransitive verbs andve are also interested in the inferences that can
their subjects, in order to “factor out inessentiabe made from similar sentences that are not para-
degrees of freedom” to compare their various alphrases according to this strict definition — a sit-
ternative models more equitably. This was notiation that is more often encountered in end ap-
necessary—using the same, sufficiently large, uplications. Thus, we adopt a less restricted notion
biased but syntactically heterogeneous sample of paraphrasis.
evaluation sentences would have served as an ade- )
quate control—and this decision furthermore preS An Evaluation Framework

vents the evaluation from testing the desired |nWe now describe a Simp|e, genera| framework
variance of the semantic representation. for evaluating semantic models. Our framework

Other lexical evaluations suffer from the samegnsists of the following components: a seman-
problem. One uses the WordSim-353 datasgfc model to be evaluated, pairs of sentences that
(Finkelstein et al., 2002), which contains hu-are considered to have high similarity, and pairs
man word pair similarity judgments that semanof sentences that are considered to have low simi-
tic models should reproduce. However, the worgyity,

pairs are given without context, and homography | particular, the semantic model is a binary
is unaddressed. Also, it is unclear how reliablgynction, s = M(z,2’), which returns a real-
the similarity scores are, as different annotatorgajued similarity scores, given a pair of arbitrary
may interpret the integer scale of similarity scoreginguistic units (that is, words, phrases, sentences,
differently. Recent work uses this dataset mostlgtc ), » and2’. Note that this formulation of the
for parameter tuning. Another is the lexical parasemantic model is agnostic to whether the models
phrase task of McCarthy and Navigli (2009), inyse compositionality to build a phrase represen-
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tation from constituent representations, and evemntology construction, recognizing textual entail-
to the actual representation used. The model ment and question answering.

tested by applying it to each element in the fol- In this task, the high and the low similarity sen-
lowing two sets: tence pairs are constructed in the following man-
ner. First, a target semantic relation, suciCas-

B , , o .
H = {(h, k')|h andh" are linguistic units  (2) pany X acquires Company i¥ chosen, and enti-

with high similarity} ties are chosen for each slot in the relation, such as
L = {(,1")|l andl’ are linguistic units (3) Company X=Pfizemand Company Y=Rinat Neu-
with low similarity} roscience Then, sentences containing these enti-
_ o ties are extracted and divided into two subsets. In
The resulting sets of similarity scores are: one of them,E, the entities are in the target se-

SH = {M(h,1)|(h, /) € H) 4) mantic relation, while in the othefy E, they are

I ) . not. The evaluation setd and L are then con-
St ={M@L1)|(1,T) e L} () structed as follows:

The semantic model is evaluated according to
its ability to separates’” and S”. We will de-
fine specific measures of separation for the tasks L=ExNE ()
that we propose shortly. While the particular def-
initions of “high similarity” and “low similarity”

H=FExFE\{(ee)le € E} (6)

In other words, the high similarity sentence

airs are all the pairs where both express the tar-
depend on the task, at the crux of both our evallj2 . Pa P
. . L et semantic relation, except the pairs between a
ations is that two sentences are similar if they exz

. . . sentence and itself, while the low similarity pairs
press the same semantic relation between a given .
) . L . . are all the pairs where exactly one of the two sen-
entity pair, and dissimilar otherwise. This thresh- .
P . tences expresses the target relation.
old for similarity is closely tied to the argument ) .
. Several sentences expressing the rela@tirer
structure of the sentence, and allows considerable ~ . . . :
o . acquires Rinat Neuroscienege shown in Exam-
flexibility in the other semantic content that may .
. . . - les 8to 10. These sentences illustrate the amount
be contained in the sentence, unlike the bidirec- . : o )
: . . of syntactic and lexical variation that the semantic
tional paraphrase detection task. Yet it ensures . .
X L . model must recognize as expressing the same se-
that a consistent and useful distinction for infer- . . . . .
. . . . . mantic relation. In particular, besides recognizing
ence is being detected, unlike unconstrained sim- )
S synonymy or near-synonymy at the lexical level,
ilarity judgments.

models must also account for subcategorization

Also, compared to word similarity assessmemaifferences, extra arguments or adjuncts, and part-

or paraphrase elicitation, determining whether a . U
: S ohspeech differences due to nominalization.
sentence expresses a semantic relation is a muc

easier task cognitively for human judges. This bi(g) Pfizer buysRinat Neuroscience to extend
nary]udgment does not involve Interpretlng a nu- neuroscience research and in doing (o)

merical scale or coming up with an open-ended  acquires a product candidate for OA.
set of alternative paraphrases. It is thus easier to  (jexical difference)

get reliable annotated data.

Below, we present two tasks that instantiatd9) A month earlier, Pfizer paidn estimated
this evaluation framework and choice of similar-  several hundred million dollars fdsiotech
ity threshold. They differ in that the first is tar-  firm Rinat Neurosciencéextra argument,
geted towards recognizing declarative sentences subcategorization)

or phrases, while the second is targeted towards

. . : 0) Pfizer to Expand Neuroscience Research
guestion answering scenario, where one argume : e . )
. . o . With Acquisition oBiotech Company Rinat
in the semantic relation is queried.

Neurosciencénominalization)

3.1 Task 1: Relation Classification Since our interest is to measure the models’

The first task is a relation classification task. Relaability to separateS’ and S” in an unsuper-
tion extraction and recognition are central to a vavised setting, standard supervised classification
riety of other tasks, such as information retrievalaccuracy is not applicable. Instead, we employ
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the area under a ROC curve (AUC), which doesnanually checked. We use only those cases that
not depend on choosing an arbitrary classificatiohave thus been determined to be correct question-
threshold. A ROC curve is a plot of the true posanswer pairs. As a result of this restriction, this
itive versus false positive rate of a binary classitask is rather more like Task 1 in how it tests a
fier as the classification threshold is varied. Thenodel’s ability to recognize lexical and syntac-
area under a ROC curve can thus be seen as tte paraphrases. This task also involves recog-
performance of linear classifiers over the scoresizing voicing alternations, which were automati-
produced by the semantic model. The AUC camally extracted by the semantic parser.

also be interpreted as the probability that a ran- An example of a question-answer pair involv-
domly chosen positive instance will have a higheing a voicing alternation that is used in this task is
similarity score than a randomly chosen negativpresented in Example 13.

instance. A random classifier is expected to have

an AUC of 0.5 (13) Q:What does il-2 activate?
o A: PI3K
3.2 Task 2: Restricted QA SentencePhosphatidy! inositol 3-kinase

The second task that we propose is a restricted  (P13K) is activated by IL-2.

form of question answering. In this task, the sys- Since there is only one elementihand hence

tem is given a questiopand a documerd CON-  GH g4 each question and document, we measure
sisting of a list of sentences, in which one of thg,o separation betweel” andS” using the rank
sentences contains the answer to the question. WE the score of answer-bearing sentence among

define: the scores of all the sentences in the document.
We normalize the rank so that it is between 0
H = D 11 . .
{(g,d)ld € D andd answers;} (11) (ranked least similar) and 1 (ranked most simi-

L = {(g,;d)|d € D andd does notanswef} |31y \Where ties occur, the sentence is ranked as
(12) it it were in the median position among the tied

In other words, the sentences are divided into tWBentences.. If the que.stl'on-an.swer pairs are zero-
subsets; those that contain the answey $tiould indexed byl’_ qnswer(l) s the |nde‘x of the sen-
be similar tog, while those that do not should be!€"C€ containing the answer for thé pair, and

dissimilar. We also assume that only one sentendg9th(?) is the number of sentences in the doc-
in each document contains the answerEEoon- ument, then the mean normalized rank score of a

tains only one sentence. system is:
Unrestricted question answering is a difficult answer (i)
problem that forces a semantic representation to norm-rank =E |1 — length(i) — 1 (14)
deal sensibly with a number of other semantic is-
sues such as coreference and information aggré- Experiments

gation which still seem to be out of reach forW q ber of t distributional
contemporary distributional models of meaningt_ € redwla ?um ero re_cetr;]. IStribu |(i/r\1/a f;ertngn-
Since our focus in this work is on argument struc-'© MOEIS To compare In this paper. We first de-

ture semantics, we restrict the question-answéscrlbe the models and our reimplementation of

pairs to those that only require dealing with paratit'em’. before_ describing the tasks and the datasets
phrases of this type. used in detail and the results.

To do so, we semi-automatically restrict thegq 1 Distributional Semantic Models

ters semantic sub-expressions derived from a de-,

itionally construct phrase representations usin
pendency parse of the sentence, so that those susb- y . P ep > Using
component-wise vector addition and multiplica-

expressions that express the same semantic re- . .
: . tion, as we note below. Since the focus of this pa-
lations are clustered. The parser is used to an-

. per is on evaluation methods for such models, we
swer questions, and the output of the parser s . ) . .
id not experiment with other compositionality
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operators. We do note, however, that componen# distributional representation af v,, the repre-
wise operators have been popular in recent litesentation of: in context,d’, is given by
ature, and have been applied across unrestricted

— -1
syntactic contexts (Mitchell and Lapata, 2009), a'=v, ® Ry(r™") 17)
so there is value in evaluating the performance of R, (r) = Z f(e,r,b) - v, (18)
these operators in itself. The models were trained e f(erb)>0

on the Gigaword corpus (2nd ed., ~2.3B words). . o
All models use cosine similarity to measure thévhere Ry(r) is the vector describing the selec-

similarity between representations, except for thional preference of WP“’“” relationr, f _(Ca T b)
baseline model. is the frequency of this dependency tripteis a

frequency threshold to weed out uncommon de-
Lemma Overlap This baseline simply repre- pendency triples (10 in our experiments), and
sents a sentence as the counts of each lemma, vector combination operator, here component-
present in the sentence after removing stogjise multiplication. We extend the model to com-
words. Let a sentence consist of lemma-tokens pyte sentence representations from the contextu-

mi,...,mp. The similarity between two sen- zjized word vectors using component-wise addi-
tences is then defined as tion and multiplication.
M(z,2") = #In(z,2') + #In(2’,x) (15) TFP Thater et al. (2010)'s model is also sensi-
| tive to selectional preferences, but to two degrees.
#In(z,2') = Z 1, (m;) (16) For example, the vector faratchmight contain
1 a dimension labelled GBJ, OBJ- 1, t hr ow),

which indicates the strength of connection be-
Wherelx/(mi) is an indicator function that returns tween the two verbs through all of the co-
Lif m; € 2/, and0 otherwise. This definition occurring direct objects which they share. Unlike
accounts for multiple occurrences of alemma. EgP, TFP's model encodes the selectional prefer-

M&L  Mitchell and Lapata (2008) propose gences in a single vector using frequency coun_ts.
framework for compositional distributional se-'Ve €xtend the model to the sentence level with

mantics using a standard term-context Vectoqomponent-wise addition and multiplication, and

space word representation. A phrase is repré(‘-’ord vectors are contextualized by the depen-

sented as a vector of context-word counts (actf€Ncy neighbours. We use a frequency threshold

a”y1 pmi-scaled ValueS), which is derived Compo_Of 10 and a pml threshold of 2 to prune infrequent

sitionally by a function over constituent vectors,WOrd and dependencies.

such as component-wise addition or multiplicapgl  Dinu and Lapata (2010) (D&L) assume
tion. This model ignores syntactic relations ang global set of latent senses for all words, and
is insensitive to word-order. models each word as a mixture over these latent

EQP Erk and Padd (2008) introduce a strucSenses. The vector for a wotgdin the context of
tured vector space model which uses syntactic d&orde; is modelled by
pendencies to model the selectignal preferenges v(ti ej) = Plaltiy ¢j), o Plzkclticg)  (19)
of words. The vector representation of a word in
context depends on the inverse selectional prefewhere 2, x are the latent senses. By mak-
ences of its dependents, and the selectional prefig independence assumptions and decomposing
erences of its head. For example, suppecesteh probabilities, training becomes a matter of esti-
occurs with a dependeriiall in a direct object mating the probability distribution®(z|¢;) and
relation. The vector focatchwould then be in-  P(c;j|z;) from data. While Dinu and Lapata
fluenced by the inverse direct object preference®010) describe two methods to do so, based
of ball (e.g. throw, organizg, and the vector for on non-negative matrix factorization and latent
ball would be influenced by the selectional prefDirichlet allocation, the performances are similar,
erences otatch(e.g.cold, drift). More formally, so we tested only the latent Dirichlet allocation
given wordsa andb in a dependency relation, method. Like the two previous models, we ex-
tend the model to build sentence representations
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Pfizer/Rinat N.  Yahoo/Inktomi Besson/Paris Antoinettef\fia Average

Overlap \ 0.7393 \ 0.6007 \ 0.7395 \ 0.8914 H 0.7427
Models trained on the entire GigaWord

M&L add 0.6196 0.5387 0.5259 0.7275| 0.6029
M&L mult 0.9036 0.6099 0.6443 0.8467| 0.7511
D&L add 0.9214 0.8168 0.6989 0.8932|| 0.8326
D&L mult 0.7732 0.6734 0.6527 0.7659| 0.7163
Models trained on the AFP section

E&P add 0.7536 0.4933 0.2780 0.6408| 0.5414
E&P mult 0.5268 0.5328 0.5252 0.8421| 0.6067
TFP add 0.4357 0.5325 0.8725 0.7183| 0.6398
TFP mult 0.5554 0.5524 0.7283 0.6917| 0.6320
M&L add 0.5643 0.5504 0.4594 0.7640| 0.5845
M&L mult 0.8679 0.6324 0.4356 0.8258|| 0.6904
D&L add 0.8143 0.9062 0.6373 0.8664| 0.8061
D&L mult 0.8429 0.7461 0.645 0.5948| 0.7072

Table 1: Task 1 results in AUC scores. The values in bold mdithe best performing model for a particular
training corpus. The expected random baseline performiar:é.

Entities: {X, Y} \ + N tion for comparison. Note that the AFP portion
Relation: acquires of Gigaword is three times larger than the BNC
{Pfizer, Rinat Neuroscienge, 41 50 corpus (~100M words), on which several previ-
{Yahoo, Inktom} 115 433 ous syntactic models were trained. Because our
Relation: was born in main goal is to test the general performance of the
{Luc Besson, Paris 6 126 models and to demonstrate the feasibility of our
{Marie Antoinette, Vienna | 39 105 evaluation methods, we did not further tune the

parameter settings to each of the tasks, as doing

Table 2: Task 1 dataset characteristidkis the total . . . .
so would likely only yield minor improvements.

number of sentences+ is the number of sentences
that express the relation. 43 Task1

We used the dataset by Bunescu and Mooney
from the contextualized representations. We sg¢P007), which we selected because it contains
the number of latent senses to 1200, and train fenultiple realizations of an entity pair in a target
600 Gibbs sampling iterations. semantic relation, unlike similar datasets such as
the one by Roth and Yih (2002). Controlling for
the target entity pair in this manner makes the task
We reimplemented these four models, followingmore difficult, because the semantic model cannot
the parameter settings described by previous wokkake use of distributional information about the
where possible, though we also aimed for consisntity pair in inference. The dataset is separated
tency in parameter settings between models (fafito subsets depending on the target binary rela-
example, in the number of context words). For thégion (Company X acquires CompanyoY Person
non-baseline models, we followed previous work was born in Place Yand the entity pair (e.g.,
and model only the 30000 most frequent lemmatayahooandlinktom) (Table 2).

Context vectors are constructed using a symmet- The  dataset was constructed  semi-
ric window of 5 words, and their dimensions rep-automatically using a Google search for the
resent the 3000 most frequent lemmatized contexfyo entities in order with up to seven content
words excluding stop words. Due to resource limwords in between. Then, the extracted sentences
itations, we trained the syntactic models over thgere hand-labelled with whether they express the
AFP subset of Gigaword (~338M words). We alsqarget relation. Because the order of the entities
trained the other two models on just the AFP porhas been fixed, passive alternations do not appear

4.2 Training and Parameter Settings
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Pure models Mixed models ing off to word vectors from the GENIA corpus
All Subsej All Subset when a word vector could not be found in the
Overlap | 0.8770 0.7291 0.8770 0.7291 Gigaword-trained model. We could not do this
Models trained on the entire GigaWord for the D&L model, since the global latent senses
M&L add | 0.7467 0.6106 0.8782 0.7523 that are found by latent Dirichlet allocation train-
M&L mult | 0.5331 0.569Q 0.8841 0.7678 ing do not have any absolute meaning that holds
D&Ladd | 0.6552 0.5716 0.8791 0.7539 across multiple runs. Instead, we found the 5
D&L mult | 0.5488 0.5255 0.8841 0.7466 words in the Gigaword-trained D&L model that
Models trained on the AFP section were closest to each novel word in the GENIA
E&Padd | 0.4589 0.4516 0.8748 0.7375 corpus according to cosine similarity over the co-
E&P mult | 0.5201 0.5584 0.8882 0.7719 occurrence vectors of the words in the GENIA
TFPadd | 0.6887 0.6443 0.8940 0.7871 corpus, and took their average latent sense distri-
TFP mult | 0.5210 0.5199 0.8785 0.7432 putions as the vector for that word.
M&L add | 0.7588 0.6206 0.8710 0.7371 Unlike in Task 1, there is no control for the
M&L mult | 0.5710 0.5540 0.8801 0.7540 named entities in a sentence, because one of the
D&Ladd | 0.6358 0.5402 0.8713 0.7305 entities in the semantic relation is missing. Also,
D&L mult | 0.5647 0.5461 0.8856 0.7683 distributional models have problems in dealing
Table 3: Task 2 results, in normalized rank scoresv.\”th named entities which are common in th|§
orpus, such as the names of genes and proteins.

Subsetis the cases where lemma overlap does nQ . i
achieve a perfect score. The two columns on the right® @ddress these issues, we tested hybrid models

indicate performance using the sum of the scores froifyhere the similarity score from a semantic model
the lemma overlap and the semantic model. The exs added to the similarity score from the lemma
pected random baseline performance is 0.5. overlap model.

The results are presented in Table 3. Lemma
overlap again presents a strong baseline, but the
hybridized models are able to outperform simple
lemma overlap. Unlike in Task 1, the E&P and
FP models are comparable to the D&L model,

in this dataset.

The results for Task 1 indicate that the D&L ad-
dition model performs the best (Table 1), thoug
the lemma oyerlap model presents a surprising| nd the mixed TFP addition model achieves the
strong baseline. The syntax-modulated E&P an .

. est result, likely due to the need to more pre-
TFP models perform poorly on this task, eVencisel distinguish syntactic roles in this task. The
when compared to the other models trained on t y 9 y '

AFP subset. The M&L multiplication model out- . addmon' model, which achieved the best
. . performance in Task 1, does not perform as well

performs the addition model, a result which cor: . . .
: - . in this task. This could be due to the domain adap-

roborates previous findings on the lexical SUbSt'fation rocedure for the D&L model. which could
tution task. The same does not hold in the D&L P '

latent sense space. Overall, some of the datas%%t dbsorreelljssonably trained on such a small, special-
(YahooandAntoinettg¢ appear to be easier for the pus.
models than otherd>fizerandBessol, but more 5 Related Work

entity pairs and relations would be needed to in- _
vestigate the models’ variance across datasets. Turney and Pantel (2010) survey various types of
vector space models and applications thereof in

4.4 Task?2 computational linguistics. We summarize below

We used the question-answer pairs extracted /number of other word- or phrase-level distribu-
the Poon and Domingos (2009) semantic parsé@nal models.

from the GENIA biomedical corpus that have Several approaches are specialized to deal with
been manually checked to be correct (295 pairsfiomography. The top-dowmulti-prototypeap-
Because our models were trained on newspapgfoach determines a number of senses for each
text, they required adaptation to this specialize/ord, and then clusters the occurrences of the
domain. Thus, we also trained the M&L, E&PWord (Reisinger and Mooney, 2010) into these

and TFP models on the GENIA corpus, backSenses. A prototype vector is created for each
of these sense clusters. When a new occurrence
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of a word is encountered, it is represented as rsults demonstrate that compositional distribu-
combination of the prototype vectors, with the detional models of semantics already have some
gree of influence from each prototype determinedtility in the context of more empirically complex
by the similarity of the new context to the exist-semantic tasks than WSD-like lexical substitution
ing sense contexts. In contrast, the bottomenp tasks, in which compositional invariance is a reg-
emplarbased approach assumes that each occuwiisite property. Simply computing lemma over-
rence of a word expresses a different sense of th&p, however, is a very competitive baseline, due
word. The most similar senses of the word are ade issues in these protocols with named entities
tivated when a new occurrence of it is encounterednd domain adaptivity. The better performance
and combined, for example with a KNN algorithmof the mixture models in Task 2 shows that such
(Erk and Pad6, 2010). weaknesses can be addressed by hybrid seman-

The models we compared and the above wortic models. Future work should investigate more
assume each dimension in the feature vector carefined versions of such hybridization, as well as
responds to a context word. In contrast, Washteéixtend this idea to other semantic phenomena like
(2011) uses potential paraphrases directly as dioreference, negation and modality.
mensions in hisexpectation vectors Unfortu- We also observe that no single model or com-
nately, this approach does not outperform variposition operator performs best for all tasks and
ous context word-based approaches in two phragiatasets. The latent sense mixture model of Dinu
similarity tasks. and Lapata (2010) performs well in recognizing

In terms of the vector composition function,semantic relations in general web text. Because
component-wise addition and multiplication areof the difficulty of adapting it to a specialized
the most popular in recent work, but there exdomain, however, it does less well in biomedi-
ist a number of other operators such as tensaal question answering, where the syntax-based
product and convolution product, which are reimodel of Thater et al. (2010) performs the best.
viewed by Widdows (2008). Instead of vectorA more thorough investigation of the factors that
space representations, one could also use a matdan predict the performance and/or invariance of
space representation with its much more expres given composition operator is warranted.
sive matrix operators (Rudolph and Giesbrecht, In the future, we would like to evaluate other
2010). So far, however, this has only been apmodels of compositional semantics that have been
plied to specific syntactic contexts (Baroni andecently proposed. We would also like to collect
Zamparelli, 2010; Guevara, 2010; Grefenstettenore comprehensive test data, to increase the ex-
and Sadrzadeh, 2011), or tasks (Yessenalina atefnal validity of our evaluations.
Cardie, 2011).

Neural networks have been used to learn bothCknowledgments

phrase structure and representations. In Sochengfk would like to thank Georgiana Dinu and Ste-
al. (2010), word representations learned by neyan Thater for help with reimplementing their

ral network models such as (Bengio et al., 2006nodels. Saif Mohammad, Peter Turney, and
Collobert and Weston, 2008) are fed as input intghe anonymous reviewers provided valuable com-
arecursive neural network whose nodes represefifents on drafts of this paper. This project was

syntactic constituents. Each node models both thgpported by the Natural Sciences and Engineer-
probability of the input forming a constituent anding Research Council of Canada.

the phrase representation resulting from composi-

tion.
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Abstract

A serious bottleneck of comparative parser
evaluation is the fact that different parsers
subscribe to different formal frameworks
and theoretical assumptions. Converting
outputs from one framework to another is
less than optimal as it easily introduces
noise into the process. Here we present a
principled protocol for evaluating parsing
results across frameworks based on func-
tion trees, tree generalization and edit dis-
tance metrics. This extends a previously
proposed framework for cross-theory eval-
uation and allows us to compare a wider
class of parsers. We demonstrate the useful-
ness and language independence of our pro-
cedure by evaluating constituency and de-
pendency parsers on English and Swedish.

1 Introduction

The goal of statistical parsers is to recover a for-
mal representation of the grammatical relations
that constitute the argument structure of natural
language sentences. The argument structure en-
compasses grammatical relationships between el-
ements such as subject, predicate, object, etc.,
which are useful for further (e.g., semantic) pro-
cessing. The parses yielded by different parsing
frameworks typically obey different formal and
theoretical assumptions concerning how to rep-
resent the grammatical relationships in the data
(Rambow, 2010). For example, grammatical rela-
tions may be encoded on top of dependency arcs
in a dependency tree (Mel’Cuk, 1988), they may
decorate nodes in a phrase-structure tree (Marcus
et al., 1993; Maamouri et al., 2004; Sima’an et
al., 2001), or they may be read off of positions in

a phrase-structure tree using hard-coded conver-
sion procedures (de Marneffe et al., 2006). This
diversity poses a challenge to cross-experimental
parser evaluation, namely: How can we evaluate
the performance of these different parsers relative
to one another?

Current evaluation practices assume a set of
correctly annotated test data (or gold standard)
for evaluation. Typically, every parser is eval-
uated with respect to its own formal representa-
tion type and the underlying theory which it was
trained to recover. Therefore, numerical scores
of parses across experiments are incomparable.
When comparing parses that belong to different
formal frameworks, the notion of a single gold
standard becomes problematic, and there are two
different questions we have to answer. First, what
is an appropriate gold standard for cross-parser
evaluation? And secondly, how can we alle-
viate the differences between formal representa-
tion types and theoretical assumptions in order to
make our comparison sound — that is, to make sure
that we are not comparing apples and oranges?

A popular way to address this has been to
pick one of the frameworks and convert all
parser outputs to its formal type. When com-
paring constituency-based and dependency-based
parsers, for instance, the output of constituency
parsers has often been converted to dependency
structures prior to evaluation (Cer et al., 2010;
Nivre et al.,, 2010). This solution has vari-
ous drawbacks. First, it demands a conversion
script that maps one representation type to another
when some theoretical assumptions in one frame-
work may be incompatible with the other one.
In the constituency-to-dependency case, some
constituency-based structures (e.g., coordination
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and ellipsis) do not comply with the single head
assumption of dependency treebanks. Secondly,
these scripts may be labor intensive to create, and
are available mostly for English. So the evalua-
tion protocol becomes language-dependent.

In Tsarfaty et al. (2011) we proposed a gen-
eral protocol for handling annotation discrepan-
cies when comparing parses across different de-
pendency theories. The protocol consists of three
phases: converting all structures into function
trees, for each sentence, generalizing the different
gold standard function trees to get their common
denominator, and employing an evaluation mea-
sure based on tree edit distance (TED) which dis-
cards edit operations that recover theory-specific
structures. Although the protocol is potentially
applicable to a wide class of syntactic represen-
tation types, formal restrictions in the procedures
effectively limit its applicability only to represen-
tations that are isomorphic to dependency trees.

The present paper breaks new ground in the
ability to soundly compare the accuracy of differ-
ent parsers relative to one another given that they
employ different formal representation types and
obey different theoretical assumptions. Our solu-
tion generally confines with the protocol proposed
in Tsarfaty et al. (2011) but is re-formalized to
allow for arbitrary linearly ordered labeled trees,
thus encompassing constituency-based as well as
dependency-based representations. The frame-
work in Tsarfaty et al. (2011) assumes structures
that are isomorphic to dependency trees, bypass-
ing the problem of arbitrary branching. Here we
lift this restriction, and define a protocol which
is based on generalization and TED measures to
soundly compare the output of different parsers.

We demonstrate the utility of this protocol by
comparing the performance of different parsers
for English and Swedish. For English, our
parser evaluation across representation types al-
lows us to analyze and precisely quantify previ-
ously encountered performance tendencies. For
Swedish we show the first ever evaluation be-
tween dependency-based and constituency-based
parsing models, all trained on the Swedish tree-
bank data. All in all we show that our ex-
tended protocol, which can handle linearly-
ordered labeled trees with arbitrary branch-
ing, can soundly compare parsing results across
frameworks in a representation-independent and
language-independent fashion.
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2 Preliminaries: Relational Schemes for
Cross-Framework Parse Evaluation

Traditionally, different statistical parsers have
been evaluated using specially designated evalu-
ation measures that are designed to fit their repre-
sentation types. Dependency trees are evaluated
using attachment scores (Buchholz and Marsi,
2006), phrase-structure trees are evaluated using
ParsEval (Black et al., 1991), LFG-based parsers
postulate an evaluation procedure based on f-
structures (Cahill et al., 2008), and so on. From a
downstream application point of view, there is no
significance as to which formalism was used for
generating the representation and which learning
methods have been utilized. The bottom line is
simply which parsing framework most accurately
recovers a useful representation that helps to un-
ravel the human-perceived interpretation.

Relational schemes, that is, schemes that en-
code the set of grammatical relations that con-
stitute the predicate-argument structures of sen-
tences, provide an interface to semantic interpre-
tation. They are more intuitively understood than,
say, phrase-structure trees, and thus they are also
more useful for practical applications. For these
reasons, relational schemes have been repeatedly
singled out as an appropriate level of representa-
tion for the evaluation of statistical parsers (Lin,
1995; Carroll et al., 1998; Cer et al., 2010).

The annotated data which statistical parsers are
trained on encode these grammatical relationships
in different ways. Dependency treebanks provide
a ready-made representation of grammatical rela-
tions on top of arcs connecting the words in the
sentence (Kiibler et al., 2009). The Penn Tree-
bank and phrase-structure annotated resources en-
code partial information about grammatical rela-
tions as dash-features decorating phrase structure
nodes (Marcus et al., 1993). Treebanks like Tiger
for German (Brants et al., 2002) and Talbanken
for Swedish (Nivre and Megyesi, 2007) explic-
itly map phrase structures onto grammatical rela-
tions using dedicated edge labels. The Relational-
Realizational structures of Tsarfaty and Sima’an
(2008) encode relational networks (sets of rela-
tions) projected and realized by syntactic cate-
gories on top of ordinary phrase-structure nodes.

Function trees, as defined in Tsarfaty et al.
(2011), are linearly ordered labeled trees in which
every node is labeled with the grammatical func-
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Figure 1: Deterministic conversion into function trees.
The algorithm for extracting a function tree from a de-
pendency tree as in (a) is provided in Tsarfaty et al.
(2011). For a phrase-structure tree as in (b) we can re-
place each node label with its function (dash-feature).
In a relational-realizational structure like (c) we can re-
move the projection nodes (sets) and realization nodes
(phrase labels), which leaves the function nodes intact.

tion of the dominated span. Function trees ben-
efit from the same advantages as other relational
schemes, namely that they are intuitive to under-
stand, they provide the interface for semantic in-
terpretation, and thus may be useful for down-
stream applications. Yet they do not suffer from
formal restrictions inherent in dependency struc-
tures, for instance, the single head assumption.

For many formal representation types there ex-
ists a fully deterministic, heuristics-free, proce-
dure mapping them to function trees. In Figure 1
we illustrate some such procedures for a simple
transitive sentence. Now, while all the structures
at the right hand side of Figure 1 are of the same
formal type (function trees), they have different
tree structures due to different theoretical assump-
tions underlying the original formal frameworks.

(t1) root (t2) root (t3) root
f‘l f‘2 {fl!fZ}
f‘2 f‘l Ju
" "

Figure 2: Unary chains in function trees

Once we have converted framework-specific
representations into function trees, the problem of
cross-framework evaluation can potentially be re-
duced to a cross-theory evaluation following Tsar-
faty et al. (2011). The main idea is that once
all structures have been converted into function
trees, one can perform a formal operation called
generalization in order to harmonize the differ-
ences between theories, and measure accurately
the distance of parse hypotheses from the gener-
alized gold. The generalization operation defined
in Tsarfaty et al. (2011), however, cannot handle
trees that may contain unary chains, and therefore
cannot be used for arbitrary function trees.

Consider for instance (t1) and (t2) in Figure 2.
According to the definition of subsumption in
Tsarfaty et al. (2011), (t1) is subsumed by (t2)
and vice versa, so the two trees should be identi-
cal — but they are not. The interpretation we wish
to give to a function tree such as (tl) is that the
word w has both the grammatical function f1 and
the grammatical function f2. This can be graphi-
cally represented as a set of labels dominating w,
as in (t3). We call structures such as (t3) multi-
function trees. In the next section we formally de-
fine multi-function trees, and then use them to de-
velop our protocol for cross-framework and cross-
theory evaluation.

3 The Proposal: Cross-Framework
Evaluation with Multi-Function Trees

Our proposal is a three-phase evaluation proto-
col in the spirit of Tsarfaty et al. (2011). First,
we obtain a formal common ground for all frame-
works in terms of multi-function trees. Then we
obtain a theoretical common ground by means
of tree-generalization on gold trees. Finally, we
calculate TED-based scores that discard the cost
of annotation-specific edits. In this section, we
define multi-function trees and update the tree-
generalization and TED-based metrics to handle
multi-function trees that reflect different theories.
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Figure 3: The Evaluation Protocol. Different formal frameworks yield different parse and gold formal types.
All types are transformed into multi-function trees. All gold trees enter generalization to yield a new gold for
each sentence. The different ¢ arcs represent the different edit scripts used for calculating the TED-based scores.

3.1 Defining Multi-Function Trees

An ordinary function tree is a linearly ordered tree
T = (V, A) with yield wy, ..., w,, where internal
nodes are labeled with grammatical function la-
bels drawn from some set £. We use span(v)
and label(v) to denote the yield and label, respec-
tively, of an internal node v. A multi-function tree
is a linearly ordered tree 7' = (V, A) with yield
wi, ..., Wy, Where internal nodes are labeled with
sets of grammatical function labels drawn from £
and where v # o' implies span(v) # span(v')
for all internal nodes v,v’. We use labels(v) to
denote the label set of an internal node v.

We interpret multi-function trees as encoding
sets of functional constraints over spans in func-
tion trees. Each node v in a multi-function tree
represents a constraint of the form: for each
[ € labels(v), there should be a node v in the
function tree such that span(v) = span(v’) and
label(v') = I. Whenever we have a conversion for
function trees, we can efficiently collapse them
into multi-function trees with no unary produc-
tions, and with label sets labeling their nodes.
Thus, trees (t1) and (t2) in Figure 2 would both
be mapped to tree (t3), which encodes the func-
tional constraints encoded in either of them.

For dependency trees, we assume the conver-
sion to function trees defined in Tsarfaty et al.
(2011), where head daughters always get the la-
bel ‘hd’. For PTB style phrase-structure trees, we
replace the phrase-structure labels with functional
dash-features. In relational-realization structures
we remove projection and realization nodes. De-
terministic conversions exist also for Tiger style
treebanks and frameworks such as LFG, but we
do not discuss them here.!

'All the conversions we use are deterministic and are
defined in graph-theoretic and language-independent terms.
We make them available at http://stp.lingfil.uu.
se/~tsarfaty/unipar/index.html.
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3.2 Generalizing Multi-Function Trees

Once we obtain multi-function trees for all the
different gold standard representations in the sys-
tem, we feed them to a generalization operation
as shown in Figure 3. The goal of this opera-
tion is to provide a consensus gold standard that
captures the linguistic structure that the different
gold theories agree on. The generalization struc-
tures are later used as the basis for the TED-based
evaluation. Generalization is defined by means of
subsumption. A multi-function tree subsumes an-
other one if and only if all the constraints defined
by the first tree are also defined by the second tree.
So, instead of demanding equality of labels as in
Tsarfaty et al. (2011), we demand set inclusion:

T-Subsumption, denoted C,, is a relation
between multi-function trees that indicates
that a tree 71 is consistent with and more
general than tree mo. Formally: 7 C; o
iff for every node n € m; there exists a node
m € mg such that span(n) = span(m) and
labels(n) C labels(m).

T-Unification, denoted LJ;, is an operation
that returns the most general tree structure
that contains the information from both input
trees, and fails if such a tree does not exist.
Formally: m; U mg = 73 iff m; C; 73 and
mo 4 73, and for all 74 such that 7 C; w4
and w9 T4 74 it holds that w3 Ty 4.

T-Generalization, denoted ;, is an opera-
tion that returns the most specific tree that
is more general than both trees. Formally,
w1y = wg iff w3 T4 1 and w3 &4 79, and
for every 7y such that m4 =, w1 and 4 T 7o
it holds that 74 C; 3.

The generalization tree contains all nodes that ex-
ist in both trees, and for each node it is labeled by



the intersection of the label sets dominating the
same span in both trees. The unification tree con-
tains nodes that exist in one tree or another, and
for each span it is labeled by the union of all label
sets for this span in either tree. If we generalize
two trees and one tree has no specification for la-
bels over a span, it does not share anything with
the label set dominating the same span in the other
tree, and the label set dominating this span in the
generalized tree is empty. If the trees do not agree
on any label for a particular span, the respective
node is similarly labeled with an empty set. When
we wish to unify theories, then an empty set over
a span is unified with any other set dominating the
same span in the other tree, without altering it.

Digression: Using Unification to Merge Infor-
mation From Different Treebanks In Tsarfaty
et al. (2011), only the generalization operation
was used, providing the common denominator of
all the gold structures and serving as a common
ground for evaluation. The unification operation
is useful for other NLP tasks, for instance, com-
bining information from two different annotation
schemes or enriching one annotation scheme with
information from a different one. In particular,
we can take advantage of the new framework to
enrich the node structure reflected in one theory
with grammatical functions reflected in an anno-
tation scheme that follows a different theory. To
do so, we define the Tree-Labeling-Unification
operation on multi-function trees.

TL-Unification, denoted L, is an opera-
tion that returns a tree that retains the struc-
ture of the first tree and adds labels that ex-
ist over its spans in the second tree. For-
mally: 7 Uy mo = mg iff for every node
n € mq there exists a node m € w3 such
that span(m) = span(n) and labels(m)
labels(n) U labels(ma, span(n)).

Where labels(ma, span(n)) is the set of labels of
the node with yield span(n) in 7o if such a node
exists and () otherwise. We further discuss the TL-
Unification and its use for data preparation in §4.

3.3 TED Measures for Multi-Function Trees

The result of the generalization operation pro-
vides us with multi-function trees for each of the
sentences in the test set representing sets of con-
straints on which the different gold theories agree.
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We would now like to use distance-based met-
rics in order to measure the gap between the gold
and predicted theories. The idea behind distance-
based evaluation in Tsarfaty et al. (2011) is that
recording the edit operations between the native
gold and the generalized gold allows one to dis-
card their cost when computing the cost of a parse
hypothesis turned into the generalized gold. This
makes sure that different parsers do not get penal-
ized, or favored, due to annotation specific deci-
sions that are not shared by other frameworks.

The problem is now that TED is undefined with
respect to multi-function trees because it cannot
handle complex labels. To overcome this, we
convert multi-function trees into sorted function
trees, which are simply function trees in which
any label set is represented as a unary chain of
single-labeled nodes, and the nodes are sorted ac-
cording to the canonical order of their labels.? In
case of an empty set, a O-length chain is created,
that is, no node is created over this span. Sorted
function trees prevent reordering nodes in a chain
in one tree to fit the order in another tree, since it
would violate the idea that the set of constraints
over a span in a multi-function tree is unordered.

The edit operations we assume are add-
node(/, i, j) and delete-node(/, i, j) where [ € L
is a grammatical function label and 7 < j define
the span of a node in the tree. Insertion into a
unary chain must confine with the canonical order
of the labels. Every operation is assigned a cost.
An edit script is a sequence of edit operations that
turns a function tree 71 into 79, that is:

ES(Wl,T(Q) = <61>~~-7€k>

Since all operations are anchored in spans, the se-
quence can be determined to have a unique order
of traversing the tree (say, DFS). Different edit
scripts then only differ in their set of operations
on spans. The edit distance problem is finding the
minimal cost script, that is, one needs to solve:

D

ecES(m1,m2)

min

ES*(my,m2) = pein |

cost(e)

In the current setting, when using only add and
delete operations on spans, there is only one edit
script that corresponds to the minimal edit cost.
So, finding the minimal edit script entails finding

a single set of operations turning 71 into 7s.

The ordering can be alphabetic, thematic, etc.



We can now define § for the 7th framework, as
the error of parse; relative to its native gold stan-
dard gold; and to the generalized gold gen. This
is the edit cost minus the cost of the script turning
parse; into gen intersected with the script turning
gold; into gen. The underlying intuition is that
if an operation that was used to turn parse; into
gen is used to discard theory-specific information
from gold;, its cost should not be counted as error.

d(parse;, gold;, gen) = cost(ES™(parse;, gen))

—cost(ES™(parse;, gen) N ES™(gold;, gen))

In order to turn distance measures into parse-
scores we now normalize the error relative to the
size of the trees and subtract it from a unity. So
the Sentence Score for parsing with framework ¢
is:

score(parse;, gold;, gen) =

d(parse;, gold;,gen)
|parse;| + |gen|

Finally, Test-Set Average is defined by macro-
avaraging over all sentences in the test-set:

|testset| - - )
B > j=1  O(parse;j, gold;;, gen;)
|testset|

> i1

This last formula represents the TEDEVAL metric
that we use in our experiments.

1

parseij| + |gen;|

A Note on System Complexity Conversion of
a dependency or a constituency tree into a func-
tion tree is linear in the size of the tree. Our
implementation of the generalization and unifica-
tion operation is an exact, greedy, chart-based al-
gorithm that runs in polynomial time (O(n?) in
n the number of terminals). The TED software
that we utilize builds on the TED efficient algo-
rithm of Zhang and Shasha (1989) which runs in
O(|T1||T%| min(dy, 1) min(da, n2)) time where
d; is the tree degree (depth) and n; is the number
of terminals in the respective tree (Bille, 2005).

4 Experiments

We validate our cross-framework evaluation pro-
cedure on two languages, English and Swedish.
For English, we compare the performance of
two dependency parsers, MaltParser (Nivre et al.,
2006) and MSTParser (McDonald et al., 2005),
and two constituency-based parsers, the Berkeley

49

parser (Petrov et al., 2006) and the Brown parser
(Charniak and Johnson, 2005). All experiments
use Penn Treebank (PTB) data. For Swedish,
we compare MaltParser and MSTParser with two
variants of the Berkeley parser, one trained on
phrase structure trees, and one trained on a vari-
ant of the Relational-Realizational representation
of Tsarfaty and Sima’an (2008). All experiments
use the Talbanken Swedish Treebank (STB) data.

