Abstract
Cross-lingual transfer of word embeddings aims to establish the semantic mappings among words in different languages by learning the transformation functions over the corresponding word embedding spaces. Successfully solving this problem would benefit many downstream tasks such as to translate text classification models from resource-rich languages (e.g. English) to low-resource languages. Supervised methods for this problem rely on the availability of cross-lingual supervision, either using parallel corpora or bilingual lexicons as the labeled data for training, which may not be available for many low resource languages. This paper proposes an unsupervised learning approach that does not require any cross-lingual labeled data. Given two monolingual word embedding spaces for any language pair, our algorithm optimizes the transformation functions in both directions simultaneously based on distributional matching as well as minimizing the back-translation losses. We use a neural network implementation to calculate the Sinkhorn distance, a well-defined distributional similarity measure, and optimize our objective through back-propagation. Our evaluation on benchmark datasets for bilingual lexicon induction and cross-lingual word similarity prediction shows stronger or competitive performance of the proposed method compared to other state-of-the-art supervised and unsupervised baseline methods over many language pairs.- Anthology ID:
- D18-1268
- Volume:
- Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
- Month:
- October-November
- Year:
- 2018
- Address:
- Brussels, Belgium
- Editors:
- Ellen Riloff, David Chiang, Julia Hockenmaier, Jun’ichi Tsujii
- Venue:
- EMNLP
- SIG:
- SIGDAT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 2465–2474
- Language:
- URL:
- https://aclanthology.org/D18-1268
- DOI:
- 10.18653/v1/D18-1268
- Cite (ACL):
- Ruochen Xu, Yiming Yang, Naoki Otani, and Yuexin Wu. 2018. Unsupervised Cross-lingual Transfer of Word Embedding Spaces. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2465–2474, Brussels, Belgium. Association for Computational Linguistics.
- Cite (Informal):
- Unsupervised Cross-lingual Transfer of Word Embedding Spaces (Xu et al., EMNLP 2018)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-2/D18-1268.pdf
- Code
- xrc10/unsup-cross-lingual-embedding-transfer