4.1 English Cross-Framework Evaluation

We use sections 02-21 of the WSJ Penn Tree-
bank for training and section 00 for evaluation and
analysis. We use two different native gold stan-
dards subscribing to different theories of encoding
grammatical relations in tree structures:

o THE DEPENDENCY-BASED THEORY is the
theory encoded in the basic Stanford Depen-
dencies (SD) scheme. We obtain the set of
basic stanford dependency trees using the
software of de Marneffe et al. (2006) and
train the dependency parsers directly on it.

o THE CONSTITUENCY-BASED THEORY is
the theory reflected in the phrase-structure
representation of the PTB (Marcus et al.,
1993) enriched with function labels compat-
ible with the Stanford Dependencies (SD)
scheme. We obtain trees that reflect this
theory by TL-Unification of the PTB multi-
function trees with the SD multi-function
trees (PTBLI;SD) as illustrated in Figure 4.

The theory encoded in the multi-function trees
corresponding to SD is different from the one
obtained by our TL-Unification, as may be seen
from the difference between the flat SD multi-
function tree and the result of the PTBLI;SD in
Figure 4. Another difference concerns coordina-
tion structures, encoded as binary branching trees
in SD and as flat productions in the PTBU;SD.
Such differences are not only observable but also
quantifiable, and using our redefined TED metric
the cross-theory overlap is 0.8571.

The two dependency parsers were trained using
the same settings as in Tsarfaty et al. (2011), using
SVMTool (Giménez and Marquez, 2004) to pre-
dict part-of-speech tags at parsing time. The two
constituency parsers were used with default set-
tings and were allowed to predict their own part-
of-speech tags. We report three different evalua-
tion metrics for the different experiments:
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Figure 4: Conversion of PTB and SD tree to multi-
function trees, followed by TL-Unification of the trees.
Note that some PTB nodes remain without an SD label.

o LAS/UAS (Buchholz and Marsi, 2006)
o PARSEVAL (Black et al., 1991)
o TEDEVAL as defined in Section 3

We use LAS/UAS for dependency parsers that
were trained on the same dependency theory. We
use ParseEval to evaluate phrase-structure parsers
that were trained on PTB trees in which dash-
features and empty traces are removed. We
use our implementation of TEDEVAL to evaluate
parsing results across all frameworks under two
different scenarios:>* TEDEVAL SINGLE evalu-
ates against the native gold multi-function trees.
TEDEVAL MULTIPLE evaluates against the gen-
eralized (cross-theory) multi-function trees. Un-
labeled TEDEVAL scores are obtained by sim-
ply removing all labels from the multi-function
nodes, and using unlabeled edit operations. We
calculate pairwise statistical significance using a
shuffling test with 10K iterations (Cohen, 1995).
Tables 1 and 2 present the results of our cross-
framework evaluation for English Parsing. In the
left column of Table 1 we report ParsEval scores
for constituency-based parsers. As expected, F-
Scores for the Brown parser are higher than the
F-Scores of the Berkeley parser. F-Scores are
however not applicable across frameworks. In
the rightmost column of Table 1 we report the
LAS/UAS results for all parsers. If a parser yields

30ur TedEval software can be downloaded at
http://stp.lingfil.uu.se/~tsarfaty/
unipar/download.html.
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a constituency tree, it is converted to and evalu-
ated on SD. Here we see that MST outperforms
Malt, though the differences for labeled depen-
dencies are insignificant. We also observe here a
familiar pattern from Cer et al. (2010) and others,
where the constituency parsers significantly out-
perform the dependency parsers after conversion
of their output into dependencies.

The conversion to SD allows one to compare
results across formal frameworks, but not with-
out a cost. The conversion introduces a set of an-
notation specific decisions which may introduce
a bias into the evaluation. In the middle column
of Table 1 we report the TEDEVAL metrics mea-
sured against the generalized gold standard for all
parsing frameworks. We can now confirm that
the constituency-based parsers significantly out-
perform the dependency parsers, and that this is
not due to specific theoretical decisions which are
seen to affect LAS/UAS metrics (Schwartz et al.,
2011). For the dependency parsers we now see
that Malt outperforms MST on labeled dependen-
cies slightly, but the difference is insignificant.

The fact that the discrepancy in theoretical as-
sumptions between different frameworks indeed
affects the conversion-based evaluation procedure
is reflected in the results we report in Table 2.
Here the leftmost and rightmost columns report
TEDEVAL scores against the own native gold
(SINGLE) and the middle column against the gen-
eralized gold (MULTIPLE). Had the theories
for SD and PTBLI;SD been identical, TEDEVAL
SINGLE and TEDEVAL MULTIPLE would have
been equal in each line. Because of theoretical
discrepancies, we see small gaps in parser perfor-
mance between these cases. Our protocol ensures
that such discrepancies do not bias the results.

4.2 Cross-Framework Swedish Parsing

We use the standard training and test sets of the
Swedish Treebank (Nivre and Megyesi, 2007)
with two gold standards presupposing different
theories:

e THE DEPENDENCY-BASED THEORY is the
dependency version of the Swedish Tree-
bank. All trees are projectivized (STB-Dep).

e THE CONSTITUENCY-BASED THEORY is
the standard Swedish Treebank with gram-
matical function labels on the edges of con-
stituency structures (STB).



Table 1: English cross-framework evaluation: Three
measures as applicable to the different schemes. Bold-
face scores are highest in their column. Italic scores
are the highest for dependency parsers in their column.

Formalism PS Trees MF Trees Dep Trees
Theory PTB L SD | (PTB L SD) SD
¢ SD
Metrics TEDEVAL TEDEVAL TEDEVAL
SINGLE MULTIPLE SINGLE
U: 0.9525 U: 0.9524
MALT N/A L:0.9088 | L:0.9186
U: 0.9549 U: 0.9548
MST N/A L: 0.9049 L:0.9149
BERKELEY U: 0.9645 U: 0.9677 U: 0.9649
L:0.9271 L: 0.9227 L:0.9324
BROWN U: 0.9667 U: 9702 U: 0.9679
L: 0.9301 L: 9264 L: 0.9362

Table 2: English cross-framework evaluation: TEDE-
VAL scores against gold and generalized gold. Bold-
face scores are highest in their column. Italic scores
are highest for dependency parsers in their column.

Because there are no parsers that can out-
put the complete STB representation including
edge labels, we experiment with two variants of
this theory, one which is obtained by simply re-
moving the edge labels and keeping only the
phrase-structure labels (STB-PS) and one which
is loosely based on the Relational-Realizational
scheme of Tsarfaty and Sima’an (2008) but ex-
cludes the projection set nodes (STB-RR). RR
trees only add function nodes to PS trees, and
it holds that STB-PSr;STB-RR=STB-PS. The
overlap between the theories expressed in multi-
function trees originating from STB-Dep and
STB-RR is 0.7559. Our evaluation protocol takes
into account such discrepancies while avoiding
biases that may be caused due to these differences.

We evaluate MaltParser, MSTParser and two
versions of the Berkeley parser, one trained on
STB-PS and one trained on STB-RR. We use
predicted part-of-speech tags for the dependency
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Formalism PS Trees MF Trees Dep Trees Formalism PS Trees | MF Trees | Dep Trees
Theory PTB Uy SD | (PTB Ly SD) SD Theory STB STB M Dep Dep
M SD Metrics PARSEVAL | TEDEVAL | ATTSCORE
Metrics PARSEVAL TEDEVAL | ATTSCORES U:0.9266 | U:0.8298
MALT N/A
MALT N/A U: 0.9525 U: 0.8962 L: 0.8225 L:0.7782
L: 0.9088 L:0.8772 MST N/A U: 0.9275 U: 0.8438
U: 0.9549 U: 0.9059 L:0.8121 L:0.7824
MST N/A
L: 0.9049 L:0.8795 B TB.RR F-Score U: 0.9281 R
Berkpipy | FScores | U:09677 | U:0.9254 KLY/STB- 0.7914 | L:0.7861 N/
0.9096 L: 0.9227 L:0.9031 F-Score
Brown F-Scores | U:0.9702 | U:0.9289 BKLY/STB-PS 0.7855 N/A N/A
0.9129 L: 0.9264 L: 0.9057

Table 3: Swedish cross-framework evaluation: Three
measures as applicable to the different schemes. Bold-
face scores are the highest in their column.

Formalism PS Trees | MF Trees | Dep Trees
Theory STB STB 1, Dep Dep
Metrics TEDEVAL | TEDEVAL | TEDEVAL
SINGLE MULTIPLE SINGLE
U:0.9266 | U:0.9264
MaLT N/A L:0.8225 | L:0.8372
U: 0.9275 U: 0.9272
MST NA 1 Losi2l | L:08275
U:0.9239 | U:0.9281
BKLY-STB-RR | | 7946 | L:0.7861 N/A

Table 4: Swedish cross-framework evaluation: TEDE-
VAL scores against the native gold and the generalized
gold. Boldface scores are the highest in their column.

parsers, using the HunPoS tagger (Megyesi,
2009), but let the Berkeley parser predict its own
tags. We use the same evaluation metrics and pro-
cedures as before. Prior to evaluating RR trees
using ParsEval we strip off the added function
nodes. Prior to evaluating them using TedEval we
strip off the phrase-structure nodes.

Tables 3 and 4 summarize the parsing results
for the different Swedish parsers. In the leftmost
column of table 3 we present the constituency-
based evaluation measures.  Interestingly, the
Berkeley RR instantiation performs better than
when training the Berkeley parser on PS trees.
These constituency-based scores however have a
limited applicability, and we cannot use them to
compare constituency and dependency parsers. In
the rightmost column of Table 3 we report the
LAS/UAS results for the two dependency parsers.
Here we see higher performance demonstrated by
MST on both labeled and unlabeled dependen-
cies, but the differences on labeled dependencies
are insignificant. Since there is no automatic pro-
cedure for converting bare-bone phrase-structure
Swedish trees to dependency trees, we cannot use



LAS/UAS to compare across frameworks, and we
use TEDEVAL for cross-framework evaluation.
Training the Berkeley parser on RR trees which
encode a mapping of PS nodes to grammatical
functions allows us to compare parse results for
trees belonging to the STB theory with trees obey-
ing the STB-Dep theory. For unlabeled TEDE-
VAL scores, the dependency parsers perform at the
same level as the constituency parser, though the
difference is insignificant. For labeled TEDEVAL
the dependency parsers significantly outperform
the constituency parser. When considering only
the dependency parsers, there is a small advantage
for Malt on labeled dependencies, and an advan-
tage for MST on unlabeled dependencies, but the
latter is insignificant. This effect is replicated in
Table 4 where we evaluate dependency parsers us-
ing TEDEVAL against their own gold theories. Ta-
ble 4 further confirms that there is a gap between
the STB and the STB-Dep theories, reflected in
the scores against the native and generalized gold.

5 Discussion

We presented a formal protocol for evaluating
parsers across frameworks and used it to soundly
compare parsing results for English and Swedish.
Our approach follows the three-phase protocol of
Tsarfaty et al. (2011), namely: (i) obtaining a for-
mal common ground for the different representa-
tion types, (ii) computing the theoretical common
ground for each test sentence, and (iii) counting
only what counts, that is, measuring the distance
between the common ground and the parse tree
while discarding annotation-specific edits.

A pre-condition for applying our protocol is the
availability of a relational interpretation of trees in
the different frameworks. For dependency frame-
works this is straightforward, as these relations
are encoded on top of dependency arcs. For con-
stituency trees with an inherent mapping of nodes
onto grammatical relations (Merlo and Musillo,
2005; Gabbard et al., 2006; Tsarfaty and Sima’an,
2008), a procedure for reading relational schemes
off of the trees is trivial to implement.

For parsers that are trained on and parse into
bare-bones phrase-structure trees this is not so.
Reading off the relational structure may be more
costly and require interjection of additional theo-
retical assumptions via manually written scripts.
Scripts that read off grammatical relations based
on tree positions work well for configurational
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languages such as English (de Marneffe et al.,
2006) but since grammatical relations are re-
flected differently in different languages (Postal
and Perlmutter, 1977; Bresnan, 2000), a proce-
dure to read off these relations in a language-
independent fashion from phrase-structure trees
does not, and should not, exist (Rambow, 2010).

The crucial point is that even when using ex-
ternal scripts for recovering a relational scheme
for phrase-structure trees, our protocol has a clear
advantage over simply scoring converted trees.
Manually created conversion scripts alter the the-
oretical assumptions inherent in the trees and thus
may bias the results. Our generalization operation
and three-way TED make sure that theory-specific
idiosyncrasies injected through such scripts do
not lead to over-penalizing or over-crediting
theory-specific structural variations.

Certain linguistic structures cannot yet be eval-
uated with our protocol because of the strict as-
sumption that the labeled spans in a parse form a
tree. In the future we plan to extend the protocol
for evaluating structures that go beyond linearly-
ordered trees in order to allow for non-projective
trees and directed acyclic graphs. In addition, we
plan to lift the restriction that the parse yield is
known in advance, in order to allow for evalua-
tion of joint parse-segmentation hypotheses.

6 Conclusion

We developed a protocol for comparing parsing
results across different theories and representa-
tion types which is framework-independent in the
sense that it can accommodate any formal syntac-
tic framework that encodes grammatical relations,
and it is language-independent in the sense that
there is no language specific knowledge encoded
in the procedure. As such, this protocol is ad-
equate for parser evaluation in cross-framework
and cross-language tasks and parsing competi-
tions, and using it across the board is expected
to open new horizons in our understanding of the
strengths and weaknesses of different parsers in
the face of different theories and different data.
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Abstract

Hungarian is a stereotype of morpholog-
ically rich and non-configurational lan-
guages. Here, we introduce results on de-
pendency parsing of Hungarian that em-
ploy a 80K, multi-domain, fully manu-
ally annotated corpus, the Szeged Depen-
dency Treebank. We show that the results
achieved by state-of-the-art data-driven
parsers on Hungarian and English (which is
at the other end of the configurational-non-
configurational spectrum) are quite simi-
lar to each other in terms of attachment
scores. We reveal the reasons for this and
present a systematic and comparative lin-
guistically motivated error analysis on both
languages. This analysis highlights that ad-
dressing the language-specific phenomena
is required for a further remarkable error re-
duction.

1 Introduction

From the viewpoint of syntactic parsing, the lan-
guages of the world are usually categorized ac-
cording to their level of configurationality. At one
end, there is English, a strongly configurational
language while Hungarian is at the other end of
the spectrum. It has very few fixed structures
at the sentence level. Leaving aside the issue of
the internal structure of NPs, most sentence-level
syntactic information in Hungarian is conveyed
by morphology, not by configuration (E. Kiss,
2002).

A large part of the methodology for syntactic
parsing has been developed for English. How-
ever, parsing non-configurational and less config-
urational languages requires different techniques.

In this study, we present results on Hungarian de-
pendency parsing and we investigate this general
issue in the case of English and Hungarian.

We employed three state-of-the-art data-driven
parsers (Nivre et al., 2004; McDonald et al., 2005;
Bohnet, 2010), which achieved (un)labeled at-
tachment scores on Hungarian not so different
from the corresponding English scores (and even
higher on certain domains/subcorpora). Our in-
vestigations show that the feature representation
used by the data-driven parsers is so rich that they
can — without any modification — effectively learn
a reasonable model for non-configurational lan-
guages as well.

We also conducted a systematic and compar-
ative error analysis of the system’s outputs for
Hungarian and English. This analysis highlights
the challenges of parsing Hungarian and sug-
gests that the further improvement of parsers re-
quires special handling of language-specific phe-
nomena. We believe that some of our findings
can be relevant for intermediate languages on the
configurational-non-configurational spectrum.

2 Chief Characteristics of the
Hungarian Morphosyntax

Hungarian is an agglutinative language, which
means that a word can have hundreds of word
forms due to inflectional or derivational affixa-
tion. A lot of grammatical information is encoded
in morphology and Hungarian is a stereotype of
morphologically rich languages. The Hungarian
word order is free in the sense that the positions
of the subject, the object and the verb are not fixed
within the sentence, but word order is related to
information structure, e.g. new (or emphatic) in-
formation (the focus) always precedes the verb
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and old information (the topic) precedes the focus
position. Thus, the position relative to the verb
has no predictive force as regards the syntactic
function of the given argument: while in English,
the noun phrase before the verb is most typically
the subject, in Hungarian, it is the focus of the
sentence, which itself can be the subject, object
or any other argument (E. Kiss, 2002).

The grammatical function of words is deter-
mined by case suffixes as in gyerek “child” — gye-
reknek (child-DAT) “for (a/the) child”. Hungarian
nouns can have about 20 cases! which mark the
relationship between the head and its arguments
and adjuncts. Although there are postpositions
in Hungarian, case suffixes can also express re-
lations that are expressed by prepositions in En-
glish.

Verbs are inflected for person and number and
the definiteness of the object. Since conjugational
information is sufficient to deduce the pronominal
subject or object, they are typically omitted from
the sentence: Vdrlak (wait-1SG20BJ) “I am wait-
ing for you”. This pro-drop feature of Hungar-
ian leads to the fact that there are several clauses
without an overt subject or object.

Another peculiarity of Hungarian is that the
third person singular present tense indicative form
of the copula is phonologically empty, i.e. there
are apparently verbless sentences in Hungarian:
A hdz nagy (the house big) “The house is big”.
However, in other tenses or moods, the copula
is present as in A hdz nagy lesz (the house big
will.be) “The house will be big”.

There are two possessive constructions in
Hungarian. First, the possessive relation is only
marked on the possessed noun (in contrast, it is
marked only on the possessor in English): a fiii
kutydja (the boy dog-P0SS) “the boy’s dog”. Sec-
ond, both the possessor and the possessed bear a
possessive marker: a fiinak a kutydja (the boy-
DAT the dog-POSS) “the boy’s dog”. In the latter
case, the possessor and the possessed may not be
adjacent within the sentence as in A fitinak ldtta a
kutydjdt (the boy-DAT see-PAST3SGOBJ the dog-
POSS-ACC) “He saw the boy’s dog”, which results
in a non-projective syntactic tree. Note that in
the first case, the form of the possessor coincides

"Hungarian grammars and morphological coding sys-
tems do not agree on the exact number of cases, some rare
suffixes are treated as derivational suffixes in one grammar
and as case suffixes in others; see e.g. Farkas et al. (2010).

with that of a nominative noun while in the second
case, it coincides with a dative noun.

According to these facts, a Hungarian parser
must rely much more on morphological analysis
than e.g. an English one since in Hungarian it
is morphemes that mostly encode morphosyntac-
tic information. One of the consequences of this
is that Hungarian sentences are shorter in terms
of word numbers than English ones. Based on
the word counts of the Hungarian—English paral-
lel corpus Hunglish (Varga et al., 2005), an En-
glish sentence contains 20.5% more words than its
Hungarian equivalent. These extra words in En-
glish are most frequently prepositions, pronomi-
nal subjects or objects, whose parent and depen-
dency label are relatively easy to identify (com-
pared to other word classes). This train of thought
indicates that the cross-lingual comparison of fi-
nal parser scores should be conducted very care-
fully.

3 Related work

We decided to focus on dependency parsing in
this study as it is a superior framework for non-
configurational languages. It has gained inter-
est in natural language processing recently be-
cause the representation itself does not require
the words inside of constituents to be consecu-
tive and it naturally represent discontinuous con-
structions, which are frequent in languages where
grammatical relations are often signaled by mor-
phology instead of word order (McDonald and
Nivre, 2011). The two main efficient approaches
for dependency parsing are the graph-based and
the transition-based parsers. The graph-based
models look for the highest scoring directed span-
ning tree in the complete graph whose nodes are
the words of the sentence in question. They solve
the machine learning problem of finding the opti-
mal scoring function of subgraphs (Eisner, 1996;
McDonald et al., 2005). The transition-based ap-
proaches parse a sentence in a single left-to-right
pass over the words. The next transition in these
systems is predicted by a classifier that is based
on history-related features (Kudo and Matsumoto,
2002; Nivre et al., 2004).

Although the available treebanks for Hungar-
ian are relatively big (82K sentences) and fully
manually annotated, the studies on parsing Hun-
garian are rather limited. The Szeged (Con-
stituency) Treebank (Csendes et al., 2005) con-
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sists of six domains — namely, short business
news, newspaper, law, literature, compositions
and informatics — and it is manually annotated
for the possible alternatives of words’ morpho-
logical analyses, the disambiguated analysis and
constituency trees. We are aware of only two
articles on phrase-structure parsers which were
trained and evaluated on this corpus (Barta et al.,
2005; Ivan et al., 2007) and there are a few studies
on hand-crafted parsers reporting results on small
own corpora (Babarczy et al., 2005; Proszéky et
al., 2004).

The Szeged Dependency Treebank (Vincze et
al., 2010) was constructed by first automatically
converting the phrase-structure trees into depen-
dency trees, then each of them was manually
investigated and corrected. We note that the
dependency treebank contains more information
than the constituency one as linguistic phenom-
ena (like discontinuous structures) were not anno-
tated in the former corpus, but were added to the
dependency treebank. To the best of our knowl-
edge no parser results have been published on this
corpus. Both corpora are available at www.inf.
u-szeged.hu/rgai/SzegedTreebank.

The multilingual track of the CoNLL-2007
Shared Task (Nivre et al., 2007) addressed also
the task of dependency parsing of Hungarian. The
Hungarian corpus used for the shared task con-
sists of automatically converted dependency trees
from the Szeged Constituency Treebank. Several
issues of the automatic conversion tool were re-
considered before the manual annotation of the
Szeged Dependency Treebank was launched and
the annotation guidelines contained instructions
related to linguistic phenomena which could not
be converted from the constituency representa-
tion — for a detailed discussion, see Vincze et al.
(2010). Hence the annotation schemata of the
CoNLL-2007 Hungarian corpus and the Szeged
Dependency Treebank are rather different and the
final scores reported for the former are not di-
rectly comparable with our reported scores here
(see Section 5).

4 The Szeged Dependency Treebank

We utilize the Szeged Dependency Treebank
(Vincze et al., 2010) as the basis of our experi-
ments for Hungarian dependency parsing. It con-
tains 82,000 sentences, 1.2 million words and
250,000 punctuation marks from six domains.

The annotation employs 16 coarse grained POS
tags, 95 morphological feature values and 29 de-
pendency labels. 19.6% of the sentences in the
corpus contain non-projective edges and 1.8% of
the edges are non-projective”, which is almost 5
times more frequent than in English and is the
same as the Czech non-projectivity level (Buch-
holz and Marsi, 2006). Here we discuss two an-
notation principles along with our modifications
in the dataset for this study which strongly influ-
ence the parsers’ accuracies.

Named Entities (NEs) were treated as one to-
ken in the Szeged Dependency Treebank. Assum-
ing a perfect phrase recogniser on the whitespace
tokenised input for them is quite unrealistic. Thus
we decided to split them into tokens for this study.
The new tokens automatically got a proper noun
with default morphological features morphologi-
cal analysis except for the last token — the head of
the phrase —, which inherited the morphological
analysis of the original multiword unit (which can
contain various grammatical information). This
resulted in an N N N N POS sequence for Kovdcs
és tdrsa kft. “Smith and Co. Ltd.” which would
be annotated as N C N N in the Penn Treebank.
Moreover, we did not annotate any internal struc-
ture of Named Entities. We consider the last word
of multiword named entities as the head because
of morphological reasons (the last word of multi-
word units gets inflected in Hungarian) and all the
previous elements are attached to the succeeding
word, i.e. the penultimate word is attached to the
last word, the antepenultimate word to the penulti-
mate one etc. The reasons for these considerations
are that we believe that there are no downstream
applications which can exploit the information of
the internal structures of Named Entities and we
imagine a pipeline where a Named Entity Recog-
niser precedes the parsing step.

Empty copula: In the verbless clauses (pred-
icative nouns or adjectives) the Szeged Depen-
dency Treebank introduces virtual nodes (16,000
items in the corpus). This solution means that
a similar tree structure is ascribed to the same
sentence in the present third person singular and
all the other tenses / persons. A further argu-
ment for the use of a virtual node is that the vir-
tual node is always present at the syntactic level

?Using the transitive closure definition of Nivre and Nils-
son (2005).
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corpus Malt MST Mate
ULA LAS ULA LAS ULA LAS
Hungarian dev | 88.3(89.9) | 85.7 (87.9) | 86.9 (88.5) | 80.9 (82.9) | 89.7 (91.1) | 86.8 (89.0)
test | 88.7(90.2) | 86.1 (88.2) | 87.5(89.0) | 81.6(83.5) | 90.1 (91.5) | 87.2(89.4)
English dev | 87.8(89.1) | 84.5(86.1) | 89.4 (91.2) | 86.1 (87.7) | 91.6 (92.7) | 88.5(90.0)
test | 88.8 (89.9) | 86.2 (87.6) | 90.7 (91.8) | 87.7(89.2) | 92.6 (93.4) | 90.3 (91.5)

Table 1: Results achieved by the three parsers on the (full) Hungarian (Szeged Dependency Treebank) and
English (CoNLL-2009) datasets. The scores in brackets are achieved with gold-standard POS tagging.

since it is overt in all the other forms, tenses and
moods of the verb. Still, the state-of-the-art de-
pendency parsers cannot handle virtual nodes. For
this study, we followed the solution of the Prague
Dependency Treebank (Hajic et al., 2000) and vir-
tual nodes were removed from the gold standard
annotation and all of their dependents were at-
tached to the head of the original virtual node and
they were given a dedicated edge label (Exd).

Dataset splits: We formed training, develop-
ment and test sets from the corpus where each
set consists of texts from each of the domains.
We paid attention to the issue that a document
should not be separated into different datasets be-
cause it could result in a situation where a part of
the test document was seen in the training dataset
(which is unrealistic because of unknown words,
style and frequently used grammatical structures).
As the fiction subcorpus consists of three books
and the law subcorpus consists of two rules, we
took half of one of the documents for the test
and development sets and used the other part(s)
for training there. This principle was followed at
our cross-fold-validation experiments as well ex-
cept for the law subcorpus. We applied 3 folds for
cross-validation for the fiction subcorpus, other-
wise we used 10 folds (splitting at documentary
boundaries would yield a training fold consisting
of just 3000 sentences).?

S Experiments

We carried out experiments using three state-of-
the-art parsers on the Szeged Dependency Tree-
bank (Vincze et al., 2010) and on the English
datasets of the CoNLL-2009 Shared Task (Haji¢
et al., 2009).

3Both the training/development/test and the cross-
validation splits are available at www.inf.u-szeged.
hu/rgai/SzegedTreebank.

Tools: We employed a finite state automata-
based morphological analyser constructed from
the morphdb.hu lexical resource (Trén et al.,
2006) and we used the MSD-style morphological
code system of the Szeged TreeBank (Alexin et
al., 2003). The output of the morphological anal-
yser is a set of possible lemma—morphological
analysis pairs. This set of possible morphologi-
cal analyses for a word form is then used as pos-
sible alternatives — instead of open and closed tag
sets — in a standard sequential POS tagger. Here,
we applied the Conditional Random Fields-based
Stanford POS tagger (Toutanova et al., 2003) and
carried out 5-fold-cross POS training/tagging in-
side the subcorpora.* For the English experiments
we used the predicted POS tags provided for the
CoNLL-2009 shared task (Haji¢ et al., 2009).

As the dependency parser we employed three
state-of-the-art data-driven parsers, a transition-
based parser (Malt) and two graph-based parsers
(MST and Mate parsers). The Malt parser (Nivre
et al., 2004) is a transition-based system, which
uses an arc-eager system along with support vec-
tor machines to learn the scoring function for tran-
sitions and which uses greedy, deterministic one-
best search at parsing time. As one of the graph-
based parsers, we employed the MST parser (Mc-
Donald et al., 2005) with a second-order feature
decoder. It uses an approximate exhaustive search
for unlabeled parsing, then a separate arc label
classifier is applied to label each arc. The Mate
parser (Bohnet, 2010) is an efficient second or-
der dependency parser that models the interaction
between siblings as well as grandchildren (Car-
reras, 2007). Its decoder works on labeled edges,
i.e. it uses a single-step approach for obtaining
labeled dependency trees. Mate uses a rich and

“The JAVA implementation of the morphological anal-
yser and the slightly modified POS tagger along with trained
models are available at http://www.inf.u-szeged.
hu/rgai/magyarlanc.
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corpus #sent. | length | CPOS | DPOS ULA all ULA LAS all LAS
newspaper 9189 | 21.6 97.2 96.5 | 88.0(90.0) +0.8 84.7(87.5) | +1.0
short business | 8616 | 23.6 98.0 97.7 | 93.8 (94.8) +0.3 91.9934) | +04
fiction 9279 12.6 96.9 95.8 | 87.7(89.4) -0.5 83.7 (86.2) -0.3
law 8347 | 273 98.3 98.1 | 90.6 (90.7) +0.2 88.9(89.0) | +0.2
computer 8653 | 219 96.4 95.8 | 91.3(92.8) -1.2 88.9 (91.2) -1.6
composition 22248 | 13.7 96.7 95.6 | 92.7(93.9) +0.3 88.9 (91.0) +0.3

Table 2: Domain results achieved by the Mate parser

in cross-validation settings. The scores in brackets are

achieved with gold-standard POS tagging. The ‘all’ columns contain the added value of extending the training

sets with each of the five out-domain subcorpora.

well-engineered feature set and it is enhanced by
a Hash Kernel, which leads to higher accuracy.

Evaluation metrics: We apply the Labeled At-
tachment Score (LAS) and Unlabeled Attachment
Score (ULA), taking into account punctuation as
well for evaluating dependency parsers and the
accuracy on the main POS tags (CPOS) and a
fine-grained morphological accuracy (DPOS) for
evaluating the POS tagger. In the latter, the analy-
sis is regarded as correct if the main POS tag and
each of the morphological features of the token in
question are correct.

Results: Table 1 shows the results got by the
parsers on the whole Hungarian corpora and on
the English datasets. The most important point
is that scores are not different from the English
scores (although they are not directly compara-
ble). To understand the reasons for this, we man-
ually investigated the set of firing features with
the highest weights in the Mate parser. Although
the assessment of individual feature contributions
to a particular decoder decision is not straightfor-
ward, we observed that features encoding config-
urational information (i.e. the direction or length
of an edge, the words or POS tag sequences/sets
between the governor and the dependent) were
frequently among the highest weighted features
in English but were extremely rare in Hungarian.
For instance, one of the top weighted features for
a subject dependency in English was the ‘there is
no word between the head and the dependent’ fea-
ture while this never occurred among the top fea-
tures in Hungarian.

As a control experiment, we trained the Mate
parser only having access to the gold-standard
POS tag sequences of the sentences, i.e. we
switched off the lexicalization and detailed mor-
phological information. The goal of this experi-

ment was to gain an insight into the performance
of the parsers which can only access configura-
tional information. These parsers achieved worse
results than the full parsers by 6.8 ULA, 20.3 LAS
and 2.9 ULA, 6.4 LAS on the development sets
of Hungarian and English, respectively. As ex-
pected, Hungarian suffers much more when the
parser has to learn from configurational informa-
tion only, especially when grammatical functions
have to be predicted (LAS). Despite this, the re-
sults of Table 1 show that the parsers can practi-
cally eliminate this gap by learning from morpho-
logical features (and lexicalization). This means
that the data-driven parsers employing a very rich
feature set can learn a model which effectively
captures the dependency structures using feature
weights which are radically different from the
ones used for English.

Another cause of the relatively high scores is
that the CPOS accuracy scores on Hungarian
and English are almost equal: 97.2 and 97.3, re-
spectively. This also explains the small differ-
ence between the results got by gold-standard and
predicted POS tags. Moreover, the parser can
also exploit the morphological features as input
in Hungarian.

The Mate parser outperformed the other two
parsers on each of the four datasets. Comparing
the two graph-based parsers Mate and MST, the
gap between them was twice as big in LAS than in
ULA in Hungarian, which demonstrates that the
one-step approach looking for the maximum
labeled spanning tree is more suitable for Hun-
garian than the two-step arc labeling approach of
MST. This probably holds for other morpholog-
ically rich languages too as the decoder can ex-
ploit information from the labels of decoded arcs.
Based on these results, we decided to use only
Mate for our further experiments.
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Table 2 provides an insight into the effect of
domain differences on POS tagging and pars-
ing scores. There is a noticeable difference be-
tween the “newspaper” and the “short business
news” corpora. Although these domains seem to
be close to each other at the first glance (both are
news), they have different characteristics. On the
one hand, short business news is a very narrow
domain consisting of 2-3 sentence long financial
short reports. It frequently uses the same gram-
matical structures (like “Stock indexes rose X per-
cent at the Y Stock on Wednesday”) and the lexi-
con is also limited. On the other hand, the news-
paper subcorpus consists of full journal articles
covering various domains and it has a fancy jour-
nalist style.

The effect of extending the training dataset with
out-of-domain parses is not convincing. In spite
of the ten times bigger training datasets, there
are two subcorpora where they just harmed the
parser, and the improvement on other subcorpora
is less than 1 percent. This demonstrates well the
domain-dependence of parsing.

The parser and the POS tagger react to do-
main difficulties in a similar way, according to
the first four rows of Table 2. This observation
holds for the scores of the parsers working with
gold-standard POS tags, which suggests that do-
main difficulties harm POS tagging and parsing as
well. Regarding the two last subcorpora, the com-
positions consist of very short and usually simple
sentences and the training corpora are twice as big
compared with other subcorpora. Both factors are
probably the reasons for the good parsing perfor-
mance. In the computer corpus, there are many
English terms which are manually tagged with an
“unknown” tag. They could not be accurately pre-
dicted by the POS tagger but the parser could pre-
dict their syntactic role.

Table 2 also tells us that the difference between
CPOS and DPOS is usually less than 1 percent.
This experimentally supports that the ambigu-
ity among alternative morphological analyses
is mostly present at the POS-level and the mor-
phological features are efficiently identified by
our morphological analyser. The most frequent
morphological features which cannot be disam-
biguated at the word level are related to suffixes
with multiple functions or the word itself cannot
be unambiguously segmented into morphemes.
Although the number of such ambiguous cases is

low, they form important features for the parser,
thus we will focus on the more accurate handling
of these cases in future work.

Comparison to CoNLL-2007 results: The
best performing participant of the CoNLL-2007
Shared Task (Nivre et al., 2007) achieved an ULA
of 83.6 and LAS of 80.3 (Hall et al., 2007) on
the Hungarian corpus. The difference between the
top performing English and Hungarian systems
were 8.14 ULA and 9.3 LAS. The results reported
in 2007 were significantly lower and the gap be-
tween English and Hungarian is higher than our
current values. To locate the sources of difference
we carried out other experiments with Mate on
the CoNLL-2007 dataset using the gold-standard
POS tags (the shared task used gold-standard POS
tags for evaluation).

First we trained and evaluated Mate on the
original CoNLL-2007 datasets, where it achieved
ULA 84.3 and LAS 80.0. Then we used the sen-
tences of the CoNLL-2007 datasets but with the
new, manual annotation. Here, Mate achieved
ULA 88.6 and LAS 85.5, which means that the
modified annotation schema and the less erro-
neous/noisy annotation caused an improvement of
ULA 4.3 and LAS 5.5. The annotation schema
changed a lot: coordination had to be corrected
manually since it is treated differently after con-
version, moreover, the internal structure of ad-
jectival/participial phrases was not marked in the
original constituency treebank, so it was also
added manually (Vincze et al., 2010). The im-
provement in the labeled attachment score is prob-
ably due to the reduction of the label set (from 49
to 29 labels), which step was justified by the fact
that some morphosyntactic information was dou-
bly coded in the case of nouns (e.g. hdzzal (house-
INS) “with the/a house”) in the original CoNLL-
2007 dataset — first, by their morphological case
(Cas=ins) and second, by their dependency label
(INS).

Lastly, as the CoNLL-2007 sentences came
from the newspaper subcorpus, we can compare
these scores with the ULA 90.0 and LAS 87.5
of Table 2. The ULA 1.5 and LAS 2.0 differ-
ences are the result of the bigger training corpus
(9189 sentences on average compared to 6390 in
the CoNLL-2007 dataset).
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Hungarian English
label | attachment label | attachment

virtual nodes 31.5% 39.5% multiword NEs 15.2% 17.6%
conjunctions and negation - 11.2% PP-attachment - 15.9%
noun attachment - 9.6% non-canonical word order | 6.4% 6.5%
more than 1 premodifier - 5.1% misplaced clause - 9.7%
coordination 13.5% 16.5% coordination 8.5% 12.5%
mislabeled adverb 16.3% - mislabeled adverb 40.1% -

annotation errors 10.7% 6.8% annotation errors 9.7% 8.5%
other 28.0% 11.3% other 20.1% 29.3%
TOTAL 100% 100% TOTAL 100% 100%

Table 3: The most frequent corpus-specific and general attachment and labeling error categories (based on a

manual investigation of 200-200 erroneous sentences).

6 A Systematic Error Analysis

In order to discover specialties and challenges of
Hungarian dependency parsing, we conducted an
error analysis of parsed texts from the newspaper
domain both in English and Hungarian. 200 ran-
domly selected erroneous sentences from the out-
put of Mate were investigated in both languages
and we categorized the errors on the basis of the
linguistic phenomenon responsible for the errors
— for instance, when an error occurred because of
the incorrect identification of a multiword Named
Entity containing a conjunction, we treated it as
a Named Entity error instead of a conjunction er-
ror —, i.e. our goal was to reveal the real linguistic
sources of errors rather than deducing from auto-
matically countable attachment/labeling statistics.

We used the parses based on gold-standard
POS tagging for this analysis as our goal was to
identify the challenges of parsing independently
of the challenges of POS tagging. The error cate-
gories are summarized in Table 3 along with their
relative contribution to attachment and labeling
errors. This table contains the categories with
over 5% relative frequency.’

The 200 sentences contained 429/319 and
353/330 attachment/labeling errors in Hungarian
and English, respectively. In Hungarian, attach-
ment errors outnumber label errors to a great ex-
tent whereas in English, their distribution is basi-
cally the same. This might be attributed to the
higher level of non-projectivity (see Section 4)
and to the more fine-grained label set of the En-
glish dataset (36 against 29 labels in English and

SThe full tables are available at www . inf . u-szeged.
hu/rgai/SzegedTreebank.

Hungarian, respectively).

Virtual nodes: In Hungarian, the most common
source of parsing errors was virtual nodes. As
there are quite a lot of verbless clauses in Hungar-
ian (see Section 2 on sentences without copula), it
might be difficult to figure out the proper depen-
dency relations within the sentence, since the verb
plays the central role in the sentence, cf. Tesniere
(1959). Our parser was not efficient in identify-
ing the structure of such sentences, probably due
to the lack of information for data-driven parsers
(each edge is labeled as Exd while they have sim-
ilar features to ordinary edges). We also note that
the output of the current system with Exd labels
does not contain too much information for down-
stream applications of parsing. The appropriate
handling of virtual nodes is an important direction
for future work.

Noun attachment: In Hungarian, the nomi-
nal arguments of infinitives and participles were
frequently erroneously attached to the main
verb. Take the following sentence: A Horn-
kabinet idején jol bevdlt modszerhez probdlnak
meg visszatérni (the Horn-government time-
3SGPOSS-SUP well tried method-ALL try-3PL
PREVERB return-INF) “They are trying to return
to the well-tried method of the Horn government”.
In this sentence, a Horn-kabinet idején “during
the Horn government” is a modifier of the past
participle bevdlt “well-tried”, however, it is at-
tached to the main verb probdlnak “they are try-
ing” by the parser. Moreover, modszerhez “‘to the
method” is an argument of the infinitive visszatér-
ni “to return”, but the parser links it to the main
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verb. In free word order languages, the order of
the arguments of the infinitive and the main verb
may get mixed, which is called scrambling (Ross,
1986). This is not a common source of error in
English as arguments cannot scramble.

Article attachment: In Hungarian, if there is
an article before a prenominal modifier, it can be-
long to the head noun and to the modifier as well.
In a szoba ajtaja (the room door-3SGPOSS) “the
door of the room” the article belongs to the modi-
fier but when the prenominal modifier cannot have
an article (e.g. a februdrban indulé projekt (the
February-INE starting project) “the project start-
ing in February”), it is attached to the head noun
(i.e. to projekt “project”). It was not always clear
for the parser which parent to select for the arti-
cle. In contrast, these cases are not problematic
in English since the modifier typically follows the
head and thus each article precedes its head noun.

Conjunctions or negation words — most typ-
ically the words is “too”, csak “only/just” and
nem/sem ‘“not” — were much more frequently at-
tached to the wrong node in Hungarian than in
English. In Hungarian, they are ambiguous be-
tween being adverbs and conjunctions and it is
mostly their conjunctive uses which are problem-
atic from the viewpoint of parsing. On the other
hand, these words have an important role in mark-
ing the information structure of the sentence: they
are usually attached to the element in focus posi-
tion, and if there is no focus, they are attached
to the verb. However, sentences with or with-
out focus can have similar word order but their
stress pattern is different. Dependency parsers
obviously cannot recognize stress patterns, hence
conjunctions and negation words are sometimes
erroneously attached to the verb in Hungarian.

English sentences with non-canonical word
order (e.g. questions) were often incorrectly
parsed, e.g. the noun following the main verb is
the object in sentences like Replied a salesman:
‘Exactly.’, where it is the subject that follows the
verb for stylistic reasons. However, in Hungarian,
morphological information is of help in such sen-
tences, as it is not the position relative to the verb
but the case suffix that determines the grammati-
cal role of the noun.

In English, high or low PP-attachment was
responsible for many parsing ambiguities: most

typically, the prepositional complement which
follows the head was attached to the verb instead
of the noun or vice versa. In contrast, Hungarian
is a head-after-dependent language, which means
that dependents most often occur before the head.
Furthermore, there are no prepositions in Hungar-
ian, and grammatical relations encoded by prepo-
sitions in English are conveyed by suffixes or
postpositions. Thus, if there is a modifier before
the nominal head, it requires the presence of a
participle as in: Felvette a kirakatban levd ruhdt
(take.on-PAST3SGOBJ the shop.window-INE be-
ing dress-ACC) “She put on the dress in the shop
window”. The English sentence is ambiguous (ei-
ther the event happens in the shop window or the
dress was originally in the shop window) while
the Hungarian has only the latter meaning.°

General dependency parsing difficulties:
There were certain structures that led to typical
label and/or attachment errors in both languages.
The most frequent one among them is coordi-
nation. However, it should be mentioned that
syntactic ambiguities are often problematic even
for humans to disambiguate without contextual
or background semantic knowledge.

In the case of label errors, the relation between
the given node and its parent was labeled incor-
rectly. In both English and Hungarian, one of the
most common errors of this type was mislabeled
adverbs and adverbial phrases, e.g. locative ad-
verbs were labeled as ADV/MODE. However, the
frequency rate of this error type is much higher
in English than in Hungarian, which may be re-
lated to the fact that in the English corpus, there
is a much more balanced distribution of adverbial
labels than in the Hungarian one (where the cat-
egories MODE and TLOCY are responsible for
90% of the occurrences). Assigning the most fre-
quent label of the training dataset to each adverb
yields an accuracy of 82% in English and 93% in
Hungarian, which suggests that there is a higher
level of ambiguity for English adverbial phrases.
For instance, the preposition by may introduce an
adverbial modifier of manner (MNR) in by cre-
ating a bill and the agent in a passive sentence
(LGS). Thus, labeling adverbs seems to be a more

SHowever, there exists a head-before-dependent version
of the sentence (Felvette a ruhdt a kirakatban), whose pre-
ferred reading is “She was in the shop window while dressing
up”, that is, the modifier belongs to the verb.
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difficult task in English.”

Clauses were also often mislabeled in both lan-
guages, most typically when there was no overt
conjunction between clauses. Another source of
error was when more than one modifier occurred
before a noun (5.1% and 4.2% of attachment er-
rors in Hungarian and in English): in these cases,
the first modifier could belong to the noun (a
brown Japanese car) or to the second modifier (a
brown haired girl).

Multiword Named Entities: As we mentioned
in Section 4, members of multiword Named Enti-
ties had a proper noun POS-tag and an NE label
in our dataset. Hence when parsing is based on
gold standard POS-tags, their recognition is al-
most perfect while it is a frequent source or er-
rors in the CoNLL-2009 corpus. We investigated
the parse of our 200 sentences with predicted POS
tags at NEs and found that this introduces several
errors (about 5% of both attachment and labeling
errors) in Hungarian. On the other hand, the re-
sults are only slightly worse in English, i.e. iden-
tifying the inner structure of NEs does not depend
on whether the parser builds on gold standard or
predicted POS-tags since function words like con-
junctions or prepositions — which mark grammat-
ical relations — are tagged in the same way in both
cases. The relative frequency of this error type is
much higher in English even when the Hungar-
ian parser does not have access to the gold proper
noun POS tags. The reason for this is simple: in
the Penn Treebank the correct internal structure of
the NEs has to be identified beyond the “phrase
boundaries” while in Hungarian their members
just form a chain.

Annotation errors: We note that our analysis
took into account only sentences which contained
at least one parsing error and we crawled only
the dependencies where the gold standard anno-
tation and the output of the parser did not match.
Hence, the frequency of annotation errors is prob-
ably higher than we found (about 1% of the en-
tire set of dependencies) during our investigation
as there could be annotation errors in the “error-
free” sentences and also in the investigated sen-
tences where the parser agrees with that error.

"We would nevertheless like to point out that adverbial
labels have a highly semantic nature, i.e. it could be argued
that it is not the syntactic parser that should identify them but
a semantic processor.

7 Conclusions

We showed that state-of-the-art dependency
parsers achieve similar results — in terms of at-
tachment scores — on Hungarian and English. Al-
though the results with this comparison should be
taken with a pinch of salt — as sentence lengths
(and information encoded in single words) differ,
domain differences and annotation schema diver-
gences are uncatchable — we conclude that parsing
Hungarian is just as hard a task as parsing English.
We argued that this is due to the relatively good
POS tagging accuracy (which is a consequence
of the low ambiguity of alternative morphological
analyses of a sentence and the good coverage of
the morphological analyser) and the fact that data-
driven dependency parsers employ a rich feature
representation which enables them to learn differ-
ent kinds of feature weight profiles.

We also discussed the domain differences
among the subcorpora of the Szeged Dependency
Treebank and their effect on parsing results. Our
results support that there can be higher differences
in parsing scores among domains in one language
than among corpora from a similar domain but
different languages (which again marks pitfalls of
inter-language comparison of parsing scores).

Our systematic error analysis showed that han-
dling the virtual nodes (mostly empty copula) is
a frequent source of errors. We identified several
phenomena which are not typically listed as Hun-
garian syntax-specific features but are challeng-
ing for the current data-driven parsers, however,
they are not problematic in English (like the at-
tachment of conjunctions and negation words and
the attachment problem of nouns and articles).
We concluded — based on our quantitative analy-
sis — that a further notable error reduction is only
achievable if distinctive attention is paid to these
language-specific phenomena.

We intend to investigate the problem of vir-
tual nodes in dependency parsing in more depth
and to implement new feature templates for the
Hungarian-specific challenges as future work.
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Abstract

We introduce a new approach to transition-
based dependency parsing in which the
parser does not directly construct a depen-
dency structure, but rather an undirected
graph, which is then converted into a di-
rected dependency tree in a post-processing
step. This alleviates error propagation,
since undirected parsers do not need to ob-
serve the single-head constraint.
Undirected parsers can be obtained by sim-
plifying existing transition-based parsers
satisfying certain conditions. We apply this
approach to obtain undirected variants of
the planar and 2-planar parsers and of Cov-
ington’s non-projective parser. We perform
experiments on several datasets from the
CoNLL-X shared task, showing that these
variants outperform the original directed al-
gorithms in most of the cases.

1 Introduction

Dependency parsing has proven to be very use-
ful for natural language processing tasks. Data-
driven dependency parsers such as those by Nivre
et al. (2004), McDonald et al. (2005), Titov and
Henderson (2007), Martins et al. (2009) or Huang
and Sagae (2010) are accurate and efficient, they
can be trained from annotated data without the
need for a grammar, and they provide a simple
representation of syntax that maps to predicate-
argument structure in a straightforward way.

In particular, transition-based dependency
parsers (Nivre, 2008) are a type of dependency
parsing algorithms which use a model that scores
transitions between parser states. Greedy deter-
ministic search can be used to select the transition
to be taken at each state, thus achieving linear or
quadratic time complexity.

Daniel Fernandez-Gonzalez
Departamento de Informatica
Universidade de Vigo
Campus As Lagoas, 32004
Ourense, Spain
danifgluvigo.es

Figure 1: An example dependency structure where
transition-based parsers enforcing the single-head con-
straint will incur in error propagation if they mistak-
enly build a dependency link 1 — 2 instead of 2 — 1
(dependency links are represented as arrows going
from head to dependent).

It has been shown by McDonald and Nivre
(2007) that such parsers suffer from error prop-
agation: an early erroneous choice can place the
parser in an incorrect state that will in turn lead to
more errors. For instance, suppose that a sentence
whose correct analysis is the dependency graph
in Figure 1 is analyzed by any bottom-up or left-
to-right transition-based parser that outputs de-
pendency trees, therefore obeying the single-head
constraint (only one incoming arc is allowed per
node). If the parser chooses an erroneous transi-
tion that leads it to build a dependency link from
1 to 2 instead of the correct link from 2 to 1, this
will lead it to a state where the single-head con-
straint makes it illegal to create the link from 3 to
2. Therefore, a single erroneous choice will cause
two attachment errors in the output tree.

With the goal of minimizing these sources of
errors, we obtain novel undirected variants of
several parsers; namely, of the planar and 2-
planar parsers by Gémez-Rodriguez and Nivre
(2010) and the non-projective list-based parser
described by Nivre (2008), which is based on
Covington’s algorithm (Covington, 2001). These
variants work by collapsing the LEFT-ARC and
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RIGHT-ARC transitions in the original parsers,
which create right-to-left and left-to-right depen-
dency links, into a single ARC transition creating
an undirected link. This has the advantage that
the single-head constraint need not be observed
during the parsing process, since the directed no-
tions of head and dependent are lost in undirected
graphs. This gives the parser more freedom and
can prevent situations where enforcing the con-
straint leads to error propagation, as in Figure 1.

On the other hand, these new algorithms have
the disadvantage that their output is an undirected
graph, which has to be post-processed to recover
the direction of the dependency links and generate
a valid dependency tree. Thus, some complexity
is moved from the parsing process to this post-
processing step; and each undirected parser will
outperform the directed version only if the simpli-
fication of the parsing phase is able to avoid more
errors than are generated by the post-processing.
As will be seen in latter sections, experimental re-
sults indicate that this is in fact the case.

The rest of this paper is organized as follows:
Section 2 introduces some notation and concepts
that we will use throughout the paper. In Sec-
tion 3, we present the undirected versions of the
parsers by Gomez-Rodriguez and Nivre (2010)
and Nivre (2008), as well as some considerations
about the feature models suitable to train them. In
Section 4, we discuss post-processing techniques
that can be used to recover dependency trees from
undirected graphs. Section 5 presents an empir-
ical study of the performance obtained by these
parsers, and Section 6 contains a final discussion.

2 Preliminaries

2.1 Dependency Graphs

Let w wi ...wy, be an input string. A de-
pendency graph for w is a directed graph G =
(Vw, E), where V,, = {0,...,n} is the set of
nodes, and £ C V,, x V,, is the set of directed
arcs. Each node in V,, encodes the position of
a token in w, and each arc in E encodes a de-
pendency relation between two tokens. We write
i — j to denote a directed arc (4, j), which will
also be called a dependency link from i to j.! We

'In practice, dependency links are usually labeled, but
to simplify the presentation we will ignore labels throughout
most of the paper. However, all the results and algorithms
presented can be applied to labeled dependency graphs and
will be so applied in the experimental evaluation.

say that ¢ is the head of j and, conversely, that j
is a syntactic dependent of ;.

Given a dependency graph G = (V,,, E), we
write ¢ —* j € F if there is a (possibly empty)
directed path from ¢ to j; and i «<* j € E if
there is a (possibly empty) path between ¢ and j in
the undirected graph underlying G (omitting the
references to E/ when clear from the context).

Most dependency-based representations of syn-
tax do not allow arbitrary dependency graphs, in-
stead, they are restricted to acyclic graphs that
have at most one head per node. Dependency
graphs satisfying these constraints are called de-
pendency forests.

Definition 1 A dependency graph G is said to be
a forest iff it satisfies:

1. Acyclicity constraint: if i —* j, then not
7 — 1.

2. Single-head constraint: if j — 1, then there
is no k # j such that k — 1.

A node that has no head in a dependency for-
est is called a root. Some dependency frame-
works add the additional constraint that depen-
dency forests have only one root (or, equivalently,
that they are connected). Such a forest is called a
dependency tree. A dependency tree can be ob-
tained from any dependency forest by linking all
of its root nodes as dependents of a dummy root
node, conventionally located in position 0 of the
input.

2.2 Transition Systems

In the framework of Nivre (2008), transition-
based parsers are described by means of a non-
deterministic state machine called a transition
system.

Definition 2 A transition system for dependency
parsing is a tuple S = (C, T, cs, C}), where

1. C'is a set of possible parser configurations,

2. T is a finite set of transitions, which are par-
tial functions t : C — C,

3. c¢s is a total initialization function mapping
each input string to a unique initial configu-
ration, and

4. Cy C C'is a set of terminal configurations.

To obtain a deterministic parser from a non-
deterministic transition system, an oracle is used
to deterministically select a single transition at
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each configuration. An oracle for a transition sys-
tem S = (C,T,cs,Cy) is a functiono : C — T.
Suitable oracles can be obtained in practice by
training classifiers on treebank data (Nivre et al.,
2004).

2.3 The Planar, 2-Planar and Covington
Transition Systems

Our undirected dependency parsers are based
on the planar and 2-planar transition systems
by Gémez-Rodriguez and Nivre (2010) and the
version of the Covington (2001) non-projective
parser defined by Nivre (2008). We now outline
these directed parsers briefly, a more detailed de-
scription can be found in the above references.

2.3.1 Planar

The planar transition system by Goémez-
Rodriguez and Nivre (2010) is a linear-time
transition-based parser for planar dependency
forests, i.e., forests whose dependency arcs do not
cross when drawn above the words. The set of
planar dependency structures is a very mild ex-
tension of that of projective structures (Kuhlmann
and Nivre, 2006).

Configurations in this system are of the form
¢ = (X, B, A) where X and B are disjoint lists of
nodes from V,, (for some input w), and A is a set
of dependency links over V,,. The list B, called
the buffer, holds the input words that are still to
be read. The list 3, called the stack, is initially
empty and is used to hold words that have depen-
dency links pending to be created. The system
is shown at the top in Figure 2, where the nota-
tion X | i is used for a stack with top 7 and tail 3,
and we invert the notation for the buffer for clarity
(i.e., i | B as a buffer with top ¢ and tail B).

The system reads the input sentence and creates
links in a left-to-right order by executing its four
transitions, until it gets to a terminal configura-
tion. A SHIFT transition moves the first (leftmost)
node in the buffer to the top of the stack. Transi-
tions LEFT-ARC and RIGHT-ARC create leftward
or rightward link, respectively, involving the first
node in the buffer and the topmost node in the
stack. Finally, REDUCE transition is used to pop
the top word from the stack when we have fin-
ished building arcs to or from it.

2.3.2 2-Planar

The 2-planar transition system by Goémez-
Rodriguez and Nivre (2010) is an extension of

the planar system that uses two stacks, allowing
it to recognize 2-planar structures, a larger set
of dependency structures that has been shown to
cover the vast majority of non-projective struc-
tures in a number of treebanks (Gémez-Rodriguez
and Nivre, 2010).

This transition system, shown in Figure 2, has
configurations of the form ¢ = (3, %, B, A) ,
where we call Y the active stack and X1 the in-
active stack. Its SHIFT, LEFT-ARC, RIGHT-ARC
and REDUCE transitions work similarly to those
in the planar parser, but while SHIFT pushes the
first word in the buffer to both stacks; the other
three transitions only work with the top of the ac-
tive stack, ignoring the inactive one. Finally, a
SWITCH transition is added that makes the active
stack inactive and vice versa.

2.3.3 Covington Non-Projective

Covington (2001) proposes several incremen-
tal parsing strategies for dependency representa-
tions and one of them can recover non-projective
dependency graphs. Nivre (2008) implements a
variant of this strategy as a transition system with
configurations of the form ¢ = (A1, Ao, B, A),
where A1 and )\, are lists containing partially pro-
cessed words and B is the buffer list of unpro-
cessed words.

The Covington non-projective transition sys-
tem is shown at the bottom in Figure 2. At each
configuration ¢ = (A1, \2, B, A), the parser has
to consider whether any dependency arc should
be created involving the top of the buffer and the
words in A\;. A LEFT-ARC transition adds a link
from the first node j in the buffer to the node in the
head of the list A\, which is moved to the list A\
to signify that we have finished considering it as a
possible head or dependent of 5. The RIGHT-ARC
transition does the same manipulation, but creat-
ing the symmetric link. A NO-ARC transition re-
moves the head of the list A\; and inserts it at the
head of the list Ay without creating any arcs: this
transition is to be used where there is no depen-
dency relation between the top node in the buffer
and the head of A1, but we still may want to cre-
ate an arc involving the top of the buffer and other
nodes in A;. Finally, if we do not want to create
any such arcs at all, we can execute a SHIFT tran-
sition, which advances the parsing process by re-
moving the first node in the buffer B and inserting
it at the head of a list obtained by concatenating
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A1 and \s. This list becomes the new A1, whereas
Ao is empty in the resulting configuration.

Note that the Covington parser has quadratic
complexity with respect to input length, while the
planar and 2-planar parsers run in linear time.

3 The Undirected Parsers

The transition systems defined in Section 2.3
share the common property that their LEFT-ARC
and RIGHT- ARC have exactly the same effects ex-
cept for the direction of the links that they create.
We can take advantage of this property to define
undirected versions of these transition systems, by
transforming them as follows:

e Configurations are changed so that the arc set
A is a set of undirected arcs, instead of di-
rected arcs.

e The LEFT-ARC and RIGHT-ARC transitions
in each parser are collapsed into a single ARC
transition that creates an undirected arc.

e The preconditions of transitions that guaran-
tee the single-head constraint are removed,
since the notions of head and dependent are
lost in undirected graphs.

By performing these transformations and leaving
the systems otherwise unchanged, we obtain the
undirected variants of the planar, 2-planar and
Covington algorithms that are shown in Figure 3.

Note that the transformation can be applied
to any transition system having LEFT-ARC and
RIGHT-ARC transitions that are equal except for
the direction of the created link, and thus col-
lapsable into one. The above three transition sys-
tems fulfill this property, but not every transition
system does. For example, the well-known arc-
eager parser of Nivre (2003) pops a node from the
stack when creating left arcs, and pushes a node
to the stack when creating right arcs, so the trans-
formation cannot be applied to it.?

?One might think that the arc-eager algorithm could still
be transformed by converting each of its arc transitions into
an undirected transition, without collapsing them into one.
However, this would result into a parser that violates the
acyclicity constraint, since the algorithm is designed in such
a way that acyclicity is only guaranteed if the single-head
constraint is kept. It is easy to see that this problem cannot
happen in parsers where LEFT-ARC and RIGHT-ARC transi-
tions have the same effect: in these, if a directed graph is not
parsable in the original algorithm, its underlying undirected
graph cannot not be parsable in the undirected variant.

3.1 Feature models

Some of the features that are typically used to
train transition-based dependency parsers depend
on the direction of the arcs that have been built up
to a certain point. For example, two such features
for the planar parser could be the POS tag associ-
ated with the head of the topmost stack node, or
the label of the arc going from the first node in the
buffer to its leftmost dependent.’

As the notion of head and dependent is lost in
undirected graphs, this kind of features cannot be
used to train undirected parsers. Instead, we use
features based on undirected relations between
nodes. We found that the following kinds of fea-
tures worked well in practice as a replacement for
features depending on arc direction:

e Information about the ¢th node linked to a
given node (topmost stack node, topmost
buffer node, etc.) on the left or on the right,
and about the associated undirected arc, typi-
cally for: = 1,2, 3,

e Information about whether two nodes are
linked or not in the undirected graph, and
about the label of the arc between them,

e Information about the first left and right
“undirected siblings” of a given node, i.e., the
first node q located to the left of the given node
p such that p and ¢q are linked to some common
node 7 located to the right of both, and vice
versa. Note that this notion of undirected sib-
lings does not correspond exclusively to sib-
lings in the directed graph, since it can also
capture other second-order interactions, such
as grandparents.

4 Reconstructing the dependency forest

The modified transition systems presented in the
previous section generate undirected graphs. To
obtain complete dependency parsers that are able
to produce directed dependency forests, we will
need a reconstruction step that will assign a direc-
tion to the arcs in such a way that the single-head
constraint is obeyed. This reconstruction step can
be implemented by building a directed graph with
weighted arcs corresponding to both possible di-
rections of each undirected edge, and then finding
an optimum branching to reduce it to a directed

3These example features are taken from the default model

for the planar parser in version 1.5 of MaltParser (Nivre et
al., 20006).
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Planar initial/terminal configurations:

Transitions: SHIFT
REDUCE
LEFT-ARC

RIGHT-ARC

2-Planar initial/terminal configurations:

Transitions: SHIFT
REDUCE
LEFT-ARC

RIGHT-ARC

SWITCH
Covington initial/term. configurations:

Transitions: SHIFT
NoO-ARC
LEFT-ARC

RIGHT-ARC

cs(wr...wn) =([,[1...n],0), Cy = {(%,[, 4) € C}
(X,iB, A) = (Xi, B, A)

(Sli, B, A) = (%, B, 4)

(Xli, j|B, A) = (Z[i, j| B, AU{(j,1)})

only if #k | (k,i) € A (single-head) and i «* j & A (acyclicity).
(X, 4|1B, A) = (Z[i, j| B, AU{(i,))})

only if 3k | (k,j) € A (single-head) and i «+* j & A (acyclicity).
cs(wi...wn) = ([ [,[1...n),0), Cp = {(X0, X1, [}, 4) € C}
<Eo,21,Z|B A> <20‘Z 21‘2 B A>

(Xoli, X1, B, A) = (X0, 31, B, A)

<20‘i) Elaj|Bv A> = <EO|Z7 Elaj|Bv AU {j? 7’)}>

only if #k | (k,i) € A (single-head) and i «* j & A (acyclicity).
<20‘i721;j|BaA> = <20‘i7217j’BvA U {(Zaj)}>

only if % | (k,j) € A (single-head) and i «+* j & A (acyclicity).
<Eo, El,B,A> = <21, Zo,B,A>

cs(wi...wn) = ([, [, [L...n],0), Cr = {{A1, A2, [], 4) € C}
<)\1,)\2,2“B,A> = <)\1 : )\Q‘Z., H,B,A>

<)\1|i7)‘27B7A> = <)\17i|)\27B7A>

<>\1|ia >\27j|B7 A> = <)\1a 7’|)\27j’B7 AU {(]7 Z)}>

only if 3k | (k,i) € A (single-head) and i «* j & A (acyclicity).
<)\1|i7 )‘27J‘B’A> = <)‘17 7’|)‘27j’Bv AU {(Z7j)}>

only if #k | (k,j) € A (single-head) and i «* j ¢ A (acyclicity).

Figure 2: Transition systems for planar, 2-planar and Covington non-projective dependency parsing.

Undirected Planar initial/term. conf.:

Transitions: SHIFT
REDUCE
ARC

Undirected 2-Planar initial/term. conf.:

Transitions: SHIFT
REDUCE
ARC

SWITCH

Undirected Covington init./term. conf.:

Transitions: SHIFT
NoO-ARC
ARC

o .cwa) = ([, [1...n),0), Cy = {(, [}, 4) € C}
(3,1|B, A) = (X|i, B, A)

(3|1, B, A) = (¥, B, A)

(Xli,j|B, A) = (Xi, j|B, AU{{i,j}})

only if i «* j & A (acyclicity).

co(wr - cwn) = ([ [ (1], 0), Cf = {(Z0, 51, [}, A) € C}
(30, 21,1 B, A) = (Xoli, 217, B, A)

(3o, X1, B, A) = (X0, X1, B, A)

(Zold, X1, 4B, A) = (Eoli, X1, j|B, AU {{i, j}})

only if i «* j & A (acyclicity).

(30,31, B, A) = (31,%0, B, A)

co(wy - wn) = ([, 1,1 .0n),0), Cp = {{(\1, A, [J, A) € C}
(A1, A2, B, A) = (A1~ Aali, [], B, A)

(A, Ao, B, A) = (\1,1| A, B, A)

<)\1|7;a )\27]‘B7A> = <)‘17 Z‘)‘2>j’B>A U {{17]}}>
only if i «* j ¢ A (acyclicity).

Figure 3: Transition systems for undirected planar, 2-planar and Covington non-projective dependency parsing.
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tree. Different criteria for assigning weights to
arcs provide different variants of the reconstruc-
tion technique.

To describe these variants, we first introduce
preliminary definitions. Let U (Vuw, E) be
an undirected graph produced by an undirected
parser for some string w. We define the follow-
ing sets of arcs:

A1(U) ={(i,5) | 1 #0A{i,j} € E},
A2(U) = {(O,Z) ’ (S Vw}‘

Note that A;(U) represents the set of arcs ob-
tained from assigning an orientation to an edge
in U, except arcs whose dependent is the dummy
root, which are disallowed. On the other hand,
Ay (U) contains all the possible arcs originating
from the dummy root node, regardless of whether
their underlying undirected edges are in U or not;
this is so that reconstructions are allowed to link
unattached tokens to the dummy root.

The reconstruction process consists of finding
a minimum branching (i.e. a directed minimum
spanning tree) for a weighted directed graph ob-
tained from assigning a cost ¢(i,7) to each arc
(i, ) of the following directed graph:

D(U) = {Vi, AU) = A (U) U A(U)}.

That is, we will find a dependency tree T
(Vw, A7 € A(U)) such that the sum of costs of
the arcs in A7 is minimal. In general, such a min-
imum branching can be calculated with the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). Since the graph D(U) has O(n)
nodes and O(n) arcs for a string of length n, this
can be done in O(nlogn) if implemented as de-
scribed by Tarjan (1977).

However, applying these generic techniques is
not necessary in this case: since our graph U is
acyclic, the problem of reconstructing the forest
can be reduced to choosing a root word for each
connected component in the graph, linking it as
a dependent of the dummy root and directing the
other arcs in the component in the (unique) way
that makes them point away from the root.

It remains to see how to assign the costs (4, j)
to the arcs of D(U): different criteria for assign-
ing scores will lead to different reconstructions.

4.1 Naive reconstruction

A first, very simple reconstruction technique can
be obtained by assigning arc costs to the arcs in

A(U) as follows:

i j){ 1 if (i,5) € A1 (D),
’ 2 if (27]) € A2(U) A (Za]) QAI(U)

This approach gives the same cost to all arcs
obtained from the undirected graph U, while also
allowing (at a higher cost) to attach any node to
the dummy root. To obtain satisfactory results
with this technique, we must train our parser to
explicitly build undirected arcs from the dummy
root node to the root word(s) of each sentence us-
ing arc transitions (note that this implies that we
need to represent forests as trees, in the manner
described at the end of Section 2.1). Under this
assumption, it is easy to see that we can obtain the
correct directed tree ' for a sentence if it is pro-
vided with its underlying undirected tree U: the
tree is obtained in O(n) as the unique orientation
of U that makes each of its edges point away from
the dummy root.

This approach to reconstruction has the advan-
tage of being very simple and not adding any com-
plications to the parsing process, while guarantee-
ing that the correct directed tree will be recovered
if the undirected tree for a sentence is generated
correctly. However, it is not very robust, since the
direction of all the arcs in the output depends on
which node is chosen as sentence head and linked
to the dummy root. Therefore, a parsing error af-
fecting the undirected edge involving the dummy
root may result in many dependency links being
eIroneous.

4.2 Label-based reconstruction

To achieve a more robust reconstruction, we use
labels to encode a preferred direction for depen-
dency arcs. To do so, for each pre-existing label
X in the training set, we create two labels X; and
X,. The parser is then trained on a modified ver-
sion of the training set where leftward links orig-
inally labelled X are labelled X;, and rightward
links originally labelled X are labelled X,.. Thus,
the output of the parser on a new sentence will be
an undirected graph where each edge has a label
with an annotation indicating whether the recon-
struction process should prefer to link the pair of
nodes with a leftward or a rightward arc. We can
then assign costs to our minimum branching algo-
rithm so that it will return a tree agreeing with as
many such annotations as possible.
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To do this, we call A;(U) C A;(U) the set
of arcs in A;(U) that agree with the annotations,
i.e., arcs (7,7) € A1 (U) where either ¢ < j and
i, j s labelled X, in U, or¢ > j and 1, j is labelled
X;inU. We call A;_(U) the set of arcs in A, (U)
that disagree with the annotations, i.e., A1 (U)
A1(U)\A14(U). And we assign costs as follows:

1 if (4,7) € A1+ (U)
2 if(i,j) € A1—(U),

)

c(i, )

where n is the length of the string.

With these costs, the minimum branching algo-
rithm will find a tree which agrees with as many
annotations as possible. Additional arcs from the
root not corresponding to any edge in the output
of the parser (i.e. arcs in A2(U) but notin A, (U))
will be used only if strictly necessary to guarantee
connectedness, this is implemented by the high
cost for these arcs.

While this may be the simplest cost assignment
to implement label-based reconstruction, we have
found that better empirical results are obtained if
we give the algorithm more freedom to create new
arcs from the root, as follows:

1
2 if (i,5) € Ai_(U) A (i,5) & As(
on if (i,5) € Ay(U).

c(i,9) U

While the cost of arcs from the dummy root is
still 2n, this is now so even for arcs that are in the
output of the undirected parser, which had cost 1
before. Informally, this means that with this con-
figuration the postprocessor does not “trust” the
links from the dummy root created by the parser,
and may choose to change them if it is conve-
nient to get a better agreement with label anno-
tations (see Figure 4 for an example of the dif-
ference between both cost assignments). We be-
lieve that the better accuracy obtained with this
criterion probably stems from the fact that it is bi-
ased towards changing links from the root, which
tend to be more problematic for transition-based
parsers, while respecting the parser output for
links located deeper in the dependency structure,
for which transition-based parsers tend to be more
accurate (McDonald and Nivre, 2007).

Note that both variants of label-based recon-
struction have the property that, if the undirected
parser produces the correct edges and labels for a

if (27]) S A1+(U) N (7"3) ¢ AQ(U§

a. - I
A AN
0 1 2 3 4 5
b.

~ AN
0 1 2 3 4 5
aYale
0 1 2 3 4 5

Figure 4: a) An undirected graph obtained by the
parser with the label-based transformation, b) and c)
The dependency graph obtained by each of the variants
of the label-based reconstruction (note how the second
variant moves an arc from the root).

given sentence, then the obtained directed tree is
guaranteed to be correct (as it will simply be the
tree obtained by decoding the label annotations).

S Experiments

In this section, we evaluate the performance of the
undirected planar, 2-planar and Covington parsers

"on eight datasets from the CoNLL-X shared task
(Buchholz and Marsi, 2006).

Tables 1, 2 and 3 compare the accuracy of the
undirected versions with naive and label-based re-
construction to that of the directed versions of
the planar, 2-planar and Covington parsers, re-
spectively. In addition, we provide a comparison
to well-known state-of-the-art projective and non-
projective parsers: the planar parsers are com-
pared to the arc-eager projective parser by Nivre
(2003), which is also restricted to planar struc-
tures; and the 2-planar parsers are compared with
the arc-eager parser with pseudo-projective trans-
formation of Nivre and Nilsson (2005), capable of
handling non-planar dependencies.

We use SVM classifiers from the LIBSVM
package (Chang and Lin, 2001) for all the lan-
guages except Chinese, Czech and German. In
these, we use the LIBLINEAR package (Fan et
al., 2008) for classification, which reduces train-
ing time for these larger datasets; and feature
models adapted to this system which, in the case
of German, result in higher accuracy than pub-
lished results using LIBSVM.
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The LIBSVM feature models for the arc-eager
projective and pseudo-projective parsers are the
same used by these parsers in the CoNLL-X
shared task, where the pseudo-projective version
of MaltParser was one of the two top performing
systems (Buchholz and Marsi, 2006). For the 2-
planar parser, we took the feature models from
Go6mez-Rodriguez and Nivre (2010) for the lan-
guages included in that paper. For all the algo-
rithms and datasets, the feature models used for
the undirected parsers were adapted from those of
the directed parsers as described in Section 3.1.4

The results show that the use of undirected
parsing with label-based reconstruction clearly
improves the performance in the vast majority of
the datasets for the planar and Covington algo-
rithms, where in many cases it also improves upon
the corresponding projective and non-projective
state-of-the-art parsers provided for comparison.
In the case of the 2-planar parser the results are
less conclusive, with improvements over the di-
rected versions in five out of the eight languages.

The improvements in LAS obtained with label-
based reconstruction over directed parsing are sta-
tistically significant at the .05 level® for Danish,
German and Portuguese in the case of the pla-
nar parser; and Czech, Danish and Turkish for
Covington’s parser. No statistically significant de-
crease in accuracy was detected in any of the al-
gorithm/dataset combinations.

As expected, the good results obtained by the
undirected parsers with label-based reconstruc-
tion contrast with those obtained by the variants
with root-based reconstruction, which performed
worse in all the experiments.

6 Discussion

We have presented novel variants of the planar
and 2-planar transition-based parsers by Gémez-
Rodriguez and Nivre (2010) and of Covington’s
non-projective parser (Covington, 2001; Nivre,
2008) which ignore the direction of dependency
links, and reconstruction techniques that can be
used to recover the direction of the arcs thus pro-
duced. The results obtained show that this idea
of undirected parsing, together with the label-

*All the experimental settings and feature models used
are included in the supplementary material and also available
athttp://www.grupolys.org/~cgomezr/exp/.

SStatistical significance was assessed using Dan Bikel’s
randomized comparator: http://www.cis.upenn.
edu/~dbikel/software.html

based reconstruction technique of Section 4.2, im-
proves parsing accuracy on most of the tested
dataset/algorithm combinations, and it can out-
perform state-of-the-art transition-based parsers.

The accuracy improvements achieved by re-
laxing the single-head constraint to mitigate er-
ror propagation were able to overcome the er-
rors generated in the reconstruction phase, which
were few: we observed empirically that the dif-
ferences between the undirected LAS obtained
from the undirected graph before the reconstruc-
tion and the final directed LAS are typically be-
low 0.20%. This is true both for the naive and
label-based transformations, indicating that both
techniques are able to recover arc directions accu-
rately, and the accuracy differences between them
come mainly from the differences in training (e.g.
having tentative arc direction as part of feature
information in the label-based reconstruction and
not in the naive one) rather than from the differ-
ences in the reconstruction methods themselves.

The reason why we can apply the undirected
simplification to the three parsers that we have
used in this paper is that their LEFT-ARC and
RIGHT-ARC transitions have the same effect ex-
cept for the direction of the links they create.
The same transformation and reconstruction tech-
niques could be applied to any other transition-
based dependency parsers sharing this property.
The reconstruction techniques alone could po-
tentially be applied to any dependency parser
(transition-based or not) as long as it can be some-
how converted to output undirected graphs.

The idea of parsing with undirected relations
between words has been applied before in the
work on Link Grammar (Sleator and Temperley,
1991), but in that case the formalism itself works
with undirected graphs, which are the final out-
put of the parser. To our knowledge, the idea of
using an undirected graph as an intermediate step
towards obtaining a dependency structure has not
been explored before.
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Planar UPlanarN UPlanarL MaltP
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic 66.93 (67.34) | 77.56 (77.22) || 65.91 (66.33) | 77.03 (76.75) 66.75 (67.19) 77.45 (77.22) 66.43 (66.74) | 77.19 (76.83)
Chinese || 84.23 (84.20) | 88.37 (88.33) || 83.14 (83.10) | 87.00 (86.95) || 84.51* (84.50*) | 88.37 (88.35*) || 86.42 (86.39) | 90.06 (90.02)
Czech 77.24 (77.70) | 83.46 (83.24) || 75.08 (75.60) | 81.14 (81.14) || 77.60%* (77.93*) | 83.56* (83.41%) || 77.24 (77.57) | 83.40 (83.19)
Danish 83.31 (82.60) | 88.02 (86.64) || 82.65 (82.45) | 87.58 (86.67*) || 83.87* (83.83*) | 88.94* (88.17*) || 83.31 (82.64) | 88.30 (86.91)
German || 84.66 (83.60) | 87.02 (85.67) || 83.33 (82.77) | 85.78 (84.93) || 86.32* (85.67*) | 88.62* (87.69%) || 86.12 (85.48) | 88.52 (87.58)
Portug. 86.22 (83.82) | 89.80 (86.88) || 85.89 (83.82) | 89.68 (87.06%) || 86.52* (84.83*%) | 90.28* (88.03*) || 86.60 (84.66) | 90.20 (87.73)
Swedish || 83.01 (82.44) | 88.53 (87.36) || 81.20 (81.10) | 86.50 (85.86) 82.95 (82.66%) | 88.29 (87.45*) || 82.89 (82.44) | 88.61 (87.55)
Turkish || 62.70 (71.27) | 73.67 (78.57) || 59.83 (68.31) | 70.15 (75.17) || 63.27* (71.63*) | 73.93* (78.72%) || 62.58 (70.96) | 73.09 (77.95)
Table 1: Parsing accuracy of the undirected planar parser with naive (UPlanarN) and label-based (UPlanarL)

postprocessing in comparison to the directed planar (Planar) and the MaltParser arc-eager projective (MaltP)
algorithms, on eight datasets from the CoNLL-X shared task (Buchholz and Marsi, 2006): Arabic (Haji¢ et al.,
2004), Chinese (Chen et al., 2003), Czech (Haji¢ et al., 2006), Danish (Kromann, 2003), German (Brants et
al., 2002), Portuguese (Afonso et al., 2002), Swedish (Nilsson et al., 2005) and Turkish (Oflazer et al., 2003;
Atalay et al., 2003). We show labelled (LAS) and unlabelled (UAS) attachment score excluding and including
punctuation tokens in the scoring (the latter in brackets). Best results for each language are shown in boldface,
and results where the undirected parser outperforms the directed version are marked with an asterisk.

2Planar U2PlanarN U2PlanarL MaltPP

Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)

Arabic 66.73 (67.19) | 77.33 (77.11) || 66.37 (66.93) | 77.15 (77.09) || 66.13 (66.52) 76.97 (76.70) || 65.93 (66.02) | 76.79 (76.14)
Chinese || 84.35 (84.32) | 88.31 (88.27) || 83.02 (82.98) | 86.86 (86.81) || 84.45* (84.42*) | 88.29 (88.25) || 86.42 (86.39) | 90.06 (90.02)
Czech 77.72 (77.91) | 83.76 (83.32) || 74.44 (75.19) | 80.68 (80.80) || 78.00* (78.59%) | 84.22* (84.21%*) || 78.86 (78.47) | 84.54 (83.89)
Danish || 83.81 (83.61) | 88.50 (87.63) || 82.00 (81.63) | 86.87 (85.80) || 83.75 (83.65*) | 88.62* (87.82*) || 83.67 (83.54) | 88.52 (87.70)
German || 86.28 (85.76) | 88.68 (87.86) || 82.93 (82.53) | 85.52 (84.81) || 86.52* (85.99%*) | 88.72* (87.92%) || 86.94 (86.62) | 89.30 (88.69)
Portug. || 87.04 (84.92) | 90.82 (88.14) || 85.61 (83.45) | 89.36 (86.65) || 86.70 (84.75) 90.38 (87.88) || 87.08 (84.90) | 90.66 (87.95)
Swedish || 83.13 (82.71) | 88.57 (87.59) || 81.00 (80.71) | 86.54 (85.68) || 82.59 (82.25) 88.19 (87.29) || 83.39 (82.67) | 88.59 (87.38)
Turkish || 61.80 (70.09) | 72.75 (77.39) || 58.10 (67.44) | 68.03 (74.06) || 61.92* (70.64*) | 72.18 (77.46*) || 62.80 (71.33) | 73.49 (78.44)

Table 2: Parsing accuracy of the undirected 2-planar parser with naive (U2PlanarN) and label-based (U2PlanarL)
postprocessing in comparison to the directed 2-planar (2Planar) and MaltParser arc-eager pseudo-projective
(MaltPP) algorithms. The meaning of the scores shown is as in Table 1.

Covington UCovingtonN UCovingtonL ‘
Lang. LAS(p) UAS(p) LAS(p) UAS(p) LAS(p) UAS(p)
Arabic || 65.17 (65.49) | 75.99 (75.69) || 63.49 (63.93) | 74.41 (74.20) || 65.61% (65.81%) | 76.11* (75.66)
Chinese || 85.61 (85.61) | 89.64 (89.62) || 84.12 (84.02) | 87.85 (87.73) || 86.28* (86.17%) | 90.16* (90.04*)
Czech 78.26 (77.43) | 84.04 (83.15) || 74.02 (74.78) | 79.80 (79.92) || 78.42* (78.69%) | 84.50* (84.16*)
Danish || 83.63 (82.89) | 88.50 (87.06) || 82.00 (81.61) | 86.55 (85.51) || 84.27* (83.85%) | 88.82* (87.75%)
German || 86.70 (85.69) | 89.08 (87.78) || 84.03 (83.51) | 86.16 (85.39) || 86.50 (85.90%) | 88.84 (87.95%)
Portug. || 84.73 (82.56) | 89.10 (86.30) || 83.83 (81.71) | 87.88 (85.17) || 84.95* (82.70%*) | 89.18* (86.31*)
Swedish || 83.53 (82.76) | 88.91 (87.61) || 81.78 (81.47) | 86.78 (85.96) || 83.09 (82.73) | 88.11 (87.23)
Turkish || 64.25 (72.70) | 74.85 (79.75) || 63.51 (72.08) | 74.07 (79.10) || 64.91%* (73.38%*) | 75.46* (80.40%*)

Table 3: Parsing accuracy of the undirected Covington non-projective parser with naive (UCovingtonN) and
label-based (UCovingtonL.) postprocessing in comparison to the directed algorithm (Covington). The meaning
of the scores shown is as in Table 1.
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Abstract

Transition-based dependency parsers are
often forced to make attachment deci-
sions at a point when only partial infor-
mation about the relevant graph configu-
ration is available. In this paper, we de-
scribe a model that takes into account com-
plete structures as they become available
to rescore the elements of a beam, com-
bining the advantages of transition-based
and graph-based approaches. We also pro-
pose an efficient implementation that al-
lows for the use of sophisticated features
and show that the completion model leads
to a substantial increase in accuracy. We
apply the new transition-based parser on ty-
pologically different languages such as En-
glish, Chinese, Czech, and German and re-
port competitive labeled and unlabeled at-
tachment scores.

1 Introduction

Background. A considerable amount of recent
research has gone into data-driven dependency
parsing, and interestingly throughout the continu-
ous process of improvements, two classes of pars-
ing algorithms have stayed at the centre of at-
tention, the transition-based (Nivre, 2003) vs. the
graph-based approach (Eisner, 1996; McDonald
et al., 2005).! The two approaches apply funda-
mentally different strategies to solve the task of
finding the optimal labeled dependency tree over
the words of an input sentence (where supervised
machine learning is used to estimate the scoring
parameters on a treebank).

The transition-based approach is based on the
conceptually (and cognitively) compelling idea

"More references will be provided in sec. 2.

that machine learning, i.e., a model of linguis-
tic experience, is used in exactly those situations
when there is an attachment choice in an other-
wise deterministic incremental left-to-right pars-
ing process. As a new word is processed, the
parser has to decide on one out of a small num-
ber of possible transitions (adding a dependency
arc pointing to the left or right and/or pushing or
popping a word on/from a stack representation).
Obviously, the learning can be based on the fea-
ture information available at a particular snapshot
in incremental processing, i.e., only surface in-
formation for the unparsed material to the right,
but full structural information for the parts of the
string already processed. For the completely pro-
cessed parts, there are no principled limitations as
regards the types of structural configurations that
can be checked in feature functions.

The graph-based approach in contrast empha-
sizes the objective of exhaustive search over all
possible trees spanning the input words. Com-
monly, dynamic programming techniques are
used to decide on the optimal tree for each par-
ticular word span, considering all candidate splits
into subspans, successively building longer spans
in a bottom-up fashion (similar to chart-based
constituent parsing). Machine learning drives
the process of deciding among alternative can-
didate splits, i.e., feature information can draw
on full structural information for the entire ma-
terial in the span under consideration. However,
due to the dynamic programming approach, the
features cannot use arbitrarily complex structural
configurations: otherwise the dynamic program-
ming chart would have to be split into exponen-
tially many special states. The typical feature
models are based on combinations of edges (so-
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called second-order factors) that closely follow
the bottom-up combination of subspans in the
parsing algorithm, i.e., the feature functions de-
pend on the presence of two specific dependency
edges. Configurations not directly supported by
the bottom-up building of larger spans are more
cumbersome to integrate into the model (since the
combination algorithm has to be adjusted), in par-
ticular for third-order factors or higher.

Empirically, i.e., when applied in supervised
machine learning experiments based on existing
treebanks for various languages, both strategies
(and further refinements of them not mentioned
here) turn out roughly equal in their capability
of picking up most of the relevant patterns well;
some subtle strengths and weaknesses are com-
plementary, such that stacking of two parsers rep-
resenting both strategies yields the best results
(Nivre and McDonald, 2008): in training and ap-
plication, one of the parsers is run on each sen-
tence prior to the other, providing additional fea-
ture information for the other parser. Another suc-
cessful technique to combine parsers is voting as
carried out by Sagae and Lavie (2006).

The present paper addresses the question if
and how a more integrated combination of the
strengths of the two strategies can be achieved
and implemented efficiently to warrant competi-
tive results.

The main issue and solution strategy. In or-
der to preserve the conceptual (and complexity)
advantages of the transition-based strategy, the
integrated algorithm we are looking for has to
be transition-based at the top level. The advan-
tages of the graph-based approach — a more glob-
ally informed basis for the decision among dif-
ferent attachment options — have to be included
as part of the scoring procedure. As a prerequi-
site, our algorithm will require a memory for stor-
ing alternative analyses among which to choose.
This has been previously introduced in transition-
based approaches in the form of a beam (Johans-
son and Nugues, 2006): rather than representing
only the best-scoring history of transitions, the %
best-scoring alternative histories are kept around.

As we will indicate in the following, the mere
addition of beam search does not help overcome
a representational key issue of transition-based
parsing: in many situations, a transition-based
parser is forced to make an attachment decision

for a given input word at a point where no or only
partial information about the word’s own depen-
dents (and further decendents) is available. Fig-
ure 1 illustrates such a case.

4 w
[Peter bought a house] [ with an old friend . ]

Figure 1: The left set of brackets indicates material
that has been processed or is under consideration; on
the right is the input, still to be processed. Access to in-
formation that is yet unavailable would help the parser
to decide on the correct transition.

Here, the parser has to decide whether to create an
edge between house and with or between bought
and with (which is technically achieved by first
popping house from the stack and then adding the
edge). At this time, no information about the ob-
ject of with is available; with fails to provide what
we call a complete factor for the calculation of the
scores of the alternative transitions under consid-
eration. In other words, the model cannot make
use of any evidence to distinguish between the
two examples in Figure 1, and it is bound to get
one of the two cases wrong.

Figure 2 illustrates the same case from the per-
spective of a graph-based parser.

Peter bought a house with an old friend .

Figure 2: A second order model as used in graph-based
parsers has access to the crucial information to build
the correct tree. In this case, the parser condsiders the
word friend (as opposed to garden, for instance) as it
introduces the bold-face edge.

Here, the combination of subspans is performed
at a point when their internal structure has been
finalized, i.e., the attachment of with (to bought
or house) is not decided until it is clear that friend
is the object of with; hence, the semantically im-
portant lexicalization of with’s object informs the
higher-level attachment decision through a so-
called second order factor in the feature model.
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Given a suitable amount of training data, the
model can thus learn to make the correct deci-
sion. The dynamic-programming based graph-
based parser is designed in such a way that any
score calculation is based on complete factors for
the subspans that are combined at this point.

Note that the problem for the transition-based
parser cannot be remedied by beam search alone.
If we were to keep the two options for attach-
ing with around in a beam (say, with a slightly
higher score for attachment to house, but with
bought following narrowly behind), there would
be no point in the further processing of the sen-
tence at which the choice could be corrected: the
transition-based parser still needs to make the de-
cision that friend is attached to with, but this will
not lead the parser to reconsider the decision made
earlier on.

The strategy we describe in this paper applies
in this very type of situation: whenever infor-
mation is added in the transition-based parsing
process, the scores of all the histories stored in
the beam are recalculated based on a scoring
model inspired by the graph-based parsing ap-
proach, i.e., taking complete factors into account
as they become incrementally available. As a con-
sequence the beam is reordered, and hence, the
incorrect preference of an attachment of with to
house (based on incomplete factors) can later be
corrected as friend is processed and the complete
second-order factor becomes available.?

The integrated transition-based parsing strategy
has a number of advantages:

(1) We can integrate and investigate a number of
third order factors, without the need to implement
a more complex parsing model each time anew to
explore the properties of such distinct model.

(2) The parser with completion model main-
tains the favorable complexity of transition-based
parsers.

(3) The completion model compensates for the
lower accuracy of cases when only incomplete in-
formation is available.

(4) The parser combines the two leading pars-
ing paradigms in a single efficient parser with-
out stacking the two approaches. Therefore the

%Since search is not exhaustive, there is of course a slight
danger that the correct history drops out of the beam before
complete information becomes available. But as our experi-
ments show, this does not seem to be a serious issue empiri-
cally.

parser requires only one training phase (without
jackknifing) and it uses only a single transition-
based decoder.

The structure of this paper is as follows. In Sec-
tion 2, we discuss related work. In Section 3, we
introduce our transition-based parser and in Sec-
tion 4 the completion model as well as the im-
plementation of third order models. In Section 5,
we describe experiments and provide evaluation
results on selected data sets.

2 Related Work

Kudo and Matsumoto (2002) and Yamada and
Matsumoto (2003) carried over the idea for de-
terministic parsing by chunks from Abney (1991)
to dependency parsing. Nivre (2003) describes
in a more strict sense the first incremental parser
that tries to find the most appropriate dependency
tree by a sequence of local transitions. In order
to optimize the results towards a more globally
optimal solution, Johansson and Nugues (2006)
first applied beam search, which leads to a sub-
stantial improvment of the results (cf. also (Titov
and Henderson, 2007)). Zhang and Clark (2008)
augment the beam-search algorithm, adapting the
early update strategy of Collins and Roark (2004)
to dependency parsing. In this approach, the
parser stops and updates the model when the or-
acle transition sequence drops out of the beam.
In contrast to most other approaches, the training
procedure of Zhang and Clark (2008) takes the
complete transition sequence into account as it is
calculating the update. Zhang and Clark compare
aspects of transition-based and graph-based pars-
ing, and end up using a transition-based parser
with a combined transition-based/second-order
graph-based scoring model (Zhang and Clark,
2008, 567), which is similar to the approach we
describe in this paper. However, their approach
does not involve beam rescoring as the partial
structures built by the transition-based parser are
subsequently augmented; hence, there are cases in
which our approach is able to differentiate based
on higher-order factors that go unnoticed by the
combined model of (Zhang and Clark, 2008, 567).

One step beyond the use of a beam is a dynamic
programming approach to carry out a full search
in the state space, cf. (Huang and Sagae, 2010;
Kuhlmann et al., 2011). However, in this case
one has to restrict the employed features to a set
which fits to the elements composed by the dy-
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namic programming approach. This is a trade-off
between an exhaustive search and a unrestricted
(rich) feature set and the question which provides
a higher accuracy is still an open research ques-
tion, cf. (Kuhlmann et al., 2011).

Parsing of non-projective dependency trees is
an important feature for many languages. At
first most algorithms were restricted to projec-
tive dependency trees and used pseudo-projective
parsing (Kahane et al., 1998; Nivre and Nilsson,
2005). Later, additional transitions were intro-
duced to handle non-projectivity (Attardi, 2006;
Nivre, 2009). The most common strategy uses
the swap transition (Nivre, 2009; Nivre et al.,
2009), an alternative solution uses two planes
and a swifch transition to switch between the two
planes (Gémez-Rodriguez and Nivre, 2010).

Since we use the scoring model of a graph-
based parser, we briefly review releated work
on graph-based parsing. The most well known
graph-based parser is the MST (maximum span-
ning tree) parser, cf. (McDonald et al., 2005; Mc-
Donald and Pereira, 2006). The idea of the MST
parser is to find the highest scoring tree in a graph
that contains all possible edges. FEisner (1996)
introduced a dynamic programming algorithm to
solve this problem efficiently. Carreras (2007) in-
troduced the left-most and right-most grandchild
as factors. We use the factor model of Carreras
(2007) as starting point for our experiments, cf.
Section 4. We extend Carreras (2007) graph-
based model with factors involving three edges
similar to that of Koo and Collins (2010).

3 Transition-based Parser with a Beam

This section specifies the transition-based beam-
search parser underlying the combined approach
more formally. Sec. 4 will discuss the graph-
based scoring model that we are adding.

The input to the parser is a word string z,
the goal is to find the optimal set y of labeled
edges x; —; v; forming a dependency tree over x
U{root}. We characterize the state of a transition-
based parser as m;=(0;, 3;, yi, hi), m; € 11, the set
of possible states. o; is a stack of words from x
that are still under consideration; (; is the input
buffer, the suffix of z yet to be processed; y; the
set of labeled edges already assigned (a partial la-
beled dependency tree); h; is a sequence record-
ing the history of transitions (from the set of op-
erations 2 = {shift, left-arc;, right-arc;, reduce,

swap}) taken up to this point.

(1) The initial state mg has an empty stack, the
input buffer is the full input string x, and the edge
set is empty. (2) The (partial) transition function
7(mi, t) : I x Q — II maps a state and an opera-
tion ¢ to a new state m; 1. (3) Final states 7, are
characterized by an empty input buffer and stack;
no further transitions can be taken.

The transition function is informally defined as
follows: The shift transition removes the first ele-
ment of the input buffer and pushes it to the stack.
The left-arc; transition adds an edge with label [
from the first word in the buffer to the word on
top of the stack, removes the top element from
the stack and pushes the first element of the input
buffer to the stack.

The right-arc; transition adds an edge from word
on top of the stack to the first word in the input
buffer and removes the top element of the input
buffer and pushes that element onto the stack.
The reduce transition pops the top word from the
stack.

The swap changes the order of the two top el-
ements on the stack (possibly generating non-
projkective trees).

When more than one operation is applicable, a
scoring function assigns a numerical value (based
on a feature vector and a weight vector trained
by supervised machine learning) to each possi-
ble continuation. When using a beam search ap-
proach with beam size k, the highest-scoring & al-
ternative states with the same length n of transi-
tion history h are kept in a set “beam,,”.

In the beam-based parsing algorithm (cf. the
pseudo code in Algorithm 1), all candidate states
for the next set “beam,, ;" are determined using
the transition function 7, but based on the scor-
ing function, only the best k are preserved. (Fi-
nal) states to which no more transitions apply are
copied to the next state set. This means that once
all transition paths have reached a final state, the
overall best-scoring states can be read off the fi-
nal “beam,,”. The y of the top-scoring state is the
predicted parse.

Under the plain transition-based scoring
regime scorer, the score for a state 7 is the sum
of the “local” scores for the transitions ¢; in the
state’s history sequence:

scoreq(m) = zL’;‘O w - f(mi,t;)
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Algorithm 1: Transition-based parser

/I z is the input sentence, k is the beam size
0o = Q)vﬁo =T,Y = ®7h: @
mo < (00, Bo, Yo, ho) // initial parts of a state
beam < {7} // create initial state
n «— 0 // iteration
repeat

n«—n-+1

for all r; € beam,,_; do

transitions «+— possible-applicable-transition (7;)

/1 if no transition is applicable keep state 7;:

if transitions = () then beam,, < beam,, U {7}

else for all ¢; € transitions do
/I apply the transition i to state j
T — 7(mj,t;)
beam,, < beam,, U {7}
// end for
// end for
sort beam,, due to the score(r;)
beam,, «— sublist (beam,,, 0, k)
until beam,,_; = beam,, // beam changed?

w is the weight vector. Note that the features
f(m;, t;) can take into account all structural and
labeling information available prior to taking tran-
sition ¢;, i.e., the graph built so far, the words (and
their part of speech etc.) on the stack and in the
input buffer, etc. But if a larger graph configu-
ration involving the next word evolves only later,
as in Figure 1, this information is not taken into
account in scoring. For instance, if the feature
extraction uses the subcategorization frame of a
word under consideration to compute a score, it is
quite possible that some dependents are still miss-
ing and will only be attached in a future transition.

4 Completion Model

We define an augmented scoring function which
can be used in the same beam-search algorithm in
order to ensure that in the scoring of alternative
transition paths, larger configurations can be ex-
ploited as they are completed in the incremental
process. The feature configurations can be largely
taken from graph-based approaches. Here, spans
from the string are assembled in a bottom-up fash-
ion, and the scoring for an edge can be based on
structurally completed subspans (“factors”).

Our completion model for scoring a state ,
incorporates factors for all configurations (match-
ing the extraction scheme that is applied) that are
present in the partial dependency graph y,, built

up to this point, which is continuously augmented.
This means if at a given point n in the transition
path, complete information for a particular config-
uration (e.g., a third-order factor involving a head,
its dependent and its grand-child dependent) is
unavailable, scoring will ignore this factor at time
n, but the configuration will inform the scoring
later on, maybe at point n 4 4, when the complete
information for this factor has entered the partial
graph i 14.

We present results for a number of different
second-order and third-order feature models.

Second Order Factors. We start with the
model introduced by Carreras (2007). Figure 3
illustrates the factors used.

Figure 3: Model 2a. Second order factors of Carreras
(2007). We omit the right-headed cases, which are
mirror images. The model comprises a factoring into
one first order part and three second order factors (2-
4): 1) The head (h) and the dependent (c); 2) the head,
the dependent and the left-most (or right-most) grand-
child in between (cmi); 3) the head, the dependent and
the right-most (or left-most) grandchild away from the

head (cmo). 4) the head, the dependent and between
those words the right-most (or left-most) sibling (ci).

cho h c

Figure 4: 2b. The left-most dependent of the head or
the right-most dependent in the right-headed case.

Figure 4 illustrates a new type of factor we use,
which includes the left-most dependent in the left-
headed case and symmetricaly the right-most sib-
ling in the right-head case.

Third Order Factors. In addition to the second
order factors, we investigate combinations of third
order factors. Figure 5 and 6 illustrate the third
order factors, which are similar to the factors of
Koo and Collins (2010). They restrict the factor
to the innermost sibling pair for the tri-siblings
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and the outermost pair for the grand-siblings. We
use the first two siblings of the dependent from
the left side of the head for the tri-siblings and
the first two dependents of the child for the grand-
siblings. With these factors, we aim to capture
non-projective edges and subcategorization infor-
mation. Figure 7 illustrates a factor of a sequence
of four nodes. All the right headed variants are
symmetrically and left out for brevity.

22

chl h ch2 c

Figure 5: 3a. The first two children of the head, which
do not include the edge between the head and the de-
pendent.

>

cml o cm2

Figure 6: 3b. The first two children of the dependent.

Figure 7: 3c. The right-most dependent of the right-
most dependent.

Integrated approach. To obtain an integrated
system for the various feature models, the scoring
function of the transition-based parser from Sec-
tion 3 is augmented by a family of scoring func-
tions scoreg,, for the completion model, where m
is from 2a, 2b, 3a etc., x is the input string, and y
is the (partial) dependency tree built so far:

scorer;, () = scorer () + scoreg,, (x,y)

The scoring function of the completion model
depends on the selected factor model GG,,. The
model G5, comprises the edge factoring of Fig-
ure 3. With this model, we obtain the following
scoring function.

SCOrea,, (x,y) = Z(h,c)Ey w - ffirst(x,h,c)
+Z(h,c,ci)€y w - fsib(x>h,C,Ci)

+ 2 (heemoyey W fgralxhc,cmo)

+ 2 (hesemiyey W fora(xhc,cmi)

The function f maps the input sentence x, and
a subtree y defined by the indexes to a feature-
vector. Again, w is the corresponding weight vec-
tor. In order to add the factor of Figure 4 to our

model, we have to add the scoring function (2a)
the sum:

(2b) scoreg,, (x,y) = scoreq,, (x,y)

+ Z(h,c,cmi)éy w - fgrﬂ(x’h’c’cmi)

In order to build a scoring function for combi-
nation of the factors shown in Figure 5 to 7, we
have to add to the equation 2b one or more of the
following sums:

(3a) Z(h,c,chl,chZ)Gy w- fgm(x,h,c,chl,chZ)
(3b) Z(h,c,cml,cm?)éy w - fgm(x,h,c,cml,cmZ)
(3C) E(h,c,cmo,tmo)ey w- fgra (x,h,c,cmo,tmo)

Feature Set. The feature set of the transition
model is similar to that of Zhang and Nivre
(2011). In addition, we use the cross product of
morphologic features between the head and the
dependent since we apply also the parser on mor-
phologic rich languages.

The feature sets of the completion model de-
scribed above are mostly based on previous work
(McDonald et al., 2005; McDonald and Pereira,
2006; Carreras, 2007; Koo and Collins, 2010).
The models denoted with + use all combinations
of words before and after the head, dependent,
sibling, grandchilrden, etc. These are respectively
three-, and four-grams for the first order and sec-
ond order. The algorithm includes these features
only the words left and right do not overlap with
the factor (e.g. the head, dependent, etc.). We use
feature extraction procedure for second order, and
third order factors. Each feature extracted in this
procedure includes information about the position
of the nodes relative to the other nodes of the part
and a factor identifier.

Training. For the training of our parser, we use
a variant of the perceptron algorithm that uses the
Passive-Aggressive update function, cf. (Freund
and Schapire, 1998; Collins, 2002; Crammer et
al., 2006). The Passive-Aggressive perceptron
uses an aggressive update strategy by modifying
the weight vector by as much as needed to clas-
sify correctly the current example, cf. (Crammer
et al., 2006). We apply a random function (hash
function) to retrieve the weights from the weight
vector instead of a table. Bohnet (2010) showed
that the Hash Kernel improves parsing speed and
accuracy since the parser uses additionaly nega-
tive features. Ganchev and Dredze (2008) used
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this technique for structured prediction in NLP to
reduce the needed space, cf. (Shi et al., 2009).
We use as weight vector size 800 million. After
the training, we counted 65 millions non zero
weights for English (penn2malt), 83 for Czech
and 87 millions for German. The feature vectors
are the union of features originating from the
transition sequence of a sentence and the features
of the factors over all edges of a dependency tree
(e.g. Gag, etc.). To prevent over-fitting, we use
averaging to cope with this problem, cf. (Freund
and Schapire, 1998; Collins, 2002). We calculate
the error e as the sum of all attachment errors and
label errors both weighted by 0.5. We use the
following equations to compute the update.

loss: I; = e-(scorer(zf,y7)-scorer(xs, yt))

PA-update: 7, = m

We train the model to select the transitions and
the completion model together and therefore, we
use one parameter space. In order to compute the
weight vector, we employ standard online learn-
ing with 25 training iterations, and carry out early
updates, cf. Collins and Roark (2004; Zhang and
Clark (2008).

Efficient Implementation. Keeping the scoring
with the completion model tractable with millions
of feature weights and for second- and third-order
factors requires careful bookkeeping and a num-
ber of specialized techniques from recent work on
dependency parsing.

We use two variables to store the scores (a)
for complete factors and (b) for incomplete fac-
tors. The complete factors (first-order factors and
higher-order factors for which further augmenta-
tion is structurally excluded) need to be calculated
only once and can then be stored with the tree fac-
tors. The incomplete factors (higher-order factors
whose node elements may still receive additional
descendants) need to be dynamically recomputed
while the tree is built.

The parsing algorithm only has to compute the
scores of the factored model when the transition-
based parser selects a left-arc or right-arc transi-
tion and the beam has to be sorted. The parser
sorts the beam when it exceeds the maximal beam
size, in order to discard superfluous parses or
when the parsing algorithm terminates in order to

select the best parse tree. The complexity of the
transition-based parser is quadratic due to swap
operation in the worse case, which is rare, and
O(n) in the best case, cf. (Nivre, 2009). The
beam size B is constant. Hence, the complexity
is in the worst case O(n?).

The parsing time is to a large degree deter-
mined by the feature extraction, the score calcu-
lation and the implementation, cf. also (Goldberg
and Flhadad, 2010). The transition-based parser
is able to parse 30 sentences per second. The
parser with completion model processes about 5
sentences per second with a beam size of 80.
Note, we use a rich feature set, a completion
model with third order factors, negative features,
and a large beam. 3

We implemented the following optimizations:

(1) We use a parallel feature extraction for the
beam elements. Each process extracts the fea-
tures, scores the possible transitions and computes
the score of the completion model. After the ex-
tension step, the beam is sorted and the best ele-
ments are selected according to the beam size.
(2) The calculation of each score is optimized (be-
yond the distinction of a static and a dynamic
component): We calculate for each location de-
termined by the last element s; € o; and the first
element of by € [3; a numeric feature representa-
tion. This is kept fix and we add only the numeric
value for each of the edge labels plus a value for
the transition left-arc or right-arc. In this way, we
create the features incrementally. This has some
similarity to Goldberg and Elhadad (2010).
(3) We apply edge filtering as it is used in graph-
based dependency parsing, cf. (Johansson and
Nugues, 2008), i.e., we calculate the edge weights
only for the labels that were found for the part-of-
speech combination of the head and dependent in
the training data.

5 Parsing Experiments and Discussion

The results of different parsing systems are of-
ten hard to compare due to differences in phrase
structure to dependency conversions, corpus ver-
sion, and experimental settings. For better com-
parison, we provide results on English for two
commonly used data sets, based on two differ-
ent conversions of the Penn Treebank. The first
uses the Penn2Malt conversion based on the head-

36 core, 3.33 Ghz Intel Nehalem
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Section Sentences PoS Acc.
Training | 2-21 39.832 97.08
Dev 24 1.394 97.18
Test 23 2.416 97.30

Table 1: Overview of the training, development and
test data split converted to dependency graphs with
head-finding rules of (Yamada and Matsumoto, 2003).
The last column shows the accuracy of Part-of-Speech
tags.

finding rules of Yamada and Matsumoto (2003).
Table 1 gives an overview of the properties of the
corpus. The annotation of the corpus does not
contain non-projective links. The training data
was 10-fold jackknifed with our own tagger.*. Ta-
ble 1 shows the tagging accuracy.

Table 2 lists the accuracy of our transition-
based parser with completion model together with
results from related work. All results use pre-
dicted PoS tags. As a baseline, we present in ad-
dition results without the completion model and
a graph-based parser with second order features
(Gaq). For the Graph-based parser, we used 10
training iterations. The following rows denoted
with Taa TQaa T2ab, T2ab3a’ T2ab3ba T2ab3b0a and
Toa3abc present the result for the parser with com-
pletion model. The subscript letters denote the
used factors of the completion model as shown
in Figure 3 to 7. The parsers with subscribed plus
(e.g. Gaq4) in addition use feature templates that
contain one word left or right of the head, depen-
dent, siblings, and grandchildren. We left those
feature in our previous models out as they may in-
terfere with the second and third order factors. As
in previous work, we exclude punctuation marks
for the English data converted with Penn2Malt in
the evaluation, cf. (McDonald et al., 2005; Koo
and Collins, 2010; Zhang and Nivre, 2011).> We
optimized the feature model of our parser on sec-
tion 24 and used section 23 for evaluation. We use
a beam size of 80 for our transition-based parser
and 25 training iterations.

The second English data set was obtained by
using the LTH conversion schema as used in the
CoNLL Shared Task 2009, cf. (Hajic et al., 2009).
This corpus preserves the non-projectivity of the
phrase structure annotation, it has a rich edge
label set, and provides automatic assigned PoS

*http://code.google.com/p/mate-tools/
SWe follow Koo and Collins (2010) and ignore any token
whose POS tag is one of the following tokens ** ’ ' :,

Parser UAS | LAS
(McDonald et al., 2005) 90.9
(McDonald and Pereira, 2006) | 91.5

(Huang and Sagae, 2010) 92.1

(Zhang and Nivre, 2011) 92.9

(Koo and Collins, 2010) 93.04
(Martins et al., 2010) 93.26

T (baseline) 92.7

G2, (baseline) 92.89

Taa 92.94 | 91.87
T2ap 93.16 | 92.08
T2ab3a 93.20 | 92.10
T2ab3b 93.23 | 92.15
T2ab3e 93.17 | 92.10
T2ab3abc+ 93.39 92.38
Gag+ 93.1

(Koo et al., 2008) t 93.16
(Carreras et al., 2008) t 93.5

(Suzuki et al., 2009) § 93.79

Table 2: English Attachment Scores for the
Penn2Malt conversion of the Penn Treebank for the
test set. Punctuation is excluded from the evaluation.
The results marked with T are not directly comparable
to our work as they depend on additional sources of
information (Brown Clusters).

tags. From the same data set, we selected the
corpora for Czech and German. In all cases, we
used the provided training, development, and test
data split, cf. (Haji¢ et al., 2009). In contrast
to the evaluation of the Penn2Malt conversion,
we include punctuation marks for these corpora
and follow in that the evaluation schema of the
CoNLL Shared Task 2009. Table 3 presents the
results as obtained for these data set.

The transition-based parser obtains higher ac-
curacy scores for Czech but still lower scores for
English and German. For Czech, the result of T’
is 1.59 percentage points higher than the top la-
beled score in the CoNLL shared task 2009. The
reason is that 7" includes already third order fea-
tures that are needed to determine some edge la-
bels. The transition-based parser with completion
model T3, has even 2.62 percentage points higher
accuracy and it could improve the results of the
parser 1" by additional 1.03 percentage points.
The results of the parser 1" are lower for English
and German compared to the results of the graph-
based parser Ga,. The completion model 75, can
reach a similar accuracy level for these two lan-
guages. The third order features let the transition-
based parser reach higher scores than the graph-
based parser. The third order features contribute
for each language a relatively small improvement
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Parser Eng. Czech German
(Gesmundo

et al., 2009)1 |88.79/- 80.38 87.29
(Bohnet, 2009)|89.88/- 80.11 87.48

T (Baseline) [89.52/92.10|81.97/87.26|87.53/89.86
Gz, (Baseline) [90.14/92.36|81.13/87.65|87.79/90.12
Taq 90.20/92.55|83.01/88.12|88.22/90.36

Taab 90.26/92.56|83.22/88.34|88.31/90.24
T2ab3a 90.20/90.51|83.21.88.30 | 88.14/90.23
T2ab3b 90.26/92.57|83.22/88.35|88.50/90.59
Taab3abe 90.31/92.58|83.31/88.30|88.33/90.45
Gaat 90.39/92.8 |81.43/88.0 |88.26/90.50
Taab3ab+ 90.36/92.66|83.48/88.47|88.51/90.62

Table 3: Labeled Attachment Scores of parsers that
use the data sets of the CoNLL shared task 2009. In
line with previous work, punctuation is included. The
parsers marked with  used a joint model for syntactic
parsing and semantic role labelling. We provide more
parsing results for the languages of CoNLL-X Shared
Task at http://code.google.com/p/mate-tools/.

Parser | UAS | LAS
(Zhang and Clark, 2008) 84.3
(Huang and Sagae, 2010) | 85.2
(Zhang and Nivre, 2011) | 86.0 | 84.4
T2ab3abe+ 87.5 | 859

Table 4: Chinese Attachment Scores for the conver-
sion of CTB 5 with head rules of Zhang and Clark
(2008). We take the standard split of CTB 5 and use
in line with previous work gold segmentation, POS-
tags and exclude punctuation marks for the evaluation.

of the score. Small and statistically significant im-
provements provides the additional second order
factor (2b).° We tried to determine the best third
order factors or set of factors but we cannot denote
such a factor which is the best for all languages.
For German, we obtained a significant improve-
ment with the factor (3b). We believe that this is
due to the flat annotation of PPs in the German
corpus. If we combine all third order factors we
obtain for the Penn2Malt conversion a small im-
provement of 0.2 percentage points over the re-
sults of (2ab). We think that a more deep feature
selection for third order factors may help to im-
prove the actuary further.

In Table 4, we present results on the Chinese
Treebank. To our knowledge, we obtain the best
published results so far.

®The results of the baseline 7' compared to Thapaqpe are
statistically significant (p < 0.01).

6 Conclusion and Future Work

The parser introduced in this paper combines
advantageous properties from the two major
paradigms in data-driven dependency parsing,
in particular worst case quadratic complexity of
transition-based parsing with a swap operation
and the consideration of complete second and
third order factors in the scoring of alternatives.
While previous work using third order factors, cf.
Koo and Collins (2010), was restricted to unla-
beled and projective trees, our parser can produce
labeled and non-projective dependency trees.

In contrast to parser stacking, which involves
running two parsers in training and application,
we use only the feature model of a graph-based
parser but not the graph-based parsing algorithm.
This is not only conceptually superior, but makes
training much simpler, since no jackknifing has
to be carried out. Zhang and Clark (2008) pro-
posed a similar combination, without the rescor-
ing procedure. Our implementation allows for the
use of rich feature sets in the combined scoring
functions, and our experimental results show that
the “graph-based” completion model leads to an
increase of between 0.4 (for English) and about
1 percentage points (for Czech). The scores go
beyond the current state of the art results for ty-
pologically different languages such as Chinese,
Czech, English, and German. For Czech, English
(Penn2Malt) and German, these are to our knowl-
ege the highest reported scores of a dependency
parser that does not use additional sources of in-
formation (such as extra unlabeled training data
for clustering). Note that the efficient techniques
and implementation such as the Hash Kernel, the
incremental calculation of the scores of the com-
pletion model, and the parallel feature extraction
as well as the parallelized transition-based pars-
ing strategy play an important role in carrying out
this idea in practice.
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Abstract

In Information Retrieval (IR) in general
and Question Answering (QA) in particu-
lar, queries and relevant textual content of-
ten significantly differ in their properties
and are therefore difficult to relate with tra-
ditional IR methods, e.g. key-word match-
ing. In this paper we describe an algorithm
that addresses this problem, but rather than
looking at it on a term matching/term re-
formulation level, we focus on the syntac-
tic differences between questions and rele-
vant text passages. To this end we propose
anovel algorithm that analyzes dependency
structures of queries and known relevant
text passages and acquires transformational
patterns that can be used to retrieve rele-
vant textual content. We evaluate our algo-
rithm in a QA setting, and show that it out-
performs a baseline that uses only depen-
dency information contained in the ques-
tions by 300% and that it also improves per-
formance of a state of the art QA system
significantly.

1 Introduction

It is a well known problem in Information Re-
trieval (IR) and Question Answering (QA) that
queries and relevant textual content often signif-
icantly differ in their properties, and are therefore
difficult to match with traditional IR methods. A
common example is a user entering words to de-
scribe their information need that do not match
the words used in the most relevant indexed doc-
uments. This work addresses this problem, but
shifts focus from words to syntactic structures of
questions and relevant pieces of text. To this end,
we present a novel algorithm that analyses the de-

pendency structures of known valid answer sen-
tence and from these acquires patterns that can be
used to more precisely retrieve relevant text pas-
sages from the underlying document collection.
To achieve this, the position of key phrases in the
answer sentence relative to the answer itself is an-
alyzed and linked to a certain syntactic question
type. Unlike most previous work that uses depen-
dency paths for QA (see Section 2), our approach
does not require a candidate sentence to be similar
to the question in any respect. We learn valid de-
pendency structures from the known answer sen-
tences alone, and therefore are able to link a much
wider spectrum of answer sentences to the ques-
tion.

The work in this paper is presented and eval-
uated in a classical factoid Question Answering
(QA) setting. The main reason for this is that
in QA suitable training and test data is available
in the public domain, e.g. via the Text REtrieval
Conference (TREC), see for example (Voorhees,
1999). The methods described in this paper how-
ever can also be applied to other IR scenarios, e.g.
web search. The necessary condition for our ap-
proach to work is that the user query is somewhat
grammatically well formed; this kind of queries
are commonly referred to as Natural Language
Queries or NLQs.

Table 1 provides evidence that users indeed
search the web with NLQs. The data is based on
two query sets sampled from three months of user
logs from a popular search engine, using two dif-
ferent sampling techniques. The “head” set sam-
ples queries taking query frequency into account,
so that more common queries have a proportion-
ally higher chance of being selected. The “tail”
query set samples only queries that have been is-
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Set Head Tail
Query # | 15,665 | 12,500
how | 1.33% | 2.42%
what | 0.77% | 1.89%
define | 0.34% | 0.18%
is/are | 0.25% | 0.42%
where | 0.18% | 0.45%
do/does | 0.14% | 0.30%
can | 0.14% | 0.25%
why | 0.13% | 0.30%
who | 0.12% | 0.38%
when | 0.09% | 0.21%
which | 0.03% | 0.08%

[ Totl | 3.55% | 6.86%

Table 1: Percentages of Natural Language queries in
head and tail search engine query logs. See text for
details.

sued less that 500 times during a three months pe-
riod and it disregards query frequency. As a result,
rare and frequent queries have the same chance of
being selected. Doubles are excluded from both
sets. Table 1 lists the percentage of queries in
the query sets that start with the specified word.
In most contexts this indicates that the query is a
question, which in turn means that we are dealing
with an NLQ. Of course there are many NLQs that
start with words other than the ones listed, so we
can expect their real percentage to be even higher.

2 Related Work

In IR the problem that queries and relevant tex-
tual content often do not exhibit the same terms is
commonly encountered. Latent Semantic Index-
ing (Deerwester et al., 1900) was an early, highly
influential approach to solve this problem. More
recently, a significant amount of research is ded-
icated to query alteration approaches. (Cui et al.,
2002), for example, assume that if queries con-
taining one term often result in the selection of
documents containing another term, then a strong
relationship between the two terms exist. In their
approach, query terms and document terms are
linked via sessions in which users click on doc-
uments that are presented as results for the query.
(Riezler and Liu, 2010) apply a Statistical Ma-
chine Translation model to parallel data consist-
ing of user queries and snippets from clicked web
documents and in such a way extract contextual
expansion terms from the query rewrites.

We see our work as addressing the same fun-

damental problem, but shifting focus from query
term/document term mismatch to mismatches ob-
served between the grammatical structure of Nat-
ural Language Queries and relevant text pieces. In
order to achieve this we analyze the queries’ and
the relevant contents’ syntactic structure by using
dependency paths.

Especially in QA there is a strong tradition
of using dependency structures: (Lin and Pan-
tel, 2001) present an unsupervised algorithm to
automatically discover inference rules (essentially
paraphrases) from text. These inference rules are
based on dependency paths, each of which con-
nects two nouns. Their paths have the following
form:

N:subj:V«find—V:obj:N—solution—N:to:N

This path represents the relation “X finds a solu-
tion to Y” and can be mapped to another path rep-
resenting e.g. “X solves Y.” As such the approach
is suitable to detect paraphrases that describe the
relation between two entities in documents. How-
ever, the paper does not describe how the mined
paraphrases can be linked to questions, and which
paraphrase is suitable to answer which question
type.

(Attardi et al., 2001) describes a QA system
that, after a set of candidate answer sentences
have been identified, matches their dependency
relations against the question. Questions and
answer sentences are parsed with MiniPar (Lin,
1998) and the dependency output is analyzed in
order to determine whether relations present in a
question also appear in a candidate sentence. For
the question “Who killed John F. Kennedy”, for
example an answer sentence is expected to con-
tain the answer as subject of the verb “kill”, to
which “John F. Kennedy” should be in object re-
lation.

(Cui et al., 2005) describe a fuzzy depen-
dency relation matching approach to passage re-
trieval in QA. Here, the authors present a statis-
tical technique to measure the degree of overlap
between dependency relations in candidate sen-
tences with their corresponding relations in the
question. Question/answer passage pairs from
TREC-8 and TREC-9 evaluations are used as
training data. As in some of the papers mentioned
earlier, a statistical translation model is used, but
this time to learn relatedness between paths. (Cui
et al., 2004) apply the same idea to answer ex-
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traction. In each sentences returned by the IR
module, all named entities of the expected answer
types are treated as answer candidates. For ques-
tions with an unknown answer type, all NPs in
the candidate sentence are considered. Then those
paths in the answer sentence that are connected
to an answer candidate are compared against the
corresponding paths in the question, in a similar
fashion as in (Cui et al., 2005). The candidate
whose paths show the highest matching score is
selected. (Shen and Klakow, 2006) also describe
a method that is primarily based on similarity
scores between dependency relation pairs. How-
ever, their algorithm computes the similarity of
paths between key phrases, not between words.
Furthermore, it takes relations in a path not as in-
dependent from each other, but acknowledges that
they form a sequence, by comparing two paths
with the help of an adaptation of the Dynamic
Time Warping algorithm (Rabiner et al., 1991).

(Molla, 2006) presents an approach for the ac-
quisition of question answering rules by apply-
ing graph manipulation methods. Questions are
represented as dependency graphs, which are ex-
tended with information from answer sentences.
These combined graphs can then be used to iden-
tify answers. Finally, in (Wang et al., 2007), a
quasi-synchronous grammar (Smith and FEisner,
20006) is used to model relations between ques-
tions and answer sentences.

In this paper we describe an algorithm that
learns possible syntactic answer sentence formu-
lations for syntactic question classes from a set of
example question/answer sentence pairs. Unlike
the related work described above, it acknowledges
that a) a valid answer sentence’s syntax might
be very different for the question’s syntax and b)
several valid answer sentence structures, which
might be completely independent from each other,
can exist for one and the same question.

To illustrate this consider the question “When
was Alaska purchased?” The following four sen-
tences all answer the given question, but only the
first sentence is a straightforward reformulation of
the question:

1. The United States purchased Alaska in 1867
from Russia.

2. Alaska was bought from Russia in 1867.

3. In 1867, the Russian Empire sold the Alaska
territory to the USA.

4. The acquisition of Alaska by the United
States of America from Russia in 1867 is
known as “Seward’s Folly”.

The remaining three sentences introduce vari-
ous forms of syntactic and semantic transforma-
tions. In order to capture a wide range of possible
ways on how answer sentences can be formulated,
in our model a candidate sentence is not evalu-
ated according to its similarity with the question.
Instead, its similarity to known answer sentences
(which were presented to the system during train-
ing) is evaluated. This allows to us to capture a
much wider range of syntactic and semantic trans-
formations.

3 Overview of the Algorithm

Our algorithm uses input data containing pairs of
the following:

NLQs/Questions NLQs that describe the users’
information need. For the experiments car-
ried out in this paper we use questions from
the TREC QA track 2002-2006.

Relevant textual content This is a piece of text
that is relevant to the user query in that it
contains the information the user is search-
ing for. In this paper, we use sentences ex-
tracted from the AQUAINT corpus (Graff,
2002) that contain the answer to the given
TREC question.

In total, the data available to us for our experi-
ments consists of 8,830 question/answer sentence
pairs. This data is publicly available, see (Kaisser
and Lowe, 2008). The algorithm described in this
paper has three main steps:

Phrase alignment Key phrases from the ques-
tion are paired with phrases from the answer
sentences.

Pattern creation The dependency structures of
queries and answer sentences are analyzed
and patterns are extracted.

Pattern evaluation The patterns discovered in
the last step are evaluated and a confidence
score is assigned to each.

The acquired patterns can then be used during
retrieval, where a question is matched against the
antecedents describing the syntax of the question.
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Input: (a) Query: “When was Alaska purchased?”
(b) Answer sentence: “The acquisition of Alaska happened in 1867.”
Step 1: Question is segmented into key phrases and stop words:
When[1l]+was[2]+NP[3]+VERB[4]
Step 2: Key question phrases are aligned with key answer sentence phrases:
[3]Alaska —  Alaska
[4]purchased —  acquisition
ANSWER — 1867
Step 3: A pre-computed parse tree of the answer sentence is loaded:
1: The (the, DT, 2) [det]
2: acquisition  (acquisition, NN, 5) [nsubj]
3: of (of, IN, 2) [prep]
4: Alaska (Alaska, IN, 2) [pobj]
5: happened (happen, VBD, null)  [ROOT]
6: in (in, IN, 5) [prep]
7: 1867 (1867, CD, 6) [pobj]
Step 4: Dependency paths from key question phrases to the answer are computed:
Alaska=>1867: {tpobj{rprepfinsubj}prep{pobj
acquisition=-1867: finsubj{/prep{}pobj
Step 5: The resulting pattern is stored:
Query:  When[1]+was[2]+NP[3]+VERB[4]
Path 3:  fypobjfrprepftnsubj}prep{/pobj
Path 4:  fnsubji}prep{pobj

Figure 1: The pattern creation algorithm exemplified in five key steps for the query “When was Alaska pur-
chased?” and the answer sentence “The acquisition of Alaska happened in 1867.”

Note that one question can potentially match sev-
eral patterns. The consequents contain descrip-
tions of grammatical structures of potential an-
swer sentences that can be used to identify and
evaluate candidate sentences.

4 Phrase Alignment

The goal of this processing step is to align phrases
from the question with corresponding phrases
from the answer sentences in the training data.
Consider the following example:

Query: “When was the Alaska territory pur-
chased?”

Answer sentence: “The acquisition of what

would become the territory of Alaska took place
in 1867.”

The mapping that has to be achieved is:

Query Answer Sentence
phrase phrase
“Alaska territory” | “territory of Alaska”
“purchased” “acquisition”
ANSWER “1867”

In our approach, this is a two step process.
First we align on a word level, then the output
of the word alignment process is used to iden-

tify and align phrases. Word Alignment is im-
portant in many fields of NLP, e.g. Machine
Translation (MT) where words in parallel, bilin-
gual corpora need to be aligned, see (Och and
Ney, 2003) for a comparison of various statisti-
cal alignment models. In our case however we
are dealing with a monolingual alignment prob-
lem which enables us to exploit clues not available
for bilingual alignment: First of all, we can expect
many query words to be present in the answer sen-
tence, either with the exact same surface appear-
ance or in some morphological variant. Secondly,
there are tools available that tell us how semanti-
cally related two words are, most notably Word-
Net (Miller et al., 1993). For these reasons we im-
plemented a bespoke alignment strategy, tailored
towards our problem description.

This method is described in detail in (Kaisser,
2009). The processing steps described in the
next sections build on its output. For reasons of
brevity, we skip a detailed explanations in this pa-
per and focus only on its key part: the alignment
of words with very different surface structures.
For more details we would like to point the reader
to the aforementioned work.

In the above example, the alignment of “pur-
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chased” and “‘acquisition” is the most problem-
atic, because the surface structures of the two
words clearly are very different. For such cases
we experimented with a number of alignment
strategies based on WordNet. These approaches
are similar in that each picks one word that has to
be aligned from the question at a time and com-
pares it to all of the non-stop words in the answer
sentence. Each of the answer sentence words is
assigned a value between zero and one express-
ing its relatedness to the question word. The
highest scoring word, if above a certain thresh-
old, is selected as the closest semantic match.
Most of these approaches make use of Word-
Net::Similarity, a Perl software package that mea-
sures semantic similarity (or relatedness) between
a pair of word senses by returning a numeric value
that represents the degree to which they are sim-
ilar or related (Pedersen et al., 2004). Addition-
ally, we developed a custom-built method that as-
sumes that two words are semantically related if
any kind of pointer exists between any occurrence
of the words root form in WordNet. For details of
these experiments, please refer to (Kaisser, 2009).
In our experiments the custom-built method per-
formed best, and was therefore used for the exper-
iments described in this paper. The main reasons
for this are:

1. Many of the measures in the Word-
Net::Similarity package take only hyponym/
hypernym relations into account. This makes
aligning word of different parts of speech
difficult or even impossible. However, such
alignments are important for our needs.

2. Many of the measures return results, even if
only a weak semantic relationship exists. For
our purposes however, it is beneficial to only
take strong semantic relations into account.

5 Pattern Creation

Figure 1 details our algorithm in its five key steps.
In step 1 and 2 key phrases from the question are
aligned to the corresponding phrases in the an-
swer sentence, see Section 4 of this paper. Step
3 is concerned with retrieving the parse tree for
the answer sentence. In our implementation all
answer sentences in the training set have for per-
formance reasons been parsed beforehand with
the Stanford Parser (Klein and Manning, 2003b;

Klein and Manning, 2003a), so at this point they
are simply loaded from file. Step 4 is the key step
in our algorithm. From the previous steps, we
know where the key constituents from the ques-
tion as well as the answer are located in the an-
swer sentence. This enables us to compute the
dependency paths in the answer sentences’ parse
tree that connect the answer with the key con-
stituents. In our example the answer is “1867”
and the key constituents are “acquisition” and
“Alaska.” Knowing the syntactic relationships
(captured by their dependency paths) between the
answer and the key phrases enables us to capture
one syntactic possibility of how answer sentences
to queries of the form When+was+NP+VERB can
be formulated.

As can be seen in Step 5 a flat syntactic ques-
tion representation is stored, together with num-
bers assigned to each constituent. The num-
bers for those constituents for which alignments
in the answer sentence were sought and found
are listed together with the resulting dependency
paths. Path 3 for example denotes the path from
constituent 3 (the NP “Alaska”) to the answer. If
no alignment could be found for a constituent,
null is stored instead of a path. Should two or
more alternative constituents be identified for one
question constituent, additional patterns are cre-
ated, so that each contains one of the possibilities.
The described procedure is repeated for all ques-
tion/answer sentence pairs in the training set and
for each, one or more patterns are created.

It is worth to note that many TREC ques-
tions are fairly short and grammatically sim-
ple. In our training data we for exam-
ple find 102 questions matching the pattern
When[1]+was[2]+NP[3]+VERB[4], which
together list 382 answer sentences, and thus 382
potentially different answer sentence structures
from which patterns can be gained. As a result,
the amount of training examples we have avail-
able, is sufficient to achieve the performance de-
scribed in Section 7. The algorithm described in
this paper can of course also be used for more
complicated NLQs, although in such a scenario a
significantly larger amount of training data would
have to be used.

6 Pattern Evaluation

For each created pattern, at least one match-
ing example must exists: the sentence that was
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used to create it in the first place. However, we
do not know how precise each pattern is. To
this end, an additional processing step between
pattern creation and application is needed: pat-
tern evaluation. Similar approaches to ours have
been described in the relevant literature, many
of them concerned with bootstrapping, starting
with (Ravichandran and Hovy, 2002). The gen-
eral purpose of this step is to use the available
data about questions and their correct answers to
evaluate how often each created pattern returns a
correct or an incorrect result. This data is stored
with each pattern and the result of the equation,
often called pattern precision, can be used during
retrieval stage. Pattern precision in our case is de-
fined as:

B F#correct + 1
p= #correct + #incorrect + 2

ey

We use Lucene to retrieve the top 100 para-
graphs from the AQUAINT corpus by issuing a
query that consists of the query’s key words and
all non-stop words in the answer. Then, all pat-
terns are loaded whose antecedent matches the
query that is currently being processed. After that,
constituents from all sentences in the retrieved
100 paragraphs are aligned to the query’s con-
stituents in the same way as for the sentences dur-
ing pattern creation, see Section 5. Now, the paths
specified in these patterns are searched for in the
paragraphs’ parse trees. If they are all found,
it is checked whether they all point to the same
node and whether this node’s surface structure is
in some morphological form present in the answer
strings associated with the question in our train-
ing data. If this is the case a variable in the pat-
tern named correct is increased by 1, otherwise
the variable incorrect is increased by 1. After the
evaluation process is finished the final version of
the pattern given as an example in Figure 1 now
is:

Query: When[1]+was[2]+NP[3]+VERB[4]
Path 3: frpobjfiprepfnsubj{preppobj
Path 4: fnsubj{prep{/pobj

Correct: 15

Incorrect: 4

The variables correct and incorrect are used
during retrieval, where the score of an answer can-
didate ac is the sum of all scores of all matching
patterns p:

n
score(ac) = Z score(p;) ()
i=1
where
correct; +1 .
SCOT‘6(pi) — correct;+incorrect;+2 if mateh (3)
O no match

The highest scoring candidate is selected.

We would like to explicitly call out one prop-
erty of our algorithm: It effectively returns two
entities: a) a sentence that constitutes a valid
response to the query, b) the head node of a
phrase in that sentence that constitutes the answer.
Therefore the algorithm can be used for sentence
retrieval or for answer retrieval. It depends on
the application which of the two behaviors is de-
sired. In the next section, we evaluate its answer
retrieval performance.

7 Experiments & Results

This section provides an evaluation of the algo-
rithm described in this paper. The key questions
we seek to answer are the following:

1. How does our method perform when com-
pared to a baseline that extracts dependency
paths from the question?

How much does the described algorithm im-
prove performance of a state-of-the-art QA
system?

3. What is the effect of training data size on per-
formance? Can we expect that more training
data would further improve the algorithm’s
performance?

7.1 Evaluation Setup

We use all factoid questions in TREC’s QA test
sets from 2002 to 2006 for evaluation for which
a known answer exists in the AQUAINT corpus.
Additionally, the data in (Lin and Katz, 2005) is
used. In this paper the authors attempt to identify
a much more complete set of relevant documents
for a subset of TREC 2002 questions than TREC
itself. We adopt a cross validation approach for
our evaluation. Table 4 shows how the data is split
into five folds.

In order to evaluate the algorithm’s patterns we
need a set of sentences to which they can be ap-
plied. In a traditional QA system architecture,
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Test Number of Correct Answer Sentences Mean | Med
set =0 [<=1[<=3][<=5]<=10[<=25][<=50 [ >=75 [ >=90 [ >=100
2002 0.203 | 0.396 | 0.580 | 0.671 0.809 0.935 0.984 0.0 0.0 0.0 6.86 2.0
2003 0.249 | 0429 | 0.627 | 0.732 0.828 0.955 0.997 0.003 0.003 0.0 5.67 2.0
2004 || 0.221 | 0.368 | 0.539 | 0.637 0.799 0.936 0.985 0.0 0.0 0.0 6.51 3.0
2005 0.245 | 0.404 | 0.574 | 0.665 0.777 0.912 0.987 0.0 0.0 0.0 7.56 2.0
2006 || 0.241 | 0.389 | 0.568 | 0.665 0.807 0.920 0.966 0.006 0.0 0.0 8.04 3.0
Table 2: Fraction of sentences that contain correct answers in Evaluation Set 1 (approximation).
Test Number of Correct Answer Sentences Mean | Med
set | =0]<=1]<=3]<=5[<=10]<=25][<=50]>=7]>=90 [ >=100
2002 0.0 0.074 | 0.158 | 0.235 0.342 0.561 0.748 0.172 0.116 0.060 33.46 | 21.0
2003 0.0 0.099 | 0.203 | 0.254 0.356 0.573 0.720 0.161 0.090 0.031 32.88 | 19.0
2004 0.0 0.073 | 0.137 | 0.211 0.328 0.598 0.779 0.142 0.069 0.034 30.82 | 20.0
2005 0.0 0.163 | 0.238 | 0.279 0.410 0.589 0.759 0.141 0.097 0.069 30.87 | 17.0
2006 0.0 0.125 0.207 | 0.281 0.415 0.596 0.727 0.173 0.122 0.088 3293 | 175
Table 3: Fraction of sentences that contain correct answers in Evaluation Set 2 (approximation).
Fold g:‘:ii;%D ata - T:Z: Daf: In order to provide a quantitative characteriza-
1 || T03, T04, TO5, TO6 4565 | TO2 | 1159 tion of the two evaluation sets we estimated the
2 || T02, T04, TO5, TO6, Lin02 | 6174 | TO3 | 1352 number of correct answer sentences they contain.
3 || 103,103, 705, T06, Lin02 | 6700 | T04 | 826 For each paragraph it was determined whether it
4 [ T02,T03, T04, T06, Lin02 | 6298 | T05 | 1228 ach paragrap .
5 || T02, T03, T04, T3, Lin02 | 6367 | T06 | 1159 contained one of the known answer strings and

Table 4: Splits into training and tests sets of the data
used for evaluation. T02 stands for TREC 2002 data
etc. Lin02 is based on (Lin and Katz, 2005). The #
rows show how many question/answer sentence pairs
are used for training and for testing.

see e.g. (Prager, 2006; Voorhees, 2003), the docu-
ment or passage retrieval step performs this func-
tion. This step is crucial to a QA system’s per-
formance, because it is impossible to locate an-
swers in the subsequent answer extraction step if
the passages returned during passage retrieval do
not contain the answer in the first place. This also
holds true in our case: the patterns cannot be ex-
pected to identify a correct answer if none of the
sentences used as input contains the correct an-
swer. We therefore use two different evaluation
sets to evaluate our algorithm:

1. The first set contains for each question all
sentences in the top 100 paragraphs returned
by Lucene when using simple queries made
up from the question’s key words. It cannot
be guaranteed that answers to every question
are present in this test set.

2. For the second set, the query additionally list
all known correct answers to the question as
parts of one OR operator. This increases the
chance that the evaluation set actually con-
tains valid answer sentences significantly.

at least of one of the question key words. Ta-
bles 2 and 3 show for each evaluation set how
many answers on average it contains per ques-
tion. The column “= 0” for example shows the
fraction of questions for which no valid answer
sentence is contained in the evaluation set, while
column “>= 90” gives the fraction of questions
with 90 or more valid answer sentences. The last
two columns show mean and median values.

7.2 Comparison with Baseline

As pointed out in Section 2 there is a strong tra-
dition of using dependency paths in QA. Many
relevant papers describe algorithms that analyze
a question’s grammatical structure and expect
to find a similar structure in valid answer sen-
tences, e.g. (Attardi et al., 2001), (Cui et al., 2005)
or (Bouma et al., 2005) to name just a few. As
already pointed out, a major contribution of our
work is that we do not assume this similarity. In
our approach valid answer sentences are allowed
to have grammatical structures that are very dif-
ferent from the question and also very different
from each other. Thus it is natural to compare our
approach against a baseline that compares can-
didate sentences not against patterns that were
gained from question/answer sentence pairs, but
from questions alone. In order to create these pat-
terns, we use a small trick: During the Pattern
Creation step, see Section 5 and Figure 1, we re-
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place the answer sentences in the input file with
the questions, and assume that the question word
indicates the position where the answer should be
located.

Test Q Qs with > 1 Overall Accuracy Acc. if

set number patterns correct correct overall pattern
2002 429 321 147 50 0.117 0.156
2003 354 237 76 22 0.062 0.093
2004 204 142 74 26 0.127 0.183
2005 319 214 97 46 0.144 0.215
2006 352 208 85 31 0.088 0.149

[ Sum ] 1658 | 1122 ] 452 ] 176 0.106 [ 0.156 |

Table 5: Performance based on evaluation set 1.

Test Q Qs with > 1 Overall Accuracy Acc. if

set number patterns correct correct overall pattern
2002 429 321 239 133 0.310 0.414
2003 354 237 149 88 0.248 0.371
2004 204 142 119 65 0.319 0.458
2005 319 214 161 92 0.288 0.429
2006 352 208 139 84 0.238 0.403

[ Sum [ 1658 [ 1122 [ 807 [ 462 [ 0.278 [ 0.411 ]

Table 6: Performance based on evaluation set 2.

Tables 5 and 6 show how our algorithm per-
forms on evaluation sets 1 and 2, respectively. Ta-
bles 7 and 8 show how the baseline performs on
evaluation sets 1 and 2, respectively. The tables’
columns list the year of the TREC test set used,
the number of questions in the set (we only use
questions for which we know that there is an an-
swer in the corpus), the number of questions for
which one or more patterns exist, how often at
least one pattern returned the correct answer, how
often we get an overall correct result by taking
all patterns and their confidence values into ac-
count, accuracy @1 of the overall system, and ac-
curacy @1 computed only for those questions for
which we have at least one pattern available (for
all other questions the system returns no result.)
As can be seen, on evaluation set 1 our method
outperforms the baseline by 300%, on evaluation
set 2 by 311%, taking accuracy if a pattern exists
as a basis.

Test Q Qs with Min one Overall Accuracy Acc. if

set number patterns correct correct overall pattern
2002 429 321 43 14 0.033 0.044
2003 354 237 28 10 0.028 0.042
2004 204 142 19 6 0.029 0.042
2005 319 214 21 7 0.022 0.033
2006 352 208 20 7 0.020 0.034

[ Sum [ 1658 [ 1122 [ 131 [ 44 [ 0.027 [ 0.039 ]

Table 7: Baseline performance based on evaluation set
1.

Many of the papers cited earlier that use an ap-
proach similar to our baseline approach of course
report much better results than Tables 7 and 8.
This however is not too surprising as the approach

Test Q Qs with Min one Overall Accuracy Acc. if

set number patterns correct correct overall pattern
2002 429 321 77 37 0.086 0.115
2003 354 237 39 26 0.073 0.120
2004 204 142 25 15 0.074 0.073
2005 319 214 38 18 0.056 0.084
2006 352 208 34 16 0.045 0.077

[ Sum [ 1658 [ 1122 [ 213 [ 112 [ 0.068 [ 0.100 ]

Table 8: Baseline performance based on evaluation set
2.

described in this paper and the baseline approach
do not make use of many techniques commonly
used to increase performance of a QA system, e.g.
TF-IDF fallback strategies, fuzzy matching, man-
ual reformulation patterns etc. It was a deliberate
decision from our side not to use any of these ap-
proaches. After all, this would result in an ex-
perimental setup where the performance of our
answer extraction strategy could not have been
observed in isolation. The QA system used as a
baseline in the next section makes use of many of
these techniques and we will see that our method,
as described here, is suitable to increase its per-
formance significantly.

7.3 Impact on an existing QA System

Tables 9 and 10 show how our algorithm in-
creases performance of our QUALiM system, see
e.g. (Kaisser et al., 2006). Section 6 in this pa-
per describes via formulas 2 and 3 how answer
candidates are ranked. This ranking is combined
with the existing QA system’s candidate ranking
by simply using it as an additional feature that
boosts candidates proportionally to their confi-
dence score. The difference between both tables
is that the first uses all 1658 questions in our test
sets for the evaluation, whereas the second con-
siders only those 1122 questions for which our
system was able to learn a pattern. Thus for Table
10 questions which the system had no chance of
answering due to limited training data are omitted.
As can be seen, accuracy @1 increases by 4.9% on
the complete test set and by 11.5% on the partial
set.

Note that the QA system used as a baseline is
at an advantage in at least two respects: a) It has
important web-based components and as such has
access to a much larger body of textual informa-
tion. b) The algorithm described in this paper is an
answer extraction approach only. For paragraph
retrieval we use the same approach as for evalu-
ation set 1, see Section 7.1. However, in more
than 20% of the cases, this method returns not

95



a single paragraph that contains both the answer
and at least one question keyword. In such cases,
the simple paragraph retrieval makes it close to
impossible for our algorithm to return the correct
answer.

[ Test Set “ QuALIM [
2002 0.503
2003 0.367
2004 0.426
2005 0.373
2006 0.341
02-06 0.405

QASP

0.117
0.062
0.127
0.144
0.088
0.106

[ combined
0.524
0.390
0.451
0.389
0.358
0.425

“ increase
4.2%
6.2%
5.7%
4.2%
5.0%
4.9%

Table 9: Top-1 accuracy of the QuALiM system on its
own and when combined with the algorithm described
in this paper. All increases are statistically significant
using a sign test (p < 0.05).

QASP | combined

0.156 0.595
0.093 0.430
0.183 0.514
0.214 0.421
0.149 0.428
0.157 0.486

[[ increase
12.3%
13.3%
10.6%
8.4%
11.3%
11.5%

Test Set “ QuALIM
2002 0.530
2003 0.380
2004 0.465
2005 0.388
2006 0.385

02-06 0.436

Table 10: Top-1 accuracy of the QuALiM system on
its own and when combined with the algorithm de-
scribed in this paper, when only considering questions
for which a pattern could be acquired from the training
data. All increases are statistically significant using a
sign test (p < 0.05).

7.4 Effect of Training Data Size

We now assess the effect of training data size on
performance. Tables 5 and 6 presented earlier
show that an average of 32.2% of the questions
have no matching patterns. This is because the
data used for training contained no examples for a
significant subset of question classes. It can be ex-
pected that, if more training data would be avail-
able, this percentage would decrease and perfor-
mance would increase. In order to test this as-
sumption, we repeated the evaluation procedure
detailed in this section several times, initially us-
ing data from only one TREC test set for train-
ing and then gradually adding more sets until all
available training data had been used. The results
for evaluation set 2 are presented in Figure 2. As
can be seen, every time more data is added, per-
formance increases. This strongly suggests that
the point of diminishing returns, when adding ad-
ditional training data no longer improves perfor-
mance is not yet reached.

035

e

Accuracy
=

0,1

1000 2000 3000 4000 5000

Number of training examples

£000

Test set: 2002 == 2003 el 2004 =il 2005 == 2006

Figure 2: Effect of the amount of training data on sys-
tem performance

8 Conclusions

In this paper we present an algorithm that acquires
syntactic information about how relevant textual
content to a question can be formulated from a
collection of paired questions and answer sen-
tences. Other than previous work employing de-
pendency paths for QA, our approach does not as-
sume that a valid answer sentence is similar to the
question and it allows many potentially very dif-
ferent syntactic answer sentence structures. The
algorithm is evaluated using TREC data, and it
is shown that it outperforms an algorithm that
merely uses the syntactic information contained
in the question itself by 300%. It is also shown
that the algorithm improves the performance of a
state-of-the-art QA system significantly.

As always, there are many ways how we could
imagine our algorithm to be improved. Combin-
ing it with fuzzy matching techniques as in (Cui et
al., 2004) or (Cui et al., 2005) is an obvious direc-
tion for future work. We are also aware that in or-
der to apply our algorithm on a larger scale and in
areal world setting with real users, we would need
a much larger set of training data. These could
be acquired semi-manually, for example by using
crowd-sourcing techniques. We are also thinking
about fully automated approaches, or about us-
ing indirect human evidence, e.g. user clicks in
search engine logs. Typically users only see the
title and a short abstract of the document when
clicking on a result, so it is possible to imagine a
scenario where a subset of these abstracts, paired
with user queries, could serve as training data.
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Abstract

In this paper, we examined click patterns
produced by users of Yahoo! search engine
when prompting definition questions. Reg-
ularities across these click patterns are then
utilized for constructing a large and hetero-
geneous training corpus for answer rank-
ing. In a nutshell, answers are extracted
from clicked web-snippets originating from
any class of web-site, including Knowledge
Bases (KBs). On the other hand, non-
answers are acquired from redundant pieces
of text across web-snippets.

The effectiveness of this corpus was as-
sessed via training two state-of-the-art
models, wherewith answers to unseen
queries were distinguished. These test-
ing queries were also submitted by search
engine users, and their answer candidates
were taken from their respective returned
web-snippets.  This corpus helped both
techniques to finish with an accuracy higher
than 70%, and to predict over 85% of the
answers clicked by users. In particular, our
results underline the importance of non-KB
training data.

1 Introduction

It is a well-known fact that definition queries are
very popular across users of commercial search
engines (Rose and Levinson, 2004). The essen-
tial characteristic of definition questions is their
aim for discovering as much as possible descrip-
tive information about the concept being defined
(a.k.a. definiendum, pl. definienda). Some exam-
ples of this kind of query include “Who is Ben-
jamin Millepied?” and “Tell me about Bank of
America’.

It is a standard practice of definition ques-
tion answering (QA) systems to mine KBs (e.g.,
online encyclopedias and dictionaries) for reli-
able descriptive information on the definiendum
(Sacaleanu et al., 2008). Normally, these pieces of
information (i.e., nuggets) explain different facets
of the definiendum (e.g., “ballet choreographer”
and “born in Bordeaux”), and the main idea con-
sists in projecting the acquired nuggets into the
set of answer candidates afterwards. However,
the performance of this category of method falls
into sharp decline whenever few or no coverage
is found across KBs (Zhang et al., 2005; Han et
al., 2006). Put differently, this technique usually
succeeds in discovering the most relevant facts
about the most promiment sense of the definien-
dum. But it often misses many pertinent nuggets,
especially those that can be paraphrased in several
ways; and/or those regarding ancillary senses of
the definiendum, which are hardly found in KBs.

As a means of dealing with this, current strate-
gies try to construct general definition models
inferred from a collection of definitions com-
ing from the Internet or KBs (Androutsopoulos
and Galanis, 2005; Xu et al., 2005; Han et al.,
2006). To a great extent, models exploiting non-
KB sources demand considerable annotation ef-
forts, or when the data is obtained automatically,
they benefit from empirical thresholds that ensure
a certain degree of similarity to an array of KB
articles. These thesholds attempt to trade-off the
cleanness of the training material against its cov-
erage. Moreover, gathering negative samples is
also hard as it is not easy to find wide-coverage
authoritative sources of non-descriptive informa-
tion about a particular definiendum.

Our approach has different innovative aspects
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compared to other research in the area of defini-
tion extraction. It is at the crossroads of query
log analysis and QA systems. We study the click
behavior of search engines’ users with regard to
definition questions. Based on this study, we pro-
pose a novel way of acquiring large-scale and het-
erogeneous training material for this task, which
consists of:

e automatically obtaining positive samples in
accordance with click patterns of search en-
gine users. This aids in harvesting a host
of descriptions from non-KB sources in con-
junction with descriptive information from
KBs.

e automatically acquiring negative data in con-
sonance with redundancy patterns across
snippets displayed within search engine re-
sults when processing definition queries.

In brief, our experiments reveal that these pat-
terns can be effectively exploited for devising ef-
ficient models.

Given the huge amount of amassed data, we
additionally contrast the performance of systems
built on top of samples originated solely from
KB, non-KB, and both combined. Our compar-
ison corroborates that KBs yield massive trust-
worthy descriptive knowledge, but they do not
bear enough diversity to discriminate all answer-
ing nuggets within any kind of text. Essentially,
our experiments unveil that non-KB data is richer
and therefore it is useful for discovering more de-
scriptive nuggets than KB material. But its usage
relies on its cleanness and on a negative set. Many
people had these intuitions before, but to the best
of our knowledge, we provide the first empirical
confirmation and quantification.

The road-map of this paper is as follows: sec-
tion 2 touches on related works; section 3 digs
deeper into click patterns for definition questions,
subsequently section 4 explains our corpus con-
struction strategy; section 5 describes our experi-
ments, and section 6 draws final conclusions.

2 Related Work

In recent years, definition QA systems have
shown a trend towards the utilization of several
discriminant and statistical learning techniques
(Androutsopoulos and Galanis, 2005; Chen et al.,
2006; Han et al., 2006; Fahmi and Bouma, 2006;

Katz et al., 2007; Westerhout, 2009; Navigli and
Velardi, 2010). Due to training, there is a press-
ing necessity for large-scale authoritative sources
of descriptive and non-descriptive nuggets. In the
same manner, there is a growing importance of
strategies capable of extracting trustworthy and
negative/positive samples from any type of text.
Conventionally, these methods interpret descrip-
tions as positive examples, whereas contexts pro-
viding non-descriptive information as negative el-
ements. Four representative techniques are:

e centroid vector (Xu et al., 2003; Cui et
al., 2004) collects an array of articles about
the definiendum from a battery of pre-
determined KBs. These articles are then
used to learn a vector of word frequencies,
wherewith answer candidates are rated af-
terwards. Sometimes web-snippets together
with a query reformulation method are ex-
ploited instead of pre-defined KBs (Chen et
al., 2006).

e (Androutsopoulos and Galanis, 2005) gath-
ered articles from KBs to score 250-
characters windows carrying the definien-
dum. These windows were taken from
the Internet, and accordingly, highly sim-
ilar windows were interpreted as positive
examples, while highly dissimilar as nega-
tive samples. For this purpose, two thresh-
olds are used, which ensure the trustwor-
thiness of both sets. However, they also
cause the sets to be less diverse as not all
definienda are widely covered across KBs.
Indeed, many facets outlined within the 250-
characters windows will not be detected.

e (Xu et al., 2005) manually labeled samples
taken from an Intranet. Manual annotations
are constrained to a small amount of exam-
ples, because it requires substantial human
efforts to tag a large corpus, and disagree-
ments between annotators are not uncom-
mon.

o (Figueroa and Atkinson, 2009) capitalized
on abstracts supplied by Wikipedia for build-
ing language models (LMs), thus there was
no need for a negative set.

Our contribution is a novel technique for ob-
taining heterogeneous training material for defi-
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nitional QA, that is to say, massive examples har-
vested from KBs and non-KBs. Fundamentally,
positive examples are extracted from web snippets
grounded on click patterns of users of a search en-
gine, whereas the negative collection is acquired
via redundancy patterns across web-snippets dis-
played to the user by the search engine. This data
is capitalized by two state-of-the-art definition ex-
tractors, which are different in nature. In addition,
our paper discusses the effect on the performance
of different sorts (KBs and non-KBs) and amount
of training data.

As for user clicks, they provide valuable rele-
vance feedback for a variety of tasks, cf. (Radlin-
ski et al., 2010). For instance, (Ji et al., 2009)
extracted relevance information from clicked and
non-clicked documents within aggregated search
sessions. They modelled sequences of clicks as
a means of learning to globally rank the relative
relevance of all documents with respect to a given
query. (Xu et al., 2010) improved the quality of
training material for learning to rank approaches
via predicting labels using clickthrough data. In
our work, we combine click patterns across Ya-
hoo! search query logs with QA techniques to
build one-sided and two-sided classifiers for rec-
ognizing answers to definition questions.

3 User Click Analysis for Definition QA

In this section, we examine a collection of queries
submitted to Yahoo! search engine during the pe-
riod from December 2010 to March 2011. More
specifically, for this analysis, we considered a
log encompassing a random sample of 69,845,262
(23,360,089 distinct) queries. Basically, this log
comprises the query sent by the user in conjunc-
tion with the displayed URLs and the information
about the sequence of their clicks.

In the first place, we associate each query with
a category in the taxonomy proposed by (Rose
and Levinson, 2004), and in this way definition
queries are selected. Secondly, we investigate
user click patterns observed across these filtered
definition questions.

3.1 Finding Definition Queries

According to (Broder, 2002; Lee et al., 2005;
Dupret and Piwowarski, 2008), the intention of
the user falls into at least two categories: navi-
gational (e.g., “google”) and informational (e.g.,
“maximum entropy models”). The former entails

the desire of going to a specific site that the user
has in mind, and the latter regards the goal of
learning something by reading or viewing some
content (Rose and Levinson, 2004). Navigational
queries are hence of less relevance to definition
questions, and for this reason, these were removed
in congruence with the next three criteria:

o (Lee et al., 2005) pointed out that users will
only visit the web site they bear in mind,
when prompting navigational queries. Thus,
these queries are characterized by clicking
the same URL almost all the time (Lee et al.,
2005). More precisely, we discarded queries
that: a) appear more than four times in the
query log; and which at the same time b) its
most clicked URL represents more than 98%
of all its clicks. Following the same idea, we
additionally eliminated prompted URLs and
queries where the clicked URL is of the form
“www.search-query-without-spaces.”

e By the same token, queries containing key-

words such as “homepage”,
“sign in” were also removed.

on-line”, and

e After the previous steps, many navigational
queries (e.g., “facebook”) still remained in
the query log. We noticed that a substantial
portion was signaled by several frequently
and indistinctly clicked URLs. Take for
instance “facebook”: ‘“www.facebook.com”
and “www.facebook.com/login.php”.

With this in mind, we discarded entries em-
bodied in a manually compiled black list.
This list contains the 600 highest frequent
cases.

A third category in (Rose and Levinson, 2004)
regards resource queries, which we distinguished
via keywords like “image”, “lyrics” and “maps”.
Altogether, an amount of (35.67%) 24,916,610
(3,576,817 distinct) queries were seen as navi-
gational and resource. Note that in (Rose and
Levinson, 2004) both classes encompassed be-
tween 37%-38% of their query set.

Subsequently, we profited from the remaining
44,928,652 (informational) entries for detecting
queries where the intention of the user is find-
ing descriptive information about a topic (i.e.,
definiendum). In the taxonomy delineated by
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(Rose and Levinson, 2004), informational queries
are sub-categorized into five groups including list,
locate, and definitional (directed and undirected).
In practice, we filtered definition questions as fol-
lows:

1. We exploited an array of expressions that
are commonly utilized in query analysis for
classifying definition questions (Figueroa,
2010). E.g., “Who is/was...”, “What is/was

a/an...”, “define...”, and “describe...”. Over-
all, these rules assisted in selecting 332,227
entries.

2. As stated in (Dupret and Piwowarski, 2008),
informational queries are typified by the user
clicking several documents. In light of that,
we say that some definitional queries are
characterized by multiple clicks, where at
least one belongs to a KB. This aids in cap-
turing the intention of the user when look-
ing for descriptive knowledge and only en-
tering noun phrases like “thoracic outlet syn-
drome’:

www.medicinenet.com
en.wikipedia.org
health.yahoo.net
www.livestrong.com
health.yahoo.net
en.wikipedia.org
www.medicinenet.com
www.mayoclinic.com
en.wikipedia.org
www.nismat.org
en.wikipedia.org

Table 1: Four distinct sequences of hosts clicked by
users given the search query: “thoracic outlet syn-
drome”.

In so doing, we manually compiled a list
of 36 frequently clicked KB hosts (e.g.,
Wikipedia and Britannica encyclopedia).
This filter produced 567,986 queries.

Unfortunately, since query logs stored by
search engines are not publicly available due to
privacy and legal concerns, there is no accessible
training material to build models on top of anno-
tated data. Thus, we exploited the aforementioned
hand-crafted rules to connect queries to their re-
spective category in this taxonomy.

3.2 User Click Patterns

In substance, the first filter recognizes the inten-
tion of the user by means of the formulation given
by the user (e.g., “What is a/the/an...”). With re-
gard to this filter, some interesting observations
are as follows:

e In 40.27% of the entries, users did not visit
any of the displayed web-sites. Conse-
quently, we concluded that the information
conveyed within the multiple snippets was
often enough to answer the respective def-
inition question. In other words, a signifi-
cant fraction of the users were satisfied with
a small set of brief, but quickly generated de-
scriptions.

e In2.18% of these cases, the search engine re-
turned no results, and a few times users tried
another paraphrase or query, due to useless
results or misspellings.

e We also noticed that definition questions
matched by these expressions are seldom re-
lated to more than one click, although infor-
mational queries produce several clicks, in
general. In 46.44% of the cases, the user
clicked a sole document, and more surpris-
ingly, we observed that users are likely to
click sources different from KBs, in con-
trast to the widespread belief in definition
QA research. Users pick hits originating
from small but domain-specific web-sites as
a result of at least two effects: a) they are
looking for minor or ancillary senses of the
definiendum (e.g., “ETA” in “www.travel-
industry-dictionary.com”); and more perti-
nent b) the user does not trust the information
yielded by KBs and chooses more authorita-
tive resources, for instance, when looking for
reliable medical information (e.g., “What is
hypothyroidism?”, and “What is mrsa infec-
tion?”).

While the first filter infers the intention of the
user from the query itself, the second deduces it
from the origin of the clicked documents. With
regard to this second filter, clicking patterns are
more disperse. Here, the first two clicks normally
correspond to the top two/three ranked hits re-
turned by the search engine, see also (Ji et al.,
2009). Also, sequences of clicks signal that users
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normally visit only one site belonging to a KB,
and at least one coming from a non-KB (see Ta-
ble 1).

All in all, the insight gained in this analysis al-
lows the construction of an heterogeneous corpus
for definition question answering. Put differently,
these user click patterns offer a way to obtain huge
amounts of heterogeneous training material. In
this way the heavy dependence of open-domain
description identifiers on KB data can be allevi-
ated.

4 Click-Based Corpus Acquisition

Since queries obtained by the previous two filters
are not associated with the actual snippets seen
by the users (due to storage limitations), snip-
pets were recovered by means of submitting the
queries to Yahoo! search engine.

After retrieval, we benefited from OpenNLP!
for detecting sentence boundaries, tokenization
and part-of-speech (POS) information. Here, we
additionally interpreted truncations (*. . .”) as sen-
tence delimiters. POS tags were used to recognize
and replace numbers with a placeholder (#CD#)
as a means of creating sentence templates. We
modified numbers as their value is just as of-
ten confusing as useful (Baeza-Yates and Ribeiro-
Neto, 1999).

Along with numbers, sequences of full
and partial matches of the definiendum were
also substituted with placeholders, “#Q#” and
“#QT#”, respectively. To exemplify, consider
this pre-processed snippet regarding “Benjamin
Millepied” from “www.mashceleb.com’:

#Q# / News &amp; Biography - MashCeleb
Latest news coverage of #Q#
#0# ( born #CD# ) 1s a principal dancer

at New York City Ballet and a ballet
choreographer...

We benefit from these templates for building
both a positive and a negative training set.

4.1 Negative Set

The negative set comprised templates appearing
across all (clicked and unclicked) web-snippets,
which at the same time, are related to more
than five distinct queries. We hypothesize that
these prominent elements correspond to non-
informative, and thus non-descriptive, content as

"http://opennlp.sourceforge.net

they appear within snippets across several ques-
tions. In other words: “If it seems to answer every
question, it will probably answer no question”.
Take for instance:

Information about #Q# in the Columbia

Encyclopedia , Computer Desktop
Encyclopedia , computing dictionary

Conversely, templates that are more plausible
to be answers are strongly related to their specific
definition questions, and consequently, they are
low in frequency and unlikely to be in the result
set of a large number of queries. This negative set
was expanded with templates coming from titles
of snippets, which at the same time, have a fre-
quency higher than four across all snippets (inde-
pendent on which queries they appear). This pro-
cess cooperated on gathering 1,021,571 different
negative examples. In order to measure the pre-
cision of this process, we randomly selected and
checked 1,000 elements, and we found an error of
1.3%.

4.2 Positive Set

As for the positive set, this was constructed
only from the summary section of web-snippets
clicked by the users. We constrained these snip-
pets to bear a title template associated with at least
two web-snippets clicked for two distinct queries.
Some good examples are:

What is #Q# °?
Biology question :

Choices and Consequences.
What is an #Q# 2

Since clicks are linked with entire snippets,
it is uncertain which sentences are genuine de-
scriptions (see the previous example). There-
fore, we removed those templates already con-
tained in the negative set, along with those sam-
ples that matched an array of well-known hand-
crafted rules. This set included:

a. sentences containing words such as “ask”,
“report”’, “say”, and “unless” (Kil et al.,
2005; Schlaefer et al., 2007);

b. sentences bearing several named entities
(Schlaefer et al., 2006; Schlaefer et al.,
2007), which were recognized by the number
of tokens starting with a capital letter versus
those starting with a lowercase letter;

c. statements of persons (Schlaefer et al.,
2007); and
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d. we also profited from about five hundred
common expressions across web snippets in-
cluding “Picture of’, and “Jump to : naviga-
tion , search”, as well as “Recent posts”.

This process assisted in acquiring 881,726 dif-
ferent examples, where 673,548 came from KBs.
Here, we also randomly selected 1,000 instances
and manually checked if they were actual descrip-
tions. The error of this set was 12.2%.

To put things into perspective, in contrast to
other corpus acquisition approaches, the present
method generated more than 1,800,000 positive
and negative training samples combined, while
the open-domain strategy of (Miliaraki and An-
droutsopoulos, 2004; Androutsopoulos and Gala-
nis, 2005) ca. 20,000 examples, the close-domain
technique of (Xu et al., 2005) about 3,000 and
(Fahmi and Bouma, 2006) ca. 2,000.

5 Answering New Definition Queries

In our experiments, we checked the effectiveness
of our user click-based corpus acquisition tech-
nique by studying its impact on two state-of-the-
art systems. The first one is based on the bi-term
LMs proposed by (Chen et al., 2006). This sys-
tem requires only positive samples as training ma-
terial. Conversely, our second system capitalizes
on both positive and negative examples, and it is
based on the Maximum Entropy (ME) models
presented by (Fahmi and Bouma, 2006). These
ME? models amalgamated bigrams and unigrams
as well as two additional syntactic features, which
were not applicable to our task (i.e, sentence posi-
tion). We added to this model the sentence length
as a feature in order to homologate the attributes
used by both systems, therefore offering a good
framework to assess the impact of our negative
set. Note that (Fahmi and Bouma, 2006), unlike
us, applied their models only to sentences observ-
ing some specific syntactic patterns.

With regard to the test set, this was constructed
by manually annotating 113,184 sentence tem-
plates corresponding to 3,162 unseen definienda.
In total, this array of unseen testing instances
encompassed 11,566 different positive samples.
In order to build a balanced testing collection,
the same number of negative examples were ran-
domly selected. Overall, our testing set contains

Zhttp://maxent.sourceforge.net/about.htm]

23,132 elements, and some illustrative annota-
tions are shown in Table 2. It is worth highlight-
ing that these examples signal that our models
are considering pattern-free descriptions, that is
to say, unlike other systems (Xu et al., 2003; Katz
et al., 2004; Fernandes, 2004; Feng et al., 2006;
Figueroa and Atkinson, 2009; Westerhout, 2009)
which consider definitions aligning an array of
well-known patterns (e.g., “is a” and “also known
as”), our models disregard any class of syntactic
constraint.

As to a baseline system, we accounted for the
centroid vector (Xu et al., 2003; Cui et al., 2004).
When implementing, we followed the blueprint
in (Chen et al., 2006), and it was built for each
definiendum from a maximum of 330 web snip-
pets fetched by means of Bing Search. This base-
line achieved a modest performance as it correctly
classified 43.75% of the testing examples. In de-
tail, 47.75% out of the 56.25% of the misclas-
sified elements were a result of data-sparseness.
This baseline has been widely used as a starting
point for comparison purposes, however it is hard
for this technique to discover diverse descriptive
nuggets. This problem stems from the narrow-
coverage of the centroid vector learned for the re-
spective definienda (Zhang et al., 2005). In short,
these figures support the necessity for more robust
methods based on massive training material.

Experiments. We trained both models by sys-
tematically increasing the size of the training ma-
terial by 1%. For this, we randomly split the train-
ing data into 100 equally sized packs, and system-
atically added one to the previously selected sets
(.e., 1%, 2%, 3%, ..., 99%, 100%). We also ex-
perimented with: 1) positive examples originated
solely from KBs; 2) positive samples harvested
only from non-KBs; and eventually 3) all positive
examples combined.

Figure 1 juxtaposes the outcomes accom-
plished by both techniques under the different
configurations. These figures, compared with re-
sults obtained by the baseline, indicate the im-
portant contribution of our corpus to tackle data-
sparseness. This contrast substantiates our claim
that click patterns can be utilized as indicators of
answers to definition questions. Since our models
ignore definition patterns, they have the potential
of detecting a wide diversity of descriptive infor-
mation.

Further, the improvement of about 9%-10% by

104



Label | Example/Template

+ Propylene #Q# is a type of alcohol made from fermented yeast and carbohydrates and

is commonly used in a wide variety of products .

+ #Q# is aggressive behavior intended to achieve a goal .
+ In Hispanic culture , when a girl turns #CD# , a celebration is held called the #Q#,

symbolizing the girl ’s passage to womanhood .

+ Kirschwasser , German for ” cherry water ” and often shortened to #Q# in English-speaking

countries , is a colorless brandy made from black ...

+ From the Gaelic ’dubhglas > meaning #Q#, #QT# stream , or from the #QT# river .
+ Council Bluffs Orthopedic Surgeon Doctors physician directory - Read about #Q#, damage

to any of the #CD# tendons that stabilize the shoulder joint .

+ It also occurs naturally in our bodies in fact, an average size adult manufactures up to

#CD# grams of #Q# daily during normal metabolism .

- Sterling Silver #Q# Hoop Earrings Overstockjeweler.com
- I know V is the rate of reaction and the #Q# is hal ...
- As sad and mean as that sounds , there is some truth to it , as #QT# as age their bodies do

not function as well as they used to ( in all respects ) so there is a ...

- If you ’re new to the idea of Christian #Q#, what I call ” the wild things of God ,
- A look at the Biblical doctrine of the #QT# , showing the biblical basis for the teaching and

including a discussion of some of the common objections .

- #QT# is Users Choice ( application need to be run at #QT# , but is not system critical ) ,

this page shows you how it affects your Windows operating system .

- Your doctor may recommend that you use certain drugs to help you control your #Q# .
- Find out what is the full meaning of #Q# on Abbreviations.com !

Table 2: Samples of manual annotations (testing set).

means of exploiting our negative set makes its
positive contribution clear. In particular, this sup-
ports our hypothesis that redundancy across web-
snippets pertaining to several definition questions
can be exploited as negative evidence. On the
whole, this enhancement also suggests that ME
models are a better option than LMs.

Furthermore, in the case of ME models, putting
together evidence from KB and non-KBs bet-
ters the performance. Conversely, in the case of
LMs, we do not observe a noticeable improve-
ment when unifying both sources. We attribute
this difference to the fact that non-KB data is nois-
ier, and thus negative examples are necessary to
cushion this noise. By and large, the outcomes
show that the usage of descriptive information de-
rived exclusively from KBs is not the best, but a
cost-efficient solution.

Incidentally, Figure 1 reveals that more training
data does not always imply better results. Overall,
the best performance (ME-combined — 80.72%)
was reaped when considering solely 32% of the
training material. Hence, ME-KB finished with
the best performance when accounting for about
215,500 positive examples (see Table 3). Adding
more examples brought about a decline in accu-

Best True Positive
Conf. of Accuracy | positives | examples
ME-combined | 80.72% 88% 881,726
ME-KB 80.33% 89.37% | 673,548
ME-N-KB 78.99% | 93.38% | 208,178

Table 3: Comparison of performance, the total amount
and origin of training data, and the number of recog-
nized descriptions.

racy. Nevertheless, this fraction (32%) is still
larger than the data-sets considered by other open-
domain Machine Learning approaches (Miliaraki
and Androutsopoulos, 2004; Androutsopoulos
and Galanis, 2005).

In detail, when contrasting the confusion ma-
trices of the best configurations accomplished
by ME-combined (80.72%), ME-KB (80.33%)
and ME-N-KB (78.99%), one can find that ME-
combined correctly identified 88% of the answers
(true positives), while ME-KB 89.37% and ME-
N-KB 93.38% (see Table 3).

Interestingly enough, non-KB data only em-
bodies 23.61% of all positive training material,
but it still has the ability to recognize more an-
swers. Despite of that, the other two strate-
gies outperform ME-N-KB, because they are able
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Figure 1: Results for each configuration (accuracy).

to correctly label more negative test examples.
Given these figures, we can conclude that this is
achieved by mitigating the impact of the noise in
the training corpus by means of cleaner (KB) data.

We verified this synergy by inspecting the num-
ber of answers from non-KBs detected by the
three top configurations in Table 3: ME-combined
(9,086), ME-KB (9,230) and ME-N-KB (9,677).
In like manner, we examined the confusion ma-
trix for the best configuration (ME-combined —
80.72%): 1,388 (6%) positive examples were mis-
labeled as negative, while 3,071 (13.28%) nega-
tive samples were mistagged as positive.

In addition, we performed significance tests uti-
lizing two-tailed paired t-test at 95% confidence
interval on twenty samples. For this, we used
only the top three configurations in Table 3 and
each sample was determined by using boostrap-
ping resampling. Each sample has the same size
of the original test corpus. Overall, the tests im-
plied that all pairs were statistically different from
each other.

In summary, the results show that both negative
examples and combining positive examples from
heterogeneous sources are indispensable to tackle
any class of text. However, it is vital to lessen the
noise in non-KB data, since this causes a more
adverse effect on the performance. Given the up-
perbound in accuracy, our outcomes indicate that
cleanness and quality are more important than the

size of the corpus. Our figures additionally sug-
gest that more effort should go into increasing di-
versity than the number of training instances. In
light of these observations, we also conjecture that
a more reduced, but diverse and manually anno-
tated, corpus might be more effective. In partic-
ular, a manually checked corpus distilled by in-
specting click patterns across query logs of search
engines.

Lastly, in order to evaluate how good a click
predictor the three top ME-configurations are,
we focused our attention only on the manu-
ally labeled positive samples (answers) that were
clicked by the users. Overall, 86.33% (ME-
combined), 88.85% (ME-KB) and 92.45% (ME-
N-KB) of these responses were correctly pre-
dicted. In light of that, one can conclude that
(clicked and non-clicked) answers to definition
questions can be identified/predicted on the basis
of user’s click patterns across query logs.

From the viewpoint of search engines, web
snippets are computed off-line, in general. In
so doing, some methods select the spans of text
bearing query terms with the potential of putting
the document on top of the rank (Turpin et al.,
2007; Tsegay et al., 2009). This helps to create an
abridged version of the document that can quickly
produce the snippet. This has to do with the trade-
off between storage capacity, indexing, and re-
trieval speed. Ergo, our technique can help to de-
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termine whether or not a span of text is worth ex-
panding, or in some cases whether or not it should
be included in the snippet view of the document.
In our instructive snippet, we now might have:

Benjamin Millepied / News &amp;
Biography - MashCeleb

Benjamin Millepied (born 1977)
principal dancer at New York City Ballet
and a ballet choreographer of
international reputation. Millepied was
born in Bordeaux, France. His...

is a

Improving the results of informational (e.g.,
definition) queries, especially of less frequent
ones, is key for competing commercial search
engines as they are embodied in the non-
navigational tail where these engines differ the
most (Zaragoza et al., 2010).

6 Conclusions

This work investigates into the click behavior of
commercial search engine users regarding defi-
nition questions. These behaviour patterns are
then exploited as a corpus acquisition technique
for definition QA, which offers the advantage of
encompassing positive samples from heterogo-
neous sources. In contrast, negative examples
are obtained in conformity to redundancy pat-
terns across snippets, which are returned by the
search engine when processing several definition
queries. The effectiveness of these patterns, and
hence of the obtained corpus, was tested by means
of two models different in nature, where both
were capable of achieving an accuracy higher than
70%.

As a future work, we envision that answers de-
tected by our strategy can aid in determining some
query expansion terms, and thus to devise some
relevance feedback methods that can bring about
an improvement in terms of the recall of answers.
Along the same lines, it can cooperate on the vi-
sualization of the results by highlighting and/or
extending truncated answers, that is more infor-
mative snippets, which is one of the holy grail of
search operators, especially when processing in-
formational queries.

NLP tools (e.g., parsers and name entity recog-
nizers) can also be exploited for designing better
training data filters and more discriminative fea-
tures for our models that can assist in enhanc-
ing the performance, cf. (Surdeanu et al., 2008;
Figueroa, 2010; Surdeanu et al., 2011). However,

this implies that these tools have to be re-trained
to cope with web-snippets.

Acknowledgements

This work was partially supported by R&D
project FONDEF DO0911185. We also thank our
reviewers for their interesting comments, which
helped us to make this work better.

References

I. Androutsopoulos and D. Galanis. 2005. A prac-
tically Unsupervised Learning Method to Identify
Single-Snippet Answers to Definition Questions on
the web. In HLT/EMNLP, pages 323-330.

R. Baeza-Yates and B. Ribeiro-Neto. 1999. Modern
Information Retrieval. Addison Wesley.

A. Broder. 2002. A Taxonomy of Web Search. SIGIR
Forum, 36:3—10, September.

Y. Chen, M. Zhon, and S. Wang. 2006. Reranking An-
swers for Definitional QA Using Language Model-
ing. In Coling/ACL-2006, pages 1081-1088.

H. Cui, K. Li, R. Sun, T.-S. Chua, and M.-Y. Kan.
2004. National University of Singapore at the
TREC 13 Question Answering Main Task. In Pro-
ceedings of TREC 2004. NIST.

Georges E. Dupret and Benjamin Piwowarski. 2008.
A user browsing model to predict search engine
click data from past observations. In SIGIR ’08,
pages 331-338.

Ismail Fahmi and Gosse Bouma. 2006. Learning to
Identify Definitions using Syntactic Features. In
Proceedings of the Workshop on Learning Struc-
tured Information in Natural Language Applica-
tions.

Donghui Feng, Deepak Ravichandran, and Eduard H.
Hovy. 2006. Mining and Re-ranking for Answering
Biographical Queries on the Web. In AAAIL

Aaron Fernandes. 2004. Answering Definitional
Questions before they are Asked. Master’s thesis,
Massachusetts Institute of Technology.

A. Figueroa and J. Atkinson. 2009. Using Depen-
dency Paths For Answering Definition Questions on
The Web. In WEBIST 2009, pages 643—650.

Alejandro Figueroa. 2010. Finding Answers to Defini-
tion Questions on the Web. Phd-thesis, Universitaet
des Saarlandes, 7.

K. Han, Y. Song, and H. Rim. 2006. Probabilis-
tic Model for Definitional Question Answering. In
Proceedings of SIGIR 2006, pages 212-219.

Shihao Ji, Ke Zhou, Ciya Liao, Zhaohui Zheng, Gui-
Rong Xue, Olivier Chapelle, Gordon Sun, and
Hongyuan Zha. 2009. Global ranking by exploit-
ing user clicks. In Proceedings of the 32nd inter-
national ACM SIGIR conference on Research and

107



development in information retrieval, SIGIR ’09,
pages 35-42, New York, NY, USA. ACM.

B. Katz, M. Bilotti, S. Felshin, A. Fernandes,
W. Hildebrandt, R. Katzir, J. Lin, D. Loreto,
G. Marton, F. Mora, and O. Uzuner. 2004. An-
swering multiple questions on a topic from hetero-
geneous resources. In Proceedings of TREC 2004.
NIST.

B. Katz, S. Felshin, G. Marton, F. Mora, Y. K. Shen,
G. Zaccak, A. Ammar, E. Eisner, A. Turgut, and
L. Brown Westrick. 2007. CSAIL at TREC 2007
Question Answering. In Proceedings of TREC
2007. NIST.

Jae Hong Kil, Levon Lloyd, and Steven Skiena. 2005.
Question Answering with Lydia (TREC 2005 QA
track). In Proceedings of TREC 2005. NIST.

U. Lee, Z. Liu, and J. Cho. 2005. Automatic Iden-
tification of User Goals in Web Search. In Pro-
ceedings of the 14th WWW conference, WWW "05,
pages 391-400.

S. Miliaraki and I. Androutsopoulos. 2004. Learn-
ing to identify single-snippet answers to definition
questions. In COLING °04, pages 1360-1366.

Roberto Navigli and Paola Velardi. 2010.
LearningWord-Class  Lattices for  Definition
and Hypernym Extraction. In Proceedings of
the 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010).

Filip Radlinski, Martin Szummer, and Nick Craswell.
2010. Inferring query intent from reformulations
and clicks. In Proceedings of the 19th international
conference on World wide web, WWW 10, pages
1171-1172, New York, NY, USA. ACM.

Daniel E. Rose and Danny Levinson. 2004. Un-
derstanding User Goals in Web Search. In WWW,
pages 13-19.

B. Sacaleanu, G. Neumann, and C. Spurk. 2008.
DFKI-LT at QA @CLEF 2008. In In Working Notes
for the CLEF 2008 Workshop.

Nico Schlaefer, P. Gieselmann, and Guido Sautter.
2006. The Ephyra QA System at TREC 2006. In
Proceedings of TREC 2006. NIST.

Nico Schlaefer, Jeongwoo Ko, Justin Betteridge,
Guido Sautter, Manas Pathak, and Eric Nyberg.
2007. Semantic Extensions of the Ephyra QA Sys-
tem for TREC 2007. In Proceedings of TREC 2007.
NIST.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2008. Learning to Rank Answers on
Large Online QA Collections. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2008), pages 719-727.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-
factoid questions from web collections. Computa-
tional Linguistics, 37:351-383.

Yohannes Tsegay, Simon J. Puglisi, Andrew Turpin,
and Justin Zobel. 2009. Document compaction
for efficient query biased snippet generation. In
Proceedings of the 31th European Conference on
IR Research on Advances in Information Retrieval,
ECIR °09, pages 509-520, Berlin, Heidelberg.
Springer-Verlag.

Andrew Turpin, Yohannes Tsegay, David Hawking,
and Hugh E. Williams. 2007. Fast generation of
result snippets in web search. In Proceedings of
the 30th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, SIGIR *07, pages 127-134, New York,
NY, USA. ACM.

Eline Westerhout. 2009. Extraction of definitions us-
ing grammar-enhanced machine learning. In Pro-
ceedings of the EACL 2009 Student Research Work-
shop, pages 88-96.

Jinxi Xu, Ana Licuanan, and Ralph Weischedel. 2003.
TREC2003 QA at BBN: Answering Definitional
Questions. In Proceedings of TREC 2003, pages
98-106. NIST.

J. Xu, Y. Cao, H. Li, and M. Zhao. 2005. Ranking
Definitions with Supervised Learning Methods. In
WWW2005, pages 811-819.

Jingfang Xu, Chuanliang Chen, Gu Xu, Hang Li, and
Elbio Renato Torres Abib. 2010. Improving qual-
ity of training data for learning to rank using click-
through data. In Proceedings of the third ACM in-
ternational conference on Web search and data min-
ing, WSDM ’10, pages 171-180, New York, NY,
USA. ACM.

H. Zaragoza, B. Barla Cambazoglu, and R. Baeza-
Yates. 2010. We Search Solved? All Result Rank-
ings the Same? In Proceedings of CKIM’10, pages
529-538.

Zhushuo Zhang, Yaqgian Zhou, Xuanjing Huang, and
Lide Wu. 2005. Answering Definition Questions
Using Web Knowledge Bases. In Proceedings of
IJCNLP 2005, pages 498-506.

108



Adaptation of Statistical Machine Translation Model for Cross-Lingual
Information Retrieval in a Service Context

Vassilina Nikoulina
Xerox Research Center Europe

Bogomil Kovachev
Informatics Institute

vassilina.nikoulina@xrce.xerox.com University of Amsterdam

Nikolaos Lagos
Xerox Research Center Europe

nikolaos.lagos@xrce.xerox.com

Abstract

This work proposes to adapt an existing
general SMT model for the task of translat-
ing queries that are subsequently going to
be used to retrieve information from a tar-
get language collection. In the scenario that
we focus on access to the document collec-
tion itself is not available and changes to
the IR model are not possible. We propose
two ways to achieve the adaptation effect
and both of them are aimed at tuning pa-
rameter weights on a set of parallel queries.
The first approach is via a standard tuning
procedure optimizing for BLEU score and
the second one is via a reranking approach
optimizing for MAP score. We also extend
the second approach by using syntax-based
features. Our experiments show improve-
ments of 1-2.5 in terms of MAP score over
the retrieval with the non-adapted transla-
tion. We show that these improvements are
due both to the integration of the adapta-
tion and syntax-features for the query trans-
lation task.

1 Introduction

Cross Lingual Information Retrieval (CLIR) is an
important feature for any digital content provider
in today’s multilingual environment. However,
many of the content providers are not willing to
change existing well-established document index-
ing and search tools, nor to provide access to
their document collection by a third-party exter-
nal service. The work presented in this paper as-
sumes such a context of use, where a query trans-
lation service allows translating queries posed to
the search engine of a content provider into sev-
eral target languages, without requiring changes

B.K.Kovachev@uva.nl

Christof Monz
Informatics Institute
University of Amsterdam
C.Monz@uva.nl

to the undelying IR system used and without ac-
cessing, at translation time, the content provider’s
document set. Keeping in mind these constraints,
we present two approaches on query translation
optimisation.

One of the important observations done dur-
ing the CLEF 2009 campaign (Ferro and Peters,
2009) related to CLIR was that the usage of Sta-
tistical Machine Translation (SMT) systems (eg.
Google Translate) for query translation led to
important improvements in the cross-lingual re-
trieval performance (the best CLIR performance
increased from “55% of the monolingual baseline
in 2008 to more than 90% in 2009 for French
and German target languages). However, general-
purpose SMT systems are not necessarily adapted
for query translation. That is because SMT sys-
tems trained on a corpus of standard parallel
phrases take into account the phrase structure im-
plicitly. The structure of queries is very differ-
ent from the standard phrase structure: queries are
very short and the word order might be different
than the typical full phrase one. This problem can
be seen as a problem of genre adaptation for SMT,
where the genre is “query”.

To our knowledge, no suitable corpora of par-
allel queries is available to train an adapted SMT
system. Small corpora of parallel queries' how-
ever can be obtained (eg. CLEF tracks) or man-
ually created. We suggest to use such corpora
in order to adapt the SMT model parameters for
query translation. In our approach the parameters
of the SMT models are optimized on the basis of
the parallel queries set. This is achieved either di-
rectly in the SMT system using the MERT (Mini-
mum Error Rate Training) algorithm and optimiz-

"Insufficient for a full SMT system training (“500 entries)
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ing according to the BLEU?(Papineni et al., 2001)
score, or via reranking the Nbest translation can-
didates generated by a baseline system based on
new parameters (and possibly new features) that
aim to optimize a retrieval metric.

It is important to note that both of the pro-
posed approaches allow keeping the MT system
independent of the document collection and in-
dexing, and thus suitable for a query translation
service. These two approaches can also be com-
bined by using the model produced with the first
approach as a baseline that produces the Nbest list
of translations that is then given to the reranking
approach.

The remainder of this paper is organized as fol-
lows. We first present related work addressing the
problem of query translation. We then describe
two approaches towards adapting an SMT system
to the query-genre: tuning the SMT system on a
parallel set of queries (Section 3.1) and adapting
machine translation via the reranking framework
(Section 3.2). We then present our experimental
settings and results (Section 4) and conclude in
section 5.

2 Related work

We may distinguish two main groups of ap-
proaches to CLIR: document translation and
query translation. We concentrate on the second
group which is more relevant to our settings. The
standard query translation methods use different
translation resources such as bilingual dictionar-
ies, parallel corpora and/or machine translation.
The aspect of disambiguation is important for the
first two techniques.

Different methods were proposed to deal with
disambiguation issues, often relying on the docu-
ment collection or embedding the translation step
directly into the retrieval model (Hiemstra and
Jong, 1999; Berger et al., 1999; Kraaij et al,,
2003). Other methods rely on external resources
like query logs (Gao et al., 2010), Wikipedia (Ja-
didinejad and Mahmoudi, 2009) or the web (Nie
and Chen, 2002; Hu et al., 2008). (Gao et al.,
2006) proposes syntax-based translation models
to deal with the disambiguation issues (NP-based,
dependency-based). The candidate translations
proposed by these models are then reranked with
the model learned to minimize the translation er-

2Standard MT evaluation metric

ror on the training data.

To our knowledge, existing work that use MT-
based techniques for query translation use an out-
of-the-box MT system, without adapting it for
query translation in particular (Jones et al., 1999;
Wu et al., 2008) (although some query expan-
sion techniques might be applied to the produced
translation afterwards (Wu and He, 2010)).

There is a number of works done for do-
main adaptation in Statistical Machine Transla-
tion. However, we want to distinguish between
genre and domain adaptation in this work. Gen-
erally, genre can be seen as a sub-problem of do-
main. Thus, we consider genre to be the general
style of the text e.g. conversation, news, blog,
query (responsible mostly for the text structure)
while the domain reflects more what the text is
about — eg. social science, healthcare, history, so
domain adaptation involves lexical disambigua-
tion and extra lexical coverage problems. To our
knowledge, there is not much work addressing ex-
plicitly the problem of genre adaptation for SMT.
Some work done on domain adaptation could be
applied to genre adaptation, such as incorporating
available in-domain corpora in the SMT model:
either monolingual (Bertoldi and Federico, 2009;
Wu et al., 2008; Zhao et al., 2004; Koehn and
Schroeder, 2007), or small parallel data used for
tuning the SMT parameters (Zheng et al., 2010;
Pecina et al., 2011).

3 Our approach

This work is based on the hypothesis that the
general-purpose SMT system needs to be adapted
for query translation. Although in (Ferro and
Peters, 2009) it has been mentioned that using
Google translate (general-purpose MT) for query
translation allowed to CLEF participants to obtain
the best CLIR performance, there is still 10% gap
between monolingual and cross-lingual IR. We
believe that, as in (Clinchant and Renders, 2007),
more adapted query translation, possibly further
combined with query expansion techniques, can
lead to improved retrieval.

The problem of the SMT adaptation for query-
genre translation has different quality aspects.
On the one hand, we want our model to pro-
duce a “good” translation (well-formed and trans-
mitting the information contained in the source
query) of an input query. On the other hand, we
want to obtain good retrieval performance using
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the proposed translation. These two aspects are
not necessarily correlated: a bag-of-word transla-
tion can lead to good retrieval performance, even
though it won’t be syntactically well-formed; at
the same time a well-formed translation can lead
to worse retrieval if the wrong lexical choice is
done. Moreover, often the retrieval demands some
linguistic preprocessing (eg. lemmatisation, PoS
tagging) which in interaction with badly-formed
translations might bring some noise.

A couple of works studied the correlation be-
tween the standard MT evaluation metrics and
the retrieval precision. Thus, (Fujii et al., 2009)
showed a good correlation of the BLEU scores
with the MAP scores for Cross-Lingual Patent
Retrieval. However, the topics in patent search
(long and well structured) are very different from
standard queries. (Kettunen, 2009) also found a
pretty high correlation ( 0.8 — 0.9) between stan-
dard MT evaluation metrics (METEOR(Banerjee
and Lavie, 2005), BLEU, NIST(Doddington,
2002)) and retrieval precision for long queries.
However, the same work shows that the correla-
tion decreases ( 0.6 — 0.7) for short queries.

In this paper we propose two approaches to
SMT adaptation for queries. The first one op-
timizes BLEU, while the second one optimizes
Mean Average Precision (MAP), a standard met-
ric in information retrieval. We’ll address the is-
sue of the correlation between BLEU and MAP in
Section 4.

Both of the proposed approaches rely on the
phrase-based SMT (PBMT) model (Koehn et al.,
2003) implemented in the Open Source SMT
toolkit MOSES (Koehn et al., 2007).

3.1 Tuning for genre adaptation

First, we propose to adapt the PBMT model by
tuning the model’s weights on a parallel set of
queries. This approach addresses the first as-
pect of the problem, which is producing a “good”
translation. The PBMT model combines differ-
ent types of features via a log-linear model. The
standard features include (Koehn, 2010, Chapter
5): language model, word penalty, distortion, dif-
ferent translation models, etc. The weights of
these features are learned during the tuning step
with the MERT (Och, 2003) algorithm. Roughly
the MERT algorithm tunes feature weights one by
one and optimizes them according to the BLEU
score obtained.

Our hypothesis is that the impact of different
features should be different depending on whether
we translate a full sentence, or a query-genre en-
try. Thus, one would expect that in the case
of query-genre the language model or the distor-
tion features should get less importance than in
the case of the full-sentence translation. MERT
tuning on a genre-adapted parallel corpus should
leverage this information from the data, adapting
the SMT model to the query-genre. We would
also like to note that the tuning approach (pro-
posed for domain adaptation by (Zheng et al.,
2010)) seems to be more appropriate for genre
adaptation than for domain adaptation where the
problem of lexical ambiguity is encoded in the
translation model and re-weighting the main fea-
tures might not be sufficient.

We use the MERT implementation provided
with the Moses toolkit with default settings. Our
assumption is that this procedure although not ex-
plicitly aimed at improving retrieval performance
will nevertheless lead to “better” query transla-
tions when compared to the baseline. The results
of this apporach allow us also to observe whether
and to what extent changes in BLEU scores are
correlated to changes in MAP scores.

3.2 Reranking framework for query
translation

The second approach addresses the retrieval qual-
ity problem. An SMT system is usually trained to
optimize the quality of the translation (eg. BLEU
score for SMT), which is not necessarily corre-
lated with the retrieval quality (especially for the
short queries). Thus, for example, the word or-
der which is crucial for translation quality (and is
taken into account by most MT evaluation met-
rics) is often ignored by IR models. Our second
approach follows (Nie, 2010, pp.106) argument
that “the translation problem is an integral part
of the whole CLIR problem, and unified CLIR
models integrating translation should be defined”.
We propose integrating the IR metric (MAP) into
the translation model optimisation step via the
reranking framework.

Previous attempts to apply the reranking ap-
proach to SMT did not show significant improve-
ments in terms of MT evaluation metrics (Och
et al., 2003; Nikoulina and Dymetman, 2008).
One of the reasons being the poor diversity of the
Nbest list of the translations. However, we be-
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lieve that this approach has more potential in the
context of query translation.

First of all the average query length is “5 words,
which means that the Nbest list of the translations
is more diverse than in the case of general phrase
translation (average length 25-30 words).

Moreover, the retrieval precision is more natu-
rally integrated into the reranking framework than
standard MT evaluation metrics such as BLEU.
The main reason is that the notion of Average Re-
trieval Precision is well defined for a single query
translation, while BLEU is defined on the corpus
level and correlates poorly with human quality
judgements for the individual translations (Specia
et al., 2009; Callison-Burch et al., 2009).

Finally, the reranking framework allows a lot
of flexibility. Thus, it allows enriching the base-
line translation model with new complex features
which might be difficult to introduce into the
translation model directly.

Other works applied the reranking framework
to different NLP tasks such as Named Entities
Extraction (Collins, 2001), parsing (Collins and
Roark, 2004), and language modelling (Roark et
al., 2004). Most of these works used the reranking
framework to combine generative and discrimina-
tive methods when both approaches aim at solv-
ing the same problem: the generative model pro-
duces a set of hypotheses, and the best hypoth-
esis is chosen afterwards via the discriminative
reranking model, which allows to enrich the base-
line model with the new complex and heteroge-
neous features. We suggest using the reranking
framework to combine two different tasks: Ma-
chine Translation and Cross-lingual Information
Retrieval. In this context the reranking framework
doesn’t only allow enriching the baseline transla-
tion model but also performing training using a
more appropriate evaluation metric.

3.2.1 Reranking training
Generally, the reranking framework can be re-

sumed in the following steps :

1. The baseline (generic-purpose) MT system
generates a list of candidate translations
GEN (q) for each query g¢;

2. A vector of features F'(t) is assigned to each
translation t € GEN(q);

3. The best translation # is chosen as the one
maximizing the translation score, which is

defined as a weighted linear combination of
features: £(\) = arg max;cqpn(q) A F(t)

As shown above the best translation is selected ac-
cording to features’ weights A. In order to learn
the weights A maximizing the retrieval perfor-
mance, an appropriate annotated training set has
to be created. We use the CLEF tracks to create
the training set. The retrieval scores annotations
are based on the document relevance annotations
performed by human annotators during the CLEF
campaign.

The annotated training set is created out of
queries {qi, ..., qx } with an Nbest list of trans-
lations GEN (g;) of each query ¢;,7 € {1..K} as
follows:

e A list of N (we take N = 1000) translations
(GEN(q;)) is produced by the baseline MT
model for each query ¢;,7 = 1..K.

e Each translation t € GEN(g;) is used
to perform a retrieval from a target docu-
ment collection, and an Average Precision
score (AP(t)) is computed for each ¢ €
GEN(g;) by comparing its retrieval to the
relevance annotations done during the CLEF
campaign.

The weights A are learned with the objective of
maximizing MAP for all the queries of the train-
ing set, and, therefore, are optimized for retrieval

quality.
The weights optimization is done with
the Margin Infused Relaxed Algorithm

(MIRA)(Crammer and Singer, 2003), which
was applied to SMT by (Watanabe et al., 2007;
Chiang et al., 2008). MIRA is an online learning
algorithm where each weights update is done to
keep the new weights as close as possible to the
old weights (first term), and score oracle trans-
lation (the translation giving the best retrieval
score : t7 = argmax; AP(t)) higher than each
non-oracle translation (Z;;) by a margin at least as
wide as the loss /;; (second term):

A= miny, SN = A2 +
O maxor i (g — N - (F() = F(ty))

The loss [;; is defined as the difference in the re-
trieval average precision between the oracle and
non-oracle translations: l;; = AP(t) — AP(t;).
C is the regularization parameter which is chosen
via 5-fold cross-validation.
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3.2.2 Features

One of the advantages of the reranking frame-
work is that new complex features can be easily
integrated. We suggest to enrich the reranking
model with different syntax-based features, such
as:

e features relying on dependency structures:
called therein coupling features (proposed by
(Nikoulina and Dymetman, 2008));

e features relying on Part of Speech Tagging:
called therein PoS mapping features.

By integrating the syntax-based features we
have a double goal: showing the potential of
the reranking framework with more complex fea-
tures, and examining whether the integration of
syntactic information could be useful for query
translation.

Coupling features. The goal of the coupling
features is to measure the similarity between
source and target dependency structures. The ini-
tial hypothesis is that a better translation should
have a dependency structure closer to the one of
the source query.

In this work we experiment with two dif-
ferent coupling variants proposed in (Nikoulina
and Dymetman, 2008), namely, Lexicalised and
Label-specific coupling features.

The generic coupling features are based on
the notion of “rectangles” that are of the follow-
ing type : ((s1, ds12, S2), (t1, di12, t2)), where
ds12 is an edge between source words s; and sa,
d¢12 1s an edge between target words ¢ and to,
s1 is aligned with #; and so is aligned with ¢s.
Lexicalised features take into account the qual-
ity of lexical alignment, by weighting each rect-
angle (s1, s2, t1, t2) by a probability of align-
ing s1 to t1 and sy to to (eg. p(s1|t1)p(s2|te) or
p(t1]s1)p(ta]s2)).

The Label-Specific features take into account
the nature of the aligned dependencies. Thus, the
rectangles of the form ((s1, subj, s2), (t1, subj,
t2)) will get more weight than a rectangle ((s1,
subj, s2), (t1, nmod, t2)). The importance of
each “rectangle” is learned on the parallel anno-
tated corpus by introducing a collection of Label-
Specific coupling features, each for a specific pair
of source label and target label.

PoS mapping features. The goal of the PoS
mapping features is to control the correspondence
of Part Of Speech Tags between an input query
and its translation. As the coupling features, the
PoS mapping features rely on the word align-
ments between the source sentence and its trans-
lation®. A vector of sparse features is introduced
where each component corresponds to a pair of
PoS tags aligned in the training data. We intro-
duce a generic PoS map variant, which counts a
number of occurrences of a specific pair of PoS
tags, and lexical PoS map variant, which weights
down these pairs by a lexical alignment score

(p(s[t) or p(t]s)).
4 Experiments

4.1 Experimental basis
4.1.1 Data

To simulate parallel query data we used trans-
lation equivalent CLEF topics. The data set used
for the first approach consists of the CLEF topic
data from the following years and tasks: AdHoc-
main track from 2000 to 2008; CLEF AdHoc-
TEL track 2008; Domain Specific tracks from
2000 to 2008; CLEF robust tracks 2007 and 2008;
GeoCLEf tracks 2005-2007. To avoid the issue of
overlapping topics we removed duplicates. The
created parallel queries set contained 500 — 700
parallel entries (depending on the language pair,
Table 1) and was used for Moses parameters tun-
ing.

In order to create the training set for the rerank-
ing approach, we need to have access to the rele-
vance judgements. We didn’t have access to all
relevance judgements of the previously desribed
tracks. Thus we used only a subset of the previ-
ously extracted parallel set, which includes CLEF
2000-2008 topics from the AdHoc-main, AdHoc-
TEL and GeoCLEEF tracks.

The number of queries obtained altogether is
shown in (Table 1).

4.1.2 Baseline

We tested our approaches on the CLEF AdHoc-
TEL 2009 task (50 topics). This task dealt
with monolingual and cross-lingual search in a
library catalog. The monolingual retrieval is

3This alignment can be either produced by a toolkit like
GIZA++(Och and Ney, 2003) or obtained directly by a sys-
tem that produced the Nbest list of the translations (Moses).
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Language pair | Number of queries
Total queries
En - Fr, Fr - En 470
En - De, De - En 714
Annotated queries
En - Fr, Fr - En 400
En - De, De - En 350

Table 1: Top: total number of parallel queries gathered
from all the CLEF tasks (size of the tuning set). Bot-
tom: number of queries extracted from the tasks for
which the human relevance judgements were availble
(size of the reranking training set).

performed with the lemur* toolkit (Ogilvie and
Callan, 2001). The preprocessing includes lem-
matisation (with the Xerox Incremental Parser-
XIP (Ait-Mokhtar et al., 2002)) and filtering out
the function words (based on XIP PoS tagging).
Table 2 shows the performance of the monolin-
gual retrieval model for each collection. The
monolingual retrieval results are comparable to
the CLEF AdHoc-TEL 2009 participants (Ferro
and Peters, 2009). Let us note here that it is not
the case for our CLIR results since we didn’t ex-
ploit the fact that each of the collections could ac-
tually contain the entries in a language other than
the official language of the collection.

The cross-lingual retrieval is performed as fol-
lows :

e the input query (eg. in English) is first trans-
lated into the language of the collection (eg.
German);

e this translation is used to search the target
collection (eg. Austrian National Library for
German ) .

The baseline translation is produced with
Moses trained on Europarl. Table 2 reports the
baseline performance both in terms of MT evalu-
ation metrics (BLEU) and Information Retrieval
evaluation metric MAP (Mean Average Preci-
sion).

The 1best MAP score corresponds to the case
when the single translation is proposed for the
retrieval by the query translation model. Sbest
MAP score corresponds to the case when the 5
top translations proposed by the translation ser-
vice are concatenated and used for the retrieval.

*http://www.lemurproject.org/

The Sbest retrieval can be seen as a sort of query
expansion, without accessing the document col-
lection or any external resources.

Given that the query length is shorter than for a
standard sentence, the 4-gramm BLEU (used for
standart MT evaluation) might not be able to cap-
ture the difference between the translations (eg.
English-German 4-gramm BLEU is equal to O for
our task). For that reason we report both 3- and
4-gramm BLEU scores.

Note, that the French-English baseline retrieval
quality is much better than the German-English.
This is probably due to the fact that our German-
English translation system doesn’t use any de-
coumpounding, which results into many non-
translated words.

4.2 Results

We performed the query-genre adaptation ex-
periments for English-French, French-English,
German-English and English-German language
pairs.

Ideally, we would have liked to combine the
two approaches we proposed: use the query-
genre-tuned model to produce the Nbest list
which is then reranked to optimize the MAP
score. However, it was not possible in our exper-
imental settings due to the small amount of train-
ing data available. We thus simply compare these
two approaches to a baseline approach and com-
ment on their respective performance.

4.2.1 Query-genre tuning approach

For the CLEF-tuning experiments we used the
same translation model and language model as for
the baseline (Europarl-based). The weights were
then tuned on the CLEF topics described in sec-
tion 4.1.1. We then tested the system obtained on
50 parallel queries from the CLEF AdHoc-TEL
2009 task.

Table 3 describes the results of the evalua-
tion. We observe consistent 1-best MAP improve-
ments, but unstable BLEU (3-gramm) (improve-
ments for English-German, and degradation for
other language pairs), although one would have
expected BLEU to be improved in this experi-
mental setting given that BLEU was the objective
function for MERT. These results, on one side,
confirm the remark of (Kettunen, 2009) that there
is a correlation (although low) between BLEU
and MAP scores. The unstable BLEU scores
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MAP MAP MAP BLEU BLEU
1-best | 5-best | 4-gramm | 3-gramm
Monolingual IR Bilingual IR
. French-English | 0.1828 | 0.2186 | 0.1199 0.1568
English 0-3159 German-English | 0.0941 | 0.0942 | 0.2351 | 0.2923
French 0.2386 English-French | 0.1504 | 0.1543 | 0.2863 0.3423
German 0.2162 English-German | 0.1009 | 0.1157 | 0.0000 0.1218

Table 2: Baseline MAP scores for monolingual and bilingual CLEF AdHoc TEL 2009 task.

MAP | MAP
1-best | 5-best
Fr-En | 0.1954 | 0.2229
De-En | 0.1018 | 0.1078
En-Fr | 0.1611 | 0.1516
En-De | 0.1062 | 0.1132

BLEU BLEU
4-gramm | 3-gramm
0.1062 0.1489
0.2240 0.2486
0.2072 0.2908
0.0000 0.1924

Table 3: BLEU and MAP performance on CLEF AdHoc TEL 20009 task for the genre-tuned model.

might also be explained by the small size of the
test set (compared to a standard test set of 1000
full-sentences).

Secondly, we looked at the weights of the fea-
tures both in the baseline model (Europarl-tuned)
and in the adapted model (CLEF-tuned), shown in
Table 4. We are unsure how suitable the sizes of
the CLEF tuning sets are, especially for the pairs
involving English and French. Nevertheless we
do observe and comment on some patterns.

For the pairs involving English and German
the distortion weight is much higher when tuning
with CLEF data compared to tuning with Europarl
data. The picture is reversed when looking at the
two pairs involving English and French. This is
to be expected if we interpret a high distortion
weight as follows: “it is not encouraged to place
source words that are near to each other far away
from each other in the translation”. Indeed, the lo-
cal reorderings are much more frequent between
English and French (e.g. white house = maison
blanche), while the long-distance reorderings are
more typcal between English and German.

The word penalty is consistenly higher over all
pairs when tuning with CLEF data compared to
tuning with Europarl data. We could see an ex-
planation for this pattern in the smaller size of
the CLEF sentences if we interpret higher word
penalty as a preference for shorter translations.
This can be explained both with the smaller aver-
age size of the queries and with the specific query

structure: mostly content words and fewer func-
tion words when compared to the full sentence.

The language model weight is consistently
though not drastically smaller when tuning with
CLEF data. We suppose that this is due to the
fact that a Europarl-base language model is not
the best choice for translating query data.

4.2.2 Reranking approach

The reranking experiments include different
features combinations. First, we experiment with
the Moses features only in order to make this ap-
proach comparable with the first one. Secondly,
we compare different syntax-based features com-
binations, as described in section 3.2.2. Thus, we
compare the following reranking models (defined
by the feature set): moses, lex (lexical coupling
+ moses features), lab (label-specific coupling +
moses features), posmaplex (lexical PoS mapping
+ moses features ), lab-lex (label-specific cou-
pling + lexical coupling + moses features), lab-
lex-posmap (label-specific coupling + lexical cou-
pling features + generic PoS mapping). To reduce
the size of feature-functions vectors we take only
the 20 most frequent features in the training data
for Label-specific coupling and PoS mapping fea-
tures. The computation of the syntax features is
based on the rule-based XIP parser, where some
heuristics specific to query processing have been
integrated into English and French (but not Ger-
man) grammars (Brun et al., 2012).

The results of these experiments are illustrated
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Lng pair | Tune set | DW LM o(fle) | lex(fle) | olelf) | lex(elf) PP WP
Fr-En Europarl | 0.0801 | 0.1397 | 0.0431 0.0625 | 0.1463 | 0.0638 | -0.0670 | -0.3975
CLEF | 0.0015 | 0.0795 | -0.0046 | 0.0348 | 0.1977 | 0.0208 | -0.2904 | 0.3707
De-En Europarl | 0.0588 | 0.1341 | 0.0380 | 0.0181 | 0.1382 | 0.0398 | -0.0904 | -0.4822
CLEF | 0.3568 | 0.1151 | 0.1168 | 0.0549 | 0.0932 | 0.0805 | 0.0391 | -0.1434
En-Fr Europarl | 0.0789 | 0.1373 | 0.0002 | 0.0766 | 0.1798 | 0.0293 | -0.0978 | -0.4002
CLEF | 0.0322 | 0.1251 | 0.0350 | 0.1023 | 0.0534 | 0.0365 | -0.3182 | -0.2972
En-De Europarl | 0.0584 | 0.1396 | 0.0092 0.0821 | 0.1823 | 0.0437 | -0.1613 | -0.3233
CLEF | 0.3451 | 0.1001 | 0.0248 | 0.0872 | 0.2629 | 0.0153 | -0.0431 | 0.1214

Table 4: Feature weights for the query-genre tuned model. Abbreviations: DW - distortion weight, LM - language
model weight, PP - phrase penalty, WP - word penalty, ¢-phrase translation probability, lex-lexical weighting.

Query Example MAP | bleul
Srcl  Weibliche Mirtyrer
Ref Female Martyrs
T1 female martyrs 0.07 |1
T2 Women martyr 0.4 0
Src 2  Genmanipulation am
Menschen
Ref Human Gene Manipula-
tion
T1 Onthe genetic manipula- | 0.044 | 0.167
tion of people
T2 genetic manipulation of | 0.069 | 0.286
the human being
Src 3 Arbeitsrecht in der Eu-
ropdischen Union
Ref European Union Labour
Laws
T1 Labour law in the Euro- | 0.015| 0.5
pean Union
T2 labour legislation in the | 0.036| 0.5
European Union

Table 5: Some examples of queries translations (T1:
baseline, T2: after reranking with lab-lex), MAP and
1-gramm BLEU scores for German-English.

in Figure 1. To keep the figure more readable,
we report only on 3-gramm BLEU scores. When
computing the Sbest MAP score, the order in the
Nbest list is defined by a corresponding reranking
model. Each reranking model is illustrated by a
single horizontal red bar. We compare the rerank-
ing results to the baseline model (vertical line) and
also to the results of the first approach (yellow bar
labelled MERT:moses) on the same figure.

First, we remark that the adapted models
(query-genre tuning and reranking) outperform
the baseline in terms of MAP (1best and 5 best)
for French-English and German-English transla-
tions for most of the models. The only exception
is posmaplex model (based on PoS tagging) for

German which can be explained by the fact that
the German grammar used for query processing
was not adapted for queries as opposed to English
and French grammars. However, we do not ob-
serve the same tendency for BLEU score, where
only a few of the adapted models outperform the
baseline, which confirms the hypothesis of the
low correlation between BLEU and MAP scores
in these settings. Table 5 gives some examples of
the queries translations before (T1) and after (T2)
reranking. These examples also illustrate differ-
ent types of disagreement between MAP and 1-
gramm BLEU? score.

The results for English-German and English-
French look more confusing. This can be partly
due to the more rich morphology of the target lan-
guages which may create more noise in the syn-
tax structure. Reranking however improves over
the 1-best MAP baseline for English-German, and
5-best MAP is also improved excluding the mod-
els involving PoS tagging for German (posmap,
posmaplex, lab-lex-posmap). The results for
English-French are more difficult to interpret. To
find out the reason of such a behavior, we looked
at the translations. We observed the following to-
kenization problem for French: the apostrophe is
systematically separated, e.g. “d ’ aujourd ’ hui”.
This leads to both noisy pre-retrieval preprocess-
ing (eg. d is tagged as a NOUN) and noisy syntax-
based feature values, which might explain the un-
stable results.

Finally, we can see that the syntax-based fea-
tures can be beneficial for the final retrieval qual-
ity: the models with syntax features can outper-
form the model basd on the moses features only.
The syntax-based features leading to the most sta-

>The higher order BLEU scores are equal to 0 for most
of the individual translations.
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Figure 1: Reranking results. The vertical line corresponds to the baseline scores. The lowest bar (MERT:moses,
in yellow): the results of the tuning approach, other bars(in red): the results of the reranking approach.

ble results seem to be lab-lex (combination of lex-
ical and label-specific coupling): it leads to the
best gains over 1-best and 5-best MAP for all lan-
guage pairs excluding English-French. This is a
surprising result given the fact that the underlying
IR model doesn’t take syntax into account in any
way. In our opinion, this is probably due to the
interaction between the pre-retrieval preprocess-
ing (lemmatisation, PoS tagging) done with the
linguistic tools which might produce noisy results
when applied to the SMT outputs. The rerank-
ing with syntax-based features allows to choose
a better-formed query for which the PoS tagging
and lemmatisation tools produce less noise which
leads to a better retrieval.

5 Conclusion

In this work we proposed two methods for query-
genre adaptation of an SMT model: the first
method addressing the translation quality aspect
and the second one the retrieval precision aspect.
We have shown that CLIR performance in terms

of MAP is improved between 1-2.5 points. We
believe that the combination of these two meth-
ods would be the most beneficial setting, although
we were not able to prove this experimentally
(due to the lack of training data). None of these
methods require access to the document collec-
tion at test time, and can be used in the context
of a query translation service. The combination
of our adapted SMT model with other state-of-the
art CLIR techniques (eg. query expansion with
PRF) will be explored in future work.
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Abstract

The search space of Phrase-Based Statisti-
cal Machine Translation (PBSMT) systems
can be represented under the form of a di-
rected acyclic graph (lattice). The quality
of this search space can thus be evaluated
by computing the best achievable hypoth-
esis in the lattice, the so-called oracle hy-
pothesis. For common SMT metrics, this
problem is however NP-hard and can only
be solved using heuristics. In this work,
we present two new methods for efficiently
computing BLEU oracles on lattices: the
first one is based on a linear approximation
of the corpus BLEU score and is solved us-
ing the FST formalism; the second one re-
lies on integer linear programming formu-
lation and is solved directly and using the
Lagrangian relaxation framework. These
new decoders are positively evaluated and
compared with several alternatives from the
literature for three language pairs, using lat-
tices produced by two PBSMT systems.

1 Introduction

The search space of Phrase-Based Statistical Ma-
chine Translation (PBSMT) systems has the form
of a very large directed acyclic graph. In several
softwares, an approximation of this search space
can be outputted, either as a n-best list contain-
ing the n top hypotheses found by the decoder, or
as a phrase or word graph (lattice) which com-
pactly encodes those hypotheses that have sur-
vived search space pruning. Lattices usually con-
tain much more hypotheses than n-best lists and
better approximate the search space.

Exploring the PBSMT search space is one of
the few means to perform diagnostic analysis and

to better understand the behavior of the system
(Turchi et al., 2008; Auli et al., 2009). Useful
diagnostics are, for instance, provided by look-
ing at the best (oracle) hypotheses contained in
the search space, i.e, those hypotheses that have
the highest quality score with respect to one or
several references. Such oracle hypotheses can
be used for failure analysis and to better under-
stand the bottlenecks of existing translation sys-
tems (Wisniewski et al., 2010). Indeed, the in-
ability to faithfully reproduce reference transla-
tions can have many causes, such as scantiness
of the translation table, insufficient expressiveness
of reordering models, inadequate scoring func-
tion, non-literal references, over-pruned lattices,
etc. Oracle decoding has several other applica-
tions: for instance, in (Liang et al., 2006; Chi-
ang et al., 2008) it is used as a work-around to
the problem of non-reachability of the reference
in discriminative training of MT systems. Lattice
reranking (Li and Khudanpur, 2009), a promising
way to improve MT systems, also relies on oracle
decoding to build the training data for a reranking
algorithm.

For sentence level metrics, finding oracle hy-
potheses in n-best lists is a simple issue; how-
ever, solving this problem on lattices proves much
more challenging, due to the number of embed-
ded hypotheses, which prevents the use of brute-
force approaches. When using BLEU, or rather
sentence-level approximations thereof, the prob-
lem is in fact known to be NP-hard (Leusch et
al., 2008). This complexity stems from the fact
that the contribution of a given edge to the total
modified n-gram precision can not be computed
without looking at all other edges on the path.
Similar (or worse) complexity result are expected
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for other metrics such as METEOR (Banerjee and
Lavie, 2005) or TER (Snover et al., 2006). The
exact computation of oracles under corpus level
metrics, such as BLEU, poses supplementary com-
binatorial problems that will not be addressed in
this work.

In this paper, we present two original methods
for finding approximate oracle hypotheses on lat-
tices. The first one is based on a linear approxima-
tion of the corpus BLEU, that was originally de-
signed for efficient Minimum Bayesian Risk de-
coding on lattices (Tromble et al., 2008). The sec-
ond one, based on Integer Linear Programming, is
an extension to lattices of a recent work on failure
analysis for phrase-based decoders (Wisniewski
et al., 2010). In this framework, we study two
decoding strategies: one based on a generic ILP
solver, and one, based on Lagrangian relaxation.

Our contribution is also experimental as we
compare the quality of the BLEU approxima-
tions and the time performance of these new ap-
proaches with several existing methods, for differ-
ent language pairs and using the lattice generation
capacities of two publicly-available state-of-the-
art phrase-based decoders: Moses' and N-code?.

The rest of this paper is organized as follows.
In Section 2, we formally define the oracle decod-
ing task and recall the formalism of finite state
automata on semirings. We then describe (Sec-
tion 3) two existing approaches for solving this
task, before detailing our new proposals in sec-
tions 4 and 5. We then report evaluations of the
existing and new oracles on machine translation
tasks.

2 Preliminaries

2.1 Oracle Decoding Task

We assume that a phrase-based decoder is able
to produce, for each source sentence f, a lattice
Ly = (Q,E), with # {Q} vertices (states) and
# {Z} edges. Each edge carries a source phrase
fi, an associated output phrase e; as well as a fea-
ture vector h;, the components of which encode
various compatibility measures between f; and e;.

We further assume that Lg is a word lattice,
meaning that each e; carries a single word? and

Uhttp://www.statmt.org/moses/

*http://ncode.limsi.fr/

*Converting a phrase lattice to a word lattice is a simple
matter of redistributing a compound input or output over a

that it contains a unique initial state gg and a
unique final state qr. Let Il¢ denote the set of all
paths from ¢g to gz in Lg. Each path 7 € Il¢ cor-
responds to a possible translation er. The job of
a (conventional) decoder is to find the best path(s)
in L¢ using scores that combine the edges’ fea-
ture vectors with the parameters \ learned during
tuning.

In oracle decoding, the decoder’s job is quite
different, as we assume that at least a reference
rr is provided to evaluate the quality of each indi-
vidual hypothesis. The decoder therefore aims at
finding the path 7* that generates the hypothesis
that best matches r¢. For this task, only the output
labels e; will matter, the other informations can be
left aside.*

Oracle decoding assumes the definition of a
measure of the similarity between a reference
and a hypothesis. In this paper we will con-
sider sentence-level approximations of the popu-
lar BLEU score (Papineni et al., 2002). BLEU is
formally defined for two parallel corpora, £ =
{ej}jzl and R = {rj}szl, each containing J
sentences as:

n 1/n
n-BLEU(E,R) = BP - < H pm) , (D
m=1

where BP = min(1,e!~1(R)/e1l)) s the
brevity penalty and p,, = ¢, (€, R)/cm(E) are
clipped or modified m-gram precisions: ¢, () is
the total number of word m-grams in &; ¢,, (€, R)
accumulates over sentences the number of m-
grams in e; that also belong to r;. These counts
are clipped, meaning that a m-gram that appears
k times in £ and [ times in R, with k& > [, is only
counted [ times. As it is well known, BLEU per-
forms a compromise between precision, which is
directly appears in Equation (1), and recall, which
is indirectly taken into account via the brevity
penalty. In most cases, Equation (1) is computed
with n = 4 and we use BLEU as a synonym for
4-BLEU.

BLEU is defined for a pair of corpora, but, as an
oracle decoder is working at the sentence-level, it
should rely on an approximation of BLEU that can

linear chain of arcs.

“The algorithms described below can be straightfor-
wardly generalized to compute oracle hypotheses under
combined metrics mixing model scores and quality measures
(Chiang et al., 2008), by weighting each edge with its model
score and by using these weights down the pipe.

121



evaluate the similarity between a single hypoth-
esis and its reference. This approximation intro-
duces a discrepancy as gathering sentences with
the highest (local) approximation may not result
in the highest possible (corpus-level) BLEU score.
Let BLEU' be such a sentence-level approximation
of BLEU. Then lattice oracle decoding is the task
of finding an optimal path 7v*(f) among all paths
Il for a given f, and amounts to the following
optimization problem:

7*(f) = arg max BLEU (e, rg). (2)
wellg

2.2 Compromises of Oracle Decoding

As proved by Leusch et al. (2008), even with
brevity penalty dropped, the problem of deciding
whether a confusion network contains a hypoth-
esis with clipped uni- and bigram precisions all
equal to 1.0 is NP-complete (and so is the asso-
ciated optimization problem of oracle decoding
for 2-BLEU). The case of more general word and
phrase lattices and 4-BLEU score is consequently
also NP-complete. This complexity stems from
chaining up of local unigram decisions that, due
to the clipping constraints, have non-local effect
on the bigram precision scores. It is consequently
necessary to keep a possibly exponential num-
ber of non-recombinable hypotheses (character-
ized by counts for each n-gram in the reference)
until very late states in the lattice.

These complexity results imply that any oracle
decoder has to waive either the form of the objec-
tive function, replacing BLEU with better-behaved
scoring functions, or the exactness of the solu-
tion, relying on approximate heuristic search al-
gorithms.

In Table 1, we summarize different compro-
mises that the existing (section 3), as well as
our novel (sections 4 and 5) oracle decoders,
have to make. The “target” and “target level”
columns specify the targeted score. None of
the decoders optimizes it directly: their objec-
tive function is rather the approximation of BLEU
given in the “target replacement” column. Col-
umn “search” details the accuracy of the target re-
placement optimization. Finally, columns “clip-
ping” and “brevity” indicate whether the corre-
sponding properties of BLEU score are considered
in the target substitute and in the search algorithm.

2.3 Finite State Acceptors

The implementations of the oracles described in
the first part of this work (sections 3 and 4) use the
common formalism of finite state acceptors (FSA)
over different semirings and are implemented us-
ing the generic OpenFST toolbox (Allauzen et al.,
2007).

A (@, ®)-semiring K over a set K is a system
(K,®,®,0,1), where (K, ®,0) is a commutative
monoid with identity element 0, and (K, ®, 1) is
a monoid with identity element 1. ® distributes
over @, sothata ® (b@® ¢) = (a ®b) ® (a ® c)
and (b@ c) ®a = (b®a)® (¢ ® a) and element
0 annihilates K (a ® 0 = 0 ® a = 0).

Let A = (X,Q,I, F, E) be a weighted finite-
state acceptor with labels in 3 and weights in K,
meaning that the transitions (¢, o, ¢') in A carry a
weight w € K. Formally, E is a mapping from
(Q x X x Q) into K; likewise, initial / and fi-
nal weight F' functions are mappings from () into
K. We borrow the notations of Mohri (2009):
if £ = (g,a,q’) is a transition in domain(FE),
p(€) = q (resp. n(€) = ¢') denotes its origin
(resp. destination) state, w(§) = o its label and
E(¢) its weight. These notations extend to paths:
if 7 is a path in A, p(7) (resp. n(7r)) is its initial
(resp. ending) state and w(r) is the label along
the path. A finite state transducer (FST) is an FSA
with output alphabet, so that each transition car-
ries a pair of input/output symbols.

As discussed in Sections 3 and 4, several oracle
decoding algorithms can be expressed as shortest-
path problems, provided a suitable definition of
the underlying acceptor and associated semiring.
In particular, quantities such as:

P Em), 3)

mell(A)

where the total weight of a successful path w =
&1...& in A is computed as:

l

E(m) =I(p(&1)) @ [ E(&)] © F(n(&))

i=1

can be efficiently found by generic shortest dis-
tance algorithms over acyclic graphs (Mohri,
2002). For FSA-based implementations over
semirings where & = max, the optimization
problem (2) is thus reduced to Equation (3), while
the oracle-specific details can be incorporated into
in the definition of ®.
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Table 1: Recapitulative overview of oracle decoders.

oracle target | target level ‘ target replacement ‘ search ‘ clipping | brevity
2 | LM-2g/4g | 2/4-BLEU | sentence Py(e;r) or Py(e;r) exact no no
‘é PB 4-BLEU sentence partial log BLEU (4) appr. no no
5 PB/ 4-BLEU sentence partial log BLEU (4) appr. no yes
5 | LB-2g/4g | 2/4-BLEU corpus linear appr. lin BLEU (5) | exact no yes
§ Sp I-BLEU sentence unigram count exact no yes
4 ILP 2-BLEU sentence uni/bi-gram counts (7) appr. yes yes
= RLX 2-BLEU sentence uni/bi-gram counts (8) exact yes yes

3 Existing Algorithms

In this section, we describe our reimplementation
of two approximate search algorithms that have
been proposed in the literature to solve the oracle
decoding problem for BLEU. In addition to their
approximate nature, none of them accounts for the
fact that the count of each matching word has to
be clipped.

3.1 Language Model Oracle (LM)

The simplest approach we consider is introduced
in (Li and Khudanpur, 2009), where oracle decod-
ing is reduced to the problem of finding the most
likely hypothesis under a n-gram language model
trained with the sole reference translation.

Let us suppose we have a n-gram language
model that gives a probability P(eyle;...ep—1)
of word e, given the n —1 previous words.
The probability of a hypothesis e is then
P,(e|r) = [[,_1 P(eitnl€i...€irn—1). The lan-
guage model can conveniently be represented as a
FSA Ap s, with each arc carrying a negative log-
probability weight and with additional p-type fail-
ure transitions to accommodate for back-off arcs.

If we train, for each source sentence f, a sepa-
rate language model Ay s (rs) using only the ref-
erence r¢, oracle decoding amounts to finding a
shortest (most probable) path in the weighted FSA
resulting from the composition L o Ay, (rg) over
the (min, +)-semiring:

7w (f) = ShortestPath(L o App(re)).

This approach replaces the optimization of n-
BLEU with a search for the most probable path
under a simplistic n-gram language model. One
may expect the most probable path to select fre-
quent n-gram from the reference, thus augment-
ing n-BLEU.

3.2 Partial BLEU Oracle (PB)

Another approach is put forward in (Dreyer et
al., 2007) and used in (Li and Khudanpur, 2009):
oracle translations are shortest paths in a lattice
L, where the weight of each path 7 is the sen-
tence level log BLEU(7r) score of the correspond-
ing complete or partial hypothesis:

1
log BLEU(7r) = 1 Z log pr. 4)
m=1...4

Here, the brevity penalty is ignored and n-
gram precisions are offset to avoid null counts:
Pm = (cm(ex,r)+0.1)/(cm(ex) + 0.1).

This approach has been reimplemented using

the FST formalism by defining a suitable semir-
ing. Let each weight of the semiring keep a set
of tuples accumulated up to the current state of
the lattice. Each tuple contains three words of re-
cent history, a partial hypothesis as well as current
values of the length of the partial hypothesis, n-
gram counts (4 numbers) and the sentence-level
log BLEU score defined by Equation (4). In the
beginning each arc is initialized with a singleton
set containing one tuple with a single word as the
partial hypothesis. For the semiring operations we
define one common ®-operation and two versions
of the ®-operation:
e [y ®pp Lo — appends a word on the edge of
Lo to Ly’s hypotheses, shifts their recent histories
and updates n-gram counts, lengths, and current
score; ® L1 ©pp Lo — merges all sets from L
and Lo and recombinates those having the same
recent history; e L1 ®ppy Lo — merges all sets
from L; and L, and recombinates those having
the same recent history and the same hypothesis
length.

If several hypotheses have the same recent
history (and length in the case of ®ppy), re-
combination removes all of them, but the one
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(a) Ay

(®) Az

1:¢/0 1:111/0

(c) A3

Figure 1: Examples of the A,, automata for ¥ = {0,1} and n = 1...3. Initial and final states are marked,
respectively, with bold and with double borders. Note that arcs between final states are weighted with 0, while in
reality they will have this weight only if the corresponding n-gram does not appear in the reference.

with the largest current BLEU score. Optimal
path is then found by launching the generic
ShortestDistance(L) algorithm over one of
the semirings above.

The (@ ppr, ®pp)-semiring, in which the
equal length requirement also implies equal
brevity penalties, is more conservative in recom-
bining hypotheses and should achieve final BLEU
that is least as good as that obtained with the
(®pp, ®pp)-semiring’.

4 Linear BLEU Oracle (LB)

In this section, we propose a new oracle based on
the linear approximation of the corpus BLEU in-
troduced in (Tromble et al., 2008). While this ap-
proximation was earlier used for Minimum Bayes
Risk decoding in lattices (Tromble et al., 2008;
Blackwood et al., 2010), we show here how it can
also be used to approximately compute an oracle
translation.

Given five real parameters 6 . 4 and a word vo-
cabulary 3, Tromble et al. (2008) showed that one
can approximate the corpus-BLEU with its first-
order (linear) Taylor expansion:

4
lin BLEU(7) = 6 |ex|+

n—=

O > culex)du(r)
1

ueXx”

&)
where ¢, (e) is the number of times the n-gram
u appears in e, and d,(r) is an indicator variable
testing the presence of w in r.

To exploit this approximation for oracle decod-
ing, we construct four weighted FSTs A,, con-
taining a (final) state for each possible (n — 1)-

3See, however, experiments in Section 6.

gram, and all weighted transitions of the kind
(o7 o s 07 /0 % dop(r),03), where os are
in X, input word sequence a?_l and output se-
quence oy, are, respectively, the maximal prefix
and suffix of an n-gram of'.

In supplement, we add auxiliary states corre-
sponding to m-grams (m < n — 1), whose func-
tional purpose is to help reach one of the main
(n — 1)-gram states. There are %,n > 1,
such supplementary states and their transitions are
(0¥, opy1 : o¥T1/0, 0% k= 1...n—2. Apart
from these auxiliary states, the rest of the graph
(i.e., all final states) reproduces the structure of
the well-known de Bruijn graph B(X, n) (see Fig-
ure 1).

To actually compute the best hypothesis, we
first weight all arcs in the input FSA L with 6 to
obtain Ay. This makes each word’s weight equal
in a hypothesis path, and the total weight of the
path in A is proportional to the number of words
in it. Then, by sequentially composing Ay with
other A,,s, we discount arcs whose output n-gram
corresponds to a matching n-gram. The amount
of discount is regulated by the ratio between 6,,’s
forn > 0.

With all operations performed over the
(min, +)-semiring, the oracle translation is then
given by:

TI'EB = ShOIteStPath(AO0A10A20A3OA4).

We set parameters 6, as in (Tromble et al.,
2008): 6y = 1, roughly corresponding to the
brevity penalty (each word in a hypothesis adds
up equally to the final path length) and 6, =
—(4p - ™ 1)~ which are increasing discounts
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3
BLEU

Figure 2: Performance of the LB-4g oracle for differ-
ent combinations of p and » on WMT11 de2en task.

for matching n-grams. The values of p and r were
found by grid search with a 0.05 step value. A
typical result of the grid evaluation of the LB or-
acle for German to English WMT’11 task is dis-
played on Figure 2. The optimal values for the
other pairs of languages were roughly in the same
ballpark, with p ~ 0.3 and r ~ 0.2.

S Oracles with n-gram Clipping

In this section, we describe two new oracle de-
coders that take n-gram clipping into account.
These oracles leverage on the well-known fact
that the shortest path problem, at the heart of
all the oracles described so far, can be reduced
straightforwardly to an Integer Linear Program-
ming (ILP) problem (Wolsey, 1998). Once oracle
decoding is formulated as an ILP problem, it is
relatively easy to introduce additional constraints,
for instance to enforce n-gram clipping. We will
first describe the optimization problem of oracle
decoding and then present several ways to effi-
ciently solve it.

5.1 Problem Description

Throughout this section, abusing the notations,
we will also think of an edge &; as a binary vari-
able describing whether the edge is “selected” or
not. The set {0, 1}#{3} of all possible edge as-
signments will be denoted by P. Note that I, the
set of all paths in the lattice is a subset of P: by
enforcing some constraints on an assignment £ in
‘P, it can be guaranteed that it will represent a path
in the lattice. For the sake of presentation, we as-
sume that each edge &; generates a single word
w(&;) and we focus first on finding the optimal
hypothesis with respect to the sentence approxi-
mation of the 1-BLEU score.

As 1-BLEU is decomposable, it is possible to

define, for every edge &;, an associated reward, 6;
that describes the edge’s local contribution to the
hypothesis score. For instance, for the sentence
approximation of the 1-BLEU score, the rewards
are defined as:

@:{&
—0,
where ©1 and O, are two positive constants cho-
sen to maximize the corpus BLEU score®. Con-
stant O (resp. ©2) is a reward (resp. a penalty)
for generating a word in the reference (resp. not in
the reference). The score of an assignment £ € P
is then defined as: score(§) = Zi{f} &+ 6;. This
score can be seen as a compromise between the
number of common words in the hypothesis and
the reference (accounting for recall) and the num-
ber of words of the hypothesis that do not appear
in the reference (accounting for precision).

As explained in Section 2.3, finding the or-
acle hypothesis amounts to solving the shortest
distance (or path) problem (3), which can be re-
formulated by a constrained optimization prob-
lem (Wolsey, 1998):

if w(&;) is in the reference,

otherwise,

#{=}
arg max & - 0; 6)
gep ;
sty f=1, ) =1
£€E7(qr) €€=T(qo0)
dYoe— ) £=0, g€ Q\{qqr}
(e=t(g) €2 (q)

where qg (resp. qr) is the initial (resp. final) state
of the lattice and 2~ (¢) (resp. =% (¢)) denotes the
set of incoming (resp. outgoing) edges of state q.
These path constraints ensure that the solution of
the problem is a valid path in the lattice.

The optimization problem in Equation (6) can
be further extended to take clipping into account.
Let us introduce, for each word w, a variable -y,
that denotes the number of times w appears in the
hypothesis clipped to the number of times, it ap-
pears in the reference. Formally, ,, is defined by:

Z £, cuw(r)

£eQ(w)

Y = min

%We tried several combinations of ©; and O and kept
the one that had the highest corpus 4-BLEU score.
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where (2 (w) is the subset of edges generating w,
and 2569 § is the number of occurrences of
w in the solutlon and ¢, (r) is the number of oc-
currences of w in the reference r. Using the
variables, we define a “clipped” approximation of
1-BLEU:

#{=}

@1'2%1—@2' Zfi_zr)/w
w =1 w

Indeed, the clipped number of words in the hy-
pothesis that appear in the reference is given by
> w Yw»> and Zi{f ; & — >, Yw corresponds to
the number of words in the hypothesis that do not
appear in the reference or that are surplus to the
clipped count.

Finally, the clipped lattice oracle is defined by
the following optimization problem:

#{E}
argmax (©1 + Os) - Z’Yw — Oz Z &
E€EP yw w =1
)
st Yw > 0,7 < ew(r), Yw < Z §
£eQ(w)
Yo E=1 ), ¢=1

E€E"(qr) £€=1(qo)

Yo o= > €=0,9€Q\{q.qr}
£€ET(g) £€E7(q)
where the first three sets of constraints are the lin-
earization of the definition of ~,,, made possible
by the positivity of ©; and Oz, and the last three
sets of constraints are the path constraints.

In our implementation we generalized this op-
timization problem to bigram lattices, in which
each edge is labeled by the bigram it generates.
Such bigram FSAs can be produced by compos-
ing the word lattice with Ay from Section 4. In
this case, the reward of an edge will be defined as
a combination of the (clipped) number of unigram
matches and bigram matches, and solving the op-
timization problem yields a 2-BLEU optimal hy-
pothesis. The approach can be further generalized
to higher-order BLEU or other metrics, as long as
the reward of an edge can be computed locally.

The constrained optimization problem (7) can
be solved efficiently using off-the-shelf ILP

solvers’.

"In our experiments we used Gurobi (Optimization,
2010) a commercial ILP solver that offers free academic li-
cense.

5.2 Shortest Path Oracle (SP)

As a trivial special class of the above formula-
tion, we also define a Shortest Path Oracle (SP)
that solves the optimization problem in (6). As
no clipping constraints apply, it can be solved ef-
ficiently using the standard Bellman algorithm.

5.3 Oracle Decoding through Lagrangian
Relaxation (RLX)

In this section, we introduce another method to
solve problem (7) without relying on an exter-
nal ILP solver. Following (Rush et al., 2010;
Chang and Collins, 2011), we propose an original
method for oracle decoding based on Lagrangian
relaxation. This method relies on the idea of re-
laxing the clipping constraints: starting from an
unconstrained problem, the counts clipping is en-
forced by incrementally strengthening the weight
of paths satisfying the constraints.

The oracle decoding problem with clipping
constraints amounts to solving:

#{E}
arg min

- > &0 ®)
&ell =1

s.t. Z E<ecp(r),wer

£eQ(w)

where, by abusing the notations, r also denotes
the set of words in the reference. For sake of clar-
ity, the path constraints are incorporated into the
domain (the arg min runs over II and not over P).
To solve this optimization problem we consider its
dual form and use Lagrangian relaxation to deal
with clipping constraints.

Let A = {\y }wer be positive Lagrange mul-
tipliers, one for each different word of the refer-
ence, then the Lagrangian of the problem (8) is:

#{=}
Z@MZA D E—culr)
wer  \ geQ(w)
The dual objective is £(A) = ming L(,§)

and the dual problem is: maxy -0 £(A). To
solve the latter, we first need to work out the dual
objective:

& =argmin L(\, §)

gell
#{=}
= arg min Z & (Aw(&) - 91)
gell
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where we assume that A, g,) is 0 when word
w(&;) is not in the reference. In the same way
as in Section 5.2, the solution of this problem can
be efficiently retrieved with a shortest path algo-
rithm.

It is possible to optimize £(A) by noticing that
it is a concave function. It can be shown (Chang
and Collins, 2011) that, at convergence, the clip-
ping constraints will be enforced in the optimal
solution. In this work, we chose to use a simple
gradient descent to solve the dual problem. A sub-
gradient of the dual objective is:

L) _ >

0w
£€Q(w)Ng*

& — cyp(r).

Each component of the gradient corresponds to
the difference between the number of times the
word w appears in the hypothesis and the num-
ber of times it appears in the reference. The algo-
rithm below sums up the optimization of task (8).
In the algorithm a® corresponds to the step size
at the ¢t iteration. In our experiments we used a
constant step size of 0.1. Compared to the usual
gradient descent algorithm, there is an additional
projection step of A on the positive orthant, which
enforces the constraint A > 0.

v, M9 0
fort =1— T do
&V = argming 37, & - (e — 6:)
if all clipping constraints are enforced
then optimal solution found
else for w € r do
14 < N. of occurrences of w in & *(t)
AD —AD 4 a® . (ny — cy(r))
w w w w
A®)

w — max(0, AS))

6 Experiments

For the proposed new oracles and the existing ap-
proaches, we compare the quality of oracle trans-
lations and the average time per sentence needed
to compute them® on several datasets for 3 lan-
guage pairs, using lattices generated by two open-
source decoders: N-code and Moses® (Figures 3

8Experiments were run in parallel on a server with 64G
of RAM and 2 Xeon CPUs with 4 cores at 2.3 GHz.

°As the ILP (and RLX) oracle were implemented in
Python, we pruned Moses lattices to accelerate task prepa-
ration for it.

decoder ‘ fr2en ‘ de2en ‘ en2de

7 N-code | 27.88 | 22.05 | 15.83
= | Moses | 27.68 | 21.85 | 15.89
%; N-code | 36.36 | 29.22 | 21.18
5| Moses | 3525 | 29.13 | 22.03

Table 2: Test BLEU scores and oracle scores on
100-best lists for the evaluated systems.

and 4). Systems were trained on the data provided
for the WMT’ 11 Evaluation task!?, tuned on the
WMT’ 009 test data and evaluated on WMT’10 test
set'! to produce lattices. The BLEU test scores
and oracle scores on 100-best lists with the ap-
proximation (4) for N-code and Moses are given
in Table 2. It is not until considering 10,000-best
lists that n-best oracles achieve performance com-
parable to the (mediocre) SP oracle.

To make a fair comparison with the ILP and
RLX oracles which optimize 2-BLEU, we in-
cluded 2-BLEU versions of the LB and LM ora-
cles, identified below with the “-2g” suffix. The
two versions of the PB oracle are respectively
denoted as PB and PB/, by the type of the &®-
operation they consider (Section 3.2). Parame-
ters p and r for the LB-4g oracle for N-code were
found with grid search and reused for Moses:
p=0.257=0.15 (fr2en); p = 0.175,r = 0.575
(en2de) and p = 0.35,7 = 0.425 (de2en). Cor-
respondingly, for the LB-2g oracle: p = 0.3,r =
0.15;p=0.3,7 =0.175and p = 0.575,r = 0.1.

The proposed LB, ILP and RLX oracles were
the best performing oracles, with the ILP and
RLX oracles being considerably faster, suffering
only a negligible decrease in BLEU, compared to
the 4-BLEU-optimized LB oracle. We stopped
RLX oracle after 20 iterations, as letting it con-
verge had a small negative effect (~1 point of the
corpus BLEU), because of the sentence/corpus dis-
crepancy ushered by the BLEU score approxima-
tion.

Experiments showed consistently inferior per-
formance of the LM-oracle resulting from the op-
timization of the sentence probability rather than
BLEU. The PB oracle often performed compara-
bly to our new oracles, however, with sporadic
resource-consumption bursts, that are difficult to

Ohttp://www.statmt.org/wmt2011
AIl BLEU scores are reported using the multi-bleu.pl
script.
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Figure 3: Oracles performance for N-code lattices.
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Figure 4: Oracles performance for Moses lattices pruned with parameter -b 0. 5.

avoid without more cursory hypotheses recom-
bination strategies and the induced effect on the
translations quality. The length-aware PB/ oracle
has unexpectedly poorer scores compared to its
length-agnostic PB counterpart, while it should,
at least, stay even, as it takes the brevity penalty
into account. We attribute this fact to the com-
plex effect of clipping coupled with the lack of
control of the process of selecting one hypothe-
sis among several having the same BLEU score,
length and recent history. Anyhow, BLEU scores
of both of PB oracles are only marginally differ-
ent, so the PB/’s conservative policy of pruning
and, consequently, much heavier memory con-
sumption makes it an unwanted choice.

7 Conclusion

We proposed two methods for finding oracle
translations in lattices, based, respectively, on a
linear approximation to the corpus-level BLEU
and on integer linear programming techniques.
We also proposed a variant of the latter approach
based on Lagrangian relaxation that does not rely
on a third-party ILP solver. All these oracles have
superior performance to existing approaches, in
terms of the quality of the found translations, re-
source consumption and, for the LB-2g oracles,
in terms of speed. It is thus possible to use bet-

ter approximations of BLEU than was previously
done, taking the corpus-based nature of BLEU, or
clipping constrainst into account, delivering better
oracles without compromising speed.

Using 2-BLEU and 4-BLEU oracles yields com-
parable performance, which confirms the intuition
that hypotheses sharing many 2-grams, would
likely have many common 3- and 4-grams as well.
Taking into consideration the exceptional speed of
the LB-2g oracle, in practice one can safely opti-
mize for 2-BLEU instead of 4-BLEU, saving large
amounts of time for oracle decoding on long sen-
tences.

Overall, these experiments accentuate the
acuteness of scoring problems that plague modern
decoders: very good hypotheses exist for most in-
put sentences, but are poorly evaluated by a linear
combination of standard features functions. Even
though the tuning procedure can be held respon-
sible for part of the problem, the comparison be-
tween lattice and n-best oracles shows that the
beam search leaves good hypotheses out of the n-
best list until very high value of n, that are never
used in practice.
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Abstract

We estimate the parameters of a phrase-
based statistical machine translation sys-
tem from monolingual corpora instead of a
bilingual parallel corpus. We extend exist-
ing research on bilingual lexicon induction
to estimate both lexical and phrasal trans-
lation probabilities for MT-scale phrase-
tables. We propose a novel algorithm to es-
timate reordering probabilities from mono-
lingual data. We report translation results
for an end-to-end translation system us-
ing these monolingual features alone. Our
method only requires monolingual corpora
in source and target languages, a small
bilingual dictionary, and a small bitext for
tuning feature weights. In this paper, we ex-
amine an idealization where a phrase-table
is given. We examine the degradation in
translation performance when bilingually
estimated translation probabilities are re-
moved and show that 80%+ of the loss can
be recovered with monolingually estimated
features alone. We further show that our
monolingual features add 1.5 BLEU points
when combined with standard bilingually
estimated phrase table features.

1 Introduction

The parameters of statistical models of transla-
tion are typically estimated from large bilingual
parallel corpora (Brown et al., 1993). However,
these resources are not available for most lan-
guage pairs, and they are expensive to produce in
quantities sufficient for building a good transla-
tion system (Germann, 2001). We attempt an en-
tirely different approach; we use cheap and plen-
tiful monolingual resources to induce an end-to-
end statistical machine translation system. In par-
ticular, we extend the long line of work on in-
ducing translation lexicons (beginning with Rapp
(1995)) and propose to use multiple independent
cues present in monolingual texts to estimate lex-
ical and phrasal translation probabilities for large,
MT-scale phrase-tables. We then introduce a

novel algorithm to estimate reordering features
from monolingual data alone, and we report the
performance of a phrase-based statistical model
(Koehn et al., 2003) estimated using these mono-
lingual features.

Most of the prior work on lexicon induction
is motivated by the idea that it could be applied
to machine translation but stops short of actu-
ally doing so. Lexicon induction holds the po-
tential to create machine translation systems for
languages which do not have extensive parallel
corpora. Training would only require two large
monolingual corpora and a small bilingual dictio-
nary, if one is available. The idea is that intrin-
sic properties of monolingual data (possibly along
with a handful of bilingual pairs to act as exam-
ple mappings) can provide independent but infor-
mative cues to learn translations because words
(and phrases) behave similarly across languages.
This work is the first attempt to extend and apply
these ideas to an end-to-end machine translation
pipeline. While we make an explicit assumption
that a table of phrasal translations is given a priori,
we induce every other parameter of a full phrase-
based translation system from monolingual data
alone. The contributions of this work are:

e In Section 2.2 we analyze the challenges
of using bilingual lexicon induction for sta-
tistical MT (performance on low frequency
items, and moving from words to phrases).

e In Sections 3.1 and 3.2 we use multiple cues
present in monolingual data to estimate lexi-
cal and phrasal translation scores.

e In Section 3.3 we propose a novel algo-
rithm for estimating phrase reordering fea-
tures from monolingual texts.

e Finally, in Section 5 we systematically drop
feature functions from a phrase table and
then replace them with monolingually es-
timated equivalents, reporting end-to-end
translation quality.
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2 Background

We begin with a brief overview of the stan-
dard phrase-based statistical machine translation
model. Here, we define the parameters which
we later replace with monolingual alternatives.
We continue with a discussion of bilingual lex-
icon induction; we extend these methods to es-
timate the monolingual parameters in Section 3.
This approach allows us to replace expensive/rare
bilingual parallel training data with two large
monolingual corpora, a small bilingual dictionary,
and ~2,000 sentence bilingual development set,
which are comparatively plentiful/inexpensive.

2.1 Parameters of phrase-based SMT

Statistical machine translation (SMT) was first
formulated as a series of probabilistic mod-
els that learn word-to-word correspondences
from sentence-aligned bilingual parallel corpora
(Brown et al., 1993). Current methods, includ-
ing phrase-based (Och, 2002; Koehn et al., 2003)
and hierarchical models (Chiang, 2005), typically
start by word-aligning a bilingual parallel cor-
pus (Och and Ney, 2003). They extract multi-
word phrases that are consistent with the Viterbi
word alignments and use these phrases to build
new translations. A variety of parameters are es-
timated using the bitexts. Here we review the pa-
rameters of the standard phrase-based translation
model (Koehn et al., 2007). Later we will show
how to estimate them using monolingual texts in-
stead. These parameters are:

e Phrase pairs. Phrase extraction heuristics
(Venugopal et al., 2003; Tillmann, 2003;
Och and Ney, 2004) produce a set of phrase
pairs (e, f) that are consistent with the word
alignments. In this paper we assume that the
phrase pairs are given (without any scores),
and we induce every other parameter of the
phrase-based model from monolingual data.

e Phrase translation probabilities. Each
phrase pair has a list of associated fea-
ture functions (FFs). These include phrase
translation probabilities, ¢(e|f) and ¢(f|e),
which are typically calculated via maximum
likelihood estimation.

o Lexical weighting. Since MLE overestimates
¢ for phrase pairs with sparse counts, lexi-
cal weighting FFs are used to smooth. Aver-
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Figure 1: The reordering probabilities from the phrase-
based models are estimated from bilingual data by cal-
culating how often in the parallel corpus a phrase pair
(f,e) is orientated with the preceding phrase pair in
the 3 types of orientations (monotone, swapped, and
discontinuous).

age word translation probabilities, w(e;| f;),
are calculated via phrase-pair-internal word
alignments.

e Reordering model. Each phrase pair (e, f)
also has associated reordering parameters,
po(orientation| f, e), which indicate the dis-
tribution of its orientation with respect to the
previously translated phrase. Orientations
are monotone, swap, discontinuous (Tillman,
2004; Kumar and Byrne, 2004), see Figure 1.

o Other features. Other typical features are
n-gram language model scores and a phrase
penalty, which governs whether to use fewer
longer phrases or more shorter phrases.
These are not bilingually estimated, so we
can re-use them directly without modifica-
tion.

The features are combined in a log linear model,
and their weights are set through minimum error
rate training (Och, 2003). We use the same log
linear formulation and MERT but propose alterna-
tives derived directly from monolingual data for
all parameters except for the phrase pairs them-
selves. Our pipeline still requires a small bitext of
approximately 2,000 sentences to use as a devel-
opment set for MERT parameter tuning.

131



2.2 Bilingual lexicon induction for SMT

Bilingual lexicon induction describes the class of
algorithms that attempt to learn translations from
monolingual corpora. Rapp (1995) was the first
to propose using non-parallel texts to learn the
translations of words. Using large, unrelated En-
glish and German corpora (with 163m and 135m
words) and a small German-English bilingual dic-
tionary (with 22k entires), Rapp (1999) demon-
strated that reasonably accurate translations could
be learned for 100 German nouns that were not
contained in the seed bilingual dictionary. His al-
gorithm worked by (1) building a context vector
representing an unknown German word by count-
ing its co-occurrence with all the other words
in the German monolingual corpus, (2) project-
ing this German vector onto the vector space of
English using the seed bilingual dictionary, (3)
calculating the similarity of this sparse projected
vector to vectors for English words that were con-
structed using the English monolingual corpus,
and (4) outputting the English words with the
highest similarity as the most likely translations.

A variety of subsequent work has extended the
original idea either by exploring different mea-
sures of vector similarity (Fung and Yee, 1998)
or by proposing other ways of measuring simi-
larity beyond co-occurence within a context win-
dow. For instance, Schafer and Yarowsky (2002)
demonstrated that word translations tend to co-
occur in time across languages. Koehn and Knight
(2002) used similarity in spelling as another kind
of cue that a pair of words may be translations of
one another. Garera et al. (2009) defined context
vectors using dependency relations rather than ad-
jacent words. Bergsma and Van Durme (2011)
used the visual similarity of labeled web images
to learn translations of nouns. Additional related
work on learning translations from monolingual
corpora is discussed in Section 6.

In this paper, we apply bilingual lexicon in-
duction methods to statistical machine translation.
Given the obvious benefits of not having to rely
on scarce bilingual parallel training data, it is sur-
prising that bilingual lexicon induction has not
been used for SMT before now. There are sev-
eral open questions that make its applicability to
SMT uncertain. Previous research on bilingual
lexicon induction learned translations only for a
small number of high frequency words (e.g. 100
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Figure 2: Accuracy of single-word translations in-
duced using contextual similarity as a function of the
source word corpus frequency. Accuracy is the pro-
portion of the source words with at least one correct
(bilingual dictionary) translation in the top 1 and top
10 candidate lists.

nouns in Rapp (1995), 1,000 most frequent words
in Koehn and Knight (2002), or 2,000 most fre-
quent nouns in Haghighi et al. (2008)). Although
previous work reported high translation accuracy,
it may be misleading to extrapolate the results to
SMT, where it is necessary to translate a much
larger set of words and phrases, including many
low frequency items.

In a preliminary study, we plotted the accuracy
of translations against the frequency of the source
words in the monolingual corpus. Figure 2 shows
the result for translations induced using contex-
tual similarity (defined in Section 3.1). Unsur-
prisingly, frequent terms have a substantially bet-
ter chance of being paired with a correct transla-
tion, with words that only occur once having a low
chance of being translated accurately.! This prob-
lem is exacerbated when we move to multi-token
phrases. As with phrase translation features esti-
mated from parallel data, longer phrases are more
sparse, making similarity scores less reliable than
for single words.

Another impediment (not addressed in this
paper) for using lexicon induction for SMT is
the number of translations that must be learned.
Learning translations for all words in the source
language requires n? vector comparisons, since
each word in the source language vocabulary must

"For a description of the experimental setup used to pro-
duce these translations, see Experiment 8 in Section 5.2.
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Figure 3: Scoring contextual similarity of phrases:
first, contextual vectors are projected using a small
seed dictionary and then compared with the target lan-
guage candidates.

be compared against the vectors for all words in
the target language vocabulary. The size of the n?
comparisons hugely increases if we compare vec-
tors for multi-word phrases instead of just words.
In this work, we avoid this problem by assuming
that a limited set of phrase pairs is given a pri-
ori (but without scores). By limiting ourselves
to phrases in a phrase table, we vastly limit the
search space of possible translations. This is an
idealization because high quality translations are
guaranteed to be present. However, as our lesion
experiments in Section 5.1 show, a phrase table
without accurate translation probability estimates
is insufficient to produce high quality translations.
We show that lexicon induction methods can be
used to replace bilingual estimation of phrase- and
lexical-translation probabilities, making a signifi-
cant step towards SMT without parallel corpora.

3 Monolingual Parameter Estimation

We use bilingual lexicon induction methods to es-
timate the parameters of a phrase-based transla-
tion model from monolingual data. Instead of
scores estimated from bilingual parallel data, we
make use of cues present in monolingual data to
provide multiple orthogonal estimates of similar-
ity between a pair of phrases.

3.1 Phrasal similarity features

Contextual similarity. We extend the vector
space approach of Rapp (1999) to compute sim-
ilarity between phrases in the source and tar-
get languages. More formally, assume that
(s1,82,...sn) and (t1,to,...tyr) are (arbitrarily
indexed) source and target vocabularies, respec-
tively. A source phrase f is represented with an
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Figure 4: Temporal histograms of the English phrase
terrorist, its Spanish translation terrorista, and riqueza
(wealth) collected from monolingual texts spanning a
13 year period. While the correct translation has a
good temporal match, the non-translation rigueza has
a distinctly different signature.

N- and target phrase e with an M -dimensional
vector (see Figure 3). The component values of
the vector representing a phrase correspond to
how often each of the words in that vocabulary
appear within a two word window on either side
of the phrase. These counts are collected using
monolingual corpora. After the values have been
computed, a contextual vector f is projected onto
the English vector space using translations in a
seed bilingual dictionary to map the component
values into their appropriate English vector posi-
tions. This sparse projected vector is compared
to the vectors representing all English phrases e.
Each phrase pair in the phrase table is assigned
a contextual similarity score ¢(f, e) based on the
similarity between e and the projection of f.

Various means of computing the component
values and vector similarity measures have been
proposed in literature (e.g. Rapp (1999), Fung and
Yee (1998)). Following Fung and Yee (1998), we
compute the value of the k-th component of f’s
contextual vector as follows:

wy = ngk X (log(n/nkg) +1)

where n . and ny, are the number of times s, ap-
pears in the context of f and in the entire corpus,
and n is the maximum number of occurrences of
any word in the data. Intuitively, the more fre-
quently s appears with f and the less common
it is in the corpus in general, the higher its com-
ponent value. Similarity between two vectors is
measured as the cosine of the angle between them.

Temporal similarity. In addition to contex-
tual similarity, phrases in two languages may
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be scored in terms of their temporal similarity
(Schafer and Yarowsky, 2002; Klementiev and
Roth, 2006; Alfonseca et al., 2009). The intu-
ition is that news stories in different languages
will tend to discuss the same world events on the
same day. The frequencies of translated phrases
over time give them particular signatures that will
tend to spike on the same dates. For instance, if
the phrase asian tsunami is used frequently dur-
ing a particular time span, the Spanish transla-
tion maremoto asidtico is likely to also be used
frequently during that time. Figure 4 illustrates
how the temporal distribution of ferrorist is more
similar to Spanish terrorista than to other Span-
ish phrases. We calculate the temporal similar-
ity between a pair of phrases t(f,e) using the
method defined by Klementiev and Roth (2006).
We generate a temporal signature for each phrase
by sorting the set of (time-stamped) documents in
the monolingual corpus into a sequence of equally
sized temporal bins and then counting the number
of phrase occurrences in each bin. In our exper-
iments, we set the window size to 1 day, so the
size of temporal signatures is equal to the num-
ber of days spanned by our corpus. We use cosine
distance to compare the normalized temporal sig-
natures for a pair of phrases (f, e).

Topic similarity. Phrases and their translations
are likely to appear in articles written about the
same topic in two languages. Thus, topic or cat-
egory information associated with monolingual
data can also be used to indicate similarity be-
tween a phrase and its candidate translation. In
order to score a pair of phrases, we collect their
topic signatures by counting their occurrences in
each topic and then comparing the resulting vec-
tors. We again use the cosine similarity mea-
sure on the normalized topic signatures. In our
experiments, we use interlingual links between
Wikipedia articles to estimate topic similarity. We
treat each linked article pair as a topic and collect
counts for each phrase across all articles in its cor-
responding language. Thus, the size of a phrase
topic signature is the number of article pairs with
interlingual links in Wikipedia, and each compo-
nent contains the number of times the phrase ap-
pears in (the appropriate side of) the correspond-
ing pair. Our Wikipedia-based topic similarity
feature, w( f, e), is similar in spirit to polylingual
topic models (Mimno et al., 2009), but it is scal-
able to full bilingual lexicon induction.

3.2 Lexical similarity features

In addition to the three phrase similarity features
used in our model — ¢(f, e),t(f,e) and w(f,e) —
we include four additional lexical similarity fea-
tures for each of phrase pair. The first three lex-
ical features cjer(f,€),tex(f,€) and wie,(f,€)
are the lexical equivalents of the phrase-level con-
textual, temporal and wikipedia topic similarity
scores. They score the similarity of individual
words within the phrases. To compute these
lexical similarity features, we average similarity
scores over all possible word alignments across
the two phrases. Because individual words are
more frequent than multiword phrases, the accu-
racy of Ceq, tier, and wye, tends to be higher than
their phrasal equivalents (this is similar to the ef-
fect observed in Figure 2).

Orthographic / phonetic similarity. The final
lexical similarity feature that we incorporate is
o(f,e), which measures the orthographic similar-
ity between words in a phrase pair. Etymolog-
ically related words often retain similar spelling
across languages with the same writing system,
and low string edit distance sometimes signals
translation equivalency. Berg-Kirkpatrick and
Klein (2011) present methods for learning cor-
respondences between the alphabets of two lan-
guages. We can also extend this idea to language
pairs not sharing the same writing system since
many cognates, borrowed words, and names re-
main phonetically similar. Transliterations can be
generated for tokens in a source phrase (Knight
and Graehl, 1997), with o(f, e) calculating pho-
netic similarity rather than orthographic.

The three phrasal and four lexical similarity
scores are incorporated into the log linear trans-
lation model as feature functions, replacing the
bilingually estimated phrase translation probabil-
ities ¢ and lexical weighting probabilities w. Our
seven similarity scores are not the only ones that
could be incorporated into the translation model.
Various other similarity scores can be computed
depending on the available monolingual data and
its associated metadata (see, e.g. Schafer and
Yarowsky (2002)).

3.3 Reordering

The remaining component of the phrase-based
SMT model is the reordering model. We
introduce a novel algorithm for estimating
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Input: Source and target phrases f and e,
Source and target monolingual corpora C ¢ and Ce,
Phrase table pairs 7= {(f(¥),e(®)} ¥ .

Output: Orientation features (P, Ds, Pd)-

Sy « sentences containing f in Cy;
Se «— sentences containing e in Ce;
(Bf,—,—) « CollectOccurs(f, UN_, f(), S}p);
(Be, Ae, De) < CollectOccurs(e, Uﬁvzle(i), Se);
cm =c¢Cs =cqg =0;
foreach unique f’ in By do
foreach rranslation e’ of f' in T do
em =cm +#p.(€);
cs =cs+#a. ()
cqa =cq+#p.(e);

C« Ccm +Cs +cg;

return (2, S Sd)

CollectOccurs(r, R, S)

B— ();A—();D < ()

foreach sentence s € S do

foreach occurrence of phrase r in s do

B «— B + (longest preceding r and in R);
A — A+ (longest following r and in R);
D «— D + (longest discontinuous w/ r and in
R);

| return (B, A, D),

Figure 5: Algorithm for estimating reordering
probabilities from monolingual data.

po(orientation| f, e) from two monolingual cor-
pora instead a bitext.

Figure 1 illustrates how the phrase pair orienta-

tion statistics are estimated in the standard phrase-
based SMT pipeline. For a phrase pair like (f =

“Profils”, e = “profile”), we count its orien-
tation with the previously translated phrase pair
(f' = “in Facebook”, ¢ = “Facebook”) across

all translated sentence pairs in the bitext.

In our pipeline we do not have translated sen-
tence pairs. Instead, we look for monolingual
sentences in the source corpus which contain
the source phrase that we are interested in, like
f = “Profils”, and at least one other phrase
that we have a translation for, like f' = “in
Facebook”. We then look for all target lan-
guage sentences in the target monolingual cor-
pus that contain the translation of f (here e =
“profile”) and any translation of f’. Figure 6 il-
lustrates that it is possible to find evidence for
po(swapped|Profils, profile), even from the non-
parallel, non-translated sentences drawn from two
independent monolingual corpora. By looking for
foreign sentences containing pairs of adjacent for-
eign phrases (f, f’) and English sentences con-

S
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S » 2 3 S
o 2 o 5 3 8
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0O < © o &£ w @2 ©
What
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Figure 6: Collecting phrase orientation statistics for
a English-German phrase pair (“profile”, “Profils”)
from non-parallel sentences (the German sentence
translates as “Creating a Facebook profile is easy”).

taining their corresponding translations (e, e’), we
are able to increment orientation counts for (f, e)
by looking at whether e and e’ are adjacent,
swapped, or discontinuous. The orientations cor-
respond directly to those shown in Figure 1.

One subtly of our method is that shorter and
more frequent phrases (e.g. punctuation) are more
likely to appear in multiple orientations with a
given phrase, and therefore provide poor evi-
dence of reordering. Therefore, we (a) collect
the longest contextual phrases (which also appear
in the phrase table) for reordering feature estima-
tion, and (b) prune the set of sentences so that
we only keep a small set of least frequent contex-
tual phrases (this has the effect of dropping many
function words and punctuation marks and and re-
lying more heavily on multi-word content phrases
to estimate the reordering).’?

Our algorithm for learning the reordering pa-
rameters is given in Figure 5. The algorithm
estimates a probability distribution over mono-
tone, swap, and discontinuous orientations (P,
ps, pq) for a phrase pair (f,e) from two mono-
lingual corpora C'y and C.. It begins by calling
CollectOccurs to collect the longest match-
ing phrase table phrases that precede f in source
monolingual data (By), as well as those that pre-
cede (B,), follow (A.), and are discontinuous
(D) with e in the target language data. For each
unique phrase f’ preceding f, we look up transla-
tions in the phrase table 7. Next, we count® how

The pruning step has an additional benefit of minimizing
the memory needed for orientation feature estimations.
341 (z) returns the count of object X in list L.
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Monolingual training corpora

Spanish-English phrase table

Europarl Gigaword  Wikipedia Phrase pairs 3,093,228
date range 4/96-10/09 5/94-12/08 n/a Spanish phrases 89,386
uniq shared dates 829 5,249 n/a English phrases 926,138
Spanish articles n/a 3,727,954 59,463 Spanish unigrams 13,216
English articles n/a 4,862,876 59,463 Avg # translations 98.7
Spanish lines 1,307,339 22,862,835 2,598,269 Spanish bigrams 41,426
English lines 1,307,339 67,341,030 3,630,041 Avg # translations 31.9
Spanish words 28,248,930 774,813,847 39,738,084 Spanish trigrams 34,744
English words 27,335,006 1,827,065,374 61,656,646 Avg # translations 13.5

Table 1: Statistics about the monolingual training data and the phrase table that was used in all of the experiments.

many translations e’ of f’ appeared before, after
or were discontinuous with e in the target lan-
guage data. Finally, the counts are normalized and
returned. These normalized counts are the values
we use as estimates of p, (orientation| f, e).

4 Experimental Setup

We use the Spanish-English language pair to test
our method for estimating the parameters of an
SMT system from monolingual corpora. This al-
lows us to compare our method against the nor-
mal bilingual training procedure. We expect bilin-
gual training to result in higher translation qual-
ity because it is a more direct method for learn-
ing translation probabilities. We systematically
remove different parameters from the standard
phrase-based model, and then replace them with
our monolingual equivalents. Our goal is to re-
cover as much of the loss as possible for each of
the deleted bilingual components.

The standard phrase-based model that we use
as our top-line is the Moses system (Koehn et
al., 2007) trained over the full Europarl v5 par-
allel corpus (Koehn, 2005). With the exception
of maximum phrase length (set to 3 in our ex-
periments), we used default values for all of the
parameters. All experiments use a trigram lan-
guage model trained on the English side of the
Europarl corpus using SRILM with Kneser-Ney
smoothing. To tune feature weights in minimum
error rate training, we use a development bitext
of 2,553 sentence pairs, and we evaluate per-
formance on a test set of 2,525 single-reference
translated newswire articles. These development
and test datasets were distributed in the WMT
shared task (Callison-Burch et al., 2010).* MERT

4Specifcially, news-test2008 plus news-syscomb2009 for
dev and newstest2009 for test.

was re-run for every experiment.
We estimate the parameters of our model from
two sets of monolingual data, detailed in Table 1:

o First, we treat the two sides of the Europarl
parallel corpus as independent, monolingual
corpora. Haghighi et al. (2008) also used
this method to show how well translations
could be learned from monolingual corpora
under ideal conditions, where the contextual
and temporal distribution of words in the two
monolingual corpora are nearly identical.

o Next, we estimate the features from truly
monolingual corpora. To estimate the con-
textual and temporal similarity features, we
use the Spanish and English Gigaword cor-
pora.> These corpora are substantially larger
than the Europarl corpora, providing 27x as
much Spanish and 67x as much English for
contextual similarity, and 6x as many paired
dates for temporal similarity. 7Topical simi-
larity is estimated using Spanish and English
Wikipedia articles that are paired with inter-
language links.

To project context vectors from Spanish to En-
glish, we use a bilingual dictionary containing en-
tries for 49,795 Spanish words. Note that end-to-
end translation quality is robust to substantially
reducing dictionary size, but we omit these ex-
periments due to space constraints. The con-
text vectors for words and phrases incorporate co-
occurrence counts using a two-word window on
either side.

The title of our paper uses the word towards be-
cause we assume that an inventory of phrase pairs
is given. Future work will explore inducing the

SWe use the afp, apw and xin sections of the corpora.
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Figure 7: Much of the loss in BLEU score when bilingually estimated features are removed from a Spanish-
English translation system (experiments 1-4) can be recovered when they are replaced with monolingual equiva-
lents estimated from monolingual Europarl data (experiments 5-10). The labels indicate how the different types
of parameters are estimated, the first part is for phrase-table features, the second is for reordering probabilities.
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Figure 8: Performance of monolingual features de-
rived from truly monolingual corpora. Over 82% of
the BLEU score loss can be recovered.

phrase table itself from monolingual texts. Across
all of our experiments, we use the phrase table
that the bilingual model learned from the Europarl
parallel corpus. We keep its phrase pairs, but we
drop all of its scores. Table 1 gives details of the
phrase pairs. In our experiments, we estimated
similarity and reordering scores for more than 3
million phrase pairs. For each source phrase, the
set of possible translations was constrained and
likely to contain good translations. However, the
average number of possible translations was high
(ranging from nearly 100 translations for each un-
igram to 14 for each trigram). These contain a
lot of noise and result in low end-to-end transla-
tion quality without good estimates of translation
quality, as the experiments in Section 5.1 show.

Software. Because many details of our estima-
tion procedures must be omitted for space, we dis-
tribute our full set of code along with scripts for
running our experiments and output translations.
These may be downed from http://www.cs.
jhu.edu/~anni/papers/lowresmt/

5 Experimental Results

Figures 7 and 8 give experimental results. Figure
7 shows the performance of the standard phrase-
based model when each of the bilingually esti-
mated features are removed. It shows how much
of the performance loss can be recovered using
our monolingual features when they are estimated
from the Europarl training corpus but treating
each side as an independent, monolingual cor-
pus. Figure 8 shows the recovery when using truly
monolingual corpora to estimate the parameters.

5.1 Lesion experiments

Experiments 1-4 remove bilingually estimated pa-
rameters from the standard model. For Spanish-
English, the relative contribution of the phrase-
table features (which include the phrase transla-
tion probabilities ¢ and the lexical weights w) is
greater than the reordering probabilities. When
the reordering probability p,(orientation|f,e) is
eliminated and replaced with a simple distance-
based distortion feature that does not require a
bitext to estimate, the score dips only marginally
since word order in English and Spanish is simi-
lar. However, when both the reordering and the
phrase table features are dropped, leaving only
the LM feature and the phrase penalty, the result-
ing translation quality is abysmal, with the score
dropping a total of over 17 BLEU points.

5.2 Adding equivalent monolingual features
estimated using Europarl

Experiments 5-10 show how much our monolin-
gual equivalents could recover when the monolin-
gual corpora are drawn from the two sides of the
bitext. For instance, our algorithm for estimating
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reordering probabilities from monolingual data (—
/M) adds 5 BLEU points, which is 73% of the po-
tential recovery going from the model (—/-) to the
model with bilingual reordering features (—/B).

Of the temporal, orthographic, and contextual
monolingual features the temporal feature per-
forms the best. Together (M/-), they recover
more than each individually. Combining mono-
lingually estimated reordering and phrase table
features (M/M) yields a total gain of 13.5 BLEU
points, or over 75% of the BLEU score loss that
occurred when we dropped all features from the
phrase table. However, these results use “mono-
lingual” corpora which have practically identical
phrasal and temporal distributions.

5.3 Estimating features using truly
monolingual corpora

Experiments 12-18 estimate all of the features
from truly monolingual corpora. Our novel al-
gorithm for estimating reordering holds up well
and recovers 69% of the loss, only 0.4 BLEU
points less than when estimated from the Europarl
monolingual texts. The temporal similarity fea-
ture does not perform as well as when it was esti-
mated using Europarl data, but the contextual fea-
ture does. The topic similarity using Wikipedia
performs the strongest of the individual features.

Combining the monolingually estimated re-
ordering features with the monolingually esti-
mated similarity features (M/M) yields a total
gain of 14.8 BLEU points, or over 82% of the
BLEU point loss that occurred when we dropped
all features from the phrase table. This is equiv-
alent to training the standard system on a bi-
text with roughly 60,000 lines or nearly 2 million
words (learning curve omitted for space).

Finally, we supplement the standard bilingually
estimated model parameters with our monolin-
gual features (BM/B), and we see a 1.5 BLEU
point increase over the standard model. There-
fore, our monolingually estimated scores capture
some novel information not contained in the stan-
dard feature set.

6 Additional Related Work

Carbonell et al. (2006) described a data-driven
MT system that used no parallel text. It produced
translation lattices using a bilingual dictionary
and scored them using an n-gram language model.

Their method has no notion of translation similar-
ity aside from a bilingual dictionary. Similarly,
Sanchez-Cartagena et al. (2011) supplement an
SMT phrase table with translation pairs extracted
from a bilingual dictionary and give each a fre-
quency of one for computing translation scores.

Ravi and Knight (2011) treat MT without paral-
lel training data as a decipherment task and learn
a translation model from monolingual text. They
translate corpora of Spanish time expressions and
subtitles, which both have a limited vocabulary,
into English. Their method has not been applied
to broader domains of text.

Most work on learning translations from mono-
lingual texts only examine small numbers of fre-
quent words. Huang et al. (2005) and Daumé and
Jagarlamudi (2011) are exceptions that improve
MT by mining translations for OOV items.

A variety of past research has focused on min-
ing parallel or comparable corpora from the web
(Munteanu and Marcu, 2006; Smith et al., 2010;
Uszkoreit et al., 2010). Others use an existing
SMT system to discover parallel sentences within
independent monolingual texts, and use them to
re-train and enhance the system (Schwenk, 2008;
Chen et al., 2008; Schwenk and Senellart, 2009;
Rauf and Schwenk, 2009; Lambert et al., 2011).
These are complementary but orthogonal to our
research goals.

7 Conclusion

This paper has demonstrated a novel set of tech-
niques for successfully estimating phrase-based
SMT parameters from monolingual corpora, po-
tentially circumventing the need for large bitexts,
which are expensive to obtain for new languages
and domains. We evaluated the performance of
our algorithms in a full end-to-end translation sys-
tem. Assuming that a bilingual-corpus-derived
phrase table is available, we were able utilize our
monolingually-estimated features to recover over
82% of BLEU loss that resulted from removing
the bilingual-corpus-derived phrase-table proba-
bilities. We also showed that our monolingual fea-
tures add 1.5 BLEU points when combined with
standard bilingually estimated features. Thus our
techniques have stand-alone efficacy when large
bilingual corpora are not available and also make
a significant contribution to combined ensemble
performance when they are.
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Abstract

In this paper we investigate the use of
character-level translation models to sup-
port the translation from and to under-
resourced languages and textual domains
via closely related pivot languages. Our ex-
periments show that these low-level models
can be successful even with tiny amounts
of training data. We test the approach on
movie subtitles for three language pairs and
legal texts for another language pair in a do-
main adaptation task. Our pivot translations
outperform the baselines by a large margin.

1 Introduction

Data-driven approaches have been extremely suc-
cessful in most areas of natural language pro-
cessing (NLP) and can be considered the main
paradigm in application-oriented research and de-
velopment. Research in machine translation is a
typical example with the dominance of statisti-
cal models over the last decade. This is even en-
forced due to the availability of toolboxes such as
Moses (Koehn et al., 2007) which make it pos-
sible to build translation engines within days or
even hours for any language pair provided that ap-
propriate training data is available. However, this
reliance on training data is also the most severe
limitation of statistical approaches. Resources in
large quantities are only available for a few lan-
guages and domains. In the case of SMT, the
dilemma is even more apparent as parallel cor-
pora are rare and usually quite sparse. Some lan-
guages can be considered lucky, for example, be-
cause of political situations that lead to the pro-
duction of freely available translated material on
a large scale. A lot of research and development

would not have been possible without the Euro-
pean Union and its language policies to give an
example.

One of the main challenges of current NLP re-
search is to port data-driven techniques to under-
resourced languages, which refers to the major-
ity of the world’s languages. One obvious ap-
proach is to create appropriate data resources even
for those languages in order to enable the use of
similar techniques designed for high-density lan-
guages. However, this is usually too expensive
and often impossible with the quantities needed.
Another idea is to develop new models that can
work with (much) less data but still make use
of resources and techniques developed for other
well-resourced languages.

In this paper, we explore pivot translation tech-
niques for the translation from and to resource-
poor languages with the help of intermediate
resource-rich languages. We explore the fact
that many poorly resourced languages are closely
related to well equipped languages, which en-
ables low-level techniques such as character-
based translation. We can show that these tech-
niques can boost the performance enormously,
tested for several language pairs. Furthermore, we
show that pivoting can also be used to overcome
data sparseness in specific domains. Even high
density languages are under-resourced in most
textual domains and pivoting via in-domain data
of another language can help to adapt statistical
models. In our experiments, we observe that re-
lated languages have the largest impact in such a
setup.

The remaining parts of the paper are organized
as follows: First we describe the pivot translation
approach used in this study. Thereafter, we dis-
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cuss character-based translation models followed
by a detailed presentation of our experimental
results. Finally, we briefly summarize related
work and conclude the paper with discussions and
prospects for future work.

2 Pivot Models

Information from pivot languages can be incorpo-
rated in SMT models in various ways. The main
principle refers to the combination of source-
to-pivot and pivot-to-target translation models.
In our setup, one of these models includes a
resource-poor language (source or target) and the
other one refers to a standard model with ap-
propriate data resources. A condition is that we
have at least some training data for the translation
between pivot and the resource-poor language.
However, for the original task (source-to-target
translation) we do not require any data resources
except for purposes of comparison.

We will explore various models for the transla-
tion between the resource-poor language and the
pivot language and most of them are not compat-
ible with standard phrase-based translation mod-
els. Hence, triangulation methods (Cohn and La-
pata, 2007) for combining phrase tables are not
applicable in our case. Instead, we explore a
cascaded approach (also called “transfer method”
(Wu and Wang, 2009)) in which we translate the
input text in two steps using a linear interpo-
lation for rescoring N-best lists. Following the
method described in (Utiyama and Isahara, 2007)
and (Wu and Wang, 2009), we use the best n hy-
potheses from the translation of source sentences
s to pivot sentences p and combine them with the
top m hypotheses for translating these pivot sen-
tences to target sentences ¢:

L
t ~ argmaz Z aXPhP (s,p) + (1 — )AL RE (p, 1)
t
k=1

where h;? are feature functions for model zy
with appropriate weights \;”.! Basically, this
means that we simply add the scores and, sim-
ilar to related work, we assume that the feature
weights can be set independently for each model
using minimum error rate training (MERT) (Och,

"Note, that we do not require the same feature functions
in both models even though the formula above implies this
for simplicity of representation.

2003). In our setup we added the parameter «
that can be used to weight the importance of one
model over the other. This can be useful as we
do not consider the entire hypothesis space but
only a small subset of N-best lists. In the sim-
plest case, this weight is set to 0.5 making both
models equally important. An alternative to fit-
ting the interpolation weight would be to per-
form a global optimization procedure. However,
a straightforward implementation of pivot-based
MERT would be prohibitively slow due to the
expensive two-step translation procedure over n-
best lists.

A general condition for the pivot approach is to
assume independent training sets for both transla-
tion models as already pointed out by (Bertoldi
et al., 2008). In contrast to research presented
in related work (see, for example, (Koehn et al.,
2009)) this condition is met in our setup in which
all data sets represent different samples over the
languages considered (see section 4).2

3 Character-Based SMT

The basic idea behind character-based translation
models is to take advantage of the strong lexi-
cal and syntactic similarities between closely re-
lated languages. Consider, for example, Figure
1. Related languages like Catalan and Spanish or
Danish and Norwegian have common roots and,
therefore, use similar concepts and express them
in similar grammatical structures. Spelling con-
ventions can still be quite different but those dif-
ferences are often very consistent. The Bosnian-
Macedonian example also shows that we do not
have to require any alphabetic overlap in order to
obtain character-level similarities.

Regularities between such closely related lan-
guages can be captured below the word level. We
can also assume a more or less monotonic rela-
tion between the two languages which motivates
the idea of translation models over character N-
grams treating translation as a transliteration task
(Vilar et al., 2007). Conceptually it is straightfor-
ward to think of phrase-based models on the char-
acter level. Sequences of characters can be used
instead of word N-grams for both, translation and
language models. Training can proceed with the
same tools and approaches. The basic task is to

*Note that different samples may still include common
sentences.
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Catalan - Spanish Danish - Norwegian

Oko, comprova |'equip.
Oko, comprueba el equipo.

Du ser forfardelig ud.
- Du ser forferdelig ut.

No hi ha constellacié en la distancia Visual.
No hay constelacion en la distancia Visual.

Du kunnei det mindste have barberet dig.
Du kunne i det minste ha barbert deg.

Cap explosié estelar.

Ninguna explosién estelar. Icelandic - Swedish

Barnid er daid.
Barnet ar dott.

Bosnian - Macedonian

Hann andadi adeins i smastund.
Han andades bara en kort stund.

Kako znate da se radi o jednoj Zivotinji?
Kako 3HeTe aeka ce paboTi 3a XMBOTHO?

Svo andadi hann ekki meira.
Han andades aldrig igen.

Ni ja ne verujem u zmajeve...
W jac He Bepysam BO 3MejoBM ...

Figure 1: Some examples of movie subtitle transla-
tions between closely related languages (either sharing
parts of the same alphabet or not).

prepare the data to comply with the training pro-
cedures (see Figure 2).

curs confirmat .
curso confirmado .

curs_confirmat_.
curso_confirmado_.

que és aixo ?
i quéeseso?

que_és_aixo_?
i_qué_es_eso_?

Figure 2: Data pre-processing for training models on
the character level. Spaces are represented by ’_" and
each sentence is treated as one sequence of characters.

3.1 Character Alignment

One crucial difference is the alignment of charac-
ters, which is required instead of an alignment of
words. Clearly, the traditional IBM word align-
ment models are not designed for this task es-
pecially with respect to distortion. However, the
same generative story can still be applied in gen-
eral. Vilar et al. (2007) explore a two-step proce-
dure where words are aligned first (with the tradi-
tional IBM models) to divide sentence pairs into
aligned segments of reasonable size and the char-
acters are then aligned with the same algorithm.
An alternative is to use models designed for
transliteration or related character-level transfor-
mation tasks. Many approaches are based on
transducer models that resemble string edit oper-
ations such as insertions, deletions and substitu-
tions (Ristad and Yianilos, 1998). Weighted fi-
nite state transducers (WFST’s) can be trained on
unaligned pairs of character sequences and have
been shown to be very effective for transliteration
tasks or letter-to-phoneme conversions (Jiampoja-
marn et al., 2007). The training procedure usually
employs an expectation maximization (EM) pro-

cedure and the resulting transducer can be used to
find the Viterbi alignment between characters ac-
cording to the best sequence of edit operations ap-
plied to transform one string into the other. Exten-
sions to this model are possible, for example the
use of many-to-many alignments which have been
shown to be very effective in letter-to-phoneme
alignment tasks (Jiampojamarn et al., 2007).

One advantage of the edit-distance-based trans-
ducer models is that the alignments they pre-
dict are strictly monotonic and cannot easily be
confused by spurious relations between charac-
ters over longer distances. Long distance align-
ments are only possible in connection with a se-
ries of insertions and deletions that usually in-
crease the alignment costs in such a way that they
are avoided if possible. On the other hand, IBM
word alignment models also prefer monotonic
alignments over non-monotonic ones if there is no
good reason to do otherwise (i.e., there is frequent
evidence of distorted alignments). However, the
size of the vocabulary in a character-level model
is very small (several orders of magnitude smaller
than on the word level) and this may cause serious
confusion of the word alignment model that very
much relies on context-independent lexical trans-
lation probabilities. Hence, for character align-
ment, the lexical evidence is much less reliable
without their context.

It is certainly possible to find a compromise be-
tween word-level and character-level models in
order to generalize below word boundaries but
avoiding alignment problems as discussed above.
Morpheme-based translation models have been
explored in several studies with similar motiva-
tions as in our approach, a better generalization
from sparse training data (Fishel and Kirik, 2010;
Luong et al., 2010). However, these approaches
have the drawback that they require proper mor-
phological analyses. Data-driven techniques ex-
ist even for morphology, but their use in SMT
still needs to be shown (Fishel, 2009). The sit-
uation is comparable to the problems of integrat-
ing linguistically motivated phrases into phrase-
based SMT (Koehn et al., 2003). Instead we opt
for a more general approach to extend context to
facilitate, especially, the alignment step. Figure 3
shows how we can transform texts into sequences
of bigrams that can be aligned with standard ap-
proaches without making any assumptions about
linguistically motivated segmentations.
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cuurrs soo_ _ccoonnffiirrmmaaddoo__. ._

(-qquuéé__eess__eessoo__? 7

Figure 3: Two Spanish sentences as sequences of char-
acter bigrams with a final ’_" marking the end of a sen-
tence.

In this way we can construct a parallel corpus with
slightly richer contextual information as input to
the alignment program. The vocabulary remains
small (for example, 1267 bigrams in the case of
Spanish compared to 84 individual characters in
our experiments) but lexical translation probabili-
ties become now much more differentiated.

With this, it is now possible to use the align-
ment between bigrams to train a character-level
translation system as we have the same number of
bigrams as we have characters (and the first char-
acter in each bigram corresponds to the charac-
ter at that position). Certainly, it is also possible
to train a bigram translation model (and language
model). This has the (one and only) advantage
that one character of context across phrase bound-
aries (i.e. character N-grams) is used in the se-
lection of translation alternatives from the phrase
table.

3.2 Tuning Character-Level Models

A final remark on training character-based SMT
models is concerned with feature weight tun-
ing. It certainly makes not much sense to com-
pute character-level BLEU scores for tuning fea-
ture weights especially with the standard settings
of matching relatively short N-grams. Instead
we would still like to measure performance in
terms of word-level BLEU scores (or any other
MT evaluation metric used in minimum error
rate training). Therefore, it is important to post-
process character-translated development sets be-
fore adjusting weights. This is simply done
by merging characters accordingly and replacing
the place-holders with spaces again. Thereafter,
MERT can run as usual.

3.3 Evaluation

Character-level translations can be evaluated in
the same way as other translation hypotheses,
for example using automatic measures such as

3Using larger units (trigrams, for example) led to lower
scores in our experiments (probably due to data sparseness)
and, therefore, are not reported here.

BLEU, NIST, METEOR etc. The same simple
post-processing as mentioned in the previous sec-
tion can be applied to turn the character transla-
tions into “normal” text. However, it can be use-
ful to look at some other measures as well that
consider near matches on the character level in-
stead of matching words and word N-grams only.
Character-level models have the ability to produce
strings that may be close to the reference and still
do not match any of the words contained. They
may generate non-words that include mistakes
which look like spelling-errors or minor gram-
matical mistakes. Those words are usually close
enough to the correct target words to be recog-
nized by the user, which is often more acceptable
than leaving foreign words untranslated. This is
especially true as many unknown words represent
important content words that bear a lot of infor-
mation. The problem of unknown words is even
more severe for morphologically rich language as
many word forms are simply not part of (sparse)
training data sets. Untranslated words are espe-
cially annoying when translating languages that
use different writing systems. Consider, for ex-
ample, the following subtitles in Macedonian (us-
ing Cyrillic letters) that have been translated from
Bosnian (written in Latin characters):

N gama BUHO, KaKO 1 CEKOrarlil.

1 €asu vina, Kako cekorar.
U yaia BUHO, KAKO CEKOTAIl.

reference:
word-based:
char-based:

reference:
word-based:
char-based:

Bo craporo cermnmmTe.
Bo starom svetilistu.
Bo crap cBermnuinrero.

The underlined parts mark examples of character-
level differences with respect to the reference
translation. For the pivot translation approach, it
is important that the translations generated in the
first step can be handled by the second one. This
means, that words generated by a character-based
model should at least be valid input words for the
second step, even though they might refer to er-
roneous inflections in that context. Therefore, we
add another measure to our experimental results
presented below — the number of unknown words
with respect to the input language of the second
step. This applies only to models that are used
as the first step in pivot-based translations. For
other models, we include a string similarity mea-
sure based on the longest common subsequence
ratio (LCSR) (Stephen, 1992) in order to give an
impression about the “closeness” of the system
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output to the reference translations.

4 Experiments

We conducted a series of experiments to test
the ideas of (character-level) pivot translation for
resource-poor languages. We chose to use data
from a collection of translated subtitles com-
piled in the freely available OPUS corpus (Tiede-
mann, 2009b). This collection includes a large
variety of languages and contains mainly short
sentences and sentence fragments, which suits
character-level alignment very well. The selected
settings represent translation tasks between lan-
guages (and domains) for which only very limited
training data is available or none at all.

Below we present results from two general
tasks:* (i) Translating between English and a
resource-poor language (in both directions) via
a pivot language that is close related to the
resource-poor language. (ii) Translating between
two languages in a domain for which no in-
domain training data is available via a pivot lan-
guage with in-domain data. We will start with
the presentation of the first task and the character-
based translation between closely related lan-
guages.

4.1 Task 1: Pivoting via Related Languages

We decided to look at resource-poor languages
from two language families: Macedonian repre-
senting a Slavic language from the Balkan re-
gion, Catalan and Galician representing two Ro-
mance languages spoken mainly in Spain. There
is only little or no data available for translating
from or to English for these languages. However,
there are related languages with medium or large
amounts of training data. For Macedonian, we
use Bulgarian (which also uses a Cyrillic alpha-
bet) and Bosnian (another related language that
mainly uses Latin characters) as the pivot lan-
guage. For Catalan and Galician, the obvious
choice was Spanish (however, Portuguese would,
for example, have been another reasonable op-
tion for Galician). Table 1 lists the data avail-
able for training the various models. Furthermore,
we reserved 2000 sentences for tuning parameters

*In all experiments we use standard tools like Moses,
Giza++, SRILM, mteval etc. Details about basic settings are
omitted here due to space constraints but can be found in
the supplementary material. The data sets are available from
here: http://stp.lingfil.uu.se/~joerg/index.php?resources

and another 2000 sentences for testing. For Gali-
cian, we only used 1000 sentences for each set
due to the lack of additional data. We were espe-
cially careful when preparing the data to exclude
all sentences from tuning and test sets that could
be found in any pivot or direct translation model.
Hence, all test sentences are unseen strings for all
models presented in this paper (but they are not
comparable with each other as they are sampled
individually from independent data sets).

language pair #sent’s  #words
Galician — English - -
Galician — Spanish 2k 15